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Traditional linear cointegration models have been widely used to examine long-

run relationships between economic variables; however, empirical evidence

suggests that the linear structure fails to account for economic changes due

to technology improvement, business cycles and policy alterations. Nonlinear

cointegration models provide an important means to extend conventional coin-

tegration analysis by incorporating these factors. In the first chapter, I establish

a statistical theory for cointegrating regressions with threshold effects. I derive

asymptotics of the profiled least square (LS) estimators assuming the size of the

threshold effect converges to zero. Depending on how rapidly this sequence

converges, the model may be identified or weakly identified. A model-selection

procedure is then applied to construct robust confidence intervals, which have

approximately correct coverage probability irrespective of the magnitude of the

threshold effect.

Using a parametric model, however, one always suffers from the danger of

model misspecifications. The standard tests based on parametric models can-

not tell us whether the rejection or acceptance of threshold effects is due to real

regime shifts or a functional misspecification. In the second chapter, I consider

the estimation and testing for threshold effects in regression models with un-

known functional forms. I use series expansions to approximate the unknown

regression functions and estimate the threshold effect with a profile least square



method. A nice property of the estimator is that it achieves T-convergence rate

as in parametric models. I derive the asymptotic distribution of the threshold

estimator and design a generalized sup Wald statistic to test the threshold effect.

In the third chapter, I consider an application of threshold cointegration on

the price discovery for cross-listed stocks. For cross-listings, the convergence to

equilibrium parity between home and guest market prices could be discontin-

uous, i.e., convergence may be quicker when the price deviation is sufficiently

profitable. By considering the concept of threshold cointegration, I modify Har-

ris et al.’s (1995, 2002) common factor approach to estimate the relative extent

of market-respective contribution to price discovery. The method is applied to

Canadian stocks cross-listed on the New York Stock Exchange (NYSE) and the

Toronto Stock Exchange.
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CHAPTER 1

INTRODUCTION

1.1 Cointegrating Regressions with Threshold Effects

Cointegration analysis has been widely applied in economics and finance. Tra-

ditional cointegration analysis assumes a linear long-run relationship among

integrated processes. In empirical applications, however, little evidence has

been found to support this linear cointegration structure, see Park and Hahn

(1999) and Xiao (2009). A variety of reasons have been proposed to explain this

empirical frustration, leading to many extensions of linear cointegration mod-

els. Among these, a major extension is to consider a time-varying cointegrating

vector given by

yt = αtxt + εt (1.1)

where xt are integrated regressors and εt is a stationary process. Such a time-

varying cointegration relationship might result from technology improvement,

business cycles and policy alterations.

However, in Model (1.1), yt will not be an I(1) process anymore if αt is not

a constant. Simulations also indicate that yt could be a time series process

with low persistency. Shi and Phillips (2010) view this property as an advan-

tage of nonlinear transformations of integrated processes since they are helpful

to model relationships between some weak dependent variables, such as as-

set returns and highly dependent variables, such as economic fundamentals.

Some recent studies call these models as nonlinear or time-varying cointegra-

tion. Nevertheless, these definitions lose the economic beauty of the linear coin-
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tegration model which implies a common stochastic trend among economic in-

tegrated variables.

In the first chapter, following Model (1.1), I modify traditional cointegra-

tion models by considering a threshold effect on the cointegrating vector, whose

sizes may be small in a statistical sense, but cause the failure of traditional coin-

tegration tests. I assume the size of threshold effect be local to zero so the non-

linear effect only has a negligible impact on the memory property of yt. This

approach not only gives us a flexibility in modeling cointegrating relationships

with some deviations from the linear structure, but also avoid the theoretical

deficiency of nonlinear cointegration.

The main reason to choose threshold models is they offer a parsimonious ap-

proach to capture the time varying properties in economics models. Compared

to other nonlinear models, threshold models are more powerful to capture small

nonlinear deviations. Threshold effects are also very natural for characterizing

some stylized facts of modern economies. For example, threshold models pro-

vide a useful framework for modelling the multiple equilibria implied by eco-

nomic growth models with credit constraints.1 Modelling asymmetry in eco-

nomic relationships is another strength, since threshold models avoid the cum-

bersome cubic and higher order terms necessitated by other parametric nonlin-

ear models.

The basic model I consider has two regimes, which may correspond to ex-

pansion and recession stages, normal and crisis periods, aggressive and passive

policy regimes in the real world. For asymptotics purposes, the threshold vari-

1For example, Azariadis and Smith (1998) show that the economy could switch back and
force between two long-run equilibrium regimes according to whether the credit constraint is
binding or not. Similar results have been established between inflation rate and long run econ-
omy growth rates, inflation rate and financial sector performance, see Boyd et al.(2001).
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able is assumed to be stationary ergodic and continuous.2 I derive asymptotics

of the profiled least square (LS) estimators assuming the size of the threshold ef-

fect converges to zero. Depending on how rapidly this sequence converges, the

model may be identified or weakly identified.3 In the former case, I show that

the profiled least square estimators are consistent and that their confidence in-

tervals (CIs) can be constructed through inversion of certain standard test statis-

tics. For the latter, the estimators are inconsistent and their limiting distributions

depend on some inestimable nuisance parameters. The standard method to con-

struct CIs does not control the coverage probability. One way to deal with this

problem is to take the supremum of quantiles for all possible values of nuisance

parameters and then construct the least favorable CIs. These CIs have the cor-

rect asymptotic size under weak identification case, but can be unnecessarily

long when the model is identified. Following Cheng (2008) and Shi and Phillips

(2010), I apply a model-selection procedure to choose the CIs. It can be shown

that the CIs chosen by this method have approximately correct coverage proba-

bility irrespective of the magnitude of the threshold effect. This model selection

procedure can also be regarded as a pretest to determine the efficacy of the con-

ventional t-test or Chi-square tests.

Endogeneity and serial correlation are common in empirical studies with

integrated regressors; an extension of the model allows for these important fea-

tures. Most previous nonlinear cointegration models assume error terms to be

a martingale difference sequence, e.g. Park and Phillips (2001), Cai et al. (2009).

This assumption is too restrictive compared to linear cointegrations, where the

error terms are assumed to be stationary and the regressors are endogenous. In

2The simulations demonstrate that the method works well even the threshold variable is
highly persistent.

3Threshold effects with fixed sizes can be viewed as special cases with zero convergence rate.
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the extended model, I assume the error term to be an AR(1) process, and use

leads and lags of innovations as extra regressors to deal with endogeneity. I

design a Cochrane-Orcutt-type feasible generalized least square (FGLS) estima-

tor to estimate the model. It is well known that, in linear cointegration models

the FGLS estimator cannot improve the estimation, as Phillips and Park (1988)

demonstrate by establishing their asymptotic equivalence. However, this equiv-

alence does not hold when there exist regime shifts. I analytically and numeri-

cally show that the FGLS estimation improves LS estimation in the presence of

serial correlation.

Another attraction of the FGLS estimator is its robustness with respect to dif-

ferent error specifications, including I(1) errors. This robustness allows testing

the existence of regime shifts without knowing whether cointegration is present.

Compared to Gregory and Hansen (1996), who design a robust cointegration

test without knowledge of the existence of a change point, I test the hypotheses

of regime shifts and cointegrating relationship in the opposite way. I first design

a sup-Wald statistic based on the FGLS estimator to test the existence of regime

shifts, and then apply residual-based test statistics to test cointegration given

the conclusion from the first step. The model selection procedure is applied to

construct robust cointegration tests. Monte Carlo simulations show that these

test statistics perform reasonably well.

Finally, I provide an empirical application of my model to the asymmetric

effects of monetary policy on real output under different credit conditions. Blin-

der (1987) develops a model consisting of two equilibria: a Keynesian equilib-

rium and a credit-rationed equilibrium, showing that the effects of monetary

policy could be rather weak in the Keynesian regime and rather strong in the
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credit-rationed regime. Azariadis and Smith (1998) develop a similar model

and claim that the economy could switch back and forth between a Walrasian

regime and a credit-rationing regime. Various empirical studies examine this

asymmetric relationship; see McCallum (1991), Galbraith (1996), Balke (2000).

However, all of these are restricted to the stationary framework due to the lack

of theoretical work on the threshold model with integrated regressors. Given

the fact that real output and monetary supply variables are very likely to be unit

roots, the model presented in this paper can be expected to generate more reli-

able results. My finding confirms the existence of asymmetric effects between

monetary policy and output. Both monetary policy and fiscal policy have larger

effects on the real output during the credit-rationed regime than normal regime

without credit rationing.

1.2 Threshold Effects in Regression Models with Unknown

Functional Forms

Using a parametric model, however, one always suffers from the danger of

model misspecifications. The standard tests based on parametric models can-

not tell us whether the rejection or acceptance of threshold effects is due to real

regime shifts or a functional misspecification. For change-point models, Hi-

dalgo (1995) shows, both theoretically and through Monte Carlo simulations,

that when the model is misspecified, the test for structural change will reject the

(in fact true) null hypothesis of no structural change with probability tending to

one as the sample size increases. Since change-point model is a special case of

threshold model, we face a similar risk for threshold models. From these con-

5



siderations, it is desirable to design a general method by relaxing the parametric

assumption on the functional form in the detection of threshold effects.

In the second chapter, I propose a procedure free of any parametric assump-

tion to detect and test threshold effects in regressions. I consider a model as

follows

yt =


g1(xt) + ut, zt ≤ γ0

g2(xt) + ut, zt > γ0

 (1.2)

where γ0 is the threshold and zt is a random variable. The unknown functions

gi(xt) for i = 1, 2 are assumed to be smooth. Model (1.2) is not uncommon in

economics. For example, for a macroeconomic time series, the sample interval

could cover both normal and crisis states, with two different relationship be-

tween yt and xt in these two states. Elliott and Timmermann (2005) point out

that, nonlinear models are usually able to adapt rapidly to events with high

economic uncertainty, whereas linear models only adjust to these changes slug-

gishly. Thus, a natural idea in economic modeling is to use more adaptive non-

linear models during crisis periods to capture fast changes, but use stable linear

models to get the benefits of more precisely estimated parameters during nor-

mal periods. In a nonparametric setting, we can let the data choose a suitable

model in each state.

The current study is related to the literature on detecting and testing discon-

tinuities or jumps in a nonparametric model; see Yin (1988), Müller(1992), Del-

gado and Hidalgo(2000) and Gao et al.(2008). These authors’ methods are based

on the use of a one-sided kernel smoother, first introduced by Müller(1992). The

basic idea is that the left-hand and right-hand side estimates converge to the left

and right limit, respectively, at the change points. The difference between these

estimates is used to construct the statistic for the detection of a change in condi-
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tional mean function E(y|x). In these models, the sample splitting variable zt is

the regression variable xt itself and the methods focus only on jumps. However,

in my approach, I allow zt to be different from the regressor xt and the types

of change to be more general (see examples in Section 2). This study is also re-

lated to the literature on nonparametric regressions with both continuous and

categorical regressors. See Li and Racine (2003), Racine et al.(2006) and Li et

al.(2009). Briefly, one can define a categorical regressor z∗t as z∗t = 1 if zt ≤ γ0 and

0 otherwise. Testing the threshold effect in the model (1.2) could be viewed as

testing whether the discrete variable z∗t is significant or not. The difference is

that, in my case, the categorical regressor z∗t still depends on another variable zt

and an unknown parameter γ0; thus, earlier method cannot be applied directly.

I use series expansions to approximate the unknown regression functions

and estimate the threshold effect using a profile least square methods.4 Series

estimation is a global smoothing approach which has already been applied to

estimate different nonparametric models in economics; see Gallant and Souza

(1991) and Newey (1997) for general nonparametric models. For some recent

work in specific models, refer to Li (2000) in the case of an additive partially

linear model, Baltagi and Li (2002) in the case of a partially linear panel data

model and Huang et al (2002) in the case of a varying coefficient model. The re-

lated convergence rate and asymptotic normality of the series estimators have

been established by Andrews (1991) and Newey (1997). Series estimation has

also been used for model specification testing (see Hong and White(1995) and

Li et al. (2003) among others). Essentially, series estimation method uses a se-

ries expansion to approximate an unknown function as a linear combination of

basis functions. The number of basis functions is a smoothing parameter simi-

4Chen et al. (2008) and Zhou et al. (2010) apply wavelet analysis to detect jumps and cusps
in nonparametric regressions.

7



lar to the bandwidth for local smoothing methods. Compared to kernel-based

smoothing techniques and local polynomial fitting, series estimation has the

several advantages (Li , 2000). First, it is very convenient for imposing certain

types of restrictions, such as additive separability and shape-preserving. Sec-

ond, series estimation methods convert nonparametric regression into a many

normal means problem, which is simpler, at least for theoretical purposes. A

third advantage comes from reduced computational costs, because series esti-

mation only involves least squares and the data are summarized by relatively

few estimated coefficients. Finally, the threshold effect can be conveniently

tested since the difference of coefficients on basis functions can be used to con-

struct the test statistics directly.

Under some regularity conditions, I show that the profile least square es-

timator of the threshold value can yield T convergence rate as in parametric

models. This super convergence rate enables me to study the asymptotics of

the series estimators in each subsample as the true threshold is known. I derive

the asymptotic distributions for the threshold estimator and the series estima-

tors in each regime. To test the significance of the threshold effect, I design a

generalized super Wald test statistic based on the series estimation in each sub-

sample. This statistic converges to a nonstandard distribution and I generate

the critical value table using bootstrap techniques. The results can be extended

to allow for multiple threshold effects and I show that all thresholds can be es-

timated by a sequential method. The Monte Carlo simulations show that the

series-expansion based approach has better threshold estimation and test per-

formance than traditional parametric methods.

To illustrate the usefulness of the method, I consider an empirical applica-
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tion examining the convergence hypothesis of economic growth across coun-

tries. Many studies have investigated this issue, based on the Mankiw, Romer

and Weil (MRW, Mankiw et al. 1992) specification of the Solow (1956) growth

model. An important assumption in these studies is that there exists an un-

derlying common linear specification. However, this assumption has been chal-

lenged by many recent papers, which find strong evidence of model heterogene-

ity across countries over time. The sources of heterogeneity can be summarized

into three categories: varying parameters, omitted variables and nonlinearity in

the production function. Each of these sources corresponds to some modifica-

tion of the basic MRW model. Durlauf and Johnson (1995) use a tree regression

approach and find multiple growth patterns across countries, and later, Hansen

(1996, 2000) uses a threshold regression model to test formally for the presence

of a regime shift in growth models. These results consider the existence of vary-

ing parameters, but ignore the other two types of heterogeneity. By adapting

the nonparametric setup to the production function, my approach addresses

the third type of model heterogeneity and thus should be more reliable. The

empirical results indicate multiple regimes of growth patterns across different

countries. Poor countries grow faster than rich countries in general, but they

may converge to a different steady state.

1.3 Threshold Cointegration and Price Discovery

In the third chapter, I implement the threshold error correction mechanism in es-

timating the relative extent of exchange-respective contribution to price discov-

ery of the pairs of cross-listings and their original listings. The existing methods

assume linear convergence of relative premiums to parity whereas I hinge on

9



the reality that the premiums disappear quicker when it is profitably arbitrage-

able than otherwise.

Price discovery is search for an equilibrium price (Schreiber and Schwartz

(1986)) and is a key function of a securities exchange. When a security is traded

in multiple markets, it is often of interest to determine where and how price dis-

covery occurs. Harris et al. (1995) and Hasbrouck (1995) examine the exchange-

specific relative contribution to price discovery of fragmented stocks on the

NYSE and other U.S. exchanges, and confirm leadership assumed by the NYSE.

As for international cross-listing, Bacidore and Sofianos (2002) and Solnik (1996)

suggest that price discovery mostly takes place in the home market where sub-

stantial information originates. Eun and Sabherwal (2003) report the U.S. host

exchanges provide an important feedback effect to affect the prices of Canadian

cross-listings, however, to a lesser extent than the Toronto Stock Exchange (TSX)

does.

In the literature, there are two broad approaches to estimating the contri-

bution of each market to price discovery of fragmented listings. Hasbrouck’s

(1995) innovation variance approach extracts the information shares by employ-

ing variance decomposition based on the vector moving average representa-

tion of an error correction model (ECM). Harris et al.’s (1995, 2002) common fac-

tor approach employs Gonzola and Granger’s (1995) permanent-transitory de-

composition of a cointegrated system to estimate the information share of each

market. As Eun and Sabherwal (2003) point out, Hasbrouck’s (1995) approach

involves Cholesky factorization of the covariance matrix of the innovations to

prices on various exchanges and yields multiple information shares. This may

cause confounding identification of the venue of price discovery. Hasbrouck’s

10



(2002) modification can be numerically onerous in implementation.5

Harris et al. (1995) associate error correction dynamics with price discovery

of cross-listed pairs which are cointegrated6 by the law of one price. The cointe-

grating vectors of the vector ECM (VECM) represent the long-run equilibrium

(near-parity condition), while the error correction terms characterize the con-

vergence mechanism, i.e. “the process whereby markets attempt to find equi-

librium.” Through this representation, one can assess the relative extent of the

contribution made by each market to price discovery of fragmented stocks using

the estimates of adjustment coefficients. If the price of a Canadian cross-listing

on the NYSE responds sensitively to shocks from the TSX whereas the home

exchange is largely unaffected by ripples occurring in the host market, price

discovery can be deemed as predominantly taking place on the TSX. Harris al.

(2002) buttress the method earlier formulated in Harris al. (1995) by incorpo-

rating a microstructure model where the price is assumed to be the sum of an

efficient (permanent) price component and a (transitory) error term.7

However, an implicit assumption made by Harris et al.’ (1995, 2002) is that

adjustment to parity, the long-run equilibrium, is continuous and linear.8 Var-

ious economic circumstances challenge such a restriction, particularly where

transaction costs and policy intervention are present. Given the complexity

5See De Jong (2002), Harris et al. (2002), and Hasbrouck (2002) for further discussion.
6A group of multiple random-walk processes is cointegrated if, by definition, there exists

a stationary linear combination of the processes. A time series is (weakly) stationary if the
probability laws (of up to the second moments) are time-invariant.

7In Harris et al. (2002), the efficient price component is unobservable and reflects the under-
lying fundamentals. Gonzalo and Granger’s (1995) permanent-transitory decomposition posits
the permanent price as a linear combination of the observable prices where the normalized
weights can be market-respective information shares. The higher the normalized weight of an
exchange, the bigger the influence of setting the permanent price. It can be shown that the nor-
malized weights are orthogonal to the adjustment coefficient vector, they can be conveniently
obtained from an ECM.

8This linear convergence is also assumed in Hasbrouck (1995)’s approach.
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of trading rules and indirect transaction costs, nonlinear convergence to par-

ity captures the market more accurately. The rationale of nonlinear modeling is

straightforward. A relatively small deviation in the price of a cross-listed stock

from its parity-implied price can be unarbitrageable if the dollar spread is in-

sufficient to cover the fees, commissions, liquidity shortfalls, and other related

costs. In this case, the dollar premium or discount behaves like a near-unit root

process and will not converge to parity. Arbitrage forces will activate as the

spread widens beyond the “threshold.”

To date, there is dearth of articles with a nonlinear framework in the litera-

ture. Among the few which have appeared, Rabinovitch et al. (2003) use a non-

linear threshold model to estimate the adjustment dynamics of the return devia-

tions for 20 Chilean and Argentine cross-listings. Koumkwa and Susmel (2008)

suggest two nonlinear adjustment models: the exponential smooth transition

autoregressive (ESTAR) and the logarithmic smooth transition autoregressive

(LSTAR) to delineate the relative premiums of Mexican ADRs. Chung et al.

(2005) study the dynamic relationship between the prices of three Taiwanese

ADRs and their underlying stocks using a threshold VECM. However, to my

best knowledge, there is no paper which considers the nonlinear convergence

between two market prices when estimating the information share for each mar-

ket. Given the existence of nonlinear effects, traditional approaches based on

linear ECM may generate biased estimation results and then consequently sug-

gest some misleading conclusions about the importance of each market in the

price discovery process.

Motivated by these considerations, I modify Harris et al.’s (1995, 2002)

method to estimate exchange-respective information shares of Canadian cross-
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listed pairs traded on the NYSE and the TSX by considering threshold cointegra-

tion as per Balke and Fomby (1997). Departing from linear modeling, the infor-

mation share is estimated from the outer-regime adjustment coefficients based

on a two-regime threshold ECM since the error correction adjustment mecha-

nism only exists in the outer-regime. I also consider a smooth counterpart of

the threshold ECM, the smooth transition ECMs, where the transition between

two regimes are gradually. The model is estimated nonparametrically and thus

avoids the risk of model misspecification.

My method offers in numerous advantages. First, I can theoretically de-

pict and empirically analyze the discrete dynamics of the “bumpy” parity-

convergence which is frequently observed in the market due to various risk

factors like information asymmetry and market friction. Second, a large devia-

tion (outer regime) is believed to be more susceptible to new information, either

public or private. In contrast, a small deviation (inner regime) can be due to

noise trading and therefore there is little connection between price discovery

and error correction dynamics.9 The threshold ECM ideally incorporates such

a dichotomy while the predecessor linear ECMs may overestimate the informa-

tion share when there is no cointegration in the unprofitable inner regime.

I develop an equilibrium model for a risky asset cross-listed in two mar-

kets. Based on the equilibrium solutions, I show that the short term dynamics

could be captured by three different econometric models: standard linear ECM,

9A similar idea is illustrated by Gonzalo and Marinz (2006) in a model of price discovery
for stocks traded in a single market. In their model, only the new information which implies a
profit greater than the transaction cost, measured by bid-ask spread, will be translated into the
transaction price. In other words, the shocks that drive the efficient price component must be
“big” shocks to the transaction price. The transactions of the uninformed agents cannot generate
big inefficient changes in the transaction prices, because the informed traders will arbitrate the
situation. Therefore, the shocks driving the pricing error component by uninformed traders
must be “small” shocks to the transaction price.
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threshold ECM and smooth transition ECM. Each corresponds to an assump-

tion on the demand elasticity of arbitrageurs. I apply these three models to

examine the information shares of each market for Canadian stocks cross-listed

in TSX and NYSE. All three models generate a conclusion that the home market

(TSX) makes a larger contribution than NYSE (guest market) in the price dis-

covery. However, from the estimations of nonlinear error correction models, I

get some additional interesting findings. First, there is a larger feedback effect

from NYSE on Canadian cross-listed stocks if the price deviations exceed the

threshold value. This may be because the arbitrage activities could transfer in-

formation from the home market to the guest market. Second, when there exists

a negative price premium at NYSE, informed traders tend to trade at NYSE even

though the home market usually has better liquidity. As a result, convergence

between the two market prices speeds up. Third, my regression analysis shows

that information shares are positively affected by the relative degree of private

information and market liquidity. The results are consistent with the empirical

finding by Eun and Sabherwal (2003) and Chen and Choi (2010).
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CHAPTER 2

COINTEGRATING REGRESSION WITH THRESHOLD EFFECTS

2.1 The Basic Model and Assumptions

Consider the following threshold model

yt =

{ α′1xt + et, if qt ≤ γ0

α′2xt + et, otherwise
, (2.1)

where yt and qt are scalar and xt is a d1-dimensional vector of I(1) random vari-

ables. In this chapter, I follow Engle and Granger’s (1987) single-equation ap-

proach with the main aim of investigating the effect of xt on yt. One can extend

the model to study a cointegrating system where yt is a vector. The threshold

value γ0 ∈ [γ, γ] is an unknown parameter to be estimated.

Model 2.1 can be regarded as a nonlinear cointegration, which attracts much

attention from researchers recently, see Karlsen et al. (2007), Wang and Phillips

(2009), Bierens and Martins (2010) and Choi and Saikkonen (2010). Loosely

speaking, if the response variable yt is generated by a nonlinear transformation

of integrated regressors xt and a stationary errors, then there exists a nonlin-

ear cointegrating relationship between yt and xt. In such a nonlinear cointegrat-

ing relationship, yt is not necessarily an I(1) process. The stochastic property

of yt depends on the nonlinear transformation. Compared to linear cointegra-

tions, which require yt to be I(1) process, nonlinear cointegrations have much

more flexibility to choose response variables, see Shi and Phillips (2010). In

my model, the persistence of the response variable depends on the threshold

structure, such as the size of the threshold effect and the frequency of regime
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switching. 1

In Model 2.1, the threshold effect leads to a cointegrating vector switching

between (1,−α1) and (1,−α2). Unlike in Markov-switching models where an un-

observable state governs regime switches, I assume regime shifts are induced

endogenously by an observable threshold variable qt, usually chosen according

to some economic theories.2 For example, when modelling the regime-sensitive

Taylor rule (Taylor, 1993), qt can represent lagged inflation rate or GDP growth

rate; yt is short-term interest rate or other measures of the monetary policy; xt are

fundamental economic variables such as inflation rate, growth rate and unem-

ployment rate etc.. The inflation rate targeting theory implies that once inflation

exceeds the preset inflation target, monetary policy authorities respond more

aggressively to inflation. However, in states when inflation is below its thresh-

old, they turn to output stabilization objects. This relationship can be described

by a threshold model.

Model 2.1 can be re-written as

yt = α
′xt + δ

′
nxtI(qt ≤ γ0) + et, (2.2)

where α = α2 and δn = α1 − α2. Here I(qt ≤ γ0) is an indicator function taking the

value one if qt ≤ γ0 and zero otherwise. The vector (1,−α) can be regarded as a

benchmark long-run relationship between yt and xt while δnxtI(qt ≤ γ0) captures

1It is easy to see this point by taking difference on Model 2.1:

yt − yt−1 =


α′1 △ xt + △et, ifqt ≤ γ0, qt−1 ≤ γ0

α′2 △ xt + △et, ifqt > γ0, qt−1 > γ0

α′1 △ xt + δxt−1 + △et, ifqt ≤ γ0, qt−1 > γ0

α′2 △ xt − δ′xt−1 + △et, ifqt > γ0, qt−1 ≤ γ0


where δ = α1 − α2.

2Both Markov-switching models and threshold models have been used to capture regime
shifts in economic time series. However, the statistical inference is hard to implement and the
regimes are intractable for the former approach.
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deviations from the linear equilibrium relationship under special economic sit-

uations where the value of qt is below γ0.

The presence of this nonlinear term δ′nxtI(qt ≤ γ0) affords some flexibility

in modelling cointegrating relationships. For example, a theoretical and prac-

tical issue in finance is about the existence of asset return predictability from

such fundamental variables as the dividend-price ratio, earning-price ratio. Lin-

ear prediction models have been extensively studied, but have failed to gener-

ate any unanimous conclusion (for more detail, refer to Campbell and Yogo,

2006). As is well known, stock returns commonly behave as martingale differ-

ences, while fundamental variables are highly persistent (integrated or nearly

integrated processes). This discrepancy implies that any predictive relationship

should be very weak or short-lived. A small positive threshold effect could be a

natural candidate to capture such weak predictability.

Estimation and statistical inference for threshold models with integrated re-

gressors require new asymptotic results, especially when the threshold effect is

very small such that the model is only weakly identified. In order to establish

these results, various assumptions must be put in place.

2.1.1 Assumptions and Some Preliminary Results

First, I assume the generating mechanism of xt is integrated process of order one

(I(1))

xt = xt−1 + vt, t = 1, 2, ...n,

and set x0 = 0 for convenience. Without materially affecting results, the gener-

ating mechanism for xt can be replaced with a nearly integrated process (NI(1)),
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which has been used in empirical applications to model highly persistent eco-

nomic and financial variables, see Campbell and Yogo (2006).

A partial sum process of vt is defined as

Xn(s) ≡ 1
√

n

[ns]∑
t=1

vt

where[ns] denotes the integer part of ns. I assume that the Xn(s) satisfies the

multivariate invariance principle; more specifically,

Xn(s)⇒ X(s) as n→ ∞ (2.3)

where X(·) is a d1-dimensional vector of Brownian motions on [0, 1]. Further-

more, for any Borel measurable and totally Lebesgue integrable function z(·), I

have

1
n

n∑
t=1

z(Xn(s))⇒
∫ 1

0
z(X(s))ds as n→ ∞.

The multivariate invariance principle (or functional central limit theorem)

applies for a very wide class of innovation sequences {vt}∞t=1 that are weakly de-

pendent and possibly (conditionally) heterogeneously distributed (see Phillips

and Durlauf (1986) and Billingsley (1999) for more discussions about the condi-

tions of {vt}∞t=1). However, the invariance principle is not enough for deriving the

convergence rate of the threshold estimator. It is necessary to have a stronger

approximation for Xn(s). Park and Hahn (1999) shows that, under some stronger

conditions, equation 2.3 can be strengthened to the following approximation re-

sult:

sup
s∈[0,1]

||Xn(s) − X(s)|| = op(1), almost surely.

I follow Park and Hahn’s (1999) assumption in the following.
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Assumption 2.1.1 Assume vt =
∑∞

i=0Φiεt−i = Φ(L)εt where Φ(1) is non-singular and∑
iΦi < ∞. {εt}∞t=−∞ are i.i.d with E(εtε

′
t) > 0 and E(|εt|p) < ∞ for some p > 4.

Under Assumption 2.1.1, vt is a general linear process. The conditions on

the summability of Φi and the moments of {εt}∞t=−∞ are standard and comparable

assumptions in the time series literature. Let a = (p − 2)/2p, where p is the

maximal order of the existing moment for εt. Note that a approaches 1/2 when

p→ ∞.

Lemma 2.1.1 Under Assumption 2.1.1,

sup
s∈[0,1]

|Xn(s) − X(s)| = Op(n−a), (2.4)

where X(s) is a vector of Brownian motions with Σx as the long run covariance matrix.

Assumption 2.1.2 Σx is a positive definite matrix.

Under Assumption 2.1.2, the components of xt are not cointegrated. This

assumption is very typical for cointegration analysis.

Assumption 2.1.3 Assume the following:

(i) E(et|zt−1) = 0 and E(e2
t |zt−1) = σ2, where σ2 is a positive constant. zt−1 is the

past information set;

(ii) E(et|qt, xt) = 0.

Under Assumption 2.1.3, et is a martingale difference sequence and orthog-

onal to xt and qt. This assumption is commonly used in nonlinear time series
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models with integrated processes but is too restricted (see Park and Phillips,

2001). Gonzalo and Pitarakis (2006) show that the assumption can be relaxed

under certain circumstances for threshold models. For instance, et could be gen-

eralized to follow a linear moving average process of finite order l. However, a

fully generalization of the model to allow for correlated errors would involve

a substantial added complexity. For example, it invalids a weak convergence

result involving quantities such as
∑[ns]

t=1 It(qt ≤ γ)et, established in Caner and

Hansen (2001). Later, I relax this assumption by assuming the error term to

be an AR(1) process and designing a Feasible GLS estimator to circumvent the

complications.

Under Assumption 2.1.3, heterogeneity is excluded. In the literature,

Hansen (1995) considers cointegrating regressions with error variance as a con-

tinuous function of a nearly nonstationary AR process. Kim and Park (2010)

consider cointegration with time heterogeneity. The extension to allow for het-

erogeneity in Model (2.1) would be an interesting topic, and is left to the future

study.

Assumption 2.1.4 Assume the followings:

(i) {qt} is strictly stationary and ρ−mixing with ρ−mixing coefficients ρm satisfying∑∞
m=1 ρ

1/2
m < ∞. qt has a continuous distribution F(·) and f (·) is the corresponding

density function. 0 < f (γ) ≤ f < ∞ for all γ ∈ [γ, γ].

(ii) γ0 ∈ [γ, γ].

Assumption 2.1.4 is very typical for threshold models. For asymptotic pur-

poses, I assume qt is stationary. If qt is nonstationary, such as an I(1), one needs
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to use another methodology, for example the triangular array asymptotics pro-

posed by Andrews and McDermott (1995).

To obtain some preliminary convergence results, I define the partial sum of

the process It(γ)et as

W[ns](γ) =
[ns]∑
t=1

It(γ)et

and scale W[ns](γ) as

Wn(s, γ) =
1

σ
√

n
W[ns](γ) =

1
σ
√

n

[ns]∑
t=1

It(γ)et

Following Caner and Hansen (2001), a two-parameter Brownian motion is de-

fined as below.

Definition 1: W(s, γ) is a two-parameter Brownian motion on (s, γ) ∈ [0, 1]× (−∞,∞)

if W(s, γ) ∼ N(0, sF(γ)) and E(W(s1, γ1)W(s2, γ2)) = (s1 ∧ s2)(F(γ1) ∧ F(γ2)). The

following lemma establishes the convergence results for Wn(s, γ).

Lemma 2.1.2 Under Assumptions 2.1.1-2.1.4, I have Wn(s, γ) ⇒ W(s, γ) on (s, γ) ∈

[0, 1] × (−∞,∞) as n→ ∞, where W(s, γ) is a two-parameter Brownian motion.

Note that Wn(s,∞) = 1
σ
√

n

∑[ns]
t=1 It(∞)et =

1
σ
√

n

∑[ns]
t=1 et ⇒ W(s,∞), which is a one-

parameter Brownian motion. For simplicity of notation, I let W(s) = W(s,∞).

The two-parameter Brownian motion is a special tool to derive the limiting

distribution in threshold models with integrated processes. This differs from

change-point models, where
∑[ns]

t=1 It(qt ≤ γ)et with qt = t is a martingale process

and the limiting results are more easily established.

Using Definition 1, I can define the stochastic integration with respect to

W(s, γ) on the first argument while holding the second argument as constant as

J1(γ) =
∫ 1

0
X(s)dW(s, γ) = lim

n→∞

n∑
t=1

(X(
t − 1

n
)
(
W(

t
n
, γ) −W(

t − 1
n

, γ)
)
.
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Lemma 2.1.3 Under Assumptions 2.1.1-2.1.4, for any γ ∈ [0, 1],

1
n

n∑
t=1

XtIt(γ)et ⇒ σJ1(γ)

where J1(γ) =
∫ 1

0
X(s)dW(s, γ) is a Gaussian process with almost surely continuous

sample path and the covariance kernel

E(J1(γ1)J1(γ2)) = F(γ1 ∧ γ2)
∫ 1

0
X(s)X(s)′ds.

2.2 Profiled Least Square Estimator

For ease of manipulation, I rewrite Model (2.1) in a more compacted form:

yt = θ
′Vt(γ0) + et,

where Vt(γ0) = (x′t , x
′
t I(qt ≤ γ0))′ and θ = (α′, δ′n)′. For each γ ∈ [γ, γ], the following

model is estimated:

yt = θ̂(γ)′Vt(γ) + êt(γ),

where θ̂(γ) is given by

θ̂(γ) =

 n∑
t=1

Vt(γ)Vt(γ)′
−1  n∑

t=1

Vt(γ)yt

 .
The sum of residual square is defined as

S S Rn(γ) =
n∑

t=1

êt(γ)2 =

n∑
t=1

(
yt − θ̂(γ)′Vt(γ)

)2

and I define the estimator of γ0 as the value that minimizes S S Rn(γ) :

γ̂n = arg min
γ∈[γ,γ]

S S Rn (γ) .
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Note that S S Rn (γ) is not differentiable due to the presence of the indicator func-

tions; thus, I can not write γ̂n in closed form from first-order conditions. Follow-

ing Hansen (2000), I adopt a grid-searching method. Particularly, I divide [γ, γ]

into N quantiles and let ΓN = {q1, q2, ...qN}. γ̂N = arg minγ∈ΓN S S Rn (γ) is a good ap-

proximation to γ̂n when N is large enough. The estimations for other parameters

are then found by plugging in the point estimate γ̂n via θ̂ = θ̂
(̂
γn

)
, êt = êt (̂γn), and

σ̂2 = 1
n

∑n
t=1 êt (̂γn)2 denotes the residual variance from the LS estimation.

2.2.1 Asymptotic Properties

In this subsection, I establish the asymptotic results for the least square esti-

mator γ̂n and θ̂
(̂
γn

)
, under different model identification strengths. Based on

asymptotic distributions, I construct confidence intervals. Following the litera-

ture of threshold models, I impose the following assumption.

Assumption 2.2.1 δn = n−1/2−τδ0 where −1/2 ≤ τ ≤ 1/2 and δ0 ∈ R is a fixed parame-

ter.

Under Assumption 2.2.1, the size of the threshold effect converges to zero

with rate n−1/2−τ. The value of τ determines the identification strength of γ0. It

can be shown that, if τ < 1/2, γ0 is identified and can be consistently estimated.

