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Power and reliability issues are expected to increase in future multicore systems

with a higher degree of component integration. As the feature sizes of transistors

continue to shrink, more resources can be incorporated in microprocessors to ad-

dress a broader spectrum of different application requirements. However, power

constraints will limit the amount of resources that can be powered on at any given

time. Recent studies have shown that future multicore systems will be able to

power on less than 80% of their transistors in the near future, and less than 50%

in the long term. The most difficult challenge is deciding which transistors should

be powered on at any given time to deliver high performance under strict power

constraints. At the same time, device reliability issues - the proliferation of de-

vices that will either be defective at manufacturing time or will fail in the field

with usage - are projected to be exacerbated by the continued scaling of device

sizes.

We present a modular, dynamically reconfigurable architecture as a promising

unified solution to the problems of dark silicon (the inability to power all available

computing resources) and reliability. Our modular architecture implements de-

configurable lanes within the decoupled sections of a superscalar pipeline that can

be easily powered on or off to isolate faults or create an energy-efficient hardware

configuration tailored to the needs of the running software.



At the system level, we propose a novel framework that uses surrogate response

surfaces and heuristic global optimization algorithms to characterize the behavior

of applications at runtime and dynamically redistribute the available chip-wide

power to obtain hardware configurations customized for the software diversity and

system goals. Our reconfigurable architecture is able to provide high performance

under a strict power budget, maintain a certain performance level at a reduced

power cost, and in the case of hard faults, restore the system’s performance to

pre-fault levels.
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CHAPTER 1

INTRODUCTION

Power and performance challenges are expected to increase in future multicore

systems with a higher degree of component integration. As the feature size con-

tinues to shrink, more resources can be incorporated in microprocessors to address

a broader spectrum of different application requirements. However, power con-

straints will limit the amount of resources that can be powered on at any given

time. Recent studies have shown that, without innovation, future multicore sys-

tems will be able to power on less than 80% of their transistors in the near future,

and less than 50% in the long term [26]. Others [73] cite even more drastic effects

due to the exponential drop in the percentage of a chip that can actively switch. A

difficult challenge is deciding which transistors should be powered on at any given

time to deliver high performance under strict power constraints.

Another serious issue is device reliability - the proliferation of devices that will

either be defective at manufacturing time or will fail in the field with usage. Both

types of failures are projected to be exacerbated by the continued scaling of device

sizes. Inaccuracies in the manufacturing process will become more prominent as

feature size is decreased and the manufacturing process becomes more complex.

Thus, the International Technology Roadmap for Semiconductors is warning that

improving yield will become just as important as performance and power [5]. More-

over, the increased circuit density of future microprocessors will result in higher

probabilities of device wear-out, limiting overall microprocessor lifetime.

In order to achieve acceptable yield, a chip with intrinsic manufacturing defects

should have a high probability of being reconfigured in the factory in a way that

creates a functional chip that achieves close to the throughput of a pristine chip that
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is devoid of defects. Similarly, to achieve acceptable levels of lifetime reliability [68],

the system must detect the onset of a wear-out fault, determine its source, and

in most cases, be able to reconfigure the chip in a way that isolates the affected

region yet maintains operability at close to peak throughput.

We propose a modular dynamically reconfigurable architecture as a unified

technique to address the problems of dark silicon (potential computing power that

cannot be used at once) and reliability. The architecture implements deconfig-

urable lanes within the decoupled sections of a superscalar pipeline that can be

easily enabled or disabled to create an energy-efficient hardware configuration tai-

lored to the needs of the running software. Moreover, the modularity of our design

is amenable to fault isolation, allowing faulty chips to maintain correct function-

ality and dormant performance boosting techniques can be enabled to recoup the

associated performance loss. Our techniques are orthogonal to other power sav-

ing or performance enhancing techniques such as dynamic voltage and frequency

scaling, the recently proposed conservation cores [73], or accelerators.

In order to take advantage of the large real estate that will be available, we en-

vision a system that incorporates both regular cores and a number of accelerators

and static or dynamic custom hardware optimized for different goals. At any given

point, a different subset of the chip transistors is powered on to provide perfor-

mance tailored to the software diversity. This subset of transistors will most likely

consist of some of the regular cores and some of accelerators, but the proportion of

one to the other will vary depending on the currently running software. Traditional

methods include dynamic voltage and frequency scaling or turning off entire cores

to match the wide range of optimal power that should be allocated to regular cores.

With the breakdown of voltage scaling, the opportunities for power savings with
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DVFS diminish significantly, and exclusively turning off cores might come at a high

performance cost. Moreover, single threaded performance remains an important

system goal, as it is highly unlikely that all or most of the applications will be able

to be parallelized in their entirety to the degree needed to permint only weak cores

in the microprocessor. Our modular architecture provides designers with another

degree of freedom to dynamically optimize the power-performance of the integrated

regular cores with less single threaded performance loss than weak cores. It can

thus increase the amount of power available to customized hardware, maintain

tolerable single-threaded performance guarantees, and optimize the performance

of the remaining running cores.

At the system level, we present a novel framework that uses surrogate response

surfaces and heuristic global optimization algorithms to characterize the behavior

of applications at runtime and dynamically redistribute the available chip-wide

power to obtain hardware configurations customized for the software diversity and

system goals. Through the judicious use of resources (lanes and performance boost-

ing functions) based on their energy efficiency for particular applications, our re-

configurable architecture is able to provide additional performance under a strict

power budget, maintain a certain performance level at a reduced power cost, or in

the case of hard faults, restore the system’s performance to pre-fault levels.

This dissertation makes a number of significant contributions:

• We introduce a lane-based modular architecture where cores are homoge-

neously designed and dynamically reconfigured into a heterogeneous system

that addresses both power and reliability concerns;

• We propose a formal methodology for dynamically characterizing application

behavior using surrogate response surfaces;
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• We show how expensive sampling evaluations can be reduced and their ac-

curacy improved through methodical experimental design;

• We take advantage of the variety in application characteristics and tailor the

underlying hardware to individual and global goals by redistributing power

among the cores of a chip multiprocessor;

• We identify the problem of pipeline imbalances due to hard faults and the

subsequent hardware deconfiguration, and show that these imbalances are

application phase dependent;

• We show that dynamic deconfiguration of other fully operational pipeline

sections (using mechanisms already present for fault tolerance) can save sig-

nificant power at little performance cost;

• We propose to transfer this saved power to alternative boosting techniques,

and we identify three complementary techniques that work well for a variety

of applications;

• We develop online heuristic optimization techniques that permit scaling our

approach to large-scale CMPs.
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CHAPTER 2

RELATED WORK

2.1 Processor Adaptivity

A number of prior efforts have focused on architectural techniques that adapt

a single core’s components to workloads. Albonesi et al. propose Complexity-

Adaptive Processors that dynamically disable underutilized hardware to improve

performance or power efficiency [3, 4]. Iyer and Marculescu develop a run-time pro-

filing technique to detect program hotspots and adapt the processor configuration

to match the hotspot demands [40]. Huang et al. propose a positional approach

that uses program subroutines as the granularity for reconfiguration [37]. Hu et

al. [36] employ a run-time virtual machine to detect application segments with

different characteristics, compare possible hardware configurations, and direct the

hardware to adapt to the best option.

Much of the work in this area examines a particular processor structure and

makes it more efficient through adaptation. Buyuktosunoglu et al. [18] design

an adaptive issue queue, and develop coordinated adaptive fetch and issue mech-

anisms [19]. Folegnani and Gonzalez also develop a resizable issue queue [28].

Balasubramonian el al. [8] investigate caches with variable sizes and associativi-

ties and variable sized TLBs for power-performance efficiency. Dropsho et al. [24]

extend this work by developing a more precise way of adapting caches, and use

limited histogramming to more effectively configure the issue queues, load-store

queue, and reorder buffer. Ponomarev et al. focus on adapting the issue queue,

load-store queue, and reorder buffer based on historical usage patterns, showing

that optimal sizing is often correlated [57]. Bahar and Manne [7] examine a more
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coarse grain adaptation that disables an entire back-end execution cluster to save

power.

In the multicore domain, proposals include asymmetric chip multiproces-

sors [49] consisting of cores of varying computational strengths. The die com-

position is static, but the hope is to match the demands of the currently running

workload to one of three available core sizes. This technique incurs the highest

area overhead if flexibility is desired, since a number of separate cores are needed

for each application. In contrast, our technique adapts a single core with much

smaller overhead to the same computational capabilities. Venkatesh et al. [73]

recently proposed Conservation Cores, which are specialized, energy-efficient pro-

cessors to reduce energy per operation and are integrated on a chip in addition to

general purpose cores. Our technique works elegantly in conjunction with this pro-

posal, maximizing performance for sequential applications or sequential portions of

parallel applications and engaging conservation cores for the parallel portion. One

interesting adaptive technique is Core Fusion [38] in which small clusters are fused

together or operated separately as distinct processing elements. This approach is

promising despite its overhead, but requires monolithic structures for coordinating

fetch, steering, and commit, which become single points of failure. Finally, Gupta

et al. [31] propose a unified approach to power and reliability with Core Genesis.

They propose slicing the pipeline vertically, which incurs very high interconnect

overheads. Moreover, this technique requires compiler directed instruction steer-

ing, which makes it incompatible with legacy software. In addition, none of the

techniques for multicore adaptivity described above provides an in depth compari-

son with both powerful (high ILP) and weak (low ILP) cores in the context of two

common power management techniques: dynamic voltage and frequency scaling

and core disabling.
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2.2 CMP Power Management

While there has been much work on power management for CMPs, we focus on

the most related work where performance is maximized under a chip-wide power

constraint. Isci et al. [39] developed the widely cited per-core maxBIPS algorithm.

Sharkey et al. extend this work by exploring algorithms based on both DVFS and

fetch toggling, and explore a number of design tradeoffs such as local versus global

management [62]. Bergamaschi et al. also conduct further work on maxBIPS and

compare its discrete implementation to using continuous power modes [9]. Kim et

al. develop and analyze on-chip voltage regulators to allow for per-core DVFS and,

using an offline algorithm, show significant performance benefits from applying

DVFS at a fine granularity [45]. Finally, Teodorescu and Torrellas [72] consider

global power management in the presence of process variations and propose using

linear optimization to efficiently find a near optimal allocation of power to cores.

2.3 Detection and Deconfiguration of Faulty Processor

Components

Prior research on hard errors falls into several categories: (1) developing archi-

tectural models for manufacturing defects and lifetime wear-out and reducing the

occurrence of these errors; (2) detecting the presence of permanent faults and

isolating their impact; and (3) maintaining processor functionality despite the oc-

currence of an error.

Srinivasan et al. [66] were among the first to look at lifetime reliability from

an architectural perspective. They developed a model called RAMP for studying
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the impact of microarchitectural design decisions and runtime behavior on lifetime

wear-out and proposed dynamic techniques to increase reliability. Kang et al. [42]

develop a method for correlating changes in leakage power to increases in NBTI

degradation. Blome et al. [10] design an online hardware unit for the detection of

gate oxide breakdown and to study this failure mechanism at the microarchitectural

level. Feng et al. [27] extend that work by using the wear-out detection units to

intelligently schedule jobs to manage lifetime wear-out.

Austin [6] developed a technique, called DIVA, for detecting hardware faults at

the architectural level using simple checkers at the commit pipeline stage. Chat-

terjee et al. [20] continue to improve the checker to make it more performance

efficient. Bower et al. [13] extend the capabilities of DIVA, adding mechanism

to isolate the faults, correct the errors, and deconfigure faulty units. Distributed

built-in self-testing and checkpointing techniques are devised by Shyam et al. [65]

for detecting and recovering from defects. Meixner et al. [53] consider a different

approach to error detection in simple cores that verifies that the four invariants

of von Neumann-style processors hold during execution. Yilmaz et al. [77] focus

on techniques to detect delay faults that cause timing errors in functional units.

Schuchman and Vijaykumar [61] likewise focus on developing means for testing

and isolating faults in the core logic. LaFrieda et al. [51] propose using dynam-

ically coupled cores in a chip multiprocessor to provide fault detection through

redundancy in a far more efficient manner than traditional static binding of core

pairs. In this dissertation, we assume the use of the above techniques for detecting

and isolating faults in our chip multiprocessor, so that these faulty units can be

deconfigured.

Shivakumar et al. [64] are the first to propose that the inherent redundancy in
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a processor can be exploited for hard error tolerance. Bower et al. [12] describe a

new method of detecting and recovering from errors in processor array structures.

Their mechanism uses spare rows in the structure that replace faulty ones that are

mapped out. Srinivasan et al. [67] propose two methods to increase the processor

lifetime: structural duplication and graceful performance degradation. Aggarwal

et al. [1] study mechanisms for isolating faulty components in a CMP and reduc-

ing an error’s impact through reconfiguration. Meixner and Sorin [54] describe a

technique for automatically modifying software in a way that maintains its func-

tionality but changes the application’s usage of the hardware to circumvent a faulty

component. A number of papers develop schemes that tolerate permanent faults

and allow the microprocessor to remain functional. At a coarse grain, ElastIC [70]

and Configurable Isolation [2] propose disabling faulty cores in a chip multiproces-

sor. Both proposals assume the availability of a large number of redundant cores.

At a finer grain, StageNet [30], and Core Cannibalization [60] propose slicing the

pipeline vertically, disabling stages in a simple 5-stage pipeline, and recombining

the remaining active stages in one pipeline with stages in other pipelines. StageNet

only works for simple architectures targeted at the embedded domain and requires

a complex interconnection network between the stages. Core Cannibalization re-

duces the complexity of the interconnect, but only lends some pipeline stages to

faulty pipelines. Many of the schemes tolerate hard errors by deconfiguring faulty

components, keeping cores functional but in a degraded state.
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CHAPTER 3

LANE-BASED PIPELINE ARCHITECTURE

This chapter presents a microarchitecture suitable for power-limited environ-

ments where hardware reliability is also of concern. A four step system level

operation is periodically engaged through a Runtime Manager as shown in Fig-

ure 3.1 and detailed in Chapter 4. The system uses a lane-based modular architec-

ture where cores are homogeneously designed and dynamically reconfigured into

a heterogeneous system that addresses both power and reliability concerns. In

this chapter, we describe the hardware modifications required to support modular

reconfiguration.

Figure 3.1: System-level diagram.

The pipeline within each core is divided into three regions: Front End (FE),

Back End (BE) and Load Store Queue (LSQ), each of which has four lanes (Fig-
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ure 3.2). The pipeline resources associated with each region are shown in Table 3.1.

Each pipeline lane includes a sub-bank of the associated queues, even though they

are not technically part of the pipeline “width.” As the peak bandwidth of a re-

gion is reduced by deconfiguring a lane, the buffering requirements (and the issue

window requirements) are reduced commensurately. This permits the associated

queues within the region to be downsized to save power. We exclude single point of

failure structures from our study (such as the Integer Mult/Div or the FP Simple

ALU and Mult/Div) since these structures do not have redundancy that would

allow the chip to still operate correctly in a degraded state.

Figure 3.2: Lane-based pipeline microarchitecture showing the FE, BE, and
LSQ regions. One FE lane, two BE lane, and two LSQ lanes have
been deconfigured to match a scheduled application.

To affect lane-based deconfiguration, we implement both physical gating and

logical correctness mechanisms. The physical gating mechanisms include the sleep
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Front End Back End Load Store Queue

Fetch Width Issue Queues Load Queue
Fetch Queue ALUs Load Queue Ports

Decode Width Select Store Queue
Rename Width Wakeup Store Queue Ports

ROB Register Files
Retire Width

Table 3.1: The three pipeline regions and their corresponding structures

transistors that are engaged to power down each of the blocks that constitute a

lane. In addition, supply voltage levels are slightly increased to account for the

voltage drop across the sleep transistors, and additional decoupling capacitance is

provided to reduce voltage fluctuations in the power grid [41].

The logical correctness mechanisms ensure proper pipeline operation when lanes

are deconfigured. These mechanisms always remain powered on and are described

below for each pipeline region.

3.1 Logical support for lane-based pipeline architecture

3.1.1 Front End

Conventional caches, such as the L1 instruction cache, incorporate redundant rows

and columns that permit fully-functional operation in the face of manufacturing

defects or wear-out faults. Moreover, when a lane is deconfigured, the associated

instruction decoder can simply be gated off so long as the fetch logic is prevented

from slotting instructions into the deconfigured lane. The more challenging task is

deconfiguring the Fetch Queue, the Rename Logic, and the Reorder Buffer (ROB).
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Bower et al. [12] developed circular array structures with spares that can be

deconfigured at a fine-grain, per-entry, level by feeding fault information into the

head and tail pointer advancement logic. We adapt these techniques to our coarser-

grain deconfiguration of the Fetch Queue and the ROB. Here, the queues are

banked and an entire bank is deconfigured, thus requiring a fault map of only four

bits, one for each bank that can be deconfigured (Figure 3.3). Unlike [12], our

architecture does not include spare banks; therefore, the buffer size is also updated

when banks are deconfigured or reconfigured.

Figure 3.3: Mechanism for deconfiguring banks of circular queues (adapted
from [12]).

The decode stage is deconfigured by gating off one of the four instruction de-

coders, while the rename stage consists of two parts: dependency checking and

logical to physical register mapping. The former is deconfigured by gating the

circuit that compares an instruction’s source registers to previous instructions’

destination registers.

In the absence of a rename fault (i.e., either a fault in another part of the

front-end or symbiotic deconfiguration of the front-end), deconfiguring a front-end

lane disables the associated read port of the map table. In addition, the relevant
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dependency check logic comparators are gated off.

There are at least two ways to implement register mapping: the first uses a

RAM indexed by the logical register number to store physical register numbers;

the second uses a CAM with the same number of entries as physical registers

to store logical register numbers. The recovery mechanism differs for the RAM

and CAM-based rename schemes. For the RAM-based scheme, spare rows [12]

are required for recovery. With the CAM approach, spares can be implemented

or the associated physical register can be prevented from appearing on the free

list since it can no longer be mapped to a logical register. We model a RAM-

based scheme implemented with spare rows. Thus, whenever the front-end is

deconfigured, only the associated rename ports are disabled. Albonesi et al. [4]

present a comprehensive discussion on the rename downsizing operation.

3.1.2 Back End

For the issue queue, we adapt the approach of Dropsho et al. [24], who demonstrate

a coarse-grain partitioned RAM/CAM based issue queue that dynamically adapts

its size to program demands. Unlike [24], in which one partition is always active,

each of our banks incorporates its own precharge and sense amp circuitry to allow

deconfiguration of any of the partitions (Figure 3.4).

The select logic is designed as an arbiter tree [56], and selection priority is based

on Issue Queue position. Each arbiter cell makes a local selection decision between

four instructions. For four-wide issue and an Issue Queue size of 32 entries, two

arbiter cells are associated with each lane. When a lane is deconfigured, the asso-

ciated arbiter cells are gated off and the request lines are pulled low (Figure 3.5).
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Figure 3.4: Issue Queue deconfiguration (based on [4]).

Register file deconfiguration can be done in a number of ways. If the register

file is fault-free, one option is to simply deconfigure the associated read and write

access ports when a back-end lane is deconfigured. A register file fault can be

handled at a fine-grain level through spare RAM rows. Alternatively, the register

file RAM can be banked and deconfigured at a coarse-grain level similar to the

Issue Queue RAM. Each of the four register file banks has an associated free list

in the rename stage, similar to the MIPS R10000 [76]. When a register file bank

is deconfigured, the associated free list in the front-end is disabled as well, and

registers are only allocated from the remaining free lists. This effectively eliminates

the rename stage’s capability to map a new destination register that is present in

the deconfigured register file bank. To maintain full rename bandwidth, the free

list FIFOs can be augmented to have two read ports instead of one. Alternatively,
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Figure 3.5: Wakeup and Select deconfiguration.

the architecture can simply tolerate this reduction in functionality. We model the

latter coarse-grain option in our evaluation.

