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ABSTRACT

In this thesis we study the dynamics of the in-phase mode for a system of three

coupled van der Pol oscillators. Two of the oscillators are taken to be identical

and coupled indirectly via a third oscillator whose natural frequency may vary. We

use the singular perturbation method known as two-variable expansion to obtain a

slow-flow, which is then analyzed using the computer algebra system MACSYMA.

We find analytical representations for saddle-node and Hopf bifurcation curves in

the parameter space and explore the dynamics found in the in-phase phase space.

The motivation for this work comes from the presence of circadian melatonin

rhythms in the eyes of Japanese quail. Recent experiments showing the rhythms

in the eyes to be tightly coupled and in-phase with each other have strengthened

the hypothesis that the eyes are the location of the central pacemaker for Japanese

quail. The melatonin rhythm in each eye is modeled as a van der Pol limit-cycle

oscillator. Furthermore, the eyes cannot directly communicate to each other, but

do so via a connection to an extra-ocular circadian system, here represented by

the third oscillator.
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CHAPTER 1

INTRODUCTION

In this thesis we model a portion of the multioscillatory circadian system of the

Japanese quail. We hypothesize that the endogenous melatonin rhythms present

in the eyes act as circadian pacemakers and are indirectly coupled to each other

through an extra-ocular, melatonin producing circadian system. This extra-ocular

system comprises oscillators found in the pineal gland (that rhythmicly produce

and secrete melatonin into the bloodstream) and hypothalamic areas of the brain.

The model builds on an earlier attempt to model the coupling between the eyes

via a melatonin “bath” [1], [2].

The circadian system of all avian species consists of three primary components (see

Figure 1.1): the pineal gland which rhythmicly produces and secretes melatonin,

a hypothalamic oscillator (presumably located in the suprachiasmatic nucleus, or

SCN) that most likely acts through neural signals, and the retinae of the eyes,

which act through hormonal (melatonin) and/or neural outputs (see [13] for a re-

view). Experimental evidence shows the relative importance of these components

in generating circadian rhythms varies from species to species. In some passerine

birds, such as the house sparrow or European starling, the pineal appears to be

the only source of plasma melatonin and the pacemaker for the entire circadian

system as pinealectomy abolishes any plasma melatonin rhythms and many behav-

ioral patterns [7]. In other non-passerine birds such as the pigeon and Japanese

quail the eyes are also sources of plasma melatonin [12]. In the pigeon, both

pinealectomy and eye removal are necessary to abolish overt behavior rhythms. In

the quail, eye removal alone causes arrhythmia in body temperature [10].

1
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Two different models of the organization of the avian circadian system have been

proposed in recent literature. First, the pineal gland and the SCN have been con-

jectured to be joined together in a “neuroendocrine loop” [3] in which “a daily

melatonin output from the pineal is required to maintain rhythmicity in the SCN,

and a daily neural output from the SCN is required to maintain rhythmicity in the

pineal.” [10] This relationship between the pineal and SCN is mutually inhibitory

- during night the pineal produces and secretes melatonin into the bloodstream

which inhibits SCN activity and during the day the SCN inhibits the pineal through

neural signals. From this model we can expect the pineal and SCN rhythms to be

180 degrees out-of-phase. A second model dubbed the “internal resonance model”

hypothesizes that the pineal and SCN maintain a strong circadian rhythm through

resonance [6]. In both these models it is assumed that the pineal and SCN oscilla-

tors are damped oscillators that maintain their mutual rhythms through coupling.

Complete removal of the eyes causes loss of rhythmicity of body temperature in

Japanese quail, a rhythm thought to be controlled by the SCN [10]. Thus the eyes

appear to be essential to the sustainment of circadian rhythms in the SCN in this

species. Most likely this is accomplished via both neural (the nature of which is

still unknown) and hormonal outputs. Evidence suggesting a hormonal compo-

nent includes the fact that severing the optic nerve only produces arrhythmia in

approximately 25% of Japanese quail undergoing the procedure [10].