However, if τ = 1/2, γ0 is only weakly identified and the least square estimator

converges to a random variable even when the sample size n diverges to infinity.

I exclude the case with τ > 1/2 since the nonlinear term is negligible asymptot-

ically. In addition, when τ < −1/2, the nonlinear term is explosive and is also

excluded.
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Theorem 2.2.1 Suppose Assumptions 2.1.1-2.2.1 hold and δ0 , 0. Then the following

limiting results hold:

Case 1: if τ < 1/2, then

n1−2τ |̂γn − γ0| = Op(1).

Furthermore,

n1−2τλ(̂γn − γ0) = r∗ ⇒ arg max
r∈(−∞,∞)

(Λ(r) − 1
2
|r|)

where

λ =

(
δ′0

∫ 1

0
X(s)X(s)′dsδ0

)
f0

σ2 , (2.5)

and Λ(r) is a two-sided Brownian motion on the real line defined as:

Λ(r) =


Λ1(−r), if r < 0

0, if r = 0

Λ2(r), if r > 0

. (2.6)

Λ1(r) and Λ2(r) are independent standard Brownian motions on [0,∞).

Case 2: if τ = 1/2, then γ̂n ⇒ γ(γ0, δ0). γ(γ0, δ0) is a random variable that maximize

Q(γ, γ0, δ0) where

Q(γ, γ0, δ0) =
1

F(γ)(1 − F(γ))
Γ1(γ)

(∫ 1

0
X(s)X(s)′ds

)−1

Γ1(γ)′ (2.7)

with

Γ1(γ) = Γ(γ) + (F(γ ∧ γ0) − F(γ)F(γ0))
(∫ 1

0
X(s)X(s)′ds

)
δ0 (2.8)

and

Γ(γ) = σ
∫ 1

0
X(s)d (W(s, γ) − F(γ)W(s)) . (2.9)
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Theorem 2.2.1 shows that the convergence results for γ̂n depend critically

on the value of τ, which characterizes the convergence speed of δn. If τ < 1/2,

the threshold effect is large enough to be identified and γ̂n is a consistent esti-

mator. The rate of convergence is n1−2τ, which is decreasing in τ. The reason is

that a larger τ decreases the threshold effect δn, which decreases the sample in-

formation concerning the threshold γ0 and in turn reduces the precision of the

estimator γ̂. In the regular case with τ as −1/2 such that δn is fixed as a constant,

the convergence rate of γ̂n is n−2. This super-consistency rate, resulting from the

fast convergence rate of order statistics, makes the model powerful in detecting

small regime shifts. In addition, the limiting distribution of γ̂n has the same form

as that found for the stationary threshold model in Hansen (2000), although the

scale factor is different. In the present context, the scale factor λ depends on∫
X(s)X(s)′ds instead of on a conditional moment matrix. f0 is the density of qt

at γ0. Intuitively, larger f0 implies more data points around γ0; therefore, γ̂ is

more accurate.

The confidence intervals are commonly constructed through the inversion

of test statistics. Following Hansen (2000), I invert the likelihood ratio statistic

LRn(γ, γ̂n, θ̂n) for the null hypothesis γ = γ0. Denote qI
γ,1−a as the 1 − a quantile of

the limiting distribution of LRn(γ, γ̂n, θ̂n). Under homoscedasticity assumption,

qI
γ,1−a is the 1− a quantile of the random variable maxr∈(−∞,∞)(2Λ(r)− |r|), which is

given by the formula qI
γ,1−a = −2 ln(1 −

√
1 − a). The a−level confidence interval

of γ can be expressed as

CI I
γ,n(α) = {γ : LRn(γ, γ̂n, θ̂n) ≤ qI

γ,1−a}. (2.10)

If τ = 1/2, the threshold effect is only weakly identified. The least square

estimator γ̂n converges to a random variable γ(γ0, δ0), reflecting the lack of in-
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formation. Since γ0 and δ0 are not estimable, any statistical inference based on

them is impossible. Following Cheng (2008) and Shi and Phillips (2010), I define

the least favorable confidence interval which is large enough for all possible γ0

and δ0. Denote qW
γ,1−a(γ0, δ0) as the 1−a quantile of |γ(γ0, δ0)−γ0| for each γ0 ∈ [γ, γ]

and δ0 ∈ R. The a-level confidence interval given γ0 and δ0 is defined as

CIW
γ,n(1 − a, γ0, δ0) = {γ : |̂γn − γ| ≤ qW

γ,1−a(γ0, δ0)}. (2.11)

Since γ0 and δ0 are two unknown variables, I define a robust quantile by taking

supremum for all possible γ0 and δ0. Let

qW
γ,1−a = sup

γ0∈[γ,γ]
sup
δ0∈R

qW
γ,1−a(γ0, δ0). (2.12)

The a−level least favorable confidence interval is then defined as

CIW
γ,n(a) = {γ : |̂γn − γ| ≤ qW

γ,1−a}. (2.13)

Next, I consider the limiting behavior of θ̂(̂γn). For any γ ∈ [γ, γ], define

M(γ) =


∫ 1

0
X(s)X′(s)ds, F(γ)

∫ 1

0
X(s)X′(s)ds

F(γ)
∫ 1

0
X(s)X′(s)ds, F(γ)

∫ 1

0
X(s)X′(s)ds

 , (2.14)

and

Π(γ, γ0, δ0) = −

 (F(γ) − F(γ0))
∫ 1

0
X(s)X′(s)ds

(F(γ) − F(γ0 ∧ γ))
∫ 1

0
X(s)X′(s)ds

 δ0. (2.15)

Theorem 2.2.2 Under Assumptions 2.1.1-2.2.1, the following limiting results hold:

Case 1: if τ < 1/2, then

n(̂θ(̂γn) − θ)⇒ σM(γ0)−1


∫ 1

0
X(s)dW(s)∫ 1

0
X(s)dW(s, γ0)

 = N(0, σ2M(γ0)−1).
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Case 2: if τ = 1/2, then

n(̂θ(̂γn) − θ)⇒ σM(̂γn)−1


∫ 1

0
X(s)dW(s)∫ 1

0
X(s)dW(s, γ̂n)

 + M(̂γn)−1Π(̂γn, γ0, δ0) ≡ Ψ(̂γn, γ0, δ0)

where

γ̂n ⇒ γ(γ0, δ0) = arg max
γ∈[γ,γ]

Q(γ, γ0, δ0).

Theorem 2.2.2 establishes the limiting distribution for the coefficient estima-

tors θ̂
(̂
γn

)
. If τ < 1/2, the limiting distribution of the coefficients estimators is

mixed normal, which makes conventional t-test and chi-square tests applicable.

If τ = 1/2, the limiting result has a bias term Π(̂γn, γ0, δ0) due to the inconsis-

tent estimation of γ̂n. In that case, the standard test statistics are not applicable.

Similarly, I discuss the construction of the confidence interval in two cases.

If τ < 1/2, I construct the a-level confidence interval of θ by inverting the t

test statistic. Specifically, define

CI I
θ,n(α) = {θ : t(θ, γ̂n, θ̂n) ≤ qI

γ,1−a} (2.16)

where t(θ0) is t-test statistic for testing H0 : θ = θ0 and qI
θ,1−a is critical value at

1 − a significance level for t-statistic.

If τ = 1/2, I use a similar approach as for γ̂ to define the least favorable CI.

Denote qW
θ,1−a(γ0, δ0) as the 1 − a quantile of Ψ(̂γn, γ0, δ0) for each γ0 ∈ [γ, γ] and

δ0 ∈ R. Let

qW
θ,1−a = sup

γ0∈[γ,γ]
sup
δ0∈R

qW
θ,1−a(γ0, δ0). (2.17)

The least favorable confidence interval for θ is defined as

CIW
θ,n(a) = {θ : |n(̂θ(̂γn) − θ)| ≤ qW

θ,1−a}. (2.18)

Both qW
γ,1−a(γ0, δ0) and qW

θ,1−a(γ0, δ0) can be obtained through simulations.
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2.2.2 Hypothesis Testing

In empirical studies, one may want to know whether the long-run relationship

is linear or not. To answer this question, it is sufficient to test the following null

hypothesis

H0 : δn = 0.

Under the null, the restricted model is yt = α
′xt + et, and under alternative, the

unrestricted model isyt = α
′xt + δ

′
nxtI(qt ≤ γ0) + et.

For each γ ∈ [γ, γ], let X(γ) = (x1(γ), x2(γ), ..., xn(γ))′ and X = (x1, x2, ..., xn)′.

Under homoscedasticity, a Wald-test statistic can be defined as

Tn(γ) = δ̂n(γ)′(X(γ)(I − Pn)X(γ))̂δn(γ)/σ̂2 (2.19)

where Pn is the projection matrix of X, given by Pn = X(X′X)−1X′. Notice that

γ is a nuisance parameter which is not identified under the null. Following

Hansen(1996), I define a sup-Wald test statistic as

Tn = sup
γ∈[γ,γ]

Tn(γ). (2.20)

Theorem 2.2.3 Under Assumptions 2.1.1-2.1.4 and δn = 0, then

Tn ⇒ T = sup
γ∈[γ,γ]

T (γ) = sup
γ∈[γ,γ]

1
σ2(F(γ)(1 − F(γ))

Γ(γ)′
(∫ 1

0
X(s)X(s)′ds

)−1

Γ(γ)

(2.21)

where

Γ(γ) = σ
∫ 1

0
X(s)d(W(s, γ) − F(γ)W(s)). (2.22)

Theorem 2.2.3 establishes the limiting distribution of the sup-Wald statistics

under the null hypothesis. As shown by Gonzalo and Pitarakis (2006), the lim-

iting distribution T is equivalent to a random variable given by the supremum
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of a squared normalized Brownian bridge process, whose critical values appear

in Andrews (1993). I explore the local power of the sup-Wald statistic in the

theorem below.

Theorem 2.2.4 Under Assumptions 2.1.1-2.2.1 and δn = n−1/2−τδ0, the following lim-

iting results hold:

i) if τ < 1/2, then Tn
p→ ∞ and the power converges to 1.

ii) if τ = 1/2, then

Tn ⇒ T1 = sup
γ∈[γ,γ]

T1(γ) = sup
γ∈[γ,γ]

1
σ2(F(γ)(1 − F(γ))

Γ1(γ)′
(∫ 1

0
X(s)X(s)′ds

)−1

Γ1(γ)

(2.23)

where

Γ1(γ) = Γ(γ) + (F(γ ∧ γ0) − F(γ)F(γ0))
∫ 1

0
X(s)X(s)′dsδ0 (2.24)

and the power ∈ (0, 1).

iii) if τ > 1/2, then Tn ⇒ supγ∈[γ,γ] T (γ), and the power equals the size.

2.2.3 Robust Confidence Intervals

In empirical studies, τ is unknown, raising the question of which confidence

interval should be used. In this subsection, based on a model selection proce-

dure, I construct a robust confidence interval which has approximately correct

coverage probability irrespective of the value of τ.

From Theorem 2.2.4, Tn
p→ ∞ if τ < 1/2 and Tn < ∞ if τ = 1/2. This result

enables us to develop the following model selection procedure. I define {κn : n ≥
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1} as a sequence of constants that diverge to infinity as n → ∞. κn is referred to

as a tuning parameter and I require κn satisfy the following assumption

κ−1/2
n + nνκ1/2

n → 0. (2.25)

for any ν > 0. Suitable choices of κn include d1 (ln(n))2 , in accordance with BIC

criterion. The model selection procedure is designed to choose the model with

identified threshold effect if Tn > κn and to choose the model with weakly iden-

tified threshold effect otherwise. I use the confidence intervals from the model

chosen through this procedure as the final confidence intervals.

For each confidence level a, define

CIγ,n(a) =


CI I

γ,n(a), if Tn > κn

CIW
γ,n(a), if Tn ≤ κn

 (2.26)

and

CIθ,n(a) =


CI I

θ,n(a), if Tn > κn

CIW
θ,n(a), if Tn ≤ κn

 . (2.27)

I focus on the smallest finite sample coverage probability of CIγ,n(a) and

CIθ,n(a) over the whole parameter space, which can be approximated by the fol-

lowing asymptotic size

AsyS Zθ(a) = lim inf
n→∞

inf
θ∈R

inf
γ∈[γ,γ]

Pr(θ ∈ CIθ,n(a)) (2.28)

and

AsyS Zγ(a) = lim inf
n→∞

inf
θ∈R

inf
γ∈[γ,γ]

Pr(γ ∈ CIγ,n(a)) (2.29)

The following theorem shows that the robust confidence intervals have the

correct asymptotic size.

Theorem 2.2.5 Under Assumptions 2.1.1-2.2.1, for any a ∈ (0, 1), I have AsyS Zθ(a) =

a and AsyS Zγ(a) = a.
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2.3 Extension

In many economic applications of cointegration, I may have serially correlated

error terms and endogeneity. For linear cointegration models, it is well known

that OLS estimator contains a second-order bias. Several efficient estimators

have been proposed, such as the fully modified (FM) OLS estimator of Phillips

and Hansen (1990), the canonical cointegrating regressions (CCR) estimator of

Park (1992) and the dynamic ordinary least square (DOLS) estimator proposed

by Phillips and Loretan (1991), Saikkonen (1991) and Stock and Watson (1993).

In the following, I extend my threshold cointegration model to allow for serial

correlation and endogeneity.

Consider the following model

yt = α
′xt + δ

′
nxtI(qt ≤ γ0) + ξt, (2.30)

where ξt is decomposed into a pure innovation component ηt and a component

related to xt:

ξt =

d1∑
i=1

K∑
j=−K

βi jvi,t− j + ηt = β
′zt + ηt,

ηt = ρηt−1 + et, with ρ ∈ (−1, 1].

I assume that the model endogeneity can be fully captured by β′zt, where

zt is a (2K + 1)d1-dimensional vector of leads and lags of ∆xt. K can diverge

to infinity as sample size increases. The idea of using leads and lags to deal

with endogeneity in cointegration models was proposed by Saikkonen(1991). I

assume β constant to focus on the regime shifts occurring in the cointegrating

relationship. The extension allowing β to be regime-sensitive would be inter-

esting and is left to future study. ηt is assumed to be an AR(1) process and ρ
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controls the stationarity of ηt. If ρ = 1, ηt is a unit root and the model describes

a spurious relationship3, while if ρ < 1, ηt is a stationary process and Model (31)

is a cointegrating relationship.

To estimate a regression with serial correlation, the Cochrane-Orcutt FGLS

procedure is usually adopted. In linear cointegration models, as shown in

Phillips and Park (1988), the FGLS estimator and the OLS estimator are equiva-

lent in asympotics. The Cochrane-Orcutt FGLS estimator also works for spuri-

ous regressions, as Phillips and Hodgson (1994) demonstrate by proving asymp-

totic equivalence of the FGLS estimator to the OLS in the differenced regression

when the error is an I(1) process. However, in the presence of regime shifts,

there is no asymptotic equivalence between FGLS and OLS estimators. The fol-

lowing simple sketch may help to illustrate this difference.

For a linear cointegrating regression, after transformation, I have

yt − ρyt−1 = α
′(xt − ρxt−1) + (ηt − ρηt−1),

and it follows that

n
(
α̂FGLS − α

)
=

 n∑
t=1

(xt − ρxt−1)(xt − ρxt−1)′
−1  n∑

t=1

(xt − ρxt−1)(ηt − ρηt−1)


⇒

(
(1 − ρ)2

∫ 1

0
X(s)X(s)′ds

)−1

(1 − ρ)2
∫ 1

0
X(s)dBη(s)

=

(∫ 1

0
X(s)X(s)′ds

)−1 ∫ 1

0
X(s)dBη(s).

which is the same as the limiting result of OLS estimator. However, for a coin-

tegrating regression with a threshold effect, after transformation, I have,

yt − ρyt−1 = α′(xt − ρxt−1) + δ′n(xt(γ) − ρxt−1(γ)) + (ηt − ρηt−1)

= α′ x̃t + δ
′
n x̃t(γ) + η̃t,

3Structural spurious regressions can be due to integrated measurement errors and missing
integrated regressors. See Choi et.al (2008).
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where ρ can not be canceled in the limiting result because
n∑

t=1

x̃t(γ)x̃t(γ)′
p→

(
(1 + ρ2)F(γ) − 2ρF1(γ, γ)

) ∫ 1

0
X(s)X(s)′ds

and
n∑

t=1

x̃t(γ)̃ηt ⇒
∫ 1

0
X1(s)d

(
Be(s, γ) − ρBe,1(s, γ)

)
depend on ρ and the distribution function F(·) in a complex way.

All Assumptions 2.1.1-2.2.1 are applicable for the generalized model. Note

that the model can be easily extended to incorporate a linear trend term as

a regressor so that x1t = (1, t, xt). In that event, a standardized matrix Dn =

diag{1, n, n1/2Id1} should be defined to make each regressor converge at the same

rate. Meanwhile, I use X1(s) = (1, s, X′(s))′ to replace X(s) for all assumptions

and results. For notational simplicity, I skip the linear trend in the following

discussion.

2.3.1 Feasible GLS Estimator

The procedure consists of two steps. In the first step, I estimate the threshold

value γ0 through the profiled least square estimation without considering se-

rial correlation and endogeneity, and then I estimate ρ̂ from the estimated error

term. In the second step, I construct the Cochrane-Orcutt type Feasible GLS es-

timator based on ρ̂. I can estimate γ0 using the method described in Section 3.1.

Specifically,

γ̂n = arg min
γ∈[γ,γ]

S S Rn (γ) .

where S S Rn(γ) is the sum of squared residuals for the regression

yt = α̂
′
1xt + δ̂

′
nxtI(qt ≤ γ) + ξ̂t.
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The residual term ξ̂t (̂γn) is defined as

ξ̂t (̂γn) = yt − α̂′xt − δ̂′nxtI(qt ≤ γ̂n).

By estimating an augmented AR(1) model

ξ̂t (̂γn) = β̂′zt + ρ̂̂ξt−1(̂γn) + êt,

I obtain the OLS estimator ρ̂.

The following proposition establishes the consistency and convergence rate

of ρ̂.

Proposition 2.3.1 Under Assumptions 2.1.1-2.2.1, ρ̂ → ρ as n increases to infinity.

Further, |̂ρ − ρ| = Op(n−1/2) if ρ < 1 and |̂ρ − 1| = Op(n−1) if ρ = 1.

Proposition 2.3.1 shows that ρ̂ is consistent even when the regression is a

spurious relationship. ρ̂ has different convergence rates due to the different

convergence speed of integrated and stationary processes. Moreover, the limit-

ing behavior of ρ̂ is not affected by the identification strength of the threshold

effect. The intuition is as follow. If τ < 1/2, γ0 can be consistently estimated.

In each regime, if ρ < 1, the coefficients can be consistently estimated as well

and thus it is obvious that ρ̂
p→ ρ, while if ρ = 1, the coefficient estimators are

not consistent, however, this inconsistency causes the residual term ξ̂t (̂γn) to be

unit root and I still have ρ̂
p→ ρ = 1. If τ = 1/2, γ̂n is not consistent as shown

in Theorem 4; however, the nonlinear term δ̂′1nX1tI(qt ≤ γ) decays to zero so fast

that it has no impact on the estimation of ρ asymptotically. Following Choi et

al. (2008), I can obtain the consistency of ρ̂ as well.

Bases on this consistent estimator ρ̂, I can conduct the Cochrane-Orcutt-type

FGLS estimators. Definẽyt = yt − ρ̂yt−1, and define z̃t, x̃t, η̃t in the same way. For
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each γ ∈ [γ, γ], define

x̃t(γ) = xt(I(qt ≤ γ) − ρ̂xt−1I(qt−1 ≤ γ).

Let Ṽt(γ) = (x̃′t , x̃t(γ)′, z̃′t)
′; I stack x̃t, ỹt, z̃t, x̃t(γ) and Ṽt(γ) to get X̃, Ỹ , Z̃, X̃(γ), Ṽ(γ).

After the transformation, I have

ỹt = α
′ x̃t + δ

′
n x̃t(γ) + β′̃zt + η̃t = θ̃

′Ṽt(γ) + η̃t.

From the transformed regression, for each γ, I can define the OLS estimator

̂̃
θ(γ) =

 n∑
t=2

Ṽt(γ)Ṽt(γ)′
−1  n∑

t=2

Ṽt(γ)̃yt

 .
The FGLS threshold estimator is defined as

γ̃n = arg min
γ∈[γ,γ]

(S̃ S Rn(γ))

where ˜S S Rn(γ) is the sum of squared residuals defined as

˜S S Rn(γ) =
n∑

t=2

(̃yt(γ) −̂̃
θ(γ)′Ṽt(γ))2.

By plugging in γ̃n, I obtain FGLS estimator̂̃θ(̃γn) for the coefficients θ̃. In practice,

the above procedure can be conducted recursively until γ̃n converges.

2.3.2 Asymptotics

Before I continue, I must define some notation. I first define the following joint

distribution functions F1(γ) = Pr(qt ≤ γ, qt−1 ≤ γ); F2(γ) = Pr(qt ≤ γ, qt−1 > γ);

F3(γ) = Pr(qt > γ, qt−1 ≤ γ); F4(γ) = Pr(qt > γ, qt−1 > γ); and moment functionals

for the stationary regressors zt

h(γ) = E(ztI(qt ≤ γ)),
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h1(γ) = E(ztI(qt−1 ≤ γ)),

h2(γ) = E(zt−1I(qt ≤ γ)),

H = E(ztz′t),

H1 = E(ztz′t−1). (2.31)

Lemma 2.3.1 For each ρ ∈ (−1, 1], there exists a nonrandom weighting matrix D̃n

such that

a) n−1D̃−1
n Ṽ(γ)′Ṽ(γ)D̃−1

n = G̃(γ) + op(1);

b) n−3/2D̃−1
n Ṽ(γ)′(x̃t(γ) − x̃t(γ0))′δ0 = Π̃(γ, γ0, δ0) + op(1);

c) n−1/2D̃−1
n Ṽ(γ)′η̃⇒ ϕ̃(γ),

where G̃(γ), Π̃(γ, γ0, δ0) and ϕ̃(γ) are expectation matrices specified in the appendix.

To conform with expression of Ṽ(γ) = (X̃, X̃(γ), Z̃), I express G̃(γ) and ϕ̃(γ) as

G̃(γ) =


G̃11(γ), G̃12(γ), G̃13(γ)

G̃21(γ), G̃22(γ), G̃23(γ)

G̃31(γ), G̃32(γ), G̃33(γ)

 (2.32)

and

ϕ̃(γ) =


ϕ̃1(γ)

ϕ̃2(γ)

ϕ̃3(γ)

 . (2.33)

Theorem 2.3.1 Under Assumptions 2.1.1-2.2.1, the following results hold:

Case 1: if τ < 1/2, then n1−2τ |̃γn − γ0| = Op(1). Furthermore,

n1−2τλ̃(̃γn − γ0) = r∗ ⇒ arg max
r∈(−∞,∞)

(Λ(r) − 1
2
|r|)
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where

λ̃ =

(
1 + ρ2

) (
δ′0

∫ 1

0
X(s)X′(s)dsδ0

)
f0

σ2 ,

and Λ(r) is a two-sided Brownian motion on the real line defined as:

Λ(r) =


Λ1(−r), if r < 0

0, if r = 0

Λ2(r), if r > 0

, (2.34)

where Λ1(r) and Λ2(r) are independent standard Brownian motions on [0,∞).

Case 2: if τ = 1/2, then γ̃n ⇒ γ̃(γ0, δ0). γ̃(γ0, δ0) is a random variable that maximizes

Q̃(γ, γ0, δ0) where

Q̃(γ, γ0, δ0) = Γ̃1(γ)

G̃22(γ) −

 G̃21(γ)

G̃23(γ)


′  G̃11, G̃13

G̃31, G̃33


−1  G̃12(γ)

G̃32(γ)



−1

Γ̃1(γ)′

with

Γ̃1(γ) = Γ̃(γ) +

G̃22(γ) −

 G̃21(γ)

G̃23(γ)


′  G̃11, G̃13

G̃31, G̃33


−1  G̃12(γ)

G̃32(γ)


 δ0,

and

Γ̃(γ) = ϕ̃2(γ) −

 G̃21(γ)

G̃23(γ)


′  G̃11, G̃13

G̃31, G̃33


−1  ϕ̃1(γ)

ϕ̃3(γ)

 .
Theorem 2.3.1 establishes the convergence results for the FGLS estimator γ̃n.

If τ < 1/2, I can consistently estimate γ0, and the limiting distribution depends

on the persistence parameter ρ. Note that when ρ = 0, I get the same limiting

distribution defined in Theorem 2.2.2. There is no asymptotic equivalence be-

tween the FGLS and LS estimator. λ̃ =
(
1 + ρ2

)
λ, thus, the FGLS estimator γ̃n
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is more accurate than γ̂n when ρ , 0. Simulations also demonstrate that the

FGLS estimator performs better than the LS estimator in the presence of serial

correlation.

The following theorems establishes the convergence results for ̂̃θ(̃γn).

Theorem 2.3.2 Under Assumptions 2.1.1-2.2.1 and ρ < 1, the following limits hold:

Case 1: if τ < 1/2, I have

√
nD̃n (̂̃θ(̃γn) − θ̃)⇒ G̃(γ0)−1ϕ̃(γ0) = N(0, σ2G̃(γ0)−1).

Case 2: if τ = 1/2, I have

n1/2D̃n (̂̃θ(̃γn) − θ̃)⇒ G̃(̃γn)−1ϕ̃(̃γn) + G̃(̃γn)−1Π̃(̃γn, γ0, δ0).

where γ̃n ⇒ γ̃(γ0, δ0) and γ̃(γ0, δ0) is a random variable that maximizes Q̃(γ, γ0, δ0).

2.4 Joint Hypothesis Test

Testing the existence of regime shifts in cointegration regression is challenging

since it is a joint hypothesis problem (see Balke and Fomby, 1997). Most pre-

vious test statistics assume the remaining hypothesis to be true when they test

for either regime shifts or cointegration. For example, when testing for the ex-

istence of regime shifts, the statistics based on error correction models (ECM)

assume the model is a cointegrating regression. Therefore, the rejection of the

null hypothesis does not necessarily indicate that there is a regime shift. It may

mean the regression is a spurious relationship.

The FGLS estimator is robust under both I(1) and I(0) error terms; thus, I

can test the existence of regime shifts using a sup-Wald test statistic based on
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the FGLS estimators without any knowledge about the presence of a cointegrat-

ing relationship. Then I apply residual-based test statistics to test cointegration

given the conclusion from the first step.

2.4.1 Testing the Regime Shift

Testing the existence of the regime shift, it is sufficient to test the following null

hypothesis

H0 : δn = 0.

Under the null, after transformation, the model is

ỹt = α
′ x̃t + β

′̃zt + η̃t.

The alternative model can be written as

ỹt = α
′ x̃t + δ

′
n x̃t(γ0) + β′̃zt + η̃t,

or in a compact form

ỹt = θ̃
′Ṽt(γ0) + η̃t,

For each γ, let Ṽ1 = (X̃, Z̃). Under Assumption 2.1.3, a standard Wald statistic

could be given by

T̃n(γ) = δ̃n(γ)′(X̃(γ)(I − P̃(γ))X̃(γ))̃δn(γ)/σ̃2

where P̃(γ) is the projection matrix for Ṽ1 and σ̃2 =
˜S S Rn(γ)

n . Define

T̃n = sup
γ∈[γ,γ]

T̃n(γ).
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Theorem 2.4.1 Under Assumptions 2.1.1-2.2.1 and H0 : δn = 0, the following limit-

ing results hold:

T̃n ⇒ T̃ = sup
γ∈[γ,γ]

1
σ2 Γ̃(γ)

G̃22(γ) −

 G̃21(γ)

G̃23(γ)


′  G̃11, G̃13

G̃31, G̃33


−1  G̃12(γ)

G̃32(γ)



−1

Γ̃(γ)′

where

Γ̃(γ) = ϕ̃2(γ) −

 G̃21(γ)

G̃23(γ)


′  G̃11, G̃13

G̃31, G̃33


−1  ϕ̃1(γ)

ϕ̃3(γ)

 . (2.35)

The limiting distribution of the sup-Wald test statistic is a non-standard dis-

tribution and I can generate the critical values using a parametric bootstrap

method. I first estimate ̂̃
θR under the restriction that δn = 0. Then, I obtain the

residual terms {̂̃ηt (̃γn)}nt=2 using the unrestricted model. I draw a random vari-

able η̃b
t from the sample {̂̃ηt (̃γn)}nt=2 for all t = 2, ..., n, and generate a new sequence

{̃yb
t }nt=1 by ỹb

t = α̂
′
R x̃t+ β̂

′
R̃zt+ η̃

b
t .Define yb

1 = y1 and yb
t = ỹb

t + ρ̂yb
t−1 for all t = 2, ..., n. Let

T̃ b
n be the sup-Wald test calculated from the new data set {yb

t , xt, zt, qt}nt=2. Under

the null , the distribution of T̃ b
n can approximate the distribution of T̃n. The boot-

strap p-value can be obtained by calculating the frequency of simulated T̃ b
n that

exceeds T̃n when the number of the simulations is large enough. As shown in

Hansen(1996), the generated p-value converges to the true size. A model selec-

tion procedure can be constructed based on T̃n and robust confidence intervals

can be designed.

2.4.2 Testing against the spurious relationship

In this subsection, I develop test statistics to test a cointegration regression

against the alternative of a spurious relationship. In the literature, two ap-
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proaches have been used to test for cointegration. One takes cointegration as

the null hypothesis and noncointegration as the alternative, whereas the other

approach reverses the roles of the null and alternative hypotheses. In the nonlin-

ear context, the former approach appears more convenient and thus be adopted

here. I develop different cointegration test statistics, based on Kwiatkowski,

Phillips, Schmidt, and Shin’s (1992; KPSS hereafter) test statistic, for the case

with identified or weakly identified threshold nonlinearity respectively. A ro-

bust KPSS test statistic is then proposed based on the model selection procedure

for practical applications.

The null hypothesis is

H0 : ηt is stationary for some (̃θ, γ0) ∈ Θ;

the alternative hypothesis is

H1 : ηt is an I(1) for any (̃θ, γ0) ∈ Θ.

For each γ ∈ [γ, γ], define the residuals as

η̂t(γ) = yt − α̃′xt − δ̃′nxt(γ) − β̃′zt,

where (α̃′, δ̃′n, β̃
′) is the FGLS estimator of the coefficients θ̃ = (α, δn, β). Define a

KPSS-type test statistics as

KPS S (γ) = n−2
n∑

t=1

S 2
t /s2(L),

where S t =
∑t

i=1 η̂t(γ) and s2(L) is a Newey-West estimator of the long-run vari-

ance of η̂t(γ).

s2(L) = n−1
n∑

t=1

η̂t(γ)2 + 2n−1
L−1∑
j=1

k( j/L)
n∑

t= j+1

η̂t(γ)̂ηt− j(γ),
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where k( j/L) is a Bartlett kernel function k( j
L ) = 1 − | jL | and L depends on the

sample size n. For example, in R software, the truncation lag parameter L is set

to be 3
13n1/2 or 10

14n1/2.

When the threshold effect is only weakly identified (or completely non-

identified), I define a cointegration test statistics as

KPS S 1 = min
γ∈[γ,γ]

KPS S (γ). (2.36)

Otherwise, I define

KPS S 2 = KPS S (̃γn) (2.37)

where γ̃n is the estimated threshold value. Based on the model selection proce-

dure described in Section 3.3, I can define a robust KPSS test statistic as

KPS S ∗ =


KPS S 1, if T̃n ≤ d1(ln n)2

KPS S 2, otherwise

 . (2.38)

The basic idea is that when the threshold effect is large enough to be identi-

fied, γ̃n is consistent and I just need to check the stationarity of η̂t (̃γn); other-

wise, KPS S 1 is used to consider all possible threshold values. It can be shown

that, under the null hypothesis, there exist a γ such that η̂t(γ) is stationary and

KPS S 1 ⇒
∫ 1

0
V2(s)ds where V is a standard Brownian bridge: V(s) = W(s)−sW(1)

with W(s) is a standard Brownian motion. The critical value is available from

Table 1 in Kwiatkowski et al., (1992), calculated via a direct simulation. Under

alternative, η̂t(γ) is an unit root and KPS S 1 will diverge at the rate n2. Therefore,

KPS S 1 is a consistent test. As for KPS S 2, under the null hypothesis and identi-

fication conditions, γ̃n converges to γ0 and I have KPS S 2 ⇒
∫ 1

0
V2(s)ds as well.

Thus, KPS S 1 and KPS S 2 are identical asymptotically and I can use the same

critical value table.
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2.5 Simulations

In this section, I will demonstrate the finite sample performance of the estima-

tors and test statistics.

Simulation 1: Through this experiment, I examine the consistency of the pro-

filed least square(LS) estimators and feasible GLS estimators. I also make a com-

parison between these two estimators. I consider a simple univariate model:

yt = xt + δnxt(qt > 0) + ηt,

where xt = xt−1 + e1t and the error term ηt = ρηt−1 + ρ1e1t + et. The threshold

variable qt is generated by an AR(1) process qt = 0.5qt−1 + e2t; e1t, e2t and et are

i.i.d.N(0, 1) and independent of each other. The number of replications is N =

1000. I choose K = 5 in FGLS estimator to deal with model endogeneity.4 I

consider two choices for δn: (i) δn = 2n−0.5 and (ii) δn = 2n−1, corresponding to the

cases with an identified or weakly identified threshold effect respectively.

Table 2.1 reports the mean square error (MSE) of LS and FGLS estimators.

From Table 2.1 if the model is identified, I observe that both least square estima-

tors and FGLS estimators are consistent. The endogeneity and serial correlation

of error terms do not affect the consistency of the threshold estimators. Fur-

thermore, the FGLS estimator has smaller MSE than the LS estimator, especially

when there is a serious serial correlation in error terms. However, when the

threshold effect is only weakly identified, both estimators are inconsistent.

Simulation 2: Through this experiment, I show the performance of the sup-

Wald test statistics and the model selection procedure. The following data gen-

erating process is examined:yt = xt + δnxt(qt > 0) + ηt. I use a similar data set up
4I try other numbers for K, such as 10 and 15, the results do not change much.
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Table 2.1: The Mean Squared Error(MSE) of threshold estimators

n = 100 n = 200 n = 400

ρ τ ρ1 MSE(̂γ) MSE(̃γ) MSE(̂γ) MSE(̃γ) MSE(̂γ) MSE(̃γ)

0 0 0 .012 .019 .004 .004 .0021 .0022

0 0 .5 .013 .009 .004 .002 .0008 .0003

0 .5 0 .365 .379 .485 .472 .454 .455

0 .5 .5 .519 .509 .518 .518 .51 .454

1 .0 0 .191 .002 .221 .0056 .203 .0002

1 0 .5 .314 .005 .197 .0019 .234 .0002

1 .5 0 1.17 .592 .654 .527 .717 .408

1 .5 .5 .435 .302 .460 .389 .544 .429

.95 0 0 .129 .019 .097 .001 .032 .0001

.95 0 .5 .125 .002 .129 .0031 .031 .0004

.95 .5 0 .586 .410 .572 .38 .522 .404

.95 .5 .5 .375 .359 .557 .44 .494 .367

−.95 0 0 .093 .004 .043 .0002 .027 .0002

−.95 0 .5 .171 .020 .095 .0031 .023 .0003

−.95 .5 0 .800 .608 .422 .364 .606 .412

−.95 .5 .5 .742 .530 .532 .420 .622 .356

Note: The model is yt = axt + δxt(qt > 0) + ηt with xt = xt−1 + e1t and ηt = ρηt−1 + ρ1e1t + et.

qt = 0.5qt−1 + e2t. et, e1t and e2t are i.i.d. N(0, 1). ρ is chosen from 0, 1, 0.95 and −0.95 to see the
impact of serial correlations. δ = 2n−1/2−τ, where τ is set as 0 or 0.5. ρ1 is set as 0 or 0.5 to see the
impact of the model endogeneity. MSE(̂γ) is the mean square error(MSE) for the least square(LS)
estimator of threshold value γ0, while MSE(̃γ) is for FGLS estimators. n is the sample size. The
replication number is 1000.

for xt, qt and ηt as Simulation 1. In addition, I consider δn = 0 to evaluate the size

performance of the test statistics.

Table 2.2 below reports the size performance for the sup-Wald statistics Tn

and T̃n, which are based on LS estimator and FGLS estimator respectively.