Finally, a functional unit associated with a deconfigured lane is marked as

perpetually in use, and its Issue Queue access ports are gated off.
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3.1.3 Load Store Queue

The Load Store Queue RAM is a circular array structure that can be deconfigured

following the same procedure described for the ROB and Fetch Queue. The Load

Store Queue also includes a content addressable memory that can be associatively

searched to determine conflicts with older stores and loads. The CAM part of the

LSQ can be partitioned and deconfigured in a similar fashion as the Issue Queue

CAM.

3.2 Physical Gating Mechanisms

Physical gating of deconfigured functionality within a lane can be achieved through

power-gating techniques proposed to reduce leakage power and to implement mi-

croprocessor deep sleep states, such as C6. Intel Core i7 microprocessors implement

power-gating transistors to shut off idle cores [50] and a number of designers have

proposed a variety of power-gating techniques for finer grained blocks [21, 41, 63].

Either high-Vt PMOS (header) or NMOS (footer) transistors are used to connect

or disconnect the permanent power supply from the circuit virtual power supply.

Power gating can be implemented at a fine grain [21], where each standard cell has

a sleep transistor, or at a coarse grain, where clusters of gates in the same voltage

domain have an array of sleep transistors distributed in a ring or grid style [63].

Fine-grained sleep transistor schemes usually incur a higher area overhead and are

sensitive to process, voltage, and temperature variations (PVT). Coarse-grained

sleep transistor implementations share charge and discharge current and are thus

both smaller and less sensitive to PVT, but suffer more from ground bounce.
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Sleep transistor area overhead estimates vary from 2% to 6% depending on the

implementation, size of clusters, and technology node [63, 44]. Moreover, advanced

sleep transistor sizing algorithms can considerably reduce the area overhead [21].

In addition to the sleep transistors, area overheads are introduced by additional

decoupling capacitance that has to be incorporated to reduce voltage fluctuations,

resulting in a total estimated overhead of 15% [41]. While dynamic power is slightly

increased (by approximately 2% according to [41]), static power can be reduced

by almost 90%.

A PowerTransfer design leverages the sleep transistors that are increasingly

implemented in commercial microprocessors for leakage reduction and deep sleep

states. Power-gated functional blocks are aggregated into 12 individually control-

lable power-gated lanes, four for each of the FE, BE, and LSQ regions. The logical

correctness circuitry remains powered on at all times to ensure correct pipeline

operation.
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CHAPTER 4

OPTIMIZATION TECHNIQUES FOR POWER EFFICIENCY

In this chapter, we present optimization techniques that exploit the lane-based

architecture from Chapter 3 in order to maximize performance under different

power constraints.

4.1 Application Characterization

An efficient allocation of hardware resources is application specific and is depen-

dent on a quantitative understanding of the software characteristics. Ideally, each

application can be profiled offline and its power-performance behavior under each

hardware configuration stored to be used at runtime by a decision algorithm that

selects the optimal hardware allocation according to an optimization goal. How-

ever, it is unreasonable to assume that such profiles will be available for all possible

real-world applications and moreover that this information will be distributed with

every deployed hardware system. As such, we propose to characterize applications

at runtime, every time they are scheduled on an active processor. We accomplish

this by sampling the behavior of the active application for short periods of time un-

der a variety of hardware allocations (configurations) and then building a response

surface that approximates its characteristics for use in an optimization protocol.

Modern operating systems schedule processes to be run on the CPUs from

a queue of runnable applications. There are many more processes than available

CPUs and the operating system needs to ensure that all of them make progress in a

timely fashion. As such, most operating systems support scheduling - determining

which process should be executed, and preemptive multitasking - an interrupt
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mechanism that suspends the operation of a currently running process (switches

it out) to allow another process to run on the CPU. The latter ensures that all

processes will be alloted some amount of CPU time at any given moment, which

is generally referred to as the operating system time quantum or time slice. Every

time slice, the OS scheduler is run to determine which process (or processes in

multicore systems) should be executed next; that process is then run on a core until

its time quantum expires, after which the state of the running process is saved, the

process switched out, and the scheduler invoked again. The time quantum should

be long enough that the scheduler and context switch overhead are minimized,

and short enough that the jobs in the ready queue have a reasonably small waiting

time until they are scheduled to run. For modern operating systems, the time

quantum can take on values between 50 and 200 ms. In this dissertation, we

assume that each application is allowed to run for 100 ms before it is switched

out. We also assume that each process starts with a cold cache at the beginning of

a time quantum, as there most likely have been a number of intervening running

processes scheduled on the core which have evicted useful cache blocks even in

the presence of operating system scheduler modifications such as processor affinity

scheduling.

We propose splitting the time quantum into four intervals: sampling interval,

surrogate surface fitting, optimization interval, and steady interval, as shown in

Figure 4.1. In the sampling interval, we collect information about the currently

running application and its hardware resource needs by changing the underlying

hardware configuration and executing the application for short periods of time on

these different configurations. As we will show in Section 4.3.2, the choice of indi-

vidual sample length is important and involves tradeoffs between sample accuracy

and steady interval performance. Based on the samples collected, the response sur-
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Figure 4.1: Events timeline within an operating system time quantum.

face fitting interval predicts the behavior of the application at other design points

(hardware resource allocations) by fitting a function to the observed data. This

surrogate function is then used by an optimization algorithm to select individual

core hardware allocations that optimize a global goal. Lastly, in the Steady State

Interval, the best configuration found is run for the remainder of the time quan-

tum. The sampling and optimization intervals should be short enough compared

to the steady interval; otherwise most of the OS allocated time quantum is spent

testing configurations that are suboptimal. At the same time, the same sampling

and optimization intervals should be long enough to minimize the observed data

error and to allow enough time for a good solution to be found. Otherwise, the

configuration selected for the steady interval will be suboptimal.
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4.1.1 Experimental Design Approach

We formulate the characterization of each running process as a multivariate sta-

tistical experimental design, which results in an empirical model that correlates

hardware resource allocation with power and performance. This design can then be

used to optimize the hardware-software system for a variety of goals. For example,

one goal can be maximizing the global performance of a chip multiprocessor under

a certain power budget. Other optimization goals are discussed in Section 4.2.

There are two types of variables in a multivariate optimization procedure: re-

sponses and factors, where the responses are observed (or sampled) output values

dependent on the values taken on by the factors. The response variables for this

experimental design are the throughput (BIPS) and power usage of the running

application, and the goal is to characterize the effect of different lane allocations

on these variables in order to obtain an optimal resource allocation. The factors

are the controlled independent variables that affect the response of the system. In

this example, the three pipeline regions (FE, BE, and LSQ) are the factors of the

experiment, denoted as X1, X2, and X3, respectively. Each of the factors can take

on three different levels (4 active lanes - fully provisioned, 3 active lanes, and 2

active lanes). Thus, there are 33 = 27 hardware configurations, or treatments for

our system.

x→ X − a
b

, where (4.1)

a =
XH +XL

2
and b =

XH −XL

2

The levels of factors X1, X2, X3 are transformed into coded variables x1, x2,

and x3, which are dimensionless, have mean 0 and the same standard deviation.
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Using Equation 4.1, we linearly transform the original measurement scale such that

the high setting (XH , all 4 lanes active) for each pipeline region becomes 1 and the

low setting (XL, 2 active lanes) becomes -1. Each factor will have 3 symmetrically

spaced levels, -1, 0, 1, corresponding to 2 active lanes, 3 active lanes, and 4 active

lanes, respectively.

4.1.2 Sampling Techniques

In the most straightforward case, all 27 treatments are sampled and their effect on

the response variables measured. Such a design is called a full factorial design and

is depicted in Figure 4.2 (left). The design space can be graphically represented

as a cube, where the edges are the levels of factors and the corners correspond

to the high and low values of each factor. The blue circles represent all factor

level combinations. Full factorial designs have the advantage that the response

surface is fully described by the samples (no error in the coefficients of the response

surface) and that both main effects (individual effects of each of the factors) and

higher order effects (interactions between the factors) can be studied. However,

the large number of samples needed for a full factorial design limits its usefulness

in runtime applications, as a large portion of the time needs to be spent sampling

suboptimal configurations. Moreover, it is likely that some of the higher-order

interactions are negligible, and only some of the factors are actively contributing

to significant changes in the response variables. For example, the size of the Back

End (x2) significantly impacts the throughput of a CPU bound application like

apsi, whereas it affects the BIPS response for a memory bound application like art

to a much lesser extent. These characteristics argue for designs that use a reduced

set of experimental runs to estimate the system response.
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Figure 4.2: Sampled treatments for the Full Factorial (left), Box-Behnken
(center), and Fractional Factorial (right) designs.

We use two well established methods of reducing the cost of experimentation

that have been proven to estimate response surface parameters with high preci-

sion: Box-Behnken design [14] and Fractional Factorial design, both consisting of

a subset of the treatments needed for a full factorial design. The designs are based

on the sparsity-of-effects principle, which states that it is most likely that main

(single factor) and low-level (two factor) interactions are the highest contributors

to responses. Moreover, they are both balanced and orthogonal, which ensures

optimal efficiency.

4.1.2.1 Box-Behnken Design

The Box-Behnken design was developed by George E. P. Box and Donald Behnken

in the 1960s, and selects treatments that are at the midpoints of the edges of the

design space and also one at the center, as shown graphically in Figure 4.2 (center).

This design is particularly suited for our system because it requires at least three

factors each with at least three levels. Since we suspect that the effect of the factors

on the dependent variable is not linear, the Box-Behnken design is ideal because
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it allows for quadratic response surface fitting. The number of samples required

for a Box-Behnken design is:

N = 2k(k − 1) + C

where k represents the number of factors and C represents the number of center

points. For our particular design there are three factors and we include one center-

point (0,0,0), which results in 13 required samples. This design more than halves

the number of runs required for a full factorial design, thus increasing the amount

of time available during the steady interval, when an optimal configuration is run.

In order to obtain the design matrix, each of the three factors is separately fixed at

its center point and then combined with the full factorial of the other two factors,

as shown in Figure 4.3 (a).

Figure 4.3: Design Matrix for Box-Behnken (a) and Fractional Factorial (b)
designs.
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4.1.2.2 Fractional Factorial Design

We employ a class of fractional factorial designs called 3k−p designs, where k is

the number of factors and 3 represents the number of levels of each factor. A 3k−1

design reduces the number of samples by three, and 3k−2 reduces the number of

samples by nine. It is unfeasible to construct an accurate response surface for three

factors using only three samples. For example, a quadratic response surface has

10 coefficients as described later in Section 4.1.3, which means that the coefficients

have to be estimated from a system of three equations with ten unknowns. This

would limit the type of function that could be fitted to the data to one that only

uses three coefficients. Thus, we choose to use a 3k−1 design, which reduces the

number of samples to nine1. The procedure to generate the nine samples is as

follows:

1. Start with a smaller full factorial design using only two of the three factors,

for example x1 and x2, listed in the first two columns of Figure 4.3(b).

2. Construct factor x3 from interactions between factors x1 and x2 using the

function:

x3 = mod3(3− (x1 + x2 + 2))− 1 (4.2)

We refer to the fractional factorial design obtained with Equation 4.2 as the

3MM3 Design. The number 2 is added to the sum of x1 and x2 in order to transform

them from negative to positive by changing the factor level scale from (-1,0,1) to

(0,1,2). The subtraction of 1 from the modulus transforms x3 back to the original

(-1,0,1) scale.

1Note that 9 samples are not enough to obtain all 10 coefficients for a quadratic response
surface. We discuss in Section 4.1.3 an alternative response function.
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4.1.2.3 Dynamic System Considerations

The analysis in the previous sections attempts to characterize the behavior of each

application over the entire decision interval of 100 ms. In the ideal case, each

treatment is run for the entire decision interval, and its power and performance

characteristics averaged over the 100 ms. However, a real runtime manager must

estimate the long-term performance of the application by running all treatments

for a short period of time (sampling interval) as previously shown in Figure 4.1.

Sampling introduces noise in the system because the behavior of an application

during a short sample is possibly different from its longer run behavior. There

are two types of noise observed in our system, which we refer to as high and low

frequency noise. High frequency noise occurs when small adjacent samples of the

same configuration do not have the same behavior, as seen in Figure 4.4(a). As

such, it is difficult to interpret whether changes in the responses are due to the

factor levels or due to microarchitectural events inherent to the benchmark. On the

other hand, low frequency noise occurs if the average difference between samples

of the same configuration is small, but they are not representative of a longer

run of the same application (Figure 4.4(b)). This effect is mostly due to phase

shifts in the application behavior. The latter noise is hard to minimize without

dynamic phase detection and resampling, which is difficult to implement in many

core systems and is left for future research. High frequency noise can be reduced

by increasing the size of the samples, which at the same time reduces sensitivity to

pathological microarchitectural events and cold cache effects on the first samples

of the time quantum. However, increasing the length of the samples reduces the

length of the steady interval during which the optimal configuration is run and

increases the time spent sampling suboptimal configurations. An alternative is to

divide each treatment run into multiple smaller samples taken at different points
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Figure 4.4: Sources of noise for applu (a) High frequency noise within the
sampling period; (b) Low frequency noise. The shaded region
represents the sampling period and is not representative of the
behavior over the 125 to 200 million cycles interval.

in the application. Samples are thus condensed, replicated, and averaged as shown

in Figure 4.5. The figure shows how three treatments that were originally sampled

for one continuous 1 ms block are each split into three groups with a duration of

1/3 ms. The first group for all three treatments is run first, followed by the second
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Figure 4.5: Configuration sampling possibilities: (a) Each configuration is
run once for 1 ms; (b) Each configuration is run N times, for
1/N ms. The gathered statistics (Throughput and Power) are
averaged over the N instances.

and third groups. Samples corresponding to the same treatments are evaluated at

slightly different points in the application and their responses averaged, effectively

filtering out some of the high frequency noise of the application. In our work,

we evaluate sample replication 1, 2, 4, and 8 times. As the number of replicates

or groups is increased, the total sampling interval stays constant, resulting in the

smaller samples shown in Table 4.1. We will show in Section 4.3.2 that replicating

the samples 8 times results in the most accurate results.
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Number of replications 1 2 4 8

Replicate Size 1ms 0.5 ms 0.25 ms 0.125 ms

Table 4.1: Number of sample replicates and their corresponding runtime.

Theoretically, the samples become more representative with increasing the

number of replicates. However, there are a few limitations to the number of times

the samples can be replicated without increasing the total sampling time. This is

due to the fact that the time for each individual sample linearly decreases with

increasing number of replicates. First, as the samples become smaller, microarchi-

tectural events such as cache misses and branch mispredictions affect the response

variables more, partially hiding the effects of the factors in the experimental study.

Second, each deconfiguration and reconfiguration incurs some overheads that are

normally insignificant when the samples are hundreds of microseconds long. When

the samples are decreased to the order of tens of microseconds or even hundreds

of nanoseconds, the overheads start dominating the sample time. We limit the

number of replicates to 8 groups, where each sample is run for 0.125 milliseconds.

4.1.3 Response Surface Models

Response surface models (or surrogate models) are inexpensive approximations

of computationally expensive functions that need to be optimized. By computa-

tionally expensive functions we mean functions for which an a priori description

or formula is not available, and information can only be obtained through time-

consuming direct evaluation of the functions. In our system, each application is

characterized by a different function and its response is obtained by sampling a

subset of the input combinations as shown in Section 4. Since each configuration
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sample (whether replication is used or not) has to be run for at least one millisec-

ond in order to obtain significant results, the optimization process is dominated

by the function evaluations (samples). With 27 treatments, or combinations of the

independent variables, sampling all of them in order to obtain the exact description

of the function to be optimized would consume almost 30% of the operating system

time quantum. Surrogate models are particularly well-suited to our problem, since

they construct a response function from a small subset of function evaluations.

Moreover, our objective functions (global throughput and power) are nonlinear

and nonconvex, with a large number of local minima, making standard nonlinear

programming methods unsuited for finding the best solution.

Optimization algorithms based on surrogate models [33, 58] are usually iterative

algorithms that use the metamodel to identify promising points for additional

treatment evaluations through either derivative based or derivative free methods,

update the response surface with the newly sampled points, and then repeat the

process to obtain an optimal solution. Such implementations are time consuming

and assume that the factors are continuous variables. Our system has four distinct

properties that render these classical approaches non-optimal:

• Discrete Variables: The pipeline regions (variables) can only take on dis-

crete levels, ranging from 2 to 4. Classical response surface methods are

suited for continuous variables, which means that for our system the optima

found by these methods need to be transformed back into discrete values,

adding one more computational step and possibly resulting in suboptimal

choices.

• Small number of variables: Previously proposed classical methods solve

problems with a large number of variables that have theoretically infinite lev-
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els due to their continuous nature. This makes the objective function very

bumpy and heuristic algorithms converge very slowly to a good solution. On

the other hand, our system has a small number of variables per core, each

with only three levels, with the source of complexity arising from increas-

ing the number of cores. Since we fit a response surface for each core, the

complexity of previously proposed algorithms is not needed.

• Monotonic response: Within individual cores, the response monotonically

increases with increasing factor levels. This provides an inherent guideline

for heuristic search algorithms, which makes them efficient in the context of

our optimization.

• Online optimization: Iterative response surface methods target offline op-

timization. While they are faster than non-response surface methods, they

are not fast enough for the very strict time constraints of runtime optimiza-

tion.

We choose to use the response surface methodology to obtain estimates of the

function values at the points that were not sampled, and use heuristic search

algorithms that are well suited to black box functions to find acceptable solutions

in the optimization space. We study three flavors of surrogate functions, and build

two metamodels T (x1, x2, x3) and P (x1, x2, x3) to approximate the throughput and

power responses of the system. The next subsections explore the three response

surfaces that we consider.

4.1.3.1 First Order Polynomial Surrogate Function

The simplest response surface is a first order polynomial (linear function) described

by Equation 4.3.
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y = β0 + β1x1 + β2x2 + β3x3 (4.3)

Calculating coefficients for the first order polynomial is the least involved and

least time-consuming out of the three surfaces we consider. Moreover, integer

linear programming can be used to efficiently optimize linear functions with linear

constraints. However, we show in Section 4.3.3 that linear functions do not predict

the responses (especially power) of our system well.

4.1.3.2 Second Order Polynomial Surrogate Function

The system under discussion has three levels for each factor, which are sufficient

to quantify its behavior as a quadratic (second order polynomial) function. Low

order polynomial response surfaces [15, 55] are popular functions because they fit

a variety of scientific designs and are still manageable in terms of complexity. The

surrogate model can be described as

f(x) = ŷ + ε (4.4)

where f(x) is the system output, ŷ is the surrogate model output, and ε is the

error between them. A second order polynomial surrogate function is described

by:

ŷ = β0 +
k∑

i=1

βixi +
k∑

i=1

k∑
j>i

βijxixj +
k∑

i=1

βiix
2
i (4.5)

which expands to

ŷ = β0+β1x1+β2x2+β3x3+β12x1x2+β13x1x3+β23x2x3+β11x
2
1+β22x

2
2+β33x

2
3 (4.6)

for our system. Note that there are ten β coefficients associated with a quadratic

response surface that has three factors. Assuming that the number of treatments
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sampled is n, the system can be described as

y = βX (4.7)

where y is a 1 by n column vector of the measured responses, X is a n by 10 matrix

of the factor levels used to obtain the measured responses, and β is the 1 by 10

column vector of the coefficients as shown in equations 4.8, 4.9, and 4.10.

