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Content distribution has become increasingly important as people have become

more reliant on Internet services to provide large multimedia content. Effi-

ciently distributing content is a complex and difficult problem: large content

libraries are often distributed across many physical hosts, and each host has its

own bandwidth and storage constraints.

Peer-to-peer and peer-assisted download systems further complicate con-

tent distribution. By contributing their own bandwidth, end users can improve

overall performance and reduce load on servers, but end users have their own

motivations and incentives that are not necessarily aligned with those of con-

tent distributors. Consequently, existing content distributors either opt to serve

content exclusively from hosts under their direct control, and thus neglect the

large pool of resources that end users can offer, or they allow end users to con-

tribute bandwidth at the expense of sacrificing complete control over available

resources.

This thesis introduces a new approach to content distribution that achieves

high performance for distributing bulk content, based on managed swarms. Man-

aged swarms efficiently allocate bandwidth from origin servers, in-network

caches, and end users to achieve system-wide performance objectives. Managed

swarming systems are characterized by the presence of a logically centralized

coordinator that maintains a global view of the system and directs hosts to-

ward an efficient use of bandwidth. The coordinator allocates bandwidth from



each host based on empirical measurements of swarm behavior combined with

a new model of swarm dynamics. The new model enables the coordinator to

predict how swarms will respond to changes in bandwidth based on past mea-

surements of their performance.

In this thesis, we focus on the global objective of maximizing download

bandwidth across end users in the system. To that end, we introduce two al-

gorithms that the coordinator can use to compute efficient allocations of band-

width for each host that result in high download speeds for clients.

We have implemented a scalable coordinator that uses these algorithms to

maximize system-wide aggregate bandwidth. The coordinator actively mea-

sures swarm dynamics and uses the data to calculate, for each host, a bandwidth

allocation among the swarms competing for the host’s bandwidth. Extensive

simulations and a live deployment show that managed swarms significantly

outperform centralized distribution services as well as completely decentral-

ized peer-to-peer systems.
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CHAPTER 1

INTRODUCTION

Content distribution is a critical problem. Large multimedia content ac-

counts for the majority of all Internet traffic [4], video alone making up ap-

proximately 40% of traffic, excluding peer-to-peer file sharing [36]. Today,

subscription-based video-on-demand accounts for more than 32% of Internet

traffic in North America during peak hours, resulting in higher costs than

postage for DVD-by-mail service [93, 10]. Such video-on-demand services are

rapidly increasing in popularity, causing video traffic to double every two and

a half years [36]. Methods to keep up with the high demand for online video

while minimizing costs of distribution are necessary.

To address the growing demand for multimedia content, existing content

distribution systems employ a wide range of techniques and can be divided

into three categories based on their architectures: client-server, peer-to-peer, and

hybrid systems. These architectures differ in their placement of content as well

as their costs, scalability, and performance in different deployment scenarios.

In the client-server approach, clients download content directly from servers

operating under the content owner’s control. This logical centralization gives

the content distributor full control over content downloads: accounting and ad-

mission control can be handled by the servers, clients can be prioritized, and

bandwidth can be dedicated to desired transfers at fine granularity. The rela-

tive ease with which the content distributor can control a client-server system

is critical for a commercial service. The drawback of the client-server approach

is that the entire burden of distribution rests on the content owners, requiring

large up-front costs to deploy and high bandwidth costs to operate. Today’s
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content distributors with repositories of multimedia content, such as YouTube,

Akamai, Netflix, and Facebook, operate large datacenters to distribute that con-

tent to their clients, and incur significant bandwidth costs in the process. Con-

sequently, the client-server approach can be prohibitively expensive, requiring

content providers to seek alternative methods to distribute their content [22].

Peer-to-peer architectures offer an alternative to the client-server approach

by shifting the cost of content distribution to the end users and their ISPs. In

such systems, clients interested in downloading content contribute their own

upload bandwidth to the system in exchange for service. As a result, peer-to-

peer systems decrease the bandwidth demand on content originators and en-

able large-scale distribution of content originating at end users. Existing peer-

to-peer systems demonstrate the scalability of the peer-to-peer approach, the

most popular of which is BitTorrent [2], which accounts for 43–77% of Internet

traffic depending on geographic region [4]. However, peer-to-peer protocols

like BitTorrent were designed primarily to avoid centralization and to provide

fault tolerance; they do not seek to achieve system-wide objectives, which can

result in poor performance. Complete decentralization comes at a cost: nodes in

a peer-to-peer system typically act solely on local information, which can lead to

emergent system behaviors that make inefficient use of available resources. As

a result, peer-to-peer systems have difficulty providing quality-of-service guar-

antees. Thus, completely decentralized protocols are ill-suited to meet specific

system-wide performance objectives, leading to suboptimal performance.

Recently, hybrid architectures have emerged that combine centralized com-

ponents with peer-to-peer transfers. In a hybrid architecture, peers assist a cen-

tralized server in the download process in order to decrease the burden placed
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on content distributors and to offset bandwidth costs. Measurement studies

have shown that hybrid approaches to content distribution could significantly

reduce the cost of distribution [55, 33, 67]. To date, systems based on hybrid ar-

chitectures have primarily focused on reducing the burden that clients place on

content servers. However, in addition to shifting bandwidth costs, the central-

ized component of a hybrid architecture provides a new, untapped opportunity

to aggregate system-wide activity and use it to make informed decisions for im-

proving performance. In contrast to completely decentralized systems, where

controlling the behavior of the network is difficult, a centralized component has

the potential to drastically improve system-wide performance by managing and

controlling peers’ resources with informed decisions. Yet, few existing hybrid

systems leverage centralization to manage peer behavior, and those that do rely

on heuristics that lack performance guarantees.

This thesis proposes a novel approach to content distribution for distribut-

ing a large set of files to a potentially very large set of clients, through managed

swarms. Managed swarms endow swarms with centrally computed policies and

control so that they can achieve system-wide performance objectives. They in-

corporate a logically centralized component, called a coordinator, to a hybrid

architecture that otherwise operates according to decentralized policies. The

coordinator controls the behavior of hosts based on swarm dynamics and de-

sired performance criteria. By observing the behavior of swarms, the coordina-

tor steers hosts toward efficient use of available resources in order to maximize

a desired performance metric.

The coordinator’s global view of the system enables it to optimize network

resources for various metrics to meet application-specific performance criteria.
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For instance, a system designed to distribute a binary executable to a set of hosts

in multiple datacenters might value shipping the file to all target hosts in its

entirety as quickly as possible. In such a scenario, the coordinator’s goal might

be to minimize the download time for the slowest host. In contrast, a video

streaming website might aim to maximize the number of clients that achieve a

target download bandwidth required for smooth playback.

This thesis primarily focuses on large, bulk downloads, as in the case of mul-

timedia file distribution, where the goal is to maximize global network utiliza-

tion. In a realistic multimedia file distribution setting, the coordinator is tasked

with maximizing system-wide aggregate bandwidth. It does so by judiciously

allocating bandwidth, the scarce resource in a content distribution system, from

contributing sources. These sources comprise content originators, cache servers,

and end users. The problem is further complicated by three issues: content

servers may only have a partial set of the content library, cache servers may

possess only subsets of the content, and end users may belong to multiple, over-

lapping swarms.

One way to approach this problem is to analytically model the behavior of

swarms. Previous work has developed mathematical models to gain insights

into swarm behavior and improve download speeds [108, 83]. Such work pre-

dicts peer and user behavior using mathematical distributions to model peer

arrivals and departures, peer connectivity, and block transfers. Mathemati-

cal models provide a strong foundation for understanding the effects of well-

defined properties of swarms and peers on system behavior. However, such

models often make simplifying assumptions about user behavior and are diffi-

cult to parameterize. Consequently, they cannot account for large variations in
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peer arrival rate that result from flash crowds. Peer departures are similarly dif-

ficult to model, as they are largely independent of download completion [59].

However, measurement studies have found that altruistic peers that continue

to contribute bandwidth after completing their own downloads have an enor-

mous impact on performance [56, 95]. As a result, existing mathematical models

require extensive, time-consuming measurements in order to accurately predict

swarm behavior in realistic deployments.

This thesis proposes a new model for swarm behavior that replaces hard-to-

extract parameters and unrealistic assumptions about user behavior with fre-

quent, lightweight empirical measurements. The model enables accurate pre-

diction of a swarm’s aggregate bandwidth, defined as the sum of all member

peers’ download rates, as a function of the bandwidth injected into the swarm.

This model captures two critical behaviors that are essential for accurately esti-

mating the marginal benefit of additional bandwidth to swarms. Specifically, a

swarm whose peers have spare upload bandwidth benefit greatly from receiv-

ing rare data blocks because it enables its peers to rapidly forward the blocks

throughout the swarm. On the other hand, a swarm whose peers have satu-

rated their uplinks are unable to forward additional blocks to neighboring peers;

increasing the bandwidth that such a swarm receives from a cache server has

limited impact on the swarm’s aggregate bandwidth. Consequently, the model

enables the coordinator to predict which swarms will exhibit larger increases in

aggregate bandwidth if supplied with additional bandwidth.

The logically centralized coordinator, coupled with a novel wire-level proto-

col, uses our model of swarm dynamics to optimize peer behavior. The coordi-

nator performs three basic tasks. First, it observes swarms to gather information
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about swarm behavior, which it uses to model each swarm’s response to band-

width. Second, the coordinator uses the swarm models to compute an efficient

allocation of bandwidth. Lastly, the coordinator enacts its decisions by forcing

peers to operate according to its computed allocations.

The coordinator’s role exposes a fundamental tradeoff between its involve-

ment in guiding peer behavior and its scalability with respect to bandwidth,

CPU, and memory. At one extreme, the coordinator could schedule every sin-

gle block transfer between peers. Coordination at such fine granularity would

require significant resources to track each peer’s exact bandwidth usage and

download state, in addition to peer connectivity and network conditions. Fur-

ther, even with this detailed data, computing a complete schedule of transfers

would pose a large computational burden on the centralized coordinator. At

the other extreme, swarms that operate with no guidance from the coordinator

degenerate into unmanaged, decentralized swarms, where peer behavior relies

solely on local information, and the emergent behavior of the network is uncon-

trolled.

This thesis advocates combining the coordinator’s guidance on allocating

bandwidth across competing swarms with clients’ local decisions for schedul-

ing transfers among peers within the same swarm. Thus, the coordinator man-

ages peers at the granularity of a swarm and controls inter-swarm bandwidth

allocation, while peers perform standard peer-to-peer optimizations for intra-

swarm behavior. Optimizations in the latter category include optimistic un-

choking for peer discovery, locality-based peer selection, tit-for-tat for band-

width allocation, and rarest first for block selection, each of which has been

shown to improve performance within a single swarm [17, 71, 12]. Overall,
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the coordinator ensures that peers allocate bandwidth to the swarms that make

most efficient use of bandwidth while peers make decisions that lead to efficient

propagation of content that swarms have already received.

The coordinator presented in this thesis guides peers based on data that it

acquires using a novel token protocol. This protocol enables the coordinator to

make its allocation decisions with minimal network overhead. It relies on small,

one-use tokens minted by the coordinator that function like a virtual currency.

Peers exchange tokens with each other for content blocks and return spent to-

kens to the coordinator to acquire fresh tokens, thus divulging their recent ac-

tivity.

The coordinator distributes its resource allocation decisions to peers and

uses its global view of the system to ensure that they follow its guidance. The

coordinator sends each peer a bandwidth allocation for dividing the peer’s up-

load bandwidth among its competing swarms based on the coordinator’s com-

putations. It then polices the system by observing individual peers’ activity.

Because all peers report to the coordinator regularly, the coordinator has the au-

thority to deny access to any peer that it detects is defecting from the prescribed

allocation. The coordinator simply invalidates such a peer’s unspent tokens for

downloading content blocks, denies it future fresh tokens, and informs other

peers of the defector’s status.

The token protocol is designed to be scalable and efficient to ensure that

peers can interact with the coordinator frequently enough to maintain an accu-

rate model of each swarm’s behavior. Consequently, our implementation does

not rely on heavyweight cryptographic operations to exchange blocks or tokens.

Instead, small tokens minted and verified by the coordinator enable the coordi-
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nator to process spent tokens with minimal bandwidth and CPU overhead, re-

sulting in a highly scalable system. An alternative implementation could lever-

age an encryption scheme to provide additional guarantees, such as user au-

thentication, by forcing peers to establish untappable channels to each other,

sign tokens, and prove their identity to the coordinator [115]. Such a scheme

may be appropriate for certain deployments of managed swarms where secu-

rity is the primary concern. In contrast, our implementation prioritizes efficient

token exchanges, resulting in a practical, lightweight protocol for obtaining a

coarse-grain view of the system.

Based on measurements obtained with the token protocol, we introduce two

algorithms that the coordinator can use to compute bandwidth allocations. Both

algorithms aim to maximize the system-wide aggregate bandwidth across all

swarms, but they differ in the deployment scenarios that they target. The first

algorithm, Antfarm [105], applies to deployments with a single, logically cen-

tralized source of content, called a seeder. The seeder possesses all the content

and supplies bandwidth to all swarms, as would be the case for a single data-

center providing a large multimedia library to many clients. Antfarm computes

the optimal allocation of the seeder’s bandwidth among competing swarms to

minimize download times. The second algorithm, V-Formation [107], targets

a more realistic range of deployment scenarios. Specifically, it targets deploy-

ments with caches in the network, each of which might possess only a partial

subset of the content available in the system, in addition to end users that be-

long to multiple, potentially overlapping swarms. Large-scale video distribu-

tors, such as YouTube, where clients request movies from a large set of data-

centers, exemplify V-Formation’s target deployment. Both algorithms achieve
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high performance by instructing hosts how to divide their bandwidth among

competing swarms.

Introducing a logically centralized component to an otherwise decentralized

system has benefits that reach beyond achieving high aggregate bandwidth.

Centralization enables a content distributor to provision for quality-of-service

guarantees by ensuring that particular swarms or peers receive a target band-

width; to aggregate statistics from peers for accounting and tracking; and to

specify policies, metrics, and optimizations at a single location based on a global

view of the system’s activity. QoS guarantees enable content distributors to ap-

portion hosts’ bandwidth to account for service-level agreements or target mul-

timedia bitrates. To enact such guarantees and other policies that content dis-

tributors define, the coordinator aggregates data on peer behavior and uses it

to compute policy-specific bandwidth allocations. Centralized accounting em-

powers the coordinator to detect that peers act according to content distributors’

policies, and, through its involvement in peer-to-peer block transfers, enables

the coordinator to prohibit misbehaving peers from disrupting service. Overall,

centralization offers content distributors a degree of control over their content

and the bandwidth of participating hosts that is difficult to achieve in decentral-

ized systems. However, centralization comes at a cost: logical coordination can

lead to a performance bottleneck, and the implementation of a scalable coordi-

nator is critical to the success of a hybrid system. This thesis demonstrates that

the benefits of centralization can outweigh the costs and that a judicious imple-

mentation can scale to large deployments of millions of peers and hundreds of

thousands of swarms.
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Overall, this thesis makes three major contributions. First, it introduces a

new class of hybrid content distribution systems based on managed swarms.

Managed swarms combine peer-assisted transfers with lightweight coordina-

tion to enable a logically centralized coordinator to steer the system toward a

globally efficient use of available resources. Second, this thesis describes two

novel algorithms that use managed swarms to make efficient use of bandwidth

in order to maximize a global performance metric. The algorithms leverage

swarm characteristics in order to compute efficient allocations of bandwidth.

Finally, this thesis describes a full implementation and deployment of both al-

gorithms, including practical considerations for building scalable peer-assisted

download systems that manage swarms, a new wire-level protocol that pro-

vides accountability and enforcement of peer behavior, and an evaluation of the

benefit of managed swarms over existing content distribution systems.

We have built, deployed, and operated a system that embodies the archi-

tecture described in this thesis [3]. The system implements a content distribu-

tion system that enables end users to contribute their own content. It is built

on top of and is backward-compatible with the BitTorrent protocol. We have

written new client software that executes on each peer, as well as a physically

distributed coordinator that scales to thousands of peers. The coordinator op-

erates as an augmented BitTorrent tracker: it records peer arrivals and depar-

tures, sends peers lists of swarm members to which the peers can connect in

order to form a mesh network for each swarm, and manages swarms using the

algorithms outlined above to maximize aggregate bandwidth. Our deployment

employs cache servers to improve content availability and download speed for

peers by automatically joining swarms to download popular content. The co-

ordinator uses the same algorithms to allocate bandwidth from cache servers
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as from end users. Overall, our implementation demonstrates the feasibility of

managed swarms for efficiently distributing large libraries of multimedia con-

tent in realistic deployment scenarios.

The rest of this thesis is structured as follows. Chapter 2 introduces the con-

tent distribution architecture based on managed swarms, formalizes a metric for

efficiency in managed swarming systems, and describes how to allocate band-

width efficiently among swarms. Chapter 3 details our implementation of a

managed swarming system for distributing user-contributed content using the

Antfarm and V-Formation algorithms. It also describes alternative methods of

aggregating summaries of peer activity at the coordinator and two implementa-

tions of the wire protocol for accounting and managing tokens. Chapter 4 eval-

uates managed swarms using both allocation algorithms. It compares system-

wide performance against existing content distribution systems and examines

several microbenchmarks for evaluating the systems in a range of realistic de-

ployment scenarios and load on the coordinator. Chapter 5 discusses related

work and Chapter 6 concludes.
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CHAPTER 2

RESOURCE ALLOCATION IN MANAGED SWARMS

This chapter provides an overview of managed swarms and describes how

they model swarm behavior and allocate content among competing swarms.

It first describes the managed swarming hybrid architecture and compares it

to architectures of existing content distribution systems. Then, it defines the

general multi-swarm content distribution problem, which encompasses the de-

ployment scenarios that managed swarms target. This problem formalizes ef-

ficiency for all content distribution networks that supplement bandwidth from

server-class hosts with bandwidth contributed by end users. Next, this chap-

ter presents a new model for swarm behavior that enables managed swarms

to achieve high performance by finding an efficient allocation of a content dis-

tributor’s resources. The new model provides a foundation for understanding

the impact that a content distributor’s bandwidth from deployed servers has on

the overall performance of a download system. Finally, this chapter explores

how the model informs hosts how to allocate their bandwidth in two classes of

deployments that are common among content distribution networks today.

2.1 Architecture

Managed swarming systems augment the architectures of existing content dis-

tribution networks to maximize the performance that content distributors can

achieve from their existing infrastructure. Such networks comprise potentially

very large content libraries that can be fragmented across geographically dis-

tributed hosts. These hosts might be located in datacenters for efficient resource

management or distributed near the edge of the network for improved latency
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to end users. Other content distribution networks might task end users to lo-

cally store pieces of the content library in order to reduce storage costs for the

distributors; still others might allow end users to distribute their own content

from their local machines.

Managed swarming systems enable content distributors to combine their ex-

isting resources, including both servers and caches, with peer-to-peer transfers

and a logically centralized coordinator that allocates system resources. All hosts

that upload or download content, or peers, are organized into swarms. Each

swarm is an unstructured mesh network that facilitates the download of a single

piece of content, such as movie file. Within each swarm, peers request blocks of

content from each other and upload blocks in response to such requests. A sin-

gle, logically centralized coordinator oversees the system’s operation and dic-

tates how peers in managed swarms allocate their resources in order to achieve

a global performance goal. We defer the discussion of a scalable coordinator

implementation to Chapter 3.

The managed swarming architecture is defined by the logically centralized

coordinator that manages the bandwidth of hosts organized into swarms. In

general, the hosts that the coordinator oversees are organized according to a hy-

brid architecture, characterized by bandwidth contributions from servers, dat-

acenters, caches, and end users. A deployment may omit caches or end users

from the coordinator’s control depending on available resources and deploy-

ment requirements. Figure 2.1 illustrates a typical deployment of a managed

swarming system.

In a sample deployment, the majority of peers might consist of end users,

which download content from and upload content to the swarms to which they

13
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Figure 2.1: Managed swarming architecture. Peers, which includes all hosts that up-
load or download content, belong to arbitrary sets of potentially overlapping swarms.
A logically centralized coordinator guides hosts towards an efficient allocation of band-
width.

belong. End users generally join swarms for content that they are interested

in downloading and to share new content that they would like to contribute

to the system. Remaining peers provide additional bandwidth to swarms, and

their swarm memberships are determined by the content that they possess for

seeding swarms. Such peers are generally server-class hosts that operate under

the control of the coordinator and the content originator, but they may also be

caches deployed by ISPs or other third parties to improve network performance.

In an alternative deployment of managed swarms, all peers might reside in

the network to provide an efficient download service for end users. In such a

deployment, end users do not contribute their own upload bandwidth, and in-

stead connect to proxies in the network to download content. Consequently, end

users need not run specialized software to join swarms and download content.

