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This doctoral dissertation examines some magnetic properties of nanoscale con-

ductors. It comprises two classes of problems, namely, the response of closed

nanoscopic systems to an external magnetic field, and the magnetization depen-

dent transport of nanomagnets. In the first class of closed nanoscopic structures

like quantum dots or metal grains, the system has discrete energy levels which

can be modeled by Random Matrix Theory. The addition of a magnetic field is

analyzed using a crossover random matrix model. In Chapter 2, we show that in

the crossover there exist correlations between elements of the same eigenvector and

between different eigenvectors. We show that these correlations between different

eigenvectors lead to enhanced fluctuations of the electron-electron interaction ma-

trix elements which are absent in the pure ensembles. In Chapter 3, we generalize

these results to analyze the magnetic field response of energy levels in ultrasmall

metal grains. We present a theory of mesoscopic fluctuations of g tensors and

avoided crossing energies in a small metal grain that contains both orbital and

spin contributions to the g tensor.

In the second class of problems we study two effects in small ferromagnets

where the charge transport is coupled to the magnetization. In Chapter 4, we

show that a sufficiently large unpolarized current can cause a spin-wave instability

in a nanomagnet with asymmetric contacts. The dynamics beyond the instability



is calculated analytically in the perturbative regime of small spinwave amplitudes,

and numerically for larger currents. In Chapter 5, we study “anisotropic mag-

netoresistance fluctuations” which is the ferromagnetic analog of the well-known

Universal Conductance Fluctuations in metals. The conductance of a ferromag-

netic particle depends on the relative orientation of the magnetization with respect

to the direction of current flow. This phenomenon is known as “anisotropic mag-

netoresistance” and has no counterpart in normal-metal conductors. We show that

quantum interference leads to an additional, random yet (statistically) universal

dependence of the conductance of a ferromagnet on the magnetization direction.

The mechanism for these anisotropic magnetoresistance fluctuations is the inter-

play of spin-orbit scattering, random impurity scattering, and the ferromagnet’s

exchange field.
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Chapter 1

Introduction

This thesis should be viewed as a modest theoretical contribution to the rapidly ex-

panding field of nanoscience. Nanoscience is a relatively young and cross-disciplinary

area of study that has been fueled by major advances in experimental techniques

to fabricate and probe systems at the nanometer scale. While there are many

basic science questions that emerge at this length scale, it would be a very skewed

perspective to not mention the emphasis that is given towards making useful tech-

nology, ranging from the more practical like magnetic memory devices to the more

fanciful ideas in quantum computing or carbon nanotube elevators. Perhaps one

way to appreciate this tremendous technological achievement of making repro-

ducible devices with nanometer dimensions is to contrast this scale with the thick-

ness of human hair which is about 100,000 nanometers. It is without doubt that

some of these devices being imagined today will in the next decade or two, be

standard components in products made by the computer industry.

From a more basic science perspective, the world looks quite different at nanome-

ter length scales. In particular, we are dealing with systems of the order of only ten

to a hundred atoms. The properties of atomic systems is known to be determined

1
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from quantum theory, yet attempts to analytically solve the Schrödinger equa-

tion for more than a single atom become futile. Numerical solutions fare better

and routinely determine the ground state properties of systems comprising tens of

atoms, but for larger systems or those out of equilibrium, alternative techniques

are needed.

It is important to point out that for macroscopic systems, the law of large

numbers and the machinery of statistical physics comes into play. For example,

while quantum theory suggests that there is a finite probability for the water in

your glass to spontaneously escape its confining barrier, the law of large numbers

tells us that we would have to wait longer than the age of the universe to expect

to see this. What this also illustrates is that our intuition built on observations of

the macroscopic world breaks down at these smaller length scales.

Although the statistical methods used to average over 1026 atoms and derive

macroscopic properties fail to work at the nanoscale, it is nonetheless still reason-

able to use bulk concepts like temperature, entropy, average density and resistance.

The methods that were developed to understand the effects of quantum coherence

on these macroscopic quantities gave rise to a branch of condensed matter physics

known as mesoscopic physics. Since the mid-1980s this field has explored the

boundary between the quantum and classical worlds by studying the unexpected

phenomena that emerge from the rich interplay between electron interaction, im-

purity scattering, and boundary conditions.

One of the most important results from mesoscopic physics is that the correct

question to ask at this length scale is not about a particular sample with specific

boundary conditions or disorder configuration, but rather a statistical one about

the properties of an ensemble of samples with similar size, shape and impurity con-
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centration, but with different actual atomic-scale shape and disorder realizations.

Such an average over macroscopically equivalent, but microscopically different en-

sembles is the only one that makes sense if one is to describe the phenomena

seen in actual experiments where the resolution is on the nanoscale and not the

atomic scale. There are many different techniques employed by the mesoscopic

community to perform such microscopic averages. In this thesis we employ two

such techniques: Random Matrix Theory which is described in Section 1.1, and

Diagrammatic Perturbation Theory discussed in Section 1.4.

Another way to think about nanoscale systems is a sort of top-down approach.

Physics is all about different natural laws that begin to play out at different length-

scales, and as one goes to smaller length scales or colder temperatures, certain

physical phenomena that were dominant cease to be so, giving rise to new phe-

nomena. Sometimes this can be very useful from a technological standpoint. An

illustrative example of this that is related to Chapter 4 of this thesis is the physics

of the spin-transfer torque. For most of today’s magnetic memory devices, infor-

mation is stored as bits of spin-up or spin-down magnets that are flipped by an

optimized cross-bar network of current carrying wires running above the bit. The

physics of this has been known since 1820 when the experimental work by Ørsted

and theoretical work by Ampere showed that current in a wire generates a magnetic

field. It is this field that flips the magnetic bit allowing one to write information.

In 1996, Slonczewski [1] and Berger [2] predicted that when a spin-polarized cur-

rent is passed through a ferromagnet it transfers the transverse component of its

spin angular momentum to the ferromagnet. This spin-transfer torque scales pro-

portional to the current density (i.e current per unit area), while the Ampere field

is proportional to the total current. For nanometer length-scales the spin-transfer
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mechanism dominates and becomes a far more effective mechanism for flipping

magnetic bits. Notwithstanding the technological application, this is a typical ex-

ample of how new physical phenomena emerges at the nanoscale. Despite many

attempts (starting from the original works of Slonczewksi and Berger) to provide

a microscopic derivation for the spin-transfer torque, none does too much better

than a simple conservation of angular momentum argument that follows directly

from the well-known spin-filtering properties of nanomagnets. It is important to

keep in mind that the field of nanoscience has many similar examples of new phe-

nomena that are not obtained from an ensemble average over a rigorously defined

microscopic model. It is through a combination of both top-down and bottom-up

approaches that one strives for a better understanding of the nanoscale world.

In this thesis, we are concerned with the magnetic properties of nanoscale

conductors. In Chapter 2, we study the correlations between eigenvectors corre-

sponding to different eigenvalues in a Random Matrix crossover ensemble. This

would be relevant, for example, when calculating wavefunction correlations caused

by turning on a magnetic field in a closed puddle of electrons trapped in a semi-

conductor quantum dot, or for a tiny metal grain. In Chapter 3, we explicitly look

at tiny metal grains, and develop a Random Matrix crossover model to capture

both the orbital and spin response to an external magnetic field in the presence

of spin-orbit scattering. In Chapter 4 we look at the properties of a nanomagnet

driven by a large current, and show that the solution requires a self-consistent

treatment where the magnitude and direction of the spin-transfer torque acting on

the nanomagnet to change the magnetization depends on the spin accumulation

in the normal metal, which, in turn, depends on the magnetization of the nano-

magnet. Finally, in Chapter 5, we examine nanomagnets at low temperature with
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transparent contacts and show that mesoscopic effects give rise to conductance cor-

relations. In particular, in the presence of spin-orbit scattering, coherent multiple

scattering off impurities in the ferromagnet causes a mesoscopic anisotropic mag-

netoconductance fluctuation. This would be seen as a random and non-monotonic

dependence of the conductance on the magnetization direction that is different for

each sample, but reproducible for a given sample. At the end of the thesis we

provide two appendices, the first with a generalization of the third-order torque

calculation used in Chapter 4, and the second with some of the details used in

calculating the diagrams and arriving at the results of Chapter 5.

What follows is a some background material in random matrix theory and

crossover ensembles in Section 1.1, followed by Section 1.2, where we provide a

brief introduction to the spectroscopy of small metal grains. In Section 1.3 we

provide background material for the spin-transfer torque and in Section 1.4 we

sketch the basics of diagrammatic perturbation theory and universal conductance

fluctuations.

1.1 Random matrix theory and crossover ensem-

bles

1.1.1 Wigner-Dyson ensembles

Random Matrix Theory (RMT) started out as a technique to calculate the statis-

tical distribution of nuclear energy levels, but has since found applications in many

very different branches of physics and mathematics (see, for example, Ref. [3] for

the proceedings of a Summer school on the various applications of random matrices
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in physics). For the purpose of this thesis, the key idea is that the statistical prop-

erties of physical systems with randomness or disorder can be determined by large

random matrices which posses the same fundamental symmetries as the physical

system. A particularly nice way to think of random matrix ensembles is through

the framework of the Renormalization Group (RG) and universality. While at high

energy, different physical systems might exhibit very different properties, they all

flow (under the RG) to limited number of low-energy fixed points that depend only

on certain discrete symmetries. The symmetry classes of Random Matrix Theory

should be thought of as these low-energy fixed points.

The Wigner-Dyson universality classes of random matrices have been around

since the early 1960s and have been the subject of much research. In this the-

sis, we are mostly concerned with the crossover between universality classes and

therefore we only outline the basic properties. It is important to define two types

of symmetries common in physical systems. The first is Time-Reversal Symmetry

(TRS). A Hamiltonian with this symmetry will be invariant under the following

operation

H = τHT τ−1, (1.1)

τ = iσ2 ⊗ 1N =







0 1

−1 0






⊗ 1N .

We now define a quaternion structure, or the from of a 2×2 matrix that is invariant

under time-reversal. We have

Q =







x y

−y∗ x∗






. (1.2)

The other important symmetry for the Wigner-Dyson class is Spin Rotation Sym-

metry (SRS), where in similar fashion, we can describe a Hamiltonian with this
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symmetry as

H = σjHσj, (1.3)

where σj means that the symmetry holds for each Pauli spin matrix. Given that

any 2 × 2 spin block can be decomposed into the three Pauli matrices and the

identity σ0 = 12, we have that only Hamiltonians proportional to σ0 in the spin

sector will have the Spin Rotation Symmetry.

At this point it is convenient to introduce some notation. We define the fol-

lowing letters to represent N ×N matrices

h = h†, hermitian, complex

a = −aT , antisymmetric, complex

b = b∗ = −bT , antisymmetric, real

s = s∗ = sT , symmetric, real

and any subscripts, for example, a1, a2 will be used to represent different realiza-

tions of these antisymmetric random matrices. Given that these classes are low

energy fixed points, the exact form of the probability distribution for the elements

is not important, but they are conventionally taken from Gaussian probability

distributions with zero mean and variances chosen such that each element of the

total Hamiltonian H has the same variance of 4Nδ2/π2, where δ is the mean level

spacing of the physical system. In addition we define

q = s+ i

3
∑

j=1

bjσj,

which is just another way of writing a 2N × 2N matrix whose spin sector is of

the form Q in Eq. (1.2) above.
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Armed with this notation, we are now define the three Wigner-Dyson classes.

The Gaussian Orthogonal Ensemble (GOE) has both spin rotation symmetry and

time reversal symmetry. Requiring SRS means that the spin structure is propor-

tional to σ0, and TRS means that the spin structure must also be of the form Q

in Eq. (1.2) above, with SRS imposing the additional constraints that y = 0 and

x ∈ < (see Eq. (1.2) above). Hermiticity implies that x = s, so we have that the

Wigner-Dyson GOE class is given by H = s ⊗ σ0 which has both TRS and SRS.

Notice that H → OHO−1, where O is an orthogonal matrix, leaves the probability

distribution of H invariant, and hence the name Gaussian Orthogonal Ensemble.

Preserving TRS but breaking SRS gives rise to the Gaussian Symplectic En-

semble (GSE). This is just a matrix of the form H = q as defined above. This has

been constructed to preserve time reversal symmetry. If we define a Symplectic

matrix (Sp) to be a unitary matrix with elements given by quaternions of the form

Q, then H → (Sp)H(Sp)−1 preserves the probability distribution.

Finally we consider the Gaussian Unitary Ensemble (GUE) where TRS is bro-

ken. Once TRS is broken, the RG fixed points with and without SRS coincide,

although one can explicitly construct a Hamiltonian preserving SRS by considering

two independent blocks of GUE matrices. The condition of Hermiticity requires

that H = s + ib, and the probability is invariant under unitary transformations.

Table 1.1 summarizes the Wigner-Dyson class.

Many physical systems have been modeled using the Wigner Dyson classes. To

provide just one example relevant to this thesis, about four decades ago, Gor’kov

and Eliashberg [4] used Random Matrix Theory to study the electronic properties

of small metal grains. The main idea is that electrons inside a metal grain behave

like particle-in-a-box states trapped in a random confining potential. In the absence
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Table 1.1: Classification of symmetry classes for Wigner-Dyson standard class. The

symmetry classes are defined in terms of the presence or absence of time-reversal

symmetry (TRS) and spin-rotation invariance (SRS). To provide a connection to

other Random Matrix literature, we also list the corresponding classification using

the Cartan notation.

Name TRS SRS H Cartan

WD GOE Yes Yes s⊗ σ0 AI

WD GUE No - s+ ib A

WD GSE Yes No q AII

of a magnetic field, both TRS and SRS are present and one might model the energy

levels in the metal grain by eigenvalues of the GOE random matrix.

Of course, such a bold ansatz requires much more motivation to be convincing;

afterall, as defined above, the random matrix model in the limit of N → ∞ has

only one free parameter which is the variance of the matrix elements (these are

related to the mean level spacing as 4Nδ2/π2), whereas the problem of electron

diffusion in a disordered metal grain has several energy scales. Following arguments

similar to Ref. [5], we can quantify the various energy scales in the metal grain

as follows. We are interested in the diffusive regime, where the mean free path

` � L, where L is the size of the dot. For a given Fermi energy EF = (1/2)mv2
F ,

where m is the electron mass and vF is the Fermi velocity, this sets constraints on

the strength of the impurity potential defined by a scattering rate ~/τ , where ~ is

the reduced Planck constant, and ` = vF τ . We can define a Thouless energy ET
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which sets the energy scale for an electron to diffuse through the grain. This was

first introduced in Ref. [6, 7] to characterize the sensitivity of levels to changing of

boundary conditions. Equivalently, we can define tL = ~/ET as the time to diffuse

a distance L. We can calculate tL by assuming that a random walk with tL/τ steps

moving a distance of ` at each step travels a distance of L =
√

tL/τ`. From this

we get that ET = ~v2
F τ/L

2, and that EF � ~/τ � ET .

To make the connection with Random Matrix Theory, we need to further as-

sume that the dimensionless conductance g � 1, where g = ET/δ, and we identify

the mean level spacing δ with that of the random matrix model. For the metal

grain, this last condition implies that we are interested in the physics related to

the discreteness of the energy spectrum caused by the electrons being confined to a

grain of finite size L. For the random matrix model, this condition implies that we

are only interested in a region having a flat density of states, which corresponds to

an energy window much smaller than the width of the Wigner semi-circle, or equiv-

alently to the limit N → ∞. We note in passing that this correspondence between

the eigenvalues of the random matrix model and the spectrum of energy levels in

a diffusive metal grain has been rigorously proved by Efetov using a field theoretic

technique that he calls a zero-dimensional supermatrix σ-model (See Ref. [8] for

details).

1.1.2 Transition between ensembles

Thus far we have looked at pure RMT ensembles. In this thesis we are more

concerned with the crossover between ensembles. In the preceding section we

argued that, for example, the GOE ensemble preserved time reversal symmetry,

while the GUE had broken TRS. For a physical system this corresponds to turning
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on a magnetic field. In reality, a weak magnetic field does not immediately break

time-reversal symmetry completely. A discussion of crossover ensembles was first

put forward in Ref. [9], where they considered a model (using the notation of the

previous section) of the form

H = s+ iαb, (1.4)

where the limits of α = 0(1) correspond to the GOE (GUE) respectively. In

this case α corresponds to the magnetic flux Φ through the system. The first

natural question is the relation between the flux and crossover parameter. From a

simple perturbation theory estimate, one notices that treating α as a perturbation

causes and energy shift ∆E ∼ Nα2δ. One can also estimate that the magnetic

field necessary to give an energy shift of ∆E ∼ δ requires an accumulated flux

√

ET/δ(Φ/Φ0) ∼ 1, where Φ0 = h/e is the flux quantum and we have assumed

a random walk of ET/δ time steps picking up a phase of Φ/ΦO at each step.

Combining these two estimates we find that

Nα2 ∼ ET

δ

(

Φ

Φ0

)

. (1.5)

.

This formalism is quite general and can be readily generalized to model different

systems that continuously interpolated between pure ensembles. For example,

one could use the cross-over between GOE and GSE, to model a system where

spin-orbit scattering breaks spin rotational symmetry (See Section 1.2), or the

interpolation between two copies of a GUE matrix to one GUE matrix of twice the

size can be used to model two quantum dots of roughly equal size coupled through a

point contact. Turning off the coupling corresponds to the two independent GUEs,

while strong coupling corresponds to a single GUE, and the crossover represents

intermediate coupling (See Refs.[10, 11] for more details).
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While in the previous section, we were mostly concerned with the connection

between the eigenvalues of the random matrix model and the energy levels of the

physical system, one can ask if the eigenvectors in a similar fashion correspond to

wavefunctions. One problem with this is that one can show that such an identifica-

tion would not be gauge invariant and that the correspondence could be broken by

choosing a different gauge. However, with this caveat in mind, so long as one looks

only at gauge invariant quantities, one can make the following identification [12]

V 1/2ψµ(ri) ↔ N1/2vµ(i), (1.6)

where V is the volume, ψµ(ri) is the wavefunction at the position ri corresponding

to the energy εµ and vµ(i) is the i-th component of the eigenvector v.

Having introduced the crossover ensembles, and identified the correspondence

with physical systems, we now discuss an important observation – There are some

quantities that are zero in the pure ensembles, but non-zero in the cross-over. In

particular, we consider long-range wavefunction correlations.

In the pure ensembles one can write the probability distribution

P (v1, v2, . . . , vn) ∝ δ(v†
1v1 − 1)δ(v†

2v2 − 1) . . . δ(v†
1v2) . . . . (1.7)

For any finite subset of variables, one can integrate out the remaining variables to

find that in the limit of large N,

P (vµ(i), vν(j), . . .) ∼ exp[
−|vµ(i)|2

2βN
] exp[

−|vν(j)|2
2βN

] . . . ,

∼ P (vµ(i))P (vν(j)) . . . , (1.8)

where β = 1, 2 or 4 for the GOE, GUE and GSE ensembles. The factorization of

the probability distributions shows that there is no wavefunction correlations in

the pure ensembles.
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By contrast, in the crossover ensembles, there are long-range correlations of

wavefunctions (both for the same wavefunction [12, 13] and for different wave-

functions [Chapter 2]). We have that this long-range order vanishes in the basic

ensembles but is finite in the crossover. For the GOE-GUE crossover, one can

study this by considering an orthogonal invariant defined as

ρµν = ρνµ = v
T
µvν, µ, ν = 1, . . . , n, (1.9)

where the superscript T denotes transposition. Notice that the orthogonality of

wavefunctions requires that the phase rigidity, defined as 〈|ρµµ|2〉, has well defined

values for the pure ensembles, viz. |ρ|2 = 1 for GOE and |ρ|2 = 0 for GUE. In

the crossover, this parameter does not taken on a single value but fluctuates [12].

The same observation was made by Ref. [13] when they noticed that the while

joint distribution of P (|ψµ(r1)|2, |ψµ(r2)|2) = P (|ψµ(r1)|2)P (|ψµ(r2)|2) for the basic

ensembles, that it no longer factorized in the crossover, which suggested long range

wavefunction correlations. Our work in Chapter 2 shows that such long-range

correlations extends to off-diagonal ρµν as well.

However, for the purpose of this introduction, we are mostly concerned with

the physical consequences of these correlations. One physical consequence put

forward by Refs. [12, 14] was to consider a tiny perturbation, for example, either a

global random magnetic field or several localized scatters. If one calculates the level

velocity, defined as the derivative of an energy level with respect to the amplitude of

the perturbation, for the pure ensembles one would get Gaussian distributed values.

However, since the distribution of the level velocities is related to the distribution

of phase rigidity [12]. This results in a non-Gaussian distribution in the crossover.

Another consequence of this correlations can be observed in conductance peak-

height correlations in Coulomb blockaded quantum dots. In Ref. [15], we addressed
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how wavefunction correlations causes peak-height correlations in the conductance

of quantum dots. Much larger correlations have been seen experimentally, and our

paper provided the intrinsic correlations caused only by the statistical properties

of breaking of time reversal symmetry by a magnetic field, which would continue

to be seen even in the absence of other mechanisms.

Another consequence of the wavefunction correlations was seen in the work of

Ref. [16] where studying a GOE-GSE crossover (with the breaking of SRS with

spin-orbit scattering), found that while g-factors had well defined values in both

the pure ensembles, they had fluctuating values in the crossover. In Chapter 3

we extend this work to include the orbital contribution to the g-factors, but we

also calculate the correlation between neighboring g-factors that depends on the

correlation between neighboring wavefunctions. By generalizing the ideas of Chap-

ter 2 to the GOE-GSE crossover, we are able to calculate both the off-diagonal

wavefunction distribution as well as its effects on observables like the correlator

〈g2
µ+1g

2
µ〉.

Finally, in Ref. [11], we were able to use the long-range wavefunction correla-

tions in crossover ensembles to describe the interactions in the double dot model

discussed above. Using a Renormalization Group method, we found both that the

Universal Hamiltonian (see Ref. [17]) was the low energy fixed point and we also

verified that the instability caused by large interactions occurred at precisely the

same strength in mesoscopic system as they did in bulk systems.
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1.2 Spectroscopy of energy levels in metal grains

1.2.1 Transport through discrete electronic energy levels

One feature of the closed systems that we have been studying so far is that the

confinement causes the system to have discrete energy levels. By weakly connect-

ing such systems to external leads using tunnel junctions, it is possible to make

low temperature transport measurements through the grain that reveal steps in

the current-voltage profile that are caused by transport through individual elec-

tronic states of the nanoparticle. The first such experiments were done by Ralph,

Black and Tinkham [18], where they were able to fabricate nanoscale Al parti-

cles and through low temperature transport measurements, were able to perform

spectroscopy measurements of these discrete energy levels.