X =



1 x1 1 x2 1 x3 1 x2
1 1 x2

2 1 . . . x1 1x3 1 x2 1x3 1

1 x1 2 x2 2 x3 2 x2
1 2 x2

2 2 . . . x1 2x3 2 x2 2x3 2

...
...

...
...

...
...

...
...

1 x1 (n−1) x2 (n−1) x3 (n−1) x2
1 (n−1) x2

2 (n−1) . . . x1 (n−1)x3 (n−1) x2 (n−1)x3 (n−1)

1 x1 n x2 n x3 n x2
1 n x2

2 n . . . x1 nx3 n x2 nx3 n


(4.8)

β =



β0

β1

β2

β3

β11

β22

β33

β12

β13

β23



(4.9) y =



y1

y2

y3

y4

y5

...

yn−1

yn



(4.10)

Characterizing an application thus means finding the coefficient vector that

results in a surrogate surface that fits the real system response the best.
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The least squares method of fitting a polynomial model to the observed data

minimizes the sum of square residuals L =
∑n

i=1 ε
2
i , where the system residual

error is ε = y − ŷ. Based on equations 4.4 and 4.7:

L =
n∑

m=1

(
ym − β0 −

k∑
i=1

βixi m −
k∑

i=1

k∑
j>i

βijxi mxj m −
k∑

i=1

βiix
2
i m

)2

(4.11)

= εT ε (4.12)

= (y − βX)T (y − βX) (4.13)

To minimize the error L, the derivative with respect to β is taken and set to zero:

−2XTy + 2XTXβ = 0 (4.14)

and solving for β gives

β =
(
XTX

)−1
XTy (4.15)

It is important to note that matrix X stays the same for both response vari-

ables (power and throughput). Moreover, it is also not dependent on the running

application, but on the sampled configurations, which are the same across running

processes. As such, the transpose matrix XT is also constant across applications,

making vector y the only term on the right side of equation 4.15 dependent on the

application behavior. As such, the computation
(
XTX

)−1
XT can be performed

once, offline, regardless of what application is scheduled. The online computation

consists of multiplying the resulting 10 by n (where n is the number of sampled

treatments) matrix with the n by 1 column vector y. The ”Surrogate Surface Fit-

ting” interval in Figure 4.1 consists of this one matrix multiplication and of using

the newly computed beta coefficients in equation 4.6 to obtain the remaining (27

- n) response values, thus making the duration of this period insignificant with

respect to the full 100ms time quantum.
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4.1.3.3 Radial Basis Surrogate Function

The first and second order polynomial functions are non-interpolating: the value

of the surrogate function ŷ is not necessarily equal to the value of the real function

f(x) at the sampled points. Moreover, fitting a quadratic surface requires at least

as many treatment runs as coefficients. To overcome these limitations, we also

evaluate an interpolating model that places a radial basis function (RBF) ϕ at

each sampled point [33]. A radial basis function has form ϕ(||x− c||) whose value

depends only on the Euclidian distance from the center c. Assuming that there are

n samples, there are x
¯1, x¯2, ..., x¯n ∈ Rd centers, each with its corresponding radial

basis function, where x
¯n are the sampled points in a d-dimensional real space, and

d is the dimension of the independent variables (i.e., d=3 beacause there are three

factors in our system). Each point x
¯n is the nth sampled treatment of the three

factor levels (x1 n, x2 n, x3 n). The interpolating RBF response surface is of the

form:

ŷ =
n∑

i=1

λiϕ(||x
¯
− x

¯i||) + p(x
¯
) (4.16)

where λi are the coefficients of the response function, || · || is the Euclidean distance

between two d-dimensional points, and p(x
¯
) = bTx

¯
+ a is a polynomial tail. With-

out the polynomial tail, the n by n matrix Φ with elements Φij = ϕ(||x
¯i − x

¯j||)

described in Equation 4.20 might become singular. (More information is found

in Gutmann’s paper on global optimization with radial basis function response

surfaces [33].)

We use a cubic radial basis function

ϕ(x
¯ij) =

(
||x

¯i − x
¯j||
)3

(4.17)
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that needs a linear polynomial tail:

p(x
¯
) = b0 + b1x1 + b2x2 + b3x3 (4.18)

Characterizing an application implies obtaining the set of coefficients λ and b,

which is accomplished by solving the system of equations:

y1(x
¯1) = λ1ϕ(||x

¯1 − x
¯1||) + λ2ϕ(||x

¯1 − x
¯2||) + . . .+ λnϕ(||x

¯1 − x
¯n||) + p(x

¯1)

y2(x
¯2) = λ1ϕ(||x

¯2 − x
¯1||) + λ2ϕ(||x

¯2 − x
¯2||) + . . .+ λnϕ(||x

¯2 − x
¯n||) + p(x

¯2)

...

yn(x
¯n) = λ1ϕ(||x

¯n − x
¯1||) + λ2ϕ(||x

¯n − x
¯2||) + . . .+ λnϕ(||x

¯n − x
¯n||) + p(x

¯n)

(4.19)

where each equation represents the response of one sample: yn(x
¯n) is either the

measured throughput or the measured power of the core configured with pipeline

region levels x
¯n = [x1 n x2 n x3 n]. Similar to the quadratic response model, we

build a surrogate RBF surface for the throughput response and one for the power

response. The methodology to obtain both of them is identical, the only difference

being the yn(x
¯n) values.

If

Φ =



Φ11 Φ12 . . . Φ1n

Φ21 Φ22 . . . Φ2n

...
...

...
...

Φn1 Φn2 . . . Φnn

 , where Φij = ϕ(||x
¯i − x

¯j||) (4.20)

and
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Y =



y1

y2

...

yn

 P =



x
¯1 1

x
¯2 1

...
...

x
¯n 1


λ =



λ1

λ2

...

λn

 c =



b1

b2

b3

b0


(4.21)

Then the system of equations 4.19 can be rewritten in contracted form:

 Φ P

PT 0


λ

c

 =

Y

0

 (4.22)

The coefficients of the system are thus:λ
c

 =

 Φ P

PT 0


T

︸ ︷︷ ︸
offline computation

Y

0

 (4.23)

Analogous to the second order polynomial response surface methodology, the

majority of the computation to obtain the coefficients can be performed offline as

noted in Equation 4.23, resulting in extremely fast surface fitting.

4.2 Global Optimization and Runtime Management

Once the running applications are characterized by response surfaces, the system

can be optimized according to specific desired targets. Given an N core chip

multiprocessor, a per core surrogate function for throughput

T̂corei(x1 corei , x2 corei , x3 corei),

and a surrogate function for power
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P̂corei(x1 corei , x2 corei , x3 corei),

the hardware resources can be dynamically tailored to the running processes and

the system targets. For example, optimal factor levels can be found for a variety

of goals:

• Maximizing global fair throughput under a maximum power constraint:

max

 N

√√√√ N∏
i=1

T̂i(x1 i, x2 i, x3 i)

 ,
N∑
i=1

P̂i(x1 i, x2 i, x3 i) < Pmax (4.24)

• Minimizing the power consumption under a certain minimum performance

guarantee:

min

(
N∑
i=1

P̂i(x1 i, x2 i, x3 i)

)
, N

√√√√ N∏
i=1

T̂i(x1 i, x2 i, x3 i) > Tmin (4.25)

• Maximizing pure throughput under a maximum power constraint:

max

(
N∑
i=1

T̂i(x1 i, x2 i, x3 i)

)
,

N∑
i=1

P̂i(x1 i, x2 i, x3 i) < Pmax (4.26)

• Maximizing system throughput while prioritizing certain applications:

max

(
N∑
i=1

(
weighti ∗ T̂i(x1 i, x2 i, x3 i)

))
,

N∑
i=1

P̂i(x1 i, x2 i, x3 i) < Pmax

(4.27)

4.2.1 Runtime Manager

Our work focuses on the first optimization goal, maximizing global throughput

and fairness under a power constraint. A runtime manager is employed to coordi-

nate the chip-wide effort to reallocate power among the cores to accomplish this
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target. The runtime manager collects online information about the application

running on each core through sampling, employs the surrogate surface method-

ology to gather predicted responses for all possible hardware configurations, and

then determines what lanes should be deconfigured to meet the power target in

the most performance-efficient way. The runtime manager operates at the OS time

quantum granularity of 100ms.

There are a number of alternatives for implementing the runtime manager. In

order to obtain performance and power statistics and to deconfigure units, the

runtime manager requires access to low-level hardware information. Consequently,

one option is to implement it as an embedded microcontroller similar to the Fox-

ton Technology Controller included in Intel’s Montecito [44]. The advantages of

this approach are direct access to hardware and the fast, real-time responsiveness

of an on-chip controller. However, implementing the whole manager in hardware

would incur the highest die area and hardware complexity costs. Furthermore, it

would be the least amenable to upgrades, which may be quite useful if the system

optimization targets change. An alternative to a full hardware solution is to dedi-

cate hardware to deconfigure components and gather statistics, and implement the

re-allocation logic in software. The optimization and hardware re-allocation algo-

rithms could be incorporated into a low-level hypervisor (supervisor) level thread,

or at a higher level as part of the operating system. The main factors dictating the

best option would be the ease of implementation, the desire to expose applications

to the decision process, and the desired granularity at which the manager should

operate.

Each core can be configured in 27 ways, corresponding to all the combinations of

the three pipeline regions and their three levels of operation (2, 3, or 4 active lanes).
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For a four core CMP, this results in a total number of 274 = 531441 chip-wide

combinations. For each of these over half a million combinations, the chip-wide

power and global throughput (geometric mean of the predicted responses) must

be computed, the combinations that exceed the power budged must be eliminated,

and the configuration that maximizes throghput must be chosen. In general, for an

N core CMP, the total number of combinations is 27N, making runtime exhaustive

exploration of the space impractical. We employ heuristic optimization algorithms

to solve the global optimization problem and select a good hardware configuration,

even though this configuration might not be the global maximum.

The runtime manager must solve the constrained integer global optimization

problem of maximizing CMP performance under a given power budget. The objec-

tive function to be maximized should incorporate both performance and fairness.

A sum of throughput or arithmetic mean of the throughputs approach results in al-

gorithms that always penalize low IPC benchmarks in order to obtain a not always

proportional increase in high-IPC benchmarks. We choose the geometric mean of

the throughputs in order to incorporate both metrics into the objective function:

f(~x) = N

√√√√ N∏
i=1

T̂i(x1 i, x2 i, x3 i) (4.28)

where N is the number of cores, ~x is a vector of size N consisting of the current

configuration for each core, and T̂i(x1 i, x2 i, x3 i) is the BIPS of the ith core.

The objective function further has the constraint of meeting a certain power

budget, so Deb’s constraint handling method [22] is employed to differentiate be-

tween feasible (under power budget) and infeasible (over power budget) solutions.

This type of constraint handling penalizes configurations that consume more power
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than allowed, thus ensuring that infeasible solutions are never chosen over feasible

solutions. The final function to be maximized has the form:

F (~x) =


f(~x) if g(~x) <= maxPower

1− g(~x) if g(~x) > maxPower

(4.29)

where g(~x) is the constraint violation function and is defined as the current power

consumption of the entire core: g(~x) =
∑N

i=1 P̂i(x1 i, x2 i, x3 i).

The solution for the objective function is the vector ~x, the configuration of

each core that results in the best global performance. The solution vector consists

of discrete rather than continuous variables, which makes it difficult to solve the

objective function using classical mathematical techniques such as derivative or

limit-based methods. Moreover, an integer programming approach is also unsuit-

able since neither T̂ nor P̂ are linear functions. Another limiting factor is the need

for relatively frequent reevaluation in order to adapt to the dynamically changing

behavior of the scheduled running applications.

Heuristic algorithms are attractive due to their efficiency and effectiveness in

searching complex and unknown spaces, and their computational performance can

be adjusted by limiting the number of objective function evaluations at the expense

of solution accuracy. In other words, heuristics can solve difficult problems reason-

ably well and reasonably fast, with the option of trading off one for the other. A

widely used heuristic algorithm is the Genetic Algorithm, which operate by using

information gathered from past searches about an unknown space to bias future

searches towards more useful subspaces. The next subsections detail the Genetic

Algorithm that was modified to suit our objective function and search space.
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4.2.2 Integer Coded Genetic Algorithm

The Genetic Algorithm is based on the natural evolution process [35]. Solutions

to the optimization problem are coded as chromosomes. A subset of the total

possible chromosomes form individuals in a population that evolves towards better

solutions through selection (of the fittest members), crossover (recombination of

different chromosomes), and random mutation (of chromosomes). The high-level

algorithm operation is shown in Figure 4.6.

Figure 4.6: Genetic Algorithm.
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Encoding: We encode each core configuration as one gene of a chromosome.

Each gene can take the integer values 0 to C-1, where C is the number of possible

configurations for each core. A combination of N genes form one chromosome (or

individual) of a population, where N is the number of cores in the CMP.

Selection: In each generation, a new pool of individuals (children) must be

created from the existing set of individuals (parents). In order to pick the mating

pool, we used tournament selection with replacement. Two parents are picked

at random, and the one with the higher objective function value is selected. The

process is repeated again to select the second parent. One pair of parents produces

one pair of children through crossover and mutation.

Crossover and Mutation: In order to create two children from two parents,

we chose single point crossover at the boundary of the genes and recombined genes

from both parents around the crossover point. It is important to note that this

crossover mechanism cannot change the values of genes in a chromosome, which

means that the configuration of a particular core cannot change from generation to

generation. Therefore, we used a high mutation probability to make incremental

random changes in the offspring allele values.

Elitism: Due to crossover and mutation, it is possible and quite likely that

the best individuals in each generation will not be present in the new generation.

In order to prevent the algorithm from losing the best solution found so far, we

implement elitism by replacing a random child with the best parent.

Parameters: We empirically explored a variety of parameter values offline

and built a desirability function [34, 23] to find parameters that would optimize

the algorithm over a variety of power constraints. The parameters obtained were:
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a population size of 25 individuals, a crossover probability of 0.9, and a mutation

probability of 0.6. We run the simulation for 25 generations (which corresponds to

500 Objective Function evaluations) as a compromise between algorithm accuracy

and a computation time of less than 1% of the time quantum for large CMP

configurations.

4.3 Results

4.3.1 Methodology

In order to evaluate our modular adaptive technique, we use a highly modified

version of the SESC [59] simulator augmented with Wattch [16], Cacti [71], and

HotLeakage [78] to model both static and dynamic power consumption. We also

modified the simulator to dynamically account for temperature dependent leakage

power.

To ensure that the baseline processor core is appropriately sized, we performed

an extensive design space study to create a balanced baseline core microarchitecture

with the parameters shown in Table 4.2. Deconfiguring a portion of this baseline

design results in more than a 10% performance loss for multiple benchmarks.

Note that the runtime manager may underestimate the power costs of turning

lanes on, which may cause overshooting the chip-wide power budget. In these cases,

which are rare, we model a Global Power Manager that engages DVFS down to

meet the power budget.

We use this baseline to model 4, 8, 16, and 32 core CMPs, where each core
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Front End Branch Predictor: gshare + bimodal, 64 entry RAS, 2KB BTB
128 entry ROB, fetch/decode/rename/retire 4-wide

Execution Core Out-of-order, issue/execute 4-wide
80 Integer Registers, 80 FP Registers, 32 entry Integer Queue

24 entry FP Queue, 32 entry Load Queue, 16 entry Store Queue
4 Integer ALUs, 1 Integer Mult/Div Unit, 1 FP ALU, 1 FP Mult/Div Unit

On-chip Caches L1 Instruction Cache: 8KB, 2-way, 2 cycle access latency
L1 Data Cache: 8KB, 2-way, 2 cycle access latency

L2 Cache: 1MB, private, 8-way, 15 cycle latency
Memory 200 cycle latency

Operating Parameters 1V Vdd
4.0 GHz frequency

Table 4.2: Architectural parameters.

runs one of 13 SPEC CPU 2000 benchmarks. We fast-forward each benchmark five

billion instructions and run for a total time of 100ms, which models the operating

system time quantum. We generate 20 randomly chosen four-benchmark workloads

to run on the 4-core CMP, without repeating benchmarks in any given workload.

For 8-, 16-, and 32-core CMPs, we randomly repeat some of the benchmarks.

We choose a large number of workloads with random benchmark assignments

out of the entire spectrum of applications rather than create a few combinations

with one representative benchmark from each category (memory bound, cache

bound, computation-intensive) in order to show the actual benefit of our approach

under a realistic variety of scenarios.

The Genetic Algorithm was written in C++ and compiled with the “-O3”

flag. Due to the stochastic nature of the algorithm, it was run 20 times for each

configuration and the results averaged.

In order to evaluate our system under a variety of power cap scenarios, we start

with a nominal power of 34.4 V for the four core CMP. This represents the average

power consumption of the benchmarks we studied run on a fully provisioned 4 wide
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core, multiplied by the number of cores. As the number of cores is scaled up, the

nominal power is scaled accordingly. We evaluate our system at 8 different power

constraints, corresponding to the range of 90% to 55% of the nominal power.

We compare our system to four different baselines that have similar area and

power consumption. We model area for most structures in a core using CACTI

5.3. For fetch and decode logic, we use the transistor count and area estimation

tool created by Steinhaus et al. [69]. Area estimates for integer and floating point

simple and complex units are estimated based on Gupta et al. [32]. Our results

are in line with previous estimations like those presented by Burns et al. [17], who

find that a four wide core requires roughly 1.9 times the area of a two wide core.

For the 4-core CMP, the four area-matched baselines are:

• A 4-core 4-wide CMP system that shuts down entire cores to meet the power

budget.

• An 8-core 2-wide CMP system that shuts down entire cores to meet the

power budget. We chose 8 2-wide cores because they have the same area as 4

4-wide cores. However, depending on the applications that are running and

the power budget, only a portion of those cores can be turned on.

• A 4-core 4-wide CMP system that engages DVFS to scale down the power

consumption until it meets the power budget.

• A 8-core 2-wide CMP system that shuts down half of the cores and engages

DVFS by increasing voltage and frequency to boost the single threaded per-

formance of the applications running on the remaining active cores as much

as the power budget allows.

We assume three possible schemes for voltage scaling. In the first scheme, the
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voltage can be aggresively scaled up and down by at most 40%, from 1V/4GHz to

1.4V/7GHz and 1V/4GHz to 0.6V/1GHz, respectively. However, due to the high

power/performance tradeoff of DVFS, we find that our system can scale voltage

by at most 30 percent without violated the power budget. In the second scheme,

the voltage can be moderately scaled up and down by at most 20%. The third

scheme is the most conservative, and assumes that the voltage can be scaled by at

most ±15%.

4.3.2 Sampling Accuracy

4.3.2.1 Reducing High Frequency Noise

Effective CMP level optimization depends on the accuracy of the samples, of the

surrogate surface, and of the global optimization algorithm. The sampling accu-

racy is affected by both low frequency and high frequency noise as discussed in

Section 4.1.2.3. We identified sample compression and replication as a potential

technique for reducing the underlying high frequency noise and extracting the fac-

tor level effects on the response of the system. We consider splitting each sample

into 1, 2, 4, or 8 groups, reducing the individual sample size in order to maintain

the same total sampling stage time. For example, if each sample is 1 ms, repli-

cating the samples twice compresses the individual sample to 0.5 ms. Similarly,

replicating the samples eight times reduces the individual sample time to 0.125ms.