44



Ta
bl

e
2.

2:
Si

ze
pe

rf
or

m
an

ce
of

su
p-

W
al

d
st

at
is

ti
cs

an
d

m
od

el
se

le
ct

io
n

n
=

10
0

n
=

20
0

n
=

40
0

ρ
δ

ρ
1

10
%

5%
1%

>
lo

g2 (n
)

10
%

5%
1%

>
lo

g2 (n
)

10
%

5%
1%

>
lo

g2 (n
)

T
n

0
0

0
0.

07
8

0.
02

8
0.

00
5

0
0.

11
4

0.
05

6
0.

01
8

0
0.

09
8

0.
04

6
0.

00
8

0

0
0

.5
0.

12
0

0.
09

2
0.

03
4

0
0.

08
4

0.
05

0.
00

8
0

0.
07

6
0.

03
2

0.
01

0

1
0

0
0.

13
2

0.
08

2
0.

03
0

0.
06

4
0.

03
4

0.
01

4
0.

00
2

0.
06

8
0.

04
4

0.
02

0.
00

2

1
0

.5
0.

08
6

0.
05

2
0.

02
2

0
0.

13
4

0.
07

4
0.

02
2

0.
01

0.
11

2
0.

07
6

0.
01

8
0

.9
5

0
0

0.
12

8
0.

07
3

0.
04

2
0

0.
17

8
0.

07
2

0.
03

0.
04

0.
10

4
0.

04
6

0.
00

8
0

.9
5

0
.5

0.
13

4
0.

07
5

0.
02

0
0.

14
6

0.
06

4
0.

00
4

0.
00

2
0.

13
2

0.
06

8
0.

02
0

−.
95

0
0

0.
12

0.
07

2
0.

01
0

0.
10

6
0.

06
0.

01
8

0
0.

09
2

0.
04

2
0.

01
6

0

−.
95

0
.5

0.
07

0.
03

4
0.

00
8

0
0.

11
8

0.
06

4
0.

00
6

0
0.

09
2

0.
03

0.
00

6
0

T̃
n

0
0

0
0.

11
0.

06
2

0.
01

2
0

0.
10

2
0.

07
2

0.
03

0
0.

09
4

0.
04

4
0.

01
0

0
0

.5
0.

14
4

0.
08

4
0.

02
8

0
0.

07
6

0.
04

4
0.

01
4

0
0.

07
8

0.
03

6
0.

00
4

0

1
0

0
0.

08
4

0.
05

0.
02

0
0.

11
2

0.
03

8
0.

02
8

0
0.

12
4

0.
07

4
0.

03
2

0

1
0

.5
0.

13
0.

06
2

0.
01

4
0

0.
08

2
0.

04
2

0.
03

4
0

0.
11

6
0.

05
4

0.
02

4
0

.9
5

0
0

0.
11

4
0.

06
2

0.
00

8
0

0.
07

2
0.

03
6

0.
00

2
0.

00
2

0.
07

2
0.

03
6

0.
00

8
0

.9
5

0
.5

0.
12

8
0.

06
4

0.
03

2
0

0.
13

2
0.

07
6

0.
02

0
0.

09
4

0.
03

8
0.

00
8

0

−.
95

0
0

0.
08

6
0.

03
6

0.
00

0
0.

14
2

0.
07

8
0.

02
4

0
0.

09
0.

04
4

0.
01

0

−.
95

0
.5

0.
11

6
0.

06
6

0.
02

2
0

0.
09

4
0.

04
6

0.
01

6
0

0.
09

0.
05

8
0.

01
8

0

45



From Table 2.2, I can find that the size performance is reasonably good un-

der various kinds of situations. The model selection procedure also chooses the

identification strengths correctly.

Table 2.3-2.5 report the power performance for the sup-Wald statistics Tn and

T̃n with different sample size.

Table 2.3: Power performance 1

n = 100 Tn T̃n

ρ τ ρ1 10% 5% 1% > (log(n))2 10% 5% 1% > (log(n))2

0 0 0 1.00 0.994 0.984 .956 1.0 .998 .988 .97

0 0 .5 .992 0.98 0.968 .904 .998 .994 .984 .952

0 0.5 0 0.322 0.224 0.074 .024 .324 .206 .11 .034

0 0.5 .5 0.258 0.15 0.03 .02 .206 .09 .03 .032

1 0 0 0.478 .436 .36 .462 .998 .996 .982 .958

1 0 .5 0.506 .46 .312 .486 1.0 .998 .992 .97

1 0.5 0 .164 .098 .05 0.1 .278 .190 .078 0.044

1 0.5 .5 .09 .043 .01 0.03 .298 .240 .1 0.048

.95 0 0 .796 .72 .564 0.61 .986 .986 .968 0.968

.95 0 .5 .83 .772 .654 .0636 .996 .996 .994 .0978

.95 0.5 0 .07 .034 .01 0.018 .296 .206 .118 0.068

.95 0.5 .5 .322 .234 .072 0.024 .268 .196 .084 0.072

−.95 0 0 .956 .922 .884 0.464 1.0 .998 .994 0.994

−.95 0 .5 .856 .802 .708 0.444 1.0 1.0 .998 0.996

−.95 0.5 0 .296 .236 .146 0.002 .55 .434 .182 0.11

−.95 0.5 .5 .308 .198 .05 0.004 .5 .392 .266 0.088

Note: The model is yt = axt + δxt(qt > 0) + ηt with xt = xt−1 + e1t and ηt = ρηt−1 + ρ1e1t + et.

qt = 0.5qt−1 + e2t. et, e1t and e2t are i.i.d. N(0, 1). ρ is chosen from 0, 1, 0.95 and −0.95 to see the
impact of serial correlations. ρ1 is set as 0 or 0.5 to see the impact of the model endogeneity. n is
the sample size. The replication number is 1000.

From Table 2.3-2.5, if threshold effect is identified, I find that both statistics are
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Table 2.4: Power performance 2

n = 200 Tn T̃n

ρ τ ρ1 10% 5% 1% > (log(n))2 10% 5% 1% > (log(n))2

0 0 0 1.0 1.0 .998 .982 1.0 1.0 .998 .984

0 0 .5 1.0 1.0 .996 .974 1.0 1.0 1.0 .99

0 0.5 0 .284 .222 .098 .004 .256 .198 .108 .004

0 0.5 .5 .254 .144 .078 .002 .250 .17 .066 .008

1 0 0 .854 .836 .816 .328 1.0 1.0 1.0 .992

1 0 .5 .668 .614 .54 .346 1.0 1.0 1.0 .988

1 0.5 0 .098 .05 .016 0 .280 .212 .126 0.08

1 0.5 .5 .116 .05 .01 .03 .292 .174 .072 0.014

.95 0 0 .856 .82 .732 .624 1.0 1.0 1.0 0.986

.95 0 .5 .79 .75 .708 .584 1.0 1.0 1.0 .992

.95 0.5 0 .082 .034 .016 0 .428 .336 0.194 0.02

.95 0.5 .5 .078 .044 .002 .034 .308 .228 .068 0.016

−.95 0 0 .962 .95 .912 .506 1.0 1.0 1.0 1.0

−.95 0 .5 .964 .956 .906 .502 1.0 1.0 1.0 1.0

−.95 0.5 0 .318 .22 .124 0 .442 .352 .268 0.034

−.95 0.5 .5 .110 .05 .016 0 .402 .292 .16 0.03

Note: The model is yt = axt + δxt(qt > 0) + ηt with xt = xt−1 + e1t and ηt = ρηt−1 + ρ1e1t + et.

qt = 0.5qt−1 + e2t. et, e1t and e2t are i.i.d. N(0, 1). ρ is chosen from 0, 1, 0.95 and −0.95 to see the
impact of serial correlations. δ = 2n−1/2−τ, where τ is set as 0 or 0.5. ρ1 is set as 0 or 0.5 to see the
impact of the model endogeneity. n is the sample size. The replication number is 1000.

consistent with power converging to one as sample size increases. In general,

T̃n performs better than Tn where there is serial correlation and endogeneity.

On the contrary, if the model is only weakly identified, both statistics have low

power, even when the sample size is large. This coincides with my theoretical

results in Theorem 2.2.4. However, the model selection procedure successfully

distinguishes the weak identification cases from the identification cases.
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Table 2.5: Power performance 3

n = 400 Tn T̃n

ρ τ ρ1 10% 5% 1% > (log(n))2 10% 5% 1% > (log(n))2

0 0 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

0 0 .5 1.0 1.0 1.0 .994 1.0 1.0 1.0 .998

0 0.5 0 .294 .196 .042 .002 .264 .166 .052 0

0 0.5 .5 .166 .124 .054 0 .272 .192 .108 .002

1 0 0 .742 .692 .586 .234 1.0 1.0 1.0 1.0

1 0 .5 .546 .488 .41 .266 1.0 1.0 1.0 .998

1 0.5 0 .386 .312 .16 0 .248 .162 .052 0

1 0.5 .5 .02 .012 .002 .012 .228 .146 .05 0.002

.95 0 0 .91 .884 .82 .722 1.0 1.0 1.0 1.0

.95 0 .5 .942 .916 .868 .668 1.0 1.0 1.0 .998

.95 0.5 0 .074 .026 .004 .002 .264 .186 0.068 0.002

.95 0.5 .5 .094 .052 .01 0 .292 .210 .082 0

−.95 0 0 .994 .986 .958 .596 1.0 1.0 1.0 1.0

−.95 0 .5 .996 .984 .958 .648 1.0 1.0 1.0 1.0

−.95 0.5 0 .092 .042 .02 0 .546 .448 .302 0.01

−.95 0.5 .5 .134 .064 .018 0 .320 .204 .134 0.01

Note: The model is yt = axt + δxt(qt > 0) + ηt with xt = xt−1 + e1t and ηt = ρηt−1 + ρ1e1t + et.

qt = 0.5qt−1 + e2t. et, e1t and e2t are i.i.d. N(0, 1). ρ is chosen from 0, 1, 0.95 and −0.95 to see the
impact of serial correlations. δ = 2n−1/2−τ, where τ is set as 0 or 0.5. ρ1 is set as 0 or 0.5 to see the
impact of the model endogeneity. n is the sample size. The replication number is 1000.

Simulation 3: Through this experiment, I want to show the test performance

of KPS S 1 and KPS S 2. I consider the following simple model

yt = a1xt + δxt(qt > 0) + ηt

with xt = xt−1 + e1t and ηt = ρηt−1 + ρ1e1t + et. ρ is chosen among 0, 0.5 and 1.

When ρ < 1 the model is a cointegrating regression, while ρ = 1 I get a spurious

relationship. The threshold variable qt = 0.5qt−1+e2t. et, e1t and e2t are i.i.d. N(0, 1)

and independent of each other. δ is chosen among 4n−0.5, 4n−1 and 0 to reflect
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the impact of the threshold effect with different identification strengths. ρ1 is

chosen from 0 and 0.5. The replication number is 1000. All rejection frequencies

are calculated at 5% significance level.

The results are reported in Table 2.6. It is apparent from Table 2.6 that both

test statistics have size distortion, which is not surprising given the fact that the

conventional KPSS test has size distortion. Generally, KPS S 2 has better perfor-

mance than KPS S 1 when the threshold effect is large.5

2.6 Empirical Application

In this section, I provide an application to model the asymmetric effects of mon-

etary policy on real output under different credit conditions.

There has been a long debate about how monetary policy affects real eco-

nomic activity. Policy-makers usually believe that the central bank can manipu-

late aggregate demand by engineering expansions or contractions of the money

supply. In the monetarist view, this story is correct since there is a direct link

between money supply and aggregated spending. In the New Keynesian view,

the story also holds since adjustments in asset prices brought about by a change

in money supply lead to more spending. However, according to the neutral

money hypothesis, a core belief of classical economists, a change in the money

supply affects only nominal variables in the economy such as prices, wages and

exchange rates, but has no effect on real (inflation-adjusted) variables, like em-

ployment, real GDP, and real consumption. If the neutral money hypothesis

5Choi and Saikkonen (2010) suggests that the subsamples of the regression residual instead
of full-sample residual to construct KPSS test statistics may be helpful to enhance the perfor-
mance of test in nonlinear cointegration models.
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Table 2.6: The rejection frequency of KPSS1 and KPSS2

n = 100 n = 200 n = 400

ρ δ ρ1 KPS S 1 KPS S 2 KPS S 1 KPS S 2 KPS S 1 KPS S 2

0 d1 0 .01 .02 .01 .015 .01 .03

0 d1 0.5 .01 .02 .01 .031 .008 .03

0 d2 0 .02 .026 .02 .035 .036 .04

0 d2 0.5 .016 .022 .01 .035 .022 .026

0 d3 0 .012 .026 .03 .026 .028 .036

0 d3 0.5 .01 .024 .03 .033 .03 .03

0.5 d1 0 .01 .082 .03 .075 .03 .072

0.5 d1 0.5 .036 .102 .03 .079 .028 .06

0.5 d2 0 .048 .06 .07 .084 .06 .066

0.5 d2 0.5 0.07 .094 .05 .072 .05 .066

0.5 d3 0 0.078 .96 .078 .065 .052 .056

0.5 d3 0.5 0.086 .100 .07 .071 .044 .048

1 d1 0 .56 .700 .764 .79π .88 .91

1 d1 0.5 .65 .754 .802 .84 .938 .95

1 d2 0 .558 .578 .844 .85 .916 .922

1 d2 0.5 .65 .666 .77 .78 .938 .94

1 d3 0 .73 .746 .844 .85 .926 .93

1 d3 0.5 .67 .684 .846 .85 .916 .916

Note: The model is yt = axt + δxt(qt > 0) + ηt with xt = xt−1 + e1t and ηt = ρηt−1 + ρ1e1t + et.

qt = 0.5qt−1 + e2t. et, e1t and e2t are i.i.d. N(0, 1). ρ is chosen from 0, 1, 0.95 and −0.95 to see the
impact of serial correlations. ρ1 is set as 0 or 0.5 to see the impact of the model endogeneity. δ
is chosen from d1 = 4n−0.5, d2 = 4n−1 and d3 = 0. The sample size is n = 100, 200, 400. In all cases
rejection frequencies are at a nominal significance level of five percent and are calculated on the
basis of 1000 replications.

is accurate, the central bank cannot affect the real economy by printing money

since any increase in the supply of money would be offset by an equal rise in

prices and wages.
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Even among economists who believe that monetary policy does affect the

output, there is still a debate about how monetary fluctuations transmit to real

output. In an early paper, Blinder (1987) develops an explanation for how cen-

tral bank policy affects real economic activity using a credit rationing mecha-

nism. In his model, the economy has two equilibria: a Keynesian equilibrium

and a credit-rationed equilibrium. He concludes that the effects of monetary

policy, while qualitatively similar in the two regimes, may be rather weak in the

Keynesian regime and rather strong in the credit-rationed regime. Translated

into real-world terms, a tightening of monetary policy may have strong effects

on the real sector when money is already tight, but weak effects when credit is

initially plentiful. Azariadis and Smith (1998) develop a similar idea that it is

possible for the economy to switch back and forth between a Walrasian regime

and a credit-rationing regime. Both papers suggest nonlinear dynamics such

as regime switching and asymmetric responses of the monetary shocks to the

real economy. Empirical studies have examined this asymmetric relationship

(see McCallum (1991), Galbraith (1996), Balke (2000)); however, all of these are

restricted to the stationary framework due to the lack of theoretical work on the

threshold model with integrated processes. Given that real output and mon-

etary supply variables are unit roots, my model is expected to generate more

reliable results.

The following reduced-form output equation is estimated:

yt =


µ1 + b1t + α1m̃t + β1gt + ϕ1zt + et, ifqt ≤ γ0

µ2 + b2t + α2m̃t + β2gt + ϕ2zt + et, ifqt > γ0

 (2.39)

where yt is the logarithm of real GDP; m̃t =
1
3

∑2
j=0 mt− j where mt is the logarithm

of detrended M1. I consider a moving average of recent three quarters of mt due

to the lagged effects of monetary policy. gt is the logarithm of detrended real
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government expenditure on goods and services; zt are control variables. In this

chapter, zt are stock market index (smt) and unemployment rates (unpt).

The threshold variable qt is defined as follows: qt =
M8t−µ
σ

where M8t is an

eight-quarter moving average of the detrended growth rate of the money sup-

ply M1. µ and σ are the mean and standard deviation of M8t. The definition of

qt is similar to the variable D1t defined in McCallum (1991), such that D1t = 1

indicates a credit-rationed period if recent monetary policy measured by M8t

has been “one standard deviation tighter than average”. I assume the threshold

γ0 to be unknown, allowing data to decide it. When qt is below the threshold γ0,

I say the economy has a credit rationing.

The data sample period is from 1959-Q1 to 2009-Q2; with the loss of 8 sam-

ple points to lags, I are left with 198 observations for estimation. The data for

seasonal adjusted real term GDP and government expenditure (2005 dollars)

are available from the U.S. National Income and Product Accounts (NIPA). The

money supply measure M1 is available in OECD data sets.6 Other control vari-

ables such as stock market index and unemployment rate are available from

OECD data sets as well.

I first check the persistence of each variable. I use least squares method to

estimate the first-order coefficient in an AR(1) model; the estimated results are

as follow: the 95% confidence interval of ρ is [0.983, 0.987] for yt, [0.987, 0.989] for

m̃t and [0.98, 0.983] for gt. Thus it is very likely that all three variables are unit

root processes. To confirm this conjecture further, I use the ADF test, PP test,

and KPSS test statistics to test whether these variables are unit root processes.

6The fullname of OECD dataset is Organization for Economic
Co-operation and Development, which is public available from
http://www.oecd.org/home/0,2987,en 2649 201185 1 1 1 1 1,00.html.
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The results are summarized in the following Table 2.7, which shows that all

variables are unit roots (notice that the null hypothesis for KPSS is stationary).

Table 2.7: The results for unit root tests

Test ADF Zα Zt KPS S

yt −2.67(0.29) −8.79(0.61) −1.79(0.66) 4.98(< 0.01)

m̃t −1.90(0.62) −1.22(0.98) −0.57(0.97) 5.02(< 0.01)

gt −3.2(0.076) −9.05(0.59) −2.43(0.39) 4.92(< 0.01)

smt −2.03(0.56) −7.83(0.66) −1.96(0.58) 4.84(< 0.01)

unempt −2.52(0.36) −12.04(0.43) −2.21(0.48) 0.51(0.04)

Note: yt is the logarithm of quarterly real GDP; m̃t =
1
3
∑2

j=0 mt− j where mt is the logarithm of
quarterly detrended M1. gt is the logarithm of quarterly detrended real government expendi-
ture on goods and services; smt is quarterly stock market index and unempt is quarterly unem-
ployment rate. p-values are reported in brackets.

Next, I estimate a linear cointegration model, obtaining an estimated result

ŷt =8.15
(0.11)
+ 0.008

(0.0002)
t− 0.0074

(0.011)
m̃t+ 0.1

(0.03)
gt− 0.106

(0.055)
smt− 0.023

(0.0002)
unpt

The numbers below the coefficients are standard deviation calculated using

Newey-West estimator. In the linear cointegration model, m̃t is not significant

while gt is significant. The result supports the neutral money hypothesis, sug-

gesting that monetary policy has no significant effect on real output. However,

when I check the stationarity of the residual terms, neither ADF nor PP-test

statistics can reject the null hypothesis that the residuals are unit roots. Thus,

the evidence from the linear cointegration is not reliable.

To check whether there is any threshold effect, I estimate the following

threshold model:

ŷt =


8.08
(0.33)
+ 0.008

(0.0001)
t+ 0.124

(0.012)
m̃t+ 0.59

(0.04)
gt+ 0.077

(0.01)
smt− 0.025

(0.0047)
unempt, ifqt ≤ −0.34

8.15
(0.045)

+ 0.0075
(0.0001)

t− 0.01
(0.01)

m̃t −0.076
(0.034)

gt− 0.048
(0.076)

smt− 0.017
(0.0002)

unempt, , ifqt > −0.34

 .
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The estimated threshold value is −0.34, which is larger than −1 used in Mc-

Callum (1991). This result implies that credit rationing may be more likely to

happen in the real economy than McCallum(1991)’s model.

In credit rationing periods, I find that the coefficient of m̃t is 0.125 (0.012),

larger than −0.01 (0.01) in normal periods. This result confirms the asymmet-

ric effects of monetary policy shocks on real output. The shocks from monetary

policy during “tight” credit regime have a larger effect on output than do shocks

in the normal or “loose” regime. I also find that government expenditure has

a larger effect in the “credit-rationed” regime. As for the stock market, the co-

efficient is 0.077 (0.01) in credit-rationed periods, larger than −0.048 (0.076) in

normal regimes. The significantly positive relationship in tight credit regimes is

consistent with the empirical finding that the relationship between stock market

returns and fundamental factors is more significant in recessions.

The sequence of Wald statistics values for different thresholds is plotted in

Figure 2.1. The sup-Wald statistics value is 426.8. The bootstrapped 95% crit-

ical value is 76.94. Thus, the sup-Wald statistics reject the null hypothesis of

no threshold effect at 5% significance level. Since κn = 167.15, the model selec-

tion procedure chooses the identification case and t-statistics are applicable. To

check whether the cointegration relationship is spurious or not, I use KPSS1

and KPSS2 statistics to test the cointegration. The KPSS1 value is 0.138 and the

p-value is larger than 0.1. Thus I can not reject the null hypothesis of threshold

cointegration regression. The KPSS2 is 0.17 and the p-value is larger than 0.1.

Therefore KPSS2 agrees with the test result of KPSS1.
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Figure 2.1: Wald statistics for different threshold values

2.7 Conclusions

This chapter can be viewed in two ways: (i) as an attempt to establish a statis-

tical theory for threshold models with nonstationary regressors and (ii) as seek-

ing to extend linear cointegrations by considering regime shifts in cointegrating
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vectors.

Threshold models have been popularly used to capture nonlinear effects in

empirical macroeconomics and finance. In the literature, statistical theory for

threshold models with stationary explanatory variables has been well devel-

oped. However, in empirical macroeconomics and finance, many explanatory

variables are nonstationary, and there have been no econometric theory for non-

stationary threshold models in the previous literature. I contribute to the litera-

ture by filling this gap. It is shown that the asymptotics depends on the size of

the threshold effect. A model selection procedure is then applied to construct

robust confidence intervals which have correct coverage no matter what the size

of threshold effect is. I allow for model endogeneity and serial correlation, as

these are common in regressions with nonstationary variables. A feasible gen-

eralized least square (FGLS) estimator is designed and shown to be a robust

procedure to different error specifications, including I(1) errors.

This chapter can also be related to the literature of nonlinear cointegration

and time-varying cointegration, which provide an important means to extend

conventional cointegration analysis. The proposed model offers some flexibility

of the cointegrating structure such that I can capture regime shifts in long-run

relationships. I develop two test statistics based on KPSS test statistic to test the

cointegrating relationship with a threshold effect, under different model iden-

tification conditions. The merits of the model and tests have been successfully

demonstrated through simulations and an application to the asymmetric effect

of monetary policy on real output.

There are several directions open for further work. First, it may be interest-

ing to develop a more general model with multiple regime shifts, each with a
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different identification strength. A sequential procedure can be applied to de-

termine the number of regimes and their identification strengths. Second, the

model can be extended to allow for stationary regressors. For linear cointegrat-

ing regressions, Hansen (1995) shows that stationary regressors can improve

the performance of cointegration tests. This may be true for nonlinear cointe-

gration models as well. Finally, it would be interesting to deal with nonlinearity

in both long-run relationships and short-term dynamics simultaneously under

a unified framework.
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CHAPTER 3

THRESHOLD EFFECTS IN REGRESSION MODELS WITH UNKNOWN

FUNCTIONAL FORMS

3.1 The Model and Assumptions

Consider the following nonparametric model with a threshold effect

yt = g1(xt)I(zt ≤ γ0) + g2(xt)I(zt > γ0) + ut. (3.1)

where yt is the observed dependent variable and xt(d × 1) is a vector of explana-

tory variables, which may contain lagged values of yt. ut is the disturbance term.

zt is a random variable. The threshold effect γ0 ∈ Γ where Γ =
[
γ, γ

]
is a closed

set. I(·) is an indicator function1. This model can be treated as a semiparametric

model since the effect of zt to yt is in parametric form, while the effect of xt is

nonparametric. In the current study, my main purpose is to estimate γ0 and test

the threshold effect. This method can be used to capture model heterogeneity

across individuals or over time. For example, in my empirical application, I

want to test whether the countries in my sample could be grouped according to

the initial endowment, measured by per capital GDP. Previous studies assume

a Cobb-Douglas production function and that may cause a model misspecifica-

tion. Through Model (3.1), I can estimate the threshold effect and test it without

any parametric specification on the production function.

Very commonly, one may have some information about the model structure

based on economic theories for the question at hand. Thus, one may have the

1If zt is t, similar to parametric models, the statistical inference of the structural change point
estimator can only be derived for t/T since one needs an infinite amount of information around
the change point as sample size increases to infinite.
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following specific examples:

Case I: nonparametric regression with mean shift:

yt =


g(xt) + ut, zt ≤ γ0

g(xt) + µ + ut, zt > γ0

 (3.2)

Case II: single index models with changes on loadings:

yt =


g(β1xt) + ut, zt ≤ γ0

g(β2xt) + ut, zt > γ0

 (3.3)

Case III: nonparametric models with changes on derivatives (sharp cusp).

yt =


∫ xt

a
g1(x)dx + ut, zt ≤ γ0∫ xt

a
g2(x)dx + ut, zt > γ0

 (3.4)

Case IV: partially linear model with a threshold effect on the linear com-

ponent:2

yt =


x1tβ1 + m(x2t) + ut, zt ≤ γ0

x1tβ2 + m(x2t) + ut, zt > γ0

 . (3.5)

Before going further, I impose some assumptions on the data generating pro-

cess.

Assumption 3.1.1 xt is geometrically ergodic, stationary and β − mixing with ex-

ponential decay; ut is a martingale difference sequence and E(ut|zt−1, xt, zt) = 0; and

supt E |ut|2+κ < ∞, for some κ > 0.

Assumption 3.1.2 zt is strictly stationary and has a continuous distribution Fz(γ).

Let f (γ) denote the density function satisfying f (γ) ≤ f < ∞ for all γ ∈ Γ =
[
γ, γ

]
and

f (γ0) > 0.
2This model is widely used when xt is of high dimension to circumvent the “curse of dimen-

sionality”. See Fan and Li (1996) and Fan et al.(1998).
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Assumption 3.1.3 Var(ut|xt, zt) = σ2(xt, zt) is a bounded and smooth function.

Assumptions 3.1.1 are very standard in the literature of time series models

and is trivially satisfied for independent cross-sectional observations. The data

are either a random sample or a weakly dependent time series, so that unit

roots and stochastic trends are excluded.3 The martingale difference sequence

assumption for the disturbance is necessary for the consistency of the estimator

in nonlinear time series models. Assumption 3.1.2 requires zt to be a continuous

random variable and has a bounded density function. The density around γ0

should be positive so there are observations around the threshold value. As-

sumption 3.1.3 requires the conditional variance to be bounded, an assumption

which is difficult to relax without affecting the convergence rates, but it allows

a wide range of conditional heteroscedasticity. In this chapter, I focus on the

threshold effect in the conditional mean function. Thus, I assume the conditional

function be smooth. The extension to allow for regime shifts in both conditional

mean and conditional variance remains for a future study.

3.2 Main Results

In this section, I discuss the estimator and its asymptotic property.

3.2.1 Series Estimation with Known γ0

As a starting point, I consider the case with known γ0; thus I only need to esti-

mate the function in each sub-sample split according to γ0. To estimate g1(x) and
3Different asymptotic results are needed for nonstationary time series.
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g2(x), I use a series estimator which approximates the unknown functions by a

series expansion
∑L

s=1 pL
s (x)βL

s , where {pL
s (x) : s = 1, 2, ...L} is a prespecified family

of functions from χ to R. χ is a compact set and χ ⊂ Rd. Examples of such fam-

ilies include Fourier flexible forms (FFF), polynomials, and regression splines.4

βL = (βL
1 , ..., β

L
L)′ is an unknown parameter vector and L is the number of basis

functions to be used in the approximation, depending on the sample size T.

Define pL(x) = (pL
1(x), pL

2(x), ..., pL
L(x))′. For any finite L, one can write the

unknown function gi(x) as follows

gi(x) = pL(x)′βi + eL
t (x), for i = 1, 2.

where eL
t (x) is the remainder residual term. As L grows to infinity, the series

expansion becomes a good approximation to gi(x). Following the literature of

series expansion, I assume some regularity conditions on the function gi(x) and

basis functions {pL
s (x) : s = 1, 2, ..., L}.

Assumption 3.2.1 xt has compact support : χ ⊂ Rd; the distribution function of xt :

Fx(x) is absolutely continuous with respect to the Lebesgue measure.

Assumption 3.2.2 For each L, there is a non-singular matrix B such that for PL(x) =

BpL(x) : i) QL = E[PL(xt)PL(xt)′], which has a smallest eigenvalue bounded away from
4 A simple way to construct basis functions for multivariate xt is to use the tensor product

basis. For example, if p = 2, we can define g j,k(·) = ϕ j(x1)ψk(x2) for j, k ∈ {0} ∪ Z+. The g j,k(·)
forms a basis g(·), called the tensor product basis. Thus, ms(·) could be expanded in the tensor
product basis as

ms(x1, x2) =

∞∑
j,k=0

β j,kϕ j(x1)ψk(x2)

= β0 +

∞∑
j=1

β j,0ϕ j(x1) +
∞∑

k=1

β0,kψk(x2) +
∞∑

j,k=1

β j,kϕ j(x1)ψk(x2).

The basis can be extended to d dimensions in the obvious way.
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zero and a bounded largest eigenvalue; ii) there is a sequence of constants ς0(L) satisfy-

ing supx∈κmax1≤s≤L ||PL
s (x)|| ≤ ς0(L) and ς0(L)4L2/T → 0 as T → ∞.

Assumption 3.2.3 i) For each function gi(x), i = 1, 2, there exist a parameter vector

βi ∈ RL and constants ρi > 0 satisfying supx∈κ |gi(x) − pL(x)βi| = O(L−ρi) as L → ∞.

ii)
√

T L−ρi → 0 as T → ∞.

Assumption 3.2.1 is quite standard for series estimation. The support of xt

could be directly restricted to be [0, 1]d by re-scaling. The absolutely continuous

distribution function rules out discrete random variables in xt.

Assumption 3.2.2 imposes a normalization on the approximation functions,

bounding the second moment matrix away from singularity, and restricting the

magnitude of the series terms. For regression splines and orthonormal polyno-

mials over a compact support, when the density of xt is bounded away from

zero, Newey(1988) and Andrews (1991) give the primitive conditions ς(L) = C

or C
√

L respectively. Thus, ii) can be expressed as L2/T → 0 or L4/T → 0, by

substituting ς(L) = C or C
√

L into ς0(L)4L2/T → 0.

Assumption 3.2.3 is conventional in the series approximation literature spec-

ifying a uniform rate for the approximation of the series approximation to the

true function. As pointed out by Newey(1997), ρi is related to the smoothness

of the true function and the dimensionality of xt. For regression splines and

power series, Newey (1997) shows that the assumption will be satisfied with

ρ = s/d, where s is the number of continuous derivatives of g(x) and d is the

dimension of xt. In practice, however, we do not know the true function and

thus cannot determine ρi. ii) requires that L should not increase too slowly so

that the approximation error can be ignored when we study the consistency and
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asymptotics of the estimators.

Remark 1: In Assumption 3.2.2, since the series estimator is invariant un-

der non-singular linear transformations of pL(x), one can even assume that

B = I, i.e., PL(x) = pL(x). Furthermore, since the smallest eigenvalue of QL =

E[PL(xt)PL(xt)′] is bounded away from zero, it can be further assumed that

QL = I if the density of xt is known. This is because, for any symmetric square

root Q−1/2
L of QL, Q−1/2

L pL(x) is a non-singular linear transformation of pL(x) satis-

fying all conditions in 3.2.25.

Let Y = (y1, y2, ...yT )′,G = (pL(x1), pL(x2), ...pL(xT ))′,and I1(γ0) be a T × T diag-

onal matrix with the (t, t)th element being an indicator function 1(zt ≤ γ0). Let

I2(γ0) = I − I1(γ0). The series estimator for the function gi(x) can be defined as

ĝi,γ0(x) = pL(x)′β̂i(γ0)

where β̂i(γ0) is the ordinary least square estimator given by

β̂i(γ0) = (GIi(γ0)G)−Ii(γ0)G′Y, for i = 1, 2.

Note that (·)− denotes the generalized inverse of (·).

Let f (x|zt ≤ γ0) and f (x|zt > γ0) be the conditional density for xt in each

sub-sample. The following theorem gives a general result on mean-square and

uniform convergence rates of the series estimation.

Theorem 3.2.1 Under Assumptions 3.1.1-3.2.3, the following results hold:∫
χ

[g1(x) − ĝ1,γ0(x)]2 fx(x|zt ≤ γ0)dx = Op(
L1

T1,γ0

+ L−2ρ1
1 ),

5For example, one can use Gram-Schmidt orthonormalization to get orthogonalized
power series. Hermite, Jacobi, Laguerre and Legendre polynomials are examples of or-
thogonal polynomials. The orthonormal Legendre polynomial basis is defined as Pn(x) =√

(2n + 1)/2 1
2nn!

dn

dxn (x2 − 1)n, for n = 0, 1, ....
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∫
χ

[g2(x) − ĝ2,γ0(x)]2 fx(x|zt > γ0)dx = Op(
L2

T2,γ0

+ L−2ρ2
2 ),

and

sup
x∈χ
|g1(x) − ĝ1,γ0(x)| = Op(ς(L))[(

L1

T1,γ0

)1/2 + L−ρ1
1 ],

sup
x∈χ
|g2(x) − ĝ2,γ0(x)| = Op(ς(L))[(

L2

T2,γ0

)1/2 + L−ρ2
2 ],

where T1,γ0 and T2,γ0 are the sample size in the subsample {z ≤ γ0} and {z > γ0} respec-

tively.

It can be shown that the term Li/Ti,γ0 corresponds to the variance term and

L−2ρi
i corresponds to a bias term. One can choose the number of Li by mini-

mizing the mean square errors, which requires that Li/Ti,γ0 and L−2ρi
i converge

to zero at the same rate and solve for Li = O(T 1/(1+2ρi)) in each sub-sample. Li

can be different in the two subsamples if the smoothness of the gi(x) differs.

However, in practical applications, the exact value of ρi is unknown; thus, it is

still impossible to choose Li through the formula. In the literature, Li is chosen

optimally using data-driven methods, such as the generalized cross-validation

method and jump of the estimated residual variance.

Define the following moment functionals

Q1,γ = E(pL(xt)pL(xt)′|zt ≤ γ),

Q2,γ = E(pL(xt)pL(xt)′|zt > γ),

and

Σ1,γ = E(pL(xt)pL(xt)′u2
t |zt ≤ γ),

Σ2,γ = E(pL(xt)pL(xt)′u2
t |zt > γ).
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The following theorem establishes the asymptotic normality for the series esti-

mators in each sub-sample.

Theorem 3.2.2 Under Assumptions 3.1.1-3.2.3, the following results hold: for any

fixed L × 1 vector ω satisfying ||ω|| = 1 for every L,

√
T1,γ0ω

′Ω−1/2
1,γ0

(̂β1(γ0) − β1)
d→ N(0, 1),

√
T2,γ0ω

′Ω−1/2
2,γ0

(̂β2(γ0) − β2)
d→ N(0, 1).

For each fixed x ∈ χ,

√
T1,γ0W

−1/2
γ0

(̂g1,γ0(x) − g1(x))
d→ N(0, 1).

√
T2,γ0W

−1/2
1−γ0

(̂g2,γ0(x) − g2(x))
d→ N(0, 1).

where Ω−1/2
i,γ0
= Q−1

i,γ0
Σi,γ0 Q−1

i,γ0
and W1,γ0 = pL(x)′Q−1

i,γ0
Σi,γ0 Q−1

i,γ0
pL(x).

3.2.2 The Estimator of γ0

In many practical applications, γ0 is unknown. Thus, I need to estimate the

threshold effect before estimating the nonparametric function in each subsam-

ple.