Recent experiments [10] have strengthened the conclusion that the circadian rhythms

present in the eyes are the central pacemakers for the entire circadian system in
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Figure 1.1: Possible model for the multioscillatory circadian system of the

Japanese quail (extra-ocular photoreceptors not shown). RHT = retinohy-

pothalamic tract.

Japanese quail. The authors state

...if the eyes are indeed the major circadian pacemakers in this sys-

tem, the two ocular pacemakers in an individual bird must remain in

phase with each other in prolonged DD [constant darkness]. If the two

ocular pacemakers do not maintain phase, it would be difficult to ar-

gue that they are responsible for driving the robust, persistent body

temperature rhythm that is characteristic of quail free-running in DD.
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Their experiments showed that when Japanese quail are placed in constant dark-

ness (representing an autonomous system with no external forcing), the level of

melatonin in their two eyes are found to be in phase after a period of more than

40 days. Furthermore, experiments showed that this in-phase stability is robust

and seems to hold for a wide range of initial conditions, even, e.g., if the two eyes

are initially light-loaded to be out of phase.

In this thesis we model a small subset of the entire avian circadian system to see if

we can duplicate the experimentally observed stability of the in-phase melatonin

oscillations in the eyes under constant conditions. We focus on only phase-locked,

or entrained, retinal and extra-ocular melatonin rhythms. In Japanese quail, both

the retinae and the pineal gland rhythmically secrete melatonin into the blood-

stream and therefore both can be involved in sustaining the rhythm of the SCN.

Thus in order for these separate rhythms to produce a singular pacemaker rhythm

we require them to at least be phase-locked. Since this model consists of only a

subset of the circadian system we make the assumptions that the SCN of the chick

and the pineal gland remain intact (and are included in the extra-ocular circadian

system) and that we are considering only free-running behavior (represented by

the autonomous nature of the equations in (1.1)). Furthermore we ignore any

possible neural coupling between the eyes via the SCN or any other neurological

connections, as this would necessitate including the SCN separately in our model.

Our hypothesized model for the quail circadian system consists of three coupled

nonlinear van der Pol oscillators. The van der Pol oscillators were chosen because

(i) each oscillator exhibits a self-sustaining oscillation (see [9] for review) and (ii)
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it has been shown [2] that a simple model for the biochemical basis of a circadian

rhythm in free-running conditions can be reduced to such an oscillator.

The eyes are represented by identical (same natural frequency) oscillators, x and

y, and the extra-ocular circadian system by a third oscillator, w, whose natural

frequency is allowed to vary slightly from that of the other oscillators. The eye os-

cillators are indirectly coupled via the extra-ocular system (see Figure 1.2). While

the true nature of the coupling between the eyes is still unknown, the retinae do

possess melatonin receptors so that one could hypothesize that “if the eyes are

driven out of phase, daily melatonin release by the eyes (or pineal) may cause

mutual phase advances or delays of the two ocular pacemakers until they regain

their normal phase relationship.” [10] The system can be represented as

ẍ − ε
(
1 − x2

)
ẋ + x = εµ (w − x) (1.1a)

ÿ − ε
(
1 − y2

)
ẏ + y = εµ (w − y) (1.1b)

ẅ − ε
(
1 − w2

)
ẇ + p2w = εµ (x + y − 2w) (1.1c)

where p = 1 + ε∆, µ represents the coupling strength between the oscillators, and

ε � 1.

A previous attempt at modeling this behavior considered the melatonin rhythms in

the eyes to be coupled via a “bath” [2], [1]. The premise was that eyes “communi-

cate” by altering the concentration of melatonin present in the bloodstream, a.k.a.

the “bath” (see Figure 1.3). Here, the eyes, with the non-oscillatory bloodstream,

were modeled as

d2x

dt2
− ε
(
1 − x2

) dx

dt
+ x = k (z − x) (1.2a)
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Figure 1.2: Proposed model for the interaction of the occular and pineal

oscillators.

d2y

dt2
− ε
(
1 − y2

) dy

dt
+ y = k (z − y) (1.2b)

dz

dt
= k (x − z) + k (y − z) (1.2c)

with k as the coupling strength and ε � 1. Unfortunately, this model predicted

the out-of-phase model to have greater stability than the in-phase mode, contra-

dicting the experimental results.