The total sample phase time for the Box-Behnken design is thus 13 ms, and 9ms

for the Fractional Factorial (3MM3) design. Power and throughput responses are

measured for each replicate and are combined into one response per sample by av-

eraging their values. We do not consider replicating samples more than eight times
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Figure 4.7: Percent error between the real system response (100ms) and the
sampled response (1ms) for (a) Throughput and (b) Power. Each
1ms treatment sample is split into 1, 2, 4, or 8 smaller replicates.
Statistics are collected across all 17 SPEC CPU2000 benchmarks
for the Box-Behnken design.

because the overheads for reconfiguration and response combination become no-

ticeable. Figure 4.7 shows the percent error between the real system response and

the sampled response for the range of replicates considered. For each configuration
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(treatment) in the design, the error is measured as the percent difference between

the response of the treatment if run for the entire operating system time quantum

(100ms) and the average response of the treatment if the sum of its replicates is

run for a total of 1ms.

There are two opposing effects that must be balanced in order to obtain accu-

rate samples. First, a higher number of replicates reduces low frequency noise by

obtaining responses at different points of the benchmark execution. Second, in our

infrastructure, many replicates imply smaller samples that are more susceptible to

high frequency noise than longer samples. This is due to the fact that longer sam-

ples report the response of the system averaged over a longer time period, which

is less affected by temporary microarchitectural and software events (such misses,

mispredictions, or small software loops). The study in Figure 4.7 shows that for

both responses (throughput and power), samples become more accurate with in-

creasing the number of replicates, as shown by the reduced spread of the 25th and

75th percentiles and of the outliers. The mean error across all four replicate options

hovers around zero, indicating that, on average, samples are accurately capturing

the true response of the system. Unless otherwise noted, we use sampling with

eight replicates throughout the remainder of the system analysis.

4.3.2.2 Sample Interval Size

The individual sample size determines the duration of the sampling phase, which in

turn determines the size of the steady interval, or the amount of time for which the

optimal solution is run. Ideally, samples should be as short as possible, to reduce

the time spent sampling suboptimal configurations and increase the time spent

running the optimal configuration. However, smaller samples are more susceptible
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Figure 4.8: Effect of sample size on system responses (13 Box-Behnken treat-
ments) for apsi and twolf benchmarks. The black line labeled ”1”
is the real system response. The red line labeled ”2” is the sam-
pled response for 1 ms samples split into 8 replicates. The green
line labeled ”3” is the sampled response for 0.1ms samples split
into 8 replicates.

to temporary hardware and software events as described above. We perform a

study to measure the sensitivity of the system responses to sample size, and show

the results for the maximum (13 ms) and minimum (0.13 ms) sampling phase

durations considered (Figures 4.8 and 4.9).

The vast majority of the benchmarks we studied behave similarly to the two

benchmarks presented in Figure 4.8, which shows the real (100ms) and sampled

responses for the Box-Behnken design for apsi (top) and twolf (bottom). The

real response is labeled ”1” and the sample responses are labeled ”2” and ”3”

for 1ms and 0.1 ms individual samples, respectively. The y-axis represents the

measured response in billion instructions per second for throughput (left), and

the measured response in Watts for power (right). The x-asis represents the 13
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Figure 4.9: Effect of sample size on system responses (13 Box-Behnken treat-
ments) for mcf and gcc benchmarks. The black line labeled ”1” is
the real system response. The red line labeled ”2” is the sampled
response for 1 ms samples split into 8 replicates. The green line
labeled ”3” is the sampled response for 0.1ms samples split into
8 replicates.

configurations sampled with the Box-Behnken design. The longer 1 ms samples

consistently outperform the small samples. For benchmarks like applu, the 1 ms

samples perfectly match the real system response, and the 0.1 ms samples have

tolerable errors. However, many benchmarks exhibit behavior similar to twolf.

The 1ms samples almost perfectly match the real system responses, but the 0.1

ms samples grossly underestimate the real responses.

Figure 4.9 shows two atypical but interesting special cases, corresponding to

benchmarks mcf (top) and gcc (bottom). For mcf, neither the 13 ms, nor the 0.13

ms sampling phase is representative of the real system behavior. The small samples

are so inaccurate because they are greatly susceptible to mcf’s memory behavior.

The longer samples are less susceptible because they average the behavior over
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longer intervals, and look like they match the data relatively well. In reality,

the longer samples are almost as impractical as the small samples due to the

fact that the samples do not preserve the relative response trend between different

configurations. For example, the configuration with the best real response is shown

to produce only the fourth best sampled response, and the configuration with the

worst real response produces one of the best sampled responses. We discovered

that samples that do not preserve trends between configurations greatly reduce

the efficiency of the optimization algorithm, even if their error seems manageable.

Another atypical behavior is that of gcc (Figure 4.9 bottom). In this case,

both sample interval sizes are inaccurate, but they both preserve the relation-

ship between the different configurations well. Moreover, they both overestimate

throughput and power, which we discover is not that problematic. The bigger

problem is underestimation, as it leads to power violations. The most interesting

point is that the small 0.13ms sampling phase performs better than the longer

13ms sampling phase. Gcc is well known for having an erratic performance behav-

ior for the reference inputs. Put another way, gcc exhibits very fine grained phase

changes. Small samples are more prone to fall within these fine grained phases

than the longer 1ms samples, which are likely straddling across phase changes.

The value of the response surface methodology is limited by the inaccuracy of

the samples, since they are the basis for response prediction at points that are

not sampled. The error of small samples is perpetuated in the response surface

fitting interval, resulting in poor optimization choices. To demonstrate this point,

we compiled the error of the predicted responses across all 17 studied benchmarks

for both the quadratic and RBF response surfaces (Figure 4.10). Small 0.1ms

samples (0.13ms total sampling interval) result in prediction errors in excess of

53



Figure 4.10: Effect of sample size on system responses across all 17 bench-
marks, showing statistics for the percent error between the real
system response and the predicted responses based on small
(0.1ms) and long (1ms) samples. The surrogate models are built
on the Box-Behnken design, resulting in a total sampling inter-
val of 13ms, and 0.13ms, respectively.

300%, with the average hovering around 10% for throughput and 20% for power,

while 1ms samples have a much tighter distribution and significantly fewer outliers.

Longer sampling intervals are more accurate, but reduce the steady interval size to
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unacceptable levels. For example, 2 ms individual samples result in an sampling

interval of 26 ms for the Box-Behnken design, or almost 30% of the OS time

quantum. 4 ms samples reduce the steady interval to a little over 50% of the OS

time quantum. To strike a balance between sampling interval size and accuracy,

we use 1ms samples for the remainder of our analysis.

4.3.3 Response Surfaces

Figure 4.11 shows the accuracy of the three surrogate surfaces considered for char-

acterizing application throughput (top) and power (bottom). The y-axis represents

the percentage by which the predicted responses deviate from the real responses,

and each box plot depicts statistics collected across the 17 benchmarks studied.

For each application, a response surface was built on the full factorial sampling

design (27 possible combinations of active lanes in the three pipeline regions), on

the Box-Behnken design (13 samples according to Figure 4.2), or on the Mod 3

based Fractional Factorial design (9 samples, denoted as 3MM3). We generated

the figure using real responses (as opposed to sampled responses) for the observa-

tion points, in order to extract the underlying shape of the response functions and

separate sampling effects from surrogate surface fitting effects.

The linear model fits the data the worst, despite being built using the full

factorial configurations. The residual percent error can be as high as 20% in either

direction, meaning that responses are both over and under estimated. As expected,

this suggests that the throughput and power follow a non linear relationship with

hardware configurations.

The second data point represents the distribution of the errors associated with
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Figure 4.11: Surrogate model accuracy measured as percent residual er-
ror between the predicted and real (100ms) system responses:
throughput (top), and power (bottom).

fitting a quadratic surface to the full factorial observations. The error is drastically

reduced for both throughput and power, as shown by the 25th and 75th percentiles

having less than 2% error, and the outliers in the 5% error range. Even for a

reduced number of observations (Box-Behnken design), a second order polynomial

matches the responses well (third data point). The bulk of the prediction errors

stay the same, with a slight increase in the number of outliers. The prediction

accuracy drops dramatically when building the quadratic surface on only nine
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observation points (3MM3 Design). Recall that a quadratic response surface for

three variables has the form

ŷ = β0 +β1x1 +β2x2 +β3x3 +β12x1x2 +β13x1x3 +β23x2x3 +β11x
2
1 +β22x

2
2 +β33x

2
3 ,

(4.30)

thus requiring 10 coefficients, which cannot be obtained using only nine samples.

We can eliminate the last term of Equation 4.30 and lose the squared effects of

variable x3. However, the matrix XTX becomes singular, thus noninverting. As

such, one more term needs to be eliminated from the quadratic formula, which

effectively reduces the quadratic function to an almost linear one. We characterize

applications at runtime using the quadratic surrogate surface built on the 13 Box-

Behnken sampling points.

The radial basis function response surface is an interpolating model. If the full

factorial design is used to build the RBF surface, the residual error is zero and as

such is not shown in Figure 4.11. Using only 13 Box-Behnken observation points

to create an RBF surrogate surface still results in extremely accurate results, with

almost no spread and a relatively small number of outliers. Reducing the number

of observation points even further (3MM3) degrades the accuracy slightly, but still

maintains results as good as the quadratic surface built on 13 observations.

The effectiveness of runtime application characterization is contingent on the

combination of an accurate response surface and accurate observation points (sam-

ples). Figure 4.12 shows two typical online system responses compared to the

actual behavior of those configurations on the entire 100ms time quantum (the

points labeled ”1 - 100ms Sample”). The data series labeled ”2 - 13ms BB, Quad”
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Figure 4.12: Surrogate surface predictions for benchmarks mgrid (top) and
applu (bottom). The line labeled ”1” is the actual response of
the system; the lines labeled ”2” and ”3” correspond to pre-
dictions based on the quadratic and RBF surfaces using the
Box-Behnken design, respectively; the line labeled ”4” corre-
sponds to predictions based on the RBF surface that uses the
fractional factorial 3MM3 design.

corresponds to a quadratic surface fit on 13 online samples, with the other 14 re-

sponses predicted by the surrogate. Similarly, the data series labeled ”3 - 13ms

BB, RBF” shows the samples and the predictions obtained from an RBF surface

fit on Box-Behnken samples. Finally, the series denoted as ”4 - 9ms 3MM3, RBF”

shows nine Fractional Factorial samples and 18 predictions of the corresponding

RBF surrogate surface. For most of the benchmarks (nine out of 17 benchmarks),

all three surrogate surface methodologies are very accurate as shown by the BIPS

response for mgrid. For other benchmarks such as applu, the surrogate surfaces
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accurately predict the system response based on the information obtained from

the sampling period, but the samples themselves are noisy. Note that the relation-

ship between the different configurations is preserved correctly, even though the

absolute values are predicted slightly higher.

Figure 4.13: Surrogate surface predictions for benchmarks swim (top) and
mcf (bottom). The line labeled ”1” is the actual response of
the system; the lines labeled ”2” and ”3” correspond to pre-
dictions based on the quadratic and RBF surfaces using the
Box-Behnken design, respectively; the line labeled ”4” corre-
sponds to predictions based on the RBF surface that uses the
fractional factorial 3MM3 design.

Similarly, some benchmark behavior is predicted lower than the real system

response as depicted for swim in Figure 4.13 (top). Note that the RBF surface

built on the fractional factorial design preserves the relationship between config-

urations better than the surfaces built on the Box-Behnken design, even though

the absolute predicted values are slightly more inaccurate. Both surfaces build
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on the Box-Behnken design behave almost the same because the difference in re-

sponse surface accuracy is masked by the larger sampling inaccuracy. From the six

benchmarks that fall in this category, applu, swim, and gcc exhibit the biggest dis-

crepancy between the predicted and real response. Lastly, the behavior of only two

benchmarks (mcf and parser) is poorly characterized using the combined sampling

and surrogate surface technique (Figure 4.13 (bottom)).

4.3.4 Optimization Results

For a four core CMP, implementing an algorithm that exhaustively searches the

entire combinatorial space and picks the best performing configuration under

the power constraint is computationally feasible. Such an algorithm executes in

roughly 80ms, which makes it impractical for deployment in an online system, but

provides an upper bound on the expected system optimization results. We use the

Genetic Algorithm discussed in Section 4.2.2 run on the surrogate surface predic-

tions to search the global, CMP-level combinations of N-core configurations and

limit its runtime by setting the number of generations to 25. The best core-level

configurations (active lanes) that maximize the global objective function found in

the 25 generations are run during the remaining steady interval.

Figure 4.14 shows how close the solution found by the online Genetic Algo-

rithm (blue bars) is to the global maximum found by the exhaustive algorithm.

The results are normalized to the best solution found by the exhaustive search at

each of the eight power constraints shown on the x-axis. The best solution found

by the Genetic Algorithm is within at least 4% of the global maximum across all

power constraints. The online solution gets progressively closer to the global max-

imum as the power constraints are relaxed from 55% to 90% of the nominal power.
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Figure 4.14: Comparison of exhaustive optimization algorithm, Genetic Al-
gorithm based on oracle samples, and Genetic Algorithm run-
ning on top of the quadratic response surface with Box-Behnken
samples.

This is due to the fact that at very strict power constraints, most individuals in a

generation’s population are infeasible, making it difficult to select good parents to

create a new generation. At relaxed power constraints, most individuals in each

generation are feasible, and the fitness value can be effectively used to generate par-

ents that are likely to produce good offspring. Also shown in the graph are results

obtained by a Genetic Algorithm run on the true 100ms power and throughput

responses (denoted as Adaptive OracleSamples) to see how much potential perfor-

mance benefits are lost through sampling and response predictions. The results

are within at least 2% of the global maximum across all power constraints, which

implies that our online approach of characterizing applications is very effective.

Note that the difference between GA using online and oracle samples decreases

with stricter power constraints, implying that the Genetic Algorithm itself and

not the online sampling and response approximations are at fault.

As the number of cores in the CMP system is increased, it is no longer compu-
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Figure 4.15: Runtime of the Genetic Algorithm with 25 generations ex-
pressed as a percentage of the OS time quantum (logarithmic
scale). Runtime of the exhaustive search is shown in absolute
numbers.

tationally feasible to compute an offline exhaustive search algorithm. Figure 4.15

shows the runtimes of the exhaustive algorithms and of the online Genetic Al-

gorithm limited to 25 iterations. As the number of cores is increased, the com-

binatorial exploration space explodes, making it impossible to compute the real

global maximum. In order to obtain an upper bound for 8, 16, and 32 cores, we

implement an offline Genetic Algorithm that uses oracle ”sample” values and is

run for 200 iterations as discussed in more detail in Section 4.3.5.3. The runtime

of the online Genetic Algorithm is managed by restricting the number of iterations

to 25, which limits the execution time to at most 1% of the OS time quantum in

a 32 core CMP system. The runtime of GA increases with the number of cores

even though the number of generations remains constant, because the chip-wide

throughput and power are calculated for each individual of a population, and they

depend on the number of cores in the system.

For the remainder of this chapter, we report the performance and power of the
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CMP during the entire OS time quantum (including the sampling and optimization

intervals). We conservatively assume a ”dead” time of 1ms (or 1% of the OS time

slice) where no useful instructions are executed to account for the optimization

time.

4.3.5 System Level Results

4.3.5.1 Single Threaded Performance

In order to evaluate the single-threaded performance of our technique, we compare

a modular lane-based core with two static designs, a 4-wide core and a 2-wide

core, that employ DVFS (either up or down) to match a certain power budget.

A 2-wide core has DVFS enabled and operates at a higher voltage and frequency

to match the 4-wide power. Figures 4.16, 4.17, and 4.18 show the throughput

improvement of our adaptive core over the 2-wide core under the three dynamic

voltage and frequency scenarios described in the Methodology section at three

power budgets. The power budgets represent 90%, 75%, and 55% of the total

power consumed by each application running on a fully provisioned 4-wide core. At

the 90% power budget, an adaptive lane-based core obtains average improvements

of 14.4%, 19.1%, and 25.1% over 2-wide cores employing aggressive, moderate, and

conservative DVFS, respectively. This is due to the fact that for most sequential

applications, issue width and implicit ILP exploitation is more power efficient than

increasing frequency and voltage, which has an exponential effect on power.

As the power budget is reduced, a 2-wide core employing DVFS up becomes

more efficient because voltage and frequency need not be scaled up by large

amounts. At the lowest power budget (55% power cap), a 2-wide core without
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Figure 4.16: Throughput improvement over a single 2-wide core with ag-
gressive, moderate, and conservative DVFS at 90% power cap.
Throughput normalized with respect to a 2-wide core with ag-
gressive DVFS.

voltage and frequency scaling (as well as an adaptive core with two lanes active

in every pipeline region) consumes more power than the power cap for some ap-

plications. In those cases, a 2-wide core is forced to employ DVFS down, and

an adaptive core is forced to shut off additional lanes, becoming scalar in some

pipeline regions. Because voltage and frequency can be scaled down slightly for

high power savings, the 2-wide core performs better than adaptive when running

applications that had to scale down to one lane in some pipeline regions (see

mgrid, ammp, art, swim in Figure 4.18). One advantage of adaptive cores is that

when they are deployed in a system with other adaptive cores, they do not need

to scale down the hardware to one active lane (which incurs a high performance

penalty) because they effectively ”steal” power from other cores that have a worse

power-performance tradeoff. Adaptive cores are not meant to replace existing go-

to techniques when they are effective. Rather, they can be used to complement
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any existing technique when it fails to provide benefits. Depending on what appli-

cations are running and the power constraints, one can choose whether to engage

DVFS or shut down lanes in order to obtain the best performance.

Figure 4.17: Throughput improvement over a single 2-wide core with ag-
gressive, moderate, and conservative DVFS at 75% power cap.
Throughput normalized with respect to a 2-wide core with ag-
gressive DVFS.

We now compare an adaptive lane-based core with a static 4-wide core. As the

power budget is reduced, an adaptive lane-based core shuts down lanes, while a

static 4-wide core must have DVFS enabled and thus operates at a lower voltage

and frequency to consume the same reduced power. Figures 4.19, 4.20, and 4.21

show the improvement in performance of the adaptive core over the static 4-wide

core employing DVFS down for three power constraints (90%, 75%, and 55%). All

the results are normalized with respect to the throughput of the static 4-wide core

with aggressive dynamic voltage and frequency scaling. At relaxed power budgets

(90% power cap), adaptive cores perform on average about the same as 4-wide

cores (Figure 4.19).
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Figure 4.18: Throughput improvement over a single 2-wide core with ag-
gressive, moderate, and conservative DVFS at 55% power cap.
Throughput normalized with respect to a 2-wide core with ag-
gressive DVFS.

Figure 4.19: Throughput improvement over a single 4-wide core with aggres-
sive DVFS at 90% power cap. Throughput normalized with
respect to a 4-wide core with aggressive DVFS.
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Figure 4.20: Throughput improvement over a single 4-wide core with aggres-
sive DVFS at 75% power cap.

Figure 4.21: Throughput improvement over a single 4-wide core with aggres-
sive DVFS at 55% power cap.

If power is constrained further to 75%, our technique shows modest average

improvements of 6.7% when the 4-wide cores uses the aggressive voltage scaling
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technique, with the static 4-wide core performing better for almost 30% of the

workloads. When voltage and frequency are scaled down even slightly, tremendous

amounts of both static and dynamic power are saved across the entire chip. Static

power is saved because it is dependent on the difference between Vdd and Vth (the

transistor threshold voltage) and dynamic power is saved proportionally to f ·V dd2.