Here we sketch out only the basic principles involved in this spectroscopy of

energy levels in metal grains, (see Ref. [19] for a detailed review). The basic

principle is captured in the cartoon shown in Fig. 1.1. The metal grain has discrete

energy levels with thermal broadening being much less than the distance between

levels. In this case, one can increase the bias voltage between the left and right

reservoirs and as the window of voltage difference sweeps past an energy level, this

opens up a conductance channel, causing a step-like increase in the conductance or

a peak in the differential conductance dI/dV . Using this method, the differential

conductance provides a direct probe of the energy levels of the ultra-small metallic

grain. Applying a magnetic field can Zeeman split these energy levels, as can be

seen in actual experimental data taken from Ref. [20] and shown in Fig. 1.2.
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Figure 1.1: (a) Cartoon of transport measurement in metal grain. The number of

available transport channels corresponds to the number of discrete energy levles in

the bias voltage window. (b) The current and differential conductance as functions

of bias voltage V for one of the grains studied by Ref. [18]. Beyond the Coulomb-

blockade threshold one sees steps in the current and peaks in the conductance

reflecting the metal grain’s discrete eigenspectrum. Figure taken from Ref. [19],

available online at http://arxiv.org/format/cond-mat/0101019.

1.2.2 Verification of the random matrix model

Although the 1965 random matrix model of Gorkov and Eliashberg [4] was widely

believed to be applicable to metal nanoparticles, no verification was possible until

the recent experimental ability to measure the energy levels directly as was dis-

cussed in previous section. In the experiments of Salinas et al. [21], they were able

to dope Al nanoparticles – which does not have much spin-orbit scattering – with

with varying amounts of Au, which being a heavier element has a large amount of

spin-orbit scattering. In bulk samples, spin-orbit interaction causes only a small

effect on g-factors, while in the experiments in nanoparticles, g-factors vary from

the free electron value of 2 to about 0.1 for Au samples [20, 21, 22, 23, 24].

The work in Chapter 3 builds on earlier theoretical work by Matveev, Glazman

and Larkin [25] and by Brouwer, Waintal and Halperin [16]. As described in Sec-
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Figure 1.2: The dependence of energy levels of a copper nanoparticle to an ap-

plied magnetic field. Main panel: A plot of the differential conductance (dI/dV )

versus energy (E) as a function of magnetic field (Bx). White corresponds to a

conductance of 2 mS, and black to zero. Values between 2 mS and the maximum

conductance of 3 mS are also set to white. The inset shows a sample schematic.

A small hole in a Si3N4 membrane is used to make electrical contact to a single

copper nanoparticle. Al2O3 tunnel junctions (not shown) lie between the nanopar-

ticle and aluminum electrodes. Figure taken from Ref. [20], available online at

http://arxiv.org/format/cond-mat/0206423.
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tion 1.1.2, the breaking of spin-rotational symmetry by spin-orbit scattering causes

a transition from GOE to GSE random matrix ensembles. Following Ref. [16] one

can define a cross-over Hamiltonian of the form

H(λ) = HGOE +
λ√
N
HGSE (1.10)

where one can relate the crossover parameter λ to the spin-orbit scattering time

τso by comparing the spin-orbit energy ~/τso to the random matrix shift in en-

ergy Nλ2δ to get that λ ∼ (τsoδ)
−1/2. While spin no longer commutes with the

Hamiltonian, there is nonetheless time-reversal symmetry preserved throughout

the crossover. The addition of a magnetic field breaks this degeneracy between

Kramers’ doublets and the g-factor is understood to be the derivative of the dif-

ference in energy between the Kramers pairs with respect to the magnetic field.

Reference [16] only considered the spin contribution to the g-factor, but noticed

that because of mesoscopic fluctuations, the energy change in a magnetic field

was highly anisotropic requiring the use of a g-tensor to analyze the magnetic re-

sponse. On the other hand, while Ref. [25] only looked at the isotropic response,

they calculated the orbital contribution to the g-factor in the limit of large spin-

orbit coupling. In Chapter 3, we introduce a random matrix model that accounts

for both orbital and spin contributions to the g-factor which we solve for both

weak and strong spin-orbit scattering. In addition, we calculate other statistical

properties including the g-tensor correlations for neighbouring energy levels as well

as avoided crossing energies. The calculations shown in Chapter 3 depend on only

two parameters (the spin-orbit strength λ and the orbital coupling term η) each

of which can be measured independently in the experiments. For a given sample,

once these parameters have been determined, the other predictions of the theory

like distribution of avoided crossing energies or correlations between neighboring
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g-factors can be compared to experiments without any adjustable parameters.

1.3 Current-induced transverse spin-wave insta-

bilities

1.3.1 Ferromagnetism and the spin-transfer torque

Magnetism has been known since ancient times. The ancient Greeks knew about

the magnetic properties of lodestone and that these effects disappeared when the

material was heated beyond a critical temperature. It was not until the age of

quantum mechanics that an adequate understanding was possible. In this thesis

we are concerned mostly with ferromagnets like Cobalt, so named because their

magnetic properties are similar to Iron (Ferrus). A ferromagnet can be consid-

ered as a state of broken symmetry between up-spins and down-spins as has been

shown in the cartoon in Fig. 1.3. For the most part, we will not be interested in

the microscopic details or band properties of the different spin-species, but rather

assume that the magnet has an internal magnetization that depends both on the

shape anisotropy and an external applied magnetic field. In this section and in

Chapter 4, we will be concerned with the spin-torque effects discussed earlier which

can be seen at room temperature and has great potential for technological appli-

cation. In Section 1.4 and in Chapter 5, we will be interested in the same type

of nanomagnets, but this time at sub-Kelvin temperatures and studying quantum

coherent effects that would be washed away at room temperature.

Over the past few years there has been much theoretical and experimental

attention on understanding the spin-transfer torque and how it plays out in struc-
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Figure 1.3: Cartoon of a ferromagnet as a state with broken symmetry between

majority and minority spins. The shaded region represents states occupied below

the Fermi energy.
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tures made of layers of normal metals and ferromagnets. A common geometry is

to have a heterostructure comprising a thick ferromagnet, a normal metal spacer

and a thin free layer of ferromagnet. The thick (or fixed) layer acts as a spin-filter.

This can be understood from the cartoon in Fig. 1.3 since at the interface between

the normal metal and the ferromagnet, one spin species would have a greater den-

sity of states overlap and hence greater transmission. Without loss of generality,

this can be thought of as an increase in the spin-accumulation in the adjacent

normal layer spacer in a direction aligned to the magnetization of the fixed layer.

Changing the direction of current flow reverses the direction of the spin accumula-

tion causing the spins in the normal metal spacer to be anti-aligned with the fixed

layer magnetization. In a certain approximation, one can then forget about the

thick layer and examine the effects of this change in direction of spin accumulation

on the free ferromagnet keeping in mind that by simple two channel circuit theory

arguments, the device resistance will be lower when the free layer and fixed layer

magnetizations are parallel and higher when they are anti-parallel.

It is now almost a decade since Slonczewski [1] proposed that when a spin-

polarized current passes through a ferromagnet it transfers any transverse compo-

nent of its spin angular momentum to the ferromagnet. This spin-transfer torque

is caused by the exchange interaction between the s orbitals of the electrons in the

normal metal and the d electron orbitals in the ferromagnet. Slonczewski calcu-

lated the form of the torque using semiclassical WKB wavefunctions. In the same

year Berger [2] found a similar result using a different semiclassical method. As

alluded to earlier, if one treats magnetization of the ferromagnet semiclassically,

then just by considering the conservation of spin angular momentum one can ar-

rive at the required form of the spin-transfer torque [26]. For a thin ferromagnet,



22

Figure 1.4: dV/dI of a nanopillar spin-transfer device as a function of the applied

current through the device. The current is defined as positive when the spin-

polarized electrons are flowing from the nanomagnet to the thick ferromagnet film.

Figure taken from Ref. [28].

the torque is proportional to the component of spin current transverse to the fer-

romagnet magnetization. This torque causes the free layer to align itself with the

spin accumulation in the normal metal spacer. Therefore, by switching the direc-

tion of the current, one can move from a high resistance to low resistance state, a

characteristic well suited to making a magnetic memory device. The experimental

observation of hysteretic switching [27] confirmed the spin-transfer effect. Shown

in Fig. 1.4 is the experimental data of Ref. [28] showing clearly the current driven

magnetization reversal.

1.3.2 Single ferromagnetic layers

In Chapter 4 we are mostly concerned with a single ferromagnetic layer sandwiched

between two normal metal leads. A few years ago, Polianski and Brouwer [29]
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were the first to demonstrate that spin-transfer effects were important even for an

unpolarized current. The key idea was that since typical devices have a transverse

dimension that is of the same order as the spin-diffusion length, one must take

into account electron diffusion along this transverse direction. If the source and

drain contacts are asymmetric, even an unpolarized current applied perpendicular

to the plane of a thin ferromagnet, can excite a transverse spin-wave instability

where one part of the ferromagnet acts as the polarizer for another part of the

same ferromagnet.

For one direction of current, the torque acts against intrinsic damping to excite

the spin-wave, while for the opposite current direction, the spin-torque enhances

damping thereby stabilizing the system. Stiles et al. [30] later showed that for

sufficiently large ferromagnet thickness, even symmetric junctions are unstable to

spin-waves, but in this case, these are longitudinal spin-waves that are excited

at higher currents than the transverse spin-waves predicted in Ref. [29]. Both

these calculations show that important qualitative features are missed when the

ferromagnet is modeled as a single domain.

The mechanism for the spin-wave instability found in Ref. [29] is as follows: The

ferromagnet acts as a spin-filter for electrical current passing through the magnet,

leading to a spin accumulation that depends on the direction of the current (as

discussed above). However, by allowing for the possibility of non-uniform modes in

the direction transverse to current flow, one finds that there is a spin-wave instabil-

ity that depends both on the stiffness of the nanomagnet and on the spin-diffusion

length of the normal metal `sf . By performing a linear stability analysis [29] one

finds that the instability occurs when the current induced enhancement of a spin-

wave amplitude is greater than the intrinsic damping in the ferromagnet. One
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can thus derive a critical current Ic for the onset of the spin-wave instability. Re-

cent experiments [31] on single domains have verified these theoretical predictions

finding spin-wave instabilities for only one direction of the current and for only

asymmetric junctions. The experimental results are shown in Fig. 1.5. Note that

there are dips in the resistance, which is consistent with transverse spin-waves, as

will be discussed in Chapter. 4.

Having discovered this spin-wave instability for a single ferromagnetic layers

with an unpolarized current, it is a natural question to address what happens for

larger currents beyond Ic. It is the goal of Chapter 4 to examine in detail the

dynamics of the spin-wave beyond the instability. While for simplicity we focus

on the case of single-layers, in light of the work of Ref. [32], these dynamics are

relevant also to the case of tri-layers and heterojunctions with possible applications

to tunable Giga-Hertz range resonators. It is important to emphasize that an

important part of the calculation in Chapter 4, is that the spin-transfer torque is

calculated self-consistently. This is important since the magnetization dynamics

is determined by the spin-transfer torque which depends on the spin accumulation

in the normal metal, this in turn, depends on the precise magnetization profile of

the ferromagnet. Calculating spin and charge chemical potentials to second order

in perturbation theory, allows us to calculate the third-order Slonczewski torque

which provides us with detailed information about the magnetization dynamics

including the amplitude of the spin-wave mode and the corresponding decrease in

junction resistance.



25

Figure 1.5: dV/dI vs I at constant fields. (a) asymmetric junction of dimensions

30 nm × 60 nm, t ≈ 8 nm. For sufficiently large fields, dips are observed at

negative bias only. (b) Symmetric junction of dimensions 70 nm × 70 nm, t ≈

10 nm. Current-voltage curves at different field values overlap fully. (c) Phase

diagram for current induced excitations in single layer junctions; same junction as

in (a). d2V/dI2 is plotted on a grayscale. The white dash-dotted line indicates

the boundary for excitations. Figure taken from Ref. [31] and available online at

http://arxiv.org/format/cond-mat/0403367.
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1.3.3 Adiabatic boundary conditions

In Chapter 4, we make use of the adiabatic approximation used previously by

Refs. [29, 33, 34]. Here we derive the boundary conditions that relate the spin

and charge currents at the boundary to the chemical potentials using interface

conductivities. We can define interface conductivities by considering the scattering

matrix for the boundary, in particular, we have gσσ′ =
∑

nm[δnm − rσ
nm(rσ′

nm)∗]

and tσσ′

=
∑

nm t
σ
nm(tσ

′

nm)∗ where the rnm and tnm are reflection and transmission

coefficients of the scattering matrix, and σ, σ′ ∈ [↑, ↓] represent the majority and

minority spins which are parallel and antiparallel to the ferromagnet magnetization

m̂. It is convenient to define the following linear combinations: g↑↓ = g1 − ig2 and

g± = (g↑↑ ± g↓↓)/2. One can show that for any interface, g1 > g+. This is done by

noticing that this condition is equivalent to the off-diagonal conductivities being

larger than the diagonal ones, i.e. g↑↓+g↓↑ > g↑↑+g↓↓, which can be obtained from

the definition of gσ,σ′ and the property |r↑ − r↓|2 > 0. It also follows from their

definitions that g+ > g−. We now wish to decompose the charge and spin currents

into terms that depend on the local magnetization and the interface conductivities.

This can be done by projecting the charge and spin chemical potential onto a basis

aligned with the local magnetization

j/2 = g↑↑(σ0 + m · σ)(∆µcσ0 + ∆µs · σ)(σ0 + m · σ)/4

+ g↓↓(σ0 − m · σ)(∆µcσ0 + ∆µs · σ)(σ0 − m · σ)/4

+ g↑↓(σ0 + m · σ)(∆µcσ0 + ∆µs · σ)(σ0 − m · σ)/4

+ g↓↑(σ0 − m · σ)(∆µcσ0 + ∆µs · σ)(σ0 + m · σ)/4, (1.11)

where σ0 is the 2 × 2 identity matrix and σ = (σx, σy, σz) is the vector of Pauli

matrices. The reason for calculating j/2 is to be consistent with the definitions of
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interface conductivities used in Chapter 4. After some algebra, one arrives at

j/2 = (g+∆µc + g−m · ∆µs)σ0 + ([g−∆µc + g+m · ∆µs]m

− g1[(∆µs × m) × m] − g2[(∆µs × m)]) · σ (1.12)

As was noticed by Tserkovnyak et al [34], in general there is an additional current

term dependent on the time derivative of the magnetization. We have a contribu-

tion of the form jp = −g1~∂tm×m− g2~∂tm. We also note that for the geometry

considered in Chapter 4, we have the property that the charge current and parallel

components of the spin current are continuous at the interface, and by assuming

that the two ferromagnet-normal-metal interfaces are identical, we can replace ∆µc

with µc(0)/2. By assuming that the perpendicular component of the spin-chemical

potential is zero inside the ferromagnet, we have that ∆µs = µs(0). Putting this

together, we get

j + jp = (g+µc(0) + g−m · µs(0))σ0 + ([g−µc(0) + g+m · µs(0)]m

− g1[(2µs(0) × m + ~ṁ) × m]

− g2[(2µs(0) × m + ~ṁ)]) · σ. (1.13)

To compare this with the Eq. (4.3) in Chapter 4, we explicitly define jx = (σ/e)∂xµc

and js = −(~σ/2e2)∂xµs as the charge and spin currents to obtain

jx(0) =
1

e
[g+µc(0) + g−m · µs(0)] ,

js(0) = − ~

2e2
(g−µc(0) + g+m · µs(0))m

+
~

2e2
g1 (2µs(0) × m + ~ṁ) × m

+
~

2e2
g2 (2µs(0) × m + ~ṁ) . (1.14)
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This equation for the boundary condition at the interface between the normal

metal and ferromagnet is the starting point for the calculations in Chapter 4.

1.4 Diagrammatic perturbation theory and con-

ductance fluctuations

Diagrammatic perturbation theory is now a well established technique. At its

heart it is a field-theoretic method of tackling the quantum many-body problem

by representing physical quantities as a purturbative expansion that is conveniently

expressed in pictorial form as Feynmann diagrams. Oftentimes a subset of this per-

turbative expansion is identified as a geometric series and can be summed exactly

to all orders. If there exists good physical reasons why (order-by-order) other di-

agrams in the expansion can be neglected, or sometimes by sheer luck, then this

method of expanding a quantity in Feynmann diagrams and summing a subset

of the diagrams gives an accurate way to calculate physical phenomena. There

are several good textbooks on diagrammatic techniques including Refs.[35, 36, 37],

and for the purpose of this introduction we just mention that the two important

signatures of quantum coherent transport viz. weak localization and universal con-

ductance fluctuations were each first seen experimentally and then soon afterward

calculated theoretically using diagrammatic methods. The focus of Chapter 5 is

mostly on universal conductance fluctuations which is the phenomena that the

conductance of any metallic sample viewed as a function of chemical potential,

magnetic field, or impurity configuration has a variance of the order of e2/h inde-

pendent of the specific sample properties, such as impurity configuration, material,

shape, or method of preparation.
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r1
r2 rn(a) (b)

r r’

G <GG>

Figure 1.6: (a) Diagram for the conductance G before impurity averaging. Elec-

trons propagate from r to r′ while being scattered by impurities located at

r1, r2, · · · rn which are represented by the dashed lines and crosses. (b) Diagram for

the impurity averaged variance of conductance 〈GG〉, where the shaded area repre-

sents impurity averages involving both classical Diffusion modes and the Cooperon

quantum corrections.

Theoretically, the problem was first solved by two groups, Altshuler [38] and

by Lee and Stone [39]. The details of the calculation were given by Lee, Stone

and Fukuyama [40] and form the basis of our calculation in Chapter 5. Using the

Kubo formula that relates the linear response expectation value of any operator

to an equilibrium expectation value of the commutator of that operator and the

perturbation Hamiltonian, one finds that the conductance is given by [37]

G = lim
ω→0

e2

ω

∫

dt expiωt θ(t)〈[Î(t), Î(0)]〉, (1.15)

where Î is the current through an arbitrary cross-section, and θ(t) is the step func-

tion. This formulation connects the linear response conductance to the retarded

current-current correlator which is shown in the diagrammatic language in Fig. 1.6.
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Figure 1.7: A: Image of a typical sample. B: Out-of-plane and in-plane

magnetoresistance. Figure taken from Ref. [41] and available online at

http://arxiv.org/format/cond-mat/0509452.

1.4.1 Universal conductance fluctuations in ferromagnets

In Chapter 5, we turn our attention to ferromagnets. The very recent experiments

of Ref. [41] done at low temperatures on ferromagnets with good contacts have

begun to see quantum interference effects. Shown in Fig. 1.7 and Fig. 1.8 is the

set-up and results from these experiments. Without an applied magnetic field the

nanoparticle (which we model to be a single domain) has its magnetization along

the plane of the long-axis which because of shape anisotropy is the preferred orien-

tation. Applying an out-of-plane magnetic field rotates the internal magnetization

by π/2 so that it points along the field direction (see cartoons in Fig. 1.8). The

small field data probes both the effects of the magnetic field itself, and the effect

of rotating the internal magnetization, whereas for larger magnetic fields, one only

probes the effect of the applied field.

From the data in Fig. 1.8, we see “mesoscopic anisotropic magnetoconductance

fluctuations”, which is the ferromagnetic analog of these well known universal con-
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Figure 1.8: A and B: Fluctuations in differential resistance with bias voltage and

the in-plane and the out-of plane magnetic field, respectively. C and D: same

as A and B, but in a wider field range. The expected magnetic configurations

are indicated by the schematics. Figure from Ref. [41] and available online at

http://arxiv.org/format/cond-mat/0509452.
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ductance fluctuations in normal metals. It is well established that the conductance

of a ferromagnetic particle depends on the relative orientation of the magnetiza-

tion with respect to the direction of current flow. This is the standard anisotropic

magnetoresistance (AMR) effect (See Ref. [42]). What we describe is this thesis

is a theoretical framework to understand the mesoscopic effect that consists of an

additional and faster random dependence on the magnetization direction that is

different for each sample, but reproducible for a given sample. Its origin is the

coherent multiple scattering off impurities in the ferromagnet. As a function of

magnetization direction, the mesoscopic correction will show a quick succession of

minima and maxima, superimposed on the smooth material-dependent anisotropic

magnetoresistance of the bulk material. We identify two possible sources for this

non-monotonic behaviour. The first is that changing the direction of the internal

magnetization (or the change of the applied magnetic field itself for large field) di-

rectly affects the orbital motion of electrons by changing the amount of Aharonov-

Bohm phase picked up by the electron orbit. The correlation angle (which sets

the field scale on which we should see conductance correlations) for this orbital

effect is set by Φ0/Φ where Φ0 is the flux quantum, and Φ is the magnetic flux

through a phase coherent area. One finds that this effect orbital scales as L−2,

where L is the system size. Another mechanism for mesoscopic fluctuations is

caused by spin-orbit scattering. Without spin-orbit scattering, changing the exter-

nal field will merely rotate the magnetization direction which would only change

the spin-quantization axis, but not affect the conductances. However, the presence

of spin-orbit scattering couples the orbital motion to the spin-quantization axis

and this leads to accumulation of different phases for different directions of the in-

ternal magnetization. One can estimate that the square of the correlation angle for
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this effect scales as the ratio of the spin-orbit energy scale to the Thouless Energy,

concluding that the correlation angle scales as L−1. Comparing the two estimates,

we see that for smaller phase-coherent lengths, the spin-orbit effect dominates,

consistent with the observations in Ref. [41]. In Chapter 5 we calculate the meso-

scopic anisotropic magnetoconductance fluctuations using the methods of Ref. [40]

generalized for a ferromagnet. We find that for coherence lengths Lφ . 100 nm the

spin-orbit effect dominates which should be the case for the samples in Ref. [41]

where they estimate that Lφ ∼ 30 nm. In this case, one finds that when rotating

the magnetization by an angle π/2, the orbital effect gives about 1 conductance

oscillation, while the spin-orbit effect gives about 5 oscillations, which consistent

with the data shown in Fig. 1.8.
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Chapter 2

Enhanced mesoscopic fluctuations

in the crossover between random

matrix ensembles

2.1 Introduction

Random matrix theory has focused on the study of three ensembles of Hamiltoni-

ans: the Gaussian Unitary Ensemble (GUE), the Gaussian Orthogonal Ensemble

(GOE), and the Gaussian Symplectic Ensemble (GSE). These describe the statis-

tics of single-particle energy levels and wavefunctions of disordered metal grains

or chaotic quantum dots with the corresponding symmetries; GUE if time-reversal

symmetry is broken, and GOE or GSE if time-reversal symmetry is present and

spin-rotation symmetry is present or absent, respectively. In these three basic

ensembles, eigenvector elements are Gaussian complex/real/quaternion random

numbers; elements of the same eigenvector and of different eigenvectors are all

36
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statistically independent [1].