The in-network peers leverage managed swarms to distribute content within

the distribution network and to position content among caches.
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The management of content that is available for download further affects the

design of content distribution systems. Content distribution deployments can

be divided into two classes, depending on where content originates. In closed

systems, the system operator manages all content, adding and removing the

content that users are able to download. The Netflix commercial service is an

example of a closed content distribution system, where clients are able to watch

only the movies that the service currently offers. On the other hand, open content

distribution systems allow users to contribute content for others to download.

BitTorrent and YouTube are examples of open systems.

The managed swarming architecture is applicable to both open and closed

systems. The choice of architecture affects the efficiency with which users can

download content and, in open systems, contribute their own content. For ex-

ample, although both YouTube and BitTorrent are open systems, YouTube re-

quires users to upload videos in their entirety to servers, which then distribute

the movies to clients using a client-server architecture. BitTorrent users sharing

their own original content can upload directly to peers interested in it, but their

own upload capacity can limit the speed of other peers’ downloads. The al-

gorithms proposed in this thesis provide efficient content distribution for both

systems, and they take advantage of a hybrid architecture to enable efficient

downloads from servers that possess content as well as from peers that con-

tribute their own content.

The architecture subsumes previous swarming protocols such as BitTorrent,

whose architecture is shown in Figure 2.2. For such deployments of multiple,

non-overlapping swarms, managed swarms perform identically to BitTorrent.

While BitTorrent peers may join multiple swarms, the protocol operates inde-
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Figure 2.2: BitTorrent architecture. BitTorrent swarms are logically isolated; peers
make bandwidth allocation decisions independently for each swarm.

pendently for each swarm. Consequently, peers dedicate bandwidth to swarms

based on the behavior of individual directly-connected neighbors in the mesh

network, resulting in an emergent system behavior that can be far from optimal.

2.2 Problem Definitions

The coordinator provides a logically centralized platform for guiding hosts to-

ward an efficient use of resources based on a global performance goal. By fram-

ing a performance goal as an optimization problem, a content distributor can

use the coordinator to compute an efficient utilization of resources based on the

coordinator’s system-wide measurements.

In this thesis, we define and describe two specific optimization problems that

a coordinator can address to efficiently allocate hosts’ bandwidth. Both prob-

lems aim to maximize network utilization across hosts. This overarching goal

addresses a content distributor’s desire to maximize the total amount of content

that the system distributes to hosts. A content provider may choose to optimize

for a metric other than system-wide aggregate bandwidth, but algorithms that

optimize for alternative metrics are outside the scope of this thesis.

16



2.2.1 General Multi-swarm Content Distribution Problem

The main problem that we discuss in this thesis involves resource management

in the wide variety of content distribution networks that we have observed, in-

cluding open and closed systems, and systems in which the content library is

centralized or distributed. This problem, called the general multi-swarm content

distribution problem, is the central topic of this thesis. Formally, given a set of

peers P , a set of swarms S, and a set of memberships M ⊆ P × S, the general

multi-swarm content distribution problem is to determine the upload band-

width Up,s that peer p should allocate to swarm s for all (p, s) ∈ M in order

to maximize global aggregate bandwidth
∑
p∈P Dp, where Dp is the download

bandwidth of peer p.

This general formalization places no restrictions on the location of content

and peer memberships in swarms. Bandwidth can be provided by content orig-

inators, cache servers, and end users. Furthermore, content servers may only

have a partial set of the content library, cache servers may possess only subsets

of the content, and end users may belong to multiple, overlapping swarms.

The general multi-swarm content distribution problem, coupled with the

managed swarming architecture, defines a flexible set of deployments and pro-

vides a metric to evaluate system performance for content distributors who aim

to maximize network utilization.
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2.2.2 Single-seeder Multi-swarm Content Distribution Problem

The single-seeder multi-swarm content distribution problem encompasses a

common subset of the scenarios addressed by the general multi-swarm con-

tent distribution problem in which the content distributor maintains a logically

centralized content library. This specialized problem’s reduced complexity ren-

ders it easier to solve than its general variant. Consequently, the coordinator is

able to efficiently find the optimal allocation of bandwidth in the multi-swarm

environment, resulting in high performance for a content distributor that uses a

modest bandwidth capacity to disseminate a small content library.

Formally, the single-seeder multi-swarm content distribution problem is de-

fined similarly to the general variant of the problem. A deployment consists of

a set of peers P , a set of swarms S, and a mapping M : P → S, representing

to which single swarm each peer belongs. In addition, one designated seeder t

possesses all content and is a member of all swarms in S. The single-seeder

multi-swarm content distribution problem, then, is to determine the upload

bandwidth Ut,s that t should allocate to swarm s for all S in order to maximize

global aggregate bandwidth
∑
p∈P Dp, where Dp is the download bandwidth of

peer p.

The restrictions that the single-seeder multi-swarm content distribution

problem place on the deployment of a managed swarming system in turn af-

fect the deployment architecture and the feasibility of the optimization problem.

The architecture (Figure 2.3) restricts the content distributor to a single logically

centralized seeder that houses the entire library; however, the seeder need not

be restricted to a single physical host. Rather, the seeder itself may comprise

any number of distributed replicas of the library for fault tolerance. The restric-
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Figure 2.3: Single-seeder architecture. Single-seeder managed swarming deploy-
ments allocate bandwidth from a logically centralized origin server across multiple
swarms.

tion of using a single seeder only stipulates that any seeder host belonging to

multiple swarms possess the content library in its entirety.

2.3 Modeling Swarm Behavior

To address the multi-swarm content distribution problems, we have developed

a new model of swarm behavior. The model compactly captures the properties

of swarms relevant to bandwidth allocation decisions through empirical mea-

surements.

All bandwidth in a swarming system is generated by individual block trans-

fers between peers. A single block transfer from one peer to another benefits the

block’s recipient, a downloader of the swarm’s content. However, the benefit of

a single block transfer far exceeds the benefit that the recipient derives from the

block. This is because when a peer receives a block, it enables the recipient to

further propagate the block to other peers in the swarm that do not yet have it.

Thus, a block transfer can potentially lead to a cascade of further transfers which

creates high aggregate bandwidth across the swarm as the block propagates.
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Many factors influence a swarm’s ability to propagate blocks efficiently. The

distribution of blocks that the swarm’s peers already possess shapes the de-

mand for new blocks. Rare blocks are more likely to propagate quickly through-

out a swarm due to their high demand, but even rare blocks will propagate

slowly if peers have sufficiently many blocks of high demand that compete for

peers’ upload bandwidth. Further, swarm size, peer connectivity, and network

conditions among peers influence the ability of peers to satisfy block requests,

regardless of block rarity.

Our model of swarm behavior captures a swarm’s ability to generate aggre-

gate bandwidth with a response curve. A response curve represents a swarm’s

total bandwidth as a function of the bandwidth provided to the swarm by a

designated host called a seeder. Response curves fold all factors that affect a

swarm’s ability to propagate blocks into a single function based on direct mea-

surements of overall swarm performance.

Response curves embody the critical properties of each swarm and have a

characteristic shape—a fact that we exploit in this thesis. Figure 2.4 illustrates

the characteristic form of the response curve for a homogeneous swarm with

static membership; for illustration purposes in this example, peer download ca-

pacities exceed upload capacities, and the set of peers does not change through-

out the download. When the seeder bandwidth is limited, the peers in the

swarm have unused upload and download capacity. In this regime of operation

(region A), the swarm’s aggregate bandwidth increases rapidly with the seeder

bandwidth, since peers can use their spare upload bandwidth to forward new

blocks to other peers. Each individual block the seeders feed into the swarm

will be shared among many peers, highly leveraging the bandwidth commit-
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Figure 2.4: Response curves of a theoretical homogeneous swarm and a measured
heterogeneous swarm on PlanetLab. Aggregate bandwidth increases rapidly as seeder
bandwidth increases (A) until peer uplink capacity is exhausted (B) and reaches its
maximum when downlinks are saturated (C).

ted by the seeder. Once the peers in a swarm have saturated their uplinks, the

marginal benefit from additional seeder bandwidth drops significantly. In this

regime (region B), any additional bandwidth that a peer receives only benefits

that peer, since saturated upload links render it unable to forward the data to

other peers. Finally, once downlinks of swarm participants are saturated (re-

gion C), the swarm has reached its maximum aggregate bandwidth. Further

bandwidth provided by the seeders will not impact download latency. If down-

load capacities are lower than upload capacities, region B will simply not exist,

yielding a response curve with only two regions.

Response curves have two key properties that make them useful for allo-

cating bandwidth. First, response curves are monotonic: a swarm’s aggregate

bandwidth will never decrease as a result of increasing the seeder bandwidth to

the swarm. Monotonicity prevents optimization algorithms from terminating
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at suboptimal local maxima. Second, response curves are concave; that is, their

derivatives monotonically decrease over possible seeder bandwidths. Concav-

ity implies that a swarm’s aggregate bandwidth exhibits diminishing returns

as the seeders increase their bandwidth to the swarm. When the seeders in-

crease their bandwidth beyond a swarm-specific threshold, the peers’ uplinks

and downlinks saturate, decreasing their ability to receive and forward data

from the seeders and other peers.

Real-life swarms are more complex than the idealized swarms discussed

above in that they may comprise heterogeneous hosts and exhibit peer churn.

They nevertheless exhibit several critical properties. In heterogeneous swarms,

where peer uplinks and downlinks are non-uniform, the transitions between the

disparate regions of the response curves are smoother. This is because different

peers’ upload and download capacities saturate at different points, smoothing

the discontinuous transition seen in a homogeneous swarm. In addition, real

swarms exhibit peer churn, where peers can join at any time and leave due

to failure, cancellation, or completion. Such membership changes shift the re-

sponse curve because their influence affects the swarm’s dynamics, but do not

violate the monotonicity and concavity properties outlined above.

Response curves form the basis for allocating bandwidth among swarms

that compete for limited bandwidth. For simple content distribution networks

that have a logically centralized content library, response curves alone provide

sufficient information for making allocation decisions. In more complex de-

ployments that have distributed content libraries, the response curve model of

swarm behavior motivates an alternative algorithm for allocating bandwidth

from multiple hosts.

22



2.4 Optimal Distribution of a Logically Centralized Library

Managed swarming deployments can use response curves to derive an optimal

allocation of bandwidth for content distributors with relatively small content li-

braries. In particular, response curves contain sufficient information to allocate

bandwidth from a single logically centralized seeder to a set of disjoint swarms,

and provide an efficient solution to the single-seeder multi-swarm content dis-

tribution problem.

The monotonicity and concavity of swarms’ response curves form the basis

of their value for computing bandwidth allocations from a seeder. These prop-

erties prevent search algorithms from terminating at suboptimal local maxima,

and enable the coordinator to use response curves as input to convex optimiza-

tion algorithms. Given a response curve for each swarm in a managed swarm-

ing deployment, “climbing” each of the curves, always preferring the steep-

est curve, until all seeder bandwidth has been allocated maximizes the global

benefit of the seeder’s upload bandwidth. The resulting point of operation on

each curve represents the amount of bandwidth the seeder plans to feed to each

swarm and the expected aggregate bandwidth within each swarm based on the

seeder bandwidth. Given each swarm’s measured response curve, this alloca-

tion of seeder bandwidth is optimal [92]: decreasing the seeder bandwidth to

one swarm in favor of another will not improve the overall performance of the

system. The allocation of seeder bandwidth ensures that the content distributor

achieves the highest performance possible from its servers’ bandwidth.

The optimization process described above may reach a point at which the

seeder has excess bandwidth to award, yet the derivatives of multiple response

23



s1
s2

s3

a1

a2

a3

t1 t2 t3
seeder bandwidth

ag
gr

eg
at

e
ba

nd
w

id
th

Figure 2.5: Optimal bandwidth allocation for three concurrent swarms. The seeder
awards bandwidth to swarms by hill-climbing the steepest response curves first until
all its available bandwidth has been allocated.

curves are identical, indicating that multiple swarms offer the same global bene-

fit (Figure 2.5). In such cases of equivalent global benefit, a tie-breaker algorithm

maximizes the perceived improvement by peers. Suppose that two swarms s1

and s2 have response curves with equivalent slopes at seeder bandwidths t1 and

t2, corresponding to swarm aggregate bandwidths of a1 and a2, with a1 > a2.

While this indicates that awarding a block to either swarm would improve av-

erage download times across the entire network by an equal amount, the in-

cremental benefit to members of s1, which already enjoy a higher aggregate

throughput, is small compared to the relative improvement that members of

s2 would perceive. Consequently, seeders break ties by awarding their band-

width to swarms with lower bandwidth when multiple response curves have

the same slope. This mechanism ensures that the system maintains its primary

goal of maximizing aggregate bandwidth, while the participants receive maxi-

mal marginal benefit whenever there is freedom in making a bandwidth alloca-

tion that is in line with the primary goal.
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This optimization algorithm does not explicitly allocate bandwidth from

non-seeder hosts that belong to multiple swarms. In our own implementation

of the algorithm, we relax this constraint: peers may belong to more than one

swarm, but they will not be designated seeders. As a result, such peers’ band-

width is not guaranteed to be allocated optimally among competing swarms.

This relaxation allows for more realistic deployments where several peers may

download multiple pieces of content simultaneously, but it can lead to reduced

system-wide performance in deployments with a high amount of swarm over-

lap.

Overall, response curves for each swarm are sufficient for computing the

optimal bandwidth allocation from the logically centralized seeder. As a result,

small content distributors with limited bandwidth can be assured that their re-

sources are used efficiently.

2.5 Efficient Distribution of a Distributed Library

Content distributors with large libraries generally split their content among

many physical hosts to improve reliability by eliminating single points of fail-

ure, augment storage capacity by distributing content libraries across disks, and

increase performance by positioning hosts near clients that are likely to down-

load content. The general multi-swarm content distribution problem addresses

the goals of content owners that use a distributed array of hosts to share a large,

fragmented content library.

By relaxing the constraints in swarm memberships to allow for overlapping

swarms and cache servers that possess partial subsets of the content, the band-
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width optimization problem becomes more complex and difficult to solve. Con-

sequently, a straightforward, centralized computation on response curves be-

comes impractical for large deployments. Instead, we use observations about

swarm behavior based on response curves to motivate and develop an alterna-

tive method of allocating bandwidth that results in a globally efficient use of

distributed resources.

Our approach is to consider the impact that each individual peer has on the

performance of the swarms to which it belongs. The performance of any content

distribution network is entirely dependent on the aggregate of the decisions

of each individual host. However, predicting how an individual host affects

a single swarm, let alone the system as a whole, is a complex problem with

many variables and interdependencies. Overlapping swarms and cache servers

with partial subsets of the content library only complicate matters because the

bandwidth allocation decisions that one host makes can vastly affect the way

that swarms behave when they receive bandwidth from other hosts.

To determine the actual benefit that a single peer has on a swarm based on its

block uploads, we introduce a new metric called the Content Propagation Metric

(CPM). The CPM enables hosts to continuously approximate target points of

swarms’ response curves and to use the computed points to converge on an

efficient allocation of bandwidth from origin servers, in-network cache servers,

and end users.

The key insight behind the CPM is to capture how quickly a host’s uploaded

content propagates transitively throughout a swarm. To this end, the CPM

is calculated by computing the average size of recent block propagation trees

rooted at a particular host for a given swarm. The CPM offers a consistent way

26



for hosts to measure their marginal utility to a particular swarm, and to make

informed decisions with their bandwidth among swarms competing for con-

tent.

This section describes the CPM in detail. It first discusses the information

that response curves contain for solving the general multi-swarm content dis-

tribution problem. Then it defines the CPM and explores how peers use mea-

sured CPM values to compute an efficient allocation of bandwidth. The section

concludes with discussions of how the CPM remains effective in the presence

of highly dynamic swarms. We leave implementation details, including how to

obtain and process CPM measurements, to Chapter 3.

2.5.1 Extracting Information from Response Curves

A response curve provides an accurate model of a swarm’s behavior with re-

spect to bandwidth provided by a particular host, which we designate the

seeder. In realistic deployments, however, peers belong to multiple swarms,

which significantly complicates the bandwidth allocation problem. In a mea-

surement study of over 6000 torrents and 960,000 users, we found that more

than 20% of users simultaneously participated in more than one monitored tor-

rent. Every such peer is faced with choosing which swarms should receive their

bandwidth, and their decisions can have dramatic effects on the performance of

the system.

Allowing swarms to overlap introduces new challenges for measuring re-

sponse curves because response curves assume independence among peers’ de-

cisions. This assumption holds in the single-seeder content distribution prob-
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lem, but the general variant of the problem violates this assumption: when a

peer shifts its upload bandwidth from one swarm to another, it invalidates the

response curves for both swarms. This dependence makes it difficult to obtain

accurate measurements. Measuring a single data point in a response curve re-

quires a peer to operate at a particular bandwidth for sufficiently long that the

swarm’s aggregate bandwidth stabilizes. During that time, another peer’s shift

in point of operation during the time interval will perturb the measured value.

To adapt the response curve model for deployments of the general multi-

swarm content distribution problem, we recognize that response curves cap-

ture far more information than is necessary to compute an efficient allocation of

bandwidth. We take advantage of the insight that the coordinator, when com-

puting allocations, only uses measurements from each response curve’s current

point of operation.

The critical piece of information of a response curve is its slope at the point

of operation. The slope indicates the instantaneous increase in bandwidth that

a particular swarm will generate from a small amount of additional bandwidth.

Further, the monotonicity and submodularity of response curves imply that a

response curve’s shape is predictable near the point of operation. Specifically,

the slope can only decrease as a swarm is given more bandwidth, which caps

the aggregate bandwidth that the swarm can generate from future increases in

seeder bandwidth.
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Figure 2.6: Propagation of a block. The dashed box indicates the propagation tree
that results from peer p’s tracked transfer of block b to peer r. The block propagates
exponentially during the measurement time interval τ = t−t0, resulting in propagation
bandwidth vt0,tp,r,b = 14 · 256 KBytes/30 s ≈ 120 KBytes/s, assuming 256-KByte blocks
and τ = 30 seconds.

2.5.2 Block Propagation Bandwidth

The CPM distills the salient properties of response curves for deciding to which

swarms peers should upload their blocks in order to yield high aggregate band-

width. The CPM approximates the instantaneous slope of a swarm’s response

curve at its point of operation. Whereas a response curve represents a swarm’s

response to bandwidth over a range of bandwidths from a single seeder, the

CPM provides a means to measure the slope of a response curve without the

need to explicitly generate the curve. We define the CPM in terms of an inter-

mediate metric called the block propagation bandwidth.

Block propagation bandwidth is a metric that captures complex multi-peer

interactions by encompassing the global demand for blocks, block availabil-

ity, network conditions and topologies, and peer behavior. Block propagation

bandwidth is defined for a particular block transfer between two peers, called

a tracked transfer. Informally, the metric is the system-wide bandwidth during

a specified time interval resulting from block transfers that occurred as a direct
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consequence of the tracked transfer. This metric provides an estimate of the

benefit that results from a single block transfer from one peer to another.

Formally, for the upload of block b from peer p to peer r, where the transfer

completes at time t0, we define a block propagation tree T t0,tp,r,b rooted at r with a

directed edge from p1 to p2 if r is an ancestor of p1, and p1 finishes uploading b

to p2 at time t′ such that t0 < t′ ≤ t. Thus, T t0,tp,r,b is essentially an implicit multicast

tree rooted at peer r for block b during the time interval τ = t − t0. The block

propagation bandwidth, then, is

vt0,tp,r,b = |T t0,tp,r,b| · size(b)/(t− t0),

the download bandwidth enabled by p’s tracked transfer to r over the time in-

terval τ . Figure 2.6 shows an example propagation of a block and the resulting

propagation tree.

Block propagation bandwidth enables peers to compare the relative benefits

of their block uploads to competing swarms over a common time interval τ . To

illustrate the metric and its relation to the value of a block upload, consider the

block propagations shown in Figure 2.7. Peer p is a member of swarms s1 and

s2, to which p uploads tracked blocks. On average, peers in s1 distribute their

blocks more widely than peers in s2, as indicated by solid edges. Dashed edges

indicate peer-to-peer transfers of other blocks, which compete for peers’ upload

bandwidth. The higher average block propagation in s1 can be due to several

factors, including swarm size, competing uploads, peer behavior, and network

conditions.
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Figure 2.7: Block propagations in two competing swarms. Solid edges indicate the
propagation of a particular block uploaded by peer p. Dashed edges indicate transfers
of other blocks that compete with p’s block for peers’ upload bandwidth. p’s block
propagates more widely in swarm s1 than in s2.

2.5.3 Content Propagation Metric

Block propagation bandwidth captures the utility of a given block upload,

which may suffer from a high rate of fluctuation depending on that block’s rel-

ative rarity and peer r, the peer that receives the block in the tracked transfer.

To compensate for such fluctuations, the CPM is based on a statistical sample of

blocks that are disseminated by each peer.