In contrast, our adaptive technique can only linearly save the static and dynamic

power of the lanes that have been deconfigured. However, a 4-wide core cannot

meet the lowest power budget for three out of the four workloads where aggressive

DVFS performed better if the voltage can be dynamically scaled conservatively. At

very stringent power constraints (55% power cap), aggressive DVFS outperforms

adaptive cores for a little under half the applications, but overall is outperformed

by 13.7%. In reality, it is predicted that aggressive voltage and frequency scaling

will not be feasible. A more realistic scenario is modeled by the moderate DVFS,

which cannot meet the lowest power budget for three quarters of the applications.

If voltage and frequency can only be conservatively scaled, a static 4-wide core

cannot meet the lowest power budget for any of the benchmarks. Moreover, DVFS

up or down can be applied at any point on top of our adaptive core to push the

power limits much further than DVFS alone.

Figure 4.22: Power-performance tradeoffs for an adaptive core versus a 2-
wide core with DVFS up.
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Figures 4.22 and 4.23 show typical power-performance tradeoff curves for adap-

tive and DVFS on a 4-wide and 2-wide core. The ”Adaptive Core” line was ob-

tained by eliminating the pareto-dominated configurations out of the total 27, then

sorting the remaining configurations in decreasing throughput order. The steeper

the slope, the better, since that implies large improvements in throughput for very

small increases in power consumption. In both figures, the leftmost application is

a typical application that benefits the same from lane deconfiguration and from

DVFS. The middle application shows typical behavior for applications where DVFS

is much less cost effective than adaptive, and the rightmost figure shows applica-

tions for which DVFS is more attractive. Since there is a lot of variation among

benchmarks, an interesting direction for future research is to dynamically choose

between engaging lane-based optimization and DVFS. Depending on the slope of

the power-performance tradeoff curves, DVFS can be engaged up on a lane-based

core with the minimum amount of active lanes, or engaged down on a lane-based

core with the maximum amount of active lanes. As a matter of fact, rather than

arbitrarily choosing the biggest or smallest lane-base configuration, DVFS could

be engaged on the most power-performance efficient lane-based configuration for

the running application.

Figure 4.23: Power-performance tradeoffs for an adaptive core versus a 4-
wide core with DVFS down.
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4.3.5.2 Multiprogrammed Workload Performance

While our approach shows good improvements in single-threaded performance, its

full potential is realized in systems with multiple cores. For such systems, the

adaptive lane-based approach is able to effectively ”steal” power from the cores

that do not need their fully provisioned resources while maintaining acceptable

performance levels, and redistribute it to resource hungry cores to increase their

performance well beyond their maximum level in static designs.

In order to evaluate the system level performance of our adaptive technique

against the static baselines, we create 20 multiprogrammed workloads from the

suite of SPEC CPU2000 benchmarks. Each multiprogrammed workload consists

of four randomly chosen sequential applications, and the global, or system-level

throughput is calculated by taking the geometric mean of the cores’ BIPS metric.

This approach ensures that low-IPC applications are not penalized in favor of

high-IPC ones.

Turning off entire cores

Standard static CMPs are not inherently designed to operate at different power

constraints, but one approach is to turn off entire cores until the chip-wide power

budget is met. One significant downside to this technique is the fact that the

operating system needs to change its scheduling policies to only schedule as many

applications as there are cores. It is also difficult to compare the performance of two

systems that do not have the same number of cores. One approach is to compute

the sum of throughputs as if there were enough cores to run all applications, and

scale that sum by the number of cores that are actually on. However, this approach

does not take into consideration the single-threaded performance of the running
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applications, and at the same time does not insure that all benchmarks are weighed

fairly in the reported system throughput. We choose to normalize the throughput

of each of the applications to their individual performance on a fully provisioned 4-

wide core, and scale the average system throughput by the number of active cores.

This ensures fairness to some degree, since all the normalized throughputs are in

the same scale, but does not capture the latency degradation in single-threaded

performance. For example, let’s assume there are two designs, A and B, the first

with N cores and the second with N/2 cores. If design A degrades the performance

of every application by a half, then the normalized throughput average for each

core is 0.5. At the system level, the throughput of system A is N · 0.5 and that of

system B is N
2
∗ 1, resulting in the same throughput for both systems, even though

every application on system A will finish in double the amount of time it does on

system B.

Figure 4.24: Best, average, and worst global throughput improvement over a
CMP system with 4 4-wide cores that shuts down cores to meet
the power budget.
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Figure 4.24 shows the improvement of a 4-core lane-based adaptive CMP over

a system that employs four 4-wide cores and sequentially turns off cores until the

power budget is met. The baseline must turn off resources at a very coarse gran-

ularity, which negatively impacts its performance. We show the performance of

the best, average, and worst of the 20 multiprogrammed workloads across a wide

range of power constraints. For low power constraints, two of the four cores must

be turned off in order to meet the power budget, effectively halving the system

performance. In one of the 20 workloads comprising all high-IPC, power-hungry

benchmarks, the system had to shut down three of its four cores, drastically re-

ducing its performance. On the other hand, our adaptive CMP with the smallest

number of lanes turned on was able to sustain a performance more than 3 times

higher than the statically designed system. At high power levels, it is possible

and likely that workloads consisting entirely of low-power applications can fit well

below the power budget, eliminating the need to shut cores off. In such cases,

the adaptive technique performs worse than the 4-wide system due to the over-

head associated with sampling and application characterization. On average, our

technique performs significantly better than the baseline across all power budgets,

with average improvements ranging from 23.3% to 63.7%.

An analogous analysis comparing a lane-based 4 core CMP to a system with

eight 2-wide cores that shuts down cores to meet the power target is shown in

Figure 4.25. As opposed to the previous results, the static baseline outperforms

our architecture according to the metric selected for evaluation by an average

of 13% at relaxed power constraints. Since the metric does not capture single

threaded performance, the sheer volume of small cores makes up for the reduced

functionality in each core. However, as the power goal becomes more restrictive,

the adaptive architecture starts outperforming the 2-wide CMP system by as much
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Figure 4.25: Best, average, and worst global throughput improvement over a
CMP system with 8 2-wide cores that shuts down cores to meet
the power budget.

as 16% at the 60% power cap across all 20 workloads. In the best case, performance

improves by up to 40%.

Note that the performance improvement drops when moving from a power cap

of 60% to 55%. At 55% power cap, the power constraint is so stringent that most

adaptive cores go to the lowest hardware level, eliminating the opportunity to

redistribute power from one core to the other. However, an interesting direction

of future research is to apply DVFS in select cores to save power to redistribute to

other portions of the chip that can make better use of it.

Cores with dynamic voltage and freqency scaling

In the previous section, we discussed the difficulties in evaluating sequential

workloads on systems that have different numbers of cores. A more appropriate

evaluation looks at current-practice architectures that have the same number of
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cores. For example, instead of shutting down cores, a 4-wide CMP can adjust its

power by dynamically engaging voltage and frequency scaling. Similarly, in order

to maximize single-threaded performance, an 8 core 2-wide CMP can shut down

half of its cores and boost voltage and frequency on the remaining four cores.

Figure 4.26: 4 core CMP system level improvement over a CMP system with
2-wide cores with DVFS Up and over a CMP system with 4-wide
cores with DVFS Down, assuming conservative voltage scaling.

Figure 4.26 shows the fair throughput (geometric mean) of the lane-based adap-

tive architecture and the two CMPs described above with conservative voltage

scaling. For the lane-based architecture (denoted as ”Adaptive” in the figure),

we show three results. The green data series denoted as ”Adaptive Exhaustive”

represents an exhaustive search on the entire combinatorial space to select the best

configuration within the corresponding power budget, and cannot be deployed on-

line due to its long runtime. The red series denoted as ”Adaptive 3MM3 RBF”

represents the fractional factorial design that selects nine sample points, builds

a per-core RBF surrogate surface to obtain application response predictions, and
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then applies the Genetic Alogrithm limited to 25 iterations to pick and run the best

found configuration during the steady interval. The blue line represents the same

Genetic Algorithm run on a quadratic surface built on 13 Box-Behnken samples.

Lastly, the series denoted as ”4w DVFS” and ”2w DVFS” show the performance

of the two baselines. There are a number of interesting trends captured by this

figure. First, both online implementations for the lane-based adaptive architec-

ture exhibit very similar results. Recall from Figure 4.11 that a quadratic surface

build on Box-Behnken samples is slightly more accurate than an RBF surface

build on 3MM3 samples. However, the 3MM3 design requires four less samples

than the Box-Behnken design, effectively increasing the steady interval by 4 ms.

Since Adaptive 3MM3 RBF runs a good configuration slightly longer than Adap-

tive BB QUAD, the two contradictory effects cancel out and the performance of

the two implementations is almost identical. Second, the online implementation of

the adaptive architecture is extremely efficient, losing very little performance over

the oracle, offline, Adaptive Exhaustive approach. Lastly, the lane-based adaptive

CMP outperforms both baselines under any power budget, and can be further ex-

tended in either direction by the addition of DVFS. The other two baselines cannot

meet power budgets either higher (2-wide with DVFS up) or lower (4-wide with

DVFS down) than depicted in the graph.

Figure 4.27 and Figure 4.28 compare the adaptive technique to the baselines

that employ moderate DVFS. The figures show the percent improvement of the

adaptive technique (for the best, worst, and averaged over 20 configurations cases)

over the 2-wide with DVFS up baseline, and over the 4-wide with DVFS down

baseline, respectively. In the best case scenario, our proposed technique outper-

forms 4w by 66% and 2-wide by 22%. On average, we improve over the 2-wide

CMP between 5.5% and 12.8% depending on the power cap, and between 4% and
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Figure 4.27: Best, average, and worst global throughput improvement over
a CMP system with 2-wide cores with DVFS up.

Figure 4.28: Best, average, and worst global throughput improvement over
a CMP system with 4 wide cores with DVFS down.

16% over the 4-wide CMP depending on the power constraint. In the worst case

scenario, Adaptive is able to at least match the performance of the 2-wide baseline
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with the exception of the 55% power cap, where performance is degraded by less

than 5%. Our technique also matches the performance of the 4-wide CMP within

±3% for the worst performing workload.

The previous results show averages for the 20 randomly created workloads

since we believe they are an accurate representation of real system behavior where

the Operating System schedules applications from a ready queue. However, the

randomness of the workloads makes it difficult to evaluate the type of tasks the

adaptive architecture is suited or unsuited for, and to extract key insights about

the potential benefits of our technique. We classify the SPEC CPU2000 bench-

marks into three categories (CPU, cache, and memory bound) and create six work-

loads that explore the possible combinations of these categories. The workloads

are shown in Table 4.3, and correspond to: a workload comprised solely of CPU

bound applications, a workload comprised solely of cache bound applications, one

comprised only of memory bound applications, and three workloads that explore a

combination of two benchmark classes: CPU and memory bound, CPU and cache

bound, and cache and memory bound.

CPU apsi gcc wupwise gcc
MEM swim art art mcf

CACHE vpr twolf twolf crafty
CPU+MEM apsi art wupwise art

CPU+CACHE gcc crafty wupwise crafty
CACHE+MEM twolf art crafty swim

Table 4.3: 4-benchmark workloads created from SPEC CPU 2000 bench-
marks classified as CPU, cache, and memory bound.

Figures 4.29 and 4.30 show the system throughput improvement of the adap-

tive scheme over a CMP system with 4-wide cores with DVFS down to match the

power budget and over a CMP system with 2-wide cores with DVFS up, respec-
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tively. Results are shown for power caps of 90%, 70%, and 55%. As expected,

adaptive greatly outperforms the 4-wide CMP with DVFS down if all the applica-

tions scheduled on the CMP are CPU-bound, and performs worse if all applications

scheduled are memory bound. For CPU bound applications, the improvements

peak at 56% around a power cap of 70%, and decrease to 43% at a power cap of

55%, rather than increasing with more stringent power constraints as is the case

for the other workloads. This is due to the fact that the performance of CPU

bound applications dramatically drops as the number of active lanes drops to 2,

reducing the difference between a low frequency design (DVFS) and a weak core

design (2 lanes turned off). In general, if memory bound applications are present,

employing DVFS down to manage power is more effective than the lane-based ar-

chitecture, because a significantly higher portion of power can be saved with little

performance loss.

Figure 4.29: 4 core CMP system level improvement over a CMP system with
4 wide cores with DVFS down for select workloads.

When comparing the adaptive technique to a CMP consisting of 2-wide cores
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Figure 4.30: 4 core CMP system level improvement over a CMP system with
2-wide cores with DVFS up for select workloads.

employing DVFS up to match the same power budget (Figure 4.30), the trends

are the opposite: better gains are obtained when running memory or cache bound

applications, because increasing frequency does not benefit these applications. Ex-

cluding the corner cases (all CPU bound or all memory bound applications in one

workload), the adaptive lane-based architecture is most effective when the run-

ning applications exhibit variety in their power and throughput responses. In such

situations, a subset of cores effectively borrow power from the others, creating a dy-

namically heterogeneous architecture and realizing much bigger gains for the same

chip-wide power. Conversely, when the workload exhibits no software variety, our

adaptive technique matches, but is not able to greatly outperform, homogeneous

decisions and architectures employing DVFS up or down.

Lastly, we present the average improvements over 2-wide and 4-wide CMPs

with DVFS under all three scaling assumptions: aggressive, where voltage can be

scaled by±40%; moderate, where voltage can be scaled by±20%; and conservative,
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where voltage can be scaled by ±15% (Figure 4.31). The 4w (aggressive) and 2w

(aggressive ) techniques can apply voltage and frequency scaling for all power

constraints up to 55% and 90%, respectively, which is why they perform the best

out of the three DVFS scaling assumptions. For moderate DVFS, neither the 4w

or the 2w can engage DVFS to match the power budget at the endpoints of the

ranges we consider. 4w has to resort to shutting down cores in addition to DVFS

to meet the power constraint, while 2w must stop scaling voltage up when it is

still below the power constraint, missing the opportunity to increase performance.

Conservative DVFS pushes these points to the left for 4w and to the right for 2w.

Figure 4.31: 4 core CMP system level improvement over a CMP system with
2-wide cores with DVFS Up (left y-axis) and over a CMP system
with 4-wide cores with DVFS Down (right y-axis), assuming
aggressive, moderate, and conservative voltage scaling.
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4.3.5.3 Scaling to Many Cores

The analysis in the previous sections has focused on 4-core CMPs. Figure 4.32

shows that the online optimization methodology we presented scales very well even

for CMPs with 32 cores. Since the runtime for exhaustive algorithms becomes

prohibitive as the number of cores is increased, we use the proxy described in

Section 4.3.4 to obtain an upper bound on the CMP throughput we can expect.

Figure 4.32: Performance of the lane-based adaptive technique for CMPs
with increasing number of cores. Throughput is normalized with
respect to a Genetic Algorithm run on oracle samples for 200
generations.

In general, across the range of power constraints considered, the online Genetic

Algorithm loses some accuracy as the number of cores is increased, but still finds

solutions that capture more than 94% of the potential performance. An interesting

exception is the 32 core case, for which solutions are found that are more accurate

than for 8 or 16 cores. There are two possible explanations for this behavior. First,

the 20 8-, 16-, and 32-application workloads are randomly generated, which means
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that one should not attempt a direct comparison between CMPs with differing

number of cores. It is possible that for 32 cores, the workloads happen to have

more ”reasonably good” solutions. Second, it is possible that with many cores,

more feasible solutions actually exist in the 32 variable space under the very strict

power constraint, since every workload most likely has a number of low power

benchmarks. As such, it is easier for the Genetic Algorithm to pick feasible parents

for mutation and crossover which in turn are likely to produce good offspring.

Turning off cores

Figure 4.33: Best, average, and worst global throughput improvement of an
N-core lane-based architecture over a CMP system with N 4-
wide cores that shuts down cores to meet the power budget. (a)
8 core CMP; (b) 16 core CMP; (c) 32 core CMP
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Figure 4.34: Best, average, and worst global throughput improvement of an
N-core lane-based architecture over a CMP system with 2N 2-
wide cores that shuts down cores to meet the power budget. (a)
8 core CMP; (b) 16 core CMP; (c) 32 core CMP

Figures 4.33 and 4.34 show how the adaptive lane-based technique compares

against static designs that disable cores to meet the power budget as the baseline

number of cores is scaled up to 8, 16, and 32. First we compare an N core adaptive

lane-based CMP against an N core 4-wide CMP in Figure 4.33. As the number

of cores is scaled up, the power budget expressed as a percentage of the total

power consumed when all transistors are on is expected to be in the 50% range

based on [26]. The adaptive technique presented in this work outperforms the

static 4-wide CMP at low power budgets (55% power cap) by 40%, 30%, and 27%

as the number of integrated cores increases to 8, 16, and 32, respectively. It is
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important to note two effects: first, as the number of integrated cores is increased

to 32, the difference between the best, average, and worst performing workload

is reduced; second, the system level improvement in throughput decreases with

increasing number of cores. Both of these effects are due to the fact that we have

a limited number of diverse applications. Therefore, when the number of cores

outnumbers the available applications, the 32-core workloads that we can produce

are alike, individual application behavior is assimilated and lost in the average

SPEC CPU benchmark behavior, and the workload behavior becomes similar to

a 4 core workload that has four average applications. Even at unrealistically high

power budgets (90% power cap), the adaptive technique is able to match on average

the performance of a static design that disables cores, with the exception of the

32 core CMP, where adaptive performs less than 5% worse than the static design.

This trend shows that when power is not constrained, simple techniques like DVFS

engaged on static designs provide good performance. However, there is a clear

need for more sophisticated architectures and control algorithms as the power is

increasingly constrained according to scaling predictions.

Figure 4.34 shows that if pure throughput is the only metric of interest to

microprocessor designers, integrating many weaker cores is hard to beat, regardless

of whether an adaptive technique based on 4-wide cores or a static 4-wide CMP are

employed. However, our adaptive lane-based technique can be integrated within

weaker cores as well to reduce them to scalar cores if necessary, or applied at a

finer grain to individual structures rather than pipeline regions.

Static cores with DVFS

Figures 4.35, 4.36, and 4.37 show the improvements in performance of the adap-

tive lane-based technique over 4-wide static cores that scale voltage and frequency

84



Figure 4.35: Adaptive lane-based 8-core CMP improvement over a CMP sys-
tem with 8 active 2-wide cores with DVFS Up and over a CMP
system with 8 4-wide cores with DVFS Down, assuming conser-
vative voltage scaling. All results are normalized with respect
to the static 4-wide CMP with DVFS Down.

down (yellow data series), and over 2-wide static cores that scale voltage and fre-

quency up (pink data series) to meet the power budget as the number of integrated

cores increases to 8, 16, and 32. Our technique consistently outperforms the 2-wide

cores with DVFS up by at least 7% on average across 20 random workloads as the

number of cores in the CMP is scaled up. Similar to the results for core disabling,

if power is not a concern (90% power cap), then 4-wide cores that engage DVFS

outperform our adaptive technique. The adaptive technique overheads are not

warranted if the system is not constrained, and simple methods such as DVFS are

more adequate to optimize system performance. However, as the power budget is

reduced as expected due to device scaling, the more refined lane-based technique

is a superior choice.
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Figure 4.36: Adaptive lane-based 16-core CMP improvement over a CMP
system with 16 2-wide cores with DVFS Up and over a CMP
system with 16 4-wide cores with DVFS Down, assuming con-
servative voltage scaling. All results are normalized with respect
to the static 4-wide CMP with DVFS Down.