By substituting the series expansions of g1(xt) and g2(xt), one can rewrite

Model (3.1) as

yt = pL(xt)β1I(zt ≤ γ0) + pL(xt)β2I(zt > γ0) + ϵt (3.6)
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where ϵt = e1(xt)I(zt ≤ γ0) + e2(xt)I(zt > γ0) + ut. e1(xt) and e2(xt) are remainder

terms from the series expansions to g1(xt) and g2(xt) respectively. I can write the

model in the following compact form

Y = I1(γ0)Gβ1 + I2(γ0)Gβ2 + ϵ (3.7)

where Y = (y1 y2 ... yT )′ is a T × 1 vector of yT ; G = (pL(x1), ..., pL(xT ))′ is a T × L

matrix with (t, l)th element pL
l (xt) ; I1(γ0) is a T ×T diagonal matrix with the (t, t)th

element being an indicator function 1(zt ≤ γ0), and I2(γ0) = I − I1(γ0).

For each fixed γ ∈ Γ = [γ, γ], estimate the following model

Y = I1(γ)Gβ̂1(γ) + I2(γ)Gβ̂2(γ) + ϵ̂ (3.8)

where β̂1(γ) and β̂2(γ) are L × 1 vectors of OLS estimators defined by:

β̂i(γ) = (GIi(γ)G)−1Ii(γ)G′Y, for i = 1, 2. (3.9)

The threshold estimator then defined as

γ̂T = arg min
γ∈

[
γ,γ

] S S RT (γ) ,

where S S RT (γ) denotes the sum of residual squares

S S RT (γ) =
∥∥∥∥Y − I1(γ)Gβ̂1(γ) − I2(γ)Gβ̂2(γ)

∥∥∥∥2
.

After obtaining γ̂T , I define the series estimator ĝ1,̂γT (x) = pL(xt )̂β1(̂γT ) and

ĝ2,̂γT (x) = pL(xt )̂β2(̂γT ) in each subsample. Define

D (γ) = E
(
pL(xt)pL(xt)′|zt = γ

)
, (3.10)

V (γ) = E
(
pL(xt)pL(xt)′u2

t |zt = γ
)
. (3.11)

Let D = D(γ0) and V = V(γ0).

Then I use the following assumptions for the consistency of γ̂T .
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Assumption 3.2.4 Q > Q1,γ > 0 for each γ ∈ Γ =
[
γ, γ

]
.

Assumption 3.2.5 f (γ), D(γ) and V(γ) are continuous at γ = γ0.

Assumption 3.2.6 Let g1(x) − g2(x) = δ(x), where δ(x) can be approximated by the

series expansion pL(x)δ and δ satisfies Assumption 3.2.3; δ′Dδ > 0 and δ′Vδ > 0.

Assumption 3.2.4 is the conventional full-rank condition which excludes

perfect collinearity. Γ is restricted to be a proper subset of the support of z. As-

sumption 3.2.5 requires the moment functionals to be continuous so that one

can obtain the Taylor expansion around γ0. This condition excludes regime-

dependent heteroscedasticity in Assumption 3.1.3 but it allows a smooth condi-

tional variance function on zt. Assumption 3.2.6 excludes the continuous thresh-

old model.6 The following theorem establishes the convergence rate of γ̂.

Theorem 3.2.3 Under Assumptions 3.1.1-3.2.6, γ̂
p→ γ0 as T increases to infinity.

Furthermore, T (̂γ − γ0) = Op(1).

The above theorem shows that γ̂T converges to the true point γ0 at rate T, even

if the number of regressors grows to infinity. The intuition is that the threshold

effect is a parametric part in a semiparametric model where the nonparametric

part does not affect its convergence. This super convergence rate ensures that I

can derive the asymptotics of β̂i(̂γT ) and ĝi,̂γT (x) as the true threshold effect γ0 is

known.

Theorem 3.2.4 Under Assumptions 3.1.1-3.2.6, β̂1(̂γT ), β̂2(̂γT ), ĝ1,̂γT (x) and ĝ2,̂γT (x)

have the same asymptotic distribution as β̂1(γ0), β̂2(γ0), ĝ1,γ0(x) and ĝ2,γ0(x).
6This paper focuses on the discontinuous threshold effect. For continuous threshold models,

one is referred to Chan and Tsay (1998).
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3.2.3 Asymptotic Distribution of the Estimator γ̂T

In this section, the asymptotic distribution of the least-squares estimator γ̂T is

derived under the assumption that the magnitude of threshold effect goes to

zero at an appropriate rate. As pointed out by Hansen (2000), the assumption of

decaying change size is needed in order to obtain an asymptotic distribution of

γ̂T free of nuisance parameters.7 I replace the Assumption 3.2.6 by the following

assumption:

Assumption 3.2.7 Let g1(x) − g2(x) = T−αδ(x), where 0 < α < 1
2 and δ(x) can be

approximated by the series expansion pL(x)δ with δ satisfying 3.2.3; δ′Dδ > 0 and

δ′Vδ > 0.

The following theorem establishes the asymptotic distribution of γ̂T .

Theorem 3.2.5 Under Assumptions 3.1.1-3.2.5 and 3.2.7, the following result holds:

T 1−2α(̂γT − γ0)⇒ ωΛ, (3.12)

where

ω =
δ′Dδ

f0(δ′Vδ)2

and

Λ =arg max
−∞<r<∞

(
−1

2
|r| +W (r)

)
.

W(r) is a two-sided Brownian motion on the real line defined as:

W(r) =


Λ1(−r), if r < 0

0, if r = 0

Λ2(r), if r > 0

,

7This approach was first used in the literature of change points (Bai, 1997) and applied to the
threshold model by Hansen (2000).
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with Λi(r), i = 1, 2 two independent standard Brownian motions on [0,∞).

The rate of convergence is T 1−2α, which is decreasing in α. Intuitively, a large

α decreases the change size, in turn reducing the precision of any estimator of

γ0. In the leading case of conditional homoscedasticity, V = σ2D, and I have

ω =
σ2

f0c′Dc
,

where σ2 = E(u2
t ). Hansen (2000) shows that the 1 − c quantile of the random

variable maxr∈(−∞,∞)(2W(r) − |r|) is given by −2 ln(1 −
√

1 − c). Therefore, with the

estimation of ω̂, I can calculate the confidence intervals for γ̂T .

3.2.4 Generalized sup-Wald Statistic

After obtaining the estimator γ̂T , β̂1(̂γT ) and β̂2(̂γT ), one may wish to test whether

or not the economic relationships are really different in each sub-sample. The

null hypothesis is:

H0 : g1(x) = g2(x) for any x ∈ χ.

The alternative is:

H0 : g1(x) , g2(x) for some x ∈ χ.

Following Bai et al. (2008), I define a HAC robust Wald test statistic. Let

WT (γ) =
(̂
β1(γ) − β̂2(γ)

)′
Ω̂−1

(̂
β1(γ) − β̂2(γ)

)
(3.13)

where

Ω̂ = Ω̂1,γ + Ω̂2,γ,
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Ω̂1,γ = [GI1(γ)G′]−1[(GI1(γ)u)(GI1(γ)u)′][GI1(γ)G′]−1,

Ω̂2,γ = [GI2(γ)G′]−1[(GI2(γ)u)(GI2(γ)u)′][GI2(γ)G′]−1.

The term Ω̂ is covariance estimator which is robust to heteroscedasticity. One

can also employ the Newey-West (1987) estimator to make it robust to serial

correlation as well. Furthermore, to increase the power of the test, one can use

fixed-b nonparametric covariance matrix estimators as Kiefer and Vogelsange

(2005).

However, under the null hypothesis, γ is a nuisance parameter and cannot

be identified. Following Hansen (1996, 2000), I take a sup-norm on WT (γ) in a

closed set Γ ⊂
[
γ, γ

]
. Define

W = sup
γ∈S

WT (γ)

As T increases, L converges to infinity. In that case, I modify the test statistics to

a generalized sup-Wald statistic defined as follows

MT (γ) =
WT (γ) − L
√

2L

Theorem 3.2.6 Under Assumptions 3.1.1-3.2.6 and H0 : g1 = g2, as T → ∞, for each

fixed γ, MT (γ)⇒ N(0, 1).

Similarly, define the sup-norm of MT (γ) as MT = supγ∈S MT (γ). The limiting

distribution of MT is a non-standard distribution and I generate the critical val-

ues using a parametric bootstrapping method. I first estimate ĝ(xt) using the

whole sample under the restriction that g1(x) = g2(x). Then, I obtain the residual

terms {̂ηt (̂γT )}Tt=1 from the unrestricted model. I draw a random variable η̃b
t from

the sample {̂ηt (̂γt)}Tt=1 for all t = 1, ...,T, and generate a new sequence {yb
t }Tt=1 by
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yb
t = ĝ(xt) + η̃b

t . Let Mb
T be the sup-Wald test calculated from the new data set {yb

t ,

xt, zt}Tt=1. Under the null , the distribution of Mb
T can approximate the distribu-

tion of MT . The bootstrap p-value can be obtained by calculating the frequency

of simulated Mb
T that exceeds MT when the number of the simulations is large

enough. As shown in Hansen(1996), the generated p-value converges to the true

size.

3.3 Extension to the Model with Multiple Threshold Effects

In empirical studies, it is likely that there exist more than one threshold effects. If

the number of threshold effects is known, a global estimation method can be de-

signed to estimate all threshold values simultaneously. However, this number

is usually unknown in practical applications. Following Gonzalo and Pitarakis

(2002), I estimate the thresholds with a sequential method.

Consider the following nonparametric model with q change points at un-

known locations:

yt =

q+1∑
i=1

I(γi−1 ≤ zt < γi)gi(xt) + ut. (3.14)

The model has q + 1 regimes defined by q change points: γ1, ..., γq. Throughout,

define γ0 = γ, γq+1 = γ. By series expansion, one can re-write the model as

yt =

q+1∑
t=1

I(γt−1 ≤ zt < γt)pL(xt)βt + εt,

where εt =
∑q+1

i=1 ei(xt)I(γi−1 ≤ zt < γi) + ut, for t = 1, 2, ...,T, and ei(xt) is the

remainder term from the series expansion of gi(xt) using basis functions pL(xt).

The model can be compactly written as

Y =
q+1∑
i=1

IiGβt + ϵ (3.15)
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where Y and G are defined as before, Ii is a T × T diagonal matrix with the (t, t)th

element being an indicator function I(γi−1 ≤ zt < γi).

The sequential estimation method starts by estimating a model with a

threshold effect:

Y = I1(γ)Gβ̂1(γ) + I2(γ)Gβ̂2(γ) + ϵ̂ (3.16)

where β̂1(γ) and β̂2(γ) are OLS estimators. Define

γ̂T = arg min
γ∈

[
γ,γ

] S S RT (γ) ,

where S S RT (γ) is the sum of residual squares. Using a similar argument to

that of Proposition 2.3 in Gonzalo and Pitarakis (2002), S S RT (γ) converges to

a continuous function R (γ) uniformly and R (γ) takes its minimum value at

one of thresholds γk. Thus, I can estimate all change points by using the fol-

lowing sequential methods. I first estimate one of the change points γ̂T from

the whole sample, and then split the sample into two sub-samples at the esti-

mated threshold effect γ̂T . Within both sub-samples
[−∞, γ̂T

]
and (̂γT ,∞], esti-

mate γ̂′T = arg min S S RT

(
γ, γ, γ̂T

)
and γ̂′′T = arg min S S RT

(
γ, γ̂T , γ

)
to obtain the

next two threshold values, assuming each subsample contains a threshold ef-

fect. This process continues until the null hypothesis of no threshold effect is

accepted in each sub-sample. The generalized sup-Wald test statistic defined in

Section 3.4 can be used to test the null hypothesis in each sub-sample.

3.4 Simulations

In this section, I carry out Monte Carlo simulation experiments to investigate

the finite sample performance of the estimators and tests statistics.8 For com-
8The codes are R language programs and they are available on request.
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parison, in each experiment, I consider two models: a linear model and a non-

parametric model. I estimate the threshold effects using the profile least square

method and construct the sup-Wald statistics for both models. The size and size-

corrected power are reported for each experiment to evaluate the test statistics.9

Specifically, I estimate the model using the following two model specifica-

tions:

Linear Model

yt =


a1 + b1xt + ut, if zt ≤ γ

a2 + b2xt + ut, otherwise


Nonparametric Model

yt =


g1(xt) + ut, if zt ≤ γ

g2(xt) + ut, otherwise

 .
I use polynomial power series as the basis functions. The number of basis func-

tion L is very important in practical applications. If L is too small, the test

will tend to accept the null hypothesis erroneously since the truncated series∑L
s=1 pL

s (x)βL
s is a poor approximation to g(x). If L is too large, ĝ will be very noisy

estimator of g and this will tend to cause rejection of a correct H0. Following the

literature of series estimations, I use the generalized cross-validation (GCV) to

select L. L is chosen to minimize the value of GCV defined as follows

L̂ = arg min
L∈Ht

T−1S S RT
(̂
γ
)

(1 − T−1tr(MT (L))2 ,

where S S RT
(̂
γ
)

is the sum of residual square of the estimated model

and MT (L) = G(G′G)−G′.

Experiment 1. This experiment shows the performance of the estimation

and tests in a regression model with a threshold effect on the quadratic term.
9One can refer to Appendix B for the procedures to generate the size-corrected power.
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DGP:

yt =


1 + xt + 0.2(1 + x2

t )ut, if zt ≤ 0

1 + xt + δ(xt − 0.5)2 + 0.2(1 + x2
t )ut, otherwise


where ut ∼ i.i.d.N (0, 1) ; xt ∼ i.i.d.U (−1, 1) . {xt}Tt=1 and {ut}Tt=1 are independent of

each other. The threshold variable zt is i.i.d. N(0, 1). I allow for conditional het-

eroscedasticity. The set of sample sizes I consider is {T = 100, 200, 400}. Repli-

cation number of the simulation is N = 1000; The Bootstrap repeat number is

BN = 2000. δ measures the size of the threshold effect.

The results of the estimation and testing are summarized in Table 3.1 and

Table 3.2. Table 3.1 reports the size and size-corrected power of the sup-Wald

Table 3.1: Size and size-corrected power for Experiment 1

Linear Model Semiparametric Model

Sample Size δ α = 0.9 α = 0.95 α = 0.99 α = 0.9 α = 0.95 α = 0.99

0 .147 .126 .040 .12 .071 .006

100 0.5 .584 .480 .249 .979 .951 .894

1 .997 .957 .872 1 1 .998

0 .131 .062 .015 .113 .059 .014

200 0.5 .883 .821 .648 .964 .926 .790

1 1 1 .999 1 1 1

0 .126 .069 .025 .098 .046 .015

400 0.5 .984 .972 .874 .988 .969 .908

1 1 1 1 1 1 1

statistics for the linear model and the nonparametric model. One can find that

the Wald statistic based on the series estimation methods performs very well, as

the sample size increases. For the linear model, the HAC robust Wald-statistic

still works in this case, which is consistent with the theoretical prediction from
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Table 3.2: MSE of the threshold estimators for Experiment 1

Sample Size Linear Model Semiparametric Model

δ = 1 δ = 0.5 δ = 1 δ = 0.5

100 4.44 8.74 .33 2.22

200 .186 1.32 .025 .510

400 .070 .680 .010 .190

Note: All MSE values in this table have been multiplied by 100.

Bai et al (2008). However, the size-corrected power is lower than in the nonpara-

metric approach. Table 3.2 reports the MSE of the estimators. The linear-model

approach has far larger MSE.

Experiment 2. This experiment shows the performance of the estimation

and tests in a regression model with correlated threshold variable.

DGP:

yt =


1 + xt + 0.2(1 + x2

t )ut, if zt ≤ 0

1 + xt + δ(xt − 0.5)2 + 0.2(1 + x2
t )ut, otherwise


where ut ∼ i.i.d.N (0, 1) ; xt ∼ i.i.d.U (−1, 1) . {xt}Tt=1 and {ut}Tt=1 are independent

of each other. The threshold variable zt = 0.5xt + et, where et is i.i.d. N(0, 1).

Therefore, zt and xt be correlated with each other. I allow for conditional het-

eroscedasticity. The set of sample sizes I consider is {T = 100, 200, 400}. Repli-

cation number of the simulation is N = 1000; The Bootstrap repeat number is

BN = 2000. δ measures the size of the threshold effect.

The results of the estimation and testing are summarized in Table 3.3 and Ta-

ble 3.4. Table 3.3 reports the sizes and size-corrected powers. The linear-model

approach has a large size distortion even when sample size is large, which im-
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Table 3.3: Size and size-corrected power for Experiment 2

Linear Model Semiparametric Model

Sample Size δ α = 0.9 α = 0.95 α = 0.99 α = 0.9 α = 0.95 α = 0.99

0 .29 .206 .075 .135 .085 .019

100 0.5 .566 .473 .263 .59 .464 .263

1 .968 .936 .818 .992 .982 .948

0 .44 .324 .149 .125 .057 .016

200 0.5 .739 .608 .606 .948 .893 .808

1 1 1 .994 1 1 1

0 .483 .384 .188 .116 .06 .011

400 0.5 .933 .908 .897 .998 .988 .952

1 1 1 1 1 1 1

Table 3.4: MSE of the threshold estimators for Experiment 2

Sample Size Linear Model Semiparametric Model

δ = 1 δ = 0.5 δ = 1 δ = 0.5

100 9.28 25.4 1.05 14.6

200 3.79 14.7 0.2 4.42

400 1.3 11.2 0.12 2.31

Note: All MSE values in this table have been multiplied by 100.

plies that it may lead to spurious threshold effects. The generalized sup-Wald

statistic still performs very well, on both size and power. The results of esti-

mation from Table 3.4 also show that the nonparametric model approach has

smaller MSE.

Experiment 3. This experiment shows the performance of the estimation

and tests in a regression model with sin and exponential functions.
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DGP:

yt =


1 + x + exp(−x) + 0.1(1 + x2

t + 0.5z2
t )ut, if zt ≤ 0

1 + x + δ sin(x2)(x − 0.5)2 + exp(−x) + 0.1(1 + x2
t + 0.5z2

t )ut, otherwise


where ut ∼ i.i.d.N (0, 1) ; xt ∼ i.i.d.U (−1, 1) . {xt}Tt=1 and {ut}Tt=1 are independent of

each other. The threshold variable zt = 0.5xt + et, where et is i.i.d. N(0, 1). There-

fore, zt and xt be correlated with each other. I allow for conditional heteroscedas-

ticity. Moreover, the conditional variance depends on both the regressor and

threshold variable. Again, the set of sample sizes I consider is {T = 100, 200, 400}.

Replication number of the simulation is N = 1000; The Bootstrap repeat number

is BN = 2000. δ measures the size of the threshold effect.

The results of the estimation and testing are summarized in Table 3.5 and

Table 3.6. Table 3.5 reports the sizes and size-corrected powers. The results

Table 3.5: Size and size-corrected power for Experiment 3

Linear Model Semiparametric Model

Sample Size δ α = 0.9 α = 0.95 α = 0.99 α = 0.9 α = 0.95 α = 0.99

0 .440 .324 .149 .157 .079 .026

100 0.5 .456 .273 .153 .620 .489 .244

1 .730 .532 .0.36 .81 .691 .495

0 .506 .396 .202 .119 .074 .018

200 0.5 .554 .419 .199 .711 .605 .523

1 .940 0.894 .801 1 0.998 .995

0 .484 .384 .188 .112 .065 .015

400 0.5 .733 .649 .408 .816 .712 .537

1 .997 .954 .901 1 1 1

are consistent with my expectation that linear-model approach has a large size
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Table 3.6: MSE of the threshold estimators for Experiment 3

Sample Size Linear Model Semiparametric Model

δ = 1 δ = 0.5 δ = 1 δ = 0.5

100 13.8 35.2 2.01 17.2

200 8.71 18.4 0.53 7.22

400 3.81 19.5 0.204 3.67

Note: All MSE values in this table have been multiplied by 100.

distortion, while the semiparametric-model approach has reasonably good per-

formance. Table 3.6 also shows that the semiparametric-model approach has

smaller MSE than linear-model approach. Overall, when the functional form

of the regression deviates more from the linear model, the semiparametric ap-

proach can generate more benefits.

3.5 Empirical Application

Durlauf and Johnson (1995) and Hansen (2000) test the convergence hypothesis

by analyzing the relationship between the economic growth rate and the initial

endowment of various countries. Their models are linear and parametric. How-

ever, a parametric assumption on the model may cause model misspecification,

and in turn cause a misleading result. In this section, I apply the nonparametric

approach to re-examine the convergence hypothesis using a larger dataset.

The data I use is from Bernanke and Gürkaynank (2001). The data set is

drawn from the Summers–Heston Penn World Tables (PWT) version 6.0, which

extends the data through 1998 for most of the variables. Following Alfo et

al. (2008), I use a 5-year average for each variable during non-overlapping 5-
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year periods from 1960 to 1995. The covariates include POP (population growth

rate), SEC (human capital measured as the enrollment rate in secondary school),

and INV (share of output allocated to investment). The dependent variable is

the growth rate of per capita GDP. Following the literature, the choice of 5-year

periods is to retain sufficient degrees of freedom while avoiding the negative

effects of strong autocorrelation of dependent variables (see Bond et al. 2001).

The total number of observations is 784, across 98 countries. After dropping the

oil producing countries and the countries with poor quality data and missing

data, there are 476 observations left, across 75 countries.

I estimate the following nonparametric model:

yi,t =


α1 + b1Dt + β1 ln(GDP)i,1960 + θ1POPit + g1(INVit, S ECit) + ei,t, if zi,t ≤ γ

α2 + b2Dt + β2 ln(GDP)i,1960 + θ2POPit + g2(INVit, S ECit) + ei,t, if zi,t > γ

In this model, the time dummy variables D′t s and initial per capital GDP at 1960

are used to capture the time effect and the individual effect. If coefficients β1

and β2 are significantly negative, we can conclude that the poor countries grow

faster than rich countries, and thus the convergence hypothesis holds. In the

previous literature, the production function is assumed to be of Cobb-Douglas

form, so that g j(INVit, S ECit) is a linear function. However, this assumption may

not reflect reality. I assume g j(INVit, S ECit) to be a nonparametric function and

use a polynomial series to approximate it. The number of basis functions is

chosen by the GCV criterion. The threshold variable zi,t is ln(GDP)i,1960. Table

3.5 reports the estimation results for both the linear and nonparametric models.

For the linear model, the threshold estimator is 8.258 ($3854 for the initial

per capital GDP). From the second and third columns of Table 3.5, one can find

that the coefficients for the initial per capital GDP are not significant. The su-
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Table 3.7: Empirical Estimation Results

Linear Semiparametric

ln(GDP)60 ≤ γ̂ ln(GDP)60 > γ̂ ln(GDP)60 ≤ γ̂ ln(GDP)60 > γ̂

Variables Coef t-stat Coef t-stat Coef t-stat Coef t-stat

Dummy65 .68 2.89 .38 2.23 .67 1.79 .20 1.01

Dummy70 .67 2.85 .37 2.17 .65 1.76 .19 1.05

Dummy75 .57 2.42 .23 1.34 .51 1.39 .06 0.36

Dummy80 .58 2.51 .30 1.77 .56 1.54 .12 0.67

Dummy85 .52 2.26 .33 1.97 .54 1.49 .15 0.83

Dummy90 .54 2.33 .29 1.72 .53 1.46 .12 0.65

Dummy95 .44 2.13 .23 1.58 .50 1.38 0.07 0.40

ln(GDP)1960 −.03 −1.74 −.05 −1.86 −.05 −2.34 −0.04 −2.03

per Wald statistic is 19.67 and the bootstrap 95% critical value is 22.37. Thus,

the results do not support the convergence hypothesis. For the nonparametric

model, the threshold estimation is 8.23 ($3740.60 for the initial per capital GDP).

Notice that the estimation of thresholds in the linear model is very close to that

estimated using the nonparametric model. This is consistent with the theoreti-

cal prediction of Bai et al.(2008). Moreover, the generalized sup-Wald statistic is

83.26 and the bootstrap critical value is 78.64. The coefficients of ln(GDP)1960 are

significantly negative. Thus, the results offer some support to the convergence

hypothesis and the existence of multiple growth patterns across countries.

3.6 Conclusion

This chapter proposes a method to detect the threshold effect without any para-

metric assumption on the regression functional forms. The method can avoid
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the risk of model misspecification which may lead to spurious threshold effect

or overlook true threshold effects. The estimation and test statistic are based on

series approximation techniques which are very convenient for imposing cer-

tain model restrictions, such as additive separability and shape-preserving. I

derive the asymptotics for the estimators and develop a generalized sup Wald

statistic to test the existence of the threshold effect. A nice property of the es-

timator is that it achieves the same convergence rate (T-convergence rate) as

in parametric models. This super convergence rate enables me to study the

asymptotics of the series estimators as the true threshold value is known. The

generalized sup Wald statistics is robust to certain conditional heteroscedastic-

ity. I provide an empirical application to test the convergence hypothesis for

economic growth across countries over time. The results show that the poor

countries grow faster than rich countries in general. However, they may con-

verge to a different steady state.
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CHAPTER 4

THRESHOLD COINTEGRATION AND PRICE DISCOVERY

4.1 Price discovery of cross-listings

I first develop an equilibrium model to characterize the interactive dynamics

of a cross-listed pair simultaneously traded on two separate exchanges. Arbi-

trageurs linking the two markets may be subject to market frictions, such as

transaction fees, capital constraints etc. Throughout the model, I emphasize the

role of arbitrageurs in the process of inter-market price discovery.

I assume that there are two cross-border stock exchanges: the TSX and the

NYSE, indexed by i = 1, 2. I further assume that there are N1 participants who

trade only in the home market (TSX) and N2 participants who trade only in the

NYSE market, and N3 arbitrageurs who trade in both markets. The former two

groups are one-market traders, and the third group is two-market traders. I fo-

cus on the dynamics between two market prices; thus I assume the choice of

exchanges for one-market traders is fixed and exogenous to the model. They

choose to trade in one specific exchange due to various reasons, such as dis-

tance, language, institutional constraints, transaction costs.

The behavior of a one-market trader in market i can be specified in the fol-

lowing manner. At time t, for the trader j, let Ei
j,t be her endowment and µi

j,t be

the reservation price at which she is willing to hold Ei
j,t of assets. Given a market

price pi,t,her demand function can be conjectured as

Xi, j,t = Ei
j,t − β(µi

j,t − pi,t), for j = 1, 2, ...,Ni.

where β > 0 is the demand elasticity assumed to be the same for all one-market
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traders in both markets.

I now consider the demand function of arbitrageurs. Arbitrageurs are ini-

tially endowed with no seed money. Arbitrageurs “buy low and sell high” be-

tween the two markets; thus their demand function only depends on the cross-

border price deviation. Given the market prices p2,t and p1,t, arbitrageur j would

submit her buy order in market 1 as:

XA
1, j,t = β

A
j,t(p2,t − p1,t)

βA
j,t > 0 is the demand elasticity1. Since she hedges perfectly,

XA
2, j,t = −XA

1, j,t = β
A
j,t(p1,t − p2,t)

i.e., her short position in one market always equals her long position in the other

market.

In equilibrium, the two exchanges clear as

N1∑
j=1

E1
j,t =

N1∑
j=1

X1, j,t +

N3∑
j=1

βA
j,t(p2,t − p1,t),

N2∑
j=1

E2
j,t =

N2∑
j=1

X2, j,t +

N3∑
j=1

βA
j,t(p1,t − p2,t).

Solving the market clearing conditions for equilibrium prices of the cross-listed

pair yields

p1,t =
(βN2 +

∑N3
j=1 β

A
j,t)N1µ

1
t +

∑N3
j=1 β

A
j,tN2µ

2
t

(βN2 +
∑N3

j=1 β
A
j,t)N1 +

∑N3
j=1 β

A
j,tN2

(4.1)

p2,t =
(βN1 +

∑N3
j=1 β

A
j,t)N2µ

2
t +

∑N3
j=1 β

A
j,tN1µ

1
t

(βN1 +
∑N3

j=1 β
A
j,t)N2 +

∑N3
j=1 β

A
j,tN1

(4.2)

where µ1
t =

1
N1

∑N1
j=1 µ

1
j,t and µ2

t =
1

N2

∑N2
j=1 µ

2
j,t are market average reservation prices.

1Following Garbade and Silber (1983), demand elasticity for arbitrageurs βA
j,t is assumed to

finite since the market is not frictionless.

83



In order to derive dynamic price relationships, I further specify a evolu-

tion mechanism of the reservation prices µ1
j,t and µ2

j,t, following Garbade and

Silber(1983), as

µi
j,t = pi,t−1 + vt + ε

i
jt, for i = 1, 2, j = 1, 2, ...,Ni.

As market i clears at the end of the period t − 1 with a partial equilibrium price

pi,t−1, each trader decides to hold her share of assets toward her endowment in

the subsequent period t, Ei
j,t. This implies that pi,t−1 is the reservation price after

the t−1 clearing. As new information on the issuer vt common to all investors in

both markets arrives, the trader formulates her new reservation prices µi
j,t with

an idiosyncratic error εi
jt. I assume vt and all εi

jt are i.i.d normal random variables

with mean zero and constant variance.

In aggregate, the market reservation prices µ1
t and µ2

t can be expressed as

µ1
t =

1
N1

N1∑
j=1

µ1
j,t = p1,t−1 + vt +

1
N1

N1∑
j=1

ε1
jt

µ2
t =

1
N2

N2∑
j=1

µ2
j,t = p2,t−1 + vt +

1
N2

N2∑
j=1

ε2
jt.

Plugging µ1
t and µ2

t into the equations (4.1) and (4.2), I have

p1,t =
(βN2 +

∑N3
j=1 β

A
j,t)N1 p1,t−1 +

∑N3
j=1 β

A
j,tN2 p2,t−1

(βN2 +
∑N3

j=1 β
A
j,t)N1 +

∑N3
j=1 β

A
j,tN2

+ vt + ε̃
1
t ,

p2,t =
(βN1 + β

AN3)N2 p2,t−1 +
∑N3

j=1 β
A
j,tN1 p1,t−1

(βN1 +
∑N3

j=1 β
A
j,t)N2 +

∑N3
j=1 β

A
j,tN1

+ vt + ε̃
2
t ,

where

ε̃1
t =

(βN2 +
∑N3

j=1 β
A
j,t)

∑N1
j=1 ε

1
jt +

∑N3
j=1 β

A
j,t
∑N2

j=1 ε
2
jt

(βN2 +
∑N3

j=1 β
A
j,t)N1 +

∑N3
j=1 β

A
j,tN2

,

ε̃2
t =

(βN1 +
∑N3

j=1 β
A
j,t)

∑N2
j=1 ε

2
jt +

∑N3
j=1 β

A
j,t
∑N1

j=1 ε
1
jt

(βN1 +
∑N3

j=1 β
A
j,t)N2 +

∑N3
j=1 β

A
j,tN1

.
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An equivalent matrix representation prescribes p1,t

p2,t

 =
 1 − at, at

bt, 1 − bt


 p1,t−1

p2,t−1

 −
 vt + ε̃

1
t

vt + ε̃
2
t

 (4.3)

where

at =

∑N3
j=1 β

A
j,tN2

βN2N1 +
∑N3

j=1 β
A
j,tN1 +

∑N3
j=1 β

A
j,tN2

,

bt =

∑N3
j=1 β

A
j,tN1

βN2N1 +
∑N3

j=1 β
A
j,tN1 +

∑N3
j=1 β

A
j,tN2

.

I can obtain the following bivariate Error Correction Model(VECM) by subtract-

ing

 p1,t−1

p2,t−1


′

from both sides:

 ∆p1,t

∆p2,t

 =
 −at, at

bt,−bt


 p1,t−1

p2,t−1

 −
 vt + ε̃

1
t

vt + ε̃
2
t

 (4.4)

The above VECM describes the short term dynamics toward the long-run

equilibrium given by the cointegrating vector (1,−1). The short term adjust-

ment coefficients at and bt for the prices p1,t and p2,t reflect their responses to

deviations from the long-run equilibrium in their respective markets. I can ap-

ply the permanent transitory decomposition (Granger and Gonzalo, 1995) to

the above VECM: the permanent component is a linear combination of (p1,t,

p2,t), formed by the scaled orthogonal vector of the adjustment coefficient vec-

tor (at, bt) Specifically, the permanent component is given by

ft =
bt

at + bt
p1,t +

at

at + bt
p2,t.

where
bt

at + bt
=

N1

N1 + N2
(4.5)
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and
at

at + bt
=

N2

N1 + N2
. (4.6)

The quantities bt
at+bt

and at
at+bt

capture the contribution share of each price to the

permanent component: they reflect the respective information shares of markets 1

and 2 toward determining the long-run equilibrium price. In other words, they

are relative measures of market specific-contribution to price discovery of the

cross-listed pair.

Define ∆pt ≡ p1t − p2t as the dollar premium on the cross-listing against its

original listing. It can be shown that

∆pt = δt∆pt−1 + et.

where

δt = 1 − at − bt

= 1 −
∑N3

j=1 β
A
j,tN2

βN2N1 +
∑N3

j=1 β
A
j,tN1 +

∑N3
j=1 β

A
j,tN2
−

∑N3
j=1 β

A
j,tN1

βN2N1 +
∑N3

j=1 β
A
j,tN1 +

∑N3
j=1 β

A
j,tN2

=
βN2N1

βN2N1 +
∑N3

j=1 β
A
j,tN1 +

∑N3
j=1 β

A
j,tN2

.

Following Garbade and Silber (1983), δt measures the reciprocal convergence

speed of the two market prices to their long-run equilibrium. Note that the

smaller δt is, the faster the convergence occurs between two markets.

4.2 Error correction models

The equilibrium model constructed in Section 4.1 defines the measures of con-

tribution share for each market, which are related to the relative populations of

market participants (equations 4.5 and 4.6). This poses an empirical challenge
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since these numbers are usually unknown. Fortunately, one can estimate the ad-

justment coefficients at and bt through the error correction model (equation 4.4),

which only needs the information of market prices. However, another hurdle is

that the adjustment coefficients at and bt are time-varying. In order to estimate

the model, some additional restrictions are necessary to characterize time paths

of at and bt. In the following three subsections, I discuss three different econo-

metric models: standard linear ECM, threshold ECM, smooth transition ECM,

under different assumptions on the demand elasticity of arbitrageurs.

4.2.1 Standard error correction model

I start from a standard error correction model, in which at and bt are constant in

equation 4.4. To satisfy this condition, it is sufficient to assume all arbitragers

are homogeneous and share a constant demand elasticity, i.e., βA
j,t = β

A > 0 for

all j and t. It follows that

at =
N3β

AN2

βN2N1 + N3βAN1 + N3βAN2
≡ a,

bt =
N3β

AN1

βN2N1 + N3βAN1 + N3βAN2
≡ b,

and  ∆p1,t

∆p2,t

 =
 −a, a

b,−b


 p1,t−1

p2,t−1

 −
 vt + ε̃

1
t

vt + ε̃
2
t


=

 −a

b

 (p1,t−1 − p2,t−1) −

 vt + ε̃
1
t

vt + ε̃
2
t

 .
Define the dollar premium on the cross-listing against its original listing as

κt ≡ p2t − p1t.
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For notional convenience, I use α1 and α2 to replace −a and b. A standard ECM

for the bivariate cointegrated system of the cross-listed pair can be structured as

∆p1t = β10 + α1κt−1 +

m1∑
j=1

β1 j∆p1t− j +

m2∑
j=1

β̃1 j∆p2t− j,

∆p2t = β20 + α2κt−1 +

m1∑
j=1

β2 j∆p1t− j +

m2∑
j=1

β̃2 j∆p2t− j,

where κt−1 gives the remaining cross-listing dollar premium or cointegrating

residual. α1 and α2 are the adjustment coefficients of the TSX and the NYSE,

respectively: they describe how much deviation will be subsequently adjusted

to restore the long run equilibrium in each series. {{β1 j, β̃1 j, β2 j, β̃2 j} are coeffi-

cients for short term dynamics. By Granger Representation Theorem (Engle and

Granger, 1987), if p1t and p2t are cointegrated, then at least one of α1 and α2 must

be nonzero. In other words, one or both of p1t and p2t, will adjust fractionally to

restore parity in the long run.