The CPM captures the utility of a peer to a given swarm based on its recent

uploads. A peer’s CPM value for a particular swarm is computed from block

propagation bandwidths obtained within a recent time interval π = t′ − t. For-

mally, let

V t,t′

p,s = {vt1,t
′
1

p,r1,b1
, v

t2,t′2
p,r2,b2

, . . . }

be the set of all block propagation measurements where blocks b1, b2, . . . are from

swarm s and t < t′i ≤ t′ for all i. Then,

CPMt,t′

p,s =
( ∑
v∈V t,t′

p,s

v
)
/|V t,t′

p,s |,
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Figure 2.8: Three competing swarms. Peer p1 in swarms s1 and s2 and peer p2 in
swarms s1 and s3 converge on the allocation of bandwidth indicated by the gray arrows.
p2’s CPM value for s3 is smaller than for s1 due to the swarms’ sizes; p1 allocates its
bandwidth to s2, where its blocks do not compete with p2’s uploads.

the average of the measurements. We define

CPMp,s = CPMt∗−π,t∗
p,s ,

with the times omitted, to be p’s current value for swarm s during the most

recent time interval π, where t∗ is the current time. Each value CPMp,s is imple-

mented as a rolling average that is continually updated as new block propaga-

tion bandwidths become available and old measurements become stale.

To illustrate the CPM, consider the bandwidth allocation of two peers origi-

nating content for three new swarms with identical network conditions and no

competition from other uploaders, as depicted in Figure 2.8. Swarms s1 and s2

distribute popular content, with new downloaders joining at a higher rate than

swarm s3. Peer p1 possesses content for s1 and s2, and peer p2 possesses con-

tent for s1 and s3. After uploading a few blocks and measuring CPM values, p2

will identify s1 as the swarm that benefits more from its bandwidth due to, in

this example, its larger size. p1 likewise will measure a high CPM value for s1,

but blocks uploaded by p2 will interfere with p1’s uploads, causing both peers’
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CPM values for s1 to diminish. Consequently, p1 will allocate its bandwidth to

s2, which lacks the competition of p2’s uploads. As swarm dynamics change,

CPM values shift to adjust peers’ bandwidth allocations. Continuing the above

example, after s1 has received sufficiently many blocks, its peers may be able

to sustain high aggregate bandwidth without support from p2. In this case, p2’s

block uploads to the swarm will compete with a large number of uploads from

the peers themselves, causing p2’s blocks to propagate less. In turn, p2’s CPM

value for s3 may exceed its CPM value for s1, causing p2 to allocate its band-

width to s3 instead.

The CPM provides peers information to allocate bandwidth based on cur-

rent swarm dynamics. It might be tempting to use, instead, heuristics such as

a global rarest policy, where peers request rare blocks from neighbors regard-

less of swarm, and peers in multiple swarms preferentially satisfy requests for

blocks that are rarest within their respective swarms. However, such a policy

operates solely based on the number of replicas of each block, and disregards

swarm dynamics and peer behavior.

A peer’s CPM value provides an accurate estimate of the peer’s value to a

swarm relative to competing swarms. The CPM captures the average benefit

that peers’ recent block uploads had on their swarms, providing a useful pre-

diction of the value of future block uploads.

2.5.4 Robustness of the CPM

A metric for allocating bandwidth needs to handle changes in swarm mem-

bership and highly dynamic swarms, and achieve high performance in deploy-
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ments with swarms of vastly different sizes. It also needs to dampen oscillations

to converge on a stable allocation of bandwidth. We discuss characteristics of

the CPM and how it handles these issues in turn.

Probing Swarms

Highly dynamic swarms pose two challenges for determining efficient band-

width allocations. First, when peers join swarms for which they have no block

propagation data, they are unable to compute the marginal benefit of upload-

ing blocks to the new swarm versus uploading blocks to a competing swarm.

Second, swarms with high peer churn can respond very differently to a peer’s

contributions from one moment to the next. Consequently, such swarms can

regularly invalidate many peers’ CPM values, causing them to operate subopti-

mally.

Probing swarms enables calculation of CPM values for these problematic

swarms with minimal overhead. To probe a swarm, a peer temporarily prior-

itizes requests for blocks in that swarm above other block requests until it has

uploaded a small, constant number of blocks to the swarm of 128–256 KBytes.

We have found two block uploads to be sufficient for computing provisional

CPM values to adapt to highly dynamic swarms.

Measurement Time Interval

The CPM measures the initial surge of block exchanges that occurs when a peer

injects blocks into a swarm. The growth of a block’s propagation tree reflects the

swarm’s demand for the block with respect to block availability, peer behavior,
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s2
s1

τ2

τ1

Figure 2.9: Measurement time interval. Edges indicate the propagation of blocks
originating at peer p in swarms s1 and s2. Solid edges and dark shading show the
propagations within a time interval τ1 that is too small for p to differentiate its benefit
to the competing swarms. Using a larger time interval τ2, indicated by dashed edges in
the lightly shaded region, makes it clear that s2 receives more benefit from p’s blocks.

and network conditions within the vicinity of its tracked uploader. The wide

range of swarm behavior means that using a globally constant time interval τ

for measuring block propagations from all peers is insufficient.

Figure 2.9 gives an intuition of how the choice of measurement time inter-

val affects a peer’s ability to differentiate among competing swarms. Swarm s1

is significantly smaller than s2, but, assuming comparable network conditions

and competition for blocks, using a small time interval τ1 prevents p from rec-

ognizing that s2 receives more benefit from each block. The propagation trees

for τ1 are nearly identical in the two swarms, causing p to allocate its bandwidth

equally between them. Increasing the time interval to τ2 enables p to discover

s2’s ability to achieve higher aggregate bandwidth than s1 for each block.

Measuring block propagation with a τ that is unnecessarily large likewise

decreases performance. A large measurement time interval increases the delay

between the time p finishes uploading a block and the time p has an updated
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CPM value that incorporates the newly measured block propagations. Thus,

choosing a suitable τ is a tradeoff between system performance, measured as ag-

gregate bandwidth, and system adaptability, or the time required for the system

to converge on a new allocation of bandwidth in highly dynamic deployments.

To address the CPM’s sensitivity to the measurement time interval, we

choose an interval for each peer that teases apart the peer’s highest-valued

swarms. The coordinator in a deployment that uses the CPM maintains a mea-

surement time interval τp specific to each peer p. Based on recent block propa-

gation data, the system adjusts τp in order to account for changes in size of p’s

swarms. To do this, the system periodically uses its record of p’s recent block

uploads to measure block propagation bandwidths for three different values of

τ : τp, τ lowp = 1/2 · τp, and τhighp = 2 · τp. It then updates τp with the smallest of

the three time intervals for which p achieves different CPM values for its two

swarms with the largest CPM values, corresponding to the swarms for which

p has the greatest impact. Thus, the system continuously and iteratively com-

putes τp, adjusting its value over time.

Stabilization

The CPM mitigates oscillations in bandwidth allocations despite complex in-

teractions among peers that influence multiple swarms. First, changes in CPM

values only affect the bandwidth allocations of peers that belong to multiple

swarms. The remaining majority of peers propagate blocks within their respec-

tive swarms regardless of CPM values, dampening the effects of shifting band-

width allocations on a swarm’s aggregate bandwidth. Second, a peer’s CPM

values for competing swarms regulate the peer’s bandwidth allocation among
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the swarms. A peer’s CPM value for a swarm naturally decreases as the peer

uploads to the swarm because the uploads increase competition for download-

ing peers’ upload bandwidth. Once the CPM value drops below the CPM value

of a competing swarm, the uploading peer allocates its bandwidth elsewhere,

leaving the swarm with sufficient content to temporarily maintain a steady ag-

gregate bandwidth. In Chapter 4, we show that aggregate bandwidth converges

stably when there are multiple swarms vying for bandwidth from cache servers

with limited upload capacity.

2.6 Summary

Content distribution systems based on managed swarms enable a logically cen-

tralized coordinator to optimize resources in order to achieve a global goal. One

such goal, and the focus of this thesis, is to maximize the average download

bandwidth across peers. The general multi-swarm content distribution prob-

lem formalizes this goal. A new model of swarm behavior based on response

curves, which combine mathematical properties with empirical measurements,

provides a foundation for addressing the general multi-swarm content distribu-

tion problem.

Small content distributors can use response curves directly to optimize the

bandwidth usage in a specialized set of deployment scenarios where a content

library resides at a logically centralized seeder. For large content distributors,

which often deploy cache servers to increase performance and reliability, we in-

troduce the CPM, a new metric that enables each host to measure its benefit to

the system and adjust its allocations accordingly. With the CPM, a content dis-
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tributor can achieve efficient use of resources in deployments with cache servers

that possess only subsets of the content, as well as peers that belong to multiple,

potentially overlapping swarms.
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CHAPTER 3

IMPLEMENTING MANAGED SWARMS

This chapter describes our implementation of a managed swarming system.

We discuss two algorithms, Antfarm and V-Formation, that address the single-

seeder and general multi-swarm content distribution problems, respectively.

We also describe the design of the logically centralized coordinator and cache

servers, as well as two implementations of the underlying wire protocol for han-

dling tokens exchanges and block transfers: one designed from the ground up

to support Antfarm, and one based on and backward compatible with BitTor-

rent for standardization and interoperability. This chapter then discusses the

security and scalability of managed swarming deployments. Finally, we dis-

cuss engineering challenges that we faced while building our live deployment

of a managed swarming system, called FlixQ [3], and how we addressed them.

3.1 Wire Protocol

Hosts in a deployment of managed swarms communicate with each other using

a wire protocol. The protocol specifies the format and semantics of the messages

that peers send to other peers, such as block requests and responses and token

exchanges, as well as messages sent between peers and the logically central-

ized coordinator, including as tokens, bandwidth allocations, and lists of swarm

members.

The wire protocol’s primary goal is to shuttle blocks, tokens, and allocations

among peers and the coordinator, but several secondary concerns drive its de-

sign as well. First, the wire protocol should incur minimal overhead as every

39



block transfer is accompanied by several token exchanges. To this end, we have

designed tokens to be small random strings that do not rely on cryptographic

operations for signing or verification. Second, the protocol should enable the

coordinator to use its global view of the system to monitor peers, detect peers

that do not adhere to the protocol, and ban such peers from the system. Finally,

the protocol should enable peers to employ standard swarm optimizations for

uploading blocks within a swarm for block transfers that the coordinator does

not explicitly dictate. Such optimizations, which are common among BitTor-

rent clients, include optimistic unchoking, block auctions, and rarest-first block

selection.

For historical reasons, we have implemented two wire protocols for man-

aged swarms that satisfy these goals: a prototype designed from the ground up

that specifies messages for an Antfarm deployment and a production version

running on our FlixQ deployment that is based on and backward compatible

with the BitTorrent protocol. Both protocols enable peers to request blocks from

each other in exchange for tokens, request fresh tokens from and return spent to-

kens to the coordinator, and receive bandwidth allocations and peers lists from

the coordinator. The protocols differ predominantly in peers’ communication

with the coordinator, which the BitTorrent-compatible protocol addresses with

HTTP requests rather than with streams of messages sent over persistent TCP

connections. The second wire protocol augments the BitTorrent wire protocol,

which simplified the implementation of our managed swarming client software

because we were able to build it on top of an existing open-source BitTorrent

client.
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This section describes the messages supported by each wire protocol. We

leave discussion of how peers and the coordinator behave with respect to send-

ing and receiving messages to Sections 3.2 and 3.4, respectively.

3.1.1 Prototype Wire Protocol

We built and included a custom prototype wire protocol with our deployment

of Antfarm. The protocol establishes persistent TCP connections between each

peer and all its neighbors, as well as from each peer to a physical server in the

logically centralized coordinator. This allows fast transmission of small mes-

sages for shuttling tokens and bandwidth allocations.

The basic data transmission protocol has three phases consisting of peer and

block selection, data-for-token exchange, and bandwidth allocation. Table 3.1

lists the complete wire protocol.

Peers and the coordinator create persistent TCP connections by sending

handshake messages. After establishing a connection to the coordinator, peers

manage their swarm memberships by sending the coordinator join swarm and

leave swarm messages.

Between peers, the protocol facilitates block selection and transmission us-

ing messages that are analogous to, but distinct from, BitTorrent protocol mes-

sages. In particular, a peer in a managed swarming system advertises the blocks

that it possesses to its neighbors using a bitfield message when the peer first con-

nects to a neighbor, and with incremental updates via have block messages as the

peer acquires additional blocks. Based on neighbors’ block updates, a peer then
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Connections
handshake Sent by peers to establish connections; includes the identifier of a file

the sender wants to download and the public port of the sender.
handshake response Sent in response to a handshake.
join swarm Sent to the coordinator to become a swarm member.
leave swarm Sent to the coordinator to be removed from a swarm.
time request Sent by a peer to the coordinator to get the system time.
time response Sent in response to a time request; contains the time according to

the coordinator.
Node state
choke Informs the recipient that the sender is not accepting block requests from

the recipient.
unchoke Informs the recipient that the sender is now accepting block requests

from the recipient.
interested Informs the recipient that it has at least one block that the sender needs.
not interested Informs the recipient that the recipient does not have any blocks

that the sender needs.
have block A notification sent to directly-connected peers when a peer receives a

new block.
bitfield Contains a bitfield of all the blocks the sender possesses. Normally sent

after establishing a new connection.
Block transfers
request A request for a specific block.
block A block of file data, sent in response to a request.
Swarm info
peer request Sent by a peer to the coordinator to request a set of peers in the

swarm.
peer response A set of peers’ addresses and ports.
good peers Sent periodically by the coordinator to each peer to notify them of

peers to unchoke.
bad peers A notification containing a set of peers the coordinator has identified as

malicious.
allocation Sent by the coordinator to inform peers of the desired allocation of their

upload bandwidth.
Token management
new tokens Sent by the coordinator to deliver a set of fresh tokens to a peer.
token receipt Receipt for a block transfer; sent from one peer to another in response

to a block message.
token ledger Contains a set of spent tokens sent to the coordinator in exchange for

fresh tokens.
token replace Contains a set of fresh tokens sent to the coordinator in exchange for

new tokens with later expiration times.

Table 3.1: Prototype wire protocol. A comprehensive list of peer-peer and coordinator-
peer messages. The protocol comprises messages to establish connections, notify peers
of progress and status, exchange blocks, and handle tokens.
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notifies neighbors whether it is interested in downloading blocks from them.

Peers respond by indicating whether they will allow the peer to request blocks

with choke and unchoke messages.

Another set of messages allow the coordinator to distribute swarm metadata

to peers. Peers discover other peers via the coordinator’s peer response message,

which contains a subset of the swarm’s peers. The good peers and bad peers

messages enable the coordinator to send peers subsets of the swarm’s peers

based on their past behavior. The coordinator uses these messages to reward

and punish peers; the message recipient is encouraged to exchange blocks with

good peers and to avoid bad peers.

The coordinator informs peers of its bandwidth allocation decisions with

an allocation message. The message contains the absolute bandwidths that the

recipient peer should allocate to each swarm to which it belongs until the peer

receives the next allocation message.

Finally, a set of messages facilitate token exchanges among peers and be-

tween peers and the coordinator. The coordinator sends fresh tokens to peers

in new tokens messages, peers send each other tokens in exchange for blocks in

token receipt messages, and token ledger messages enable peers to deposit spent

tokens at the coordinator.

3.1.2 BitTorrent-Compatible Wire Protocol

We designed a second wire protocol that is backward compatible with the Bit-

Torrent protocol for our own open, large scale content distribution system. For
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messages between peers, the protocol uses pure BitTorrent messages, with two

modifications. First, when establishing a connection with a new peer, a man-

aged swarming peer informs the other peer that it expects to receive tokens in

exchange for uploaded blocks. Second, a new token message encapsulates to-

kens sent in exchange for a block. Using this augmented BitTorrent protocol

among peers, managed swarming peers can optionally connect to traditional

BitTorrent peers, with the knowledge that such peers do not possess tokens.

To communicate with the coordinator, peers issue HTTP requests similar

to requests that BitTorrent peers send centralized BitTorrent trackers to join

swarms and obtain lists of peers. Table 3.2 lists the full peer-coordinator pro-

tocol:

announce (request) An HTTP GET request modified from BitTorrent’s announce
request sent by a peer to the coordinator to join or leave a swarm, and to request
a list of peers in the swarm. Parameters:

- content id Identifier for a swarm and its content
- peer id The announcing peer’s unique identifier
- port The peer’s public port
- event Swarm membership and content download state; one of “completed”,

“stopped”, or “started”
- left Number of bytes the peer has left to download
- upload bw The peer’s upload capacity available for allocation

Table continued on next page. . .
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Table continued from previous page. . .

announce (response) The coordinator’s response to an announce request. Returned
values:

- interval The number of seconds the peer should wait before issuing another
announce request

- peer list A list of IP addresses and public ports of other peers in the swarm
- cpm The peer’s current CPM value for the swarm
- probe A Boolean value indicating whether the peer should probe the swarm

so the coordinator can calculate a fresh CPM value
- stride Determines which blocks the coordinator tracks to calculate CPM val-

ues: a block is tracked if and only if the block identifier modulo the stride
is 0; used by the peer to prioritize incoming block requests when probing a
swarm

get tokens (request) An HTTP GET request sent by a peer to request fresh tokens
for a particular swarm. Parameters:

- content id Identifier for a swarm and its content
- peer id The requesting peer’s unique identifier
- port The peer’s public port
- num tokens The number of tokens that the peer wants

get tokens (response) The coordinator’s response, containing a generator that the
peer can use to create a specific number of fresh tokens for a limited time. Re-
turned values:

- token generator A secret key that the peer uses to sequentially generate valid
tokens

- epoch The current epoch, used by the coordinator to accept or reject tokens
based on the age of their generator

- start serial The sequence number at which the peer should number the to-
kens that it generates

- num tokens The number of valid tokens the token generator will yield
- min request interval The minimum amount of time before the peer can re-

quest more tokens

Table continued on next page. . .
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Table continued from previous page. . .

deposit tokens (request) An HTTP POST request sent by a peer to deposit spent
tokens. Parameters:

- content id Identifier for a swarm and its content
- peer id The requesting peer’s unique identifier
- port The peer’s public port
- tokens (POST data) A packed concatenation of the peer’s ledger (spent tokens

that the peer received in exchange for blocks)

deposit tokens (response) The coordinator’s response. Returned values:

- num tokens The number of successfully deposited tokens
- ban ips A list of addresses of peers from which the requesting peer received

invalid tokens; the requesting peer should no longer exchange blocks with
returned peers

Table 3.2: BitTorrent-compatible wire protocol. A list of coordinator-peer messages.

Basing a managed swarming wire protocol on an existing, widely used pro-

tocol eases adoption, accessibility, and implementation of managed swarm-

ing systems. First, it enables BitTorrent clients to interoperate with managed

swarming systems. Although BitTorrent peers cannot participate in token ex-

changes or allocate bandwidth according to the coordinator’s calculations, ex-

isting BitTorrent deployments contain a wealth of content that could potentially

draw users toward managed swarms as an alternative. Additionally, layering

the protocol on top of the existing, well-established BitTorrent protocol low-

ers the barrier for third-party developers to adopt the managed swarming ap-

proach. Finally, basing our protocol on a widely adopted protocol enabled us to

use existing, open-source implementations of BitTorrent’s peer-to-peer protocol

as a basis for our own implementation.

The coordinator employs peer-facing web servers that collectively function

as an augmented tracker for facilitating swarms, similar to a BitTorrent tracker.
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Web servers accept three types of asynchronous requests from peers. Peers issue

announce requests periodically for each swarm, get tokens requests when their

fresh tokens are nearly depleted, and deposit tokens requests when they possess

spent tokens from other peers.

Peers issue periodic announce requests for each of their swarms to obtain ad-

dresses of other peers and to discover how to allocate bandwidth to swarms.

An announce request contains the requesting peer’s identifier and a swarm’s

identifier, represented as a 20-byte hash. A web server responds to an announce

request with addresses of a set of peers and the requesting peer’s most recent

CPM value for the swarm. The coordinator adjusts announce intervals dynam-

ically to achieve a constant CPU utilization on the web servers. If the coordina-

tor does not have sufficient data to determine a peer’s CPM value, the response

asks the peer to probe the swarm so that the coordinator obtains fresh block

exchange information.

The get tokens and deposit tokens requests facilitate the exchange of fresh and

spent tokens, respectively, between peers and the coordinator. The coordinator

maintains a credit balance for each peer that represents the total number of to-

kens that the peer can obtain across all swarms. When a peer issues a get tokens

request, the coordinator updates the peer’s credit balance and sends the peer

an equal number of fresh tokens for a particular swarm, to be exchanged for

blocks within a specific time interval. Peers with a balance of zero may con-

tinue to request blocks from peers, but its requests will be prioritized strictly

below requests from peers that have tokens. This mechanism enables peers to

obtain blocks, which they can use to acquire tokens in the future, but it only

uses peers’ spare upload bandwidth, and therefore does not interfere with com-
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puted bandwidth allocations. When a peer receives a token from another peer

in exchange for a block, the peer sends it to the coordinator in a deposit tokens

request. The coordinator verifies the token’s authenticity, increases the peer’s

balance accordingly, and records the block transfer for calculating future band-

width allocations.