Disordered or chaotic systems with partially broken symmetries show a variety

of phenomena that go beyond a mere “interpolation” of descriptions based on the

GOE, GUE, and GSE alone. For example, in a quantum dot, a weak magnetic

field causes long-range wavefunction correlations [2, 3, 4, 5] and a non-Gaussian

distribution of “level velocities”, derivatives of energy levels with respect to, e.g.,

a shape change of the dot [6]. Both effects are absent without a magnetic field (in

the GOE), or when the magnetic field is strong enough to fully break time-reversal

symmetry (in the GUE). In a metal grain, weak spin-orbit interaction induces

mesoscopic fluctuations of the g-tensor [7, 8], which does not fluctuate in either

the GOE or the GSE. Further, as we’ll show below, in a weak magnetic field or

for weak spin-orbit scattering, matrix elements of the electron-electron interaction

exhibit fluctuations that are parametrically larger than in each of the three basic

ensembles.

The underlying reason for these phenomena is that eigenvector elements are

not independent in (random-matrix) ensembles that interpolate between the three

basic symmetry classes: There exist both correlations within the same eigenvec-

tor [2, 3, 4, 5, 6, 7] and, as we show in this chapter, between different eigenvectors.

To study the eigenvector correlations in such crossover ensembles, we will make use

of a surprising relation between the eigenvector statistics late in the crossover from

class A to class B and that of finite-sized matrices in class B (where B is the class

of lower symmetry). Examples of such a relation were known for the statistics of

a single eigenvector. For example, in the GOE-GUE crossover, which is described

by the N × N random hermitian matrix (with N taken to ∞ at the end of the



38

calculation)[9]

HOU(N,α) = HO(N) +
α√
N
HU(N), (2.1)

the distribution of the “phase rigidity” |vT
v|2 [6] of a single eigenvector v is the

same as in the finite-sized M ×M GUE ensemble with M = 2α2 if α is large. In

Eq. (2.1), HO(N) and HU(N) are N ×N matrices taken from the GOE and GUE,

respectively, with equal variances for the matrix elements. A similar correspon-

dence occurs for the g-tensor of a Kramers doublet in the GOE-GSE crossover [7, 8].

Our main finding is that such a correspondence extends to the correlations between

different eigenvectors.

In this chapter we will accomplish four tasks. (i) We show numerically that the

relation

HOU(N,α) ↔ HU(M), M = 2α2 (2.2)

between the GOE-GUE crossover Hamiltonian HOU(α) for large α and N and a

finite-sized M ×M GUE Hamiltonian extends to correlations between eigenvec-

tors. Just as in critical phenomena, where simple power laws unfold into universal

scaling functions as you flow away from the critical point, here a rich theory of

correlations unfolds in the crossover region. We wish to point out that this princi-

ple applies not only to the GOE-GUE crossover, but also, e.g., to the GOE-GSE

crossover, or to wavefunctions in two coupled quantum dots, which are described

by a random Hamiltonian interpolating between two independent GUE’s and one

GUE of double size [10]. (ii) We show that, for large α, the universality classes are

actually curves in the (1/α, 1/N) plane, reminiscent of renormalization-group flow

trajectories (Renormalization group ideas have been applied previously to study

universality and deviations from universality in the three basic ensembles of ran-

dom matrix theory see Ref. [11, 12, 13]). (iii) We calculate correlations between
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eigenvectors, based on the surmise (2.2) and diagrammatic perturbation theory.

(iv) We calculate how the inter-eigenvector correlations in the crossover region

affect matrix elements of the electron-electron interaction in a quantum dot or

metal grain in a weak magnetic field, and predict a significant enhancement of

fluctuations compared to the basic ensembles.

2.2 Orthogonal invariants

Let us now consider the joint distribution P ({vµ}) of n eigenvectors vµ, µ =

1, . . . , n, for the example of the GOE-GUE crossover Hamiltonian (2.1). Through-

out the entire GOE-GUE crossover, the distribution of the eigenvectors is invari-

ant under orthogonal transformations. As a consequence, the joint distribution

P ({vµ}) is completely determined by the distribution of the orthogonal invari-

ants [2, 3]

ρµν = ρνµ = v
T
µvν, µ, ν = 1, . . . , n, (2.3)

where the superscript T denotes transposition. Hence

P ({vµ}) =

∫ n
∏

µ≤ν

dρµν P ({ρµν})

×
n
∏

µ≤ν

δ(v†
µvν − δµν)δ(v

T
µvν − ρµν). (2.4)

For the physically relevant case of large N , Eq. (2.4) implies that the eigenvector

elements vµm, m = 1, . . . , N , have a Gaussian distribution with zero mean and

〈v∗µmvνn〉ρ =
1

N
δµνδmn, 〈vµmvνn〉ρ =

1

N
ρµνδmn. (2.5)

The subscript 〈. . .〉ρ indicates that the average is taken at fixed ρµν . For the full

ensemble average one has to perform a subsequent average over the ρµν with the
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distribution P ({ρµν}). We can find P ({ρµν}) from the surmise that, for α � 1

and for eigenvectors vµ whose energies are all inside a window of size � α2∆, ∆

being the level spacing of the Hamiltonian H(α), the joint distribution of the ρµν

is the same as for a GUE Hamiltonian of finite size M = 2α2. Thus the ρµν are

independently and Gaussian distributed with zero mean and with variance

〈|ρµν|2〉 = (1 + δµν)/M, M = 2α2. (2.6)

Together, Eqs. (2.4)–(2.6) fix the joint distribution of eigenvectors in the crossover

ensemble close to the GUE. For the single-eigenvector distribution, they reproduce

the α � 1 limit of the exact solution of Ref. [3]. The fact that the phase rigidity

|ρµµ|2 of a single eigenvector is a fluctuating quantity is the prime cause of the

correlations between elements of one eigenvector [4, 5, 6]; It is the existence of

nonzero and fluctuating ρµν for µ 6= ν that causes the correlations between different

eigenvectors.

2.3 Verification of surmise

2.3.1 Heuristic picture

We now proceed to present arguments in support of our surmise. We consider

eigenvectors vµ (µ = 1, . . . , n) with energies within a distance � α2∆ from a

reference energy εref , sorting them by increasing energy. We then consider how

each of these eigenvectors is built up from the eigenvectors oν of the unperturbed

Hamiltonian HO. The admixture of eigenvectors oν with energy εν far away from

εref is small and can be neglected if |εref − εν| is large enough. On the other hand,

eigenvectors oν with energy εν close to εref contribute non-perturbatively for large
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Figure 2.1: Left panel: Eigenvalues for one realization of HOU(α). The shaded re-

gion marks the energy window of size ∼M(α)∆ = 2α2∆ for which the eigenvalues

are kept in the effective M×M GUE Hamiltonian. Right panel: 〈|ρµν|2〉 as a func-

tion of the distance µ− ν ≈ (εµ − εν)/∆ between eigenvalues, for α = 4.0 (dashed

line, left panel). Solid curve: Eq. (2.9). Data points: numerical calculation for

N = 400.

α. Upon increasing α, the eigenvectors vµ(α) in the latter energy range have

undergone several avoided crossings, and the unperturbed eigenvectors oν have

roughly equal weights in each of the vectors vµ(α) in our set.

It is on this heuristic picture that our surmise for an effective description of

the eigenvector statistics for large α is based: We only retain those eigenvectors

of the unperturbed Hamiltonian HO that are relatively close in energy and hence

all contribute roughly equally, see Fig. 2.1 for a cartoon. Since the time-reversal

symmetry breaking perturbation in Eq. (2.1) is strong for these eigenvectors, the

matrix elements between them form a random hermitian matrix of the GUE. De-

noting the effective number of contributing unperturbed eigenvectors as M(α), we

thus reduce the problem of finding the distribution of the orthogonal invariants
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ρµν for the N ×N crossover Hamiltonian (2.1) to that of finding the distribution

of the ρµν for the much smaller GUE Hamiltonian of size M(α). To calculate

M(α) in terms of N and α, we turn to the exact solution for the single-eigenvector

distribution obtained in Refs. [3, 4, 5, 6], and find

M(α) = α2N(α2 + 2N)/(α2 +N)2. (2.7)

For large N this simplifies to M(α) = 2α2, in agreement with Eq. (2.6). A rough

estimate of M can be obtained by comparing the contributions to vµ(α) from

unperturbed eigenvectors oν with energy εν close to (far away) from εµ, which are

(are not) included in the effective M ×M GUE Hamiltonian. In the former case,

the weight of oν is ∼ M−1, whereas in the latter case it is ∼ α2h2/N |εµ − εν|2,

where h2 = N∆2/π2 is the mean square of an element of HU. Comparing the two

estimates at the energy difference |εµ − εν| ∼ M∆/2 separating the two regimes,

we conclude M ∼ α2, in agreement with the exact result (2.7).

2.3.2 Numerical verification

By our surmise, the distribution of the orthogonal invariants should depend on the

effective matrix size M(α) only, not on α and N individually, as long as N and α

are large. We have verified this by numerical calculation of the averages 〈|ρµν|2〉

for different points along a curve of constant M(α) in the (1/N, 1/α) plane. The

results of such a calculation are shown in Fig. 2.2 for µ = ν, µ = ν + 1, and

µ = ν+2. We have also verified that the distribution of the ρµν is indeed Gaussian

(not shown).
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Figure 2.2: Curves of constant effective GUE size M(α), Eq. (2.7), in the

(1/α, 1/N) plane for the N × N crossover Hamiltonian (2.1). Top to bottom:

M = 30, M = 50, M = 100, M = 200, and M = 400. The horizontal and verti-

cal axes correspond to the pure GUE and to the N → ∞ crossover Hamiltonian,

respectively. Inset: 〈|ρµν|2〉 for the points indicated at the M = 100 curve in the

main panel. Circles: µ = ν; Squares: µ = ν + 1 (eigenvectors with neighboring

energy levels); diamonds: µ = ν + 2 (next-nearest neighbors). The dashed lines

indicate the surmise of Eq. (2.6).
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2.3.3 Diagrammatic perturbation theory

The surmise (2.2) is expected to be valid as long as only eigenvectors taken from an

energy window of width �M(α)∆ = 2α2∆ are involved. If the energy differences

between eigenvectors become of order α2∆ or larger, the eigenvectors vµ(α) do

not share the same unperturbed eigenvectors oν, and we thus expect that they

become uncorrelated. A quantitative description of eigenvector correlations at

energy separations � ∆ can be obtained using diagrammatic perturbation theory.

The only nonzero second moment is 〈|ρµν |2〉, which can be computed from

〈|ρµν |2〉 = − ∆2

4π2

∑

s1,s2=±

s1s2

×
〈

trGT(εµ + is1δ)G(εν + is2δ)
〉

. (2.8)

where G(z) = 1/(z − HOU), δ is a positive infinitesimal, and the eigenvectors vµ

and vν have energies εµ and εν, respectively. Calculating the averages using the

technique of Ref. [14], we find, if µ 6= ν,

〈|ρµν |2〉 =
2α2

4α4 + π2(εµ − εν)2/∆2
. (2.9)

A similar result for parametric correlations inside a basic random-matrix ensemble

was derived in Ref. [15]. The right panel of Fig. 2.1 shows 〈|ρµν|2〉 as a function of

εµ − εν and a numerical calculation of the same quantity.

2.4 Discussion and conclusion

The GOE-GUE crossover describes wavefunction statistics in, e.g., a chaotic quan-

tum dot or a disordered metal grain in a weak magnetic field. Wavefunction

distributions have immediate experimental relevance for the spacings, widths, and

heights of Coulomb blockade peaks in the conductance of metal grains or quantum
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dots [16]. Correlations between wavefunctions of neighboring energy levels cause

correlations between the heights and widths of conductance peaks. Wavefunction

distributions also influence the positions of Coulomb blockade peaks through the

electron-electron interaction matrix elements [17], which we now discuss in detail.

The interaction matrix element Uµνρσ is defined as

Uµνρσ =

∫

dr1dr2U(r1 − r2)

× φµ(r1)φν(r2)φρ(r2)
∗φσ(r1)

∗, (2.10)

where U(r) is the electron-electron interaction potential and φµ(r) the wavefunc-

tion for an electron in level εµ. For example, the difference of interaction matrix

elements Uµννµ − Uµooµ gives the spacing between peak positions corresponding to

different nonequilibrium configurations (levels ν and o unoccupied, respectively)

in tunneling spectroscopy of small metal grains [18].

In a metal grain or quantum dot, the interaction can be approximated by an r-

independent part and a local interaction U loc(r) = λ∆V δ(r), where ∆ is the mean

level spacing, V the sample volume, and λ a parameter of order unity governing

the strength of the local interaction. The spatially constant interaction leads to

a charging energy and does not show mesoscopic fluctuations. Without magnetic

field, the ensemble average of matrix elements of U loc is [16]

〈U loc
µνρσ〉 = λ∆(δµσδνρ + δµρδνσ + δµνδρσ). (2.11)

If time-reversal symmetry is broken by a magnetic field (i.e., in the GUE), the

last term in Eq. (2.11) is left out. For repulsive interactions, the last term in Eq.

(2.11) also vanishes in the GOE once the renormalization of the Cooper channel

of the local interaction is taken into account, see, e.g., Ref. [16]. The Cooper

channel renormalization also affects the enhanced fluctuations in the GOE-GUE
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crossover. The enhancement of the fluctuations of interaction matrix elements in

other crossovers, such as the crossover GOE-GSE or the crossover of Ref. [10], is

not renormalized.

In both the GOE and GUE, fluctuations of the interaction matrix elements

U loc
µνρσ and corrections to Eq. (2.11) are nonuniversal and small as (at most) g−1/2, g

being the sample’s dimensionless conductance. Equation (2.11) can be reproduced

from random-matrix theory if the wavefunctions φµ(r) are replaced by eigenvectors

vµ and the integration over space is replaced by a summation over the vector

indices.

How are the interaction matrix elements distributed in the presence of a weak

magnetic field? If we are not interested in the non-universal (1/g) corrections, that

question can be answered using the eigenvector distributions for the GOE-GUE

crossover that we derived above. First, upon increasing the magnetic field, there

is a suppression of the last term in Eq. (2.11).

Second, the appearance of inter-eigenvector correlations enhances the average

of “diagonal” interaction matrix elements Uµνρσ with µ, ν and ρ, σ pairwise equal:

Using Eq. (2.5), we find

〈U loc
µνρσ〉 = λ∆(δµρδνσ + δµσδνρ + 〈ρµνρ

∗
ρσ〉). (2.12)

For α� 1, 〈ρµνρ
∗
ρσ〉 is given by Eqs. (2.6) and (2.9), hence

〈U loc
µνρσ〉 = λ∆(δµρδνσ + δµσδνρ)

×
(

1 +
2α2

4α4 + π2(εµ − εν)2/∆2

)

. (2.13)

Third, the inter-eigenvector correlations enhance the fluctuations of the interaction

matrix elements. This is best illustrated by the expectation value 〈|Uµνρσ|2〉 with
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Figure 2.3: Root-mean-square fluctuations of the interaction matrix element Uµνρσ

for four consecutive levels µ = ν − 1 = ρ − 2 = σ − 3. The dashed line shows

the large-α asymptote of Eq. (2.14). The solid line is obtained from numeri-

cal generation of 400 × 400 GOE-GUE crossover matrices, using 〈|Uµνρσ|2〉 =

(λ∆)2〈|ρµν|2|ρρσ|2〉. (Direct numerical calculation of Uµνρσ suffers from large finite-

N corrections.)

all four indices µ, ν, ρ, and σ different,

〈|U loc
µνρσ|2〉 = (λ∆)2〈|ρµν|2|ρρσ|2〉 = (λ∆)2/(2α2)2. (2.14)

The first equality in Eq. (2.14) holds for all α, the second one only if α � 1 and

the four eigenvalues εµ, εν, ερ, εσ are within a distance � α2∆ of each other. We

have numerically calculated 〈|U loc
µνρσ|2〉 for four neighboring energy levels, see Fig.

2.3.

A similar increase of the fluctuations of the interaction matrix elements is

found for other crossovers between random matrix ensembles, such as the crossover

between GOE and GSE.

Although the fluctuations are small if α � 1, they can be significantly larger
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than the non-universal fluctuations that vanish as g−2 [for Eq. (2.14)]. The ex-

istence of nonzero off-diagonal interaction matrix elements and large fluctuations

of the diagonal matrix elements implies that existing analytical methods based

on the universal description of electron-electron interactions in terms of the total

spin and the total charge only [16] are not valid in the crossover regime. For a

full description, new calculations, using the tools developed in this chapter, are

necessary.

The origin of the eigenvector correlations and the enhanced fluctuations of

interaction matrix elements can be sought in the existence of the large parameter α2

that plays a role similar to the dimensionless conductance g in the pure ensembles.

The parameter α2 can be identified as the ratio of the Heisenberg time τH = 2π~/∆

and the time τOU needed to acquire a flux quantum [16]. Late in the crossover, GUE

physics ranges from the mean level spacing ∆ up to the scale ~/τOU. In the pure

GUE, however, validity of random-matrix theory ceases only at the higher energy

scale ~/τerg, where τerg is the ergodic time. The role of the large parameter g =

τH/τerg, which governs wavefunction correlations and interaction matrix element

fluctuations in the “pure” GUE and GOE is thus played by α2 ∼ τH/τOH in the

GOE-GUE crossover.
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Chapter 3

Magnetic-field dependence of

energy levels in ultrasmall metal

grains

3.1 Introduction

Recent developments in nanofabrication techniques have allowed for the resolution

of individual “particle-in-a-box” energy levels in small metal grains or semicon-

ductor quantum dots using tunneling spectroscopy [1, 2, 3, 4]. In the absence of a

magnetic field, the energy levels εµ are two-fold degenerate (Kramers’ degeneracy).

An applied magnetic field B lifts the degeneracy; the splitting of the doublet is

described with the help of a “g factor”,

δεµ = µBgB, (3.1)

where µB = e~/2mc is the Bohr magneton. A cartoon of the magnetic-field de-

pendence of the energy levels is shown in Fig. 3.1. Whereas g = 2 for electrons

50
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in vacuum, in a metal grain the g factor can be different from two as a result of

spin-orbit scattering. Recently, the magnetic-field dependence of particle-in-a-box

levels in metal grains have been measured by two groups [5, 6, 7, 8, 9]. Measured

g factors range from 0.1 to 2, depending on grain size, material, and, in the case

of Ref. [5], doping with heavy ions.

Unlike in bulk metals, where g factors are used to describe the effect of spin-

orbit coupling on the band structure, g factors in a metal grain are not a “bulk”

property [10]. Not only does the typical value of the g factors depend on the size of

the metal grain, g factors also depend on the microscopic details such as the impu-

rity configuration, the location of defects, and the form of the grain boundary. As

a result, different energy levels in a metal grain have different g factors. Moreover,

even if the metal grain is roughly spherical and without lattice anisotropy, the

presence of impurities breaks the rotational symmetry on the microscopic scale,

causing g factors to depend on the direction of the applied magnetic field. A sta-

tistical description of the level-to-level fluctuations of g factors in metal grains has

been formulated by Matveev et al.[11] and by Brouwer, Waintal and Halperin [12]

using random matrix theory (RMT). Petta and Ralph [8] measured g factors for

up to 9 consecutive levels in nanometer-size Cu, Ag, and Au grains and found

good agreement with the distributions of Refs. [11, 12]. The dependence on the

direction B̂ of the magnetic field is taken into account by replacing the g factor by

a “g tensor” G [13],

δεµ = µBB(B̂TGµB̂)1/2. (3.2)

(The g tensor carries a subscript µ to reflect its dependence on the energy level

εµ, and B̂T is the vector transpose of B̂.) The g-factor (3.1) for a magnetic field

in the z direction is the square root of the tensor element Gzz. A measurement of
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Figure 3.1: A cartoon showing the definitions of the g-factors and the avoided

crossing energy ∆. At zero magnetic field, all energy levels εµ are doubly degen-

erate. A magnetic field splits these doublets. The g-factor measures the size of

the splitting of a doublet εµ as a function of magnetic field, see Eq. (3.1). The

avoided crossing energy ∆ is the minimum distance at the first avoided crossing of

neighboring energy levels, see Sec. 3.4.

full g tensors in Cu grains was reported quite recently [9]. Again, good agreement

was found between the experimentally measured g-tensor distribution and RMT.

The effect of the spin-orbit interaction on the wavefunctions in a metal grain

can be described by a dimensionless parameter λ,

λ2 =
π~

τsoδ
, (3.3)

where τso is the spin-orbit scattering time and δ is the mean spacing between

Kramers’ doublets in the grain (in the absence of the magnetic field). The effects

of spin-orbit scattering are weak if λ� 1. In that case, wavefunctions are real and
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have a well-defined spin; the electron magnetic moment is close to its vacuum value

g = 2. In the opposite limit of strong spin-orbit scattering, λ � 1, wavefunctions

are complex and have no well-defined spin. Hence, the spin contribution to the

electron’s magnetic moment is strongly suppressed, compared to the case of elec-

trons in vacuum. However, in addition to a contribution from the electron’s spin,

there may be a significant orbital contribution to the magnetic moment carried by

a single electron if spin-orbit scattering is present: wavefunctions are complex, and

hence current-carrying [11].

Experimental estimates of λ are close to zero in Al and range from 0.7 in a

small Cu grain (δ ≈ 0.7 meV) to 13 in a larger Au grain (δ ≈ 0.1 meV) [8].

A full theory of the combined orbital and spin contributions to the g tensor was

developed for the asymptotes λ � 1 and λ � 1 only [11, 12]. Both theories

calculate distributions normalized to the average (〈g2〉)1/2. In addition, Matveev

et al. calculate both spin and orbital contributions to (〈g2〉)1/2, while Ref. [12]

considered the spin contribution only. The case of intermediate λ, necessary for a

quantitative comparison with the experiments of Ref. [8], was studied in Ref. [12]

using numerical diagonalization of a random matrix model with variable spin-

orbit scattering strength, but without inclusion of the orbital contribution to the

magnetization.