Harris et al. (1995, 2000) propose to use this linear ECM’s adjustment coeffi-

cients to estimate the relative extent of exchange-respective contribution to price

discovery (information share) of shares whose order purchases are fragmented

across multiple markets. For a Canadian company originally listed on the TSX

and cross-listed on the NYSE, the proportion of adjustments that took place on

the TSX out of the total adjustments occurring on both exchanges is the share of

the home exchange which contributes to setting the long-run equilibrium price

as a result of synchronous cross-border stock trading. In an extreme case where

there is no feedback from the NYSE so that α1 = 0, then the NYSE has no con-

tribution to price discovery of the cross-listed pair. Eun and Sabherwal (2003)

further define the respective information shares of the NYSE and the TSX as

ISn ≡ |α1|
|α1| + |α2|

and ISt ≡ |α2|
|α1| + |α2|

.
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Suppose p1t−1 < p2t−1 in the previous period (t − 1); then a likely scenario to

reduce the gap between the two prices is for p1t to increases or p2t to decrease,

or both. In this case one can conjecture that α1 is non-positive and α2 is non-

negative. There two other possibilities: 1. p1t−1 decreases but p2t−1 decreases

more; or 2. p1t−1 increases but p2t−1 increases less.2 Eun and Sabherwal (2003)

assign very low likelihoods to the latter two. One can analogously design a

similar adjustment mechanism to show that α1 is non-positive and α2 is non-

negative for the symmetric situation when p1t−1 > p2t−1. Based on the above

reasons, I can define the exchange-respective information shares of the NYSE

and the TSX as

ISn ≡ −α1

−α1 + α2
and ISt ≡ α2

−α1 + α2
.

4.2.2 Threshold error correction model

In reality, the market is imperfect due to various sources of market friction such

as nonzero transaction costs, direct and indirect trading barriers, etc. Let γ

measure the sum of all transaction costs and risk premiums required from arbi-

trageurs. Arbitrage opportunities exist if and only if

κt−1 < −γ or κt−1 > γ,

which becomes |κt−1| > γ.3

2These odds may reflect the underreaction to the information share of the market. When in-
formation incorporation takes multiple periods, the price adjustment should persist unilaterally
during this time.

3Transaction costs of cross-border arbitrage are comprised of the bid-ask spreads of the prices
on both exchanges and the foreign exchange rate, fixed costs, and liquidity shorfalls. Chen and
Choi (2010) find the relative premium of a Canadian cross-listing on the NYSE, on average in-
cludes an adverse-selection risk premium due cross-border imbalance in private information on
the issuing firm. Along with the asymmetric information component, macroeconomic factors,
such as GDP growth rates and interest rates, may also affect determination of the threshold.
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I continue to assume all arbitrageurs are homogeneous. The demand elastic-

ity for each arbitrageur can be written as

βA
j,t =


0, if |κt−1| ≤ γ

βA > 0, otherwise

 .
Now the error correction dynamics become active unless the cross-listing dol-

lar premium sufficiently digresses from parity beyond the threshold. Balke and

Fomby (1997) propose this regime-switching mechanism as threshold cointegra-

tion, and the implied error correction dynamics can be characterized by a thresh-

old ECM, given by

∆p1t =


β110 + α11κt−1 +

∑m1
j=1 β11 j∆p1t− j +

∑m2
j=1 β̃11 j∆p2t− j, if |κt−1| ≤ γ

β120 + α12κt−1 +
∑m1

j=1 β12 j∆p1t− j +
∑m2

j=1 β̃12 j∆p2t− j, if |κt−1| > γ


and

∆p2t =


β210 + α21κit−1 +

∑m1
j=1 β21 j∆p1t− j +

∑m2
j=1 β̃21 j∆p2t− j, if |κt−1| ≤ γ

β220 + α22κit−1 +
∑m1

j=1 β22 j∆p1t− j +
∑m2

j=1 β̃22 j∆p2t− j, if |κt−1| > γ


.

In the middle regime when |κt−1| ≤ γ, there are neither market forces nor

arbitrageurs to sustain cointegration of the pair of prices. In other words, unless

the pair shows a significant price gap exceeding the threshold minimum profit,

the adjustment coefficients are zeroes (α11 = α21 = 0) and, thus, neither price

(p1,t nor p2,t) appropriately reflects risks. I define the information share, or the

relative measure of contribution to price discovery, for respective market using

the outer regime coefficient estimates4 (α12 and α22):

ISn
out ≡

|α12|
|α22| + |α12|

and IS t
out ≡

|α22|
|α22| + |α12|

.

4Eun and Sabherwal (2003) estimate the adjustment coefficients in every period using a linear
ECM following Harris et al. (1995).
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Empirically, one can also define information shares ISn
in and IS t

in using the ad-

justment coefficients α11 and α21, from the middle regime.

4.2.3 Smooth Transition Error Correction Model

An important assumption for standard linear ECM and threshold ECM is the

homogeneity of arbitrageurs. In reality, arbitrageurs could face different thresh-

old value (γ′js) to establish their positions. For example, fees paid by in-

stitutional investors may depend on the arrangement between the investors

and the executing brokers. Meanwhile, the opportunity cost faced by capital-

constrained arbitrageurs can be another reason for different threshold values:

investors with stricter capital constraints will tend to skip small mispricings to

wait for larger ones.

More specifically, I assume for arbitrageur j, where j = 1, 2, ...,N3, that the

demand elasticity is given by

βA
j,t =


0, if − γ j < κt−1 < γ j

βA > 0, otherwise

 .
The “aggregated” thresholds will be a smooth function of the price deviation

such that
N3∑
j=1

βA
j,t = N3E(βA

j ) = N3

(∫ −|κt−1 |

−∞
βAdF(γ) +

∫ ∞

|κt−1 |
βAdF(γ)

)
≡ g(κt−1),

where F(γ) is the probability distribution function of γ j across all j.

Under this assumption, I have

at =
g(κt−1)N2

βN2N1 + g(κt−1)N1 + g(κt−1)N2
≡ α1(κt−1). (4.7)

bt =
g(κt−1)N1

βN2N1 + g(κt−1)N1 + g(κt−1)N2
≡ α2(κt−1). (4.8)
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By plugging (4.7) and (4.8) into equation (4.4), I obtain a smooth transition ECM:

∆p1t = β10 + α1(κt−1)κt−1 +

m1∑
j=1

β1 j∆p1t− j +

m2∑
j=1

β̃1 j∆p2t− j,

and

∆p2t = β20 + α2(κt−1)κt−1 +

m1∑
j=1

β2 j∆p1t− j +

m2∑
j=1

β̃2 j∆p2t− j.

An average information share for each market can be defined as

ISn ≡ |E(α1(κt−1))|
|E(α2(κt−1))| + |E(α2(κt−1))|

ISt ≡ |E(α2(κt−1))|
|E(α2(κt−1))| + |E(α1(κt−1))| .

where E(α1(κt−1)) and E(α2(κt−1)) can be estimated by the sample mean

1
T

∑T
t=1 α1(κt−1) and 1

T

∑T
t=1 α2(κt−1) respectively.

In order to see whether informed traders would choose to trade at the market

with a lower price, conditional information shares can be defined for cases with

a negative or positive price deviation,

ISn
κ>0 ≡

|E(α1(κt−1)I(κt−1 > 0))|
|E(α2(κt−1)I(κt−1 > 0))| + |E(α2(κt−1)I(κt−1 > 0))| ,

ISt
κ>0 ≡

|E(α2(κt−1)I(κt−1 > 0))|
|E(α2(κt−1)I(κt−1 > 0))| + |E(α1(κt−1)I(κt−1 > 0))| .

ISn
κ<0 ≡

|E(α1(κt−1)I(κt−1 < 0))|
|E(α2(κt−1)I(κt−1 < 0))| + |E(α2(κt−1)I(κt−1 < 0))| ,

ISt
κ<0 ≡

|E(α2(κt−1)I(κt−1 < 0))|
|E(α2(κt−1)I(κt−1 < 0))| + |E(α1(κt−1)I(κt−1 < 0))| .

Note that κt−1 > 0 implies p2t−1 > p1t−1, or a price premium on the NYSE.

I can also define an estimator of the convergence speed parameter δt

δ(κt−1) = 1 + α1(κt−1) − α2(κt−1).

The average δt is defined as δ = E(δ(κt−1)) = 1
T

∑T
t=1 δ(κt−1) and the conditional δt

are defined asδκ>0 =
∑T

t=1 δ(κt−1)I(κt−1>0)∑T
t=1 I(κt−1>0)

, and δκ<0 =
∑T

t=1 δ(κt−1)I(κt−1<0)∑T
t=1 I(κt−1<0)

.
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4.3 Data and preliminary results

I estimate the information shares for Canadian stocks cross-listed in the Toronto

and New York stock exchanges between January 1, 1998, to December 31, 2000.

56 TSX-NYSE pairs are identified during the sample period.5 In order to es-

timate asymmetric-information and market-friction measures, high-frequency

data are required for the shares co-listed on the TSX and the NYSE, and for the

U.S.-Canada exchange rate. Accordingly, I use the tick-by-tick trade and quote

data for the TSX-listed Canadian stocks and the Trade-And-Quote (TAQ) data of

their cross-listings on the NYSE through the period. The exchange rate intraday

data was purchased from Olson & Associates.

Following Eun and Sabherwal (2003), I use the quoted prices, instead of

transaction prices. The mid-points of the U.S.-Canada exchange rate bid and

ask quotes are updated every minute, while the bid and ask quotes of the TSX-

listed Canadian stocks are matched with their previous minutes’ exchange rate

quote mid-points and transferred to US$ prices. To reduce the impact of the

market microstructure noise, I form the price series by taking the midpoint of

the bid and ask quotes at the end of each 10-minute period.

To calculate price deviations between two markets, I require prices observed

at the same time in these two markets. The regular trading time of the TSX and

NYSE is the same (from 9:30 am to 4:00 pm Eastern time). Thus, for each day, I

can observe 40 data points for each stock. Our sample period covers around 772

trading days, but not all stocks have two prices during the whole sample period

since some stocks are cross-listed after Jan. of 1998. Our analysis is based on

5Eun and Sabherwal (2003)’s sample consists of 62 TSE-listed securities since their sample
include those cross-listed in AMEX and Nasdaq.
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the stock-year; thus, I require that each year, for each stock, the prices should be

observed in two markets at least 6 months continuously. I drop thinly traded

stocks in both markets. Our final sample includes just 44 stocks.

4.3.1 Cointegration analysis

I first examine whether pairs of times series on the TSX and NYSE price series

are unit roots or not. I use the augmented Dickey and Fuller’s (1981) ADF test,

which considers lagged first differences of time series in the specification. If

the test statistic is too large, then I reject the null hypothesis of unit root and

conclude that the time series is stationary. As a result, the null hypothesis is

rejected only for four out of 132 firm-years, at a five percent significance level.

Thus, I conclude that both price series in my sample are, overall, first-order

integrated process I(1).

I subsequently examine whether there exists cointegration between the two

price series. As Eun and Sabherwal (2003) find that both S&P TSX Composite

and S&P 500 indices (market indices of the TSX and the NYSE, respectively) are

not significant in the cointegration system, I consider only the two market price

series in each regression equation. Therefore, there is at most one cointegrating

vector. I estimate the cointegrating vector for each cross-listed pair in each year.

Table 1 reports summary statistics for the normalized estimation of the cointe-

grating vector6 for pn
it and p̃t

it. The t-statistics for the null hypothesis attest that

the cointegrating vector equals (1,−1)T .

From Table 4.1, one can find that the median of the normalized estimates
6Normalized such that bn = −1.
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Table 4.1: Estimated Cointegrating Vector

Quantiles bN t-statistics

5% − ile 0.9 −5.25

25% − ile 0.995 −1.29

Median 0.999 0.25

75% − ile 1.002 0.99

95% − ile 1.011 2.94

throughout the sample is (1,−1) which confirms that the Canadian cross-listed

pairs tend to follow the law of one price and are thus cointegrated. Given the es-

timated cointegrating vector (1,−bt), the estimated cross-listing dollar premium

is κit ≡ pn
it − bt p̃t

it. I now test κit for stationarity using the ADF test and find that

only 3 out of 132 samples do not reject the null hypothesis of unit root. In sum,

I can conclude that the TSX-NYSE cross-listed pairs are cointegrated with unit

cointegrating vector.

4.3.2 Nonlinearity test

The law of one price suggests that two market prices for the same stock should

not drift far from each other. This relationship is confirmed by the cointegration

analysis in the previous section. However, linear adjustment dynamics is not

necessarily prescribed by market efficiency assumptions. Given various market

frictions, such as transactions costs and short sale limitations, It is thus more

likely that a nonlinear model, such as a threshold cointegration model provides

a better description of the convergence procedure between two market prices.

In this section, I conduct several nonlinearity test in the course of short-run
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adjustment dynamics to long-run parity equilibrium.

I estimate a symmetric bivariate threshold ECM model (introduced in Sec-

tion 4.2.2) and apply the super-Lagrangian multiplier (supLM) test to check the

nonlinearity. As Hansen and Seo (2002) suggest, this test also has power to de-

tect smooth transition ECM models. I use Akaike’s (1974) and Schwart’s (1978)

Bayesian information criteria to choose the number of lags, and consistently

choose the lag length of 1 (m1 = m2 = 1 ). The cointegrating vector is given

as (1,−1), following the results of cointegration tests.7 The model is estimated

by the maximum likelihood method described in Appendix A. Estimations are

carried out in each year for each pair; results are reported in Table 4.2 below.

Panel A in Table 4.2 displays summary statistics of the threshold estimates

and test statistics. The p-values are computed by the parametric bootstrap

method suggested by Hansen and Seo (2002). From the table, one can observe

that the mean and median of supLM over all samples are equal to 22.32, which

exceeds the 95% critical value 22.07. Therefore, on average, I can reject the null

hypothesis of no threshold effect. To further confirm the testing results, I apply

a combined p-value test on all stock-years. Let pi be the asymptotic p-value of

the sup LM test for each individual stock-year i, for i = 1, 2, ...,N, where N is

the total number of stock-years. I combine all p-values using the Z test statistic

proposed by Choi (2001)Z = 1
2
√

N

∑N
i=1(−2 ln(pi) − 2). As N → ∞, under the null

hypothesis, one can show that Z
d→ N(0, 1). In the current case, the combined

P-value test statistic Z is 10.41, significantly rejecting the null hypothesis (5%

critical value is 1.96). Overall, I conclude that there exists nonlinearity in the

convergence procedure between two market prices.

7I report the estimation and testing results with estimated cointegrating vector in Ta-
ble2 supp. The estimation results are very similar and I do not find any change on the con-
clusion of about the test of nonlinearity.
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It may be interesting to examine whether the threshold effect occurs on the

coefficients of the error correction term or short dynamic terms. I separately

test the threshold effect in these coefficients. Panel B of Table 4.2 reports the

test results. The first two columns report the results of Wald statistics for test-

ing the null hypotheses, namely H0 : αn
out = αn

in and αt
out = αt

in i.e., whether the

adjustment coefficients are different within and beyond the threshold. The last

two columns report the Wald statistics for the null hypothesis: H0 : βn
1,out = β

n
2,in,

β̃n
1,out = β̃

n
2,in, β

t
1,out = β

t
2,in, and β̃t

1,out = β̃
t
2,in. The combined P-value test statistic Z of

the null hypotheses of the error correction terms are: 19.68 and 16.80, while the

combined P-value test statistic Z for dynamic coefficients are 14.44 and 13.95.

Thus, for both exchanges, I can conclude that there is nonlinearity on both er-

ror correction terms and short term dynamics, but it appears that the threshold

effect is more likely to take place on the error correction terms.

4.4 Estimation

Before conducting the regression analysis, I offer the following further discus-

sion of the estimation results from the three models of Section 4.3.

4.4.1 Estimation of the threshold γ and convergence speed δ

In threshold ECM models, the threshold γ measures the size of transaction costs

and risk premium. The first column of Panel A in Table 4.2 reports the sum-

mary statistics of estimated thresholds (γ) ranging from 0.009 to 0.545, with a

mean of 0.146. That is to say, on average, when the cross-listing dollar pre-
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mium/discount records more than 14.6 cents, arbitrageurs begin to take posi-

tions on both sides and drive the deviation back into the “no-arbitrage” band.

The convergence speed is measured by δ, defined in Section 4.1. I estimate

the smooth transition ECM model using a kernel smoothing estimation method.

Panel A of Table 4.3 reports the summary statistics of the estimation of average δ,

δκ<0 and δκ>0 over all samples. Panel B of Table 4.3 reports a downward trend of

both mean and median of δ, which suggests that NYSE and TSX become more

integrated over time. To see how the convergence speed is affected by price

deviations, I apply the Wilcoxon signed rank test to test the null hypothesis:

H0 : δκ<0 ≥ δκ>0. The p-value is smaller than 0.01; thus I can reject the null hy-

pothesis. In other words, the convergence between two market prices speeds

up when there is a negative price premium at NYSE.8 A possible explanation

is that arbitrageurs like to establish short positions in TSX since the stock has

better liquidity in the home market.

4.4.2 Estimation of the information share

The information share measures the contribution of each market to the price

discovery. I estimate the information share using the three models described in

Section 4.3.

The first column of Table 4.4 reports the estimated information share of

NYSE from the linear ECM. Eun and Sabherwal (2003) estimate the information

share with the same model, but their sample period is shorter (from February

to July, 1998). Their estimated information share of the NYSE (IS n) ranges from

8Note that, the smaller δ is, the faster the convergence is.
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Table 4.3: Delta estimate of NYSE

Panel A: Statistics Summary

Delta Deltaprem Deltadisc

Mean 0.669 0.688 0.652

St.Dev. 0.105 0.133 0.123

1%-ile 0.495 0.446 0.434

10%-ile 0.55 0.537 0.532

25%-ile 0.585 0.603 0.580

50%-ile 0.654 0.661 0.641

75%-ile 0.734 0.760 0.722

90%-ile 0.827 0.883 0.814

99%-ile 0.897 1.000 0.894

Panel B: Annual estimates

Delta Deltaprem Deltadisc

Mean Median Mean Median Mean Median

1998 0.709 0.709 0.729 0.724 0.701 0.713

1999 0.653 0.643 0.668 0.644 0.641 0.616

2000 0.650 0.642 0.674 0.616 0.620 0.620

Panel C: Wilcoxon signed rank test

Hypothesis Wilcoxon P-value

H0 : Deltaprem ≥ Deltadisc 1312.0 6.446 × 10−5

H1 : Deltaprem < Deltadisc

0.2% to 98.2%, with an average of 38.1% over their sample. They conclude that

price discovery for most cross-listed pairs occurs on the TSX, but there is sig-

nificant feedback from the NYSE. My results, based on a longer sample period,

are consistent with these conclusions: the estimated information share of the

NYSE (IS n ) ranges from 1% to 97.5%, with a mean of 40.7%. There is no dis-

cernible trend over the sample period as the yearly average estimates of IS n in
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1998, 1999, and 2000 are 39.3%, 48.4%, and 41%, respectively. The linear ECM

Table 4.4: Information Shares of NYSE

Panel A: Summary Statistics

Linear ECM Threshold ECM Smooth Transition ECM

IS IS in IS out IS S T IS prem IS disc

Mean 0.430 0.362 0.435 0.374 0.386 0.379

St.Dev. 0.258 0.239 0.259 0.254 0.253 0.264

1%-ile 0.030 0.017 0.02 0.001 0.012 0.003

10%-ile 0.087 0.073 0.106 0.059 0.067 0.068

25%-ile 0.215 0.138 0.215 0.173 0.177 0.161

50%-ile 0.416 0.358 0.418 0.352 0.369 0.360

75%-ile 0.601 0.543 0.626 0.543 0.554 0.536

90%-ile 0.816 0.669 0.804 0.707 0.739 0.797

99%-ile 0.948 0.910 0.980 0.946 0.934 0.981

Panel B: Anuual Estimates

Linear ECM Threshold ECM Smooth Transition ECM

IS IS in IS out IS S T IS prem IS disc

1998 0.393 0.367 0.386 0.386 0.413 0.381

1999 0.484 0.368 0.514 0.382 0.378 0.401

2000 0.410 0.352 0.442 0.357 0.350 0.374

Panel C: Wilcoxon signed rank test of smooth transition information share

Hypothesis Wilcoxon P-value

H0 : IS prem ≤ IS disc 2877 0.036

H1 : IS prem > IS disc

ignores the nonlinearity of the convergence procedure, as shown in Section 4.2.

Thus, the estimation from linear ECM may be biased. Next, I estimate the infor-

mation share through both threshold ECM (TECM) and smooth transition ECM

(STECM).
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The second and third columns of Table 4.4 report the results for a bivari-

ate threshold ECM. The estimated information share of the NYSE (IS n) defined

within regimes ranges from 1% to 97.5%, with an average of 38%, while the

estimations for the outer regimes range from 2% to 98.5%, with an average of

43.5%. Thus, overall, the NYSE makes a larger contribution to the price discov-

ery in the outer regimes. This may be because arbitrageurs jump into the market

when price deviations are very large, and their arbitrage activities can transfer

the information from the home market to NYSE (see Fremault 1991).

The last three columns of Table 4.4 report the results from the smooth tran-

sition error correction model (STECM). There are three information shares: ISn,

ISn
κ<0 and ISn

κ>0, which denote the information share defined on whole sample;

and on the samples with negative or positive price premium in NYSE. I apply

the Wilcoxon signed rank test to examine the null hypothesis H0 : Isκ<0 ≤ Isκ>0.

The p-value of the test is 0.036, which significantly rejects the null hypothesis.

This finding implies that when there is a negative price premium at NYSE, the

information share of NYSE is larger, which is evidence that informed traders

may choose to trade at the NYSE when it offers a big price discount, even though

the home market has better liquidity.

4.5 Regression analysis

This section reports the regression analysis results.

102



4.5.1 Dataset construction for regression analysis

I construct a panel dataset for regression analyses of the estimates of informa-

tion shares and thresholds with columns of various indices, dependent vari-

ables, explanatory variables, and control variables. Symbol is the NYSE ticker of

a TSX-NYSE cross-listed pair. Year is the year index of an estimated value. ISLin

is the information share estimate of the NYSE through the linear ECM. ISIn and

ISn
out are the inner-regime and outer-regime information share estimates of the

NYSE from the threshold ECM.

Dependent variables. ISLin is the information share estimate of the NYSE

through the linear ECM. ISIn and ISOut are the inner-regime and outer-

regime information share estimates of the NYSE from the threshold ECM.

Threshold is the U.S.$-denominated threshold estimate from threshold

ECM. Delta is the convergence speed parameter estimated from smooth

transition ECM.

Explanatory variables. PINRat is the ratio of the PIN of the NYSE over that

of the TSX. 9PINAvg is the average PIN of the NYSE and the TSX. PINDiff

is the PIN of the NYSE minused by that of the TSX. SpreadRat is the ratio

of the relative quoted bid-ask spread of the NYSE over that of the TSX.

SpreadAvg is the average relative quoted bid-ask spread of NYSE and the

TSX. SpreadDiff is the quoted bid-ask spread of the NYSE minused by that

of the TSX.10

9The PINs for TSX- and NYSE-listed Canadian stocks are estimated following Easley, Kiefer,
O’Hara, and Paperman (1996) and Easley, Kiefer and O’Hara (1997a,b). Further, I adopt Easley,
Engle, O’Hara, and Wu’s (2008) log-likelihood function specification for improved numerical
stability in computing the PIN.

10The bid-ask spreads are adjusted by the mid-quotes and, thus, measure the relative discrep-
ancy between bid and ask quotes free from the exchange rate.
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Control variables. USVol is the average daily trading fraction of the NYSE

out of both of the NYSE and the TSX following Eun and Sabherwal (2003).

VolAvg is the average of the log-transformations of average daily trading

volume measures of the NYSE and the TSX. VolDiff is the difference of

the log-transformation of average daily trading volume of the NYSE over

that of the TSX. USDollarVol is the average daily dollar trading volume

of the NYSE out of both of the NYSE and the TSX. DollarVolAvg is the

sum of log-transformations of average daily dollar trading volume mea-

sures of the NYSE and the TSX. DollarVolDiff is the difference of the log-

transformation of average daily dollar trading volume of the NYSE over

that of the TSX. Governance is the Report on Business governance index

of Canadian firms published by Globe and Mail (McFarland 2002). Indus

equals one if the cross-lister is a manufacturing firm, and zero otherwise.

Size is the normalized average market capitalization on the TSX and the

NYSE.

4.5.2 Regression of the information share

I now conduct a regression analysis on the factors that affect the relative ex-

tent of the NYSE’s contribution to price discovery. The estimated outer-regime

information shares are regressed onto the panel of explanatory and control vari-

ables with and without intercept in Panel A and Panel B of Table 4. It turns out

that the contribution of the NYSE increases relatively against that of the TSX

as the NYSE-based trades become more informative. This is cross-border evi-

dence that informed trades contribute to fostering price discovery, in line with

Chen and Choi (2010). Either in quantity or value, the higher the liquidity on
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the NYSE the more it leads in price discovery. This is consistent with Eun and

Sabherwal’s (2003) findings: they estimate the information share of the NYSE

by using Harris et al.’s (1995, 2002) approach. They find that the information

share is directly related to the U.S.’s share of total trading (USVol) as well as

to the proportion of informative trades on U.S. exchanges and the TSX, and in-

versely related to the ratio of bid-ask spreads on U.S. exchanges and the TSX.11 A

Canadian firm which is larger (Size) and offers better investor-protecting (Gov-

ernance) tends to has more price discovery on the TSX as seen in Panels A and

B. The overall explanatory power is significantly higher for models without in-

tercept.

I conduct analogous panel regressions for the inner-regime and linear infor-

mation shares in Tables 4.5 and 4.6, respectively. Neither alternative measure

of exchange-specific contribution to price discovery has a higher explanatory

power (adjusted R2) and statistically significance on regressors. From this per-

spective, the outer-regime information shares (Table 4.4) have not only proved

heuristically appealing but also economically reasonable and statistically ro-

bust.

4.5.3 Regression of the estimated threshold

For each cross-listed pair, the threshold includes transactions costs, which con-

sist of bid-ask price spreads on both exchanges and the foreign exchange rate,

fixed costs, and liquidity shortfalls. Implicit risk premiums, including those

11Hasbrouck (1995) finds a positive and significant correlation between contribution to price
discovery made by the NYSE and its market share by trading volume using the U.S. domes-
tic data. Using the same data, Harris et al. (2002) finds evidence that the information share
increases when its bid-ask spreads decline relative to the regional exchange.
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Table 4.5: Panel regression results of outer-regime information shares

reg 1 reg 2 reg 3 reg 4 reg 5 reg 6 reg 7 reg 8

Intercept 0.651 0.702 0.632 0.683 0.262 0.307 0.206 0.242

t-stat 5.473 5.961 5.339 5.844 3.531 4.006 2.92 3.282

PinRatio 0.127 0.122 0.133 0.127 0.151 0.136 0.179 0.168

t-stat 2.303 2.156 2.412 2.246 2.661 2.294 3.273 2.938

SpreadRatio 0.001 0.002 0.002 0.002 0.000 −0.001 −0.002 −0.002

t-stat 0.34 0.367 0.572 0.573 −0.093 −0.214 −0.419 −0.555

UsVol 0.386 0.358 0.414 0.454

t-stat 4.200 3.998 4.600 5.668

UsDollarVol 0.300 0.277 0.282 0.336

t-stat 3.673 3.486 3.572 4.627

Industry −0.054 −0.05

t-stat −1.282 −1.175

Governance −0.005 −0.005 −0.005 −0.005

t-stat −3.538 −3.833 −3.717 −3.980

Size −0.39 −0.403 −0.353 −0.368 −0.443 −0.473

t-stat −2.256 −2.295 −2.063 −2.122 −2.502 −2.585

Fixed effect yes yes yes yes yes yes yes yes

Year effect yes yes yes yes yes yes yes yes

No.of Obs. 115 115 115 115 115 115 115 115

Adjusted R2 0.277 0.252 0.273 0.249 0.207 0.154 0.203 0.144

from information asymmetry and macroeconomic uncertainty, can also affect

the determination of the threshold. Accordingly, Table 4.8 and 4.9 provide

the results of panel regressions of the estimated thresholds onto average (Table

4.8) and difference (Table 4.9) measures of asymmetric information component

(PIN) and the inverse of market depth (spread), controlling for liquidity, either

in quantity (UsVol) or value (UsDollarVol), firm-level idiosyncratic characteris-
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Table 4.6: Panel regression results of inner-regime information shares

reg 1 reg 2 reg 3 reg 4 reg 5 reg 6 reg 7 reg 8

Intercept −0.027 0.026 −0.027 −0.026 -0.02 −0.18 −0.022 −0.021

t-stat −0.649 −0.631 −0.676 −0.661 -1.367 −1.275 −1.672 −1.633

PinRatio −0.015 −0.016 −0.015 −0.016 −0.007 −0.008 0.008 0.007

t-stat −0.370 −0.399 −0.372 −0.401 −0.190 −0.221 0.222 0.184

SpreadRatio 0.000 0.000 0.000 0.000 0.000 0.000 −0.001 −0.001

t-stat −0.129 −0.086 −0.130 −0.087 −0.116 −0.07 −0.213 −0.165

UsVol 0.225 0.225 0.200 0.234

t-stat 1.516 1.525 1.458 1.886

UsDollarVol 0.222 0.222 0.213 0.247

t-stat 1.473 1.482 1.467 1.911

Industry 0.000 −0.001

t-stat −0.017 −0.034

Governance 0.000 0.000 0.000 0.000

t-stat 0.042 0.066 0.042 0.065

Size −0.030 −0.036 −0.029 −0.035 −0.033 −0.036

t-stat −0.387 −0.471 −0.395 −0.477 −0.464 −0.512

Fixed effect yes yes yes yes yes yes yes yes

Year effect yes yes yes yes yes yes yes yes

No.of Obs. 115 115 115 115 121 121 131 131

Adjusted R2 0.015 0.014 0.025 0.023 0.023 0.018 0.044 0.044

tics (Industry, Governance, and Size), and interest rates (yields of 90-day bills

and 10-year notes).

As expected, my measure of market friction (relative quoted spread) sig-

nificantly increases required dollar return of cross-border arbitrage as 8 out of

16 models using average measures (Table 4.8) and all models using difference

measures (Table 4.9) agree with it. The better the firm is governed at home, the

107



Table 4.7: Panel regression results of linear information shares

reg 1 reg 2 reg 3 reg 4 reg 5 reg 6 reg 7 reg 8

Intercept 0.015 0.014 0.013 0.011 0.014 0.014 0.019 0.019

t-stat 0.257 0.234 0.219 0.190 0.693 0.669 1.006 1.045

PinRatio 0.049 0.055 0.049 0.055 0.052 0.057 0.065 0.071

t-stat 0.868 0.974 0.871 0.978 0.952 1.051 1.258 1.370

SpreadRatio 0.002 0.001 0.002 0.001 0.002 0.001 0.001 0.001

t-stat 0.346 0.248 0.344 0.245 0.353 0.248 0.324 0.248

UsVol −0.153 −0.151 −0.128 -0.034

t-stat 0.716 −0.712 −0.658 0.192

UsDollarVol -0.35 -0.348 −0.330 -0.189

t-stat −1.626 −1.672 −1.618 −1.024

Industry -0.004 −0.005

t-stat −0.186 −0.211

Governance 0.000 0.000 0.000 0.000

t-stat 0.018 0.046 0.014 0.042

Size −0.030 −0.045 −0.025 −0.040 −0.019 −0.034

t-stat −0.269 −0.412 −0.236 −0.377 −0.191 −0.34

Fixed effect yes yes yes yes yes yes yes yes

Year effect yes yes yes yes yes yes yes yes

No.of Obs. 115 115 115 115 121 121 131 131

Adjusted R2 0.015 0.006 0.005 0.014 0.010 0.029 0.017 0.025

lower the minimum required profit as all models with the Governance control

variable show. Manufacturing firms (when Industry equals 1) tend to require

larger relative premiums to be exploited. Overall, difference measures turn out

to have a greater influence on the threshold level than the average measures.

In summary, the effective break-even point (threshold) of cross-border arbitrage

appears to be affected by the relative degree of private information, market fric-
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Table 4.8: Panel regression for threshold with average measures

reg 1 reg 2 reg 3 reg 4 reg 5 reg 6 reg 7 reg 8

Intercept 1.275 2.488 1.085 2.591 0.373 1.852 0.625 1.742

1.381 1.949 1.134 1.949 0.412 1.531 0.766 1.718

PINAvg -1.419 -2.152 -1.087 -2.082 -0.053 -0.945 -0.410 -1.131

-0.917 -1.377 -0.678 -1.279 -0.034 -0.611 -0.280 -0.788

SpreadAvg 15.217 11.387 15.419 11.923 3.959 0.782 2.789 -0.214

2.735 1.681 2.667 1.690 0.861 0.138 0.657 -0.042

VolAvg 0.003 0.032 0.024 0.008

0.049 0.531 0.393 0.157

DollarVolAvg -0.066 -0.060 -0.067 -0.056

-0.981 -0.851 -0.981 -1.020

Industry 0.366 0.370

3.090 3.180

Governance -0.010 -0.011 -0.010 -0.010

-2.627 -2.704 -2.487 -2.533

Size 0.458 0.789 0.013 0.411 -0.290 0.126

0.785 1.257 0.022 0.640 -0.487 0.195

Fixed Effect Yes Yes Yes Yes Yes Yes Yes Yes

Year Effect Yes Yes Yes Yes Yes Yes Yes Yes

No. of Obs. 115 115 115 115 121 121 131 131

Adjusted R2 0.118 0.126 0.048 0.052 -0.034 -0.027 -0.029 -0.021

tion, liquidity measures, and idiosyncratic firm-level characteristics. These eco-

nomically appealing empirical results lend support to the findings of Gagnon

and Karolyi (2010).
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Table 4.9: Panel regression for threshold with difference measures

reg 1 reg 2 reg 3 reg 4 reg 5 reg 6 reg 7 reg 8

Intercept 1.031 1.007 1.278 1.268 0.567 0.574 0.589 0.590

3.743 3.605 4.424 4.363 4.248 4.592 5.064 5.409

PINDiff -1.553 -1.427 -1.731 -1.462 -1.206 -1.212 -1.067 -1.048

-1.875 -1.664 -1.947 -1.594 -1.374 -1.348 -1.389 -1.323

SpreadDiff 10.461 9.386 10.091 10.050 9.299 9.115 7.959 8.064

3.411 2.840 3.064 2.846 2.822 2.630 2.862 2.664

VolDiff -0.093 -0.051 -0.013 0.002

-2.208 -1.164 -0.315 0.064

DollarVolDiff -0.065 -0.019 -0.011 0.004

-1.666 -0.485 -0.296 0.107

Industry 0.495 0.491

4.183 4.053

Governance -0.013 -0.011 -0.011 -0.010

-3.346 -3.060 -2.707 -2.516

Size 0.194 0.192 -0.170 -0.132 -0.315 -0.318

0.389 0.380 -0.323 -0.247 -0.594 -0.595

Fixed Effect Yes Yes Yes Yes Yes Yes Yes Yes

Year Effect Yes Yes Yes Yes Yes Yes Yes Yes

No. of Obs. 115 115 115 115 121 121 131 131

Adjusted R2 0.208 0.193 0.086 0.076 0.031 0.031 0.035 0.036

4.6 Conclusion

In this paper, I contribute to the literature by implementing the threshold error

correction mechanism in estimating the relative extent of exchange-respective

contribution to price discovery of the pairs of cross-listings and their original

listings. The existing methods assume linear convergence of relative premiums
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to parity whereas I hinge on the reality that the premiums disappear quicker

when it is profitably arbitrageable than otherwise. An asset pricing equilibrium

model for a stock traded in multiple markets has been developed to illustrate

the role of arbitrageurs in the price discovery process. Based on the equilibrium

solutions from this equilibrium model, under different assumptions on the de-

mand elasticity of arbitrageurs, I show the short term convergence dynamics

could be captured by three econometric models: standard linear ECM, thresh-

old ECM, smooth transition ECM, which may provide different estimation on

the contribution share for each market to the price discovery. The latter two are

more reliable since their assumptions accommodate the nonlinear convergence

in the reality.

I apply these three models to Canadian stocks cross-listed in TSX and NYSE.

All three models generate a consistent conclusion that the home market (TSX)

makes a larger contribution than NYSE (guest market) in the price discovery.

However, from the estimations of nonlinear error correction models, I get some

other interesting findings. First, there is a larger feedback effect from NYSE on

Canadian cross-listed stocks if the price deviations exceed a threshold value.