The ultimate question we seek to answer concerning the model (1.1) is what are

the stabilities of the in-phase and out-of-phase phase-locked modes of the oscil-

lators found in the eyes? For what values of the parameters do they exist? For

what values are they attracting (do motions eventually settle down to one of the

modes after all transient behavior damps out)? Towards this end, we perform an

analytical and numerical investigation of the in-phase mode of (1.1). The in-phase
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Figure 1.3: Previously proposed model for the interaction of the occular and

pineal oscillators.

mode, x = y, satisfies the reduced system of equations

d2x

dt2
− ε
(
1 − x2

) dx

dt
+ x = εµ (w − x) (1.3a)

d2w

dt2
− ε
(
1 − w2

) dw

dt
+ p2w = ε2µ (x −w) (1.3b)

Equations (1.3) represent a four-dimensional invariant manifold sitting inside the

six-dimensional phase-space of (1.1). We ask for what values of the parameters

∆ and µ does a stable periodic motion of (1.3) exist. We note that the ultimate

question of stability in the larger six-dimensional space is not addressed in this

thesis.



CHAPTER 2

DERIVATION OF THE SLOW-FLOW EQUATIONS

The system of three weakly-coupled van der Pol oscillators under study is given as

ẍ − ε
(
1 − x2

)
ẋ + x = εµ (w − x) (2.1a)

ÿ − ε
(
1 − y2

)
ẏ + y = εµ (w − y) (2.1b)

ẅ − ε
(
1 − w2

)
ẇ + p2w = εµ (x + y − 2w) (2.1c)

where the frequency of the w oscillator is p = 1+ ε∆, ε � 1, and a “dotted” quan-

tity implies differentiation with respect to time, t. The system depends on two

parameters - µ, the coupling strength between the oscillators, and ∆, the detuning

of the w oscillator. Solution trajectories to (2.1) reside in a six-dimensional phase

space. To analyze the dynamics of these weakly-coupled motions we use the sin-

gular perturbation method commonly referred to as two-variable expansion [9] to

derive the slow-flow equations to O(ε). Algebraic computations and manipulations

are performed using the computer algebra system MACSYMA.

To begin we define two new time scales for our solutions: slow-time, η (t) and

strained-time, ζ (t),

η (t) = εt (2.2a)

ζ (t) = ωt (2.2b)

where ω = 1 + k1ε + O (ε2). The constant term k1 builds the frequency-amplitude

relationship that characterizes nonlinear dynamics into the solution and will (po-

tentially) be determined during the elimination of secular terms. By considering

the solutions to (2.1) as functions of the two new time variables, i.e. x (η, ζ), the

8
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differential equations (2.1) must also be written in terms of these new variables.

Taking the x oscillator as an example, we differentiate using the chain-rule to get

ẋ =
∂x

∂ζ
ζ̇ +

∂x

∂η
η̇ = ω

∂x

∂ζ
+ ε

∂x

∂η
(2.3)

ẍ = ω2∂2x

∂ζ2
+ 2εω

∂2x

∂ζ∂η
+ ε2∂2x

∂η2
= ω2∂2x

∂ζ2
+ 2εω

∂2x

∂ζ∂η
+ O

(
ε2
)

(2.4)

Next, as in regular perturbation methods, we expand the solution x (η, ζ) as a

power series in ε.

x (η, ζ) = x0 (η, ζ) + εx1 (η, ζ) + O
(
ε2
)

(2.5)

We now substitute (2.3), (2.4), (2.5) into (2.1a) and expand ω. We likewise do this

for the y and w oscillators. The resulting equations have terms with coefficients of