In this chapter we construct a random matrix theory that describes both spin

and orbital contributions to the electron g tensor. In the limit λ � 1 our model

reproduces the g tensor distribution found in Refs. [11, 12], but it also provides

a simple model to numerically obtain the full g tensor distribution for arbitrary

spin-orbit scattering strength. In addition to the distribution of the g tensor we

also look at the correlator of g tensors of neighboring levels. While g tensors are
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not correlated for λ = 0 and, as we show here, for λ� 1; we find that correlations

can be substantial for λ of order unity. The random-matrix model is formulated

in Sec. 3.2; the g tensor distributions are considered in Sec. 3.3.

In addition to the g factors, which describe the magnetic-field dependence of the

energy levels at very small magnetic fields, Salinas et al. obtained additional infor-

mation on the magnitudes of spin-orbit scattering matrix elements from avoided

crossings of energy levels at higher magnetic fields: For weak spin-orbit scattering,

the minimal energy separation ∆ in an avoided crossing between the downward

moving level εµ+1,− and the upward moving level εµ,+ is twice the matrix element

of the spin-orbit coupling between the corresponding eigenstates,[5] see Fig. 3.1.

In Sec. 3.4 we calculate the avoided crossing energy ∆ from the random matrix

model, and find its statistical distribution and dependence on the direction of the

magnetic field B.

3.2 Random matrix model

In this section we formulate a random-matrix model that describes the magnetic-

field dependence of energy levels in a metal grain with spin-orbit scattering, taking

into account both the Zeeman and the orbital effects of the magnetic field. Fol-

lowing the basic premises of random matrix theory, we replace the Hamiltonian of

the metal grain by a 2N × 2N matrix H,

H(λ) = HGOE +
λ√
N
HGSE +HB. (3.4)

The first two terms on the right hand side of Eq. (3.4) describe the Hamiltonian

in the absence of the magnetic field; the last term HB describes the effect of the

magnetic field. We use the convention that the random matrices HGOE, HGSE, and
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HB have the dimension of energy.

Without the magnetic field, H is taken from an ensemble that interpolates

between the Gaussian Orthogonal and Gaussian Symplectic ensembles of random

matrix theory. The Gaussian Orthogonal Ensemble (GOE), which is relevant for

metal grains without spin-orbit scattering, consists of real symmetric N ×N ma-

trices with independently and Gaussian distributed elements, multiplied by the

2 × 2 unit matrix 12 in spin space,

HGOE = S ⊗ 12, P (S) ∝ e−(π2/4Nδ2)tr STS. (3.5)

Here δ is the mean level spacing in the metal grain (i.e., the mean spacing of the

Kramers’ doublets). The Gaussian Symplectic Ensemble (GSE), which describes

metal grains with strong spin-orbit scattering, consists of self-dual quaternion ma-

trices [14]. A Hamiltonian taken from the GSE can be parameterized as

HGSE =
1

2

(

A0 ⊗ 12 + i

3
∑

j=1

Aj ⊗ σj

)

, (3.6)

where A0 is a real symmetric N × N matrix and the Aj, j = 1, 2, 3, are real

and antisymmetric N × N matrices. The four matrices A0, A1, A2, and A3 have

independently and Gaussian distributed elements,

P (Aj) ∝ e−(π2/4Nδ2)tr AT

j Aj , j = 0, 1, 2, 3. (3.7)

The crossover parameter λ describes the strength of the spin-orbit scattering in

the Hamiltonian of Eq. (3.4). The cases λ = 0 and λ→ ∞ correspond to the GOE

and GSE, respectively.

The effect of the magnetic field B = (B1, B2, B3) is described by the term HB

in Eq. (3.4),

HB =

3
∑

j=1

BjMj, (3.8)
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where the 2N × 2N matrices Mj (j = 1, 2, 3) are given by

Mj = µB

(

1N ⊗ σj + i
πη

δ
√
N
Xj ⊗ 12

)

, (3.9)

where the Xj, j = 1, 2, 3, are real antisymmetric matrices, with independent and

Gaussian distributions,

P (Xj) ∝ e−(π2/4Nδ2)tr XT

j Xj . (3.10)

The first term in Eq. (3.9) describes the coupling of the magnetic field to the

electron spin; the second term, which is diagonal in spin space, describes the

coupling of the magnetic field to the orbital angular momentum. The second

term in Eq. (3.9) was originally proposed by Pandey and Mehta to describe the

orbital effect of a time-reversal symmetry breaking magnetic field on the statistics

of energy levels.[15, 16] For a diffusive spherical grain with radius R, mean free

path l, and effective electron mass m∗, the coefficient η is given by[17]

η2 = (m/m∗)2 l

5R
, (3.11)

whereas for a ballistic sphere with diffuse boundary scattering, one has

η2 = (m/m∗)2 1

8
. (3.12)

At the end of the calculation, the limit N → ∞ is taken. Without the orbital term,

the Hamiltonian H of Eq. (3.4) is the same as the random-matrix Hamiltonian used

by Brouwer, Waintal and Halperin in Ref. [12].

The derivation of the numerical coefficient for the ballistic case in Ref. [17]

contains a mistake. Following appendix C of Ref. [17], for a ballistic sphere

with diffuse boundary scattering one has η2 = (3/4m∗2vFR
3)
∫

dt〈Lz(0)Lz(t)〉 =

(m2/4m∗2R3)〈|r0 × r1|2/|r0 − r1|〉, where Lz is the orbital angular momentum in
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the z-direction and the average is taken over all classical trajectories in the sphere.

Each trajectory is characterized by the points ri of reflection from the surface;

r0 and r1 are the points of reflection immediately before and after time t = 0.

The joint distribution of r0 and r1 is P (r0, r1) = (3/(16πR5))|r0 − r1|. The factor

|r0− r1|, which was not taken into account in Ref. [17], follows from the constraint

that r0 and r1 are last and first boundary points before and after time t = 0, in-

stead of an arbitrary pair of boundary points along the trajectory. (The flight time

between r0 and r1, and hence the probability to be between r0 and r1 at t = 0, is

proportional to |r0 − r1|.) Performing the double integration over the surface of

the sphere then gives Eq. (3.12).

The g tensor G and the avoided crossing energy ∆ will be expressed in terms of

matrix elements involving the eigenvectors of the Hamiltonian (3.4). Eigenvectors

ψµ of the Hamiltonian (3.4) are 2N component complex vectors. Their elements

are denoted as ψµ(n, σ), where n = 1, . . . , N refers to the “orbital” degrees of

freedom, and σ = ±1 to spin. At zero magnetic field, all eigenvalues of the

Hamiltonian (3.4) are twofold degenerate (Kramers’ degeneracy): each eigenvalue

εµ (µ = 1, . . . , N) has two orthogonal eigenvectors ψµ and T ψµ where T ψ(n, σ) =

σψ∗(n,−σ), is the time-reversed of ψ. In the GOE (λ = 0, B = 0), the eigenvectors

ψµ and T ψµ can be chosen such that ψµ(n,+1) = −T ψµ(n,−1) is a real number

and ψµ(n,−1) = T ψµ(n, 1) = 0. In that case, the nonzero elements ψµ(n,+1)

are independently and Gaussian distributed with zero mean and with variance

1/N [14]. (Of course, any linear combination of ψµ and T ψµ forms a valid pair

of eigenvectors for the eigenvalue εµ as well.) In the GSE (λ → ∞, B = 0), the

elements of ψµ are complex numbers with independent and Gaussian distributions

with variance 1/2N . In both the GSE and the GOE different eigenvectors are
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statistically uncorrelated.

In the crossover between GOE and GSE, the eigenvector distribution is more

complicated than in each of the two basic ensembles. Unlike for the cases of

the pure GOE and GSE, eigenvectors at different energy levels are correlated, so

that it is no longer sufficient to look at the distribution of one eigenvector alone

(see Chap. 2). Since orthogonal invariance is preserved throughout the GOE-GSE

crossover, the problem of finding the (joint) distribution of one or more eigenvec-

tors in the crossover ensemble can be simplified by considering their orthogonal

invariants first. For each pair of eigenstates ψµ and ψν , the invariants are four

quaternion numbers ρj
µν , j = 0, 1, 2, 3. If we diagonalize H, writing

H(B = 0) = U(E ⊗ 12)U
†, (3.13)

where U is the symplectic eigenvector matrix and the N × N diagonal matrix E

contains the eigenvalues εµ on the diagonal, they are

ρ0
µν = [U †U ]µν

= δµν12 (3.14)

ρj
µν = i[U †σjU ]µν

=







(ρj
µν)++ (ρj

µν)+−

(ρj
µν)−+ (ρj

µν)−−






, j = 1, 2, 3. (3.15)

The ρj
µν satisfy a criterion of anti-hermiticity,

ρj
µν = −(ρj

νµ)†, j = 1, 2, 3. (3.16)

The orthogonal invariants ρ0
µν express orthonormality of the eigenvectors ψµ and

T ψµ. The remaining orthogonal invariants ρj
µν are characteristic for the crossover

and determine to what extend spin-rotation symmetry has been broken. In the
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GOE, we have:
∑

k tr(ρi
µµσk)tr(ρ

j
µµσk) = 4δij, while ρj

µν = 0 if µ 6= ν; in the

GSE, ρj
µν = 0 for all µ and ν. An average involving different eigenvectors is then

calculated in two steps: First, eigenvector elements have a Gaussian distribution

with zero mean and with variance determined by the orthogonal invariants as

shown in Chap. 2. In spinor notation, where ψ(n) denotes the 2-component spinor

with elements ψ(n,+1) and ψ(n,−1), these variances are

〈ψµ(n)†ψν(m)〉 =
δmn

N
δµν ,

i〈ψµ(n)†σjψν(m)〉 =
δmn

N
(ρj

µν)++,

〈ψµ(n)Tσ2ψν(m)〉 = 0,

〈ψµ(n)Tσ2σjψν(m)〉 =
δmn

N
(ρj

µν)−+. (3.17)

With the help of Eq. (3.17) any average over eigenvectors can be expressed in terms

of the orthogonal invariants involved in the problem.

What remains is to find the average over a small number of orthogonal invari-

ants. For strong spin-orbit scattering, λ� 1, it was surmised that the distribution

of the ρj
µν for the 2N ×2N crossover Hamiltonian (3.4) is equal to the distribution

of the same quantities for a GSE Hamiltonian of a smaller size 2N ′,(see Chap. 2)

N ′ = λ2N(λ2 + 2N)/(λ2 +N)2

→ 2λ2 if N → ∞, (3.18)

provided the energy difference |εµ − εν| � λ2δ. This means that the elements of

the matrix ρj are uncorrelated and that they have a Gaussian distribution with

variance

〈|(ρj
µν)++|2〉 =

1

2N
,

〈|(ρj
µν)+−|2〉 =

1 + δµν

2N
. (3.19)
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A similar surmise was proposed in Chap. 2 for the eigenvector statistics in

the crossover between the GOE and the Gaussian Unitary Ensemble (GUE) of

random-matrix theory. We are not aware of a formal proof of the surmise, although

Eq. (3.19) can be obtained from diagrammatic perturbation theory if µ 6= ν (see

Chap. 2 for the crossover GOE-GUE) and Eq. (3.19) is in excellent agreement with

numerical simulations (see Ref. [12] for the case µ = ν). The motivation underlying

this surmise becomes clear once we consider the crossover Hamiltonian (3.4) in

the eigenvector basis of HGOE (as in Chap. 2). In this basis, eigenvectors of the

crossover Hamiltonian are “localized”: they are mainly built up from eigenvectors

of HGOE with energies inside a window of size ∼ N ′δ (with N ′ to be determined

later). Since changing to the GOE basis does not change orthogonal invariants,

we can calculate the ρj
µν using an effective 2N ′ × 2N ′ Hamiltonian that contains

the 2N ′ relevant GOE eigenvectors only, if |µ − ν| � N ′. As the spin-rotational

symmetry breaking term is large for the effective Hamiltonian, its distribution is

that of the GSE, not a crossover. The exact relation (3.18) between N ′ and N

is found matching the distributions of a single orthogonal invariant ρj
µµ in the

crossover Hamiltonian and in the GSE [12].

In the following two sections, the random matrix model (3.4) will serve as a

starting point for analytical calculations of the g tensor distribution and avoided

crossing energies in the regimes of weak spin-orbit scattering, λ � 1, and of

strong spin orbit scattering, λ� 1, and for numerical calculations of the g-tensor

distribution in the crossover regime λ ≈ 1. The case of weak spin-orbit scattering

can be treated using perturbation theory in λ; for strong spin-orbit scattering, we

use the full eigenvector distribution of the GOE-GSE crossover Hamiltonian and

the surmise for the orthogonal invariants that was discussed in this section.
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3.3 Statistics of the g tensor

A typical plot of the magnetic field dependence of energy levels is shown in Fig.

3.1. A magnetic field B = BB̂ splits the Kramers’ doublets εµ into pairs εµ,± that

depend linearly on the magnitude B of the magnetic field,

εµ,± = εµ ± 1

2
δεµ, (3.20)

with δεµ expressed in terms of the g tensor Gµ as in Eq. (3.2) above.

Following Ref. [12], the g tensor can be written as

G = GTG, (3.21a)

where the 3 × 3 matrix G has elements

G1j =
2

µB
Re 〈ψµ|Mj|T ψµ〉,

G2j =
2

µB
Im 〈ψµ|Mj|T ψµ〉, (3.21b)

G3j =
2

µB
〈ψµ|Mj|ψµ〉,

where Mj is defined in Eq. (3.9), ψµ is an eigenvector of H at B = 0 with eigenvalue

εµ, and T ψµ is its time-reversed.

The tensor G has three eigenvectors and three eigenvalues g2
j , j = 1, 2, 3. The

eigenvectors are referred to as “principal axes”, the eigenvalues g1, g2, and g3 as

“principal g-factors”. The three principal g factors describe the splittings of the

doublet for magnetic fields along each of the three principal axes. We describe the

distribution of the g tensor in terms of the distributions of its eigenvectors (the

principal axes) and eigenvalues (the principal g-factors). For a roughly spherical

grain, the principal axes will be oriented randomly in space. Hence, it remains to

find the distribution of the three principal g factors gµ,1, gµ,2, and gµ,3. We will

now consider the cases of weak and strong spin-orbit scattering separately.
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3.3.1 Weak spin-orbit scattering

In this section we consider the case of weak spin-orbit scattering, λ � 1 using

perturbation theory. Expanding for small λ and keeping only the leading terms of

order λη and λ2, we find that the g tensor reads

Gµ;ij = 4

(

δij +
ηλπ

Nδ

∑

ν 6=µ

Xµν
i Aµν

j + Aµν
i Xµν

j

εµ − εν

−λ
2

N

∑

ν 6=µ

δij
∑3

k=1(A
µν
k )2 − Aµν

i Aµν
j

(εµ − εν)2

)

. (3.22)

Here εµ and εν are eigenvalues of the Hamiltonian (3.4) at zero magnetic field

and without spin-orbit scattering, and Aµν
j and Xµν

j are the matrix element of the

matrices Aj and Xj between the corresponding eigenvectors |ψµ〉 and |ψν〉 of H,

respectively, cf. Eqs. (3.6) and (3.9). While Eq. (3.22) assumes that λ is small,

λ � min(1, η−1), no requirement is necessary for the parameter η that sets the

scale for the orbital contribution to the magnetization.

The term proportional to λη in Eq. (3.22) corresponds to orbital paramag-

netism. It is of first order in the spin-orbit coupling strength λ because the orbital

contribution appears as soon as the wavefunction is complex, which happens to

first order in λ. The term proportional to λ2 is a reduction of the Pauli paramag-

netism caused by interaction with other energy levels. For the case of i = j = 3,

this term agrees with earlier work by Sone [18].

The distribution of G without the orbital contribution (second term in Eq.

(3.22)) was studied in Refs. [11] and [12]. We find, however, that for very small

spin-orbit scattering, this orbital contribution dominates the g tensor fluctuations.

Notice that whereas the Zeeman contribution always gives g factors smaller than

two — the last term in Eq. (3.22) is negative definite — the orbital contribution

can be of arbitrary sign, allowing for principal g factors larger than two.
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To illustrate this feature, we calculate the tails of the joint distribution P (g1, g2, g3)

of the three principal g factors. The distribution of the tails is dominated by events

where the spacing between the level εµ and one of its neighbors εµ+1 or εµ−1 is

exceptionally small, of order λδ or ληδ (whichever is larger). Hence, the tails of

P (g1, g2, g3) can be calculated limiting attention to the nearest-neighbor terms in

the summations in Eq. (3.22). Keeping only the contribution from ν = µ − 1 or

ν = µ+ 1 (depending on which level is closer to εµ) in Eq. (3.22), we have

Gµ = 4

[

13 +
ηλπ

Nδs

(

XAT + AXT
)

− λ2

Ns2

(

|A|213 − AAT
)

]

, (3.23)

where s = min |εµ − εµ±1| is the nearest neighbor energy splitting. For small

s, the distribution P (s) is given by P (s) = πs/δ2 + O(s2). (Note that this is

twice the result for the small-spacing asymptote of the level-spacing distribution

in the GOE,[14] since s is the minimum of two level spacings.) Further, A and

X are shorthand notation for the vectors with components Aµ,µ±1
j , and ∓Xµ,µ±1

j

(j = 1, 2, 3) respectively. These are vectors of random Gaussian variables whose

distributions are given in Eq. (3.7) and Eq. (3.10), respectively.

We order the three principal g factors as g1 < g2 < g3 and parameterize them

as gj = 2(1 + yj), j = 1, 2, 3. With this notation, the tails of the distribution

correspond to max(λ2, λη) � |yj| � 1 for at least one of the yj. The tails of the

distribution are found to be

P (y1 < y2 < y3) =
3(πλ)2

8η3
Θ(−y2)

× y3 − y1

(−πy2)7/2
exp

[

(y1 − y2 − y3)
2 + 4(y1 − y2)y2

4η2y2

]

, (3.24)

where Θ(x) = 1 for x > 0, and Θ(x) = 0 for x < 0. We then proceed to analyze
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Eq. (3.24) in the cases of weak orbital contribution (η � λ) and the case where

the orbital term dominates (λ� η � λ−1).

In the limit η � λ the tail of the distribution factors as

P (y1 < y2 < y3) ∝ y3 − y1

η3(−y2)7/2
exp

[

y1 − y2

η2
+

y2
3

4η2y2

]

,

reproducing the result

P =
3λ2

4πy2
2

δ(y3)δ(y2 − y1) (3.25)

for the tail of the g tensor distribution obtained in Ref. [12] in the limit η → 0.

This result is valid for λ2 � |y1|, |y2| � 1.

In the opposite limit λ� η � λ−1, Eq. (3.24) simplifies to

P (y1, y2, y3) =
9η2λ2Θ(−y1)δ(y2)Θ(y3)

π(y1 − y3)4
, (3.26)

which is valid if λη � |y1,3| � 1.

In Fig. 3.2 we have shown the distributions of the principal g factors g1, g2, and

g3, calculated from the random matrix model (3.4) using numerical diagonalization.

Although the limits (3.25) and (3.26) were derived for the tail of the g-tensor

distribution only, they can account for some qualitative features of the full g-

tensor distribution for weak spin-orbit scattering shown in Fig. 3.2: when the

orbital contribution to the g tensor dominates (η � λ), generically g3 > 2, g2 ≈ 2,

and g1 < 2, cf. Eq. (3.26). On the other hand, when the Zeeman contribution to

the g tensor dominates (η � λ), one typically has g1 ≈ g2 < 2 and g3 ≈ 2, cf. Eq.

(3.25).

We now turn our attention to correlations between g tensors of neighboring

levels. Such correlations are described by the correlator

Cij,kl = 〈g2
µ〉−2 (〈Gµ,ijGµ+1,kl〉 − 〈Gµ,ij〉〈Gµ+1,kl〉) . (3.27)
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Figure 3.2: Distributions of magnitudes of the principal g factors. Upper panel:

λ = 1.0, η = 0.2; Lower panel: λ = η = 0.5.
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Calculating the correlator C to leading order in λ � 1, we find that the result

is dominated by events where the levels εµ and εµ+1 are very close. Since this

contribution is formally divergent, as a result of the presence of the energy denom-

inators in the perturbation expression (3.22), a cut off must be imposed at energy

separations εµ+1 − εµ of order λδ where the perturbation theory is not valid. To

treat the contribution from nearby levels εµ+1 and εµ correctly, we calculate the

contribution from such events non-perturbatively. To leading order in λ � 1, the

result of such a treatment amounts to the replacement of the energy denominator

εµ+1−εµ in Eq. (3.22) by [(εµ+1−εµ)2+|A|2λ2/N ]1/2. We then obtain the following

result:

Cijkl =
λ2

π
(δikδjl + δilδjk)(η

2 lnλ+
1

20
)

+
3λ2

10π
δijδkl. (3.28)

The correlator between g factors (at a fixed direction of the magnetic field) is

found from Eq. (3.28) setting i = j = k = l = B̂ in the direction of magnetic field,

C = 〈g2
µ+1g

2
µ〉/〈g2〉2 − 1 =

2λ2

π

(

η2 lnλ+
1

5

)

. (3.29)

3.3.2 Strong spin-orbit scattering

In the regime of a strong spin-orbit scattering, λ � 1, the g tensor distribution

can be calculated from Eq. (3.21) using the known distribution of the eigenvectors

of the random Hamiltonian (3.4) at zero magnetic field, see Sec. 3.2. We then find

that the matrix elements of the 3× 3 matrix G of Eq. (3.21) are Gaussian random

numbers, with zero mean and with variance 1/λ2 + 2η2. The distribution of the

eigenvalues of the g-tensor G then follows from standard results in Random Matrix
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Theory [19]. From this we conclude that the distribution of the principal g factors

is [12]

P (g1, g2, g3) ∝
(

∏

i<j

|g2
i − g2

j |
)

∏

i

e−3g2

i /2〈g2〉, (3.30)

where

〈g2〉 =
1

3
〈g2

1 + g2
2 + g2

3〉 =
3

λ2
+ 6η2. (3.31)

Values for η for diffusive and ballistic spherical grains are given in Eqs. (3.11) and

(3.12). Equations (3.30) and (3.31) extend the result of Ref. [12] to the case η 6= 0.

Equation (3.31), which was derived using the random matrix model (3.4), agrees

with the results of Matveev et al., which were derived using a comparison of the g

factors and the energy absorption of a time-dependent magnetic field.