Second, when there exists a negative price premium at NYSE, informed traders

tend to trade at NYSE even though the home market usually has better liquidity.

Meanwhile, the convergence between two market prices will speed up. Third,

information shares are positively affected by the relative degree of private in-

formation and market liquidity. Unlike Grammig et al. (2005), I do not account

for exchange-rate market friction in my threshold ECM framework. Additional

sources of randomness to the modeling of nonlinear dynamics of cross-listed

stocks should be interesting for future studies.
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APPENDIX A

APPENDIX OF CHAPTER 2

Throughout the Appendix A, let |A| = (tr(A′A))1/2 denote the Euclidean norm

of a matrix A. Let “⇒ ” denote weak convergence with respect to the uniform

metric and “
p→ ” denote the convergence in probability. A′ is denoted as the

transpose of the matrix A. The proofs related to the basic model are conducted

in Appendix A.1 and those for the extended model are put in Appendix A.2.

A.1 Mathematical proof for the basic model

Proof of Lemma 2.1.1: The result follows Lemma 1 of Park and Hahn (1999).

Proof of Lemma 2.1.2: The result follows Theorem 1 of Caner and Hansen (2001)

by replacing u with F(γ).

Proof of Lemma 2.1.3: Following Theorem 2 of Caner and Hansen(2001), under

Assumptions 2.1.1-2.1.4, I can easily show that

1
σn

n∑
t=1

xtIt(γ)et ⇒
∫ 1

0
X(s)dW(s, γ).

Q.E.D.

Lemma A.1.1 Under Assumptions 2.1.1-2.1.4, for any γ ∈ [γ, γ], as n → ∞, the

following results hold:

a) n−2 ∑n
t=1 xt(γ)x′t(γ) = F(γ)

∫ 1

0
X(s)X(s)′ds + op(1),

b) n−1 ∑n
t=1 xt(γ)et ⇒

∫ 1

0
X(s)dW(s, γ),

c) n−2 ∑n
t=1 Vt(γ)V ′t (γ) = M(γ) + op(1),

112



d) n−1 ∑n
t=1 Vt(γ)et ⇒ σ


∫ 1

0
X(s)dW(s)∫ 1

0
X(s)dW(s, γ)

 , where M(γ) is defined in (2.14).

Proof: a) can be proved using Lemma 1 and Theorem 3 of Caner and

Hansen(2001). b) is from Lemma 2.1.3. For c) and d), using a) and b), I have

n−2
n∑

t=1

Vt(γ)Vt(γ)′ = n−2


∑n

t=1 xtx′t ,
∑n

t=1 xtx′t(γ)∑n
t=1 xt(γ)x′t ,

∑n
t=1 xt(γ)x′t(γ)


= M(γ) + op(1) (A.1)

and

n−1
n∑

t=1

Vt(γ)et = n−1


∑n

t=1 xtet∑n
t=1 xt(γ)et

⇒ σ


∫ 1

0
X(s)dW(s)∫ 1

0
X(s)dW(s, γ)

 . (A.2)

Q.E.D.

Lemma A.1.2 If τ < 1/2, when γ = γ0

n(̂θ(γ0) − θ)⇒ σM(γ0)−1


∫ 1

0
X(s)dW(s)∫ 1

0
X(s)dW(s, γ0)

 ,
while γ , γ0

nτ+1/2(̂θ(γ) − θ)⇒ M(γ)−1Π(γ, γ0, δ0).

If τ = 1/2, when γ = γ0,

n(̂θ(γ0) − θ)⇒ σM(γ0)−1


∫ 1

0
X(s)dW(s)∫ 1

0
X(s)dW(s, γ0)

 ,
while γ , γ0,

n(̂θ(γ) − θ)⇒ σM(γ)−1


∫ 1

0
X(s)dW(s)∫ 1

0
X(s)dW(s, γ)

 + M(γ)−1Π(γ, γ0, δ0)

where Π(γ, γ0, δ0) is defined in the equation (2.15).
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Proof: I first consider the case with τ < 1/2. Using Lemma A.1.1, when

γ = γ0 I have

n(̂θ(γ0) − θ) = (
1
n2

n∑
t=1

Vt(γ0)Vt(γ0)′)−1 1
n

n∑
t=1

Vt(γ0)et ⇒ M(γ0)−1


∫ 1

0
X(s)dW(s)∫ 1

0
X(s)dW(s, γ0)

 .
(A.3)

When γ , γ0, from the true model, I have

yt = θ
′Vt(γ0) + et = θ

′Vt(γ) + et − θ′(Vt(γ) − Vt(γ0)) = θ′Vt(γ) + et − δ′n(xt(γ) − xt(γ0)).

If τ < 1/2, then

nτ+1/2(̂θ(γ) − θ)

= nτ+1/2(
n∑

t=1

Vt(γ)Vt(γ)′)−1{
n∑

t=1

Vt(γ)et −
n∑

t=1

Vt(γ)(xt(γ)′ − xt(γ0)′)δn}

= Op(nτ−1/2) − M(γ)−1

 n−2 ∑n
t=1 xt(xt(γ)′ − xt(γ0)′)δ0

n−2 ∑n
t=1 xt(γ)(xt(γ)′ − xt(γ0)′)δ0

 + op(1)

⇒ −M(γ)−1

 (F(γ) − F(γ0))
∫ 1

0
X(s)X′(s)ds

(F(γ) − F(γ0 ∧ γ))
∫ 1

0
X(s)X′(s)ds

 δ0

= M(γ)−1Π(γ, γ0, δ0). (A.4)

When τ = 1/2, the proof is very similar and I skip the detail. Q.E.D.

Lemma A.1.3 If τ < 1/2, I have γ̂n
p→ γ0.

Proof: To prove the consistency of γ̂n, I need to prove S S Rn(γ) uniformly

converge to a function which takes global minimum at γ0. It is equivalent to

prove bn(γ) = n2τ−1(S S Rn − S S Rn(γ)) uniformly converge to a function which

takes global maximum at γ0. S S Rn is defined as the sum of squared residual by
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regressing yt to xt. After some standard algebra, I have

bn(γ) = n2τ−1(S S Rn − S S Rn(γ)) = n2τ−1̂δn(γ)′(X(γ)′(I − Pn)X(γ))̂δn(γ)

where X(γ) = (x1(γ), x2(γ), ..., xn(γ))′ and X = (x1, x2, ..., xn)′. Pn = X(X′X)−1X′, is the

projection matrix of X. By plugging in

δ̂n(γ) = (X′(γ)(I − Pn)X(γ))−1X′(γ)(I − Pn)Y,

I have

n2τ−1(S S Rn − S S Rn(γ)) = n2τ−1Y ′(I − Pn)X(γ)(X′(γ)(I − Pn)X(γ))−1X′(γ)(I − Pn)Y

= Γn(γ)′(n−2X′(γ)(I − Pn)X(γ))−1Γn(γ)

where

Γn(γ) = nτ−3/2X′(γ)(I − Pn)Y.

Using Lemma A.1.1, I can show that

n−2X′(γ)(I − Pn)X(γ)⇒
(
F(γ) − F(γ)2

) ∫ 1

0
X(s)X(s)′ds. (A.5)

Next, I discuss the limiting behavior of Γn(γ). By plugging in the true model

Y = Xα + X(γ0)δn + e, I have

Γn(γ) = nτ−3/2X′(γ)(I − Pn) (Xα + X(γ0)δn + e)

= nτ−3/2X′(γ)X(γ0)δn − nτ−3/2X′(γ)X(X′X)−1X′X(γ0)δn + nτ−3/2X′(γ)(I − Pn)e,

where the second equation uses the result that (I − Pn)X = 0. Since τ < 1/2, I can

show

nτ−3/2X′(γ)(I − Pn)e = nτ−1/2n−1X′(γ)e − nτ−1/2n−2X′(γ)X(n−2X′X)−1n−1X′e

= Op(nτ−1/2) = op(1).
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Thus,

Γn(γ)⇒ F(γ ∧ γ0)
(∫ 1

0
X(s)X(s)′ds

)
δ0 − F(γ)F(γ0)

(∫ 1

0
X(s)X(s)′ds

)
δ0 ≡ Γ2(γ).

(A.6)

Define

b(γ) = Γ2(γ)′
((

F(γ) − F(γ)2
) ∫ 1

0
X(s)X(s)′ds

)−1

Γ2(γ).

For any γ ≥ γ0,

b(γ) =
F(γ0) − F(γ)F(γ0)(

F(γ) − F(γ)2) δ′0

(∫ 1

0
X(s)X(s)′ds

)
δ0 =

F(γ0)
F(γ)

δ′0

(∫ 1

0
X(s)X(s)′ds

)
δ0

with∂b(γ)
∂γ

< 0. For any γ ≤ γ0,

b(γ) =
F(γ) − F(γ)F(γ0)(

F(γ) − F(γ)2) δ′0

(∫ 1

0
X(s)X(s)′ds

)
δ0 =

1 − F(γ0)
1 − F(γ)

δ′0

(∫ 1

0
X(s)X(s)′ds

)
δ0

with ∂b(γ)
∂γ

> 0. Thus, b(γ) takes global maximum at γ = γ0. Using Lemma A.1.1, I

can prove that

sup
γ∈[γ,γ]

(bn(γ) − b(γ)) = op(1).

In summary, I have

γ̂n = arg min
γ∈[γ,γ]

(S S Rn(γ)) = arg max
γ∈[γ,γ]

(n2τ−1(S S Rn − S S Rn(γ))
p→ γ0.

Q.E.D.

Lemma A.1.4 If τ < 1/2, I have an(̂γn − γ0) = Op(1), where an = n1−2τ.

Proof: To prove γ̂n converge to γ0 with rate an, I need to prove that an |̂γn−γ0| =

Op(1), or for any v > 0, limn→∞ Pr(|̂γn − γ0| ≤ v/an) = 1. For each B > 0, define

VB = {γ : |γ − γ0| < B}. When n is large enough, I have v/an < B. Since γ̂n
p→ γ0
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according to Lemma A.1.3, Pr({̂γn ∈ VB})
p→ 1. Therefore, I only need to examine

the limiting behavior of γ in VB.

Define a subset

VB(v) = {γ : v/an < |γ − γ0| < B.

Thus, VB(v) ⊂ VB. To prove Pr(|̂γn − γ0| ≤ v/an) = 1, I just need to prove Pr(̂γn ∈

VB(v)) = 0. Let θ̂ and δ̂ as the estimation of θ̂(̂γn) and δ̂(̂γn). Define S S R∗n(γ) =∑n
t=1(yt − θ̂′Vt(γ))2 and S S R∗n(γ0) =

∑n
t=1(yt − θ̂′Vt(γ0))2. From the definition of γ̂n, I

have S S R∗n(̂γn) ≤ S S R∗n(γ0). Therefore, it suffices to prove that for any γ ∈ VB(v),

S S R∗n(γ) > S S R∗n(γ0) with probability 1.

We consider the case of γ > γ0 at first. Using an argument of symmetry, I can,

without loss of generality, prove the result for the case of γ < γ0. Given γ > γ0, it

is equivalent to prove

S S R∗n(γ) − S S R∗n(γ0)
an(γ − γ0)

> 0.

Note that

S S R∗n(γ) − S S R∗n(γ0)

=

n∑
t=1

(yt − θ̂′Vt(γ))2 −
n∑

t=1

(yt − θ̂′Vt(γ0))2

=

n∑
t=1

δ̂′(xt(γ) − xt(γ0))(xt(γ) − xt(γ0))′̂δ − 2
n∑

t=1

δ̂′(xt(γ) − xt(γ0))e

+2̂δ′(xt(γ) − xt(γ0))(xt(γ) − xt(γ0))′(̂θ − θ)

=

n∑
t=1

δ′n(xt(γ) − xt(γ0))(xt(γ) − xt(γ0))′δn − 2̂δ′
n∑

t=1

(xt(γ) − xt(γ0))e

+2̂δ′
n∑

t=1

(xt(γ) − xt(γ0))(xt(γ) − xt(γ0))′(̂θ − θ)

+2
n∑

t=1

(̂δ + δn)′(xt(γ) − xt(γ0))(xt(γ) − xt(γ0))′(̂δ − δn)

≡ R1 − R2 + R3 + R4, say.
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Next, I will show that R1+R2+R3+R4
an(γ−γ0) converge to a positive random variable al-

most surely. First, I have

R1

an
=

1
an

n∑
t=1

δ′n(xt(γ) − xt(γ0))(xt(γ) − xt(γ0))′δn

= δ′0(F(γ) − F(γ0))
∫ 1

0
X(s)X′(s)dsδ0 + op(1)

= f (γ0)(γ − γ0)
∫ 1

0
X(s)X′(s)dsδ0 + op(1),

where the last equation uses the first order Taylor expansion of F(γ) around γ0.

Noting that v/an < |γ − γ0| < B and an = n1−2τ with τ < 1/2, I have
√

v <

√
an

√
(|γ − γ0|). Thus, there exists k > 0, such that

R2

an(γ − γ0)
=

2̂δ′0
1
n

∑n
t=1(xt(γ) − xt(γ0))e
√

an(γ − γ0)
= Op(

1
√

an
√

(|γ − γ0|)
) ≤ k/

√
v.

Furthermore, from Lemma A.1.2, I know nτ+1/2((̂θ−θ) = Op(̂γn−γ0) and nτ+1/2(̂δn−

δn) = Op(̂γn − γ0). Hence I can show:

R3

an(γ − γ0)
=

2nτ+1/2̂δ′nn−2 ∑n
t=1(xt(γ) − xt(γ0))(xt(γ) − xt(γ0))′nτ+1/2(̂θ − θ)

(γ − γ0)
= Op(̂γn − γ0).

R4

an(γ − γ0)
=

2nτ+1/2(̂δ + δn)′n−2 ∑n
t=1(xt(γ) − xt(γ0))(xt(γ) − xt(γ0))′nτ+1/2(̂δ − δn)

(γ − γ0)

= Op(nτ+1/2(̂δ − δn) = Op(̂γn − γ0).

For any B → 0+, there exist v > 0 and N, such that k/
√

v <

f (γ0)
∫ 1

0
X(s)X′(s)dsδ0 and v/an < B when n > N. Therefore, for any γ ∈ VB(v),

I have
R1

an(γ − γ0)
− R2

an(γ − γ0)
> 0, (A.7)

and

R3

an(γ − γ0)
= op(1), (A.8)

R4

an(γ − γ0)
= op(1). (A.9)
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Combining A.7-A.9, I can show that

S S R∗n(γ) − S S R∗n(γ0)
an(γ − γ0)

> 0

with probability 1 for any γ ∈ VB(v) and γ > γ0. Similarly, I can prove S S R∗n(γ) >

S S R∗n(γ0) when γ < γ0 and γ ∈ VB(v) with probability 1. Q.E.D.

Lemma A.1.5 If τ < 1/2, I have

n1−2τλ(̂γn − γ0) = r∗ ⇒ arg max
r∈(−∞,∞)

(Λ(r) − 1
2
|r|),

where λ and Λ(r) is defined in the equation (A.6) and (A.7).

Proof: From Lemma A.1.4, I know that γ̂ is a consistent estimator with

convergence rate an = n1−2τ, thus, I can study its asymptotic behavior in the

neighborhood of the true thresholds. Let γ = γ0 +
υ
an

. By the definition of γ̂n,

an(̂γn − γ0) = v∗ = arg min
v

(
S S R∗n(γ0 +

υ

an
) − S S R∗n(γ0)

)
.

By the definition of S S R∗n(γ0 +
υ
an

) and S S R∗n(γ0), I have

S S R∗n(γ0 +
υ

an
) − S S R∗n(γ0)

=

n∑
t=1

(
yt − θ̂′Vt(γ0 +

υ

an
)
)2

−
n∑

t=1

(
yt − θ̂′Vt(γ0)

)2

= δ′n

n∑
t=1

(
xt(γ0 +

υ

an
) − xt(γ0)

) (
xt(γ0 +

υ

an
) − xt(γ0)

)′
δn − 2δ′n

n∑
t=1

(
xt(γ0 +

υ

an
) − xt(γ0)

)
e

+2̂δ′n
n∑

t=1

(
xt(γ0 +

υ

an
) − xt(γ0)

) (
xt(γ0 +

υ

an
) − xt(γ0)

)′
(̂θ − θ)

+2
n∑

t=1

(̂δ′ + δ′n)
(
xt(γ0 +

υ

an
) − xt(γ0)

) (
xt(γ0 +

υ

an
) − xt(γ0)

)′
(̂δ − δn)

+2(̂δ′ − δ′n)
n∑

t=1

(
xt(γ0 +

υ

an
) − xt(γ0)

)
e

≡ R∗1 + R∗2 + R∗3 + R∗4 + R∗5, say.
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Next, I turn to consider the limiting behavior of R∗i , for i = 1, 2, ..., 5. We only

provide the proof for the case with v > 0, and the proof for the other case with

v < 0 is analogous so I skip the detail.

Given v > 0, I have

R∗1 = δ′n

n∑
t=1

(
xt(γ0 +

υ

an
) − xt(γ0)

) (
xt(γ0 +

υ

an
) − xt(γ0)

)′
δn

= n1−2τδ′0n−2
n∑

t=1

(
xt(γ0 +

υ

an
) − xt(γ0)

) (
xt(γ0 +

υ

an
) − xt(γ0)

)′
δ0

= n1−2τδ′0(F(γ0 +
υ

an
) − F(γ0))

∫ 1

0
X(s)X′(s)dsδ0 + op(1)

p→ f (γ0)vδ′0

∫ 1

0
X(s)X′(s)dsδ0 + o(1). (A.10)

The last equation uses the first order Taylor expansion of F(γ0 +
υ
an

) around γ0.

For R∗2, I have

R∗2 = −2
n∑

t=1

δ̂′n

(
xt(γ0 +

υ

an
) − xt(γ0)

)
e

= −2(n1/2−τ)δ′0
1
n

n∑
t=1

(
xt(γ0 +

υ

an
) − xt(γ0)

)
e⇒ −2δ′0B∗(υ)

where

E
(
B∗ (1) B∗ (1)′

)
= f0σ

2
∫ 1

0
X(s)X′(s)ds.

From Lemma A.1.2, I know nτ+1/2((̂θ − θ) = Op(̂γ − γ0) = op(1) and nτ+1/2(̂δn − δn) =

Op(̂γ−γ0) = op(1); thus, I can showR∗3+R∗4+R∗5 = op(1).Combining all convergence

results, I have

S S R∗n (γ) − S S R∗n (γ0)⇒ f0υδ
′
0

∫ 1

0
X(s)X′(s)dsδ0 − 2δ′0B∗(υ).

Making the change-of-variables

υ =
σ2

δ′0
∫ 1

0
X(s)X′(s)dsδ0 f0

r,
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I have

S S R∗n (γ) − S S R∗n (γ0)⇒ 2σ2(
r
2
− Λ2(r))

where Λ2(r) is a standard Brownian motions defined on [0,∞).

In summary, the asymptotic distribution of γ̂ can be expressed as

n1−2τλ(̂γ − γ0) = r∗ ⇒ arg max
r∈(−∞,∞)

(Λ(r) − 1
2
|r|)

where

λ =

(
δ′0

∫ 1

0
X(s)X(s)′dsδ0

)
f0

σ2 ,

and

Λ(r) =


Λ1(−r), if r < 0

0, if r = 0

Λ2(r), if r > 0

.

Q.E.D.

Lemma A.1.6 When τ = 1/2, γ̂n ⇒ γ(γ0, δ0) which is a random variable maximizing

Q(γ, γ0, δ0). Q(γ, γ0, δ0) is defined in the equation (A.8).

Proof: From the definition of γ̂n, I have

γ̂n = arg min
γ∈[γ,γ]

S S Rn(γ) = arg max
γ∈[γ,γ]

(S S Rn − S S Rn(γ))

where S S Rn − S S Rn(γ) = Γn(γ)′(n−2X′(γ)(I − Pn)X(γ))−1Γn(γ) with Γn(γ) =

n−1X′(γ)(I − Pn)Y. It follows that

Γn(γ) = n−1X′(γ)(I − Pn) (X(γ0)δn + e)

= n−1X′(γ)X(γ0)δn − n−1X′(γ)X(X′X)−1X′X(γ0)δn + n−1X′(γ)(I − Pn)e.
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Based on Lemma A.1.2, I have

n−1X′(γ)(I − Pn)e = n−1X′(γ)e − n−2X′(γ)X(n−2X′X)−1n−1X′e

⇒ σ

∫ 1

0
X(s)d (W(s, γ) − F(γ)W(s)) = Γ(γ).

Under Assumption 2.2.1 and τ = 1/2, I have nδn = δ0 and

n−1X′(γ)X(γ0)δn − n−1X′(γ)X(X′X)−1X′X(γ0)δn

⇒ (F(γ ∧ γ0) − F(γ)F(γ0))
(∫ 1

0
X(s)X(s)′ds

)
δ0.

Thus,

Γn(γ)⇒ Γ(γ) + (F(γ ∧ γ0) − F(γ)F(γ0))
(∫ 1

0
X(s)X(s)′ds

)
δ0 = Γ1(γ).

Moreover, I conclude

n2τ−1(S S Rn − S S Rn(γ))⇒ Γ1(γ)
((

F(γ) − F(γ)2
) ∫ 1

0
X(s)X(s)′ds

)−1

Γ1(γ)′ = Q(γ, γ0, δ0).

Q.E.D.

Proof of Theorem 2.2.1: Combining the results from Lemma A.1.3-A.1.6, I

complete the proof. Q.E.D.

Proof of Theorem 2.2.2: If τ < 1/2, from Lemma A.1.4, I know n1−2τ(̂γn−γ0) =

Op(1). In the following, I show that the θ̂(̂γn) and θ̂(γ0) are asymptotically equiv-

alent and then I can treat γ0 as known when I derive the asymptotic distribution

for θ̂(̂γn). Note that

n(̂θ(̂γn) − θ̂(γ0))

= n(̂θ(̂γn) − θ) − n(̂θ(γ0) − θ))

= (n−2
n∑

t=1

Vt (̂γn)Vt (̂γn)′)−1n−1
n∑

t=1

Vt (̂γn)et

−(n−2
n∑

t=1

Vt(γ0)Vt(γ0)′)−1n−1
n∑

t=1

Vt(γ0)et + Op(nτ−1/2).
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From Lemma A.1.1, I have

n−2
n∑

t=1

Vt (̂γn)Vt (̂γn)′ − n−2
n∑

t=1

Vt(γ0)Vt(γ0)′
p→ Op(̂γn − γ0) = op(1)

and

n−1
n∑

t=1

Vt (̂γn)et − n−1
n∑

t=1

Vt(γ0)et = n−1
n∑

t=1

(Vt (̂γn) − Vt(γ0))et = Op(
√
|̂γn − γ0|) = op(1).

Thus, I can show that

n(̂θ(̂γn) − θ) = n(̂θ(γ0) − θ)) + op(1)⇒ M(γ0)−1σ


∫ 1

0
X(s)dW(s)∫ 1

0
X(s)dW(s, γ0)

 .
Since

Var

σ


∫ 1

0
X(s)dW(s)∫ 1

0
X(s)dW(s, γ0)


 = σ2M(γ0)

and W(s) and W(s, γ0) are Brownian motions independent of X(s), I have n(̂θ(̂γn)−

θ) converges to a mixed normal distribution with variance σ2M(γ0)−1.

If τ = 1/2, from Lemma A.1.2 and Lemma A.1.6, I have

n(̂θ(̂γn) − θ)⇒ σM(̂γn)−1


∫ 1

0
X(s)dW(s)∫ 1

0
X(s)dW(s, γ̂n)

 + M(̂γn)−1Π(̂γn, γ0, δ0)

wherêγn ⇒ γ(γ0, δ0) = arg maxγ∈[γ,γ] Q(γ, γ0, δ0). Q.E.D.

Proof of Theorem 2.2.3:

Tn(γ) = δ̂n(γ)′(X(γ)(I − P(γ))X(γ))̂δn(γ)/σ̂2

= (I − Pn)Y ′X(γ)(X′(γ)(I − Pn)X(γ))−1X′(γ)(I − Pn)Y/σ̂2

= Γn(γ)′
(
n−2X(γ)′X(γ) − n−2X(γ)′X(X′X)−1XX(γ)

)−1
Γn(γ)/σ̂2. (A.11)

Using Lemma A.1.1, I have

n−2X(γ)′X(γ) − n−2X(γ)′X(X′X)−1XX(γ)⇒
(
F(γ) − F(γ)2

) ∫ 1

0
X(s)X′(s)ds

123



and

Γn(γ) =
1
n

X′(γ)(I − Pn)Y =
1
n

X′(γ)e − 1
n

X′(γ)X(X′X)−1X′e

⇒ σ

∫ 1

0
X(s)dW(s, γ) − F(γ)

∫ 1

0
X(s)dW(s)

= σ

∫ 1

0
X(s)d (W(s, γ) − F(γ)W(s)) = Γ(γ).

Thus,

Tn(γ)⇒ 1
σ2Γ(γ)′

((
F(γ) − F(γ)2

) ∫ 1

0
X(s)X′(s)ds

)−1

Γ(γ).

Q.E.D.

Proof of Theorem 2.2.4: Following the equation (A.11), I only need to con-

sider the limiting result for Γn(γ) for different τ. When τ < 1/2, I have

Γn(γ) =
1
n

X′(γ)(I − Pn)Y

=
1
n

X′(γ)e − 1
n

X′(γ)X(X′X)−1X′e +
1
n

X′(γ)X(γ0)δn −
1
n

X′(γ)X(X′X)−1X′X(γ0)δn

⇒ σ

∫ 1

0
X(s)dW(s, γ) − F(γ)

∫ 1

0
X(s)dW(s)

+n1/2−τ(F(γ ∧ γ0) − F(γ)F(γ0))
∫ 1

0
X(s)X(s)′dsδ0

= Op(n1/2−τ)
p→ ∞.

It follows that Tn(γ) = Op(n1−2τ)
p→ ∞ and power converges to 1.

When τ = 1/2, I have

Γn(γ) =
1
n

X′(γ)e − 1
n

X′(γ)X(X′X)−1X′e +
1
n

X′(γ)X(γ0)δn −
1
n

X′(γ)X(X′X)−1X′X(γ0)δn

⇒ Γ(γ) + (F(γ ∧ γ0) − F(γ)F(γ0))
(∫ 1

0
X(s)X(s)′ds

)
δ0 = Γ1(γ).

It follows that

Tn(γ)⇒ 1
σ2Γ1(γ)

((
F(γ) − F(γ)2

) ∫ 1

0
X(s)X′(s)ds

)−1

Γ1(γ)′.
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When τ > 1/2, I have

Γn(γ) =
1
n

X′(γ)e − 1
n

X′(γ)X(X′X)−1X′e +
1
n

X′(γ)X(γ0)δn −
1
n

X′(γ)X(X′X)−1X′X(γ0)δn

⇒ σ

∫ 1

0
X(s)d (W(s, γ) − F(γ)W(s)) = Γ(γ).

It follows that Tn(γ)⇒ T. Q.E.D.

Proof of Theorem 2.2.5: To prove the equality, I only need to prove the fol-

lowing two inequalities: AsyS Zγ(a) ≥ 1 − a and AsyS Zγ(a) ≤ 1 − a hold simul-

taneously. We first consider the proof of AsyS Zγ(a) ≥ 1 − a. By the definition of

AsyS Zγ(a), I can find a parameter sequence (θn, γn) such that

AsyS Zγ(a) = lim inf
n→∞

Pr(θn,γn)(γn ∈ CIγ,n(a)).

Let {bn} be a subsequence of {n} such that

AsyS Zγ(a) = lim
n→∞

Pr(θbn ,γbn )(γbn ∈ CIγ,bn(a)).

Define Dn to be a weight matrix such that Dnθn = (α, nδn). Because the Euclidean

space is complete, I can find a subsequence {cn} of {bn} such that
(
Dcnθcn , γcn

) →
(θ0, γ0), where θ0 = (α0, δ0) with α0 ∈ R and δ0 ∈ R ∪ {−∞,∞}; γ0 ∈ [γ, γ].

If τ = 1/2, δ0 ∈ R. By Theorem 2.2.4, I have Tn = Op(1) < κn with probability

one. Thus, CIγ,n(a) = CIW
γ,n(a), or

AsyS Zγ(a) = lim
n→∞

Pr(θcn ,γcn )(γcn ∈ CIγ,cn(a)). = lim
n→∞

Pr(θcn ,γcn )(|̂γcn − γcn | ≤ q̂W
γ,1−a)

≥ lim
n→∞

Pr(θcn ,γcn )(|̂γcn − γcn | ≤ q̂W
γ,1−a(γ0, δ0)) = 1 − a (A.12)

The inequality uses the fact that q̂W
γ,1−a = supγ∈[γ,γ] supδ∈R qW

γ,1−a(γ, δ). The last equa-

tion uses the fact that |̂γcn − γcn | will converge to |̂γ(γ0, δ0) − γ0| and q̂W
γ,1−a(γ0, δ0) is

defined as the (1 − a) quantile of the limiting distribution of |̂γ(γ0, δ0) − γ0|.
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Notice that κ−1/2
n +nνκ1/2

n → 0, for any ν > 0. If τ < 1/2,I have Tn = Op(n1−2τ) > κn

with probability approaching one. Thus,

AsyS Zγ(a) = lim
n→∞

Pr(θcn ,γcn )(γcn ∈ CIγ,cn(a)) = lim
n→∞

Pr(θcn ,γcn )(γcn ∈ CI I
γ,cn

(a))

= lim
n→∞

Pr(θcn ,γcn )(LR(γcn , γ̂cn , θ̂cn) ≤ qI
1−α).

By Theorem 2.2.4, I have n1−2τλ(̂γn − γn) = r∗ ⇒ arg maxr∈(−∞,∞)(Λ(r) − 1
2 |r|).

Then, LRn(γn, γ̂n, θ̂n) ⇒ maxr∈(−∞,∞)(2Λ(r) − |r|). LRcn(γcn , γ̂cn , θ̂cn) converges to

LRcn(γ0, γ̂cn , θ̂cn) and qI
1−α is the 1 − a quantile of LRcn(γ0, γ̂cn , θ̂cn). Thus, I can con-

clude that

AsyS Zγ(a) = lim
n→∞

Pr(θcn ,γcn )(LR(γcn , γ̂cn , θ̂cn) ≤ qI
1−α) ≥ 1 − a. (A.13)

Next, I consider the other side AsyS Zγ(a) ≤ 1 − a. Let δn = δ0 and γn = γ0 with

δ0 ∈ R/{0}. By definition, I have

AsyS Zγ(a) = lim inf
n→∞

Pr(θn,γn)(γn ∈ CIγ,n(a)) ≤ lim inf
n→∞

Pr(θ0,γ0)(γ0 ∈ CIγ,n(a)). (A.14)

Because δn is a fixed constant, I have Tn = Op(n1−2τ) = Op(n) > κn with probability

approaching one. Thus,

lim inf
n→∞

Pr(θ0,γ0)(γ0 ∈ CIγ,n(a)) = lim inf
n→∞

Pr(θ0,γ0)(γ0 ∈ CI I
γ,n(a))

= lim inf
n→∞

(LRn(γ0, γ̂n, θ̂n) ≤ qI
1−α)

= 1 − a,

where the last equality holds because LRn(γ0, γ̂n, θ̂n) ⇒ maxr∈(−∞,∞)(2Λ(r) − |r|)

when δn is a fixed constant.

The proof of AsyS Zθ(a) = 1 − a can be done using a analogous argument and

it is omitted for brevity. Q.E.D.
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A.2 Mathematic proof for extended Model

Lemma A.2.1 Under Assumptions 2.1.1-2.1.4, for any γ ∈ [γ, γ], as n→ ∞,

a) n−3/2 ∑n
t=1 ztx′t(γ) = h(γ)

∫ 1

0
X′(s)ds + op(1);

b) n−3/2 ∑n
t=1 ztx′t−1(γ) = h1(γ)

∫ 1

0
X′(s)ds + op(1);

c) n−3/2 ∑n
t=1 zt−1x′t(γ) = h2(γ)

∫ 1

0
X′(s)ds + op(1);

d) n−1 ∑n
t=1 ztz′t = H + op(1);

e) n−1 ∑n
t=1 ztz′t−1 = H1 + op(1),

where h(γ), h1(γ), h2(γ), H, H1 are defined in (2.31).

Proof: Following Theorem 3 in Caner and Hansen (2001), I can prove a)− c).

Proofs of d) and e) can be done by applying the strong law of large numbers for

stationary processes under Assumption 2.1.1. Q.E.D.

Lemma A.2.2 Under Assumptions 2.1.1-2.1.4, for any γ ∈ [γ, γ], as n→ ∞, I have

a) n−1/2 ∑n
t=1 I(qt ≤ γ)et ⇒ σW(s, γ),

b) n−1/2 ∑n
t=1 I(qt−1 ≤ γ)et ⇒ σW1(s, γ),

c) n−1 ∑n
t=1 xt(γ)′et ⇒ σ

∫ 1

0
X′(s)dW(s, γ)

d) n−1 ∑n
t=1 xt−1(γ)′et ⇒ σ

∫ 1

0
X′(s)dW1(s, γ)

e) n−1/2 ∑n
t=1 ztet ⇒ σJ2

f) n−1/2 ∑n
t=1 zt−1et ⇒ σJ3

127



where J2 and J3 are Gaussian random variable with mean zero and variance H. W(s, γ)

and W1(s, γ) are two-parameter Brownian motions defined in Definition 1.

Proof: Proofs of (a) and (b) follow the results of Lemma 2.1.2. Proofs of

c) and d) follow Lemma 2.1.3. Proofs of e) and f) can be done by applying the

central limiting theorem for a square integrable stationary martingale difference

sequence. Q.E.D.

Lemma A.2.3 Under Assumptions 2.1.1-2.2.1, if τ < 1/2, I have γ̂n
p→ γ0 for any

ρ ∈ (−1, 1].

Proof: Rewrite the extended model as a matrix compacted form:

Y = X′α + X(γ0)′δn + ξ,

where Y, X, X(γ0) and ξ stack yt, xt, xt(γ0) and ξt respectively. Denote X∗(γ) =

(X(γ), X − X(γ)) and define its projection matrix P∗γ = X∗(γ)(X∗(γ)′X∗(γ))−1X∗(γ)′.

After some simple algebra, I have

S S Rn(γ) = Y ′(I − P∗γ)Y = δ
′
nX(γ0)′(I − P∗γ)X(γ0)δn + 2δ′nX(γ0)′(I − P∗γ)ξ + ξ

′(I − P∗γ)ξ,

where the second equation uses the fact that X′(I − P∗γ) = 0. It follows that,

n−1+2τ(S S Rn(γ) − S S Rn(γ0))

= n−1+2τδ′nX(γ0)′(I − P∗γ)X(γ0)δn + n−1+2τ2δ′nX(γ0)′(I − P∗γ)ξ

+n−1+2τ(ξ′(I − P∗γ)ξ − ξ′(I − P∗γ0
)ξ)

≡ S ∗1 + S ∗2 + S ∗3, say.

To prove the consistency of γ̂n, it suffices to show n2τ−1(S S Rn(γ) − S S Rn(γ0))

uniformly converge to a function which takes global minimum value at γ0. In
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the following, I conduct the proof by considering two cases according to the

value of ρ.