Figure 4.37: Adaptive lane-based 32-core CMP improvement over a 32-core
CMP system with 2 wide cores with DVFS Up and over a 32-
core CMP system with 4-wide cores with DVFS Down, assuming
conservative voltage scaling. All results are normalized with
respect to the static 4-wide CMP with DVFS Down.
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4.3.5.4 Parallel Workloads

Global decisions for a system running parallel workloads can be simplified by mak-

ing the observation that decisions for threads belonging to the same application

should be made identically. Since efficient parallelization assigns a similar amount

of work to each thread through load balancing and the threads are periodically

synchronized for global communication, it is most efficient that all threads run on

the same hardware configuration in order to guarantee similar execution times. As

such, global decisions in a system that runs multiple applications with multiple

threads needs only consider a system that runs one thread of each application. For

example, a 32 core CMP running 4 applications with 8 threads makes decisions in

a similar fashion to a 4 core CMP running 4 applications with one thread each.

Once the best configuration is chosen for one of the threads, the remaining threads

are run on cores reconfigured with the same hardware configuration. This implies

that the decision space for parallel workloads is reduced to the decision space of

the number of independent applications, making the search more efficient than for

multiprogrammed workloads running on the same number of cores.

Our current simulation infrastructure does not support parallel workloads, but

we approximate their behavior on our system by simultaneously running multiple

copies of single threaded workloads. Figure 4.38 shows results for a 32 core CMP

running 20 random workloads. Each of the 20 workloads are obtained by randomly

choosing 4 SPEC CPU2000 benchmarks and running 8 copies of each of them. The

figure shows the fair throughput of the adaptive lane-based architecture and of a

static 4-wide 32 core CMP that scales voltage and frequency down to match a 55%

power percent cap. All results are normalized with respect to the 32 core CMP

with DVFS down. Our technique improves system throughput by up to 30% and
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at least 2%, with an average improvement of 13% for the workloads we considered.

Figure 4.38: Adaptive lane-based 32-core CMP improvement at 55% power
cap over a CMP system with 32 4-wide cores with DVFS down,
assuming conservative voltage scaling. All results are normal-
ized with respect to the static 4-wide CMP with DVFS down.

4.3.5.5 Pareto Optimality

In this section, we show that the granularity and complexity at which the adap-

tive lane-based architecture operates is justified over simpler architectures and

optimization techniques. In particular, we show how two simple architectures are

inferior to ours because they cannot efficiently adapt to a range of power con-

straints. The first architecture is an asymmetric chip multiprocessor that has N

groups of cores, each with one 2-wide core, one 3-wide core, and one 4-wide core.

This architecture enables only one of the three different cores from each group.

The second architecture is based on our adaptive architecture but attempts to
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reduce the complexity of sampling and optimization by varying the number of ac-

tive lanes homogeneously across all pipeline regions. Each core in this simplified

lane-based architecture can be configured in one of three ways: four, three, or two

active lanes in all pipeline regions. This architecture effectively captures all the

benefits of an asymmetric CMP with a reduced area overhead. As such, we will

focus on the latter architecture. For clarity, we present results for two-core CMPs,

but the trends are similar for an increased number of cores.

Figure 4.39 shows the decision space for a 2 core homogeneous lane-based CMP

(black diamonds labeled with the width of each core) and for a 2 core adaptive lane-

based CMP that can have a different number of active lanes in each pipeline region

(blue circles). The former CMP has 32 or nine chip-wide hardware combinations,

while the latter has 272 or 729 combinations. The green diamonds correspond to the

former combinations that are Pareto optimal and the red circles correspond to the

latter combinations that are likewise Pareto optimal. The horizontal lines represent

hypothetical power constraints. For memory bound applications such as mcf and

swim, simple architectures are effective at adapting to the power budgets as shown

in the top plot of Figure 4.39. In the worst case, the optimal heterogeneous lane-

based configuration (red circle) that fits under the power budget performs only 4%

better than the optimal homogeneous lane-based configuration that reduces the

width of the core running mcf to 2-wide and the width of the core running swim

to 3-wide (black diamond). However, for other applications such as gcc and apsi,

the homogeneous architecture misses a large performance opportunity as shown

in Figure 4.39 (bottom) across a variety of power constraints. For example, at

a power constraint of 18 Watts (red horizontal line), the best configuration that

the homogeneous architecture can employ is reducing both cores to 3-wide (black

diamond labeled ”(3w3w)”). The best configuration that the heterogeneous lane-
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Figure 4.39: Power-performance Pareto fronts for 2-core CMPs running two
multiprogrammed workloads: mcf and swim (top), and apsi and
gcc (bottom).

based architecture can employ under the 18 Watt power constraint is (433,443),

that is four active FE lanes, three active BE lanes, and three active LSQ lanes in

90



the core running apsi, and four active FE lanes, four active BE lanes, and three

active LSQ lanes in the core running gcc. This configuration outperforms the

homogeneous one by 18% at this power constraint.
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CHAPTER 5

OPTIMIZATION TECHNIQUES FOR PERFORMANCE

RECOVERY IN FAILURE PRONE CMPS

5.1 Introduction

This chapter explores how the lane-based architecture, together with performance

boosting techniques, can mitigate the performance losses associated with hard

faults that occur in chip multiprocessor pipelines. The possibility of wear-out

failures and manufacturing defects is forcing multicore architects to include the

capability of deconfiguring various features that may become faulty, to permit the

system to operate in a degraded state in the event of a hard error. The most obvi-

ous redundancy to exploit in a multicore microprocessor is at the core level, where

an entire core is disabled when it encounters the first fault. With many failures

possible at product shipment [11] and over the lifetime of a product, this approach

is wasteful and quickly degrades the performance of the entire system. On the

other hand, finer grain levels of redundancy that permit each core to operate in a

degraded state provide longer processor lifetime. Examples of processor structures

whose inherent redundancy have been exploited by prior researchers for fault tol-

erance include banked RAM structures such as caches and register files [48, 64],

multiple queue entries [12], and duplicate functional units [64]. Even though this

approach provides very good resiliency to multiple faults, at very fine grained lev-

els of redundancy, the overheads associated with fault detection, isolation, and

reconfiguration or spare replacement can be prohibitively large.

Arguably, the most difficult challenge of defects and wear-out faults is providing

reconfiguration mechanisms that have a reasonably low built-in cost and that,
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Figure 5.1: Lane-based fault tolerant pipeline microarchitecture.

when activated, have a high probability of making the loss of chip functionality

imperceptible to the user from a performance perspective. One recently proposed

approach is to salvage partially functional cores by stitching working parts together

to form a fully functional core. For example, StageWeb [29] implements a sea of

pipeline stages microarchitecture in which individual stages can be combined via a

set of interconnection networks to form fully-functional pipelines. Should a stage

become defective due to a wear-out failure, the interconnect is reconfigured to make

best use of the remaining fully-functional stages. The advantage of this approach

of stitching together fine-grain vertical slices of a conventional pipeline is that it

can make good use of the fully functional stages within the chip, so long as defects

are distributed in a way that permits nearby stages to be suitably combined. A

potential disadvantage is the built-in area, power, and performance costs of the

network that is required to combine stages.

An alternative to this ”vertical slicing” approach is to slice the pipeline horizon-

tally, using the modular CMP design presented in Chapter 3. Figure 5.1(a) shows

a superscalar pipeline with a fault that causes one of the instruction decoders to
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be unusable. The fault reduces the decode width by one instruction, which in turn

decreases the front-end (FE) width by one instruction due to the tightly-coupled

nature of the front-end pipeline stages. Thus, if the FE is architected as individual

instruction lanes – horizontal slices through fetch, decode, rename, and dispatch

that can be independently deconfigured – the FE can be reconfigured as a func-

tional, but narrower, pipeline (Figure 5.1(b)). Moreover, since the issue queue

decouples the front and back ends of the pipeline, the back-end (BE) can remain

operational at its full width.

Similarly, a fault in one of the execution units (Figure 5.1(c)) reduces the

execute width by one instruction, which in turn decreases the BE execution width

by one instruction. With the BE pipeline architected as lanes similar to the FE,

the affected lane can be deconfigured to permit the BE to operate as a narrower

pipeline while the FE remains fully functional (Figure 5.1(d)).

A significant advantage of this approach over a vertically sliced microarchitec-

ture is that it obviates the need for a complex interconnection network between

adjacent pipeline stages. A laned microarchitecture can leverage common built-in

pipeline mechanisms – such as the rotation of instructions from the cache into

the proper pipeline position [76], and partial instruction issue to a subset of the

functional units – to provide low-cost deconfiguration in the presence of a pipeline

fault.

Despite these advantages, a laned microarchitecture may introduce pipeline

imbalance. A modern pipeline is highly tuned to match its instruction fetch,

load/store, and execution bandwidths according to the overall characteristics of

the workload. When a fault causes a lane of the FE or BE to be deconfigured,

the unaffected part of the pipeline may now become overprovisioned. That is, the
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full width of the unaffected part of the pipeline may become unnecessary given the

reduced bandwidth in the faulty pipeline section. This mismatch of the front and

back end bandwidths leads to inefficient use of chip power.

As we show in Section 5.3.1, the deconfiguration of a lane due to a fault can

lead to significant pipeline imbalance in some applications. We propose to rebal-

ance the pipeline in these situations through symbiotic deconfiguration of a lane of

fully-operational, but now overprovisioned, pipeline regions. This approach takes

advantage of the lane-based deconfiguration capability built into the fully func-

tional pipeline for fault tolerance. For some applications, additional deconfigura-

tion of a lane of a fully-functional pipeline region results in significant performance

loss. For those applications, only the lane with the fault is deconfigured while

the other regions remain fully operational. Thus, symbiotic deconfiguration is a

dynamic technique that deconfigures additional lanes in fault-free pipeline regions

only when those regions are overprovisioned for the currently running application.

Symbiotic deconfiguration can restore the performance lost due to pipeline

faults by enabling chip-wide power redistribution. A key observation is that pipeline

rebalancing via symbiotic deconfiguration results in little additional performance

loss while recouping a comparatively larger amount of the chip-wide power margin.

The power saved by improving pipeline efficiency in this manner can be more prof-

itably used to boost chip-wide performance by transferring that power to other

functionality. An obvious choice is to boost the frequency of the affected pipeline

via DVFS. However, we show that the use of several performance boosting tech-

niques, and distributing all such harnessed power from a chip-wide pool in a more

optimal fashion among multiple cores, yields significantly higher performance.

The focus of this chapter is PowerTransfer, a novel fault-tolerant modular
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multicore architecture that harnesses power through dynamic pipeline rebalancing

and uses that power to recover the performance lost due to pipeline faults. Power-

Transfer identifies power harnessing opportunities in which a now-overprovisioned

pipeline region can be symbiotically deconfigured with little performance loss, and

simultaneous boosting opportunities where applications can improve performance

given the harnessed power to enable additional microarchitectural features.1. We

develop heuristic optimization methods that permit periodic assessment of sym-

biotic deconfiguration and performance boosting opportunities and that achieve

nearly the same performance as exhaustive techniques that cannot scale to large

multicore systems. Our results for up to 32 core CMPs demonstrate that Pow-

erTransfer can fully recoup the lost performance due to pipeline faults, thereby

making these faults imperceptible to the user.

5.2 Performance Boosting Techniques

Once a margin of additional available power has been accumulated by exploiting

both permanent unit deconfiguration (due to a fault) and phase-level deconfigu-

ration (for pipeline rebalancing), this power is distributed among the chip compo-

nents in order to boost performance. This is accomplished by temporarily enabling

previously dormant hardware features within the limits of the global power budget

and local temperature thresholds.

By definition, a performance boosting technique does not improve performance

for most applications; otherwise, the technique would be built-in to the design by

default. Rather, these techniques improve what might be deemed performance cor-

1Such a feature, when enabled, must not cause a violation of maximum thermal limits or
excessive di/dt noise.
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ner cases, snippets of particular applications. In fact, one might consider microar-

chitecture techniques that were discarded from consideration since they improved

performance for a small subset of applications as candidate performance boost-

ing techniques, so long as their overhead is reasonably minor. While the speedup

may be significant in these situations, in most cases, the power cost exceeds the

performance gain such that the technique is not enabled by default.

Thus, there are a number of important criteria in considering the adoption of

a particular performance boosting technique. Since the dormant boosting tech-

niques must be readily available for temporary use, fast power-up is necessary

to ensure timely exploitation of the accumulated power. Moreover, engaging the

performance boosting technique must not cause sudden power surges or trigger lo-

calized hotspots due to increased resource utilization, which would engage DVFS

and counteract performance gains. Ideally, the technique should also be simple

in design and have low overhead to justify its existence on-chip in the powered-

down state. In the powered-up state, the technique should provide a good per-

formance/power ratio for particular application phases. In addition, the boosting

techniques should collectively cover a range of performance corner cases such that

there is ideally always some worthwhile boosting technique to engage given some

harnessed power no matter what mix of applications are running.

In PowerTransfer, several boosting techniques are implemented that collectively

cover a range of performance corner cases such that there is ideally always some

worthwhile boosting technique to engage given some harnessed power, no matter

what mix of applications are running.

While there are many potential approaches, we implement three techniques

that cover the spectrum of CPU, cache hierarchy, and memory performance-bound
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applications: DVFS, Speculative Cache Access, and Checkpointed Early Load Re-

tirement (Clear) [47]. This is not intended to be a complete list as there are likely

dozens of potential techniques.

5.2.1 Dynamic Voltage and Frequency Scaling

As a result of a fault and subsequent symbiotic deconfiguration, the processor

has narrower processing bandwidth and is not able to exploit as much ILP in the

currently running application, leading to reduced IPC. To compensate, the saved

power can be used to increase the voltage and frequency of that core, assuming

this core was operating below its maximum settings due to power budget con-

straints. Thus, the lost IPC can be made up with increased frequency, hopefully

negating much of the performance penalty of the hardware fault. Future micropro-

cessors may include multiple frequency and voltage domains, and recent research

has shown the merits of separate domains for each core [39, 45]. Similar to In-

tel’s Turbo Boost [75], we increase the operating voltage and frequency within the

constraints of the overall power budget.

We note that benchmarks can be divided into three rough categories: high, mid,

and low IPC benchmarks. Since we only boost the frequency of the core but not of

main memory, low IPC benchmarks that are already memory bound will exhibit

insignificant improvement in performance even when operated at a significantly

higher frequency. High IPC benchmarks are generally computation bound and

could benefit from boosting given enough power harnessed from deconfiguration.

The most straightforward approach is to use the saved power locally within the

core with the faulty unit to compensate for the loss in IPC performance. Instead,
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PowerTransfer adds any locally saved power to the chip-wide pool of accumulated

power for potential use in boosting other cores’ performance. While this requires

more complex chip-level power management algorithms, a performance gain closer

to the global optimal can be found. For instance, it would be more worthwhile

to boost the frequency and voltage of another core running a computationally

intensive thread when the local core is running a memory-bound thread.

We apply DVFS by noting that memory behavior is usually well correlated

with IPC. As such, benchmarks with high IPC are usually not memory bound and

are considered good candidates for DVFS boosting. Benchmarks are thus sorted

by IPC and DVFS is speculatively engaged in a greedy fashion starting with the

highest IPC benchmark until the leftover power is exhausted. If the DVFS boost

will exceed the power budget, voltage and frequency are scaled down accordingly.

We use four voltage and frequency levels above the baseline frequency and

voltage, in 2.5% Vdd increments. We limit the Vdd increase to 10% above nominal

to avoid overly engaging the Global Power Manager when the power budget is

exceeded.

While DVFS provides good power savings relative to the performance loss when

scaling frequency down, the opposite is true when scaling frequency up (boosting):

a cubic increase in dynamic power is incurred for a linear increase in frequency. The

other two techniques that we identify have a more favorable power-performance

ratio, and are also beneficial for applications that are not CPU-bound.
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5.2.2 Speculative Cache Access

For applications that are L1 miss limited, improvements in the access time of lower

levels of the cache hierarchy would be more beneficial than DVFS. Speculative

cache access is an effective means to boost performance at reasonable cost.

L2 caches are typically accessed in sequence after L1 lookup. To do so otherwise

would greatly increase power consumption for relatively little overall performance

gain. A performance boosting technique that requires little added hardware com-

plexity is to speculatively send L1 requests to the L2 cache simultaneously in order

to reduce the delay penalty in the case of an L1 miss. We expect good improve-

ments for applications that miss in the L1 but hit in the L2.

The main drawback of this technique is the substantial additional power re-

quirement, which amounts on average to increasing a core’s power usage by 60%.

There are two sources of additional power. First, speeding up the memory hierar-

chy increases the rate of computation performed by the core. As such, the Issue

Queue, Functional Units, and Register File are exercised considerably closer to

their design limits, causing them to dissipate proportionally more power. How-

ever, the biggest source of additional power (on average four fifths of the total)

comes from unnecessarily accessing the L2 cache even in the presence of L1 cache

hits.

In order to reduce this latter power consumption, we add a Load Miss Predictor,

a two-bit saturating counter, updated with L1 hit/miss information in a similar

fashion to the one used in Alpha 21264 [43] for speculative instruction issue. That

is, on a load hit, we increment the counter by one, and on a load miss, we decrement

the counter by two in order to bias it more heavily towards a performance benefit (a
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load that is predicted as a hit in L1 but actually misses has the effect of serializing

L1 and L2 accesses). As we show in Section 5.3.1, this low-overhead predictor has

little performance penalty yet reduces L2 access wasted power by 90% on average.

A similar cost-effective performance boosting technique is to access the L2

tags and data in parallel. Lower level caches such as those in the Itanium II [74]

and Alpha 21164 [25] access the tag and data arrays in sequence due to power

concerns. Given additional harnessed power due to symbiotic deconfiguration, and

an application that can achieve significant performance gains from parallel tag and

data access, the L2 cache can be easily switched into parallel mode.

5.2.3 Checkpointed Early Load Retirement

Many speculative techniques have been proposed to boost the performance of

memory-bound applications, but these may come at a prohibitive power cost.

When there is potential benefit (i.e., many long latency loads) and sufficient power

has been harnessed, we engage Clear mode [47]. In this mode, the registers are

checkpointed, stores are buffered in the store queue, loads are speculatively early re-

tired, and the predicted values are supplied to their destination registers. Through

these mechanisms, dependency chains following a long latency load complete early,

and processor resources are freed for use by non-dependent instructions. We im-

plement a Prediction Queue of 48 entries, up to four checkpoints, and a checkpoint

allocation threshold of seven loads.
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5.2.4 Power Transfer Runtime Manager

The PowerTransfer Runtime Manager (PTRM) coordinates the chip-wide effort

to re-allocate power among the cores to maximize performance. The PTRM col-

lects online profile information on the performance and power dissipation of the

applications on each core to assess the costs of possible deconfigurations and the

benefits of power boosting alternatives. It then determines what lanes should be

symbiotically deconfigured to save power, and allocates the harnessed power to

boosting mechanisms on the different cores. In order to adapt to dynamic pro-

gram behavior, the PTRM operates at a time granularity of tens to hundreds of

milliseconds.

Operation at this time granularity also allows the PTRM to coordinate with

the Global Power Manager (GPM), which controls per-core frequency and voltage

to maintain the chip-wide power budget. The GPM acts as a fail-safe mechanism

in instances where the PTRM underestimates the additional power cost of enabling

a performance boosting techique. Such overshoots, which we account for in our

results, occur infrequently.