The following sections explore how peers, cache servers, and the coordinator

operate on top of the wire protocol in managed swarming systems.

3.2 Peers

Peers behave similarly regardless of the bandwidth allocation algorithm and

the underlying wire protocol. Within a swarm, peers operate identically to Bit-

Torrent peers and adopt common mechanisms from BitTorrent clients, includ-

ing optimistic unchoking for peer discovery, tit-for-tat for bandwidth allocation,

and rarest first for block selection. The coordinator’s bandwidth allocation deci-

sions, then, affect peer behavior by instructing peers how to prioritize requests

for blocks from peers in competing swarms.

Peers use the coordinator’s bandwidth allocation decisions to choose which

block requests to satisfy, and in what order. Each peer will receive a stream of

incoming block requests from peers in multiple swarms. Peers participating in

a deployment that uses the Antfarm algorithm allocate their bandwidth among

competing swarms according to absolute bandwidth values from the coordi-

nator. Peers in V-Formation deployments prioritize their swarms based on the

CPM values contained in announce responses. Upon receiving an updated CPM

value, a peer updates a local list of its swarms, strictly ordered by CPM value.
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When a peer has received multiple outstanding block requests from peers in

different swarms, it satisfies a request from the swarm with the largest CPM

value.

Guided by the coordinator’s inter-swarm bandwidth allocations, peers de-

termine their own criteria for selecting specific peers and blocks to exchange.

This enables peers to perform optimizations based on local information, reduc-

ing the burden on the centralized coordinator. The default peer behavior in

managed swarming deployments for peer and block selection is identical to Bit-

Torrent. Peers retain a prioritized list of other peers with which to exchange data

blocks (to unchoke). The priority order is determined by maintaining a rolling

average of the bandwidth achieved through that peer’s history of interactions.

Peers choose blocks using a rarest-first algorithm; they maintain a bitmap of

blocks held by each connected peer constructed from block acquisition notifi-

cations sent by peers after each block transfer. Since swarming systems that

rely solely on local information and randomized interactions may operate at re-

duced efficiency due to lack of information [67], the coordinator uses its global

knowledge to influence peer selection. The coordinator monitors each peer’s

upload history and identifies underutilized peers. It sends lists of such peers as

candidates for data exchange. This is an advisory notification that causes the

recipient to increase the priority of the named, underutilized peers. This is a no-

cost optimization; a peer is under no obligation to follow the recommendations

and the protocol’s correctness does not depend on the peer-selection algorithm.

This process of aiding peer selection is also improved by the use of network

proximity measures [94, 39, 75].
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Once a peer (receiver) has chosen another peer (sender) and determined a

suitable block for download, it sends a block-exchange request. If the sender

has unchoked the receiver, it sends the requested block to the receiver. Upon

completion of the transfer, a non-malicious receiver checks the hash of the block

against the hash specified in the swarm description and sends an unexpired

token to the sender of the data block. Each peer maintains a purse of unused

tokens issued by the coordinator for use by that peer, and a ledger of tokens

received from other peers in exchange for data blocks. Tokens flow from the

purse of the receiver to the ledger of the sender.

Peers communicate periodically with the coordinator to refresh their purses

and ledgers. Each unexpired token in the ledger entitles the peer to a fresh token

for its purse. If a newly received token in the ledger is going to expire before the

next scheduled refresh, or if the purse contains nearly expired unspent tokens,

the peer can preemptively redeem selected tokens for new tokens with later

expiration times.

3.3 Cache Servers

Content distribution systems may employ cache servers to improve content

availability and download times. Operators of the content distribution systems

can deploy such cache servers themselves, or ISPs can choose to deploy their

own cache servers to provide better service for their customers or reduce inter-

ISP traffic. In either case, the managed swarming coordinator measures cache

servers’ effects on their swarms, and uses the data to allocate their bandwidth

efficiently among swarms.
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Antfarm and V-Formation handle cache servers differently, as discussed for

the single-seeder and general multi-swarm content distribution problems, re-

spectively. Antfarm explicitly designates servers that possess the content li-

brary in its entirety as seeders, and includes such servers’ upload bandwidth

in its allocation of seeder bandwidth. Thus, additional physical machines that

constitute the logically centralized seeder function to increase the seeder’s to-

tal bandwidth that the algorithm optimally allocates among swarms. Antfarm

treats cache servers that do not possess all the content as normal peers, and the

coordinator does not manage bandwidth from such servers, even if the servers

belong to multiple swarms.

In V-Formation, in contrast, the coordinator manages bandwidth from all

hosts, regardless of swarm membership. As a result, content distributors and

ISPs have more freedom to deploy cache servers that only contain a partial sub-

set of the system’s content library.

V-Formation treats cache servers and end users identically: both are simply

peers that can belong to any number of swarms, either to download content or

to provide blocks to downloading peers. V-Formation, then, determines a cache

server’s bandwidth allocation in the same way that it does for an end user: the

coordinator computes a CPM value for each swarm to which the cache server

belongs, and instructs the cache server to strictly prioritize swarms for which its

bandwidth has the highest impact. Because the coordinator uses the same crite-

ria for all hosts when making its bandwidth allocation decisions, V-Formation

grants network operators and ISPs the flexibility to deploy cache servers: caches

can contain all content to improve availability, or they can contain only a se-
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lected subset, such as the most popular items, to improve download speeds for

clients.

Cache servers in managed swarming deployments effectively support both

open and closed content distribution systems. In Antfarm, cache servers are

managed optimally when they contain all the system’s content. Thus, they nat-

urally support a closed content distribution system, where the content distrib-

utor manages the content available for download. Alternatively, an Antfarm

deployment can function as an open content distribution system where users

are required to upload content to the logically centralized seeder before it be-

comes available for download, similar to YouTube. V-Formation, on the other

hand, does not make a distinction between cache servers and end users. As a

result, V-Formation is more suitable for an open content distribution system,

where users share original content directly from their computers, and cache

servers aid in the distribution content by caching popular content as it prop-

agates throughout the network.

3.4 Coordinator

The logically centralized coordinator is the heart of a managed swarming sys-

tem. Its function is to track block transfers among peers, compute efficient band-

width allocations, notify hosts how they should allocate their bandwidth, and

provide accountability and management to ensure that hosts follow the pre-

scribed allocations.

The coordinator collects statistics on peer network behavior, computes re-

sponse curves and bandwidth allocations for each peer and seeder, and steers
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each swarm toward an efficient point of operation. It affects each swarm’s point

of operation through manipulation of the token supply and direct interaction

with cooperative peers. Finally, it keeps track of malicious and uncooperative

participants, excising them from the network when their misbehavior affects

performance.

The primary task of the coordinator is to monitor network characteristics

and swarm dynamics by keeping track of tokens for each data block transaction

between peers. Each token the coordinator receives informs the coordinator

of the swarm in which a transaction occurred, the specific peers involved in

the transaction, and a window of time in which the data block was transferred

based on the token’s minting and expiration times.

In large deployments, the coordinator may be distributed across physical

machines, and the organization of the physical machines affects the coordina-

tor’s efficiency for its various tasks. This thesis describes two organizations for a

distributed coordinator that differ in how information about block transfers are

aggregated and where bandwidth allocations are computed. A coordinator with

a hierarchical organization and centralized computation is ideal for Antfarm, where

the coordinator periodically aggregates information and computes a bandwidth

allocation for only a single logically centralized seeder. In contrast, V-Formation

computes bandwidth allocations for each of potentially many hosts, each with

different swarm memberships and bandwidth capacities. As a result, a coor-

dinator with a flat organization that is optimized for distributed computation is

more suitable because it provides a natural method to continuously aggregate

block transfers, and it computes bandwidth allocations using several physical

machines.
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We describe both coordinator organizations in detail and discuss the advan-

tages of each for coordinating peer behavior using the two bandwidth alloca-

tion algorithms. Then, we describe the design of a completely decentralized

coordination scheme in which the coordinator’s tasks are delegated to the peers

themselves. The result is a decentralized managed swarming system for use in

trusted environments when centralization is infeasible.

3.4.1 Hierarchical Organization, Centralized Computation

A distributed coordinator organized hierarchically comprises two types of

servers: a single server, called the coordinator’s root server, centrally computes

all bandwidth allocations based on recent token exchanges. The remaining

servers, called token servers, communicate directly with peers. They are tasked

with issuing tokens, collecting tokens back from peers, and periodically send-

ing each peer’s upload and download rates to the root server. When a new peer

enters the system, it contacts the root server. The root server redirects each peer

to a token coordinator based on a hash of the peer’s IP address. When a token

coordinator receives a spent token from an assigned peer, it applies the same

hash function to the IP address of the token’s original owner, a field in the to-

ken itself, and verifies the token with the token coordinator that issued it. Thus,

each token exchanged between peers involves at most two of the coordinator’s

token servers.

A hierarchically organized coordinator that computes bandwidth allocations

at a single root server is well suited for the single-seeder multi-swarm content

distribution problem. There are two key reasons for this. First, the coordinator
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aggregates all block transfer information to a single host, which then possesses

all data required to determine the optimal allocation of bandwidth from the

logically centralized seeder. This renders the bandwidth allocation algorithm

tractable without the need for a distributed optimization algorithm. Second,

because there is only a single seeder, the coordinator only periodically com-

putes new bandwidth allocations. Thus, token servers need to send summaries

of token exchange data to the root server only when the root server needs to

compute allocations, resulting in low network overhead within the coordinator.

The coordinator’s centralized computation of bandwidth allocations makes

it ideal for managed swarming systems based on Antfarm. The remainder of

this section explores the coordinator’s role in a deployment of Antfarm, which

highlights how the coordinator collects tokens from peers using token servers,

computes bandwidth allocations at the root server, and notifies peers and the

seeder of the coordinator’s decisions.

Based on token exchanges, each coordinator token server maintains two key

parameters for each peer p assigned to it: the set of swarms Sp that p is a mem-

ber of and a rolling average of its upload bandwidth up, which the token server

updates based on tokens that it receives, and sends to the root server upon re-

quest. The root server keeps track of the set of all physical hosts T that comprise

the logically centralized seeder, as specified by the network operator. The co-

ordinator assumes that all hosts in T are members of all swarms, and that they

each possess the system’s content in its entirety. Finally, for each swarm s, the

root server maintains a set Ps of peers in s and a response scatterplot for s, repre-

sented as a collection of data points that each expire 30 minutes after they are

measured.
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The coordinator chooses swarms to grant bandwidth based on collected

swarm statistics. The response scatterplots are not immediately suitable for

use in computing bandwidth allocation, as they contain artifacts due to mea-

surement errors and changes over time, creating false local minima and max-

ima. The coordinator generates a response curve from a response scatterplot for

swarm s, which we denote as a function ρs that maps the seeder bandwidth that

s receives to the expected aggregate bandwidth that s will generate.

The coordinator computes ρs from the response scatterplot by fitting a piece-

wise linear function. Given a response scatterplot of (seeder bandwidth, aggre-

gate bandwidth) pairs (x1, y1), (x2, y2), . . . , (xn, yn), with x1 < x2 < · · · < xn, the

coordinator computes a new set of points (x1, y
′
1), (x2, y

′
2), . . . , (xn, y

′
n) with the

same x values. The new aggregate bandwidth values y′1, y′2, . . . , y′n are chosen

according to the optimization problem

minimize
∑n
i=1(yi − y′i)2

such that slopei ≥ 0, 1 ≤ i < n,

slopei+1 ≤ slopei, 1 ≤ i < n− 1,

where slopei = (y′i+1−y′i)/(xi+1−xi). The response curve ρs, then, is the function

created by connecting consecutive generated points with line segments. The

resulting response curve minimizes least squares and respects the monotonicity

and concavity constraints of theoretical response curves, making them suitable

input to Antfarm’s bandwidth optimization algorithm.

The coordinator sends the seeder hosts in T explicit bandwidth allocations

for each swarm based on the optimal solution to the single-seeder multi-swarm

content distribution problem. In addition, the coordinator calculates each peer’s

upload capacity based on deposited tokens and uses it to send end users per-
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Figure 3.1: Allocating bandwidth with response curves. The black dots denote the
allocation of bandwidth for swarm s before and after one iteration of allocation. For
each ∆σ tasked to the seeder by the hill-climbing algorithm, a randomly selected peer
with spare upload capacity is tasked with allocating a corresponding ∆δ. The dotted
line has a slope of 1, accounting for the seeder’s contribution to the swarm’s aggregate
bandwidth.

swarm allocations. These allocations are not guaranteed to be optimal; the coor-

dinator generates them with a greedy algorithm to distribute bandwidth from

peers that are members of multiple swarms. The mechanism is an optimization,

but Antfarm provides no guarantees of the system’s efficiency when there is

high overlap among swarms.

Based on the computed response curves, the coordinator computes the

amount of bandwidth that each seeder host and peer should dedicate to each

swarm, represented as two matrices σ and δ. For each swarm s, σt,s captures

the amount of bandwidth seeder host t will dedicate to s, and δp,s captures the

amount of bandwidth peer p is expected to dedicate to s. This determines the

critical allocation of seeder upload bandwidth σs =
∑
t∈T σt,s to swarm s in

order to achieve a swarm aggregate bandwidth ρs(σs), based on s’s response

curve. The component of swarm bandwidth coming from peer-to-peer, non-

seeder block exchanges, then, is δs = ρs(σs) − σs =
∑
p∈Ps

δp,s. The coordi-
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nator computes this allocation periodically (every five minutes in our current

implementation). In computing σ and δ, the coordinator operates under the

constraint that
∑
s∈Sp

δp,s cannot exceed p’s upload capacity up. The coordinator

determines σ and δ iteratively. Initially, σt,s = δp,s = 0 for all peers p, seeder

hosts t, and swarms s. The coordinator determines the allocation of bandwidth

through a greedy hill-climbing algorithm using the computed response curves

and its knowledge of the seeder hosts’ upload capacities. This process is il-

lustrated in Figure 3.1. The coordinator allocates bandwidth in discrete units

to the swarms whose response curves have the highest gradient, breaking ties

in favor of the swarm s with the lowest value of ρs(σs), as described in Chap-

ter 2.4. For each increase in seeder bandwidth σs to swarm s by an amount

∆σs, the algorithm computes the anticipated increase in swarm aggregate band-

width ∆ρs = ρs(σs) − ρs(σs − ∆σs). It then chooses a peer at random from Ps

with spare upload bandwidth and tasks it with uploading to s an additional

∆δs = ∆ρs −∆σs. The coordinator continues the process until all seeder band-

width has been allocated. The final peer allocation δ ensures that peer trans-

fers within each swarm achieve the previously measured aggregate bandwidth

based on the seeder’s allocation σ.

Computation of bandwidth allocation is not a highly time-critical task. De-

lays in network measurements and peer interactions imply inherent delays be-

tween computing an allocation and seeing a change in the network. Since the

latency of computing the bandwidth allocation is dwarfed by the latency of data

exchange, the computation can be performed in the background. The optimiza-

tion algorithm is linear in the number of peers and grows according to O(n lg n)

with the number of swarms, enabling the system to scale. The primary metric
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that determines the quality of the solution is the freshness of data on swarm

dynamics.

To keep the coordinator’s view of the network accurate, Antfarm’s token

protocol incentivizes peers to report statistics to the coordinator in a timely man-

ner. A token’s expiration time (five minutes in the current implementation) and

spender-specificity force peers to return tokens to the coordinator in order to

receive bandwidth in the future. The circulation of tokens reveals sufficient in-

formation to the coordinator to perform the allocation described above.

Token-based economies can suffer from inflation, deflation, and bankruptcy

if left unmonitored. Based on analyses of scrip systems [69], the Antfarm co-

ordinator maintains a constant number of tokens per swarm per peer (30 in

the current implementation). New peers receive an initial allowance of 30 to-

kens. As unspent tokens expire, the coordinator redistributes an equal number

of new tokens to random peers to prevent a token deficit when peers depart

with positive token balances. Token unforgeability prohibits deflation, and to-

ken redistribution enables bankrupt peers to acquire new blocks and reintegrate

themselves into the swarm.

The coordinator rewards peers that contribute to the system both directly, by

offering seeder bandwidth to peers that have donated bandwidth to peers, and

indirectly, by encouraging peers to request blocks from underutilized peers. For

the latter, the coordinator uses data from tokens to identify top uploaders with

spare bandwidth. Then, to each peer, the coordinator periodically sends a list

containing a subset of the identified peers, where each peer is included with

a probability proportional to its upload bandwidth. When peers receive these
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lists, they can choose to preferentially unchoke those peers and request blocks

from them.

Peer churn and changes in network conditions cause response curves to

become stale over time. In addition, transient measurement errors can skew

response curves, causing the system to operate suboptimally. Antfarm main-

tains response curves by actively exploring the swarm’s response at different

seeder bandwidths. In each epoch, the coordinator randomly perturbs the cur-

rent bandwidth allocation by a small amount for each swarm, on the order of

5 KBytes/s. Such variances provide additional data points on the response scat-

terplot, enabling the system to overcome false local minima due to transient

effects.

In our current Antfarm implementation, the coordinator does not enforce

peers’ compliance with the coordinator’s directives in allocating their upload

bandwidth. A peer can shift bandwidth away from one swarm in favor of an-

other swarm at its discretion. When a peer deviates from its prescribed band-

width allocation, it results in a small shift in the affected swarms’ response to

bandwidth. The coordinator updates its response curves as it takes new mea-

surements, and the peer’s decisions are reflected in future bandwidth alloca-

tions that the coordinator computes from the updated response curves.

Overall, a hierarchical coordinator computes bandwidth allocations at a sin-

gle host, and the coordinator periodically updates its bandwidth allocations for

a set of seeder hosts specified by the network operator.
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Figure 3.2: Distributed computation in a flat coordinator. Web servers communicate
with peers (including cache servers) to gather information on swarm dynamics. Pro-
cessors use swarm dynamics to compute peer bandwidth allocations. Web servers and
processors communicate via a distributed state layer to maintain consistency.

3.4.2 Flat Organization, Distributed Computation

The general multi-swarm content distribution problem is larger scale than the

single-seeder variant because it requires the coordinator to compute allocations

from multiple contributors rather than from only a single seeder. To address

the larger scale, we have designed a sharded solution that calculates band-

width allocations in a distributed manner. Instead of periodically aggregating

coarse-grained summaries to a single host that performs all computations, we

introduce a flat coordinator, where each of a potentially large set of hosts con-

tinuously performs a share of the bandwidth allocation computation as new

block exchange information becomes available. The coordinator’s design is well

suited for managed swarming deployments that use V-Formation, and the re-

mainder of this section uses V-Formation to describe and motivate a flat coordi-

nator.
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The logically centralized coordinator consists of three components: web

servers, processors, and a shared state layer (Figure 3.2). First, web servers

process requests from peers to dispense fresh tokens, collect spent tokens, and

notify peers of computed bandwidth allocations. Second, processors use token

exchanges aggregated by the web servers to calculate peer bandwidth alloca-

tions. Third, a distributed state layer, implemented as a key-value store, grants

web servers and processors read and write access for consolidating block ex-

change information and bandwidth allocations. The web servers, processors,

and state can be distributed across multiple physical hosts, or they can run on

a single physical host for smaller deployments. We describe the operations of

web servers and processors in turn, followed by a summary of the information

stored in the distributed state layer.

Web Servers

The coordinator’s peer-facing web servers function as an augmented tracker

for facilitating swarms, similar to a BitTorrent tracker. Web servers handle

three types of asynchronous requests from peers: announce, get tokens, and de-

posit tokens. The format and semantics of these messages is described in Chap-

ter 3.1.2. To summarize, web servers update swarm and peer metadata, dis-

tribute lists of peers, issue tokens, adjust peers’ credit balances, and accept de-

posits of spent tokens. When a web server receives a deposited token from a

peer, it verifies the token’s authenticity, increases the peer’s balance accordingly,

and, if the coordinator is tracking the block referenced in the token, records the

block exchange in the state layer.
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Web servers record block exchanges in block exchange forests for use by pro-

cessors. A block exchange forest contains a set of peer identifiers as vertices and

recent block exchanges as timestamped, directed edges. Each forest is specific

to a particular block in a particular swarm; web servers build a separate forest

for each block that the coordinator is tracking. To add a block exchange to a for-

est, a web server simply adds an edge from the block’s sender to its recipient,

annotated with the block’s identifier and timestamped using the coordinator’s

clock upon receiving the token.

Processors

Processors continuously iterate over block exchange forests to extract block

propagation bandwidths. A single forest contains a propagation bandwidth for

each edge timestamped prior to the current time minus τ , the time interval over

which block propagations are measured. A processor extracts a propagation

bandwidth for each such edge, prunes those edges from the forest, and records

the new propagation bandwidths in the state layer.