O (1) , O (ε) and higher orders. The procedure now calls for equating the coefficients

of each power of ε to zero. The lowest order equations are

d2x0

dζ2
+ x0 = 0 (2.6a)

d2y0

dζ2
+ y0 = 0 (2.6b)

d2w0

dζ2
+ w0 = 0 (2.6c)

Each of the O (1) equations represent a harmonic oscillator. We write the solu-

tions to (2.6) in polar form with constants of integration (amplitude and phase)

functionally dependent on slow-time, η.

x0 (ζ, η) = R1 (η) cos (ζ − θ1 (η)) (2.7a)

y0 (ζ, η) = R2 (η) cos (ζ − θ2 (η)) (2.7b)

w0 (ζ, η) = R3 (η) cos (ζ − θ3 (η)) (2.7c)
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Next we look at the equations resulting from the O (ε) terms. After plugging in

(2.7) and performing some trigonometric simplifications we have

d2x1

dζ2
+ x1 = (...) cos (ζ) + (...) sin (ζ) + (...) (2.8a)

d2y1

dζ2
+ y1 = (...) cos (ζ) + (...) sin (ζ) + (...) (2.8b)

d2w1

dζ2
+ w1 = (...) cos (ζ) + (...) sin (ζ) + (...) (2.8c)

where (...) represents constant (independent of ζ) equations of coefficients involv-

ing R1, R2, R3, θ1, θ2, θ3 and their respective derivatives (with respect to η). For

the slow-flow equations to be uniformly valid for all time we need to eliminate all

resonance terms from (2.8) [9]. Thus we set the coefficients of cos (ζ) and sin (ζ)

on the right-hand side of (2.8) equal to zero. This results in six different equa-

tions involving the six unknown derivatives - dR1

dη
, dR2

dη
, dR3

dη
, dθ1

dη
, dθ2

dη
, dθ3

dη
. Solving this

system of six equations and six unknowns yields

dR1

dη
= −µR3

2
sin (θ3 − θ1) +

R1

2

(
1 − R2

1

4

)
(2.9a)

dR2

dη
= −µR3

2
sin (θ3 − θ2) +

R2

2

(
1 − R2

2

4

)
(2.9b)

dR3

dη
=

µR2

2
sin (θ3 − θ2) +

µR1

2
sin (θ3 − θ1) +

R3

2

(
1 − R2

3

4

)
(2.9c)

dθ1

dη
=

µR3

2R1
cos (θ3 − θ1) −

µ

2
+ k1 (2.9d)

dθ2

dη
=

µR3

2R2
cos (θ3 − θ2) −

µ

2
+ k1 (2.9e)

dθ3

dη
=

µ

2

(
R2

R3
cos (θ3 − θ2) +

R1

R3
cos (θ3 − θ1) − 2

)
+ k1 − ∆ (2.9f)

Equations (2.9) represent the slow-flow for the system (2.1). They describe how the

amplitude and phase of the O(1) solutions (2.7) change with respect to slow-time.
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We note that the oscillator phases only appear as differences. If we define the phase-

differences between the w oscillator and the x and y oscillators as φ1 = θ3− θ1 and

φ2 = θ3 − θ2 respectively, we can eliminate one equation from (2.9), thus reducing

the dimension of the slow-flow problem by one. With these new definitions the

slow-flow equations (2.9) become

dR1

dη
= −µR3

2
sin (φ1) +

R1

2

(
1 − R2

1

4

)
(2.10a)

dR2

dη
= −µR3

2
sin (φ2) +

R2

2

(
1 − R2

2

4

)
(2.10b)

dR3

dη
=

µR2

2
sin (φ2) +

µR1

2
sin (φ1) +

R3

2

(
1 − R2

3

4

)
(2.10c)

dφ1

dη
=

µ

2

[
R2

R3
cos (φ2) +

(
R1

R3
− R3

R1

)
cos (φ1) − 1

]
− ∆ (2.10d)

dφ2

dη
=

µ

2

[
R1

R3
cos (φ1) +

(
R2

R3
− R3

R2

)
cos (φ2) − 1

]
− ∆ (2.10e)

Note that in finding the slow-flow the term k1 was never determined. Thus it

was not necessary to include strained time ζ (as opposed to normal time t) in our

first-order analysis. Later, we use this form of the slow-flow equations to analyze

the dynamics of the in-phase mode of (2.1).