In Fig. 3.4 we show the result of numerical calculations of 〈g2〉 as a function of

the spin-orbit scattering rate λ and for various values of η. For η2 < 2/3, 〈g2〉 < 2

for all λ, while for η2 > 2/3, 〈g2〉 > 2. The derivatives with λ are maximal near

λ = 0 because of the enhanced fluctuations due to the orbital part at small λ, cf.

Eq. (3.22).

Correlations between g tensors of neighboring levels trivially vanish for large λ

because, in the GSE, different eigenvectors are statistically uncorrelated. However,

since the average g tensor also depends on λ, it is a more meaningful question

to study the correlator between g tensors, normalized by the average g factor,

cf. Eq. (3.27). In the presence of an orbital contribution to the g tensor, the

average g factors are nonzero for λ � 1, see Eq. (3.31), so that the vanishing

of correlations in the GSE implies that they vanish compared to the average as

well. Without the orbital contribution, g-tensor correlations cannot be addressed

with reference to the eigenvector statistics in the GSE, because G = 0 in the



69

0 1 2 3 4 5
λ

0

1

2

3

4

5

6

g

 =0.0

0 1 2 3 4 5
0

1

2

3

4

5

6

 =0.6

0 1 2 3 4 5
0

1

2

3

4

5

6

 =0.81

0 1 2 3 4 5
0

1

2

3

4

5

6

 =1.0

2

η
η
η
η

Figure 3.4: Averaged |g|2 as a function of spin-orbit strength λ. The critical value

η0 =
√

2/3 ≈ 0.81.



70

GSE. Instead we need the more detailed knowledge of the eigenvector distribution

for large λ, which is summarized in Sec. 3.2. The main result of that section is

that the eigenvector distribution depends on the distribution of certain orthogonal

invariants ρj
µν , j = 1, 2, 3 which are 2 × 2 matrices in spin space, see. Eq. (3.17).

With the help of Eq. (3.21), one easily verifies that, in the case η = 0, the g tensor

may be expressed in terms of these orthogonal invariants only,

(Gµ)ij = 2tr ρi
µµρ

j
µµ, i, j = 1, 2, 3, (3.32)

where the trace is taken in spin space. Since, for λ� 1, the orthogonal invariants

ρj
µµ are all independently distributed for different levels, we conclude that g tensors

of different levels are uncorrelated in the case η = 0 as well.

Figure 3.3 shows the g-factor correlator (3.29) normalized by the average g

factor as a function of λ. The numerical diagonalization confirms our previous

conclusions that g factor correlations are small for both asymptotic regimes λ �

1 and λ � 1. Correlations are maximal for intermediate spin-orbit scattering

strengths, λ ∼ 1.5, but never amount to more than 10% of the average 〈g2〉.

3.4 Avoided crossing energies

Once the Kramers’ doublets are split by the magnetic field, half of the levels move

upward with slope ∼ (1/2)gµBB, while the other half moves downward with the

same slope. Hence, a downward moving level εµ+1,− and the upward moving level

εµ,+ meet at magnetic field strength

Bc =
2(εµ+1 − εµ)

µB(gµ + gµ+1)
. (3.33)

In fact, since the matrix element of the coupling HB to the magnetic field between

the corresponding eigenstates |ψµ+1,−〉 and |ψµ,+〉 is finite, the two levels do not
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cross, but exhibit an avoided crossing, see Fig. 3.1. In this section we calculate the

minimum distance ∆ between the energy levels in the avoided crossing, its depen-

dence on the direction B̂ of the magnetic field, and its level-to-level fluctuations.

The avoided crossing energy is well-defined only if the magnetic field depen-

dence of the two levels εµ+1,−(B) and εµ,+(B) is linear, the only exception being

the curvature resulting from their mutual interaction at the avoided crossing. For

the magnetic field strengths of interest, B ∼ Bc, other sources of level curvature

as a function of the magnetic field, which arise both from the spin and orbital

couplings in the Hamiltonian HB of Eq. (3.8), are small if both λ� 1 and η � 1.

Hence, for the purpose of calculating the avoided crossing energy ∆ it is sufficient

to consider the perturbative regime of small λ and small η.

Considering the Hamiltonian in the basis of states |ψµ+1,−〉 and |ψµ,+〉, corre-

sponding to the energy levels εµ+1,− and εµ,+ at zero magnetic field, respectively,

H =







εµ+1 − 1
2
µBBgµ 〈ψµ+1,−|HB|ψµ,+〉

〈ψµ,+|HB|ψµ+1,−〉 εµ + 1
2
µBBgµ−1






, (3.34)

we find that the avoided crossing energy ∆ reads

∆ = 2|〈ψµ+1,−|HBc
|ψµ,+〉|

=
4|εµ+1 − εµ|
µB(gµ+1 + gµ)

|〈ψµ+1,−|B̂ · M|ψµ,+〉|. (3.35)

Using first order perturbation theory in λ and η, we find

∆ = λ

∣

∣

∣

∣

B̂ ×
(

1√
N

Aµ+1,µ

)∣

∣

∣

∣

, (3.36)

plus terms of order λη which are not relevant in the regime we consider. The

components of the vector Aµ+1,µ are matrix elements of the spin-orbit matrices

Aj, j = 1, 2, 3 of Eq. (3.6) in the basis that diagonalizes the Hamiltonian to zeroth

order in λ.
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In order to find the distribution of the avoided crossing energy ∆, we write

∆ = ∆0 sin θ, (3.37)

where 0 ≤ θ ≤ π is the angle between the direction B̂ of the applied magnetic

field and the vector Aµ+1,µ. Using the known distribution (3.7) of the spin-orbit

coupling matrices Aj (j = 1, 2, 3), one finds that the three elements of Aµ+1,µ each

have a Gaussian distribution with zero mean and with variance Nδ2/π2. Hence,

we conclude that the vector Aµ+1,µ is randomly oriented in space, so that

P (θ) =
1

2
sin θ, (3.38)

and that

P (∆0) =
(∆0π)2

√
2π

(λδ)3
exp

[

−1

2

(

π∆0

λδ

)2
]

. (3.39)

Equations (3.37)–(3.39) not only give the full distribution of the avoided crossing

energy ∆, but also the dependence of ∆ on the direction B̂ of the magnetic field.

Equations (3.37)–(3.39) can be combined to give

P (∆) =
π2∆

(λδ)2
exp

[

−1

2

(

π∆

λδ

)2
]

. (3.40)

The latter result is relevant for comparison with experiments where the direction

of the magnetic field cannot be varied [5, 8].

Figure 3.5 shows the distribution (3.40), together with results from a numerical

calculation of the distribution of Eq. (3.35) using the random matrix model (3.4)

for η = 0 and two different values of λ. We see that the agreement between

the numerical diagonalization of the random matrix model and the distribution

(3.40) calculated using first order perturbation theory in λ remains good up to

λ ∼ 1. [We should note, however, that the approximations leading to an avoided
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Figure 3.5: Main panel: Distribution of the avoided crossing energy ∆. Solid line

is the perturbative result (3.40); the data points are from numerical evaluation of

Eq. (3.35) using the numerical diagonalization of the random matrix model (3.4)

with η = 0 and λ = 0.2 (crosses), and λ = 0.4 (circles). Inset: Comparison

of perturbation theory (solid curve) and numerical results (data points) for the

average 〈∆〉.
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crossing energy that is dominated by matrix elements involving two neighboring

levels only, is valid for λ � 1 and η � 1 only, see the discussion preceding Eq.

(3.35).] Although there are corrections to P (∆) to second order in λ, the first

nonzero corrections to the average 〈∆〉 appear to third order in λ only.

3.5 Discussion and conclusion

In this chapter, we have presented a random matrix theory for the distributions

of g tensors and avoided crossing energies in small metal grains with spin-orbit

scattering. Our theory includes both the spin and the orbital effects of the magnetic

field.

For large spin-orbit scattering, the main effect of the orbital contribution is

to increase the typical size of the g tensor; the fluctuations (normalized by the

average) and the relative magnitudes of the three principal g values are the same

with and without a large orbital contribution [12]. For weak spin-orbit scattering,

the presence of an orbital contribution to the g tensor not only increases the average

of the g-tensor distribution, it also changes the relative magnitudes of the principal

g values. Without orbital contribution, two principal g values are approximately

equal and smaller than two, while the third principal g value is close to 2. If

the orbital contribution is large, all three principal g values are different and, on

average, symmetrically positioned around two.

Petta and Ralph have measured distributions of g factors (i.e., the square root of

the Gzz element of the g-tensor) for small particles of different metals and found that

distributions, if normalized to the average, were in very good agreement with the

random matrix theory of Ref. [12]. The average of the distribution, however, was
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up to a factor 10 smaller than the theoretical prediction (3.31) with a reasonable

estimate for the parameter η [11]. A similar discrepancy between a experimental

and theoretical estimates was reported in a different context by Marcus et al.[20]

for the magnetic field scale for fluctuations of Coulomb blockade heights in two-

dimensional µm-size GaAs/GaAlAs quantum dots (see also Ref. [21]). Although

the experimental system studied in Refs. [20, 21] is quite different from that of Petta

and Ralph, the random matrix theories describing the magnetic field dependence

of Coulomb blockade peak heights and the orbital contributions to g factors are

the same. At present, we do not know of a solution to either puzzle.

One complication in the search for an orbital contribution to the g factors mea-

sured in Ref. [8] is that the main effect of the orbital contribution is to change the

average of the g-factor distribution only. Since, for strong spin-orbit scattering, the

average g factor depends on both the dimensionless spin-orbit coupling λ and the

dimensionless orbital contribution η, cf. Eq. (3.31), it is impossible to characterize

what fraction of a measured g factor is the result of a state’s orbital magnetic

moment. The recent development of experimental methods to measure the entire

g tensor[9] opens new avenues to investigate the orbital contribution. For weak

spin-orbit scattering, the g-tensor distribution depends on the two parameters λ

and η in a nontrivial way; even a weak orbital contribution leads to g tensors with,

at least, one principal g value larger than two, see, e.g., Fig. 3.2. Hence, measure-

ment of the full g tensors for metal grains with weak spin-orbit scattering, such as

large Al grains, eventually doped with a small concentration of Au,[5] will allow

the independent determination of the orbital contribution.
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Chapter 4

Current induced transverse

spin-wave instability in thin

ferromagnets: beyond linear

stability analysis

4.1 Introduction

Almost a decade ago Slonczewski [1] and Berger [2] predicted that when a spin-

polarized current is passed through a ferromagnet it transfers the transverse com-

ponent of its spin angular momentum to the ferromagnet. The experimental ver-

ification of the theoretical predictions followed within a few years [3, 4, 5, 6, 7].

Since then, the so-called ‘spin-transfer effect’ has been observed in a large number

of different experiments.

In most experiments, the spin-transfer torque is studied in a ferromagnet–

77
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normal-metal–ferromagnet tri-layer structure where a thick ferromagnet first po-

larizes the current which then exerts a spin-transfer torque on a second thinner

ferromagnet. At sufficiently large applied current densities, the spin-transfer torque

then may alter the magnetization direction of the thin magnet. The observation

of hysteretic magnetic switching for one current direction only was seen as a hall-

mark of the spin-torque effect [6], and excluded an explanation of the experiments

in terms of the magnetic field associated with the applied current. (Note that

for small system sizes, the spin-transfer torque, which scales proportional to the

current density, dominates over the torque exerted by the magnetic field caused by

the current flow,which is proportional to the total current.) Dynamical aspects of

the magnetic switching process were addressed in recent experiments [8, 9, 10, 11].

Over the past few years there has been much theoretical interest in under-

standing the spin-transfer torque and its consequences for hybrid ferromagnet–

normal-metal devices. The connection between spin currents or spin accumulation

in the normal metal spacer layer and the spin torque can be considered under-

stood [12, 13, 14] (see Ref. [15] for a recent review). Most calculations of the

response of the magnetization to the spin-transfer torque have been done in the

so-called ‘macrospin approximation’, assuming that the ferromagnets remain sin-

gle domains during spin-transfer induced switching events [16, 17, 18, 19, 20, 21].

They have addressed the precise nature of the magnetic switching process, the

possibility of limit cycles, and the temperature dependence of the spin-transfer

torque. In addition, full micromagnetic simulations have been done by several

groups [22, 23, 24, 25], e.g., to examine the effect of the Ampere field on the

hysteretic switching or the breakdown of the macrospin model into quasi-chaotic

dynamics at very high current densities. While the micromagnetic simulations are
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a significant improvement on the macrospin approximation when it comes account-

ing for spatial non-uniformities in the switching process, the existing simulations

derive the spin-transfer torque from an externally fixed spin current, which is a

poor description of the experimental geometries in which the spin currents are

determined as an intricate combination of spin polarizations caused by all ferro-

magnetic elements in the device [26, 12, 27, 15].

In a recent work, Polianski and Brouwer showed that a sufficiently large but

unpolarized electrical current flowing perpendicular to a single thin ferromagnetic

layer can excite spin waves in the ferromagnet [28]. These spin waves have wavevec-

tor perpendicular to the direction of current flow. The key mechanism behind the

transverse spin wave instability is electron diffusion in the normal-metal contacts

perpendicular to the direction of current flow, see Fig. 4.1. Electrons backscat-

tered from the ferromagnet are spin polarized, the polarization direction being

antiparallel to the direction of the magnetization at the location where they were

reflected from the ferromagnet. When these electrons reach the ferromagnetic

layer a second time, they typically do so at a different point at the normal-metal–

ferromagnet interface. In the presence of a spin wave, the magnetization direction

of the ferromagnet will be different at that point, and these electrons will transfer

the perpendicular component of their spin to the ferromagnet, thus exerting a spin-

transfer torque. The sign of this torque is to enhance the spin-wave amplitude. A

similar argument can be made for electrons transmitted through the ferromagnet,

but their torques tend to suppress the spin-wave amplitude. Typically, source and

drain contacts are asymmetric, and a net spin-transfer torque is exerted on the

ferromagnet. This torque leads to a spin wave instability for the current direction

in which the effect of backscattered electrons dominates, and not for the other cur-
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rent direction. Experiments on nanopillars a with single ferromagnetic layer found

a small decrease of the device resistance above a critical current for one direction

of the current and for asymmetric junctions only [29]. This finding is consistent

with the theoretical prediction of a dynamic spinwave instability. A time resolved

experiment, along the lines of Refs. [8, 9] could decide unambiguously whether the

observation of Ref. [29] arises from a static or dynamic inhomogeneity.

For a quantitative theory of this transverse spin-wave instability, an approach

that combines a full self-consistent determination of the spin-transfer torque and,

at the same time, goes beyond the macrospin approximation is essential [28]. In-

deed, the macrospin approximation does not allow for non-uniform spin waves in

the ferromagnet, and, whereas an externally imposed spin transfer torque would

predict a similar instability, a non-self-consistent theory would be quantitatively

incorrect (e.g. predict the wrong wavelength for the spin wave) because it neglects

the coupling between the spin current and the spin waves in the ferromagnet.

The possibility of current-induced non-uniform modes in heterostructures has

become of recent interest in the field, both for single-layer and multilayer struc-

tures [30, 31, 32, 33, 34, 35]. In particular, Ji, Chien, and Stiles [30] reported

experimental and theoretical evidence suggesting that for large ferromagnet thick-

ness, ferromagnet–normal-metal junctions are unstable to the generation of non-

uniform magnetization modes, but in this case, these are longitudinal modes (see

also Refs. [6] and [36]). See also Ref. [33] for a discussion of these experiments.

Further, Stiles, Xiao, and Zangwill pointed out that transverse spinwaves can be

excited even in symmetric junctions if the spinwave mode is at not uniform in the

direction of current flow. However, excitation of these modes requires a higher

currents than the transverse spin-waves considered here [31].
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Previous work [28], as well as the other theoretical works on this and related

spin-wave instabilities [31, 33], was a linear stability analysis, sufficient to predict

the onset of the instability, but not to describe the spin wave amplitude for current

densities larger than the critical current density. Knowledge of the spin wave

amplitude is necessary if one wants to study, e.g., how the spin wave instability

affects the resistance of the normal-metal–ferromagnet junction. It is the goal of

this present work to examine in detail the dynamics of the spin-wave beyond the

instability. While we focus on the case of single-layers, we expect that, in light of

the work of Refs. [33, 35], our qualitative findings will carry over to the case of

tri-layers and heterojunctions.

Although a quantitative description of how the spinwave instability affects the

resistance of the normal-metal–ferromagnet junction will be postponed to the next

two two sections, the sign of the effect can be determined using simple consid-

erations. Once the current density has exceeded the critical current density for

the spin wave excitation and a spin wave has been established, the fact that the

magnetization is no longer uniform reduces the amount of spin accumulation in

the normal metal contacts adjacent to the ferromagnet. A reduction of the spin

accumulation in the normal metal contacts causes a reduction of the sample’s re-

sistance, see Fig. 4.2 for a schematic drawing. Indeed, the experiments of Ref. [29]

observed a small decrease of the resistance of the nanopillar upon onset of the

spin-wave instability. The effect of a purely transverse spinwave instability is op-

posite to that of a longitudinal spinwave, which increases the resistance of the

device [36]. The reduction of the spin accumulation in the normal-metal spacer

also lowers the spin-transfer torque, thus providing a mechanism to saturate the

growth of the spin wave amplitude for current densities larger than the critical
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current density. Moreover, note that a theory of this effect needs to combine fea-

tures of both the micromagnetic approach and the self-consistent treatment of the

spin-transfer torque.

In Sec. 4.2 we consider current densities slightly above the critical current

density. In this regime, a perturbative treatment in the spin wave amplitude

is possible. In Sec. 4.3 we then perform a detailed numerical simulation of a

simplified system that allows us to probe current densities much larger than the

critical current density. Whereas the observed magnetization dynamics in the

presence of a large magnetic field is rather unsurprising — there is one stable energy

minimum, and the magnetization precesses around the direction for which energy

is minimal —, in the absence of an external magnetic field we find a hierarchy

of instabilities. For very high currents the system shows chaotic behavior with

measurable Lyapunov exponents.

4.2 Perturbative calculation

We consider a single ferromagnetic layer, connected to source and drain reservoirs,

see Fig. 4.3. Between the ferromagnet and the drain reservoir is a normal-metal

spacer, as is common in nanopillar geometries. There is, however, no normal-metal

spacer between the ferromagnet and the source reservoir. We use coordinates x,

y, z, where x is the coordinate perpendicular to the layer structure and y and z

are coordinates in the plane of the layers.

Both the ferromagnet and the spacer layer have a rectangular cross section of

dimensions Wy×Wz. The ferromagnet has thickness d, which is taken small enough

that the chemical potential for the conduction electrons and the the direction m of
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the magnetization of the ferromagnet do not depend on the longitudinal coordinate

x. The normal metal spacer has thickness L. Transport through the normal metal

spacer is diffusive, with conductivity σ.

In the normal metal spacer, the charge and spin degrees of the conduction

electrons are described by the equations

∇2µc = 0, jx = (σ/e)∂xµc,

l2sf∇2
µs = µs, js = −(~σ/2e2)∂xµs, (4.1)

where µc and µs are chemical potentials for the electron density and electron

spin respectively, −e is the electron charge, and lsf is the spin diffusion length in

the normal metal spacer. Further, jx is the charge current density and σ is the

conductivity of the normal metal leads. The boundary conditions for x = L at the

drain reservoir is

µc(L) = −eV, µs(L) = 0. (4.2)

Here the argument L refers to the x coordinate. The y and z coordinates are not

written explicitly. The second boundary is the interface between the normal-metal

and ferromagnet at x = 0. Since the electron dynamics happens on a time scale

that is much faster than the rate of change of the magnetization direction m, this

boundary condition can be taken treating m in the adiabatic approximation [26,

27],

jx(0) =
1

e
[g+µc(0) + g−m · µs(0)] ,

js(0) = − ~

2e2
(g−µc(0) + g+m · µs(0))m

+
~

2e2
g1 (2µs(0) × m + ~ṁ) × m

+
~

2e2
g2 (2µs(0) × m + ~ṁ) . (4.3)
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Here g± = (g↑ ± g↓)/2, where g↑ and g↓ are interface conductivities for spins

aligned parallel and anti-parallel to m, and g1 + ig2 is the complex valued ‘mixing

interface conductivity’. The argument “0” refers to a coordinate in the normal

metal spacer, just outside the ferromagnetic layer. The charge current and the spin

current parallel to m are continuous at the interface. In writing down Eq. (4.3) we

assumed that the two ferromagnet–normal-metal interfaces are identical, so that

the potentials µc and m·µs drop equally over both interfaces of the ferromagnet and

that the transverse electron diffusion inside the magnetic layer is negligible. The

component of µs perpendicular to m is then zero in the ferromagnet. (It is the non-

conservation of spin current perpendicular to m that gives rise to the spin transfer

torque.) For Co/Cu and Fe/Cr interfaces, these conductivities are tabulated, see

Refs. [37, 14]. Typical values are in the range g2 � g1 ∼ g± ∼ 1014 Ω−1m−2. For

any interface, one has the constraint g1 > g+ > g− [26].