Before extracting propagation bandwidths, the processor adjusts the times-

tamps on the forest’s edges such that no edge is timestamped later than any

edge in its subtree. Such an inconsistency occurs if a peer deposits its spent to-

kens before an ancestor in a block propagation tree deposits its own tokens for

the same block. To make the adjustment, the processor recurses on each of the

forest’s roots, setting each timestamp to the minimum of its own timestamp and

the earliest timestamp in its subtree. This makes the forest reflect the constraint

that a peer can only upload a block after it has received that block.
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To extract block propagation bandwidths, the processor recurses on each

vertex in a forest, counting the number of edges in each subtree. The proces-

sor only calculates and reports propagation bandwidths for edges older than

the measurement time interval τ . It removes the corresponding edges from the

forest and appends each new propagation bandwidth to lists of the uploading

peers’ block propagation bandwidths, maintained in the state layer. Each new

propagation bandwidth is timestamped with the time on the forest’s tracked

transfer edge, equal to the time at which the tracked transfer was reported to

the coordinator.

Web servers compute CPM values for a peer’s swarms by averaging the

propagation bandwidths in the list that are timestamped within a recent time

interval π, a global constant set to five minutes in our implementation. In an

announce response, web servers report the most recent CPM value, or, if there

are no recent propagation bandwidths, instruct the requester to upload blocks

to the swarm to obtain fresh measurements.

Operating on block exchange forests is a highly parallel task. Each forest

represents exchanges of a single block for a single swarm, enabling processors

to operate on block exchange forests in isolation. Multiple processors coordi-

nate their behavior through the state by atomically reading and incrementing

the swarm and block identifiers for the next forest to process. Thus, increas-

ing the number of processor hosts linearly increases the supported processing

workload of the coordinator.

If high load renders the coordinator unable to process all block propagation

forests using available processor hosts, the coordinator sheds load by decreasing

the fraction of blocks that it tracks. The coordinator maintains a dynamically
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adjusted parameter that dictates the fraction of blocks to track, enabling web

servers and processors to independently determine whether a particular block

should be tracked. Web servers do not insert forest edges for untracked blocks,

and processors do not iterate over forests of untracked blocks. The coordinator

adjusts the parameter such that for each swarm, some block is processed with a

target frequency.

Distributed State Layer

Our flat coordinator uses memcached to implement a distributed, shared state

layer for web servers and processors, which it uses to maintain data struc-

tures for each of the swarms it supports as well as for each peer in the system.

Since this state is stored in memcached, it is distributed across multiple servers.

Atomic compare and swap operations supported by memcached enable nodes

to update this state quickly and concurrently. Since all such state is soft and can

be recreated through remeasurement if necessary, it need not be stored on disk.

All lookups are performed with a specific key, so the memcached key-value

store suffices, and an expensive relational database insertion is unnecessary.

For each peer, the state layer maintains its address, port, identifier, credit bal-

ance, and the set of swarms to which it belongs. For each swarm, the state layer

keeps a swarm identifier and the set of peers in the swarm. To make bandwidth

allocations, the state layer records, for each peer, its current τ for computing

block propagation bandwidths, its current CPM value for each swarm, and a

history of block propagation bandwidths for each measured block over the past

time interval π. Recent block transfers for measured blocks are stored as block

propagation forests, whose sizes are linear in the number of peers and edges
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that they contain. Forests are pruned as block propagation bandwidths are ex-

tracted, based on peers’ values of τ . Lastly, the state layer maintains a single

value representing the next block that a processor should analyze, which pro-

cessors advance on each read.

3.4.3 Decentralized Coordination

In deployments of managed swarms in trusted environments, peers can collec-

tively replace the centralized coordinator and operate in a completely decentral-

ized manner. The resulting system can achieve the same aggregate bandwidth

as V-Formation. In the decentralized protocol, peers compute their own CPM

values based on messages from downstream peers instead of obtaining them

from a coordinator.

Decentralized coordination requires that hosts are honest without a central-

ized entity that provides accountability and detects malicious behavior. The

decentralized protocol sacrifices the use of tokens, as well as the accompanying

global view of the network and mechanisms for penalizing misbehaving peers

that a centralized coordinator provides. Thus, decentralized coordination is ap-

propriate for deployments within a trusted environment where peers are not

incentivized to game the system, and where introducing a logically centralized

component is infeasible.

The decentralized protocol translates the centralized coordinator’s remain-

ing tasks of tracking block transfers, computing block propagation forests, and

extracting CPM values, into distributed operations that the peers perform. In

the protocol, peers prepend each transferred content block with a header con-
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taining an ancestor list. An ancestor list specifies the block transfer’s ancestors

in the block’s propagation trees. More precisely, an ancestor list contains the

addresses of peers tracking the block’s propagation, each paired with an expi-

ration time that indicates when the tracking period ends.

Upon receiving a block, a peer first removes expired entries from the begin-

ning of the block’s ancestor list, as determined by the expiration timestamps

paired with each listed peer. The peer then sends a block propagation message

containing the block number to each peer in the ancestor list to notify each an-

cestor of the recent block transfer. Finally, before forwarding the block to satisfy

downstream block requests, the peer optionally appends itself to the block’s an-

cestor list if it wishes to track the block’s propagation for its own measurements.

When a peer tracks the propagation of a block by adding an entry to the

block’s ancestor list, the peer will receive one block propagation message for each

downstream transfer of the block within the block tracking time specified by the

entry’s expiration time. A peer simply counts the number of block propagation

messages that it receives to calculate its block propagation bandwidth, and it

maintains a rolling average of block propagation bandwidths for each swarm

in order to compute its CPM value for each swarm. Thus, each peer performs

a similar computation as a centralized coordinator using V-Formation to deter-

mine its own bandwidth allocation among competing swarms. Like the central-

ized coordinator’s approach, a peer can randomly track a subset of the blocks

that it uploads, and it can adjust the expiration times of each tracked block to

control the measurement time interval τ .

Overall, decentralized coordination of managed swarms offers the advan-

tages of a managed swarming system without the need for a logically central-
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ized coordinator. Without the coordinator, however, the system requires that

hosts follow the protocol without an omniscient observer to provide incentives

for good behavior.

3.5 Security

A formal treatment of the security properties of the wire protocols is beyond

the scope of this thesis. Past work on similar, though heavier-weight, proto-

cols [115] has established the feasibility of a secure wire protocol. Consequently,

the focus of this section is to enunciate our assumptions, describe the overall

goals of the protocol, provide design alternatives, and outline how to mitigate

attacks targeting managed swarming algorithms.

Our wire protocols make standard cryptographic assumptions on the diffi-

culty of reversing one-way hashes and assumes that peers cannot snoop on or

impersonate other peers at the IP level. Violation of the first assumption would

render our wire protocols, as well as most cryptographic algorithms, insecure;

consequently, much effort has gone into the design of secure hash functions. Vi-

olation of the second assumption is unlikely without ISP collusion, and damage

is limited to IP addresses that an attacker can successfully snoop and masquer-

ade.

Managed swarms require peers to contribute bandwidth to their swarms,

engage in legitimate transactions with other peers, and report accurate statistics

to the coordinator. The token protocol, coupled with verification at the coordi-

nator, ensures detection of dishonest peers with relatively low overhead.
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In order to measure accurate response curves, the coordinator verifies that

all token transactions occur within the intended swarm, by the intended peer,

and within the intended period of time. The coordinator detects token forgery

upon receiving an invalid token from a peer by verifying deposited tokens to

ensure that the coordinator minted them; Chapter 3.7.2 describes the imple-

mentation details of token management. Similarly, the coordinator compares its

own record of the intended sender with the spender as reported by the peer re-

turning the token to prevent peers from spending maliciously obtained tokens.

Peers are required to report the actual spender in order to receive credit for the

deposited token. The coordinator detects all counterfeit tokens, but when it de-

tects an invalid token, it is unable to determine whether the culprit is the peer

that deposited the token or the peer that spent the token. Therefore, it notifies

both peers of the forgery so the honest peer can blacklist the culprit.

To hold peers accountable for their actions when the coordinator is unable

to precisely identify malicious peers, we employ a strikes system to record and

act on undesirable behavior. Peers maintain a tally of strikes against other peers

and disconnect from peers that have exceeded a threshold. By default, mis-

behaviors that can stem from network congestion, such as a late response to

a block request or payment with a recently expired token, result in one strike

against the offending peer. Circulating a counterfeit token results in automatic

termination of the connection. In general, when the coordinator is unable to de-

termine the identity of a malicious peer, it appeals to the strikes system rather

than erroneously penalizing an honest peer. While it is possible to build a cen-

tralized reputation system for peers, our current implementation avoids this to

reduce burden on the coordinator.
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Using cryptographically signed tokens can provide stronger guarantees at

the cost of additional overhead and complexity. In such a scheme, the coordi-

nator can sign all minted tokens before issuing them to peers, enabling peers to

verify that they are exchanging legitimate tokens with each other during each

transaction. In addition, if the spender of a token were required to sign the token

before sending it, peers could prove the identities of token double-spenders. To-

ken signatures would prevent malicious peers from snooping packets and tam-

pering with tokens without the recipient’s knowledge. We do not implement a

cryptographic scheme, and instead opt to use a lightweight token scheme for

scalability.

It is possible for peers to collude in order to coerce the coordinator into pro-

viding their swarm with more bandwidth. In particular, peers could band to-

gether and send each other large numbers of tokens without sending each other

blocks in exchange. The resulting inflated estimate of that swarm’s aggregate

bandwidth can lead the system to deviate from a desired allocation. Several

techniques mitigate such attacks. First, the coordinator never issues more to-

kens than strictly necessary to download the file, thereby bounding the impact

of fake transactions by the number of Sybils. Second, forcing participants to

register with a form of hard identity, such as credit card numbers, can mitigate

Sybils [23]. Finally, the coordinator can mandate that peers trade with a di-

verse set of peers, reducing the effect of collusion among a small fraction of the

swarm. Although the token protocol does not eliminate the possibility of ma-

licious behavior, its simplicity and ability to detect malicious activity limit the

harm peers can inflict.
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3.6 Scalability

Coordinators of managed swarming systems are optimized to ensure that the

logical centralization does not pose a CPU or bandwidth scalability bottleneck.

In this section, we first discuss the scalability of token management. The section

then explores the differing scalability properties of coordinators with hierarchi-

cal and flat organizations, respectively.

Shuttling tokens to and from the coordinator for each data block transfer is

the primary consumer of the coordinator’s bandwidth. To reduce the burden,

managed swarming systems do not rely on public-key cryptography to issue

or exchange tokens. The protocols minimize the size of tokens on the wire,

transmitting only relevant fields when tokens change hands. Only a token’s

identifier, file reference, and expiration time are sent on the wire when the coor-

dinator sends fresh tokens, and only the identifier and expiration time are sent

on the wire when a peer sends another peer a token. Spent tokens sent back to

the coordinator are represented with only the token’s identifier and the identi-

fier of the peer that spent the token. Using 4-byte token identifiers, each token

exchange requires less than 24 bytes of total bandwidth and less than 16 bytes

of bandwidth, plus HTTP overhead, at the coordinator for each data block of

around 32–256 KBytes. The HTTP overhead is negligible because peers deposit

tokens in bulk. The BitTorrent-compatible wire protocol further reduces the co-

ordinator’s bandwidth requirements by sending peers secret keys that allow

them to generate their own tokens instead of sending fresh tokens on the wire.

Chapter 3.7 describes this optimization in detail.
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Managed swarms use highly compact token identifiers to reduce bandwidth.

A 4-byte identifier is sufficient to disincentivize forgery because the coordina-

tor will detect a malicious peer’s attempt to forge a token upon its first failure

to produce a legitimate token. In the event that a peer correctly guesses an ac-

tive token’s identifier, it is unlikely to correctly identify the token’s intended

spender. In the worst case, should a peer successfully forge a token, it will only

gain one data block for its efforts, whereas failures will lead to remedial action

against the peer, described in Chapter 3.5. Thus, with 4-byte token identifiers,

several million peers, and several hundred million tokens, the likelihood of a

successful, undetected token forgery is around 10−8 when tokens are uniformly

distributed. With a skewed token distribution where some peers have 100 times

more tokens than the average peer, the likelihood might rise as high as 10−6.

Downloading ten blocks with forged tokens is as likely as discovering a colli-

sion for a cryptographically secure hash function.

The coordinator’s scalability depends on its organization and how computa-

tion is distributed among its servers. For hierarchically organized coordinators,

token management is an embarrassingly parallel task. Token servers send at

most one message per received token to another token server to verify the to-

ken’s authenticity. As a result, each token server requires constant bandwidth

regardless of the number of token servers. The root server, which aggregates

summaries from token servers, only receives each peer’s upload and download

bandwidths during each epoch of approximately five minutes.

A hierarchical coordinator performs all computation at the root server us-

ing Antfarm, resulting in a potential CPU bottleneck. The root server performs

two periodic CPU-bound tasks: it computes response curves from scatterplots,
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and it allocates seeder and peer bandwidth. These tasks are computed centrally

in order to derive bandwidth allocations based on the most recent measure-

ments. Our implementation on a 2.2 GHz CPU with 3 GBytes of memory takes

6 seconds to perform these computations for 1,000,000 peers and 10,000 swarms

whose popularities follow a realistic Zipf distribution. The root server can easily

be replicated to mask network and host failures.

In contrast, a coordinator with a flat organization maintains a consistent

view across all web servers and processors with a distributed state layer. Each

deposited token results in at most two atomic writes to the state layer, one to up-

date the depositing peer’s balance, and one to update the block’s propagation

tree if the coordinator is tracking the block. The coordinator enables the sys-

tem to scale, but extremely large deployments can cause contention on the state

layer. Chapter 3.7 describes several optimizations to the state layer to reduce

the load.

Our implementation of flat coordinators uses V-Formation to allocate band-

width. V-Formation relies on a distributed set of processors in the coordinator

to analyze block propagation trees, which eliminates the potential of a CPU

bottleneck. Processors, like web servers, only contend for the state layer; they

otherwise operate independently.

Chapter 4 shows that distributing the coordinator incurs negligible overhead

and that the parallel nature of token management enables the system to grow

linearly with the number of coordinator servers for both hierarchical and flat

coordinators.
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3.7 Engineering Challenges

When building any large system, there are always unforeseen challenges. FlixQ,

our open content distribution system based on managed swarms [3], is no ex-

ception. This section discusses the challenges that we faced, and, in doing so,

presents details of the organization and implementation of our own managed

swarming deployment. We first discuss FlixQ’s infrastructure. We then describe

challenges building a scalable version of the V-Formation bandwidth allocation

algorithm. Finally, we describe FlixQ’s user interface, which enables users to

add content, search for and download new content, and view downloaded con-

tent from a single location.

3.7.1 Infrastructure

FlixQ’s server architecture implements a flat coordinator that uses distributed

computation to allocate bandwidth, as described in Chapter 3.4.2. We imple-

mented the coordinator in Python using the Django framework to dispatch re-

quests to handler functions that perform the requested operations and render

responses. FlixQ uses a MySQL database for persistent storage of shared con-

tent and user information.

We have found that FlixQ’s MySQL database does not allow the system to

scale in either the number of clients or the number of servers that comprise

the coordinator. Instead, FlixQ’s coordinator uses memcached to implement its

distributed state layer. Memcached is a fast, distributed key-value store that

is used to maintain swarm memberships, peer’s CPMs, and block propagation
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forests for tracking block transfers. Our memcached instance spans across our

coordinator’s web servers and processors. Objects in memcached—peer meta-

data, swarm metadata, and block propagation trees—are each stored on a single

memcached instance determined from a consistent hash of its unique key.

FlixQ servers access memcached values frequently, and therefore it is critical

that the key-value store remain consistent in the presence of concurrent writes.

To support concurrency, memcached supports a compare-and-swap (CAS) op-

eration that only writes a new value if the key-value binding has not been mod-

ified since a previously specified read of the same value. However, the Python

bindings for memcached do not export the CAS operations. We extended the in-

terface to support CAS and implemented a read modify write method that, given

a memcached key and a function, applies the function to the associated value

from memcached and replaces the stored value with the function’s result. The

method calls the given function and attempts to write the new value repeatedly,

with exponential backoff, until the CAS succeeds. Finally, once the CAS has

succeeded, the method performs side effects specified by the given function.

The read modify write method provides correct semantics for concurrent reads

and writes, yet it limits scalability in write-heavy workloads due to contention

on specific memcached values. By analyzing the coordinator’s behavior in re-

alistic deployments, we discovered that the vast majority of read modify write

invocations were either attempting to write back the same value as it read, or

attempting to write back a value with a logically equivalent mutation as a con-

currently written version of the value. For instance, the coordinator is designed

to recompute CPM values at most once per five minute interval, yet multiple

invocations of read modify write that were concurrently attempting to update the

75



same CPM value would all run to completion, interfering with each other until

they all succeeded. However, once one of the read modify write calls succeeds,

the rest are no longer necessary because the newly written CPM value is suffi-

ciently recent.

We implemented two mechanisms to reduce read modify write contention.

First, atomic functions can raise a new abort exception to cancel the atomic op-

eration mid-execution. The exception enables the function to short-circuit the

encapsulating read modify write, causing it to return without modifying shared

state. Second, read modify write accepts a new should abort parameter that en-

ables the caller to specify a condition that, if it ever holds between two attempts

to execute the atomic function, causes automatic cancellation of the operation.

Returning to the previous example, an attempt to atomically update a CPM

value can be canceled if the value was last updated within the past five min-

utes, which the caller can specify in the should abort parameter. With the abort

parameter in place, once the first concurrently execution finishes, the remaining

invocations will each terminate after at most one CAS failure.

3.7.2 Bandwidth Allocation

The FlixQ coordinator uses V-Formation to calculate bandwidth allocations by

tracking block transfers among peers. Peers inform the coordinator of block

transfers by depositing spent tokens at any web server in the coordinator. This

section highlights a few challenges and implementation details of tracking to-

kens, selecting which blocks the coordinator tracks to compute bandwidth al-
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locations, and how peers probe swarms for which the coordinator lacks recent

data.

Token Management

Tokens are small, unforgeable strings that a peer can exchange for a block from

another peer. The coordinator tracks the exchange of all tokens to track peer be-

havior and block exchanges. Therefore, the coordinator must be able to verify

the authenticity of deposited tokens to prevent malicious peers from manipulat-

ing their service or the service of others. The naive solution, where the coordi-

nator explicitly mints fresh tokens, sends them to peers, and records the tokens

in the shared state layer for later verification, requires a considerable amount of

outgoing bandwidth and memory to keep a record of all outstanding, unexpired

tokens.

FlixQ reduces the coordinator’s upload bandwidth and memory require-

ments by sending peers token generators in response to get tokens requests in-

stead of literal tokens. Token generators are secret keys that a peer can use a

token generator create a sequence of valid tokens during the current epoch, after

which time generated tokens expire.

The coordinator computes generators from a hash of the swarm, the request-

ing peer’s identifier, and the current epoch, as well as a secret that only the

coordinator knows. The number of tokens that a token generator can create de-

pends on the number of tokens the peer requested and the peer’s credit balance

at the time of the request. The coordinator records the number of tokens that

each peer is allowed to generate in the shared state layer, which corresponds
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to range of legal serial numbers that a peer can use to generate each token. In

addition, the coordinator maintains an initially zeroed serial bitmap to record

which serial numbers the peer has used in the current epoch to prevent token

double-spending and double-minting.

To create a token from a generator, a peer hashes the generator with a unique

serial number that falls within the legal range of serial numbers specified by

the coordinator. The peer also embeds the serial number itself, its own peer

identifier, and the swarm’s identifier into the token and exchanges it for a block.

The token’s recipient embeds its own peer identifier as well, along with the

exchanged block’s number, and deposits the token.

When the coordinator receives the spent token from the other peer, it is able

to check its validity by performing the same computations: it recreates the token

generator itself, then hashes that with the token’s serial number and compares

it with the hash in the token. Finally, the coordinator checks and updates the

token’s serial number in the peer’s serial bitmap to ensure that the token is

unique.

Tracking Blocks

The coordinator’s web servers collect deposited tokens and select a subset of the

tokens to build content propagation trees for computing CPM values. To control

the amount of CPU required for the coordinator’s processors, the coordinator

uses an adjustable stride parameter that dictates the fraction of blocks that the

coordinator tracks. In addition, for sufficiently small swarms, the coordinator

can make efficient allocation decisions based on data that the coordinator al-
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ready possesses about the swarms rather than tracking blocks in those swarms.

The coordinator disables block tracking for such swarms to further reduce its

CPU and memory requirements.

The stride parameter precisely determines the set of blocks that the coor-

dinator tracks: a block is tracked if and only if its block identifier modulo the

stride is zero, regardless of which swarm the block is from. Thus, a stride of

five indicates that the coordinator tracks every fifth block of each piece of con-

tent. The stride’s determinism enables each web server in the coordinator to au-

tonomously decide whether a given token should result in an entry in the block

propagation forest; likewise, each processor can iterate through identifiers of

tracked blocks to continuously process block propagation trees.