2.1 Slow-Flow in Rectangular Coordinates

Following the procedure (and using results (2.2) through (2.6)) described in the

preceeding section for the two-variable expansion method, we now define the O (1)

solutions using rectangular coordinates.

x0 (ζ, η) = A1(η) cos (ζ) + B1(η) sin (ζ) (2.11a)

y0 (ζ, η) = A2(η) cos (ζ) + B2(η) sin (ζ) (2.11b)
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w0 (ζ, η) = A3(η) cos (ζ) + B3(η) sin (ζ) (2.11c)

After plugging (2.11) into the O (ε) equations, the elimination of resonance terms

now results in the following six rectangular slow-flow equations

dA1

dη
=

µ

2
(B1 − B3) − B1k1 −

A1

2

(
B2

1

4
+

A2
1

4
− 1

)
(2.12a)

dA2

dη
=

µ

2
(B2 − B3) − B2k1 −

A2

2

(
B2

2

4
+

A2
2

4
− 1

)
(2.12b)

dA3

dη
=

µ

2
(2B3 − B1 − B2) −B3k1 + B3∆ − A3

2

(
B2

3

4
+

A2
3

4
− 1

)
(2.12c)

dB1

dη
=

µ

2
(A3 −A1) + A1k1 −

B1

2

(
B2

1

4
+

A2
1

4
− 1

)
(2.12d)

dB2

dη
=

µ

2
(A3 −A2) + A2k1 −

B2

2

(
B2

2

4
+

A2
2

4
− 1

)
(2.12e)

dB3

dη
=

µ

2
(A1 + A2 − 2A3) + A3k1 − A2∆ − B3

2

(
B2

3

4
+

A2
3

4
− 1

)
(2.12f)

We do not use the rectangular form of the slow-flow equations in this thesis, but

future work may be aided by an analysis in rectangular coordinates.

2.2 Slow-Flow via Method of Averaging

Another popular singular perturbation technique besides two-variable expansion

often encountered in the literature is the method of averaging. We now demon-

strate the equivalence of these two methods by obtaining the slow-flow equations

(2.10) using one-and-a-half order averaging [8].

To use the method of averaging we write the original system of equations (2.1) in

the form

ẍ + x = εFx (x, ẋ, w, t, µ) (2.13a)

ÿ + y = εFy (y, ẏ, w, t, µ) (2.13b)
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ẅ + w = εFw (w, ẇ, x, y, t,∆, µ) (2.13c)

where Fx, Fy, and Fw are defined as

Fx =
(
1 − x2

)
ẋ + µ (w − x) (2.14a)

Fy =
(
1 − y2

)
ẏ + µ (w − y) (2.14b)

Fw =
(
1 − w2

)
ẇ + µ (x + y − 2w) − 2∆w (2.14c)

When ε = 0, equations (2.13) define a system of three uncoupled harmonic oscil-

lators, the solutions of which are (in polar form)

x = R1 cos (t− θ1) (2.15a)

y = R2 cos (t − θ2) (2.15b)

w = R3 cos (t− θ3) (2.15c)

with time derivatives

ẋ = −R1 sin (t − θ1) (2.16a)

ẏ = −R2 sin (t − θ2) (2.16b)

ẇ = −R3 sin (t − θ3) (2.16c)

When ε 6= 0 we assume the constants of integration in (2.15) and (2.16) to be

functions of time and no longer constant. This move is similar to that of the

method of variation of parameters when solving linear differential equations [8].

Using the x-oscillator as an example, we differentiate (2.15) and require (2.16) to

hold.