We are interested in the situation in which the magnetization is allowed to

vary in the direction perpendicular to the current flow. In this case a large enough

current may cause spin-wave excitations perpendicular to the direction of current

flow [28]. To simplify the notation, we take the limit L� lsf. The spin and charge

chemical potentials in the normal-metal spacer then have the general solution

µc(r) =
∑

q

eiqyy+iqzzac(q)e−(q2
y+q2

z)1/2x +
eIx

WyWzσ
,

µs(r) =
∑

q

eiqyy+iqzze−(q2
y+q2

z+l−2

sf
)1/2xas(q), (4.4)

where q = (0, qy, qz)
T is a wavevector in the y-z plane. The components qy and

qz take values qy = πny/Wy, qz = πnz/Wz with integers ny and nz. The Fourier

expansion coefficients ac(q) and as(q) are real and satisfy

ac(q) = ac(−q), as(q) = as(−q). (4.5)
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We further define the quantities

Gc(q) = (σ/2)(q2
y + q2

z)
1/2, (4.6)

Gs(q) = (σ/2)(q2
y + q2

z + l−2
sf )1/2, (4.7)

which have the same dimension as the interface conductivities g±, g1, and g2. With

these definitions, the boundary condition (4.3) at the normal-metal–ferromagnet

interface becomes

0 = − eI

WyWz

+ 2
∑

q

eiqyy+iqzz [Gc(q)ac(q) + g+ac(q) + g−as(q) · m] ,

0 =
∑

q

eiqyy+iqzz [2Gs(q)as(q) + (g−ac(q)m

+g+as(q) ·m)m − 2g1(as(q) × m) × m − 2g2as(q) × m)]

− ~g1ṁ × m − ~g2ṁ. (4.8)

Although Eq. (4.8) gives a set of linear equations for the expansion coefficients

ac(q) and as(q), a solution in closed form is not possible for arbitrary magnetization

m(y, z). Instead, we expand around the uniform equilibrium direction. Hereto we

introduce a second coordinate system with axes labeled 1, 2, and 3, such that m

points along the unit vector ê3 in the absence of an applied current, and write

m = m1ê1 +m2ê2 + (1 −m2
1 −m2

2)
1/2ê3. (4.9)

We then perform a Fourier transform, similar to Eq. (4.4)

mj(y, z) =
∑

q

mj(q)eiqyy+iqzz, j = 1, 2, (4.10)

where mj(q) = mj(−q). Finally, expanding in powers of m1 and m2, we have

solved the spin and charge chemical potentials to third order in m1 and m2, which

parameterize the deviations from equilibrium.
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In order to complete the calculation, we need to calculate the rate of change of

the magnetization direction m in the presence of the current I. Hereto we use the

Landau-Lifshitz-Gilbert equation [38, 39],

ṁ = αm × ṁ + τ ex + τ an + τ ne, (4.11)

where α is the Gilbert damping coefficient, τ ex is the torque arising from exchange,

τ an is the torque from the combined effect of magnetic anisotropy and an applied

magnetic field, and τ ne represents the current-induced spin-transfer torque. The

latter reads [40]

τ ne =
γ

Md
(js(0) − js(−d)) × m) × m

= − ~γ

Mde2
[g1(µs × m + ~ṁ) × m

+ g2(µs × m + ~ṁ)] . (4.12)

Here the spin current js(−d) is taken in the source reservoir, M is the magne-

tization per unit volume and γ is the gyromagnetic ratio. Note that the terms

proportional to the time derivative ṁ have contributions from two interfaces while

the contribution to the torque from the spin chemical potential has a contribution

from the x = 0 interface only. (All potentials are zero in the source reservoir.) The

exchange torque τ ex is

τ ex = JγM∇2m × m, (4.13)

where J is the exchange constant. To linear order in m1 and m2, the anisotropy

torque τ an can be written

τ an = − γ

M
(k1m1ê1 + k2m2ê2) × m, (4.14)

where k1 and k2 describe the combined effect of magnetic anisotropy and an applied

magnetic field. If anisotropy dominates over the effect of a magnetic field, higher-

order terms in an expansion in powers of m1 and m2 will be highly sample specific.



87

Although this case can be dealt with using the methods presented below, the

result of the calculation has little predictive value if those coefficients are not

known independently. Therefore, we focus on the opposite limit that the anisotropy

term in Eq. (4.14) is dominated by magnetic field. Then higher-order terms in an

expansion in powers of m1 and m2 are related to the first-order terms, and one has

τ an = (kγ/M)ê3 × m. (4.15)

where we wrote k1 = k2 = k. For future reference, we combine the material

constants J and 2k = k1 + k2 into the combinations

q2
f =

k

JM2
, j2

f =

(

2e

~

)2

JM2k, (4.16)

which have the dimension of inverse length and current density, respectively.

We now proceed to report the result of our calculation. The lowest order result,

indicated by a superscript “(0)”, is

a(0)
c (q) =

ej(g+ + 2Gs(0))

gm(0)g−
δq,0,

a(0)
s (q) =

−ej
gm(0)

ê3δq,0. (4.17)

Here j = I/WyWz is the current density and [28]

gm(q) =
(g+ + 2Gs(q))(g+ + 2Gc(q))

g−
− g−. (4.18)

Writing µc(L) = −eV = −e(L/σWyWz + R)I, we conclude that the resistance R

of the ferromagnetic layer is

R =
1

WyWz

σ/lsf + g+

g+σ/lsf + g2
+ − g2

−

. (4.19)

For the zeroth-order solution, the spin potential µs is collinear with m through-

out the sample. Hence, to that order there is no current-induced torque. This is
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different when small deviations from the situation m = ê3 are taken into account

to first order. One finds that the first-order corrections a
(1)
c (q) and a

(1)
s3 (q) are zero.

In order to represent the first-order contributions to the transverse spin potentials

as1 and as2, we use spinor notation, as = (as1, as2)
T and m = (m1, m2)

T. Then,

defining

D(q) = (g1 +Gs(q))2 + g2
2, (4.20)

we find

a(1)
s (q) = − ej

gm(0)
m(q) +

ej(Gs(q) −Gs(0))

gm(0)D(q)
[(g1 +Gs(q))m(q) + ig2σ2m(q)]

+
~

2D(q)

[

g2Gs(q)ṁ(q) + (g2
1 + g1Gs(q) + g2

2)iσ2ṁ(q)
]

.

(4.21)

where σ2 is the second Pauli matrix. Note that the first term on the right hand side

is the response to a uniform rotation of the magnetization, while the second and

third terms give the response to a non-uniform and time-dependent magnetization.

The potentials are substituted into Eq. (4.12) to find the current-induced

torque, and then into the Landau-Lifshitz-Gilbert equation (4.11) to find the rate

of change of the magnetization. The current-induced torque has contributions pro-

portional to the time derivative ṁ, which lead to a renormalization of the Gilbert

damping parameter α and the the gyromagnetic ratio γ. The renormalized Gilbert

damping parameter α̃ and gyromagnetic ratio γ̃ = γ/β̃ depend on the transverse

wavevector q and read

α̃ = α +
~

2γ(g1 +Gs(q))

2Mde2

[

1 − Gs(q)2

D(q)

]

,

β̃ = 1 +
~

2γg2

2Mde2

[

1 +
Gs(q)2

D(q)

]

. (4.22)

In the macrospin limit q → 0, these modifications coincide with the renormalized
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values originally reported in Ref. [27].

Again using two-component spinor notation, the complete Landau-Lifshitz-

Gilbert equation then becomes

(β̃12 + iσ2α̃)ṁ(q) = A(q)m(q), (4.23)

with

A(q) = τ
(1)
‖ 12 − iσ2

[

τ
(1)
⊥ +

~γjf(q
2 + q2

f )

2eqfM

]

+ σ3
γ(k1 − k2)

2M
(4.24)

and

τ
(1)
‖ (q) =

~γej

Mde2

g2
1 + g2

2 + g1Gs(q)

gm(0)D(q)
[Gs(q) −Gs(0)],

τ
(1)
⊥ (q) =

~γej

Mde2

g2Gs(q)

gm(0)D(q)
[Gs(q) −Gs(0)]. (4.25)

In the absence of a current, any spatial modulation of the magnetization is

damped. However, a sufficiently large positive current I can overcome the damping,

and cause a spatial modulation of m to grow in time, rather than decay. (A positive

current I corresponds to electron flow in the negative x direction.) The instability

condition is easily obtained from Eq. (4.23)

τ
(1)
‖ (q)

β̃(q)

α̃(q)
>

~γjf(q
2 + q2

f )

2eqfM
+ τ

(1)
⊥ (q). (4.26)

We can analyze this result in different limits. For a ferromagnetic layer with

sufficiently small transverse dimensions, Wy,Wz . (lsf/q
2
f )

1/3 if lsfqf � 1, the

instability happens at wavevector q = (π/Wy)ŷ or q = (π/Wz)ẑ, whichever is

smallest, and the critical current follows directly from Eq. (4.26). For wider layers,

the critical current density jc and critical wavevector qc are found as the current-

density wavevector pair for which the onset of the instability condition happens at

the lowest current density.
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This condition can be simplified in the limit of a very thin ferromagnetic layer,

d→ 0, neglecting terms proportional to g2 (which is numerically smaller than g1),

and for wavenumbers q � qf . We then find that the critical current follows from

minimizing the relation

jc(q) =
~

2γgm(0)jf
2Mqfe2

q2 + q2
f

1 − (1 + q2l2sf)
−1/2

. (4.27)

In the limit lsf � 1/qf , this gives [28]

qc = (q2
f /2lsf)

1/3, jc =
~

2γgm(0)qfjf
2Me2

. (4.28)

(The result for jc was reported incorrectly in Ref. [28]. Note that the condition

qc � qf , which was used to derive Eq. (4.27) is consistent with Eq. (4.28) if

lsf � 1/qf .) Note that qf increases with an applied magnetic field, so that this limit

becomes relevant even for the case of a normal metal with strong spin relaxation if

the magnetic field is large enough. In the limit lsf � 1/qf of strong spin relaxation

and weak anisotropy, one has

qc = (4/3)1/4(qf/lsf)
1/2, jc =

~
2γgm(0)jf
Mqf l2sfe

2
. (4.29)

At the critical current density, the trajectory of the magnetization is a simple

ellipse (circle in the case of large magnetic fields). The ellipse is described by the co-

ordinate transformation m1 = r(cos θ cosφ+η sin θ sinφ), and m2 = r(sin θ cos φ−

η cos θ sin φ). The solution of the magnetization dynamics at the critical current

then gives φ = ω0t and r constant, where ω2
0 = ω2

+ − ω2
−, η = (ω+ − ω−)/ω0 and

ω−1
+ =

2Mce2qf cos(2θ)

γ(q2
f + q2

c )jf

− 2Mce2qfg2Gs(q) sin(2θ)

γjf(q
2
f + q2

c )(g
2
1 + g2

2 + g1Gs(q)))
, (4.30)

ω−1
− =

2Mc~

γ(k1 − k2)
. (4.31)
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and c, θ are obtained from α̃ = c sin 2θ, β̃ = c cos 2θ. For the case of a large applied

magnetic field, k1 = k2 = k, and neglecting g2, we have η = 1 and

ω0 = ~γjf(q
2
c + q2

f )/(2eqfM). (4.32)

Note that, although the applied current has a large effect on the stability of the

ellipsoidal motion (precession is damped for j < jc and unstable for j > jc), its

effect on the precession frequency is small. To a good approximation, the precession

frequency equals the ferromagnetic resonance frequency in the absence of a current.

Whereas the first-order calculation allows one to find the current density at

which the spin-wave instability sets in and the angular form of the low-amplitude

excitations, it does not provide information about the magnitude of the spin-

wave oscillation for j > jc, or about the effect of the spinwave oscillation on

the resistance of the ferromagnetic layer. This information can only be obtained

from the analysis of the magnetization dynamics beyond first-order in the ampli-

tude. Such a program proceeds along the same lines as the first-order calculation

shown above: Calculation of the potentials for charge and spin in the presence

of a non-uniform and time-dependent magnetization, followed by a calculation of

the current-induced torque and the rate of change of the magnetization. We have

carried out this program to third order in m1 and m2, and list some of our gen-

eral results in the appendix. However, as this calculation involves higher-order

contributions to the anisotropy torque τ an, for which the expansion constants are

unknown, we find that this calculation has little predictive value. Instead, we focus

on the limit in which all magnetic anisotropy arises from an applied magnetic field.

In this limit, τ an is known, cf. Eq. (4.15), and a theoretical analysis is useful.

An important simplification is that the higher-order analysis is necessary for

the Fourier components m1(qc) and m2(qc) at the critical wavevector only. The
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precise value of qc is determined by the transverse boundary conditions, see discus-

sion following Eq. (4.26). For the just-above-critical current densities considered

here, we can exclude a current dependent shift in qc. Hence, we need to consider

only a single Fourier component in our considerations below. Solving for the lead-

ing (second order) correction to the charge potential, we find an expression that

depends on the magnetization amplitude, to second order in m1 and m2, and on

the time derivatives. Only first-order time-derivatives appear, which can be elim-

inated using the Landau-Lifshitz-Gilbert equation (4.23). For the case of a large

applied magnetic field, the magnetization precession is circular, and one has

m1(qc)ṁ2(qc) −m2(qc)ṁ1(qc) = ω0r(qc)
2, (4.33)

where we abbreviated

r(qc)
2 = m1(qc)

2 +m2(qc)
2. (4.34)

The precession frequency ω0 given by Eq. (4.30) above. We then find

a(2)
c (0) =

2(Gs(0) −Gs(qc))r(qc)
2

D(qc)gm(0)2

× [ω0gm(0) (D(qc) −Gs(qc)(g1 +Gs(qc)))

− 2ejc (D(qc) + (Gs(0) −Gs(qc))(g1 +Gs(qc)))] (4.35)

Solving for the leading (third) order torque, we note that the third order torque

depends not only on the magnetization amplitudes m1(qc) and m2(qc), but also

on their time derivative ṁ1 and ṁ2. The time derivatives appear to first, second,

and third order in the expansion. The dependence on ṁ(3) leads to the same

modifications to the Gilbert damping and gyromagnetic ratio as for the first-order

current-induced torque calculated above. The dependence on ṁ(2) is through the

3-component only, which can be written as

ṁ
(2)
3 = −m1ṁ

(1)
1 −m2ṁ

(1)
2 . (4.36)
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The first-order time derivatives ṁ(1) can be expressed in terms of m1 and m2 using

Eq. (4.33) [or, in the general case, using Eq. (4.23)]. For the anisotropy torque τan

we take the contribution from the magnetic field only. Hence,

τex(qc) + τan(qc) =
~γjf

2eqfM

[

q2
c + q2

f +
q2
c

2
r(qc)

2

]

× (−iσ2)m(qc). (4.37)

Thus proceeding, we find that the third-order equation for the rate of change of

the magnetization direction reads

(β̃12 + iσ2α̃)ṁ(q)(3) = A(q)(3)m(q)(3), (4.38)

with

A(qc)
(3) = −1

2
r(qc)

2
[

2τ
(3)
‖ (0)12 − 2iσ2τ

(3)
⊥ (0) + τ

(3)
‖ (2qc)12 − iσ2τ

(3)
⊥ (2qc)

+3α̃ω012 +
~γjfq

2
c

2eqfM
iσ2

]

, (4.39)

and

τ
(3)
‖ (k) =

~γg1

Mde2(g1 +Gq)

{

[g+ + 2Gc(k)][g+ + 2Gs(q)] − g2
−

[g+ + 2Gc(k)][g+ + 2Gs(k)] − g2
−

}

(4.40a)

×
{

ej

gm(0)
[Gs(k) −Gs(0)]

+

[

g1~ω0 −
2ej(g1 +Gs(0))

gm(0)

]

Gs(k) −Gs(q)

g1 +Gs(q)

}

,

τ
(3)
⊥ (k) =

~γg2Gs(q)[Gs(k) −Gs(q)]

Mde2[g1 +Gs(q)]3
(4.40b)

×
{

[g+ + 2Gc(k)][g+ + 2Gs(q)] − g2
−

[g+ + 2Gc(k)][g+ + 2Gs(k)] − g2
−

[

g1~ω0 −
ej(g1 +Gs(0))

gm(0)

]

+
[(g+ − 2g1)(2Gc(k) + g+) − g2

−][Gs(q) −Gs(0)]ej

gm(0)[(g+ + 2Gc(k))(g+ + 2Gs(k)) − g2
−]

}

.

Solving the differential equation for m, one finds that the precession amplitude
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for current density j slightly above the critical current density jc reads

r(qc)
2 =

~γjf(j − jc)

eqfMjc
(4.41)

× α̃(q2
c + q2

f )

β̃
[

2τ
(3)
‖ (0) + τ

(3)
‖ (2qc) − 3τ

(1)
‖ (qc)

]

− α̃
[

2τ
(3)
⊥ (0) + τ

(3)
⊥ (2qc) − ~γjfq2

c/(2eqfM)
]

The result takes a simpler form in the limit g2 → 0 (since g2 is numerically smaller

than g1), d→ 0, and 1/lsf � qc � qf ,

r(qc)
2 =

(j − jc)(g
2
+ − g2

− + g+σ/lsf)

jc(2g1g+ + g+σ/lsf − g2
+ + g2

−)
. (4.42)

Since g1 > g+ > g− we conclude that the r(qc)
2 > 0 is positive if j > jc, which

excludes hysteretic behavior.

In the same limit we can also calculate the change in frequency of the spinwave

given by

ω

ω0
= 1 +

q2
cr(qc)

2

3(q2
c + q2

f )
. (4.43)

Since the prefactor of the second term is much smaller than unity, qc � qf for

the parameter regime of interest, we conclude that in the regime of perturbation

theory, there is hardly any change from the ferromagnetic resonance frequency.

Finally, at the onset of the spin-wave instability, the resistance of the ferromag-

netic layer acquires a small negative correction

R

R0

= 1 +
a

(2)
c (0)

a
(0)
c (0)

,

≈ 1 − 2(σ/lsf + 3g1)g
2
−r(qc)

2

(σ/lsf + g+)(g2
+ − g2

− + g+σ/lsf)
. (4.44)

(In the second line we took the limits g2 → 0, d → 0, and used 1/lsf � qc � qf .)

This resistance decrease is anticipated on physical grounds since the non-uniform

mode allows for an increased transmission of minority elections that diffuse along

the transverse direction — see Fig. 4.2 and the corresponding discussion in Sec.

4.1.
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4.3 Numerical calculation

The calculations in the preceding section are valid for currents close to the onset

of the instability. For currents much larger than the critical current, we need to go

beyond perturbation theory to obtain the dynamics. Hereto we numerically solve

for the magnetization dynamics and its effect on the resistance of the ferromagnetic

layer.

In our numerical analysis, we assume Wz � Wy and impose that the magne-

tization direction m(y, z) does not depend on z. The remaining two-dimensional

problem is replaced by a finite number of one-dimensional problems by substituting

the normal-metal spacer and the ferromagnetic layer by N normal metal channels,

each attached to a magnet with magnetization direction m(n), n = 1, . . . , N . In

order to model a higher-dimensional structure, electrons are allowed to diffuse be-

tween the channels, whereas the N magnets interact via an exchange energy. A

schematic drawing of this model is shown in Fig. 4.4.

In this discretized model, the potentials for charge and spin obey the equations

∂2
xµc(n, x) +

(

N

Wy

)2

[µc(n + 1, x) + µc(n− 1, x)

− 2µc(n, x)] = 0,

∂2
xµs(n, x) +

(

N

Wy

)2

[µs(n+ 1, x) + µs(n− 1, x)

− 2µs(n, x)] =
µs(n, x)

l2sf
. (4.45)

Equations for the boundary channels, n = 1 and n = N , are obtained by setting

µc,s(0, x) = µc,s(1, x) and µc,s(N + 1, x) = µc,x(N, x). The general solution of Eq.
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(4.45) is of the form

µc(n, x) = 2

N−1
∑

l=0

ac(l) cos [lπ(n+ 1/2)/N ] e−qc(l)x

+
eIx

σWyWz
.

µs(n, x) = 2
N−1
∑

l=0

as(l) cos [lπ(n+ 1/2)/N ] e−qs(l)x, (4.46)

with

qc(l)
2 = 4(N/Wy)

2 sin2 (lπ/2N)) ,

qs(l)
2 = l−2

sf + 4(N/Wy)
2 sin2 (lπ/2N)) . (4.47)

The boundary conditions at x = 0 (normal-metal–ferromagnet interface) are given

by Eq. (4.3).

The magnetization dynamics is given by the Landau-Lifshitz-Gilbert equation

(4.11), with a discretized exchange torque τ ex,

τ ex(n) =
JγMN2

W 2
y

[m(n+ 1) + m(n− 1)] × m(n), (4.48)

For the anisotropy torque we consider two different cases: The limit of a large

applied magnetic field,

τ an =
kγ

M
ê3 × m(n), (4.49)

as well as the case of no applied field, where we take a simple model for the torque

arising from magnetocrystalline and shape anisotropy,

τ an(n) = − γ

M
[k1m1(n)ê1 + k2m2(n)ê2] × m(n). (4.50)

The Landau-Lifshitz-Gilbert equation, together with the boundary conditions

at x = 0, are sufficient to determine the 4N expansion coefficients ac(l) and as(l),

l = 0, . . . , N − 1, and the time derivative of the magnetization directions m(n),
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n = 1, . . . , N . Our numerical procedure consists of first expressing ṁ(n) in terms

of the potential expansion coefficients ac(l) and as(l) using the Landau-Lifshitz-

Gilbert equation, and then solving for the potential expansion coefficients using

the boundary condition at x = 0.

For the practical implementation of this scheme, it is useful to define 3 × 3

matrices M and R = mmT such that for any vector v, v × m = Mv and

R− 13 = M2. In 3 × 3 matrix notation, the time derivative of the magnetization

vector can be expressed in terms of the potential coefficients as

ṁ(n) =
β ′13 + α′2R/β ′ − α′M

α′2 + β ′2
(4.51)

×
{

M[τ ex + τ an] +
2~γ

Mde2

N−1
∑

l=0

[Mg1 + g213]Mas(l) cos [lπ(n + 1/2)/N ]

}

,

where α′ = α + ~
2γg1/(Mde2) and β ′ = 1 + ~

2γg2/(Mde2). In turn, the potential

coefficients as(l) are obtained from inverting a 4N dimensional matrix equation,

N−1
∑

l=0

2 cos (lπ(n + 1/2)/N)







2σqc(l) + 2g+ 2mTg−

2mg− σqs(l)13 + 4χ1













ac(l)

as(l)







=
2eI

WyWz







g+

g−m






+







0

χ2






, (4.52)

where we abbreviated

χ1(n) = g−R−M(g1M + g213)

+
~

2γ

2Mde2(α′2 + β ′2)
(g1M + g213)[β

′13

+ α′2R/β ′ − α′M]M(g1M + g213), (4.53)

χ2(n) =
2(g1M + g213)~

2γ

Mde2(α′2 + β ′2)
[β ′13

+ α′2R/β ′ − α′M]M[τ ex(n) + τ an(n)]. (4.54)
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We have performed numerical simulations for N ranging between 10 and 20,

although all data shown are for N = 10 and N = 11. We verified that there is

no qualitative dependence on the parity of N in our simulations. A small random

torque was added at each time step to mimic the effect of a small but finite temper-

ature. (The corresponding temperature obtained from the fluctuation-dissipation

theorem was less then a mK [19].)

Below we present our results. We first consider the case in which the anisotropy

torque is dominated by an applied magnetic field, taking Eq. (4.49) for the anisotropy

torque τ an. We then consider the case in which there is no applied magnetic field,

taking Eq. (4.50) for τ an. The latter case is qualitatively different from the for-

mer, as it has two stable equilibria for m (m = ê3 and m = −ê3), whereas in the

presence of a large applied field the equilibrium position is at m = ê3.