Stride also determines how peers probe swarms to obtain fresh CPM val-

ues. The coordinator sends peers special probe flags to instruct them to probe

swarms if the coordinator lacks current information on recent block exchanges.

To probe a swarm, a peer prioritizes uploading a small, constant number of

blocks to the swarm for the coordinator to track. Because the coordinator only

tracks a subset of blocks for computing CPM values, a peer must be selective

when choosing which blocks it uploads to probe a swarm. To ensure that the

coordinator tracks the blocks that a peer uploads when probing a swarm, the

peer uses the stride value to selectively upload blocks that will yield CPM data.

As a result, peers expend a minimal amount of bandwidth probing swarms,

leaving the remainder of their upload capacity for swarms that are known to

propagate content efficiently.

Probing swarms and tracking blocks enables the coordinator to make effi-

cient bandwidth allocation decisions, but for a subset of swarms, the coordi-
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nator can use metadata on the swarm in lieu of tracking blocks. In particular,

sufficiently small swarms, or swarms that contain sufficiently few downloading

peers, have a theoretically bounded maximum CPM value that is less than mea-

sured CPM values of other swarms. For instance, a swarm with only three peers

cannot produce a block propagation tree of size greater than two; therefore, if

a member of that swarm is also a member of a swarm for which it produces

block propagation trees of size three, the coordinator will not instruct the peer

to probe the smaller swarm. This optimization ensures that peers’ bandwidth

is not wasted taking unnecessary measurements, which has large impact in de-

ployments with long content popularity tails.

3.7.3 User Interface

FlixQ’s user interface dictates how users interact with the system to add content,

discover new content, download content, and manage their libraries of shared

and downloaded content. The user interface plays a critical role in determining

who uses FlixQ and how they use it. It has been a challenge to develop a sim-

ple, intuitive interface that facilitates both traditionally web-based operations,

such as searching for new content, and functionality that is traditionally man-

aged by standalone software, such as exchanging content blocks with peers and

managing downloaded files on disk.

FlixQ uses a purely web-based interface for all operations. To support op-

erations normally handled by standalone software, such as manipulating the

file system and opening connections to peers, we developed the FlixQ sidecar.

The sidecar is software that the user downloads and installs, but which runs
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silently in the background and is controlled exclusively through FlixQ’s web in-

terface. At its core, our implementation of the sidecar uses an open-source im-

plementation of the BitTorrent protocol, from the BitTornado codebase [1], with

modifications to adhere to the V-Formation protocol and to communicate with

a locally running browser on the FlixQ website. Communication between the

FlixQ website in the user’s web browser and the sidecar occurs transparently

using asynchronous AJAX requests.

By pushing peer-to-peer functionality into the sidecar, the browser functions

only as a user interface; the user can close the browser at any time without

disrupting service. An in-browser implementation of the V-Formation protocol

would require that the user keep the browser open to engage in data transfers,

and by navigating away from the site, the user would lose TCP connections to

peers, tokens, and partially downloaded blocks.

In addition to controlling the sidecar, the website facilitates content discov-

ery. The website maintains a MySQL database with metadata about all content.

For each piece of content, FlixQ servers store a metadata file analogous to a Bit-

Torrent .torrent file, which specifies the content’s metadata and block hashes.

To further simplify FlixQ’s interface of peer-assisted downloads, the browser

and sidecar automatically manage the transfer and processing of metadata files.

When users share new content, the sidecar automatically generates a metadata

file and uploads it to FlixQ’s servers; likewise, when users download a file from

the website, the browser instructs his sidecar to download the corresponding

metadata files and manage the downloads.

Overall, a website interface simplifies the user experience for managed

swarming systems. The streamlined approach combines the flexibility of stan-
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dalone software, because of the fully privileged sidecar, with the simplicity of

web-based applications, with which many users are familiar.

3.8 Summary

This chapter introduced several engineering tradeoffs in managed swarming

systems that affect efficiency, scalability, and interoperability with existing pro-

tocols. We discussed two wire protocols and two implementations of the logi-

cally centralized coordinator that we have built. The coordinator designs dif-

fer in how they aggregate block transfer statistics and whether the comput-

ing bandwidth allocations is performed on a single physical host or distributed

across multiple servers. In addition, we described the design of a decentralized

coordination scheme for replacing the coordinator when using V-Formation in

environments where hosts implicitly trust each other. In this scheme, peers track

their own block transfers, calculate their own CPM values, and use those val-

ues to determine their own efficient allocation of bandwidth among swarms.

Finally, this chapter discussed the security and scalability of managed swarms,

as well as practical engineering considerations for building a large managed

swarming system that we encountered in our own large-scale deployment.
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CHAPTER 4

EVALUATION

This chapter explores the performance of managed swarms across a large

range of deployment scenarios. It examines managed swarms with respect to

the primary goal of maximizing aggregate download bandwidth for end users,

as well as secondary goals such as fairness and preventing starvation. Through

extensive simulations and PlanetLab [13] deployments, we show how managed

swarms react to churn and flash crowds, and how they handle scenarios where

bandwidth from cache servers is scarce and plentiful. Our experiments com-

pare the performance of both Antfarm and V-Formation with a client-server

approach, BitTorrent version 5.0.9, and a peer-to-peer approach that allocates

bandwidth among multiple swarms using a global rarest block selection policy.

4.1 Simulations

We have developed a simulator for fine-grain analysis of managed swarming

systems. The simulator implements the full Antfarm and V-Formation proto-

cols described in this thesis, as well as BitTorrent, a BitTorrent-like global rarest

policy where peers request the rarest blocks for which they are interested across

all swarms, and a traditional client-server system. We have calibrated our sim-

ulator so that it behaves comparably to live deployments of the protocols. Our

simulation results first show the end-to-end performance of managed swarming

bandwidth allocations and compare them to other swarming protocols. Then,

we present microbenchmark results for Antfarm and V-Formation to better un-

derstand how they allocate bandwidth among competing swarms. The mi-

crobenchmarks examine how the algorithms converge on stable bandwidth al-
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Figure 4.1: Aggregate bandwidth for a client-server system, BitTorrent, and Ant-
farm. When seeder bandwidth is plentiful, even a client-server model can deliver high
throughput. When seeder bandwidth is limited, Antfarm outperforms BitTorrent by
allocating bandwidth to swarms that receive the most benefit. Error bars indicate 95%
confidence.

locations, handle churn, and dynamically adjust parameters to improve perfor-

mance.

4.1.1 End-to-End Performance

The primary goal of managed swarming deployments in this thesis is to maxi-

mize system-wide aggregate bandwidth. We first compare managed swarming

systems to traditional swarming systems such as BitTorrent, and to client-server

approaches. We use the single-seeder multi-swarm content distribution prob-

lem to compare Antfarm to BitTorrent. Then we compare those protocols to

V-Formation, which addresses the more flexible general multi-swarm content

distribution problem.
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The differences between Antfarm and BitTorrent in a multi-swarm setting

stem from the way the two protocols allocate their bandwidth to competing

swarms. Whereas BitTorrent seeders allocate their bandwidth greedily to peers

that absorb the most bandwidth, Antfarm allocates the precious seeder band-

width preferentially to swarms whose response curves demonstrate the most

benefit. As a result, there is a qualitative and significant difference between the

two protocols; under some scenarios, BitTorrent can starve swarms and perform

much worse than Antfarm, while in others with ample bandwidth, seeder allo-

cation may have little impact on client download times. Figure 4.1 shows Ant-

farm’s performance in comparison to BitTorrent and a traditional client-server

system similar to YouTube for two swarm distribution scenarios. In the bimodal

scenario, there is a single swarm of 30 peers and 30 swarms of one peer each.

The Zipf scenario comprises swarms of sizes 50, 25, 16, 12, 10, 8, and 5, and

400 singleton participants. Each set of three bars shows the average aggregate

bandwidth for a corresponding scenario and seeder bandwidth.

Overall, Antfarm achieves the highest aggregate download bandwidth. In

scenarios where there is ample seeder bandwidth, the differences between the

three systems are negligible and even a client-server approach is competitive

with BitTorrent and Antfarm. As available seeder bandwidth per peer drops,

however, swarming drastically outperforms the client-server approach, high-

lighting the efficiency of peer-to-peer over a client-server system using com-

parable resources. For the scaled-down but realistic Zipf scenario, Antfarm

achieves a factor of 5 higher aggregate download bandwidth than BitTorrent.

BitTorrent misallocates bandwidth by preferentially unchoking hosts based on

their recent behavior, regardless of their potential to share blocks. In contrast,
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Figure 4.2: Comparison of protocols over time. Peers download movies with lengths
and popularities randomly drawn from the Internet Movie Database. Peers have link
capacities drawn from a distribution determined by a BitTorrent measurement study.
Error bars indicate 95% confidence.

Antfarm measures response curves and uses them to steer the single seeder’s

capacity to swarms where blocks can be further shared among peers.

V-Formation computes CPM values for each host to allocate bandwidth

rather than explicitly measuring response curves. We show the system-wide ag-

gregate bandwidth of V-Formation, Antfarm, BitTorrent, and the global rarest

policy for a realistic simulation based on movies in the Internet Movie Database

(IMDb). The experiment is based on the number of votes and lengths of 425,000

movies, scaled down to 500 peers and 300 swarms to make simulations fea-

sible. Each swarm facilitates the download of a single movie file, and each

swarm’s popularity is proportional to the number of votes that its movie has

received on IMDb, resulting in a power-law distribution of swarm sizes. Each

file’s size is based on the movie’s length and 1 Mbit/s video compression, com-

mon for 480p video. Swarm memberships are assigned iteratively, each of ap-

proximately 670 movie downloads randomly assigned either to a peer that has
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already been assigned one or more downloads, or to a fresh peer with no as-

signed downloads, the probability of each case calibrated so that 20% of peers

belong to multiple swarms to reflect our BitTorrent trace. This is in contrast

to the previous experiment, where only a single designated host possessed all

the content in the system. Peer upload capacities are drawn from the distribu-

tion of BitTorrent peer bandwidth collected by Pouwelse et al. [95]. This dis-

tribution specifies a median and 90th percentile peer upload capacity of 30 and

250 KBytes/s, respectively. The peers’ download capacities are set 50% higher

than their upload capacities to simulate asymmetric links. Content originates

from two cache servers, simulating a distributed cache of movie files. Cache

server A contains a copy of every movie; cache server B has only a random 50%

of the library’s files to mitigate load on cache server A. Both servers upload con-

tent at 50 KBytes/s, scaled down from a realistic datacenter bandwidth due to

the number of simulated downloaders. We show the system-wide aggregate

bandwidth of each protocol over a one-hour run (Figure 4.2).

As before, BitTorrent and the global rarest policy ignore swarm- and system-

wide performance. The result is that singleton swarms and small swarms from

the long tail receive a high proportion of the servers’ bandwidth. Such peers

are unable to forward blocks as rapidly as members of larger swarms, resulting

in low aggregate bandwidth for pure peer-to-peer approaches. V-Formation

achieves 66% higher aggregate bandwidth than BitTorrent.

V-Formation differs from Antfarm in both the time to converge on an al-

location of bandwidth and the aggregate bandwidth itself after convergence.

Since V-Formation uses lightweight probes to determine bandwidth allocations

for each host, it reaches a stable allocation of bandwidth four times faster than
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Figure 4.3: The CPM versus simple heuristics. V-Formation achieves significantly
higher aggregate bandwidth by allocating hosts’ bandwidth using the CPM than de-
ployments where hosts instead base their allocation decisions on simple heuristics.

Antfarm. Antfarm instead relies on response curves to assess swarms, which re-

quires the Antfarm coordinator to remain at a particular bandwidth allocation

for a longer time before it becomes apparent which swarms benefit most from

bandwidth.

The CPM enables hosts to make principled decisions based on the observed

behavior of swarms. We compared the performance of V-Formation using the

CPM with the performance of deployments where hosts allocate their band-

width using simple heuristics based on block popularities and swarm sizes (Fig-

ure 4.3). The experimental setup is equivalent to that of Figure 4.2, where swarm

popularities are determined from a random sampling of IMDb movies. By en-

abling hosts to measure their actual benefit to swarms, V-Formation achieves

significantly higher aggregate bandwidth than straightforward heuristics such

as preferring large swarms over small swarms, always satisfying requests for

globally rare blocks over requests for more popular blocks, and distributing

bandwidth randomly among peers.
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4.1.2 Antfarm Microbenchmarks

The Antfarm coordinator continuously measures and refines response curves

for each swarm to maintain high performance as swarm dynamics change.

Through a series of small-scale experiments, we examine the strategies that Ant-

farm uses to allocate bandwidth and avoid starvation.

Figure 4.4 shows Antfarm’s bandwidth allocation over time to provide in-

sight into Antfarm’s strategy. The top graph shows that when seeder bandwidth

is plentiful, Antfarm spends the vast majority of its bandwidth on small swarms

since they receive the most marginal benefit. When seeder bandwidth is con-

strained, as shown in the bottom graph, Antfarm achieves high aggregate band-

width by preferentially seeding large swarms that can leverage their upload

capacity to multiply the benefits from the seeder. As peers of the large swarm

complete their downloads at 5000 seconds, the seeder shifts its bandwidth to the

singleton swarms. The staircase behavior is due to different swarms completing

at different times.

When swarms become large, they are often able to saturate their peers’ up-

links, and sometimes even their downlinks, without the aid of seeder band-

width. Such self-sufficient swarms yield flat response curves. Antfarm’s alloca-

tion strategy naturally avoids dedicating bandwidth to self-sufficient swarms

when there are other swarms that can benefit more. In contrast, BitTorrent does

not take swarm dynamics into account, and can end up dedicating seeder band-

width without consideration of available peer bandwidth, leading to a shortage

of seeder bandwidth for other, needier swarms. Figure 4.5 shows an exagger-

ated scenario that illustrates this effect. The figure shows the average download

bandwidths of peers in BitTorrent and Antfarm of the two swarms. In this sce-
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Figure 4.4: Antfarm’s bandwidth allocation over time. The figures show seeder
and aggregate bandwidths of the bimodal experiment with seeder bandwidths of
800 KBytes/s (top) and 80 KBytes/s (bottom). Antfarm follows drastically different
bandwidth allocation strategies (dashed and dotted lines) to achieve high throughput
(solid lines).

nario, the seeder has a capacity of 100 KBytes/s, and each peer downloads a

10 MB file with 30 KBytes/s download capacity and 10 KBytes/s upload ca-

pacity. The self-sufficient swarm saturates peers’ uplinks without seeder band-

width and has a fresh peer arrive every second, resulting in a swarm of approx-
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Figure 4.5: BitTorrent’s and Antfarm’s allocations to a singleton swarm and a large,
self-sufficient swarm. Even though a self-sufficient swarm can saturate its peers’ band-
width without seeder bandwidth, BitTorrent awards bandwidth to peers in the swarm.
In contrast, Antfarm awards seeder bandwidth to the singleton swarm because it re-
ceives high marginal benefit.

imately 1000 peers. The Antfarm coordinator determines that the self-sufficient

swarm does not benefit from seeder bandwidth, and awards bandwidth to the

singleton swarm instead. Under Antfarm, the singleton peer is able to com-

plete its download in an average of six minutes. BitTorrent fails to provide the

singleton swarm any bandwidth over the course of the 20-minute simulation.

The problems with BitTorrent’s allocation strategy are compounded in

larger, more realistic scenarios. While large swarms are often self-sufficient,

smaller non-singleton swarms can receive large multiplicative benefits from the

seeder because their peers have available upload capacity to forward blocks. In

contrast to the previous experiment, which examined the impact on a swarm

at the tail end of the popularity distribution, Figure 4.6 illustrates the impact

of seeder bandwidth allocation on a file of medium popularity. The figure

shows the total amount of seeder bandwidth that Antfarm and BitTorrent al-
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Figure 4.6: BitTorrent versus Antfarm serving the middle of the popularity dis-
tribution. The shaded region indicates a new swarm of 5 peers. Swarms to its left
are self-sufficient; swarms to its right are singletons. BitTorrent (top) starves the new
swarm, favoring to dedicate bandwidth to the many peers in self-sufficient swarms.
Antfarm (bottom) allocates enough seeder bandwidth to the new swarm to saturate
its peers’ upload bandwidths, and allocates the rest to singleton swarms because they
receive high marginal benefit.

locate to a set of self-sufficient swarms, a new swarm of 5 peers, and 32 sin-

gleton swarms. It also shows the resulting average download bandwidths of

peers in each swarm. The peers have 30 KBytes/s download capacities and
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20 KBytes/s upload capacities, and the self-sufficient swarms have peer inter-

arrival times of 3, 6, 12, 24, 50, and 100 seconds. In the top graph, BitTorrent

dedicates almost all of its bandwidth to the self-sufficient swarms, whose peers

are already saturated, and some randomly to singleton swarms, which are un-

able to forward blocks. The bottom graph shows that Antfarm awards enough

bandwidth to the new swarm to saturate its peers’ uplinks and dedicates the

rest of its bandwidth evenly among several singleton swarms because they re-

ceive high marginal benefit. BitTorrent’s optimistic unchoking protocol causes

it to dedicate its bandwidth to only a few singleton swarms over the 20 minute

simulation. Overall, Antfarm achieves an order of magnitude increase in aver-

age download speed for the affected swarms without a corresponding penalty

for the popular swarms.

Overall, Antfarm qualitatively outperforms BitTorrent in a multi-torrent set-

ting by allocating bandwidth based on dynamically measured response curves

and preferentially serving those swarms that benefit most from seeder band-

width.

4.1.3 V-Formation Microbenchmarks

Unlike Antfarm, V-Formation addresses the more flexible general multi-swarm

content distribution problem by calculating a bandwidth allocation for all hosts

that belong to more than one swarm. To show that these hosts do not interfere

with each other while the coordinator computes CPM values, this section exam-

ines how V-Formation converges on a stable bandwidth allocation in a variety
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Figure 4.7: V-Formation’s bandwidth allocation to a pair of swarms. Two swarms
of similar size achieve comparable aggregate bandwidth even though cache B does not
possess content for swarm s2. Cache A gives more bandwidth to s2 (medium gray area)
than to s1 (dark gray area) to compensate.

of scenarios. We also show how V-Formation’s measurement time interval τ

influences the coordinator’s calculations.

In a large deployment, V-Formation and Antfarm can achieve different ag-

gregate bandwidths due to constraints imposed by individual peers’ band-

widths and swarm memberships. From the end-to-end experiment shown pre-

viously in Figure 4.2, consider two swarms s1 and s2 for which peers measure

comparable CPM values, where s1’s movie is cached on both servers and s2’s

movie is only cached on server B. In this scenario, the Antfarm coordinator

measures a response curve for each of the two swarms and determines that both

swarms should receive approximately equal bandwidth from the servers. How-

ever, Antfarm is unable to realize this allocation due to the constraints of peers’

upload capacities and their swarm memberships. The coordinator’s greedy so-

lution to the assignment problem results in suboptimal performance.
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In contrast, the V-Formation coordinator uses each individual peer’s benefit

to arrive at a more efficient allocation of bandwidth. A representative run of the

experiment shows that both swarms receive comparable bandwidth from the

cache servers despite the imbalance in the cache servers’ content (Figure 4.7).

Cache server B can only upload to swarm s1 because it only contains one of the

movies, as depicted by the light gray area. Cache server A, on the other hand,

possesses both movies, so it can upload blocks to either swarm. The dark gray

and medium gray areas indicate that swarm s2 receives more bandwidth from

cache server A than s1. Fluctuations in the caches’ bandwidth is due to allo-

cating bandwidth to other swarms in the system as measured CPM values vary

over time. Averaged over eight runs of the experiment, cache server A uploads a

majority of its bandwidth to the swarm with only one source (with an average of

124 peers) and only 12.6 KBytes/s to the swarm also sourced by cache server B

(with an average of 120 peers) in order to offset cache server B’s asymmetric

contribution of 42.1 KBytes/s to the swarm sourced by both servers. Interac-

tions among swarms similar to the two swarms we have examined account for

V-Formation’s 30% higher system-wide bandwidth over Antfarm.