However, operation at this time granularity makes an exhaustive search of

symbiotic deconfigurations together with the performance boosting techniques un-

feasible. Each core can be configured in 160 ways: 4 symbiotic deconfigurations, 5

DVFS configurations (one of four DVFS levels or no frequency boosting), 4 ways

to employ Speculative Cache Access, and 2 ways to employ Clear (on/off). For

a four core CMP, this results in a total of 1604 chip-wide combinations, clearly

showing that runtime exhaustive exploration of the space is impractical.

Therefore, the PTRM uses systematic sampling and power-performance metrics
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to make symbiotic reconfiguration decisions. After this step, for a four core CMP,

the PTRM can exhaustively explore the different combinations of performance

boosting techniques. For larger CMPs, this approach is not scalable, and therefore

the PTRM uses heuristic optimization algorithms to select the combination of

boosting techniques.

There are a number of alternatives for implementing the PTRM. In order to

obtain data about faulty components, deconfigure units, and obtain performance

and power statistics, the PTRM requires access to low-level hardware informa-

tion. Consequently, one option is to implement the PTRM as an embedded mi-

crocontroller similar to the Foxton Technology Controller included in Intel’s Mon-

tecito [52]. The advantages of this approach are direct access to hardware and the

fast, real-time responsiveness of an on-chip controller. However, implementing the

whole manager in hardware would incur the highest die area and hardware com-

plexity costs. Furthermore, it would be the least amenable to upgrades, which may

be quite useful as the processor ages and wears out further, changing the power

re-allocation tradeoffs. An alternative to a full hardware solution is to dedicate

hardware to detect errors, deconfigure components, and gather statistics, and im-

plement the re-allocation logic in software. The re-allocation algorithms could be

incorporated into a low-level hypervisor (supervisor) level thread, or at the higher

level as part of the operating system. The main factors dictating the best op-

tion would be the ease of implementation, the desire to expose applications to the

decision process, and the desired granularity at which the PTRM should operate.
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5.2.4.1 Symbiotic Deconfiguration

The PTRM first makes symbiotic deconfiguration decisions on each core by de-

configuring one lane for a sampling period in each of the fully-functional pipeline

regions in turn, as well as simultaneously deconfiguring one lane in both regions,

while monitoring the impact on performance and power. Symbiotic deconfigura-

tion is performed if the Power Performance Ratio (PPR) of a deconfiguration is

greater than a threshold, which was empirically determined to be 2. If multiple de-

configurations meet the PPR threshold, then the deconfiguration with the highest

PPR is chosen. Since symbiotic deconfiguration decisions are local to each core,

the sampling takes place in parallel on all cores. Thus, the sampling time remains

constant regardless of the number of cores.

5.2.4.2 Decision Algorithms

For small (four core) CMPs, the calculation of the optimal combination of per-

formance boosting techniques is computationally feasible, and we discuss this ap-

proach in the results section. For larger CMPs, such an approach is intractable,

and we therefore rely on heuristic optimization techniques.

The Power Transfer Runtime Manager must solve the constrained integer global

optimization problem of maximizing CMP performance under a given power bud-

get. The objective function to be maximized is the performance relative to a

baseline without PowerTransfer, given by equation (5.1):

f(~x) = N

√√√√N−1∏
i=0

BIPS(xi)

BIPS(baselinei)
(5.1)
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where N is the number of cores, ~x is a vector of size N consisting of the current

configuration for each core, xi is the ith core on the chip running the current

configuration, BIPS(xi) is the BIPS of the ith core, and BIPS(baselinei) is the

BIPS of the ith core running on the baseline.

The objective function further has the constraint of meeting a certain power

budget, so Deb’s constraint handling method [22] is employed to differentiate be-

tween feasible (under power budget) and infeasible (over power budget) solutions.

This type of constraint handling penalizes configurations that consume more power

than allowed, thus ensuring that infeasible solutions are never chosen over feasible

solutions. The final function to be maximized has the form:

F (~x) =


f(~x) if g(~x) <= maxPower

1− g(~x) if g(~x) > maxPower

(5.2)

where g(~x) is the constraint violation function and is defined as the current power

consumption of the entire core: g(~x) =
∑N−1

i=0 Power(xi).

The solution for the objective function is the vector ~x, the configuration of each

core that results in the best global performance. With C possible configurations for

each core and N cores, ~x can take CN values. For a four core CMP, an exhaustive

exploration of the space is computationally feasible, but infeasible for larger CMPs.

As the number of cores increases, the search space becomes extremely large due

to combinatorial explosion. Moreover, the solution vector ~x consists of discrete

rather than continuous variables, which makes it difficult to solve the objective

function using classical mathematical techniques such as derivative or limit based

methods. Another limiting factor is the need for relatively frequent reevaluation
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in order to adapt to the dynamically changing behavior of the scheduled running

applications.

Heuristic algorithms are attractive due to their efficiency and effectiveness in

searching complex and unknown spaces, and their computational performance can

be adjusted by limiting the number of objective function evaluations at the ex-

pense of solution accuracy. Two widely used heuristic algorithms are Simulated

Annealing and the Genetic Algorithm, which operate by using information gath-

ered from past searches about an unknown space to bias future searches towards

more useful subspaces. The next subsections detail the two algorithms that were

modified to suit our objective function and search space.

5.2.4.2.1 Integer Coded Genetic Algorithm The Genetic Algorithm was

described previously in Section 4.2.2.

Parameters: We empirically explored a variety of parameter values and chose

a population size of 20 individuals, a crossover probability of 0.9, and a mutation

probability of 0.7. We run the simulation for 25 generations (which corresponds to

500 Objective Function evaluations) as a compromise between algorithm accuracy

and a computation time of less than 1% of the time quantum for large CMP

configurations.

5.2.4.2.2 Simulated Annealing Simulated Annealing [46] is based on a rep-

resentation of the annealing technique in metallurgy, where a material is kept at a

temperature for a period of time and then the temperature is dropped at distinct

points. Our heuristic Simulated Annealing algorithm accepts random solutions at

high ‘temperatures’ (beginning of simulation) in order to avoid becoming stuck in
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Figure 5.2: Simulated Annealing algorithm.

a local optima, and behaves more like a greedy algorithm as the temperature is

decreased. The high-level algorithm operation is shown in Figure 5.2. At each

iteration, a random neighbor of the current solution is chosen and evaluated. If

the neighbor objective function value is higher than the current one, the move

is automatically accepted and the neighbor becomes the current solution. If the

neighbor objective function value is lower than the current one, the ‘uphill’ move

is accepted with probability P as shown in equation (5.3).

P = e−
F (~xneighbor)−F (~xcurrent)

T (5.3)

Here, F (~x) is the objective function value for the solution vector ~x, and T is the

current temperature value. For every iteration, the temperature is computed as

Tk = αTk−1, where k is the iteration number and α is a simulation parameter that

can take values between 0 and 1.
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Parameters: We empirically explored a variety of parameter values through

offline simulation and chose the following for online simulations: an initial tem-

perature of 170, an α value of 0.9966, and a neighborhood size of 6. As with the

Genetic Algorithm, we limited the online simulation to 500 iterations.

5.3 Results and Discussion

5.3.1 Methodology

To evaluate PowerTransfer, we use the same approach and simulation infrastruc-

ture as the one presented in Section 4.3.1.

We use this baseline presented in the same chapter to model 4, 8, 16, and 32

core CMPs, where each core runs one of 13 SPEC CPU2000 benchmarks. We

fast-forward each benchmark five billion instructions and run for a total time of

100ms, the granularity at which we periodically engage PowerTransfer. We create

20 randomly chosen four-benchmark workloads that run on 20 four-core configura-

tions, each with a random single fault chosen from the three possible coarse-grain

errors (FE, BE, LSQ). For 4- and 8-core CMPs, benchmarks are not repeated for

any given workload as this would tend to accentuate the benefit of our approach,

but the same fault may occur in more than one core. For 16- and 32-core CMPs,

we randomly repeat some benchmarks since the total number of cores is greater

than the number of available benchmarks.

All Heuristic Algorithms were written in C++ and compiled with the “-O3”

flag. Due to the stochastic nature of the Heuristic Algorithms, each was run 10
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times for each configuration and the results averaged. All the results exhibit a

relatively tight distribution, so additional trials were unnecessary.

We use a sampling interval of 4ms within a 100ms time quantum. Also, to

address the possibility that the configurations deemed best in the sampling phase

could exceed the power budget in a 100ms quantum, the GPM uses DVFS to

reduce the frequency and voltage when the power budget might be exceeded.

To evaluate the PTRM, we assume that the power budget for any particular

benchmark-core combination is the total power used by that benchmark on that

core in the absence of faults. We also assume that the maximum CMP power

budget is the sum of the power of all current benchmarks running on the cores in

the absence of faults. This approach avoids accentuating our improvements due to

an artificially high chip-wide power budget. We evaluate our PowerTransfer archi-

tecture with respect to a CMP with the initial random errors without symbiotic

deconfiguration or performance boosting.

5.3.2 Comparison with Core Sparing

We qualitatively address both the benefits and disadvantages of PowerTransfer over

much simpler approaches to fault tolerance such as using spares at the core level.

In the latter proposal, upon detection of a fault (whether due to manufacturing or

wear-out), the entire core that contains the fault is taken offline. For the following

example, we look only at the performance of the microprocessor at shipment time,

but it is important to note that the addition of wearout failures makes the case for

PowerTransfer even stronger.

The efficacy of the core sparing technique is reliant on the availability of more
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Figure 5.3: Comparison of PowerTransfer and Core Sparing with respect to
manufacturing defect density. The red area (left) represents de-
fect densities at which Core Sparing maintains peak performance
at lower overhead than PowerTransfer. The green area (right)
corresponds to defect densities at which Core Sparing is unable
to maintain the same performance as PowerTransfer.

spares than defects. If there are more defects then available spares, the perfor-

mance of core sparing decreases rapidly. If there are more spares than defects, the

performance of the system remains unchanged. We show in the following sections

that PowerTransfer is able to match a fault free system even in the presence of a

fault in every core simultaneously. In order to compare core sparing with Power-

Transfer, we assume that the total area of the two is equivalent. Therefore, core

sparing will have S spares available, where S is the area overhead of PowerTransfer

divided by the area of one core. Figure 5.3 shows the ratio of spare cores to number

of defects for a range of defect densities and PowerTransfer area overheads ranging

from 10% to 30%. If this ratio is larger than 1, core sparing is able to maintain

peak performance. If the ratio is smaller than 1, core sparing incurs significant

performance losses. The red horizontal line, corresponding to an equal number

of spares and defects, is the breakeven point, where the two architectures (core

sparing and PowerTransfer) perform the same for the same area overhead.
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For example, if the area overhead of PowerTransfer is 20%, the red area rep-

resents the defect densities that can be tolerated with core sparing. As the defect

densities rise (green area), only PowerTransfer is able to maintain peak perfor-

mance. Since defect densities are not released from industry, the takeaway from

Figure 5.3 should be trends rather than exact numbers:

• For higher defect densities, PowerTransfer provides better yield than spares;

• For lower defect densities, PowerTransfer can withstand manufacturing de-

fects as well as wear-out defects, whereas spares may be largely used up at

product shipment and fail with fewer wear-out failures; and

• The overall lifetime performance of PowerTransfer is higher than that of

CMPs with spare cores that fit in the same area.

5.3.3 Performance Loss Due to Pipeline Faults

Figure 5.4 shows single-core performance relative to a fault-free core for 13 bench-

marks, each with a single fault in the Front End, Back End, or Load Store Queue,

sorted from high performance loss to low performance loss. As expected, the per-

formance varies widely depending on the benchmark-error pair; gcc running on a

core with a FE fault loses more than 20% of its performance, while crafty running

on a core with a LSQ fault loses less than 1%. In 20% of the cases, the perfor-

mance loss is greater than 10%. We later show that PowerTransfer recovers the

performance lost due to these pipeline faults.
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Figure 5.4: Performance relative to a pipeline with no faults for all 39 com-
binations of benchmarks and single pipeline faults.

5.3.4 Pipeline Imbalance and Symbiotic Deconfiguration

We first evaluate the pipeline imbalance that may occur due to a fault and subse-

quent deconfiguration, as well as the viability of symbiotically deconfiguring addi-

tional functionality to save power with little added performance cost. Symbiotic

deconfiguration is effective if in the presence of a fault, the additional deconfig-

uration yields little additional performance loss relative to the added power sav-

ings; this indicates that the fault creates pipeline imbalance that, when corrected

through symbiotic deconfiguration, permits significant power to be harnessed rel-

ative to the performance loss.

Figure 5.5 shows the performance loss and power savings (due to gating the lane

of the affected region) for an initial fault in the LSQ, as well as the effect of sym-

biotically deconfiguring a lane in the FE. The left solid bars show the performance

loss while the right hashed bars show the power savings. The lower subsections of

the bars denote the performance cost and power savings from deconfiguring one

lane within the faulty region, while the upper stacked subsections show the addi-

tional performance loss and power savings by additionally deconfiguring a lane of
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Figure 5.5: Performance loss (left bars) and power savings (right bars) due
to an initial fault in the LSQ and with symbiotic deconfiguration
of a FE lane.

the FE. Similar results were obtained for FE and BE faults.

We make two major observations from these results. First, the initial decon-

figuration due to the faulty unit yields significant performance losses for some

benchmarks, but also appreciable power savings in many cases. In most cases,

the power/performance ratio is much less than two, indicating that the unit is not

overprovisioned to begin with. However, given a fault, the power saved by decon-

figuring the affected lane can be used to boost performance by some other means,

even without symbiotic deconfiguration.

Second, additional symbiotic deconfiguration can yield a large power savings for

a small additional performance loss (much greater than two to one), but for only a

subset of the benchmarks (e.g., for bzip2 but not for gcc). Thus, large performance

losses can be incurred by blindly deconfiguring additional units without regard

for the characteristics of the running application. On the other hand, judicious
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symbiotic deconfiguration in cases of pipeline imbalance can be an effective means

of harnessing additional power that can be used elsewhere.

Figure 5.6: Breakdown of symbiotic deconfiguration decisions given a fault
in the FE, BE, and LSQ using the Hierarchical Exhaustive algo-
rithm discussed in Section 5.2.4.2.

Figure 5.6 shows the breakdown of the symbiotic deconfiguration decisions

made by the Hierarchical Exhaustive algorithm discussed in Section 5.2.4.2 for 32

cores. The three bars correspond to faults in the FE, BE, and LSQ, with each

bar showing the percentage of instances where a lane in only one of the non-faulty

pipeline regions was deconfigured (Deconf1 and Deconf2), lanes in both regions

were deconfigured (BothDeconf), or no symbiotic deconfiguration was performed

(NoDeconf). There is no single best deconfiguration decision for any of the three

initial faults, and errors in the Front End and Load Store Queue result in a dynamic

set of deconfiguration decisions. In the case of an initial error in the Back End, no

symbiotic deconfiguration is performed most of the time. This is due to the fact

that the Back End has the most power hungry structures, accounting on average

for over 50% of the total processor power, while the Front End and Load Store

Queue contribute on average 10% and 6%. It is thus more difficult to meet the

target power-performance threshold by deconfiguring lanes in the Front End (and
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Load Store Queue to a lesser extent) without crippling processor performance.

5.3.5 Performance Boosting Techniques

In this section, we evaluate the characteristics of the three performance boosting

techniques described in Section 5.2. We first evaluate the two cache hierarchy

boosting techniques that use the predictor described in Section 5.2.2, and then we

compare the three performance boosting techniques in terms of performance and

power.

There are three possible ways to combine the two cache hierarchy boosting

techniques: accessing both the L2 tag and data in parallel on reads (denoted as

L1L2SeqL2Par in our graphs), speculatively sending all L1 cache requests concur-

rently to the L2 cache (L1L2ParL2Seq), and employing both techniques at the

same time (L1L2ParL2Par).

Figure 5.7: L1 cache Load Miss Predictor accuracy.

The main drawback is the substantial increase in power usage, which amounts
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to increasing a core’s power usage by approximately 60% on average. As explained

in Section 5.2.2, we employ a simple Load Miss Predictor for each of the L1 caches

that has minor area/power impact and greatly improves the power consumption.

Figure 5.7 shows the performance of the L1 data cache Load Miss Predictor (the

predictor in the instruction L1 Cache has an even smaller misprediction rate).

86.7% of the L1 accesses are correctly predicted. The mispredictions come in two

flavors: 5.1% of the total accesses are predicted as a hit but actually miss in L1,

effectively serializing the L1-L2 lookup. The other 8.2% of the L1 cache accesses

are predicted as a miss but actually hit in L1, which means that the power used

to perform the lookup in the L2 cache is wasted. However, employing a two bit

predictor in each of the data and instruction L1 cache reduces the overall additional

L2 cache power by 90%.

Figure 5.8 shows the percent performance improvement and percent power

increase for the three techniques for each benchmark. The speculative cache access

technique proves beneficial only for a few of the benchmarks, with crafty receiving

the most gain (29%). Even with the predictors, crafty needs over 25% more power

in order to implement speculation in both L1 and L2 cache levels. This is a

significant amount of power, and the cores running the targeted applications would

not meet the power budget if it is statically turned on at product shipment. It is

important to note that no technique is superior across all benchmarks. While Clear

has the greatest performance benefit for many benchmarks, Speculative Cache and

DVFS are the best techniques for other benchmarks (mesa, crafty, and vortex for

the former, and apsi and parser for the latter). Moreover, for some techniques

and benchmarks, a large amount of the chip-wide harnessed power is necessary to

engage the technique. The decision of which combination of performance boosting

techniques to engage is workload dependent and cannot be based on performance
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Figure 5.8: Performance improvement (top) and power cost (bottom) for the
performance boosting techniques.

alone, but rather the combination of techniques that will yield the largest chip-wide

performance gain given the available harnessed power.

However, the decision cannot be based on performance alone, but rather which

techniques will yield the highest chip-wide performance gain given the available

power. The Power Performance Ratio (PPR), the ratio of the percent power in-

crease to percent performance gain (relative to no boosting) is an effective metric

for making this decision. The smaller the PPR, the more efficiently the technique

uses the accumulated power. Figure 5.9 shows PPR ratios for the three proposed

boosting techniques. As mentioned previously, DVFS has a high power cost relative
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Figure 5.9: PPR of the three boosting techniques.

to the performance gained when voltage and frequency are increased. Speculative

Cache and Clear often provide a more favorable power to performance ratio than

DVFS. Therefore, as we explain in Section 5.3.7, we first use the available har-

nessed power for Speculative Cache and Clear and then any remaining power is

used to engage DVFS.

5.3.6 Fundamental Trade-offs

In order to gain insight into the effectiveness of the different performance boosting

techniques, the interactions between symbiotic deconfiguration and performance

boosting, and the impact of locally versus globally managing the accumulated

power, we developed a number of offline PowerTransfer managers. Given a set

of initial deconfigurations (due to hard faults) and applications for the four cores,

these managers have a priori knowledge of the performance benefits and power cost

tradeoffs for each possible symbiotic deconfiguration and performance boosting

possibility. We model this perfect knowledge by calculating the global BIPS for
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all combinations of symbiotic deconfigurations and power boostings for the same

100ms time quantum, and pick the configuration that maximizes the geometric

mean of all the cores’ BIPS with respect to the baseline. We choose the geometric

mean in order to avoid overly penalizing low IPC applications to benefit high IPC

ones.

For this study, we evaluate 100 random 4-core CMP configurations. Each con-

figuration consists of 4 random benchmarks-error combinations. All results are

with respect to the same 4-core configuration with errors but without PowerTrans-

fer.