4.3.1 Large applied magnetic field

For the numerical simulations with a magnetic field, we took values for the various

parameters as follows: thickness d = 0.2 nm, Width Wy = 55 nm, as is appro-

priate for typical nanopillar experiments [7], spin-diffusion length lsf = 100 nm,

σ/lsf = 1015Ω−1m−2, g1 = 5.5 × 1014 Ω−1m−2, g2 = 0.3 × 1014 Ω−1m−2, g↑ =

g+ + g− = 4.2 × 1014 Ω−1m−2, g↓ = g+ − g− = 3.3 × 1014 Ω−1m−2. The inter-

face conductivities are taken from numerical calculations for a disordered Cu/Co

interface [14]; the conductivity σ and the spin relaxation length lsf are consistent

with those in Cu. We further took α = 0.01, ~γg1/Mde2 = 0.0138, jf = 1012A/m2,

qf = 10−1nm−1 (as is appropriate for Co, see Ref. [41]; the magnetic field corre-

sponding to the values of jf and qf listed above is of a strength comparable to the

intrinsic anisotropy energy). For these parameters, the width of the sample is so
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small that the spinwave wavenumber q is set by the finite sample width, q = π/Wy.

For current densities below jc, no spinwaves are excited. Simulation runs in

which the magnetization is tilted away from the easy axis ê3 show damped preces-

sion towards the equilibrium magnetization direction m = ê3. For current densities

above jc, a spin-wave with wavenumber q = π/Wy is excited. Each magnet n in our

simulation n = 1, . . . , N shows circular precession around the direction of the ap-

plied magnetic field, see Fig. 4.5, inset. The amplitude of the oscillation increases

with current as predicted by the perturbation theory of the preceding section. The

3-component of the magnetization is a constant of the motion and can be moni-

tored to measure the amplitude. Numerical results for m3 for the magnet n = 1

are shown in Fig. 4.5 as a function of current density, together with a comparison

of our numerical results with the perturbative result (4.42). With a large applied

field, the magnetization dynamics remains regular even for current densities much

larger than jc. The effect of the spin-wave instability on the resistance of the

ferromagnetic layer is shown in Fig. 4.6.

4.3.2 No applied magnetic field

We have also performed numerical simulations in the absence of an applied mag-

netic field. Hereto, we choose Eq. (4.50) for the anisotropy torque, and choose k1

and k2 such that (k1−k2)/(k1+k2) = 0.99. This form of the anisotropy is appropri-

ate for thin magnetic layers, in which the magnetic anisotropy is predominantly of

easy-plane type. The magnitude of the anisotropy energy is set by the parameters

qf and jf , for which we take the same values as in the previous subsection. All

other parameters are also taken the same as in the previous subsection.

The magnetization dynamics without applied magnetic field is much richer than
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the magnetization dynamics at a large magnetic field. The reason is the existence

of two stable equilibrium directions if no external magnetic field is applied (m =

ê3 and −ê3). At sufficiently large current densities, the current-induced torque

drives the magnetization direction between these two stable directions, leading to

a variety of dynamical phases.

For the numerical parameters chosen in our simulation, we observe the following

characteristic dynamical modes: For current densities jc < j . 2jc the instability

develops with the wavenumber q = π/Wy. Because the magnetic anisotropy energy

used for the simulation has no rotation symmetry around the 3 axis, the magne-

tization direction m(n) of each magnet n = 1, . . . , N traces out an ellipse, rather

than a circle. We describe the magnetization motion is described using Poincaré

sections for the polar angles θ and φ for the magnetization. The top right panel in

Fig. 4.7 shows traces that are symmetric about φ = π, which have the functional

form for m as predicted by the perturbation theory in the preceding section.

For higher currents with 2jc . j . 2.5jc, the reflection symmetry about the

easy axis is spontaneously broken, resulting in asymmetric ellipses (upper inset in

Fig. 4.8), which for even higher current densities turn into orbits around the direc-

tion perpendicular to the easy axis (lower inset in Fig. 4.8). A three-dimensional

rendering of this regime is shown in Figure 4.8.

For even larger currents there is a transition into non-periodic modes that cover

a significant part of phase space, as shown in Figure 4.9. Whereas these modes

are non-ergodic for lower current densities, they eventually become ergodic and

chaotic at high current densities, with Lyapunov exponents increasing with the

current density j (data not shown).

In this general case, when the magnetization motion is not just simple circular
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precession, the spin-wave instability not only leads to a decrease of the dc resistance

of the ferromagnetic layer, it also causes a fast oscillation of the resistance as shown

in the time trace in Figure 4.10. The right panel in Fig. 4.10 shows the decrease of

the dc resistance up to j = 2.5jc. (No sufficiently accurate numerical results were

obtained for larger current density.) Results for the variation of the resistance

amplitude and frequency with the applied current density are shown in the left

panel for current densities up to 4jc. At the parameter values considered in our

simulation, the onset of the non-periodic magnetization variations is accompanied

by a sharp rise in precession frequency and a decrease of the amplitude of the

resistance fluctuations.

4.4 Discussion and conclusion

We have presented a detailed study of the transverse spin-wave instability for a

single ferromagnetic layer subject to a large current perpendicular to the layer. Our

calculations have been in the small-amplitude regime, where perturbation theory

can be used, and in the large-amplitude regime, where the magnetization dynamics

can be solved numerically.

The two main signatures of the spin-wave instability are (1) existence of the

instability for one current direction only, and (2) a small reduction in the dc re-

sistance of the ferromagnetic layer. The resistance decrease arises because the

existence of a spin wave with large amplitude lowers the spin accumulation in the

normal metal adjacent to the ferromagnet. A lower spin accumulation corresponds

to a lower resistance (just as a high spin accumulation state of the antiparallel con-

figuration in the standard current-perpendicular-to-plane giant magnetoresistance
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geometry gives a high resistance state). Both features have been seen in a recent

experiment [29].

An important question for a dynamical instability is whether or not it is hys-

teretic. Our calculation has shown that the instability studied here is not, if a

large magnetic field is applied. Without applied magnetic field, the nature of the

spin wave instability depends on the precise form of the magnetic anisotropy, and

both hysteretic and non-hysteretic behavior can be expected, in principle.

A noteworthy aspect of our calculation is that the spin-transfer torque is cal-

culated self-consistently: the magnitude and direction of the spin-transfer torque

depends on the spin accumulation in the normal metal, which, in turn, depends on

the precise magnetization profile of the ferromagnet. In doing this, our work con-

nects the the circuit theory for hybrid ferromagnet–normal-metal systems, which

has been used extensively to describe the magnet’s effect on spin accumulations

in macrospin approximation [15], and micromagnetic simulations, which, to date,

have been restricted to simplified models for the spin-transfer torque. However,

our simulations should be considered a proof-of-principle. They lack the spatial

resolution and sophistication that full-scale micromagnetic simulations have.
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Figure 4.1: Through the spin-transfer torque, an unpolarized electrical current

flowing perpendicular to a thin ferromagnetic layer can enhance or suppress spin

waves. Electrons backscattered from the ferromagnet at point 1 have their spin

predominantly polarized antiparallel to magnetization direction m(1). These elec-

trons exert a torque on the ferromagnet’s magnetization m(2) if they reach the

ferromagnet a second time at point 2, the direction of the torque being to enhance

an existing spinwave [i.e., to increase any pre-existing difference between m(1)

and m(2)]. When electrons transmitted through the ferromagnet reach the ferro-

magnet a second time at point 3, they exert a torque that suppresses an existing

spinwave. If source and drain contacts are not symmetric, there is a net torque

on the ferromagnet, which enhances or suppresses the spin wave, depending on

current direction.
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−e
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Figure 4.2: Spin will accumulate in normal metals on both sides of a ferromagnetic

layer with uniform magnetization if an unpolarized current is passed through the

ferromagnet (top left). A large-amplitude spinwave in the ferromagnet reduces

the amount of spin polarization in the normal-metal regions adjacent to the ferro-

magnet and lowers the total resistance of the device (bottom left). This is shown

schematically in the circuit diagrams (right). The top two circuit diagrams show

the resistances seen by majority and minority electrons when the magnetization

is spatially uniform, the short and long resistor symbols referring to minority and

majority resistances, respectively. The ferromagnet with a large-amplitude spin

wave can be seen as a parallel configuration of ferromagnets with opposite mag-

netization directions. The bottom two circuit diagrams show the resistances seen

by two spin directions in this case. The net resistance is lower in the presence of

a large-amplitude spin wave.
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x = L= 0

Figure 4.3: Schematic picture of the normal-metal–ferromagnet–normal-metal

junction considered in our calculations. The ferromagnetic layer (F) is connected

to source and drain reservoirs though normal metal spacers (N). We consider the

maximally asymmetric case with only one spacer of length L� lsf .



106

x = 0 x = L

V = 0 −V

Figure 4.4: Schematic drawing of the model solved numerically. The continuous

magnet is replaced by N magnets (left), each coupled to a normal-metal wire

(right). The wires are coupled via transverse diffusion (shown schematically as solid

lines); the magnets are coupled via the exchange interaction (shown schematically

as dashed lines).
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Figure 4.5: Main panel shows the magnetization component m3(1) of the first

magnet, as a function of applied current. The solid line is obtained from the

perturbation theory result (4.42), while the dashed line is a guide to the eye. In

a large magnetic field, the motion is circular. an example is shown in the inset

where j = 1.5jc.
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Figure 4.6: Resistance of the ferromagnetic layer, as a function of applied current

(crosses). The solid line is obtained from the perturbation theory result (4.44),

while the dashed line is a guide to the eye.
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Figure 4.7: Typical elliptical trajectory for one of the discrete nanomagnets m(n)

for weak easy axis and strong easy plane anisotropy with jc < j < 2jc (left panel).

The upper and lower right panels show the corresponding Poincaré sections for j =

1.2jc and 1.5jc respectively. This regime agrees with the perturbative calculation

of Sec. 4.2, where the lowest energy spin-wave mode is excited and increasing the

current only changes the amplitude of elliptical oscillation.
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Figure 4.8: First manifestations of further dynamical instabilities in the range

2jc < j < 2.5jc. The upper right panel shows a Poincaré section for j = 2.2jc

where the motion is no longer symmetric about the easy axis. The lower right

panel shows the motion for j = 2.4jc where the motion is trapped between the ±ê3

easy axes direction. The left panel shows what this motion looks like on the unit

sphere.
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Figure 4.9: Poincaré sections for the magnetization direction of one of the magnets

at j = 2.5jc (left) and j = 3.2jc (right).
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Figure 4.10: The upper panel shows the time trace of resistance where the spin-

wave instability causes a decrease in the observed resistance. The lower left plot

shows how the amplitude and period of the resistance oscillation change with the

driving current, while the lower right panel shows the decrease of dc resistance.
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[29] B. Özyilmaz, A. D. Kent, J. Z. Sun, M. J. Rooks, R. H. Koch, Phys. Rev
Lett. 93, 176604 (2004).

[30] Y. Ji, C. L. Chien, and M. D. Stiles, Phys. Rev. Lett. 90, 106601 (2003).

[31] M. D. Stiles, J. Xiao, and A. Zangwill, Phys. Rev. B. 69, 054408 (2004).

[32] S. Urazhdin, Phys. Rev. B. 69, 134430 (2004).

[33] A. Brataas, Y. Tserkovnyak, and G. Bauer, cond-mat/0501672 (2005).

[34] A. Slavin and P. Kabos, IEEE Trans. Mag. 41, 1264 (2005).
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Chapter 5

Mesoscopic anisotropic

magnetoconductance fluctuations

in ferromagnets

5.1 Introduction

One hallmark of phase-coherent transport is the phenomenon of “universal conduc-

tance fluctuations”, random, but reproducible variations in a sample’s conductance

as a function of the applied magnetic field or the Fermi energy [1, 2, 3, 4, 5]. The

magnitude of the conductance fluctuations is of order unity, in units of the con-

ductance quantum e2/h, and does not depend on specific sample properties, such

as the impurity concentration, the meterial, shape, or method of preparation.

Recently there has been both theoretical and experimental interest in meso-

scopic transport in itinerant ferromagnets. The experimental interest stems from

the ability to fabricate ferromagnetic conductors small enough that transport
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through the magnet is predominantly coherent [6, 7]. The theoretical interest

is motivated by the rich variety of ways through which random impurity scatter-

ing can affect the properties of an itinerant ferromagnet. Theoretical predictions

exist for the effect of domain walls on weak localization and conductance fluctua-

tions [8, 9] as well as for the combined effect of spin-orbit interaction and impurity

scattering on weak localization [10] and magnetic anisotropy [11]. Although dis-

ordered ferromagnetic conductors display different phenomena than their normal-

metal counterparts, the theoretical framework to describe them is rather similar.

Indeed, the methods of diagrammatic perturbation theory developed for electron

transport in disordered metals can be applied to ferromagnets by modifying the

single particle Hamiltonian taking into account the exchange field and/or spin-orbit

interactions.

In this chapter, we address the mesoscopic contribution to a ferromagnet’s

anisotropic magnetoresistance. Anisotropic magnetoresistance is the phenomenon

that a magnet’s resistance depends on the orientation of the magnetization result-

ing from a combination of spin-orbit coupling and orbital magnetic effects [12].

For a single domain magnet, the resistance is a smooth function of the magnetiza-

tion direction. The mesoscopic effect described here consists of an additional and

faster random dependence on the magnetization direction that is different for each

sample, but reproducible for a given sample. This situation is not very different

from the case of standard universal conductance fluctuations in a normal metal,

where the random magnetic-field dependent fluctuations are superimposed on a

systematic magnetoconductance.

There are two possible mechanisms through which the magnetization direction

can affect the interference correction to the conductance. First, a change of the
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magnetization direction causes a change of the internal magnetic field, which di-

rectly affects the orbital motion of the electrons via a change of Aharonov-Bohm

phases. Second, a change of the magnetization direction causes a change of the

exchange field, which affects the motion of the electrons via spin-orbit scattering.

The first effect would be dominant if the magnetic flux through the cross-section of

a phase coherent volume is of the order of the flux quantum. For many magnetic

materials, the phase coherent lengths can be small and this effect can be neglected

(see discussion in Ref. [10]). In what follows, we assume that this condition holds,

and that the second effect dominates the mesoscopic anisotropic magnetoresis-

tance. For the same reason, we ignore any effect of an applied magnetic field used

to change the magnetization direction.

5.2 Theoretical model

We consider an ensemble of ferromagnetic particles, each with a different configu-

ration of impurities and calculate the conductance autocorrelation function

C(θ) = 〈G(m̂)G(m̂′)〉 − 〈G(m̂)〉2, (5.1)

where θ is the angle between the magnetization directions m̂ and m̂′ and the

brackets 〈. . .〉 denote the ensemble average. The vectors m̂ and m̂′ are defined to

have unit length. The Hamiltonian for a ferromagnet with spin-orbit scattering is

Hαβ =

(

p2

2m
− µ

)

δαβ − EZσ
z
αβ + Vαβ (5.2)

where α and β are spin indices, σz the Pauli matrix, the magnetization direction

m̂ is taken as the spin quantization axis, and EZ = µBBex is the Zeeman energy

corresponding to the exchange field Bex. We perform the ensemble average at a
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fixed chemical potential µ and exchange field Bex, rather than at self-consistently

determined µ and Bex. Although the omission of the self-consistency conditions

is known to affect averaged quantities, it is believed not to affect fluctuations [13,

14, 15].

The random potential V in Eq. (5.2) describes the effect of elastic impurity

scattering and spin-orbit scattering, respectively. Its Fourier transform is

Vαk,βk′ = Vk−k′ (5.3)

− iV so
k−k′((k′ × k) · (m̂σz + ê1σ

x + ê2σ
y)αβ,

where ê1 and ê2 are unit vectors perpendicular to each other and to m̂ such that

ê1 × ê2 = m̂. The random potentials V and V so are assumed to be uncorrelated

and Gaussian white noise, with r.m.s. strength v and vso, respectively,

〈VqVq′〉 = v2δ(q − q′), 〈V so
q V so

q′ 〉 = v2
soδ(q − q′). (5.4)

In the leading order Born approximation, the scattering time τα for spin-independent

impurity scattering of electrons with spin α is given by

1

2πν↑τ↑
= v2,

1

2πν↓τ↓
= v2, (5.5)

where να is the density of states of electrons with spin α. Similarly, for spin-

conserving and spin-flip scattering off V so, one has the mean free times

1

2πν↑τ↑‖
=

2

9
v2
sok

4
F↑,

1

2πν↓τ↓‖
=

2

9
v2
sok

4
F↓,

1

2πν↓τ↑⊥
=

1

2πν↑τ↓⊥
=

2

9
v2
sok

2
F↑k

2
F↓, (5.6)

respectively, where kFα is the Fermi wavevector for spin α electrons. In a realistic

ferromagnet, the kinetic energy and the random potential will not have the simple

form assumed in our calculation, which implies that the relationships between the
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Figure 5.1: Dyson Equation for Diffuson ladder. The dotted line indicates a scat-

tering event.

scattering times implied by Eqs. (5.5) and (5.6) need not hold. Although we use the

simple model described above to set up our calculation and to define the scattering

times, these are then considered independent for the rest of the calculation [except

for the equality in the second line of Eq. (5.6), which follows from detailed balance].

Throughout the calculation, we assume that τ � τ‖, τ⊥. This implies that all

Green functions appearing in intermediate phases of the calculation can be aver-

aged over all directions of the momentum. We also assume that phase coherence

is preserved over the entire sample. In a sample with size L larger than the phase

coherence length Lφ, our answer would be modified as C(θ, L) ∼ C(θ, Lφ)(Lφ/L).

In this case, the angle over which the conductance typically fluctuates is then

determined by Lφ instead of L.

5.3 Details of calculation

We now describe the details of our calculation. For the retarded Green function

GR, averaged over the random potential and over all directions of the momentum,

we find

〈GR
α (ω, k, m̂)〉−1 = ω − εα(k) +

i

2τα
+

i

2τα‖
+

i

τα⊥
, (5.7)
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where εα(k) = ~
2k2/2m− µ− EZσ

z
αα is the energy of an electron with spin α and

momentum ~k. In order to calculate the conductance autocorrelation function

(5.1), we need to consider the Diffuson and Cooperon propagators of diagrammatic

perturbation theory. Again, in view of the inequality τ � τ‖, τ⊥, we only need

Diffuson and Cooperon propagators averaged over all momentum directions. Since

the Cooperon and Diffuson propagators are related by time reversal,

C(ω,q, θ) = D(ω,q, π − θ), (5.8)

it will be sufficient to calculate the Diffuson only.

The Diffuson propagator is defined by the ladder diagrams shown in Fig. 5.1.

The solid arrows in Fig. 5.1 denote the impurity-averaged Green functions (5.7).

The two legs of the ladder refer to the two magnetization directions m̂ and m̂′.

For both magnetization directions we use the convention that the magnetization

direction is the spin quantization axis. This is the natural choice for ferromagnets:

Since EZτ � 1 in a typical ferromagnet, with this convention only ladder diagrams

for which the spin indices of retarded and advanced Green functions are pairwise

equal at all times need to be considered; contributions with different spin index

for retarded and advanced Green functions dephase within a mean free time and

do not contribute to the Diffuson propagator. One should note, however, that this

convention implies that the directions of “spin up” and “spin down” in the upper

and lower legs of the ladder correspond to different physical directions if m̂ 6= m̂′.

Summing the ladder diagrams of Fig. 5.1, we then find that the Diffuson obeys

the 2 × 2 matrix equation

∑

γ=↑,↓

KαγD(ω,q, θ)γβ = δαβ
1

2πνατα
. (5.9)
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Figure 5.2: Leading diagrams for conductance correlator. The wavy lines represent

the current vertex J and the shaded box represents either the Cooperon or Diffuson

propagator.

Here K is a 2 × 2 matrix, with diagonal elements given by

K̂αα = τα

[

Dαq
2 + iω +

2

τα⊥
+

1 − cos θ

τα‖

]

, (5.10)

where Dα = v2
Fατα/3 is the diffusion constant. The off-diagonal matrix elements

contain a phase factor that depends on the precise choice of coordinate axes perpen-

dicular to m̂ and m̂′, cf. Eq. (5.3). In all final expressions, the off-diagonal elements

of K only enter through their product, which is independent of this choice,

K↑↓K↓↑ =
τ↑τ↓
τ↑⊥τ↓⊥

(1 + cos θ)2. (5.11)

Once the Diffuson is known, the Cooperon is calculated via Eq. (5.8). For the

special case θ = 0, the result for C was previously obtained by Dugaev et al.[10].

We can now proceed to calculate the conductance correlation function C(θ). We

are interested in the conductance correlations at zero temperature, which allows

us to set ω = 0 in our expressions for the Diffuson and Cooperon propagators. We
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consider a coherent rectangular sample with sides Lx, Ly and Lz, with a current

in the z direction. Following Refs. [5, 2], we then find that the conductance

autocorrelation function is given by

C(θ) =
3e4

2L4
zh

2

∑

q

tr [JD(q)JD(q) + JC(q)JC(q)], (5.12)

where the current vertex reads

Jαβ =
4π

3
v2
Fατ

3
αδαβ (5.13)

and the vector q is summed over the values qx = πnx/Lx, qy = πny/Ly, and

qz = πnz/Lz with nx, ny = 0, 1, 2, . . . and nz = 1, 2, . . .. Without the prefactor

3/2, Eq. (5.12) is precisely the contribution from the diagram shown in Fig. 5.2.