To provide further insight into V-Formation’s bandwidth allocation algo-

rithm, we empirically show how V-Formation allocates bandwidth to compet-

ing swarms. We set up a scenario where peer p1 possesses content for two

swarms s1 and s2 with 25 downloaders each, and peer p2 possesses content for

s1 and a small swarm s3 with only three downloaders (Figure 2.8). All peers

have upload and download capacities of 50 KBytes/s. The two peers p1 and

p2 converge on an efficient, stable allocation (Figure 4.8). The top graph shows

p1’s CPM values for its swarms over time; the bottom graph shows the same

for p2. When the simulation begins, p1 and p2 probe their respective swarms
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Figure 4.8: CPM values for competing swarms. Peer p1 has cached content for two
large swarms s1 and s2 (top), and peer p2 has content for s1 and a small swarm s3
(bottom). p2 creates competition for block uploads in s1, causing p1 to upload to s2.

to obtain initial CPM values. They both measure comparable CPM values for

s1, which are similar to p1’s initial measurement of s2. p2 quickly discovers that

s3 receives little benefit from its block uploads, so it allocates its bandwidth to

s1. The competition that p2’s uploads create diminishes p1’s CPM value for s1,

causing it to dedicate its bandwidth to s2. This sequence of events matches the

expected behavior of the V-Formation protocol, with peer p1 preferentially pro-
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Figure 4.9: V-Formation’s sensitivity to the measurement time interval. Competing
swarms are indistinguishable for small τ . Sufficiently large τ enables peer p to discover
the swarm that receives the most benefit from its blocks. The vertical dashed line shows
the coordinator’s choice of τ based on the measurements. Error bars indicate 95% con-
fidence.

viding bandwidth to s2 as s1 can be sourced by both p1 and p2. The periodic

fluctuations of measured CPM values are the result of probing; CPM values go

stale after five minutes of no activity, at which time peers probe swarms for new

block propagation bandwidths.
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In order to differentiate peers’ effects on competing swarms, the coordina-

tor adjusts the block propagation measurement time interval τ for each peer.

We measure a single peer p’s block propagation bandwidths for three com-

peting swarms s1, s2, and s3, as well as the aggregate bandwidth that results

from using each value. Swarm s1 has 30 downloaders, and s2 and s3 each have

20 downloaders. Swarm s3 has an additional source of content whose uploads

compete with p’s uploads. All peers have upload and download capacities of

50 KBytes/s. The coordinator chooses a value for τ that enables it to differenti-

ate among swarms (Figure 4.9). The top graph shows the resulting CPM values

as a function of the coordinator’s choice of τ . All three swarms exhibit compara-

ble CPM values for small τ , but with sufficiently large τ , the swarms’ different

behaviors become prominent. The bottom graph shows the system-wide ag-

gregate bandwidth that results from each value of τ , with values 30 seconds

and above providing approximately equal aggregate bandwidth. The vertical

dashed line in the graph indicates the coordinator’s dynamic choice of τ for

determining p’s bandwidth allocation. The coordinator chooses the smallest τ

such that it is able to distinguish p’s contribution to the swarms that receive the

most benefit from p’s blocks. The selected τ is safely above 30 seconds, enabling

the system to operate at a high aggregate bandwidth.

The next two experiments evaluate how the CPM enables V-Formation to

converge on a stable allocation of bandwidth in the presence of churn. In

both experiments, three cache servers initially provide content to two iden-

tical swarms s1 and s2, each with 50 peers. Again, peers have asymmetric

upload and download links drawn from the same measured BitTorrent distri-

bution. Due to symmetry, both swarms receive an even split of the servers’

bandwidth and achieve equal aggregate bandwidth (Figure 4.10). At 3000 sec-
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Figure 4.10: V-Formation’s convergence and stability. Three cache servers concur-
rently upload to two, five, and three identical swarms, indicated by shaded areas. The
protocol adapts quickly to the changes introduced at the dotted lines, achieving equal
aggregate bandwidth across swarms in each interval.

onds, identical swarms s3, s4, and s5 simultaneously join. The cache servers

adjust their allocations to maintain proportional swarm aggregate bandwidths

by slightly sacrificing the aggregate bandwidths of s1 and s2 to bootstrap the

new swarms. The caches’ bandwidth is too small to saturate peers’ upload ca-

pacities across the five swarms, but V-Formation manages to converge on equal

aggregate bandwidths despite limited cache bandwidth. At 6000 seconds, all

peers in s1 and s2 leave simultaneously; the remaining swarms each achieve an

equal increase in aggregate bandwidth. V-Formation adapts within five min-

utes to dramatic changes in swarm memberships by choosing an appropriate

block propagation time measurement interval τ that enables hosts to efficiently

detect the swarms that benefit most from their bandwidth (Figure 4.11). Cache

servers continuously shift their allocations based on changing CPM values, and

swarms dampen the effect that the fluctuating allocations have on the swarms’

aggregate bandwidths.
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Figure 4.11: Time measurement interval and churn. Swarm memberships change
drastically at the two vertical dashed lines. A measurement time interval τ that is too
large or too small results in suboptimal performance. V-Formation chooses τ to maxi-
mize aggregate bandwidth.

4.2 Live Deployment

We deployed both Antfarm and V-Formation on PlanetLab to measure their per-

formance in real swarms. The V-Formation measurements are based on our

active deployment of the algorithm in FlixQ, our open content distribution sys-

tem [3]. We compare the performance of both bandwidth allocation algorithms

as well as version 5.0.9 of the official BitTorrent client. Then we examine the scal-

ability of our logically centralized coordinators, both a hierarchical coordinator

suitable for Antfarm, and a flat coordinator used by V-Formation.

4.2.1 End-to-End Performance

We first examine the end-to-end performance of Antfarm and V-Formation in

realistic deployments on PlanetLab. Antfarm relies on accurate response curves
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Figure 4.12: A measured response curve. The swarm consists of 25 PlanetLab nodes,
each with an upload capacity of 50 KBytes/s. Each data point is based on the aver-
age swarm aggregate bandwidth over 10 minutes. Real-world response curves confirm
simulations.

to make its bandwidth allocations. A response curves measures the designated

seeder’s impact on a particular swarm. To demonstrate Antfarm’s response

curves in practice, Figure 4.12 shows a measured response curve of a swarm

comprised of 25 PlanetLab nodes, each with an upload capacity of 50 KBytes/s.

The graph plots both the response scatterplot and the response curve as com-

puted by the coordinator from the token exchange. The results confirm the sim-

ulations and our theoretical response curve model of swarm behavior.

Figure 4.13 compares the aggregate bandwidth achieved by Antfarm, Bit-

Torrent, and traditional client-server downloads in a single-seeder deployment,

such as a closed content distribution system. The experiment runs across

300 PlanetLab nodes, each with an upload capacity of 50 KBytes/s. Swarms

have size 100, 50, 25, 12, 6, 3, and 1. In practice, the stock BitTorrent implemen-

tation uploads only a few hand-picked files concurrently; to evaluate BitTorrent

in the presence of many swarms, we measured two values by running multiple
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Figure 4.13: Performance of Antfarm, BitTorrent, and client-server in a closed con-
tent distribution system. 300 PlanetLab nodes are distributed among swarms ranging
in size from 1 to 100. Antfarm achieves high average performance by making efficient
use of limited seeder bandwidth.

seeder instances, each with its own upload capacity. BitTorrent Equal indicates

the aggregate system bandwidth when the BitTorrent seeder splits its upload

bandwidth equally among all swarms, including singleton swarms. BitTorrent

Proportional shows performance when the seeder allocates to each swarm an

upload bandwidth proportional to the size of the swarm.

Antfarm outperforms BitTorrent by allocating seeder bandwidth to the

swarms that receive the most benefit. Antfarm’s advantages over BitTorrent

become more pronounced in systems with many swarms accompanied by rela-

tively small seeder uplink capacities, a realistic scenario for a distribution center

with a large number of files and a bandwidth bottleneck. In these experiments,

Antfarm outperforms traditional client-server by a factor of between 50 and 100,

BitTorrent Equal by a factor of 8 to 18, and BitTorrent Proportional by a factor

of 1.2 to 3.
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Figure 4.14: Performance of V-Formation, Antfarm, and BitTorrent in an open con-
tent distribution system. 380 nodes in 200 swarms download movies from FlixQ using
the V-Formation protocol and the same movies using the Antfarm and BitTorrent pro-
tocols. 20% of peers belong to multiple swarms.

Our V-Formation deployment uses a distributed coordinator deployed in the

Amazon EC2 cloud. In this experiment, 380 PlanetLab nodes each download

one or more of 200 simulated movies, where a random 20% of the download-

ing nodes join two or more swarms to reflect the results of our BitTorrent trace.

Two cache servers running on PlanetLab nodes seed the swarms. We scaled

down the upload capacities of the cache servers to 50 KBytes/s each to reflect

our relatively small deployment size. Nodes draw their bandwidth distribution

from the measured BitTorrent bandwidth distribution. The results of the exper-

iment (Figure 4.14) show the three systems’ aggregate bandwidths over time.

V-Formation exhibits similar initial behavior as Antfarm, with lower aggregate

bandwidth than BitTorrent in the first six minutes as peers probe swarms to

determine an efficient allocation of bandwidth. V-Formation transitions to its

steady state more quickly than Antfarm as a result of its lightweight probes,

and it maintains a significantly higher steady state aggregate bandwidth than

Antfarm and BitTorrent.
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Figure 4.15: Aggregate bandwidth of swarms managed by a hierarchical coordina-
tor of varying sizes. Each coordinator host runs on a PlanetLab node with an artificial
bandwidth cap of 100 KBytes/s to limit scalability. The task of the token coordinator is
embarrassingly parallel; the system capacity scales linearly with the size of the coordi-
nator cluster.

4.2.2 Scalability

We next examine how the logically centralized coordinators scale. We examine

the steady-state bandwidth cost of running a distributed coordinator, both when

they are organized hierarchically, and when they have a flat organization.

Figure 4.15 shows the bandwidth consumption of a hierarchically organized

coordinator running Antfarm as a function of the number of peers based on ex-

periments run on PlanetLab. In the experiment, the coordinator’s root server

and each token server ran on its own PlanetLab node, and peers were simu-

lated across other PlanetLab nodes. To maximize generated load, peers omit

the data exchange but engage in the token protocol with the coordinator. Fur-

ther, we artificially limit the bandwidth available to each physical coordinator
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Figure 4.16: Scalability of a flat coordinator. Both memory consumption and band-
width at the coordinator scale linearly with the size of the system.

host to 100 KBytes/s to gain insight into the performance of multiple coordina-

tor nodes running with severe bandwidth constraints. The bottom curve shows

the capacity of a single, artificially-bottlenecked coordinator host acting as both

the root server and a token server. It is able to handle the tokens and peer lists

of approximately 9000 peers before its performance reaches a plateau. Adding

a second token server doubles the capacity of the system. Because the token

servers engage in a massively parallel task with little communication overhead,

increasing the number of token servers linearly increases the maximum sup-

ported number of peers.

The next experiment examines how our implementation of a flat coordinator

scales as a function of the size of the deployment; we found that the coordina-

tor’s bandwidth and memory requirements scale linearly with the total number

of peers (Figure 4.16). In this experiment, peers are simulated across hosts in a

computer cluster. Each peer is assigned a random bandwidth drawn from the

same measured BitTorrent distribution as in the end-to-end PlanetLab experi-
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ment. A peer’s bandwidth is proportional to the rate at which the peer simulates

receiving blocks from random participants in its swarm. Hosts in the cluster

issue realistic deposit tokens requests to the coordinator according to these sim-

ulated block transfers, as well as periodic announce requests. We made minor

modifications to the coordinator to accept deposited tokens as if they were com-

ing from legitimate peers with different IP addresses. In the experiment, three

new peers enter the system every second and join a swarm for a 1-GByte file

with 256-KByte blocks. The coordinator is distributed over two Amazon EC2

instances, each running a web server, a processor, and a slice of the memcached

shared state layer. The reported memory usage includes all CPM, swarm, and

peer metadata stored in the state layer, as discussed in Chapter 3.4.2. Coordi-

nator bandwidth includes all outgoing tokens, CPM values, and responses to

announce requests.

Both hierarchical and flat coordinators achieve linear scalability in the size

of the system, making them suitable for large deployments. The hierarchical

coordinator is able to support a larger number of peers per coordinator host be-

cause the coordinator’s token servers operate independently with the exception

of small, periodic summaries of only a few bytes per peer to the root server. In

contrast, a flat coordinator relies on a distributed, shared state layer to maintain

a consistent view of the system. Consequently, the distributed state layer can

pose a bottleneck when there is a high volume of incoming requests.
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CHAPTER 5

RELATED WORK

Managed swarms lie at the intersection of a large body of prior work, includ-

ing content distribution in general, and peer-to-peer swarming systems in par-

ticular. Research on measuring and modeling existing peer-to-peer systems has

characterized peer behavior and the availability of content. In peer-assisted sys-

tems, content availability is of critical importance due to the long tail in content

popularity distributions. Efforts to improve content availability have sparked

research in efficient caching, analysis of the lifetimes of BitTorrent swarms, and

incentivization for peers to contribute their resources to improve the perfor-

mance of swarming systems. Exploring and examining incentives and currency

in peer-to-peer systems has become a research area of its own, with the overar-

ching goal of fostering cooperation among end users, who each have their own

selfish goals. Finally, recent literature has focused on streaming systems that

support video-on-demand applications. Such systems have implemented hy-

brid, peer-assisted architectures that have similarities to the work in this thesis.

5.1 Content Distribution

Content distribution networks are scalable systems used to alleviate server

load, reduce download times, and avoid network hotspots. Akamai [42],

for example, is a widely deployed infrastructure-based CDN that many con-

tent providers rely on to distribute their content. Similarly, cooperative web

caching [16, 62, 52, 125, 127] removes load from origin servers. ECHOS [78]

proposes distributing servers using a peer-to-peer network of set-top boxes dis-

tributed at the Internet’s periphery, managed by a single entity that can op-
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timize system performance, but does not address bandwidth management at

the servers. Although distributed CDNs scale, the bandwidth cost of operating

them resides entirely with the content provider and distributor.

CobWeb [120], CoBlitz [96], and Coral [49] are HTTP-based content distribu-

tion networks that cache and serve files from distributed infrastructure hosts.

This reduces load on origin servers and enables modestly provisioned hosts to

serve popular content to many clients. Such systems use distributed hash tables

based on consistent hashing [68], which enables clients to locate objects effi-

ciently by hash. Corona [112, 106] similarly uses consistent hashing to provide

a publish-subscribe system for the web that minimizes requests to servers to

achieve a target update latency for subscribers. Finally, Bamboo [113] provides

a distributed hash table that operates reliably in the presence of churn, critical

when storage nodes include end users.

Applications that sit above the infrastructure layer often have their own indi-

vidual constraints. Chen et al. [25] develops a general framework that enables

multiple applications that compete for bandwidth to specify their own band-

width requirements. The system then generates a topology of hosts that satisfies

the each application’s bandwidth constraints.

Efficient caching of content is critical to the performance of content distribu-

tion systems. Caching content among infrastructure hosts can improve latency

by locating content close to end users, and it can improve throughput and alle-

viate hotspots by distributing client requests over multiple hosts. Applegate et

al. [6] propose an algorithm for choosing which cache servers in a deployed in-

frastructure should cache each of a set of media files from a large content library.

The algorithm frames the problem as one of optimization where the goal is to
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minimize the network bandwidth required to satisfy all client requests for con-

tent given the available disk space constraints of each host. The solution does

not consider the cost of moving content among cache servers because, as the

authors claim, redistributing content among caches more than once per week

yields little performance benefit. In contrast, Qiu et al. [109] instead focus on

where content distributors should place their cache servers within their infras-

tructure. Huang et al. [58] explicitly cache content at peers by allocating a fixed,

1 GByte cache on each participant’s disk for storing and serving content.

In order to redistribute content among cache servers, Fastreplica [20] pro-

vides a simple, efficient algorithm for replicating a large file among a fixed num-

ber of infrastructure hosts. In the first of two phases, the origin host in posses-

sion of the file splits the file into equally sized pieces, one for each replica, and

sends each replica its own piece. Then, in the second phase, each replica sends

the piece that it received to each of the other replicas. The result is efficient

utilization of the n2 links connecting a set of n replicas.

To leverage caches for faster downloads, Rodriguez et al. [111] propose en-

abling a client downloading a large file to simultaneously pull content from each

of multiple cache servers. This prevents a single client from placing high load on

a single server. Similarly, Shark [8] and ChunkCast [18] reduce client-perceived

download latency by enabling clients to efficiently find nearby copies of content

in a structured overlay network. Given a set of caches and their cached content,

Alzoubi et al. [11] routes clients’ requests among the cache servers in order to

minimize the load on any single cache server.

Peer-to-peer CDNs, discussed in detail below, effectively shift bandwidth

costs from the content provider to clients. Hybrid systems, which combine
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peer-to-peer data exchange with data from server-class hosts, have enormous

potential to reduce cost for both content distributors and ISPs, and to improve

performance for end users [55, 54, 67]. For instance, Slurpie [117] combines a

mesh network with a traditional client-server architecture to reduce server load

for bulk downloads of large, popular files. Hei et al. [57] provide insights for

future system designers based on extensive measurements from live traces from

the PPLive system [5].

5.2 Single-Swarm Systems

Peer-to-peer content distribution constitutes more than half of all Internet traf-

fic [4], the majority of it coming from swarming systems where end users or-

ganized into unstructured mesh networks exchange data blocks with one an-

other. BitTorrent [17] is the most popular swarming system, and studies con-

sistently show that BitTorrent traffic constitutes a significant fraction of Internet

traffic [95, 119].

Due to the popularity of peer-to-peer protocols, researchers have examined

the nature of peer-to-peer systems in general, and swarming, BitTorrent-like

systems in particular, in order to better understand and improve their perfor-

mance. The vast majority of this work has focused on the interactions of peers

within a single swarm, a difficult problem due to the dynamic nature of swarms

and the unpredictable behavior of individual peers.

A large number of measurement studies and mathematical models have

enumerated the strengths and weaknesses of the BitTorrent protocol within a

single swarm. Zhang et al. [130], in the largest BitTorrent measurement study
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to date, shows a large variance in user upload behavior from one BitTorrent

community to another. This supports the managed swarming approach, which

relies on active measurements of swarm behavior to adapt to unpredictable dy-

namics. However, while there is much variance among swarms, Bharambe et

al. [14] verify the high efficiency that BitTorrent swarms maintain with respect to

intra-swarm link utilization. This is in contrast to previous generations of peer-

to-peer systems that predate BitTorrent’s incentivization mechanisms, such as

Gnutella, in which heterogeneity and lack of cooperation often led to poor per-

formance [118].

BitTorrent swarms naturally organize peers over time into communities

based on the bandwidth contributions of individual peers. A measurement

study by Cuevas et al. [30] show that approximately 100 torrent publishers ac-

count for 75% of all downloads, based on traces of 55,000 torrents from popular

content aggregators. During their downloads, Legout et al. [70] show that peers

naturally cluster based on bandwidth, tending to unchoke other peers that have

similar upload behavior. Fortunately, even selfish peers, which attempt to game

BitTorrent by relying on other peers’ optimistic unchokes, do little harm to the

global performance of a BitTorrent system, based on measurements from Li-

ogkas et al. [76].

Based on observations of BitTorrent’s behavior, a large body of work has

proposed optimizations to the protocol for improving its performance. Many of

these enhancements are based on principled parameter selection, such as the op-

timal size of each data block [86], efficient peer unchoking algorithms [131], and

reallocation of peers among multiple trackers that all manage torrents for the

same piece of content [40]. Other work has focused on analyzing and improv-
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ing BitTorrent’s protocol, originally dubbed “tit-for-tat”, for deciding how much

upload bandwidth to allocate to each unchoked peer. Levin et al. [72] shows that

“tit-for-tat” is a misnomer, and that the algorithm is more accurately described

as a block auction, where peers bid their own bandwidth to a peer in an attempt

to “win” reciprocated bandwidth. They suggest a new protocol called Prop-

Share whereby peers award upload bandwidth in proportion to the bandwidth

received from peers, rather than distributing bandwidth equally among all auc-

tion winners. BitMax [77] offers an alternate protocol, recommending that peers

upload the maximum bandwidth possible to each unchoked peer, which they

show increases performance when links are asymmetric. Peterson et al. [104]

suggests taking a holistic approach to allocating bandwidth rather than solely

basing each peer’s bandwidth allocation decisions on local information.

Prior work has explored new avenues for improving performance, security,

and fairness within swarming systems. Piatek et al. [98] augment the BitTorrent

protocol to enable peers to share reputation information through one level of in-

termediary nodes. Cuevas et al. [31] analyze the benefits of keeping peer traffic

within an ISP to reduce cross-ISP traffic, and Choffnes et al. [33] implement a

solution by harvesting data from existing CDNs for locality information.

Finally, new mechanisms on top of unstructured mesh networks integrate

social networks into peers’ block exchange decisions. For instance, Tribler [102]

and OneSwarm [60] use end users’ social networks to favor or restrict data ex-

changes to connections between peers who have expressed trust in each other.

The intention is that third parties are less likely to extract the behavior or inter-

ests of end users because system activity is compartmentalized based on explicit

relationships of trust. Such mechanisms can be applied to multi-swarm settings
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without affecting global performance goals or approaches to content distribu-

tion based on managed swarms.

5.3 Multi-Swarm Systems and Content Availability

This thesis focuses on achieving fast downloads in settings where servers with

limited bandwidth seed multiple swarms. Existing work on multi-swarm en-

vironments largely focuses on utilizing resources to instead improve content

availability. Content availability is a concern for peer-to-peer content distri-

bution systems because end users and leave the system without warning, and

sometimes take the last copy of an unpopular piece of content with them.