Case 1: ρ < 1,where ξt = β
′zt + ηt is stationary process. Given τ < 1/2, using

Lemma A.2.2, it can be shown that

S ∗2 = n−1/2+τ2
(
n1/2+τδn

)′ 1
n

X(γ0)′(I − P∗γ)ξ = n−1/2+τ2δ′0
1
n

X(γ0)′(I − P∗γ)ξ = Op(n−1/2+τ)

(A.15)

and

S ∗3 = n−1+2τ(ξ′(I − P∗γ)ξ − ξ′(I − P∗γ0
)ξ) = n−1+2τ(ξ′P∗γ0

ξ − ξ′P∗γξ) = Op(n−1+2τ). (A.16)

Using a similar argument of Lemma A.5 in Hansen(2000), I can show, for any

γ ≥ γ0,

S ∗1
p→ (F(γ0) − F(γ0)F(γ)−1F(γ0))δ′0

∫ 1

0
X(s)X(s)′dsδ0 ≡ b∗1(γ) (A.17)

uniformly. Since (F(γ0) − F(γ0)F(γ)−1F(γ0)) ≥ 0 and
∫ 1

0
X(s)X(s)′ds is positive

definite matrix, b∗1(γ) ≥ 0 and the equality holds if and only if γ = γ0. Combining

all convergence results, I have

n−1+2τ(S S Rn(γ) − S S Rn(γ0))

p→ F(γ)−1F(γ0)(F(γ) − F(γ0))δ′
∫ 1

0
X(s)X(s)′dsδ0 ≡ b∗1(γ) ≥ 0.

Symmetrically, I can prove for γ ≤ γ0,

n−1+2τ(S S Rn(γ) − S S Rn(γ0))
p→ (F(γ0) − F(γ))δ′0

∫ 1

0
X(s)X(s)′dsδ0 ≡ b∗2(γ)

uniformly, where b∗2(γ) ≥ 0 and the equality holds if and only if γ = γ0. Define

b∗(γ) = b∗1(γ)I(γ ≥ γ0) + b∗2(γ)I(γ ≤ γ0). We have

n−1+2τ(S S Rn(γ) − S S Rn(γ0))
p→ b∗(γ)
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uniformly for any γ ∈ [γ, γ] and b∗(γ) takes global minimum at γ0. Therefore,

γ̂n = arg min
γ∈[γ,γ]

S S Rn(γ) = arg min
γ∈[γ,γ]

(
n−1+2τ(S S Rn(γ) − S S Rn(γ0))

) p→ γ0.

Case 2: ρ = 1, where ξt = β′zt + ηt is nonstationary since ηt is a unit root

process. Similarly, I will show that both S ∗2 and S ∗3 converge to zero and S ∗1

uniformly converges to a function which takes global minimum at γ0.

From Lemma A.2.1, I have

n−2X∗(γ)′X∗(γ)⇒

 F(γ)
∫ 1

0
X(s)X′(s)ds, 0

0, (1 − F(γ))
∫ 1

0
X(s)X′(s)ds

 ,

n−2X∗(γ)′η⇒

 F(γ)
∫ 1

0
X(s)B1(s)ds

(1 − F(γ))
∫ 1

0
X(s)B1(s)ds

 ,
and

n−2η′η⇒
∫ 1

0
B1(s)B1(s)ds,

where B1(s) is assumed to be a Brownian motion such that

1
√

n
η[ns] ⇒ B1(s).

It can be shown that

S ∗3 = n−1+2τ(ξ′(I − P∗γ)ξ − ξ′(I − P∗γ0
)ξ) = n−1+2τ(η′(I − P∗γ)η − η′(I − P∗γ0

)η) + op(1).

Note that

n−2η′X∗(γ)(X∗(γ)′X∗(γ))−1X∗(γ)′η

= n−2η′X∗(γ)(n−2X∗(γ)′X∗(γ))−1n−2X∗1(γ)′η

=

 F(γ)
∫ 1

0
X(s)B1(s)ds

(1 − F(γ))
∫ 1

0
X(s)B1(s)ds


′  (

∫ 1

0
X(s)X′(s)ds)−1

∫ 1

0
X(s)B1(s)ds

(
∫ 1

0
X(s)X′(s)ds)−1

∫ 1

0
X(s)B1(s)ds

 + op(1)

= (
∫ 1

0
X(s)B1(s)ds)′(

∫ 1

0
X(s)X′(s)ds)−1

∫ 1

0
X(s)B1(s)ds + op(1)
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which is unrelated to γ. Thus,

S ∗3 = n−1+2τ(η′P∗γη − η′P∗γ0
η) = op(1). (A.18)

To prove S ∗2 converge to zero almost surely, I first consider the case where

γ > γ0. For the case where γ ≤ γ0,the proof is similar and I skip the detail. When

γ > γ0, I have

n−2X′(γ)X(γ0) = n−2X′(γ0)X(γ0) = F(γ0)
∫ 1

0
X(s)X′(s)ds + op(1);

n−2X(γ0)′(X − X(γ)) = 0;

n−2(X − X(γ0))′X(γ) = (F(γ) − F(γ0))
∫ 1

0
X(s)X′(s)ds + op(1).

It follows that

n−2X∗(γ0)′X∗(γ)

=

 n−2 ∑n
t=1 xt(γ)x′t(γ0), n−2 ∑n

t=1 xt(γ0)(xt − xt(γ))′

n−2 ∑n
t=1(xt − xt(γ))xt(γ0)′, n−2 ∑n

t=1(xt − xt(γ0))(xt − xt(γ))′


=

 F(γ0)
∫ 1

0
X(s)X′(s)ds, 0

(F(γ) − F(γ0))
∫ 1

0
X(s)X′(s)ds, (1 − F(γ))

∫ 1

0
X(s)X′(s)ds

 + op(1).

Furthermore, it can be shown that

n−1+2τ2δ′nX(γ0)′η = 2n1/2+τδ′0n−2
n∑

t=1

xt(γ0)η⇒ 2n1/2+τδ′0

 F(γ0)
∫ 1

0
X(s)B1(s)ds,

(1 − F(γ0))
∫ 1

0
X(s)B1(s)ds

 ;

and

2n−1+2τδ′nX(γ0)′P∗γη = 2n1/2+τδ′0

 F(γ0)
∫ 1

0
X(s)X′(s)ds

(1 − F(γ0))
∫ 1

0
X(s)B1(s)ds

 + op(1).

Thus,

S ∗2 = n−1+2τ2δ′nX(γ0)′(I − P∗γ)ξ = n−1+2τ2δ′nX(γ0)′η − 2n−1+2τδ′nX(γ0)′P∗γη + op(1) = op(1).
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Using a similar argument of Case 1, I can show S ∗1
p→ b∗(γ) uniformly and

b∗(γ) takes global minimum value at γ0. Combining the convergence results for

S ∗1, S ∗2 and S ∗3, I complete the proof. Q.E.D.

Proof of Proposition 9 : The model can be written as

yt = θ′1x∗t (γ0) + ξt

= θ′1x∗t (̂γ) + ξt + θ
′
1(x∗t (γ0) − x∗t (̂γ))

= θ′1x∗t (̂γ) + ξ∗t

where x∗t (̂γ) = (xt (̂γ)′, x′t − x′t (̂γ))′, θ1 = (α′ + δ′n, α
′)′ and ξ∗t = ξt + θ

′
1(x∗t (γ0) − x∗t (̂γ)).

Noting that θ′1(x∗t (γ0) − x∗t (̂γ)) = δ′n(xt(γ0) − xt (̂γ)), I have

ξ∗t = ξt + δ
′
n(xt(γ0) − xt (̂γ)).

The residual ξ̂t (̂γ) can be expressed as

ξ̂t (̂γ) = yt − θ̂1(̂γ)′x∗t (̂γ) = ξt + δ
′
n(xt(γ0) − xt (̂γ)) + (̂θ1(̂γ) − θ1)′x∗t (̂γ) (A.19)

Next, I conduct the proof by considering two cases according to the value of

τ.

Case 1: τ < 1/2, from Lemma A.2.3, I have γ̂
p→ γ0.

If ρ = 1, ξt = β
′zt + ηt is a unit root. Thus,

θ̂1(̂γ) − θ1 =

n−2
n∑

t=1

x∗t (̂γ)x∗t (̂γ)′
−1

n−2
n∑

t=1

x∗t (̂γ)ξ∗t

⇒

 F(γ0)
∫

X(s)X(s)′ds, 0

0, (1 − F(γ0))
∫ 1

0
X(s)X(s)′ds


−1  F(γ0)

∫ 1

0
X(s)B1(s)ds

(1 − F(γ0))
∫ 1

0
X(s)B1(s)ds


=

 (
∫ 1

0
X(s)X(s)′ds)−1

∫ 1

0
X(s)B1(s)ds

(
∫ 1

0
X(s)X(s)′ds)−1

∫ 1

0
X(s)B1(s)ds

 ≡
 φφ

 , say.
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Thus, from equation (A.19), I have

ξ̂t (̂γ) = ξt + δ
′
n(xt(γ0) − xt (̂γ)) + (̂θ1(̂γ) − θ1)′x∗t (̂γ)

p→ ξt + δ
′
n(xt(γ0) − xt (̂γ)) + (φ, φ)x∗t (̂γ)

= β′zt + δ
′
n(xt(γ0) − xt (̂γ)) + ηt + φxt.

It can be shown that1ρ(̂γ) = 1 + Op( 1
n ).

If ρ < 1, then ξt = β
′zt + ηt is stationary. We have

δ′n
(
xt(γ0) − xt (̂γ)

)
= op(1)

and

n(̂θ1(̂γ) − θ1) = (n−2
n∑

t=1

x∗t (̂γ)x∗t (̂γ)′)−1n−1
n∑

t=1

x∗t (̂γ)ξt + op(1)

⇒

 F(γ0)
∫ 1

0
X(s)X(s)′ds, 0

0, (1 − F(γ0))
∫ 1

0
X(s)X(s)′ds


−1 

∫ 1

0
X(s)dWξ(s, γ0)∫ 1

0
X(s)d

(
Wξ(s) −Wξ(s, γ0)

)
 ≡ ϕξ(γ0)

say. Thus,

ξ̂t (̂γ) = ξt + δ
′
n(xt(γ0) − xt (̂γ)) + (̂θ1(̂γ) − θ1)′x∗t (̂γ)

= ξt + op(1) +
1
√

n
x∗t (̂γ)′

1
√

n
ϕξ(γ0)

p→ ξt.

Since ξt is a stationary process, it is straightforward to show that

ρ̂(̂γ) = ρ + Op(
1
√

n
).

Case 2: τ = 1/2, γ̂ is not consistent. Noting that nδn = δ0, I have

δ′n(xt(γ0) − xt (̂γ)) = Op(
1
√

n
) = op(1).

1We skip the detail to save the space, but it is available upon request.
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If ρ = 1, I have

θ̂1(̂γ) − θ1 = (n−2
n∑

t=1

x∗t (̂γ)x∗t (̂γ)′)−1n−2
n∑

t=1

x∗t (̂γ)ξt
p→

 φφ
 .

Thus,

ξ̂t (̂γ) = ξt + δ
′
n(xt(γ0) − xt (̂γ)) + (̂θ1(̂γ) − θ1)′x∗t (̂γ)

p→ ξt + (φ, φ)x∗t (̂γ) = ξt + φxt

which is an I(1) process. It can be shown that

ρ̂(̂γ) = 1 + Op(
1
n

).

If ρ < 1, I have

ξ̂t (̂γ) = ξt + δ
′
n(xt(γ0) − xt (̂γ)) + (̂θ1(̂γ) − θ1)′x∗t (̂γ)

= ξt + op(1) +
1
√

n
x∗t (̂γ)′

1
√

n
ϕξ (̂γ)

p→ ξt.

Thus,

ρ(̂γ) = ρ + Op(
1
√

n
).

Q.E.D.

Define the following for proving Lemma 2.3.1

G(γ) =


∫ 1

0
X(s)X′(s)ds, F(γ)

∫ 1

0
X(s)X′(s)ds, 0

F(γ)
∫ 1

0
X(s)X′(s)ds, F(γ)

∫ 1

0
X(s)X′(s)ds,

∫ 1

0
X(s)dsh(γ)′

0, h(γ)
∫ 1

0
X′(s)ds, H

 (A.20)

and

G1(γ) =


∫ 1

0
X(s)X′(s)ds, F(γ)

∫ 1

0
X(s)X′(s)ds, 0

F(γ)
∫ 1

0
X(s)X′(s)ds, F1(γ)

∫ 1

0
X(s)X′(s)ds,

∫ 1

0
X(s)dsh′2(γ)

0, h1(γ)
∫ 1

0
X(s)′ds, H1

 (A.21)
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Proof of Lemma 2.3.1: Let V1t(γ) = (xt, xt(γ), zt). Then, Ṽt(γ) = V1t(γ)−ρ̂V1t−1(γ).

When ρ < 1, let

D̃n = diag{n1/2Id1 , n
1/2Id1 , Id2},

G̃(γ) = G(γ) + ρ2G(γ) − ρ (G1(γ) +G1(γ))′ ,

and

ϕ̃(γ) =


σ

∫ 1

0
X1(s)dW̃(s)

σ
∫ 1

0
X1(s)dW̃(s, γ)

σJ̃2

 (A.22)

where W̃(s) = (1 − ρ)W(s), W̃(s, γ) = W(s, γ) − ρW1(s, γ) and J̃ = J2 − ρJ3.

Using Lemma A.2.1 and Proposition 9, I have

n−1
n∑

t=1

D̃−1
n Ṽt(γ)Ṽt(γ)′D̃−1

n

= n−1
n∑

t=1

D̃−1
n V1t(γ)V1,t(γ)′D̃−1

n + n−1ρ̂2
n∑

t=1

D̃−1
n V1t−1(γ)V1,t−1(γ)′D̃−1

n

−ρ̂
n∑

t=1

D̃−1
n V1t(γ)V1,t−1(γ)′D̃−1

n − ρ̂
n∑

t=1

D̃−1
n V1t−1(γ)V1,t(γ)′D̃−1

n

p→ G(γ) + ρ2G(γ) − ρ (G1(γ) +G1(γ))′ = G̃(γ).

Using Lemma A.2.2, I have

n−1/2
n∑

t=1

D̃−1
n Ṽt(γ)et =


n−1 ∑n

t=1 x̃tet

n−1 ∑n
t=1 D−1

n x̃t(γ)et

n−1/2 ∑n
t=1 z̃tet

⇒


(1 − ρ)
∫ 1

0
X1(s)dW1(s)

σ
∫ 1

0
X1(s)dW̃(s, γ)

σJ̃2

 = ϕ̃(γ).

Define Π̃(γ, γ0, δ0) = p limn→∞


n−2 ∑n

t=1 x̃t(x̃t(γ) − x̃t(γ0))′δ0

n−2 ∑n
t=1 x̃t(γ)(x̃t(γ) − x̃t(γ0))′δ0

n−3/2 ∑n
t=1 z̃t(x̃t(γ) − x̃t(γ0))′δ0

 which exists
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based on Lemma A.2.1. Then

n−3/2D̃−1
n Ṽ(γ)′(x̃t(γ) − x̃t(γ0))′δ0 =


n−2 ∑n

t=1 x̃t(x̃t(γ) − x̃t(γ0))′δ0

n−2 ∑n
t=1 x̃t(γ)(x̃t(γ) − x̃t(γ0))′δ0

n−3/2 ∑n
t=1 z̃t(x̃t(γ) − x̃t(γ0))′δ0


p→ Π̃(γ, γ0, δ0).

When ρ = 1, I can similarly prove the convergence results. Q.E.D.

Lemma A.2.4 , If τ < 1/2, when γ = γ0

√
nD̃n (̂̃θ(γ0) − θ̃)⇒ G̃(γ0)−1ϕ̃(γ0)

when γ , γ0

nτD̃n (̂̃θ(γ) − θ̃)⇒ G̃(γ)−1ϕ̃1(γ, γ0).

If τ = 1/2, when γ = γ0, I have

√
nD̃n(̂θ(γ0) − θ)⇒ G̃(γ0)−1ϕ̃(γ0)

when γ , γ0,

n1/2D̃n (̂̃θ(γ) − θ̃)⇒ G̃(γ)−1
(
Π̃(γ, γ0, δ0) + ϕ̃(γ)

)
.

Proof: Note that

ỹt = θ̃′Ṽt(γ) + η̃t + θ̃
′(Ṽt(γ) − Ṽt(γ0))

= θ̃′Ṽt(γ) + η̃t + δ
′
n(x̃t(γ) − x̃t(γ0))

= θ̃′Ṽt(γ) + η̃∗t

where η̃∗t = η̃t + δ
′
n(x̃t(γ) − x̃t(γ0)). It follows that,

(̂̃θ(γ) − θ)
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= (
n∑

t=2

Ṽt(γ)Ṽt(γ)′)−1
n∑

t=2

Ṽt(γ)̃η∗t

= (
n∑

t=2

Ṽt(γ0)Ṽt(γ0)′)−1
n∑

t=2

Ṽt(γ0)et + (
n∑

t=2

Ṽt(γ0)Ṽt(γ0)′)−1
n∑

t=2

Ṽt(γ0)(ρ − ρ̂)ηt−1

+(
n∑

t=2

Ṽt(γ0)Ṽt(γ0)′)−1
n∑

t=2

Ṽt(γ0)(x̃t(γ) − x̃t(γ0))′δn.

From Proposition 9, I have ρ − ρ̂ = op(1).

If τ < 1/2, I have

√
nD̃n (̂̃θ(γ0) − θ) = (

1
n

n∑
t=2

D̃−1
n Ṽt(γ0)Ṽt(γ0)′D̃−1

n )−1 1
√

n

n∑
t=2

D̃−1
n Ṽt(γ0)et + op(1)

⇒ G̃(γ0)−1ϕ̃(γ0)

when γ , γ0,

nτD̃n (̂̃θ(γ) − θ̃) = nτ−1/2(
1
n

n∑
t=2

D̃−1
n Ṽt(γ)Ṽt(γ)′D̃−1

n )−1 1
√

n

n∑
t=2

D̃−1
n Ṽt(γ)et

−(
1
n

n∑
t=2

D̃−1
n Ṽt(γ)Ṽt(γ)′D̃−1

n )−1 1
n

n∑
t=2

D̃−1
n Ṽt(γ)(n−1/2 x̃t(γ) − n−1/2 x̃t(γ0)′(nτ+1/2δ1n) + op(1)

⇒ G̃(γ)−1Π̃(γ, γ0, δ0).

If τ = 1/2, using a similar argument, I can prove

√
nD̃n (̂̃θ(γ0) − θ̃)⇒ G̃(γ0)−1ϕ̃(γ0)

when γ , γ0, I have

√
nD̃n (̂̃θ(γ) − θ̃)⇒ G̃(γ)−1(Π̃(γ, γ0, δ0) + ϕ̃(γ)).

Q.E.D.

Lemma A.2.5 Under Assumptions 2.1.1-2.2.1, if τ < 1/2, I have γ̃n
p→ γ0.
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Proof: To prove the consistency of γ̃n, I need prove to Pr(|̃γn − γ0| > ε)→ 0 for

every ε > 0. Denote B(ϵ) = {γ : |γ − γ0| > ε} and B(ϵ) = [γ, γ]\B(ϵ). Noting that

Pr(|̃γn − γ0| > ε) = Pr( inf
γ∈B(ϵ)

˜S S Rn(γ) < inf
γ∈B(ϵ)

˜S S Rn(γ))

≤ Pr( inf
γ∈B(ϵ)

˜S S Rn(γ) < ˜S S Rn(γ0)

= Pr( inf
γ∈B(ϵ)

n2τ−1( ˜S S Rn(γ) − ˜S S Rn(γ0)) < 0)

To prove Pr(|̃γn − γ0| > ε) → 0, it suffices to show infγ∈B(ϵ) n2τ−1( ˜S S Rn(γ) −˜S S Rn(γ0)) > 0 with probability 1. From the definition, I have

S̃ S Rn(γ) =
n∑

t=1

(̃yt −̂̃
θ(γ)′Ṽt(γ))2 =

n∑
t=2

(̃θ′Ṽt(γ) + η̃∗t −
̂̃
θ(γ)′Ṽt(γ))2

=

n∑
t=2

(̃ηt − (̂̃θ(γ) − θ̃)′Ṽt(γ) − δ′n(x̃t(γ) − x̃t(γ0)))2

=

n∑
t=2

η̃2
t + (D̃n (̂̃θ(γ) − θ̃))′(

n∑
t=2

D̃−1
n Ṽt(γ)Ṽt(γ)′D̃−1

n )D̃n (̂̃θ(γ) − θ)

+δ′n

n∑
t=2

(x̃t(γ) − x̃t(γ0))(x̃t(γ) − x̃t(γ0))′δn

−2(D̃n (̂̃θ(γ) − θ̃))′(
n∑

t=2

D̃−1
n Ṽt(γ)(x̃t(γ) − x̃t(γ0))′δn

−2(D̃n (̂̃θ(γ) − θ̃))′
 n∑

t=2

D̃−1
n Ṽt(γ)̃ηt

 − 2δ′n
n∑

t=2

(x̃t(γ) − x̃t(γ0))̃ηt)

≡ S̃ 0 + S̃ 1 + S̃ 2 − S̃ 3 − S̃ 4 − S̃ 5, say,

and

S̃ S Rn(γ0) =
n∑

t=2

(̃yt −̂̃
θ(γ0)′Ṽt(γ0))2 =

n∑
t=2

(̃ηt − (̂̃θ(γ0) − θ)′Ṽt(γ))2

=

n∑
t=1

η̃2
t + (D̃n (̂̃θ(γ0) − θ))′(

n∑
t=2

D̃−1
n Ṽt(γ)Ṽt(γ)′D̃−1

n )D̃n (̂̃θ(γ0) − θ̃)

−2(D̃n (̂̃θ(γ0) − θ̃))′
n∑

t=2

D̃−1
n Ṽt(γ)̃ηt

≡ S̃ 0 + S̃ 6 − S̃ 7, say.
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It follows that

n2τ−1(S S Rn(γ) − S S Rn(γ0)) = n2τ−1(S̃ 1 + S̃ 2 − S̃ 3 − S̃ 4 − S̃ 5 − S̃ 6 + S̃ 7).

Next, I show that n2τ−1(S̃ 1 + S̃ 2 + S̃ 3) uniformly converges to a function b̃(γ)

which is positive when γ ∈ B(ϵ), while the left terms converges to zero in prob-

ability. By Lemma A.2.5, if τ < 1/2, I have

n2τ−1(S̃ 1 + S̃ 2 − S̃ 3)

= n−1(nτD̃n (̂̃θ(γ) − θ̃))′(
n∑

t=2

D̃−1
n Ṽt(γ)Ṽt(γ)′D̃−1

n )nτD̃n (̂̃θ(γ) − θ) +

n−1(nτ+1/2δn)′
n∑

t=2

1
√

n
(x̃t(γ) − x̃t(γ0))

1
√

n
((x̃t(γ) − x̃t(γ0))′ nτ+1/2δn

−2n−1(nτD̃n (̂̃θ(γ) − θ̃))′(
n∑

t=2

D̃−1
n Ṽt(γ)(

1
√

n
x̃t(γ) − 1

√
n

x̃t(γ0))′nτ+1/2δn

= n−1
n∑

t=2

(
(nτD̃n (̂̃θ(γ) − θ̃))′D̃−1

n Ṽt(γ) + δ′0

(
1
√

n
(x̃t(γ) − 1

√
n

x̃t(γ0)
))2

⇒ b̃(γ) > 0, say.

and

n2τ−1(−S̃ 6 + S̃ 7)

= −n2τ−1(
√

nD̃n (̂̃θ(γ0) − θ))′(1
n

n∑
t=2

D̃−1
n Ṽt(γ)Ṽt(γ)′D̃−1

n )
√

nD̃n (̂̃θ(γ0) − θ̃)

+2n2τ−1(
√

nD̃n (̂̃θ(γ0) − θ̃))′ 1
√

n

n∑
t=2

D̃−1
n Ṽt(γ)̃ηt

p→ −n2τ−1λ̃(γ0)′G̃(γ0)−1λ̃(γ0) + n2τ−1λ̃(γ0)′G̃(γ0)λ(γ0)

= Op(n2τ−1) = op(1)

n2τ−1(−S̃ 4 − S̃ 5) = 2nτ−1/2(nτD̃n (̂̃θ(γ) − θ̃))′n−1/2
n∑

t=2

D̃−1
n Ṽt(γ)̃ηt

−2nτ−1/2
(
nτ+1/2δn

)′ 1
√

n

n∑
t=1

D−1
n (x̃t(γ) − x̃t(γ0))̃ηt)

= Op(nτ−1/2) = op(1)
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Thus, I complete the proof. Q.E.D.

Lemma A.2.6 Under Assumptions 2.1.1-2.2.1, if τ < 1/2, then n1−2τ |̃γn − γ0| = Op(1).

Proof: The proof of the convergence rate for γ̃ to be an = n1−2τ is similar to the

proof of Lemma A.1.3. The detail of the proof is available upon request. Q.E.D.

Lemma A.2.7 Under Assumptions 2.1.1-2.2.1, if τ < 1/2,then

n1−2τλ̃(̃γn − γ0) = r∗ ⇒ arg max
r∈(−∞,∞)

(Λ(r) − 1
2
|r|)

where

λ̃ =

(
1 + ρ2

) (
δ′0

∫ 1

0
X(s)X′(s)dsδ0

)
f0

σ2 .

Proof: The whole proof is similar to that of Lemma A.1.5. We replace all Ri

by R̃i for i = 1, 2, ..., 5. Note that

n−2
n∑

t=1

(
x̃t(γ0 +

υ

an
) − x̃t(γ0)

) (
x̃t(γ0 +

υ

an
) − x̃t(γ0)

)′
= n−2

n∑
t=1

(
(xt(γ0 +

υ

an
) − xt(γ0) − ρ̂(xt−1(γ0 +

υ

an
) − xt−1(γ0))

)
(
xt(γ0 +

υ

an
) − xt(γ0) − ρ̂(xt−1(γ0 +

υ

an
) − xt−1(γ0))

)′
⇒

(
1 + ρ2

)
(F(γ0 +

υ

an
) − F(γ0))

∫ 1

0
X(s)X′(s)ds − 2ρ(F1(γ0 +

υ

an
, γ0 +

υ

an
) +

F1(γ0, γ0) − F1(γ0 +
υ

an
, γ0) − F1(γ0, γ0 +

υ

an
))

∫ 1

0
X(s)X′(s)ds

=
(
1 + ρ2

)
f (γ0)

υ

an

∫ 1

0
X(s)X′(s)ds + o(1).

Thus,

R̃1 = δ′n

n∑
t=2

(
x̃t(γ0 +

υ

an
) − x̃t(γ0)

) (
x̃t(γ0 +

υ

an
) − x̃t(γ0)

)′
δn
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= n1−2τnτDnδ
′
1n

1
n

n∑
t=1

D−1
n

(
x̃t(γ0 +

υ

an
) − x̃t(γ0)

)
D−1

n

(
x̃t(γ0 +

υ

an
) − x̃t(γ0)

)′
nτDnδn

= anδ
′
1
1
n

n∑
t=1

D−1
n

(
x̃t(γ0 +

υ

an
) − x̃t(γ0)

)
D−1

n

(
x̃t(γ0 +

υ

an
) − x̃t(γ0)

)′
δ1

⇒ an(
(
1 + ρ2

)
f (γ0)(

υ

an
)δ′1

∫ 1

0
X(s)X′(s)dsδ1

=
(
1 + ρ2

)
f0|v|δ′0

∫ 1

0
X(s)X′(s)dsδ0

For R̃2, I have

R̃2 = −2
n∑

t=1

δ̂′n

(
x̃t(γ0 +

υ

an
) − x̃1t(γ0)

)
η̃

= −2n1/2−τnτ+1/2δ′n
1
n

n∑
t=1

(
x̃t(γ0 +

υ

an
) − x̃t(γ0)

)
et + op(1)

= −2
√

anδ
′
0
1
n

n∑
t=1

(
x̃t(γ0 +

υ

an
) − x̃t(γ0)

)
et + op(1)

⇒ −2σ
√

anδ
′
0

∫ 1

0
X(s)d

(
W(s, γ0 +

υ

an
) −W(s, γ0) + ρ(W1(s, γ0 +

υ

an
) −W1(s, γ0))

)
= −2σδ′0B̃(υ).

It can be shown other terms are asymptotically negligible, by which I complete

the proof. Q.E.D.

Lemma A.2.8 Under Assumptions 2.1.1-2.2.1, if τ = 1/2, then γ̃n ⇒ γ̃(γ0, δ0).

γ̃(γ0, δ0) is a random variable that maximizes Q̃(γ, γ0, δ0) where

Q̃(γ, γ0, δ0) = Γ̃1(γ)

G̃22(γ) −

 G̃21(γ)

G̃23(γ)


′  G̃11, G̃13

G̃31, G̃33


−1  G̃12(γ)

G̃32(γ)



−1

Γ̃1(γ)′

with

Γ̃1(γ) = Γ̃(γ) +

G̃22(γ) −

 G̃21(γ)

G̃23(γ)


′  G̃11, G̃13

G̃31, G̃33


−1  G̃12(γ)

G̃32(γ)


 δ0,
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and

Γ̃(γ) = ϕ̃2(γ) −

 G̃21(γ)

G̃23(γ)


′  G̃11, G̃13

G̃31, G̃33


−1  ϕ̃1(γ)

ϕ̃3(γ)

 .
Proof: Let Ṽ1 = (X̃, Z̃), and D̃1n = diag{D̃11, D̃33}where D̃11, D̃33 are components in

D̃n = diag{D̃11, D̃22, D̃33}. After some standard algebra, I have

S̃ S Rn − S̃ S Rn(γ) = δ̃n(γ)′(X̃(γ)′(I − P̃(γ))X̃(γ))̃δn(γ)

where P̃(γ) is the projection matrix for Ṽ1. By plugging in

δ̃n(γ) = (X̃(γ)′(I − Pn)X̃(γ))−1X̃(γ)′(I − P̃(γ))Ỹ

I have

S̃ S Rn − S̃ S Rn(γ) = (I − P̃(γ))Ỹ ′X̃(γ)(X̃(γ)′(I − P̃(γ))X̃(γ))−1X̃(γ)′(I − P̃(γ))Ỹ

= Γ̃n(γ)′(n−2X̃(γ)′(I − P̃(γ))X̃(γ))−1Γ̃n(γ)

where

Γ̃n(γ) =
1
n

X̃(γ)′(I − P̃(γ))Ỹ .

From Lemma 2.3.1, I have

1
n

D̃−1
1n Ṽ ′1Ṽ1D̃−1

1n
p→

 G̃11(γ), G̃13(γ)

G̃31(γ), G̃33(γ)

 ,
and

n−2X̃(γ)′X̃(γ)
p→ G̃22(γ),

n−3/2X̃(γ)′Ṽ1D̃−1
1n =

 n−2X̃′(γ)X̃,

n−3/2X̃(γ)′Z̃

 p→

 G̃21(γ)

G̃23(γ)

 ,
n−3/2D̃−1

1n Ṽ ′1X̃(γ)
p→

 G̃12(γ)

G̃32(γ)

 .
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Thus,

n−2X̃′(γ)(I − P̃(γ))X̃(γ)
p→ G̃22(γ) −

 G̃21(γ)

G̃23(γ)


′  G̃11, G̃13

G̃31, G̃33


−1  G̃12(γ)

G̃32(γ)

 .
Next, I consider the limiting behavior of Γ̃n(γ).

Γ̃n(γ) =
1
n

X̃(γ)′(I − P̃(γ))Ỹ

=
1
n

X̃(γ)′η̃ − 1
n

X̃(γ)′Ṽ1(Ṽ ′1Ṽ1)−1Ṽ ′1η̃ +
1
n

X̃(γ)′(I − P̃(γ))X̃(γ0)δn

=
1
n

X̃(γ)′η̃ − 1
n

X̃(γ)′Ṽ1(Ṽ ′1Ṽ1)−1Ṽ ′1η̃ +
1
n2 X̃(γ)′X̃(γ0)δ0

−n−3/2X̃(γ)′Ṽ1D̃−1
1n (n−1D̃−1

1n Ṽ ′1Ṽ1D̃−1
1n )−1n−3/2D̃−1

1n Ṽ ′1X̃(γ)δ0

⇒ Γ̃(γ) +

G̃22(γ) −

 G̃21(γ)

G̃23(γ)


′  G̃11, G̃13

G̃31, G̃33


−1  G̃12(γ)

G̃32(γ)


 δ0 = Γ̃1(γ).

Combining the above convergence results, I have

S̃ S Rn − S̃ S Rn(γ) ⇒ Q̃(γ, γ0, δ0)

= Γ̃1(γ)′

G̃22(γ) −

 G̃21(γ)

G̃23(γ)


′  G̃11, G̃13

G̃31, G̃33


−1  G̃12(γ)

G̃32(γ)



−1

Γ̃1(γ).

Thus,

γ̃n = arg max
γ∈[γ,γ]

(
S̃ S Rn − S̃ S Rn(γ)

)
⇒ γ̃(γ0, δ0) = arg max

γ∈[γ,γ]
Q̃(γ, γ0, δ0).

Q.E.D.

Proof of Theorem 2.3.1: Combining the results from Lemma A.2.5-A.2.8, I

complete the proof. Q.E.D.

Proof of Theorem 2.3.2: If τ < 1/2, from Lemma A.2.6, I have |̃γn−γ0| = op(1).

Next, I will show that

√
nD̃n (̂̃θ(γ0) −̂̃

θ(̃γn)) = op(1)
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and then use Lemma A.2.5 to obtain the limiting distribution of ̂̃θ(̃γn).

Note that

√
nD̃n (̂̃θ(̃γn) −̂̃

θ(γ0)) =
√

nD̃n (̂̃θ(̃γn) − θ̃) −
√

nD̃n (̂̃θ(γ0) − θ̃))

= (n−1
n∑

t=2

D̃−1
n Ṽt (̃γn)D̃−1

n Ṽt (̃γn)′)−1n−1/2
n∑

t=1

D̃nṼt (̃γn)̃ηt

−(n−1
n∑

t=2

D̃−1
n Ṽt(γ0)D̃−1

n Ṽt(γ0)′)−1n−1/2
n∑

t=1

D̃nṼt(γ0)̃ηt + op(1).

From Lemma A.2.1, I have

n−1
n∑

t=2

D̃−1
n Ṽt (̃γn)D̃−1

n Ṽt (̃γn)′ − n−1
n∑

t=2

D̃−1
n Ṽt(γ0)D̃−1

n Ṽt(γ0)′ = Op(̃γn − γ0) = op(1)

and

n−1/2
n∑

t=1

D̃nṼt (̃γn)̃ηt − n−1/2
n∑

t=1

D̃nṼt(γ0)̃ηt = Op(
√
|̃γn − γ0|) = op(1).

Thus, I have

√
nD̃n (̂̃θ(̃γn) −̂̃

θ(γ0)) = op(1).

It follows that

√
nD̃n (̂̃θ(̃γn) − θ̃) =

√
nD̃n (̂̃θ(γ0) − θ̃) + op(1)⇒ G̃(γ0)−1ϕ̃(γ0).

If τ = 1/2, using a similar argument, I have

n1/2D̃n (̂̃θ(̃γ) − θ̃)⇒ G̃(̃γn)−1
(
Π̃(̃γn, γ0, δ0) + ϕ̃(̃γn)

)
.

where

γ̃n ⇒ γ̃(γ0, δ1) = arg max
γ∈[γ,γ]

Q̃(γ, γ0, δ).

Q.E.D.
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Proof of Theorem 2.4.1 Let Ṽ1 = (X̃, Z̃), and D̃1n = diag{D̃11, D̃33} where

D̃11, D̃33 are components in D̃n = diag{D̃11, D̃22, D̃33}. By plugging δ̃n(γ), I have

T̃n(γ) = δ̃n(γ)′(X̃(γ)′(I − P(γ))X̃(γ))̃δn(γ)/σ̃2

= (I − Pn)Ỹ ′X̃(γ)(X̃(γ)′(I − Pn)X̃(γ))−1X̃(γ)′(I − Pn)Ỹ/σ̃2

= Γ̃n(γ)′(n−2X̃(γ)′(I − Pn)X̃(γ))−1Γ̃n(γ)/σ̃2

where

Γ̃n(γ) =
1
n

X̃(γ)′(I − Pn)Ỹ .

From Lemma 2.3.1, I have

1
n

D̃−1
1n Ṽ ′1Ṽ1D̃−1

1n
p→

 G̃11(γ), G̃13(γ)

G̃31(γ), G̃33(γ)


and

n−2X̃(γ)′X̃(γ)
p→ G̃22(γ),

n−3/2X̃(γ)′Ṽ1D̃−1
1n =

 n−2X̃(γ)′X̃

n−3/2X̃(γ)′Z̃

 p→

 G̃21(γ)

G̃23(γ)

 ,

n−3/2D̃−1
1n Ṽ ′1X̃(γ)

p→

 G̃12(γ)

G̃32(γ)

 .
Thus,

n−2X̃(γ)′(I − Pn)X̃(γ)
p→ G̃22(γ) −

 G̃21(γ)

G̃23(γ)


′  G̃11, G̃13

G̃31, G̃33


−1  G̃12(γ)

G̃32(γ)

 .
Next, I consider the limiting behavior of Γ̃n(γ). Under the null hypothesis,

(I − Pn)Ỹ = (I − Pn)̃η, and

Γ̃n(γ) =
1
n

X̃′(γ)(I − Pn)Ỹ =
1
n

X̃(γ)′η̃ − 1
n

X̃(γ)′Ṽ1(Ṽ ′1Ṽ1)−1Ṽ ′1η̃
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⇒ ϕ̃2(γ) −

 G̃21(γ)

G̃23(γ)


′  G̃11, G̃13

G̃31, G̃33


−1  ϕ̃1(γ)

ϕ̃3(γ)

 = Γ̃(γ).