The factor 3/2 in front of Eq. (5.12) accounts for other diagrams that contribute

to the conductance fluctuations, whose net contribution is 1/2 times that of the

diagram of Fig. 5.2 [2, 5]. Substituting our results for the Diffuson and Cooperon

propagators, we find

C(θ) =
6e4

π4h2

∑

q

∑

±

[

1

((Lzq/π)2 + a±(θ))2
+

1

((Lzq/π)2 + a±(π − θ))2

]

, (5.14)

where

a±(θ) =
1

τ↑⊥E↑
+

1

τ↓⊥E↓
+
τ↑‖E↑ + τ↓‖E↓

2τ↑‖τ↓‖E↑E↓
(1 − cos θ))

±
√

(1 + cos θ)2

τ↑⊥τ↓⊥E↑E↓
+

[

1

τ↑⊥E↑
− 1

τ↓⊥E↓
− τ↑‖E↑ − τ↓‖E↓

2τ↑‖τ↓‖E↑E↓
(1 − cos θ)

]2

(5.15)

and Eα = Dα(π/Lz)
2 is the Thouless energy for spin α. Note that the parameter

that governs the importance of spin-orbit scattering is the product τα⊥Eα or τα‖Eα,

which is the ratio of the spin-orbit time and the Thouless time, which is the time

to diffuse through the sample.
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The expression for a±(θ) simplifies in two limiting cases. If θ = 0, one has

a+ = 2/τ↑⊥E↑+2/τ↓⊥E↓ and a− = 0, showing the presence of universal conductance

fluctuations in a ferromagnet. The corresponding eigenvalues for the Cooperon

contribution are found by setting θ = π, a+(π) = 2/τ↑⊥E↑ + 2/τ↑‖E↑ and a−(π) =

2/τ↓⊥E↓ + 2/τ↓‖E↓. Another simple limit is that of a half-metal, a ferromagnet

with vanishing density of states for the minority spins. For a half metal, the only

relevant time and energy scales are the scattering time τ↑‖ for spin-preserving spin-

orbit scattering of majority electrons and the majority electron Thouless energy

E↑. One then finds that only one root a± is relevant, a(θ) = (1 − cos θ)/τ↑‖E↑.

5.3.1 Analytical result for quasi one-dimension

The sum over wavevectors in Eq. 5.14 can be performed analytically for a quasi

one-dimensional sample. Setting nx = ny = 0 in the summation, one finds

C(θ) =
∑

±

[

F (π
√

a±(θ)) + F (π
√

a±(π − θ))
]

, (5.16)

where F (x) = 3e4(−2 + x coth x + x2 sinh−2 x)/2x4h2. Note that for θ = 0, Eq.

(5.16) reproduces the known results varG = (e2/h)2(1/15) for strong spin-orbit

scattering and varG = (e2/h)2(4/15) for weak spin orbit scattering.

5.3.2 Numerical results for higher dimensions

For quasi 2D and 3D samples C(θ) can be computed numerically. The dependence

on the spin-orbit scattering is qualitatively similar for all these cases. Shown in

Fig. 5.3 is C(θ) for a half metal with Lx = Ly = Lz. The top dashed line in

Fig. 5.3 is the variance of the conductance in the absence of spin-orbit scattering.

Without spin-orbit scattering, there is no angle-dependent mesoscopic correction
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Figure 5.3: The correlation function of the conductance at different directions of

the magnetization, for various strengths of the spin orbit scattering. Results shown

here are for a half metal with cubic geometry.
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to the conductance, so C(θ) is independent of θ. For τ↑‖ � 1/E↑, conductance

fluctuations saturate at half their value without spin-orbit scattering. Changing the

magnetization by a small angle θc changes the mesoscopic conductance correction

enough to lose all conductance correlations. Our calculation shows

θc ∼ (τ↑‖E↑)
1/2 ∼ (τ↑‖/τ↑)

1/2l/L, (5.17)

where l is the mean free path. In a realistic ferromagnet, the quantitative form of

C(θ) is different, although the qualitative picture, including the estimate for the

correlation angle θc is the same as for the half metal (see Eq. 5.15).

5.4 Discussion and conclusion

Let us estimate the correlation angle θc for the spin-orbit induced mesoscopic

conductance fluctuations. For the highly disordered ferromagnetic wires used in

the experiments of Refs. [6, 7], the mean free path l is of the order of a few

nm. Taking the spin-orbit times τ‖ and τ⊥ within an order of magnitude of the

elastic scattering time τ (as is appropriate for Co [16]), we find θc ∼ (1×10−8m)/L.

(Recall that L has to be replaced by the phase coherence length Lφ if Lφ < L.) This

would be sufficiently small to explain the few conductance oscillations seen in the

experiment of Ref. [7], for which Lφ ∼ 30nm and the conductance was measured as

a function of an external magnetic field that changed the magnetization direction.

It is instructive to compare the correlation angle θc for spin-orbit induced con-

ductance fluctuations considered here to the correlation angle arising from the cou-

pling of the electron’s charge to the internal magnetic field. The latter is ∼ Φ0/Φ,

where Φ is the magnetic flux through the sample and Φ0 is the flux quantum.

Taking the internal magnetic field to be ∼ 2T, as is appropriate for Co, one finds
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a correlation angle ∼ (2× 10−15m2)/L2. Hence, with the parameters taken above,

the orbital effect will dominate for samples with size L & 2 × 10−7m. This is in

agreement with Ref. [7], where it was shown that the orbital effect alone cannot

account for the observed conductance fluctuations [7].
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Appendix A

Appendix to Chapter 4: Third

order torque

The perturbative calculation of Sec. 4.2 focused on the case of a large applied

magnetic field because, in that case, theoretical results for the spin wave amplitude

do not depend on sample-dependent anisotropy energies. In this appendix we

outline the theory for the general case.

For the most general case, one needs a better ansatz for the intrinsic torque τ an

than Eqs. (4.14) or (4.15), as well as an expression for the current-induced torque

that does not rely on rotation symmetry around the easy axis. In principle the

τ an can be derived from the Free energy τ an = −(γ/M)(∂F/∂m̂)× m̂ if there was

some way to estimate the higher-order expansion coefficients. Once τ an is known

or determined empirically, the dynamics would still depend on the current-induced

spin-transfer torque.

The general expression for the torque τ an is most conveniently derived from the

Free energy, τ an = −(γ/M)(∂F/∂m̂) × m̂. Since we are interested in the mode

m̂(qc) only, we can expand F in powers of m1(qc) and m2(qc), up to fourth order
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as

F (m̂) =
1

2

[

k1m1(qc)
2 + k2m2(qc)

2
]

+

3
∑

j=0

k′jm1(qc)
jm2(qc)

3−j

+
4
∑

j=0

k′′jm1(qc)
jm2(qc)

4−j . (A.1)

The higher-order expansion constants k′j, j = 0, 1, 2, 3, and k′′j , j = 0, 1, . . . , 4, are

not governed by any special symmetry and therefore likely to be sample specific.

(The cubic terms in the expansion of F (m̂) may be forbidden if there is a reflection

symmetry around the easy axis. However, there is no such symmetry in the pres-

ence of an applied magnetic field that is not aligned with the one of the sample’s

easy or hard axes, so that cubic terms need to be included in a general treatment.)

Note that the higher-order torque terms are as important in determining the spin

wave amplitude as the higher-order current-induced spin-transfer torque. Unless

these coefficients are known independently, a calculation of the spin wave ampli-

tude has no predictive value — that was the reason why the main text addressed

the case of a large applied magnetic field.

We now list our general results for the second and third order potentials and

third-order spin-transfer torque. The symbols used are defined in Sec. 4.2 of the

main text. The second-order charge potential expansion coefficients for the normal-
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metal spacer are

a(2)
c (q) = ej

∑

q′
{

[Gs(0) +Gs(q) − 2Gs(q′)]D(q′) + 2[Gs(0) −Gs(q′)][Gs(q) −Gs(q′)][g1 +Gs(q′)]

D(q′)gm(0)gm(q)

× [m1(q
′)m1(q − q′) +m2(q

′)m2(q − q′)]

− 2g2[Gs(0) −Gs(q)][Gs(q) −Gs(q′)]

D(q′)gm(0)gm(q)
[m1(q

′)m2(q − q′) −m2(q
′)m1(q − q′)]

}

− ~

∑

q′

{

[Gs(q) −Gs(q′)][D(q′) −Gs(q′)(g1 +Gs(q′))]

D(q′)gm(q)

× [m1(q − q′)ṁ2(q
′) −m2(q − q′)ṁ1(q

′)]

+
g2[Gs(q) −Gs(q′)]Gs(q)

D(q′)gm(q)
[m1(q − q′)ṁ1(q

′) +m2(q − q′)ṁ2(q
′)]

}

.

(A.2)

The coefficient a
(2)
c (0) determines how the spin wave instability affects the resis-

tance of the ferromagnetic layer, cf. Eq. (4.44) in the main text. The second order

correction to the 3-component of the spin potential is given by the expansion co-
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efficients

a
(2)
s3 (q) = ej

∑

q′

{

1

2gm(0)
[m1(q

′)m1(q − q′) +m2(q
′)m2(q − q′)]

− 1

D(q′)gm(0)gm(q)
[D(q′)(g+ + 2Gc(q))(Gs(0) +Gs(q) − 2Gs(q′))

− (Gs(0) −Gs(q′))(g1 +Gs(q))(gm(q) − 2(g+ + 2Gc(q)))(Gs(q) −Gs(q′))]

× [m1(q
′)m1(q − q′) +m2(q

′)m2(q − q′)]

− g2[Gs(0) −Gs(q)][2(g+ + 2Gc(q))(Gs(q) −Gs(q′)) − gm(q)]

D(q′)gm(0)gm(q)

× [m1(q)m2(q − q′) −m2(q)m1(q − q′)]}

− ~

∑

q′

{

g2Gs(q′)[gm(q) − 2(g+ + 2Gc(q))(Gs(q) −Gs(q′))]

2D(q′)gm(q)

× [m1(q − q′)ṁ1(q
′) +m2(q − q′)ṁ2(q

′)]

− [D(q′) −Gs(q′)(g1 +Gs(q′))][gm(q) − 2(g+ + 2Gc(q))(Gs(q) −Gs(q′))]

2D(q′)gm(q)

× [m1(q − q′)ṁ2(q
′) −m2(q − q′)ṁ1(q

′)]

}

, (A.3)

The very first term describes the effect of a uniform magnetization rotation; the

remaining terms are the result of a non-uniform magnetization. There are second-

order corrections to the spin potential expansion coefficients a1 and a2 that arise

from the presence of cubic terms in the anisotropy Free energy. Such cubic terms

cause second-order contributions to the time derivatives ṁ1 and ṁ2, which give a

contribution to the second order spin potentials a(2) in the same way as the first-

order time contribution to the time derivative affects the first-order spin potentials

a(1), see Eq. (4.21).

Instead of listing the third-order potentials a(3), we describe the correspond-

ing current-induced torque. We specialize to the contributions that are cubic in

the magnetization amplitude at wavevector qc. The resulting torque has terms

proportional to the third-order contributions to the time derivatives of the magne-
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tization. These terms give rise to a renormalized Gilbert damping coefficient and

a renormalized gyromagnetic ratio, see Eq. (4.22). The remaining terms can be

written as 2τ̃ (0) + τ̃ (2qc), where (again using two-component spinor notation)

τ̃ (3)(k) =
−~γ

2Mde2D(qc)2gm(0)gm(k)

× {2ejg2D(qc)Gs(qc)[Gs(qc) −Gs(k)][g+ + 2Gc(k)][Gs(0) −Gs(qc)]

× iσ2m(qc)m
T(qc)m(qc)

− [gm(k) + 2(g+ + 2Gc(k))(Gs(qc) −Gs(k))]

×
[

− ej[(2Gs(qc) −Gs(0) −Gs(k))D(qc) (A.4)

+ 2(Gs(0) −Gs(qc))(g1 +Gs(qc))(Gs(qc) −Gs(k))]

× [D(qc) −Gs(qc)(g1 +Gs(qc))]m(qc)m
T(qc)m(qc)

+ ejg2Gs(qc)[Gs(qc) −Gs(k)]

× [D(qc) + 2(Gs(0) −Gs(qc))(g1 +Gs(qc))]iσ2m(qc)m
T(qc)m(qc)

+ ~g2Gs(qc)gm(0)[Gs(qc) −Gs(k)][D(qc) −Gs(qc)(g1 +Gs(qc))]

× ṁ(qc)m
T(qc)m(qc)

+ (~/2)[Gs(qc) −Gs(k)]D(qc)gm(0)[D(qc) −Gs(qc)(2g1 +Gs(qc))]

× [m(qc)m
T(qc)iσ2ṁ(qc) − iσ2m(qc)m

T(qc)ṁ(qc)]

+ (~/2)[Gs(qc) −Gs(k)]gm(0)

× [(D(qc) −Gs(qc)(g1 +Gs(qc)))
2 − (g2Gs(qc))

2]

× iσ2ṁ(qc)m
T(qc)m(qc)

]}

.

(A.5)

Once the perturbative expansions for the anisotropy torque and the current-

induced spin-transfer torque are known, the Landau-Lifshitz-Gilbert equation can

be solved for the magnetization dynamics.



Appendix B

Appendix to Chapter 5:

Calculation of diagrams

In this Appendix we further discuss the methods used in arriving at the results

of Chapter 5. While the framework for calculating conductance fluctuations using

diagrammatic perturbation theory is now well established, the steps outlined in

this Appendix provide some of the details that is usually skipped in the literature.

Moreover, since the calculation presented in Chapter 5 generalized the standard

UCF result, we provide additional details on how to include the effect of spin-

orbit scattering and the matrix spin-structure that is necessary for considering a

ferromagnet where the majority and minority spins states are inequivalent channels

that interact through the spin-orbit scattering.

We identify three areas where we feel the calculations presented in the main

text merit elaboration. First, we will discuss the enumeration of diagrams and the

different ways of canceling terms that allow us to arrive at Eq. 5.12. Second, we

examine the matrix spin-structure of the conductance correlator and show that

the calculation reduces to a sum over spin-eigenvalues, and finally we look at the
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effects of spin-orbit scattering, provide the details leading up to Eq. 5.16 and show

that the cancellation of diagrams remains true even in the presence of spin-orbit

scattering.

B.1 Relationships between diagrams

The purpose of this section is to motivate the starting point for the calculation in

Chapter 5. In Eq.( 5.12) we had

C(θ) =
3e4

2L4
zh

2

∑

q

tr [JD(q)JD(q) + JC(q)JC(q)]. (B.1)

We now motivate the prefactor 3/2 that comes from the enumeration of the dif-

ferent conductance fluctuation diagrams. For the moment we discard the effects

of spin-orbit scattering or the matrix structure of Diffuson and Cooperon ladders

and show in later sections that these do not change the result.

The diagrams which contribute to the conductance correlation are all shown

in Fig. B.1. When calculating these diagrams, one needs to sum over different

things, for example, the shaded regions represent either Cooperons or Diffuson

ladders. One also needs to sum over diagrammatic combinatorial factors and spin.

However, for this section, the most important summation is over all combinations

of retarded and advanced Greens functions which have poles in the upper and lower

halves of the complex plane respectively. Since this property determines the rules

for analytical continuation during the complex integration, we equivalently talk of

this summation as one over the different analyticities. Requiring that the Diffuson

and Cooperon ladders be made from Greens functions with different analyticity,

this provides certain restrictions. In particular, we conclude that Diagrams B.1

(a), (d) and (e) have two allowed possibilities, where either the analyticity does
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not changes at the current vertex (which we shall denote with the superscript A),

and those where the analyticity does change (denoted with superscript B). We

note that Diagrams B.1 (b) and (c) are required to be of type A. To make further

progress one needs to study the different types of Hikami boxes that found in

the diagrams in Fig. B.1. These have been enumerated in Fig. B.2 which shows

the different types of current vertices coupled to Greens functions using + and −

labels to indicate Greens functions with positive and negative poles. Each of these

diagrams can be calculated explicitly. If we call the the diagrams in Fig. B.2 (a),

(b) as jA,B
0 , (c) as j1 (which is of type B), (d), (e) as jA,B

2 and (f), (g) as jA,B
3 , we

find

j0 = jA
0 = jB

0 =
4πνk2

F τ
3

3

j1 = j0
d

idr1,z

∫

dq

(2π)3
exp[iq.(r1 − r2)],

jA
2 = −j0

2
, jB

2 = j0, jA
3 = 0, jB

3 = −j0
2
. (B.2)

We are now in a position to derive the 3/2 prefactor. The method of Lee,

Stone and Fukuyama [1, 2] was to sum over all allowed analyticities. With this

one sees that the contributions from the diagrams of Fig. B.1 (d) and (e) becomes

jA
2 + jB

2 + jA
3 + jB

3 = 0. This cancellation allows one to get the conductance

correlation by only considering the diagrams of Fig. B.1 (a), (b) and (c) which we

shall call Fa, Fb and Fc. It will be shown in the last section of this appendix that

both with and without spin-orbit scattering, these diagrams at zero temperature

and zero frequency have the property that Fa = −Fb = (4/3)Fc so that their sum

(multiplied by 2 to count for both analyticities) is given by (3/2)Fa as required.

Another method is that of Altshuler and Shklovskii [3] where they argue that all

diagrams of type A that do not change analyticity are a total derivative and sum
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(d) (e)

(c)

(a) (b)

Figure B.1: Diagrams contributing to conductance correlations. For each of the

diagrams, the shaded area represents Diffuson or Cooperon Ladders. The dashed

line in diagram (e) represents an additional single impurity scattering.
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(a) (b)

(e)(d)

(g)

−

+

+

+

+
−

(c)

−

+

+
+

+

+

Figure B.2: Different types of current vertices found in the conductance correla-

tion diagrams shown in Fig. B.1. Diagrams (a), (c), (d), (f) do not change their

analyticity at the vertex, while (b) and (e) do.
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to zero. Considering only diagrams of type B, we have that the sum of diagrams

in Fig. B.1 can be represented as the sum of jB
0 + jB

2 + jB
3 = (3/2)j0. Therefore,

using this method one only needs to calculate diagrams of the form Fig. B.1 (a)

and multiply by the factor 3/2 giving the required result.

B.2 Adding spin structure

The heart of this section is to show that the same dimensional cancellations that

made the UCF universal without the spin structure works even when we use a

matrix formulation. The key idea is that to leading order, these dimensional

cancellations are preserved for each spin-species independently. In particular, we

have that the current vertex Jαβ = (4π/3)v2
Fατ

3
αδαβ and KD = (2πνατα)δα,β are

both diagonal in spin space (See Eq. 5.9). Recall that D is the matrix Diffusion,

K is its inverse and α, β are spin indices. We also have that ν is a density of states

and τ is the scattering time. The universal properties arise because

1

L2
z

Jαα
(KD)αα

Eατα
=

2

π2
(B.3)

is a constant independent of any system property. It is the cancellation of any

dependence on the system size Lz or mean free path vFτ that makes the quantity

universal.

Using a eigenvector decomposition of the formD(r, r′) =
∑

m Q
∗
m(r)Qm(r′)K−1

m N

where all the matrix structure is in K and Nαβ = δαβ(2πνατα)−1, we can then write

1

L4
z

tr[JD(q)JD(q)] =
4

π4

∑

n

trΛ−2
n ,

=
4

π4

∑

n

tr







λn↑ b

b̃ λn↓







−2

, (B.4)
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with λnα = g(n) + fα separating into a function g(n) = n2
z + n2

x(Lz/Lx)
2 +

n2
y(Lz/Ly)

2 that depends on integer eigenvalues n = (nx, ny, nz), where nz =

1, 2, · · · ,∞; nx, my = 0, 1, 2, · · · ,∞ and a function

fα =
2

τα⊥Eα
+

1 − cosθ

τα‖Eα
, (B.5)

that depends on spin and magnetization direction. We also have that bb̃ = (1 +

cos θ)2/(E↑E↓τ↑⊥τ↓⊥).

The form of Eq. B.4 makes it evident that the conductance correlator depends

only on the eigenvalues of Λn (which can be thought of as a correctly scaled inverse

Diffuson). This result holds for even more complicated diagrams with three and

four Diffuson or Cooperon ladders (see Fig. B.1 (b), (c) and the discussion in

the preceding section for different ways of summing diagrams). This property

can be understood by observing that the part of the matrix Λn that depends

on n is proportional to the unit matrix as g(n)I2, and therefore all traces over

matrix products of {Λn} can be simultaneously diagonalized. It follows that the

conductance correlator only depends on the eigenvalues of Λn which are given by

λn
± = g(n) + a±. The eigenvalues can be calculated explicitly to find

a±(θ) =
1

τ↑⊥E↑
+

1

τ↓⊥E↓
+
τ↑‖E↑ + τ↓‖E↓

2τ↑‖τ↓‖E↑E↓
(1 − cos θ))

±
√

(1 + cos θ)2

τ↑⊥τ↓⊥E↑E↓
+

[

1

τ↑⊥E↑
− 1

τ↓⊥E↓
− τ↑‖E↑ − τ↓‖E↓

2τ↑‖τ↓‖E↑E↓
(1 − cos θ)

]2

(B.6)

The main conclusion of this section is that the full spin structure does not present

any serious complications to the calculation. The results for a half-metal carry

forward for the full ferromagnet where to get the conductance fluctuation one would

use the same formalism, but sum over the two spin eigenvalues of the correctly

normalized diffusion equation.
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B.3 Effects of spin-orbit scattering

The diagram Fa represented by Fig. B.1 can be calculated as

Fa =
8

π4

∑

n

λ−2
n . (B.7)

To make the connection with the notation of Lee, Stone and Fukuyama [2], what

they call 2(4/π2)2F1 is what we call 16 × Fa, where the factor of 16 comes from

summing our diagram over spin (4), Cooperons and Diffusons (2), and analyticity

(2). We now proceed to calculate the diagrams. Actually, we only do the sum

over nz which corresponds to the quasi one dimensional limit (with nx = ny = 0).

However, we note that the structure of the summations for 2 and 3 dimensions

imply that the relations proved between Fa, Fb and Fc in quasi one dimension hold

for higher dimensions (this is not surprising in light of the earlier discussion on the

cancellation of diagrams). For quasi one dimension, we have

Fa =
8

π4

∑

j

1

(j2 + a)2
, (B.8)

where j = nz is an integer, and a is the term that depends on the spin-orbit

scattering and the angle θ. For the purpose of this section a is just some real

constant. In the limit a→ 0 one can calculate that

Fa =
8

π4

∞
∑

j=1

1

j4
=

2

45

Fb = − 44

π3

∑

j=odd
k=even

1

j2((j + k)(j − k))2
+

1

k2((j + k)(j − k))2

= − 2

45
,

Fc = 3

(

4

π2

)2(
4

π

)4
∑

j,l odd
k,m even

1

(j2 − k2)(k2 − l2)(l2 −m2)(m2 − j2)

=
1

30
, (B.9)
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from which one can verify that Fa = −Fb = (4/3)Fc. We have verified that this

continues to be true when the eigenvalues change from λa=0 = j2 to λa6=0 = (j2+a).

Here we present only the result for Fa.

Fa =
8

π4

∞
∑

j=1

1

(j2 + a)2

=

(

8

π4

) −2 + π
√
a coth(π

√
a) + aπ2(sinh(π

√
a))−2

4a2
, (B.10)

which in the limit of a → 0 reproduces the earlier result of 2/45. Having done

this summation, and using the definition of a from Eq. 5.15, we immediately get

Eq. 5.16.
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