Past work has shown that content availability depends on several properties

of swarms aside from content popularity, such as the distribution of download

completion within a swarm [121]. The distribution of content among peers is

a critical factor, and Kaune et al. [66] show that almost a quarter of peers in

seederless swarms are able to complete their downloads from blocks exclusively

from other downloading peers. Menasché et al. [88] formalize the related notion

of self-sufficient swarms with a model that predicts when swarms are able to

efficiently utilize their uplinks without aid from seeders.

Bundling is one approach that existing multi-swarm systems employ, where

content distributors combine multiple pieces of content together into one

archive served by a single swarm. When peers download one piece of content in

a bundle, they are forced to download the other content as well. Consequently,

peers serve blocks from all content in the bundle at the cost of downloading

more content than they request. This improves the availability of unpopular
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content and potentially provides seeding peers for the 82% of BitTorrent swarms

with 10 or fewer peers that are often not able to sustain themselves [130]. Guo et

al. [51] show that, empirically, peers are willing to stay in swarms for previously

downloaded content, which maintains the content’s availability. Menasché et

al. [89] offer the first analytical model of content availability in swarming sys-

tems and present bundling as a simple and effective solution for increasing

availability.

Further work has expanded on content bundling to make it more fine-

grained and find the most efficient tradeoff between allowing peers to down-

load only content in which they are interested and downloading other content

to increase availability. Carlsson et al. [29] simulates a dynamic bundling tech-

nique where peers use spare download and upload bandwidth to opportunis-

tically download individual blocks from other swarms and propagate them to

downloaders. Levtov et al. [81] uses a combination of Markov decision pro-

cesses and stochastic games to find a arrive at an efficient mix of downloading

desired content and downloading undesired content for the global good. Fi-

nally, Yang et al. [129] propose a system that dynamically bundles content to

improve both availability and performance. The system rewards peers that seed

bundled content by increasing their download performance for other content in

the bundle.

Availability is clearly a concern in the peer-to-peer community, and the long

content popularity tail suggests that much content is extremely unpopular. A

recent, large-scale measurement study of BitTorrent’s content popularity by Dán

et al. [41] shows that peer-to-peer content popularity does not follow a Zipf dis-

tribution. Instead, based on an analysis of proper statistical sampling over long
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periods of time, the long tail of content popularity likely decreases exponen-

tially. Consequently, the authors argue, problems related to content availability

and caching are not nearly as serious and intractable as Zipf models of the con-

tent popularity tail suggest. Regardless, content popularity distributions em-

pirically lead to challenges in availability, and research for addressing content

availability for the tail has potential for improving the performance of managed

swarming deployments with large content libraries.

5.4 Streaming Systems

With the rapidly growing popularity of video streaming services such as Net-

flix, Hulu, and YouTube, peer-to-peer content distribution research has shifted

toward optimizing content streaming. New streaming systems generally or-

ganize peers into multicast trees, where content trickles from an origin server

toward the leaves of the tree, or build upon BitTorrent’s unstructured mesh net-

works to distribute streaming content in a more resilient but ad hoc manner.

5.4.1 Multicast

Multicast streaming systems organize peers into structured multicast trees,

where content originates at a tree’s root and propagates down the edges of the

tree until it reaches the leaf peers. The seminal work by Deering proposed IP

multicast to efficiently deliver content to multiple destinations [44]. Deploy-

ment difficulties with global IP multicast [38] led to application-level multicast
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systems such as End System Multicast [32], Your Own Internet Distribution

(YOID) [46], and others [132].

Several techniques have been proposed to increase efficiency of application-

level multicast. Overcast [61] distributes content by constructing a bandwidth-

optimized overlay tree among dedicated infrastructure nodes. Liu et al. [79]

similarly optimize tree construction by calculating the appropriate tree depth

and node degree. SplitStream [24] distributes content via a peer-to-peer overlay

that disseminates content along branches of trees constructed on top of a peer-

to-peer substrate. Bullet [64] and Bullet′ [63] also use a randomized overlay

mesh to distribute data. ChunkySpread [123] is a hybrid approach to multicast

trees that uses both structured and unstructured overlays to distribute content.

Finally, Exapeer [53] proactively pushes replicas to regions of a multicast tree

that do not yet have the content to ensure an even distribution of content.

5.4.2 Swarming

Multicast streaming systems inherently limit the bandwidth to each peer [85],

and they require peer organization that is difficult to maintain in practice, espe-

cially in highly dynamic systems where peers near the root of a multicast tree

may depart without warning. In response to multicast solutions, much work

has focused instead on unstructured swarming systems similar to BitTorrent

that support streaming. Chainsaw [101], for instance, is a peer-to-peer multicast

system based on an unstructured overlay mesh in which peers explicitly request

packets from neighbors. Many other systems in this design space discuss and

address a tradeoff between swarming systems designed for bulk downloads
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and swarming systems built for content streaming [133, 26, 122, 103, 90, 116].

That is, whereas peers in bulk download systems maximize download speeds

by requesting rare blocks from neighbors, streaming applications prioritize

blocks near the media’s play position to minimize buffering delays. Zhao et

al. [134] take this approach further by proposing an analytical framework for

evaluating the tradeoff between rarest-first and in-order block selection. Fan et

al. [45] show that this tradeoff is fundamental: they prove that rarest-first block

selection policies and in-order block selection policies are in contention with

each other. By implication, any swarming solution to streaming must make a

tradeoff between these properties based on application requirements.

Other swarming systems are more explicit in their goal to reduce load

on origin servers. The BitTorrent-Assisted Streaming System (BASS) [37] and

Toast [35] add swarming-optimized peer-to-peer interactions to a client-server

model. Toast, in particular, provides an implementation of a streaming swarm-

ing system that offloads 70–90% of traffic from servers to peers.

Rakesh et al. [65] introduce a stochastic fluid model for peer-to-peer stream-

ing systems that captures the shortcomings of swarming mesh systems, such as

churn. Their model, which assumes that all content originates at a single server,

gives a closed-form result that states that a sufficiently large swarm whose traf-

fic load exceeds a critical value will successfully distribute streaming content.

Siddhartha et al. [9] propose a swarming protocol with small neighborhoods of

topographically close peers for exchanging blocks, and uses heuristics to han-

dle swarms of heterogeneous link capacities. Ration [126] dynamically adjusts

streaming servers’ upload bandwidths on a per-ISP basis to reduce inter-ISP
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traffic and minimize server bandwidth requirements to sustain video streaming

within the same ISP.

Finally, many streaming and multicast architectures use network coding to

increase content delivery reliability [50, 7, 87, 15]. Network coding enables peers

to encode content from multiple data blocks together in random linear combina-

tions and then distribute these mathematically combined blocks. Consequently,

peers downloading content no longer have to be concerned with which blocks

they download, as any downloaded block is likely to contain new information

that the peer can use to help decode the original content file.

5.5 Incentive Compatibility

In distributed systems that depend on end users to contribute resources, there is

often contention between the global goals of the system and the selfish goals of

individual end users. In managed swarms and peer-to-peer download systems,

for instance, an individual user’s goal is to download the content as fast as pos-

sible, possibly at the expense of other users’ ability to download the content.

Managed swarms address this contention by using the coordinator’s global

view of the system to compute how peers should behave for the global benefit

of all peers, then using a variety of incentive mechanisms to ensure that peers

follow their prescribed allocations. The coordinator uses a token-based virtual

currency to incentivize peers to contribute bandwidth, and it uses its role as an

authoritative tracker to punish peers that deviate from the protocol. In addi-

tion, managed swarms embrace the altruism of peers that choose to remain in

swarms beyond their download completion time. Much work has examined in-
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centives and currency systems in detail, especially in the context of peer-to-peer

swarming.

Early model and analysis by Qiu and Srikant [108] of BitTorrent’s incentive

mechanism showed that the system converges to a Nash equilibrium where

all peers upload at their capacity. However, more recent work, including Bit-

Tyrant [97], BitThief [80], and Sirivianos et al. [114], has demonstrated that aver-

age download times currently depend on significant altruism from high capac-

ity peers that, when withheld, reduces performance for users.

In peer-assisted content distribution systems, altruism drives much of the

research in incentive compatibility. Levin et al. [74] provide a high-level game

theoretic and economic description of incentives that considers three mecha-

nisms that affect peer behavior: money, punishment, and altruism. Managed

swarms utilize these three mechanisms based on the coordinator’s global view

of the system and its ability to manage peers’ membership and distribute to-

kens. Carlsson et al. [27] incentivize peers to seed content after they finish their

downloads by prioritizing block requests from such peers in other swarms.

Dandelion [115] and BAR gossip [82] avoid relying on altruism to distribute

data. They use a cryptographic fair exchange mechanism that requires a client

to upload content to other clients in exchange for virtual credit, which can be

redeemed for future service. Microcurrencies [19, 128, 100, 84] similarly rely on

cryptographically protected tokens for fair resource exchange, and optionally

provide additional features such as spender anonymity. iOwe [73] is a virtual

currency backed by network resources; the currency is a promise to do future

work to any other peer to implement a “pay-it-forward” scheme. BitStore [110]

also uses a token-based currency backed by real money, which peers receive
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when they offer resources for public use to store and upload content blocks.

BitTorrent-like systems are susceptible to Sybil attacks [43], where a single user

increases download speeds by joining the same swarm from several hosts.

Decentralized resource allocation in peer-to-peer systems requires incentives

for participants to contribute resources. Ngan et al. [91] suggest cooperative

audits to ensure that participants contribute storage commensurate with their

usage. Samsara [34] considers storage allocation in a peer-to-peer storage sys-

tem and introduces cryptographically signed storage claims to ensure that any

user of remote storage devotes a like amount of storage locally. Both techniques

center around audits of resources that are spatial in nature.

Karma [124] and SHARP [47] resource allocation can apply to renewable re-

sources such as bandwidth. Karma employs a global credit bank, with which

clients maintain accounts. The value of a client’s account increases when it con-

tributes and decreases when it consumes. A client can only consume resources

if its account contains sufficient credit. SHARP operates at the granularity of

autonomous systems or sites. To join the system a SHARP site must negotiate

resource contracts with one or more existing group members. These contracts,

in effect, specify the system’s expectations of the site and the site’s promise

of available resources to the system. Accountable claims make it possible to

monitor each participant’s compliance with its contracts, simplifying audits and

making collusion more difficult in SHARP relative to other decentralized peer-

to-peer systems.

Carlsson et al. [28] extend peer incentives to the streaming media domain.

One-Hop Reputations [98] and Contracts [99] use propagation trees of depth

one to increase peer accountability in bulk download and live streaming sys-
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tems, respectively. The protocols introduce peer incentivization strategies that

outperform BitTorrent’s bilateral tit-for-tat approach.

Freedman et al. [48] propose a protocol that manages downloads in a multi-

file system. Peers use a distributed algorithm to determine the relative values

of content files and the market-based supply and demand for content blocks at

each peer according to available network resources. The protocol enables ISPs

to set a cost on transferring data over specific network links. It enables peers to

adjust block prices based on local content demand.
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CHAPTER 6

CONCLUSIONS

6.1 Summary

This thesis introduces a new approach to content distribution based on man-

aged swarms. Managed swarms, where the behavior of the nodes in the net-

work are guided by a virtual entity to achieve a globally desirable outcome,

enable content distributoirs to use network resources efficiently. Deployments

of managed swarms can make effective use of resources available at server-class

hosts as well as bandwidth contributed by end users. The managed swarming

approach described in this thesis employs a logically centralized coordinator

that guides hosts, whether or not they are owned and operated by the content

distributor, to achieve global performance objectives.

A coordinator forms the core of a managed swarming deployment. The co-

ordinator takes active measurements of host behavior, which it uses to model

the behavior of swarms. With its global view of swarm dynamics, the coordina-

tor is able to compute an efficient allocation of network resources to maximize

system-wide performance according to an operator-defined objective. Then, be-

cause end users often have their own motivations and incentives to deviate from

globally beneficial behavior, the coordinator monitors individual peers to en-

sure that they follow their prescribed allocations.

In this thesis, we explore in depth the global performance goal of maximiz-

ing the aggregate bandwidth of all downloaders. This in turn maximizes both

the average download rate across peers in the system. To this end, we have de-
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fined two problems that formalize the goal of maximizing bandwidth that apply

to different deployment scenarios. The single-seeder multi-swarm content dis-

tribution problem is appropriate for small content owners whose libraries fit in

a single logically centralized server. A more universal variant, called the general

multi-swarm content distribution problem, relaxes that constraint, allowing de-

ployments with content libraries that can be split across any number of origin

servers and cache servers.

To address the content distribution problems, we have developed two algo-

rithms for allocating each host’s upload bandwidth among swarms competing

for its bandwidth. Antfarm addresses the single-seeder variant, and it com-

putes an optimal allocation of bandwidth from the centralized origin server to

ensure that a small content distributor receives the maximum possible perfor-

mance possible from limited resources. To address the general variant of the

problem, we have developed V-Formation, in which the coordinator measures

each host’s individual impact on the swarms to which the host belongs. Then,

based on each swarm’s response to bandwidth from the host, the coordinator

allocates the host’s bandwidth accordingly so that each host uploads content to

the swarm that receives the most benefit from its bandwidth.

We have implemented both algorithms and a distributed, scalable coordi-

nator to build an efficient managed swarming system. We have demonstrated

that our deployment can scale to large deployments and achieves qualitatively

higher performance than existing content distribution systems and approaches,

including traditional client-server systems, popular peer-to-peer protocols, and

numerous heuristics that hosts might use to allocate bandwidth in deployments

lacking the infrastructure to make principled bandwidth allocation decisions.
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6.2 Future Work

The general multi-swarm content distribution problem, addressed in this the-

sis, formalizes the goal of maximizing aggregate bandwidth given the swarm

memberships of all peers. The algorithms that we have developed to address

this problem ensure that hosts’ bandwidth is used efficiently to distribute the

content that they possess. However, the coordinator has no control over which

content hosts download and consequently are able to share with other peers.

Granting the coordinator the flexibility to change swarm memberships would

give the coordinator the power to place content within the network and to allo-

cate resources more freely among swarms to increase system-wide performance.

Two challenges arise when the coordinator is tasked with dynamically as-

signing peers to swarms. First, the extra degree of freedom makes the the coor-

dinator’s task of optimizing bandwidth among swarms more computationally

difficult. Second, scenarios in which the coordinator modifies the swarm mem-

berships of end users require new incentives for end users to contribute their

upload bandwidth for distributing content in which the users might not be in-

terested. We have begun preliminary work to address these challenges, which

we discuss in turn.

6.2.1 Content Placement Within Distribution Infrastructure

Positioning content strategically among cache servers is an important and well-

known method for improving the perceived efficiency of content distribution

networks. End users benefit when content in which they are interested is located
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nearby and is sufficiently replicated to ensure availability. Managed swarm-

ing systems are in a unique position to address this problem because all cache

servers are under the control of a logically centralized coordinator that can dic-

tate how they allocate their resources. Thus, a managed swarming deployment

has the opportunity to optimize the placement of content, rather than rely on

the content owner to manually set and maintain swarm memberships for each

cache server.

The managed swarming framework provided in this thesis provides the nec-

essary tools to address the placement problem. A coordinator can determine

the placement of content by directing cache servers to join and leave swarms

on demand. We formalize the optimization problem of choosing which swarms

each server joins as the content placement multi-swarm content distribution prob-

lem. Namely, given a set of swarms S and a set of peers P , this variant of the

problem designates a subset of peers as cache servers under the content owner’s

control C ⊆ P , whose swarm memberships are chosen by the coordinator. The

complement set of peers E = P \ C is the set of end users, who choose their

own swarm memberships, as in the general multi-swarm content distribution

problem. Then, given a set of end-user memberships ME ⊆ E × S, the content

placement multi-swarm content distribution problem is to determine to which

swarms each cache server should belong MC ⊆ C × S in order to maximize

the aggregate bandwidth of end users a =
∑
p∈E Dp, where Dp is the download

bandwidth of peer p. For a particular set of cache-swarm memberships MC ,

the aggregate bandwidth a is defined based on the optimal allocation of each

peer’s bandwidth to the swarms to which it belongs, identically to the general

multi-swarm content distribution problem with M = ME ∪MC . This problem is

difficult because it treats the general multi-swarm content distribution problem
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as a subproblem by wrapping it in an additional maximization problem to find

the most efficient set of swarm memberships for each cache server.

To address the content placement multi-swarm content distribution prob-

lem, one approach is to generalize the technique of probing swarms with a

small, constant number of block uploads to measure the benefit of caching

blocks from particular piece of content. Specifically, just as a peer can upload

a block and track its propagation to estimate the value of a block upload to

a swarm, a cache server can cache a block for a period of time and measure

the number of times it uploads that block and weight the result by the average

propagation of those block uploads to estimate the value of caching a piece of

content.

A solution to this problem would enable content distributors to efficiently

use their available infrastructure without the need to manually place content in

the network. Managed swarms offer the machinery to evaluate a given configu-

ration of content, and they would therefore prove useful in estimating the value

of shifting content among cache servers to improve performance.

6.2.2 Increasing Control Over End Users’ Resources

Enabling the coordinator to control cache servers’ swarm memberships enables

it to position content in the network. By extension, the coordinator could further

optimize network resources if it had similar control over swarm memberships

of end users. Unlike cache servers, end users’ resources are not under the con-

trol of the content distributor; end users have their own motivations and behav-

iors. Specifically, end users join swarms for content that they want to download
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or distribute, and contributing resources back to their swarms is a secondary

concern. In managed swarms, the coordinator incentivizes peers to contribute

bandwidth to their swarms by offering them tokens that they can use to obtain

additional data blocks from peers. Finding an incentivization model for peers

to contribute bandwidth to other swarms, for content in which they are not

necessarily interested, would be beneficial for steering end users’ bandwidth to

swarms that most need it.

We have considered two possible approaches for incentivizing peers to join

swarms for content that they do not want. The first approach is to award peers

tokens for uploading blocks from swarms to which they do not belong. In such

a scheme, the coordinator would calculate an exchange rate for each swarm by

weighing the global benefit of a block uploaded in one swarm relative to other

swarms. The exchange rate would determine the number of tokens that a peer

would receive for each block that it uploads to that swarm. If the exchange rate

for a particular swarm is high enough, it would incentivize peers that do not

belong to the swarm to join it, download data blocks for its content, and upload

those blocks in order to earn tokens that the peer can use to download content

in which it is interested.

A second approach for steering end users swarm memberships is to extend

content bundling to incentivize peers to download and serve particular con-

tent. Bundling is a technique whereby multiple pieces of content are combined

into a single swarm, often a popular piece of content with content that would

benefit from additional bandwidth. Then, the many peers downloading the

popular content are forced to download the less popular content as well, im-

proving bandwidth and availability for peers interested in the long tail. Man-
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aged swarms are in a unique position to improve content bundling. Current

bundling work depends on ad hoc heuristics for deciding which content to bun-

dle together. The coordinator in managed swarming systems has the data and

algorithms to accurately predict each swarm’s expected response to additional

bandwidth. It could use this information to optimize content bundling and bet-

ter serving the content popularity tail.

6.3 Impact

Managed swarms have had an impact on the content distribution landscape.

We have commercialized our implementation of managed swarms, first based

on Antfarm, then based on V-Formation, to better match an open content distri-

bution service based on user-contributed content. Our content delivery service,

called FlixQ [3], enables users to share videos and other bulk content publicly

or with specific groups of users. FlixQ has been live for more than two years as

of this writing, and has several hundred users sharing thousands of videos.

The FlixQ service enables students, faculty, and staff of particular colleges

and universities to share content within the scope of their schools. Cornell

University’s computer science uses this feature to make its departmental col-

loquium talks available to the Cornell community. Several of the department’s

servers proactively join swarms for new colloquia and cache them for availabil-

ity.

Managed swarming technology has spurred new research in content distri-

bution systems based on realistic models of swarm behavior for predicting their

response to future bandwidth contributions. For instance, Capotă et al. [21]
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have expanded on the Antfarm work to address additional global performance

goals and provide support for streaming video. Similarly, Niu et al. [90] apply

machine learning techniques to managed swarms to predict future changes in

swarm behavior and adjust bandwidth allocations accordingly. Kash et al. [69]

have examined systems that use virtual currencies, including our deployments

of managed swarms, to optimize the use of currencies and incentivize efficient

peer behavior.

Managed swarms offer an intuitive model for describing the complex behav-

ior of swarms. This thesis explores how managed swarms enable content dis-

tributors to achieve high performance, and focuses on maximizing system-wide

link utilization for fast bulk downloads. There are many unexplored avenues

for improving performance and reducing the cost of distribution. We believe

that managed swarming approach provides a general framework for deploying

efficient, scalable systems that are well suited to a wide range of problems that

future research will address.
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