Combining the above convergence results, I have

T̃n(γ)⇒ 1
σ2 Γ̃(γ)′

G̃22(γ) −

 G̃21(γ)

G̃23(γ)


′  G̃11, G̃13

G̃31, G̃33


−1  G̃12(γ)

G̃32(γ)



−1

Γ̃(γ).

Q.E.D.
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APPENDIX B

APPENDIX OF CHAPTER 3

B.1 Procedures to generate Size-corrected power for bootstrap

tests:

Suppose WT is a test statistic and {W∗
T } is a set of bootstrapping test statistics {W∗

T },

which is constructed by applying the same test procedure to artificial samples

obtained by drawing observations from the original sample with replacement.

An ideal bootstrap test would reject the null if

WT > F̂−1
W∗T

(α).

The consistency of the bootstrapping tests is based on the assumption that

W∗
T should approximate the distribution of WT under null very well as the num-

ber of bootstrapping grows to infinity. F̂−1
W∗T

(α) is obtained from Monte Carlo

simulations. However, the problem is that F̂W∗T may be not exactly the same as

FWT , so the rejecting power of the test is not exactly 1 − α. In our case, when the

sample size is finite, both linear models and nonparametric models based on

finite series expansion are not exactly the true model under null. Thus, there

will exist size distortions for both tests. Thus, a size-corrected power should

be used. The basic idea is to continue using the F̂W∗T distribution, but with the

critical value that corresponds to the desired level, in which the size is correct.

Define

αc = F̂W∗T (F̂−1
WT

(α)). (B.1)
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Now the size corrected power bootstrap test would reject the null if

WT > F̂−1
W∗T

(αc).

The practical procedures for performing size-corrected power for a bootstrap

test is following

Step1 Estimate F̂−1
WT

(α) by Monte Carlo simulations under the null hypothesis

and apply the bootstrapping methods to these simulated data to obtain

the estimated distribution: F̂W∗T .

Step 2 Calculate αc with the formula in Equation (B.1).

Step 3 generate a different data set under alternative hypothesis and calculate

WT . Then, generate BN bootstrapping estimators:{W∗
T,b}BN

b=1. Reject the null

if WT > F̂−1
W∗T,b

(αc).

Step 4 repeat step 3 N times and calculate the size-corrected power using the for-

mula

#{WT > F̂−1
W∗T,b

(αc)}
N

.

B.2 Mathematical Proof

Through out the appendix, the norm || · || for a matrix A is defined by ||A|| =

[tr(A′A)]1/2,where tr(·) is the trace operator. I also introduce a matrix norm ||A||1 =

supl:||l||≤1 ||Al||. Thus, when A is symmetric and positive definite, ||A||1 is the largest

eigenvalue of A.

Define Q̂L =
1
T

∑T
t=1 pL(xt)pL(xt)′ and Q̂L(γ) =

∑T
t=1

(
pL(xt)pL(xt)′1(zt ≤ γ)

)
/T1,γ

where T1,γ =
∑T

t=1 1(zt ≤ γ) for any γ ∈ [γ, γ]. Let QL and QL(γ) be moment
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functional as follows:

Q = E[pL(xt)pL(xt)′],

QL(γ) = E
[
pL(xt)pL(xt)′1(zt ≤ γ)

]
.

Lemma B.2.1 provides the convergence rate of the estimator Q̂L and Q̂L(γ).

Lemma B.2.1 Under Assumptions 3.1.1-3.2.3, the following results hold:

||Q̂L − QL|| = Op(
ς2(L)L
√

T
) = op(1),

||Q̂L(γ) − QL(γ)|| = Op(
ς2(L)L
√

T
) = op(1).

Proof: By stationarity of xt, I have

E|| 1
T

T∑
t=1

pL(xt)pL(xt)′ − QL||2

=

L∑
i=1

L∑
j=1

E

 1
T

T∑
t=1

pL
i (xt)pL

j (xt) − Qi j

2

=

L∑
i=1

L∑
j=1

E

 1
T

T∑
t=1

(pL
i (xt)pL

j (xt) − Qi j)

2

=
1
T

L∑
i=1

L∑
j=1

E
(
pL

i (xt)pL
j (xt) − Qi j

)2

+
2
T

L∑
i=1

L∑
j=1

T−1∑
s=1

(1 − s
T

)cov
(
pL

i (x1)pL
j (x1), pL

i (x1+s)pL
j (x1+s)

)
= A1 + A2,

where Qi j is the (i, j)th element of the matrix QL. Note that Qi j = E(pL
i (xt)pL

j (xt)),

by Assumption 3.2.2, it can be shown that

A1 =
1
T

L∑
i=1

L∑
j=1

E
(
pL

i (xt)pL
j (xt) − Qi j

)2
≤ 1

T

L∑
i=1

L∑
j=1

E[pL
i (xt)2 pL

j (xt)2] = Op(
ς4(L)L2

T
).
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As for A2, since β−mixing implies α−mixing, Assumption 3.1.1 indicates that {xt}

is an α − mixing process with exponential decay. i.e.,

sup
t

sup
A∈zt

−∞,B∈z∞t+s

| Pr(A ∩ B) − Pr(A) Pr(B)| ≤ α(s)a.s.

for any s > 0, and lims→∞ E(α(s))) = 0 at an exponential rate. Note that zt2
t1 is the

σ − f ield generated by {xt : t1 ≤ t ≤ t2}. Furthermore, pL
i (·) is Borel measurable

for any i, thus, {pL
i (xt)} is also α − mixing with the same rate (see White and

Domowitz, 1984).

Moreover,

cov
(
pL

i (x1)pL
j (x1), pL

i (x1+s)pL
j (x1+s)

)
≤ E

(
pL

i (x1)pL
j (x1)pL

i (x1+s)pL
j (x1+s)

)
≤ E

[
α(s)ς4(L)

]
since |pL

i (x)pL
j (x)| ≤ ς2(L) for all i and j. It follows that

A2 =
2
T

L∑
i=1

L∑
j=1

T−1∑
s=1

(1 − s
T

)cov
(
pL

i (x1)pL
j (x1), pL

i (x1+s)pL
j (x1+s)

)
≤ 2ς4(L)L2

T

T−1∑
s=1

(1 − s
T

)α(s)

 .
Using the Kronecker lemma,

∑T−1
s=1 (1 − s

T )α(s) → ∑∞
s=1 α(s) < ∞ as T → ∞ since

α(s)→ 0 at an exponential rate. Therefore,

|A2| = Op(
ς4(L)L2

T
)

which complete the proof of first result.

The proof of the second result is very similar and I skip the detail. Q.E.D.

Lemma B.2.2 Under Assumptions 3.1.1-3.2.3, the following results hold:

||G
′U
T
|| = Op(

ς(L)L1/2

T 1/2 ) = op(1),

||G(γ)′U
T
|| = Op(

ς(L)L1/2

T 1/2 ) = op(1).
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Proof: Note that E(pL(xt)ut) = 0 since E(ut|zt, xt, zt) = 0, thus

E(||G
′U
T
||2) = T−2

L∑
i=1

E(
T∑

t=1

pL
i (xt)ut)2,

where T−1E(
∑T

t=1 pL
i (xt)ut)2 ≤ E(pL

i (xt)ut)2 + 2
∑T−1

s=1 (1− s
T )|cov(pL

i (x1)u1, pL
i (x1+s)u1+s)|

by stationarity of xt. Furthermore, the first term is Op(ς(L)2) since E(pL
i (xt)ut)2 =

E(pL
i (xt)2E(ut)2. For the second term, note that E(pL

i (xs)us) = 0. Using a similar

idea as the proof of Lemma B.2.1, I thus have

|cov(pL
i (x1)u1, pL

i (x1+s)u1+s)| ≤ E(pL
i (x1)u1 pL

i (x1+s)u1+s) ≤ E(α(s)1−2/rς(L)2(E(|u1+s|4)2/r,

where the second inequality uses the Hölder’s inequality. Since
∑T−1

s=1 (1 −
s
T )α(s)1−2/r < ∞ and (E(|us|r)2 ≤ E(|us|2r < ∞ for r > 2 by Assumption 3.1.1,

T−1E(
T∑

t=1

pL
i (xt)ut)2 ≤ Op(ς(L)2) + 2

T−1∑
s=1

(1 − s
T

)E(α(s)1−2/rς(L)2(E(|us|r)2/r = Op(ς(L)2).

It follows immediately that

E(||G
′U
T
||2) = T−2

L∑
i=1

E(
T∑

t=1

pL
i (xt)ut)2 ≤ T−1LOp(ς(L)2) = Op(

ς(L)2L
T

).

which completes the proofs.

The proof of the second result is very similar and I skip the detail. Q.E.D.

Define e1 = (e11, e12, ...e1T )′ and e1 = (e21, e22, ...e2T )′, where e1t and e2t are the

approximation error for g1(xt) and g2(xt) using the linear combination pL(xt)β1.

More specifically, e1t = g1(xt) − pL(xt)β1 and e2t = g2(xt) − pL(xt)β2 with β1 and β2

are vectors satisfying Assumption 3.2.3.

Lemma B.2.3 Under Assumption 3.1.1-3.2.3, for i = 1, 2, and γ ∈ [γ, γ], the following

results hold:

|| 1
T

G′ei|| = ||
1
T

T∑
t=1

pL(xt)eit|| = Op(
ς(L)L1/2−ρi

√
T

) = op(1),

|| 1
T

G(γ)′ei|| = ||
1
T

T∑
t=1

pL(xt)I(zt ≤ γ)eit|| = Op(
ς(L)L1/2−ρi

√
T

) = op(1).
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Proof: Because 1
T

(∑T
t=1 pL

i (xt)
)2
= Op(ς(L)2), it holds that

E(|| 1
T

T∑
t=1

pL(xt)eit||2) =
1

T 2

L∑
i=1

E(
T∑

t=1

pL
i (xt)eit)2 ≤ 1

T 2

L∑
i=1

E

 T∑
t=1

pL
i (xt)CL−ρi

2

≤ C2L1−2ρiς(L)2/T

for some constant 0 < C < ∞with a similar argument in Lemma B.2.2. The proof

of the second result is very similar and I skip the detail. Q.E.D.

Define ΣL = E(pL(xt)pL(xt)′σ2(xt)) and ΣL,γ = E(pL(xt)pL(xt)′σ2(xt)|zt ≤ γ).

Lemma B.2.4 Under Assumptions 3.1.1-3.2.3, for i = 1, 2, and γ ∈ [γ, γ]

1
√

T

T∑
t=1

ω′Σ−1/2
L pL(xt)ut ⇒ N(0, 1),

1√
Tγ

T∑
t=1

ω′Σ−1
L,γpL(xt)I(zt ≤ γ)ut ⇒ N(0, 1),

for some L × 1 fixed vector ω satisfying ||ω|| = 1.

Proof: Define a random variable zt = ω
′(ΣL)−1/2 pL(xt)ut, then {zt} is a martingale

difference sequence. Moreover, zt is at most α − mixing with the same mixing

coefficients as {xt}. By the martingale central limit theorem, (see White, 1999,

Theorem 5.24), I just need to show the following sufficient conditions for the

generalized Lindeberg condition hold: for a fixed ϵ > 0, 1
T

∑T
t=1 E(z2

t 1(z2
t > T ϵ)

p→

0 and 1
T

∑T
t=1 z2

t − 1
p→ 0. Note that ||zt|| ≤ ||(ΣL)−1/2|| × ||pL(xt)|||ut/σ| ≤ C1L1/2ς(L)|ut|

for some finite constant C1 > 0. Thus, E(z4
t ) ≤ C4

1L2ς4(L)E|ut|4 = Op(L2ς4(L)) since

E|ut|4 < ∞ by Assumption 3.1.2. It follows that

1
T

T∑
t=1

E(z2
t 1(z2

t > T ϵ) ≤ 1
T

T∑
t=1

E(z4
t )

T ϵ
=

1
T ϵ

C2L2ς4(L)) = Op(
L2ς4(L)

T
) = op(1)

by using the Cauchy-Schwartz and Chebyshev’s inequalities.
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Note that E( 1
T

∑T
t=1 z2

t ) = E(z2
t ) = 1. To prove 1

T

∑T
t=1 z2

t − 1
p→ 0, I just need to

show E( 1
T

∑T
t=1 z2

t − 1)2 → 0. Moreover, I have

E(
1
T

T∑
t=1

z2
t − 1)2 =

1
T

E
[
(z2

t − 1)
]2
+ 2

1
T 2

T−1∑
s=1

(1 − s
T

)E
[
(z2

1 − 1)(z2
1+s − 1)

]
where

1
T

E
[
(z2

t − 1)
]2
=

1
T

(E(z4
t ) − 2E(z2

t ) + 1) = Op(
L2ς4(L)

T
) = op(1).

and

E
[
(z2

1 − 1)(z2
1+s − 1)

]
= Cov(z2

1, z
2
1+s)

since E(z2
1) = E(z2

1+s) = 1. Using an analogy argument in Lemma B.2.1, I have

cov(z2
1, z

2
1+s) ≤ α(s)1−2/r(E(|z2

1+s|r)2/r ≤ α(s)1−2/r(C2r
1 Lrς2r(L)E|ut|2r)2/r

= α(s)1−2/rC2
1L2ς4(L)(E|ut|2r)2/r

≤ α(s)1−2/rC2L2ς4(L).

Thus, I have

E(
1
T

T∑
t=1

z2
t − 1)2 = Op(

L2ς4(L)
T

) + 2
1

T 2

T−1∑
s=1

(1 − s
T

)E
[
(z2

1 − 1)(z2
1+s − 1)

]
= Op(

L2ς4(L)
T

) = op(1).

Therefore, 1
T

∑T
t=1 z2

t − 1
p→ 0. It follows that 1√

T

∑T
t=1 zt ⇒ N(0, 1) by apply-

ing the martingale central limit theorem, which completes the proof of the first

result. The proof of the second result is very similar and I skip the detail. Q.E.D.

Proof of Theorem 3.2.1: The proof is completed by applying the Theorem 1

of Newey (1997) in each regime. Q.E.D.

Define G1(γ) = GI1(γ) and G2(γ) = GI2(γ). Let G1 = GI1(γ0) and G2 = GI2(γ0).
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Proof of Theorem 3.2.2 First note that

β̂i = (G′iGi)−1G′iY = βi + (G′iGi)−1G′iε

where ϵ = I1(γ0)e1 + I2(γ0)e2 + U. Thus,

√
T1,γ0Ω

−1/2
1,γ0

(̂β1 − β1) =
√

T1,γ0Ω
−1/2
1,γ0

(G′1G1)−1G′1ε

=
√

T1,γ0Ω
−1/2
1,γ0

(G′1G1)−1G′1e1 +
√

T1,γ0Ω
−1/2
1,γ0

(G′1G1)−1G′1u

= H1 + H2.√
T2,γ0Ω

−1/2
2,γ0

(̂β1 − β1) =
√

T2,γ0Ω
−1/2
2,γ0

(G′2G2)−1G′2ε

=
√

T2,γ0Ω
−1/2
2,γ0

(G′2G2)−1G′2e2 +
√

T2,γ0Ω
−1/2
2,γ0

(G′2G2)−1G′2u

= H3 + H4.

It can be shown that H1 and H3 is asymptotically negligible since

H1 = ||
√

T1,γ0Ω
−1/2
1,γ0

(G′1G1)−1G′1e1|| ≤ ||Ω−1/2
1,γ0

(G′1G1)−1G′1|| ∗ ||
√

T1,γ0e1||

= Op(L−ρ1
√

T1,γ0)→ 0

and

H3 = ||
√

T2,γ0Ω
−1/2
2,γ0

(G′2G2)−1G′2e2|| ≤ ||Ω−1/2
2,γ0

(G′2G2)−1G′2|| ∗ ||
√

T2,γ0e2||

= Op(L−ρ2
√

T2,γ0)→ 0.

by Cauchy-Schwartz inequality.

By Lemma B.2.1 and Lemma B.2.4,

H2 =
√

T1,γ0ω
′Ω−1/2

1,γ0
(G′1G1)−1G′1u

d→ N(0, 1),

H4 =
√

T2,γ0ω
′Ω−1/2

2,γ0
(G′2G2)−1G′2u

d→ N(0, 1).

It follows immediately that

√
T1,γ0ω

′Ω−1/2
1,γ0

(̂β1(γ0) − β1)
d→ N(0, 1),
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√
T2,γ0ω

′Ω−1/2
2,γ0

(̂β2(γ0) − β2)
d→ N(0, 1).

Using a similar argument, I can show

√
T1,γ0W

−1/2
1,γ0

(̂g1,γ0(x) − g1(x))
d→ N(0, 1),

√
T2,γ0W

−1/2
2,γ0

(̂g2,γ0(x) − g2(x))
d→ N(0, 1).

Q.E.D.

Lemma B.2.5 Under Assumptions 3.1.1-3.2.4, γ̂T
p→ γ0.

Proof: The true model can be rewritten as

Y = I1(γ0)(Gβ1 + e1) + I2(γ0)(Gβ2 + e2) + U,

= I1(γ0)Gβ1 + I2(γ0)Gβ2 + ϵ

= Gβ2 + I1(γ0)G(β1 − β2) + ϵ

= Gβ2 +G1δ + ϵ

where ϵ = I1(γ0)e1+I2(γ0)e2+U. For a given γ ∈ Γ = [γ, γ], I estimate the following

model

Y = Gβ̂2(γ) +G1(γ)̂δ(γ) + ϵ̂

where β̂2(γ) and δ̂(γ) are L × 1 vectors of OLS coefficient estimators.

The estimator γ̂T = arg minγ∈[γ,γ] S S RT (γ) ,where S T (γ) denotes the residual

sum of squares S S RT (γ) =
∥∥∥∥Y −Gβ̂2(γ) −G1(γ)̂δ(γ)

∥∥∥∥2
. To prove the consistency

of γ̂, I just need to prove that S S RT (γ) will uniformly converge to a function R(γ)

which takes minimum value at the true break point γ0. It is equivalent to prove
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RT (γ) = T−1(S S RT (γ) − u′u) uniformly converge to a function which takes global

minimum at γ0.

Let G∗(γ) = [G, G1(γ)] and P∗γ = G∗(γ)(G∗(γ)′G∗(γ))−1G∗(γ)′. After some stan-

dard algebra, I have

RT (γ) = T−1(S S RT (γ) − ϵ′ϵ) = T−1(Y ′(I − P∗γ)Y
′ − ϵ′ϵ)

= T−1(−ϵ′P∗γϵ′ + 2δ′G1(γ0)′(I − P∗γ)ϵ + δ
′(G1(γ0)′(I − P∗γ)G1(γ0))δ).

By Lemma B.2.2 and Lemma B.2.3, it can be shown that, for any γ ∈ Γ = [γ, γ],

T−1(S S RT (γ) − ϵ′ϵ) = T−1(Y ′(I − P∗γ)Y
′ − ϵ′ϵ)

= T−1δ′(G1(γ0)′(I − P∗γ)G1(γ0))δ + op(1).

Note that the projection matrix P∗γ can be written as the projection matrix onto

[G1(γ), G2(γ)] where G2(γ) = G − G1(γ). Given γ > γ0, G1(γ0)′G2(γ) = 0 and

G1(γ0)′G1(γ) = G1(γ0)′G2(γ0), by Lemma B.2.1 , it can be further shown that

T−1δ′(G1(γ0)′(I − P∗γ)G1(γ0))δ = δ′(Q1(γ0) − Q1(γ0)Q−1
1 (γ)Q1(γ0))δ ≡ R1(γ).

For any γ > γ0,

Q1(γ0) − Q1(γ0)Q−1
1 (γ)Q1(γ0) = Q1(γ0)Q−1

1 (γ)(Q1(γ) − Q1(γ0))

is positive definite matrix since all three matrices: Q1(γ0),Q−1
1 (γ), (Q1(γ) − Q1(γ0)

are positive definite based on Assumption 3.2.4. Thus, R1(γ) > 0 for any γ > γ0.

Symmetrically, when γ < γ0, I can show that T−1(S S RT (γ) − ϵ′ϵ)→ R2(γ), and

R2(γ) > 0 for any γ < γ0. Moreover, when γ = γ0, T−1(S S RT (γ) − ϵ′ϵ) → 0. Define

a function

R(γ) =


R2(γ), ifγ < γ0

0, ifγ = γ0

R1(γ), otherwise


.
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Combining the above results, I have

T−1(S S RT (γ) − ϵ′ϵ)→ R(γ)

uniformly for any γ ∈ Γ = [γ, γ] and R(γ) takes minimum value at γ = γ0

uniquely. In summary,

γ̂ = arg min
γ∈[γ,γ]

(S S RT (γ))
p→ γ0.

Q.E.D.

Lemma B.2.6 Under Assumptions 3.1.1-3.2.4, T (̂γT − γ0) = Op(1).

Proof: To prove γ̂T converge to γ0 with rate T, I only need to prove, for any v > 0,

lim
T→∞

Pr(|̂γT − γ0| ≤ v/T ) = 1.

For each B > 0, define VB = {γ : |γ − γ0| < B}. When T is large enough, I have

v/T < B. Since γ̂T
p→ γ0 according to Lemma A.4, Pr({̂γT ∈ VB})

p→ 1. Therefore, I

only need to examine the limiting behavior of γ in VB. Define a subset

VB(v) = {γ : v/T < |γ − γ0| < B}.

and VB(v) ⊂ VB. To prove Pr(|̂γT − γ0| ≤ v/T ) = 1, I just need to prove Pr(̂γT ∈

VB(v)) = 0. Let β̂2 and δ̂ as the estimation of β̂2(̂γT ) and δ̂(̂γT ). Define S S R∗T (γ0) =∥∥∥∥Y −Gβ̂2 −G1(γ0)̂δ
∥∥∥∥2

and S S R∗T (γ) =
∥∥∥∥Y −Gβ̂2 −G1(γ)̂δ

∥∥∥∥2
. From the definition of

γ̂T , I have S S R∗T (̂γT ) ≤ S S R∗T (γ0). Therefore, it suffices to prove that for any γ ∈

VB(v), S S R∗T (γ) > S S R∗T (γ0) with probability 1.

Now, I consider the case with γ > γ0. Using an argument of symmetry, I can,

without loss of generality, prove the result for the case of γ < γ0. Given γ > γ0, it
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is equivalent to prove

S S R∗T (γ) − S S R∗T (γ0)
T (γ − γ0)

> 0.

Let pL(xt, γ) = pL(xt)I(zt ≤ γ). Then

S S R∗T (γ) − S S R∗T (γ0)

=

T∑
t=1

(yt − β̂′2 pL(xt) − δ̂′pL(xt, γ))2 −
T∑

t=1

(yt − β̂′2 pL(xt) − δ̂′pL(xt, γ0))2

=

T∑
t=1

δ̂′(pL(xt, γ) − pL(xt, γ0))(pL(xt, γ) − pL(xt, γ0))′̂δ − 2
T∑

t=1

δ̂′(pL(xt, γ) − pL(xt, γ0))ε

+2̂δ′(pL(xt, γ) − pL(xt, γ0))(pL(xt, γ) − pL(xt, γ0))′(̂θ − θ)

=

T∑
t=1

δ′(pL(xt, γ) − pL(xt, γ0))(pL(xt, γ) − pL(xt, γ0))′δ − 2̂δ′
T∑

t=1

(pL(xt, γ) − pL(xt, γ0))ε

+2̂δ′
T∑

t=1

(pL(xt, γ) − pL(xt, γ0))(pL(xt, γ) − pL(xt, γ0))′(̂θ − θ) +

2
T∑

t=1

(̂δ + δ)′(pL(xt, γ) − pL(xt, γ0))(pL(xt, γ) − pL(xt, γ0))′(̂δ − δ)

≡ R1 − R2 + R3 + R4, say.

Next, I will show that

R1 + R2 + R3 + R4

T (γ − γ0)
> 0

almost surely. First, I have

R1

T
=

1
T

T∑
t=1

δ′(pL(xt, γ) − pL(xt, γ0))(pL(xt, γ) − pL(xt, γ0))′δ

= δ′(QL(γ) − QL(γ0))δ + op(1) = δ′Dδ(γ − γ0),

where the last equation uses the first order Taylor approximation of QL(γ)

around γ0. Noting that v/T < |γ − γ0| < B, I have
√

v <
√

T
√

(|γ − γ0|). Thus,

there exists k > 0, such that

R2

T (γ − γ0)
=

2̂δ′ 1√
T

∑T
t=1(pL(xt, γ) − pL(xt, γ0))ε
√

T (γ − γ0)
= Op(

L
√

T
√

(|γ − γ0|)
) ≤ kL/

√
v.
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Furthermore, from Lemma B.2.2, T 1/2((̂β2 − β2) = Op(γ − γ0) and T 1/2(̂δ − δ) =

Op(γ − γ0). Thus, I can show:

R3

T (γ − γ0)
=

2̂δ′T−1 ∑T
t=1(pL(xt, γ) − pL(xt, γ0))(pL(xt, γ) − pL(xt, γ0))′(̂θ − θ)

(γ − γ0)

= Op(
L(γ − γ0)
√

T
).

R4

aT (γ − γ0)
=

2(̂δ + δ)′T−1 ∑T
t=1(pL(xt, γ) − pL(xt, γ0))(pL(xt, γ) − pL(xt, γ0))′(̂δ − δ)

(γ − γ0)

= Op(
L(γ − γ0)
√

T
).

For any B → 0+, there exist v > 0 and N, such that k/
√

v < δ′DL(γ0)(γ−γ0)δ
L and

v/T < B when T > N. Therefore, for any γ ∈ VB(v), I have

R1

T (γ − γ0)
− R2

T (γ − γ0)
> 0,

and

R3

T (γ − γ0)
= op(1),

R4

T (γ − γ0)
= op(1).

Combining the above results, I can show that

S S R∗T (γ) − S S R∗T (γ0)
T (γ − γ0)

> 0

with probability 1 for any γ ∈ VB(v) and γ > γ0. Similarly, I can prove S S R∗T (γ) >

S S R∗T (γ0) when γ < γ0 and γ ∈ VB(v) with probability 1. Q.E.D.

Proof of Theorem 3.2.3: Lemma B.2.5 shows the convergence of the esti-

mator and Lemma B.2.6 establishes the result about the convergence rate. I

complete the proof by combining Lemma B.2.5 and B.2.6. Q.E.D.
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Proof of Theorem 3.2.4: From Lemma B.2.5, γ̂T−γ0 = Op( 1
T ). In the following,

I will show that the β̂1(̂γT ) and β̂1(γ0) are asymptotically equivalent and use a

analogy argument to prove the equivalence of other estimators. Note that

β̂1(̂γT ) − β̂1(γ0)

= (̂β1(̂γT ) − β1) − (̂β1(γ0) − β1)

= (G′1(̂γ)G1(̂γ))−1G′1(̂γ)ε − (G′1(γ0)G1(γ0))−1G′1(γ0)ε

From Lemma B.2.1, I have

T−1G′1(̂γ)G1(̂γ) − T−1G′1(γ0)G1(γ0)
p→ QL(̂γ) − QL(γ0).

Thus, I can show that

||̂β1(̂γT ) − β̂1(γ0)|| ≤ ||(T−1G′1(γ0)G1(γ0))−1|| ∗ ||T−1 (
G′1(̂γ) −G′1(γ0)

)
ε||

+||(T−1G′1(̂γ)G1(̂γ))−1 −
(
T−1G′1(γ0)G1(γ0)

)−1
|| ∗ ||T−1G′1(̂γ)ε||

= Op(ς(L)L
√
|̂γT − γ0|) + Op(ς(L)|̂γT − γ0|L2)

= Op(
ς(L)L
√

T
) + Op(

ς(L)L2

T
) = op(1).

Q.E.D.

Proof of Theorem 3.2.5: From Lemma B.2.5, γ̂T is a consistent estimator, thus,

I can study its asymptotic behavior in the neighborhood of the true thresholds.

Let γ = γ0 +
υ

aT
, where aT = T 1−2α. From the definition of γ̂T , I have

aT (̂γT − γ0) = v∗ = arg min
v

(
S S R∗T (γ0 +

υ

aT
) − S S R∗T (γ0)

)
.

From the definition of S S R∗T (γ0 +
υ

aT
) and S S R∗T (γ0), I have

S S R∗T (γ0 +
υ

aT
) − S S R∗T (γ0)

=

T∑
t=1

(
yt − β̂′2 pL(xt) − δ̂′pL(xt, γ0 +

υ

aT
)
)2

−
T∑

t=1

(
yt − β̂′2 pL(xt) − δ̂′pL(xt, γ0)

)2
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=

T∑
t=1

δ̂′T

(
pL(xt, γ0 +

υ

aT
) − pL(xt, γ0)

) (
pL(xt, γ0 +

υ

aT
) − pL(xt, γ0)

)′
δ̂T

−2
T∑

t=1

δ̂′T

(
pL(xt, γ0 +

υ

aT
) − pL(xt, γ0)

)
ε

+2̂δ′T
T∑

t=1

(
pL(xt, γ0 +

υ

aT
) − pL(xt, γ0)

) (
pL(xt, γ0 +

υ

aT
) − pL(xt, γ0)

)′
(̂θ − θ)

= δ′T

T∑
t=1

(
pL(xt, γ0 +

υ

aT
) − pL(xt, γ0)

) (
pL(xt, γ0 +

υ

aT
) − pL(xt, γ0)

)′
δT

−2δ′T
T∑

t=1

(
pL(xt, γ0 +

υ

aT
) − pL(xt, γ0)

)
ε

+2̂δ′T
T∑

t=1

(
pL(xt, γ0 +

υ

aT
) − pL(xt, γ0)

) (
pL(xt, γ0 +

υ

aT
) − pL(xt, γ0)

)′
(̂θ − θ)

+2
T∑

t=1

(̂δ′ + δ′T )
(
pL(xt, γ0 +

υ

aT
) − pL(xt, γ0)

) (
pL(xt, γ0 +

υ

aT
) − pL(xt, γ0)

)′
(̂δ − δT )

+2(̂δ′ − δ′T )
T∑

t=1

(
pL(xt, γ0 +

υ

aT
) − pL(xt, γ0)

)
ε

≡ R∗1 + R∗2 + R∗3 + R∗4 + R∗5, say.

Next, I turn to consider the limiting behavior of R∗i , for i = 1, 2, ..., 5. I only pro-

vide the proof for the case with v > 0, and the proof for the other case with v < 0

is analogous so I skip the detail. Given v > 0, I have

R∗1 = δ′T

T∑
t=1

(
pL(xt, γ0 +

υ

aT
) − pL(xt, γ0)

) (
pL(xt, γ0 +

υ

aT
) − pL(xt, γ0)

)′
δT

= T 1−2αδ′T−1
T∑

t=1

(
pL(xt, γ0 +

υ

aT
) − pL(xt, γ0)

) (
pL(xt, γ0 +

υ

aT
) − pL(xt, γ0)

)′
δ

= T 1−2αδ′(QL(γ0 +
υ

aT
) − QL(γ0)) + op(1)

p→ vδ′Dδ,

where the last equation uses the first order Taylor expansion of QL(γ) around γ0

and aT = T 1−2α. For R∗2, I have

R∗2 = −2
T∑

t=1

δ̂′T

(
pL(xt, γ0 +

υ

aT
) − pL(xt, γ0)

)
ε
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= −2(T 1/2−a)δ′0
1
√

T

T∑
t=1

(
pL(xt, γ0 +

υ

aT
) − pL(xt, γ0)

)
ε⇒ −2δ′0B∗(υ)

where

E
(
B∗ (1) B∗ (1)′

)
= f0V.

Moreover, using a similar argument in Lemma B.2.6, it can be shown

R∗3 + R∗4 + R∗5 = op(1).

Combining all convergence results, I have

S S R∗T

(
γ0 +

υ

aT

)
− S S R∗T (γ0)⇒ vδ′Dδ − 2δ′B∗(υ).

Making the change-of-variables

υ =
δ′Vδ

(δ′Dδ)2 r,

I have

S S R∗T

(
γ0 +

υ

aT

)
− S S R∗T (γ0)⇒ 2σ2(

r
2
− Λ2(r))

where Λ2(r) is a standard Brownian motions defined on [0,∞).

In summary, the asymptotic distribution of γ̂ can be expressed as

T 1−2αλ(̂γ − γ0) = r∗ ⇒ arg max
r∈(−∞,∞)

(Λ(r) − 1
2
|r|)

where

λ =
(δ′Dδ)2 f0

δ′Vδ
,

and

Λ(r) =


Λ1(−r), if r < 0

0, if r = 0

Λ2(r), if r > 0

.
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Q.E.D.

Proof of Theorem 3.2.6 The proof can be completed by applying the results

of Theorem 3.2.4. Q.E.D.
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APPENDIX C

APPENDIX OF CHAPTER 4

C.1 MLE estimation for threshold ECM

For convenience, the firm indicator i is selectively omitted in the following dis-

cussion if no misunderstanding will be caused. The threshold ECM aforemen-

tioned in Section 4.2 can be represented as follows:

∆xt = A′1Xt−1d1t(γ) + A′2Xt−1d2t(γ) + ut,

where ∆xt = (pn
it, p̃t

it), Xt−1 = [1, κt−1,∆xt−1,∆xt−2, ..∆xt−m]′, d1t(γ) = 1(|κit−1| ≤ γi) and

d1t(γ) = 1(|κit−1| > γi). 1(·) denotes the indicator function. A′1 and A′2 contains the

parameters to be estimated; and γ is the threshold parameter to be estimated.

The threshold VECM model can be estimated using the MLE method pro-

posed by Hansen and Seo (2002). Assuming that the error term ut are i.i.d.

Gaussian, the likelihood function is

Ln(A1, A2,Σ, γ) = −n
2
ln|Σ| − 1

2

n∑
t=1

ut (A1, A2, γ)′ Σ−1ut (A1, A2, γ) ,

where ut(A1, A2, γ) = ∆xt − A′1Xt−1d1t(γ) − A′2Xt−1d2t(γ). The covariance matrix Σ is

identity matrix due to the i.i.d. Gaussian assumption of the error term. For a

fixed γ, A1 and A2 could be estimated by an OLS regression, thus

Â1(γ) =

 n∑
t=1

Xt−1X′t−1d1t(γ)

−1 n∑
t=1

Xt−1∆x′td1t(γ),

Â2(γ) =

 n∑
t=1

Xt−1X′t−1d2t(γ)

−1 n∑
t=1

Xt−1∆x′td2t(γ),
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and then ût(γ) = ∆xt − Â′1Xt−1d1t(γ)− Â′2Xt−1d2t(γ). By plugging ût(γ), the likelihood

function Ln (A1, A2,Σ, γ) is simplified to be a function of γ:

Ln(γ) =
−n
2
ln

1
n

n∑
t=1

ût(γ)̂ut(γ)′
 − n(m + 2)

2
.

Following Hansen (2000), the grid search method could be used to estimate

the γ in an preset interval [γ, γ]. The MLE estimator for A1 and A2 could be

obtained by inserting γ̂. To further confirm the threshold effect, I need to test

the following hypothesis:

H0 : A1 = A2 for any γ ∈ [γ, γ].

The alternative is

H1 : A1 , A2 for some γ ∈ [γ, γ].

I use the super-Lagrange Multiplier (supLM) test (Hansen and Seo, 2002) to

test above hypothesis. The LM statistic is

LM(γ) =
(
Â1(γ) − Â2(γ)

)′ (
V̂1(γ) + V̂2(γ)

)−1 (
Â1(γ) − Â2(γ)

)
,

where V̂1(γ) = M j(γ)−1Ω j(γ)M j(γ)−1,M j(γ) = Im+2⊗Π j(γ)′Π j(γ),Ω j(γ) = Γ j(γ)′Γ j(γ),

and Π j(γ),Γ j(γ) are matrices of the stacked rows Xt−1d jt(γ) and ût(γ) ⊗ Xt−1d jt(γ)

respectively. Define

supLM = supγ∈[γ,γ]LM(γ).

A bootstrap method is used to generate the critical value since the asymptotic

distribution is not standard.
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