5.3.6.1 Single versus Multiple Performance Boosting Techniques

Figure 5.10 compares the improvement in throughput for 100 four-core configura-

tions with random initial errors for a manager that globally employs only DVFS,

one that globally employs all three performance boosting techniques (DVFS, Spec-

ulative Cache Access, and Clear), and one that locally employs all three techniques,

i.e., any harnessed power from a core is only applied to boosting that core’s per-

formance.

The results of Figure 5.10 confirm the intuition from Figure 5.8 that DVFS

is not sufficient to reap the available performance benefits. Rather, a number of

techniques in combination is necessary to boost different application classes. With

all three techniques, the chip-wide throughput is improved on average by 22.2%,

while using DVFS as the sole boosting technique achieves only a 6.3% average

increase in chip-wide throughput. The individual Speculative Cache and Clear

techniques also fall far short, increasing chip-wide throughput by an average of 9%

and 13%, respectively.
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Figure 5.10: Throughput improvement with only DVFS used globally (Glob-
alDVFS), with all three boosting techniques used globally
(Global3), and all three techniques used locally (Local3).

Table 5.1: Symbiotic deconfiguration decisions given an initial error, the
available boosting techniques, and whether decisions are made
locally or globally.
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Table 5.2: The number of times that each boosting technique is engaged
given the available boosting techniques and whether decisions are
made locally or globally.

Table 5.1 shows the deconfiguration decisions as a function of the initial error,

the available boosting techniques, and whether the decision is made locally or

globally. Note that the symbiotic deconfigurations made by the managers are

highly application and fault dependent. For example, out of the 100 initial 4-core

configurations (total of 400 cores), 140 of them were randomly picked to have

a Front End fault. In 98 of the 140 cases the best decision is to symbiotically

deconfigure the Back End, in 20 cases the LSQ is deconfigured, and in 22 cases no

symbiotic deconfiguration is performed. While there is often a bias towards the

symbiotic deconfiguration of one region over another depending on the initial fault,

it is not a clear-cut decision to engage symbiotic deconfiguration all the time.

When DVFS is used as a standalone performance boosting technique, symbiotic

deconfiguration is performed less often because DVFS alone cannot compensate for

the performance loss due to symbiotic deconfiguration, even if the power savings

are high. Table 5.2 shows how often the three performance boosting techniques

are used. When all three techniques are available (Global3), DVFS is engaged on

only 47 out of a possible 400 occasions, due to its high power/performance ratio

(Figure 5.9). On the other hand, the Speculative Cache and Clear techniques are

enabled 363 and 332 times, respectively. Overall, DVFS contributes only 1% of

the 22% chip-wide improvement of Global3, making it a “last resort” technique,

used mainly to bring the total power usage as close to the maximum power budget
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as possible. However, DVFS has the benefit that it can be run at multiple power

and performance levels, whereas the other two techniques cannot.

5.3.6.2 Local versus Global Optimization

We assess the benefit of accumulating a global pool of power and applying it to

the best combination of chip-wide boosting techniques by comparing Global3 with

Local3, in which each core makes local symbiotic deconfiguration and boosting

decisions. The 10% average throughput improvement for Local3 is significantly less

than the 22.2% average improvement achieved by accumulating and distributing

the power globally.

When decisions are made locally rather than globally, less symbiotic deconfigu-

ration occurs (Table 5.1). This is due to the fact that the performance lost through

deconfiguration cannot be made up as readily by Speculative Cache Access or Clear

because many times the local power budget does not allow the activation of one

or both of these techniques. With local management, DVFS is activated more fre-

quently because of its ability to adjust the power usage level in small increments.

Even though Clear is enabled for nearly half of the applications, these are not the

applications for which Clear provides the most performance benefits (due to the

power envelope restrictions).

5.3.6.3 Symbiotic Deconfiguration Advantages

Figure 5.11 compares two PowerTransfer designs. Global3 represents PowerTrans-

fer where additional power is saved through symbiotic deconfiguration, and the

performance boosting decisions are globally made at the chip rather than core
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level. NoSymbioticDeconfiguration corresponds to a design where the global pool

of power is accumulated only from the deconfiguration of the lane with the initial

error (without symbiotically deconfiguring other lanes). Like Global3, it also en-

gages all three performance boosting techniques at the global level. The results

shown correspond to the worst performing configuration, best performing configu-

ration, and the average throughput improvement over 100 configurations for both

designs. In the worst case, reallocating power without regard for the pipeline im-

balance resulting from deconfiguration results in an inefficient design, with modest

performance improvement (5%) over simply isolating the initial error. On the other

hand, addressing the pipeline imbalance results (in the worst case) in a substantial

throughput improvement of 14%. In the case where the pristine performance of

each of the four cores is crippled by the initial errors, both PowerTransfer with

and without symbiotic deconfiguration perform well by redistributing the power

to portions of the CMP that most need it, as reflected in the maximum through-

put improvements of 31% and 27%, respectively. This is due to the fact that in

some cases, symbiotic deconfiguration is not performed because it is not attractive,

as seen in Figure 5.5. On average, PowerTransfer with symbiotic deconfiguration

performs considerably better than without symbiotic deconfiguration (throughput

is improved by 22% versus 16%).

5.3.6.4 Reduction of Complexity - Decoupled Decisions

Finally, we implemented an offline manager that decouples the symbiotic decon-

figuration decision from the boosting decision. The manager first accumulates the

largest amount of power possible using only symbiotic deconfigurations with a PPR

of at least 2 (i.e., a minimum 2% power accumulation for a 1% performance loss).

The manager then finds the combination of boosting techniques that maximizes
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Figure 5.11: Normalized throughput improvement using PowerTransfer with
symbiotic deconfiguration (Global3) and without symbiotic de-
configuration (NoSymbioticDeconfiguration).

performance within this accumulated power budget. We found that this decoupled

offline manager achieved an average performance of 20.4%, which is very close to

the 22.2% achieved by Global3. This simplification works well since the PPR is

a good proxy for the effectiveness of the Speculative Cache and Clear boosting

techniques. Since each approach incurs a baseline power cost, the PPR is a good

indicator of whether a particular application will achieve good performance relative

to the power cost for those techniques. A PPR of 2 also works well for DVFS since

this threshold helps to distinguish memory-bound and CPU-bound applications

(Figure 5.9).

The results from this section demonstrate that in order to reap the full benefits

of PowerTransfer:

• Symbiotic deconfiguration decisions must account for the characteristics of

the running applications; however, these decisions can be decoupled from the

decisions of which boosting techniques to engage;
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• Alternative CPU boosting techniques with a better PPR than DVFS should

be used;

• Multiple performance boosting techniques should be implemented to account

for a range of application types;

• A global pool of power should be accumulated and distributed to boosting

techniques in a global fashion.

5.3.7 Power Transfer Runtime Manager

Previous sections presented the fundamental characteristics and limits of the Pow-

erTransfer architecture by predicting results with a priori knowlege over the entire

evaluation interval. In this section, we present overall results for the PTRM,

a practical implementation of the manager. As explained in Sections 5.2.4 and

5.3.6.4 the PTRM first samples the three possible symbiotic deconfigurations, after

which it makes a deconfiguration decision based on the Power-Performance Ratio.

The symbiotic deconfiguration decisions are local decisions that are made for each

core, and as such, the computation time remains constant for any CMP size. It

then samples the system with engaged performance boosting techniques and deter-

mines the best power reallocation and the configuration that maximizes the global

throughput improvement within the power budget. As we show in Section 5.3.7.2,

the computation time required to select the best combinatorial chip-wide configu-

ration grows exponentially, and heuristic algorithms are employed to constrain the

execution time to less than 1% of the decision interval.
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5.3.7.1 4-Core CMP

For four cores, we sample eight boosting configurations, corresponding to the seven

combinations of Speculative Cache Access and Clear as well as no boosting. This

results in 48 (4096) combinations, which can be exhaustively explored within less

than 0.5% of the decision interval (denoted by ’Exhaustive’ in the figures). Using

this information, the best chip-wide configuration that meets the power budget is

chosen. The remaining power (if any) is distributed using DVFS across the cores in

a greedy fashion: the frequency of the highest IPC core is boosted to its maximum

value, then the next highest IPC core, etc, until the power budget is exhausted.

Figure 5.12: Normalized throughput improvement of Exhaustive PTRM for
4-core CMPs with respect to the defect-free CMP (NoError-
Baseline) and to the CMP with random initial errors (Error-
Baseline).

Figure 5.12 shows the relative throughput improvement of PowerTransfer with

respect to two baselines. The first, denoted as ErrorBaseline in the figure, corre-

sponds to 20 4-core CMP configurations, each with a random initial error. The

second baseline, denoted as NoErrorBaseline in the figure, corresponds to pristine

(fault free) CMPs. By addressing the pipeline imbalance created by the error and
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redistributing the power in an efficient fashion, PowerTransfer outperforms archi-

tectures that simply deconfigure the faulty lane by up to 21.5%, and on average

by 12.7%. Moreover, PowerTransfer is able to recoup the lost performance due

to the initial faults in all but 3 of the 20 configurations. In those three cases,

PowerTransfer is within 5% of the performance of a pristine microprocessor. In-

terestingly enough, in almost half the configurations, PowerTransfer outperforms

the fault-free microprocessor by more than 5%. This is a strong indication that

power inefficiencies exist even in fault-free microprocessors, making a case for the

application of PowerTransfer even in the absence of faults.

5.3.7.2 Scalability Study

As the number of cores is increased, it becomes no longer feasible to exhaustively

explore the entire combinatorial space. For 8 cores, the computation time is on

average 2.5 seconds, which is 25 times longer than the time quantum at which

decisions need to be made2. For 16 and 32 cores, the computation time becomes

1.36 years and 3.84 ∗ 1014 years for each of the 20 initial configurations, which is

obviously not computationally feasible.

In order to establish an upper bound estimate for 16 and 32 cores, we imple-

mented a Hierarchical Exhaustive algorithm that groups a subset of the cores into

regions, with 8 cores in each region. Exhaustive search is performed within each

region and the results are combined to obtain a global performance improvement.

In order to avoid pathological core groupings for each region, we performed four

separate tests, each with a different core to region allocation. The computation

time for the Hierarchical Exhaustive algorithm was 5.65 seconds for 16 cores and

2However, we compute the best solution as an upper bound for comparison purposes.

127



12.6 seconds for 32 cores. Although this comprises over 50 times the length of

a decision interval (Figure 5.13), which makes it impractical as a Decision Algo-

rithm technique, it allows us to obtain near-oracle results for these larger CMP

configurations to compare against the Heuristic Optimization algorithms.

Figure 5.13: Computation time as a percentage of the decision interval for the
Exhaustive and Heuristic Optimization algorithms (logarithmic
scale).

Figure 5.13 also shows how the computational time as a percentage of the total

decision interval time scales with the number of cores for the Genetic Algorithm

(GA) and Simulated Annealing (SA). Although the number of objective function

computations stays constant for all CMP sizes, the time taken to evaluate one

objective function value increases, since it requires computing the BIPS improve-

ment for each core. Still, the computation time of both heuristic algorithms scales

extremely well with the number of cores. For 32 cores, the algorithm computation

time comprises only 1% of the decision interval.

Figure 5.14 compares the average overall performance improvement of Exhaus-

tive/HExhaustive, GA, and SA with respect to a CMP that deconfigures the faulty

lane without employing PowerTransfer. Figure 5.15 compares the different ap-

proaches case by case for each of the 20 random initial configurations for a 32-core

CMP. Both heuristic algorithms nearly match the performance of the exhaustive
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Figure 5.14: Normalized performance improvement over the deconfigured
CMP without Power Transfer.

algorithms irrespective of the number of cores. Comparing the two heuristic al-

gorithms results in some interesting observations. For four cores, both heuristic

algorithms are able to search most of the solution space, performing on average

almost identically. As the search space is increased, the Genetic Algorithm slightly

outperforms Simulated Annealing. However, as the number of cores increases to

32, both algorithms are able to evaluate a smaller subset of the possible solutions,

and their average performance becomes matched again. These results indicate that

the search space may have many similar local optima that both algorithms choose

once the search space becomes too large to completely explore in the given time.

Overall, our results show the following:

• Blindly applying symbiotic deconfiguration without accounting for applica-

tion characteristics may lead to significant performance loss with little power

accumulation;

• The selective application of symbiotic deconfiguration through systematic

sampling can harness significant power at comparatively small performance

cost;
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Figure 5.15: PTRM performance of 20 random initial configurations of a 32-
core CMP compared to a CMP without PowerTransfer. The
HExhaustive results are sorted from lowest to highest perfor-
mance gain. The GA and SA results match the corresponding
HExhaustive configuration.

• The use of several performance boosting techniques that can be applied to

different application types is much more effective than the use of a single

technique such as DVFS;

• PowerTransfer is able to fully recover the performance lost due to pipeline

faults, and the heuristic algorithms provide good scalability to large-scale

CMP systems.

5.3.7.3 Sampling Interval Considerations

There is a large difference between the predicted results from Section 5.3.6 and the

realistic PTRM. Comparing Figures 5.10 and 5.12, the maximum average through-

put improvement (obtained with a priori knowledge of the entire decision interval)

is 22.2%, whereas the PTRM average throughput improvement is 12.7%. A small

fraction of this difference is attributed to the decision to decouple symbiotic de-

configuration decisions from performance boosting decisions. However, an oracle
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Figure 5.16: Throughput improvement over the error baseline for the full
decision interval and the steady interval with different sample
durations.

decoupled manager still obtains on average a 20.4% throughput improvement, so

most of the difference between a realistic and an oracle manager comes from the

inaccuracies in sampling. The proposed Power Transfer Runtime Manager runs

a variety of configurations for short periods of time (samples), and then selects a

configuration to be run during the remaining time (steady interval). If the samples

are too short, they do not accurately forecast the behavior of the entire decision in-

terval but less time is spent sampling inefficient configurations. On the other hand,

long samples predict long-time behavior much more accurately, but the overall per-

formance over the decision interval is reduced due to the long time spent sampling

suboptimal configurations.

To demonstrate this point, Figure 5.16 shows the throughput improvement dur-

ing both the entire decision interval (including the sampling phase penalty) and

during the steady interval (which just shows performance of the best found con-

figuration) for two sampling interval sizes. The left bars correspond to individual

sample intervals of 1ms that were used throughout the proposal, which sums up to
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a total 10ms (or 10% of the 100ms decision interval) spent in sampling phase. The

remaining 90% of the time is spent running the predicted best configuration. The

right bars show results for 4ms samples (corresponding to a total of 40 ms spent in

sampling), resulting in only 60% of the decision interval spent running the predicted

best configuration. The longer 4ms samples better predict long-term behavior as

seen from the much higher throughput improvement over the error baseline (an

average of 18%) during the steady interval. At the same time, the shorter samples

result in a steady interval performance improvement of less than 15%. However,

taking into account the entire decision interval, including the performance during

the sampling period, the algorithm that uses 1ms samples marginally outperforms

the 4ms samples because it spends most of the time running a good configuration.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

We introduce a novel lane-based modular architecture where cores are homo-

geneously designed and dynamically reconfigured to addresses both power and

reliability concerns.

6.1 Power Limitations

The era of Dark Silicon will produce a disconnect between the number of devices

that can be integrated on a die and the amount of chip power that can be eco-

nomically supported. As such, the portion of a CMP that can be turned on at

any given point will be limited in order to meet chip-wide power constraints. We

demonstrate that there is a clear need for more sophisticated architectures and

control algorithms as the power is increasingly constrained according to scaling

predictions. We show limitations of currently used power management techniques

and how a modular architecture can be used to complement existing techniques in

an architects tool box when those techniques are not adequate for high performance

computing.

To this end, we customize complex optimization techniques to the reality of on-

line adaptivity. First, we introduce a formal methodology for dynamically charac-

terizing application behavior using surrogate response surfaces. Second, we reduce

the number of expensive sampling evaluations and improve their accuracy through

methodical experimental design. Our architecture applies these techniques and

takes advantage of the variety in application characteristics to tailor the underly-

ing hardware to system goals by redistributing power among the cores of a chip
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multiprocessor. The resulting average performance gains range from 30% to 60%

over static architectures with the same core count and core strength that disable

cores to meet the power budget, and average performance improvements of 10%

to 24% over architectures that engage DVFS to meet the power budget.

6.2 Reliability Issues

Future CMPs built-in highly-scaled technologies also face the prospect of having

to deconfigure hardware units in the face of manufacturing defects and aging-

related faults. Such deconfiguration may lead to application specific pipeline imbal-

ances that reduce the power-performance efficiency of the formerly well-balanced

pipeline. However, this approach is able to maintain functionally correct execu-

tion, albeit at the expense of performance. As such, the issue of maintaining peak

performance in the face of faults has not been addressed satisfactorily. Specifically,

redundancy through the use of core spares incurs significant area overheads, dis-

cards considerable functionally correct realestate, and withstands a very limited

number of faults.

We leverage our novel lane-based adaptive architecture towards PowerTransfer,

a technique that dynamically identifies imbalances and rebalances the pipeline by

proactively deconfiguring additional units. Doing so in an application-specific way

yields additional power savings at little performance cost. The harnessed power is

used to improve chip-wide performance by enabling a combination of performance

boosting techniques chosen by a heuristic optimization algorithm. We demonstrate

that PowerTransfer is able to fully recover the performance loss due to pipeline

faults. We also show that PowerTransfer is scalable to many core systems without
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diminishing the performance benefits, and can withstand at least as many faults

as cores while maintaining peak operation.

6.3 Future Work

In this section, we describe a number of ways in which the work presented in

this dissertation can be extended. The control algorithm methodology proposed

in Chapter 4 can be applied to a variety of optimization goals in the context of

resource utilization management. These include:

• Minimizing power usage under a certain performance guarantee;

• Fair or priority-based allocation of shared resources;

• Assigning the optimal number of processors for a certain task;

• Power allocation between general purpose cores and specialized hardware

such as accelerators.

Our work has focused on multiprogrammed workloads based on existing bench-

marks since they represent the challenge of optimizing multiple individual needs

rather than the homogeneous tasks of parallel applications. However, the number

of workloads available for our simulation infrastructure is limited, and as such our

results scaled to many cores only partly show the pontential of our adaptive tech-

nique. This study can be extended to include workloads from a variety of industry

or open-source standards, such as parallel, emerging, and mixed parallel-sequential

workloads.

This dissertation has addressed inaccuracies in sampling and solutions to high

frequency noise in Section 4.1.2.3. Low frequency noise is not mitigated by our
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work, and may lead to sub-optimal hardware configurations if the applications

enter a different phase during the OS time quantum. In order to eliminate low

frequency noise, phase detection can be added to our architecture to trigger a

re-evaluation before the time quantum ends. In a many core environment with a

large number of applications running, this may lead to very frequent re-evaluation

and large performance loss by repeatedly sampling suboptimal configurations. In

such cases, a hierarchical approach may be employed, performing one chip-wide

evaluation as presented in this work, and finer grained re-evaluations for a subset

of cores given their initially allocated power budget.

Alternatively, different means for application characterization can be explored

to perhaps eliminate the need for sampling. For example, monitoring processor

usage patterns such as queue occupancy, port activity, miss rates, and issue rates

may provide an alternative means for reconfiguration decisions. Alternatively, it is

worth studying whether the adaptive manager can maintain a knowledge base of

application charateristics to make informed decisions without the need for repeated

sampling.

Finally, we present global optimization solutions based on heuristic algorithms.

An extension to this work can explore alternative optimization algorithms. For

example, fast non-dominated sorting (Pareto-front classification) can be applied

in a two-step process, first locally to reduce the number of core configurations

considered for global optimization, and then globally to find the optimal resource

allocation.
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