ẋ = Ṙ1 cos (t− θ1) −R1

(
1 − θ̇1

)
sin (t − θ1) = −R1 sin (t − θ1) (2.17)
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Next, we differentiate (2.16) and insert it into the original differential equation

(2.13a)

ẍ = −Ṙ1 sin (t − θ1) − R1

(
1 − θ̇1

)
cos (t − θ1) = −R1 cos (t − θ1) + εFx (2.18)

where we have suppressed the dependencies of Fx. Rearranging (2.17) and (2.18)

we get

Ṙ1 cos (t− θ1) + R1θ̇1 sin (t − θ1) = 0 (2.19)

−Ṙ1 sin (t − θ1) + R1θ̇1 cos (t − θ1) = εFx (2.20)

Next we solve (2.19) and (2.20) for Ṙ1 and θ̇1. First we multiply (2.19) by

cos (t− θ1) and subtract from it sin (t − θ1) times (2.20) yielding

Ṙ1 = −ε sin (t − θ1)Fx (2.21)

Second, we multiply (2.19) by sin (t − θ1) and add to it cos (t − θ1) times (2.20).

Simplifying the resulting equation yields

θ̇1 = − ε

R1
cos (t− θ1)Fx (2.22)

Now we posit a near-identity transformation of the form

R1 = R̄1 + εW1

(
R̄1, θ̄1, R̄3, θ̄3

)
+ O

(
ε2
)

(2.23a)

θ1 = θ̄1 + εW2

(
R̄1, θ̄1, R̄3, θ̄3

)
+ O

(
ε2
)

(2.23b)

where W1 and W2 are referred to as the generating functions of the transformation.

They will be determined later as to simplify the slow-flow as much as possible. This

is the crucial step that differentiates one-and-a-half order averaging from simple

averaging [8]. The next step in obtaining the slow-flow equations is to differentiate

the near-identity transformations (2.23) with respect to time, yielding

Ṙ1 = ˙̄R1 + ε

(
∂W1

∂R̄1

˙̄R1 +
∂W1

∂θ̄1

˙̄θ1 +
∂W1

∂R̄3

˙̄R3 +
∂W1

∂θ̄3

˙̄θ3 + Ẇ1

)
(2.24a)
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θ̇1 = ˙̄θ1 + ε

(
∂W2

∂R̄1

˙̄R1 +
∂W2

∂θ̄1

˙̄θ1 +
∂W2

∂R̄3

˙̄R3 +
∂W2

∂θ̄3

˙̄θ3 + Ẇ2

)
(2.24b)

We can simplify these expressions by noting that all the time derivatives of barred

variables are O (ε) and when multiplied by ε become O (ε2) and thus can then be

safely ignored in our analysis. Equations (2.24a) and (2.24b) then reduce to

Ṙ1 = ˙̄R1 + ε

(
∂W1

∂t

)
(2.25a)

θ̇1 = ˙̄θ1 + ε

(
∂W2

∂t

)
(2.25b)

To find the differential equations governing the new transformed variables we

rewrite (2.25) by plugging in (2.21) and (2.22) for Ṙ1 and θ̇1 respectively and

solving for ˙̄R1 and ˙̄θ1, giving

˙̄R1 = −ε

(
sin
(
t − θ̄1

)
Fx +

∂W1

∂t

)
(2.26)

˙̄θ1 = ε

(
1

R̄1

cos
(
t− θ̄1

)
Fx −

∂W2

∂t

)
(2.27)

The final step of the averaging method is to pick the generating functions W1 and

W2 to simplify (2.26) and (2.27) as much as possible. In particular, we select W1

and W2 to eliminate all trigonometric functions depending on time explicitly. After

this substitution and subsequent algebraic manipulation, this yields the following

differential equations for the transformed variables

˙̄R1 = −ε

(
µ

2
R̄3 sin

(
θ̄3 − θ̄1

)
+

R̄1
3

8
− R̄1

2

)
(2.28)

˙̄θ1 = ε

(
µR̄3

2R̄1

cos
(
θ̄3 − θ̄1

)
− µ

2

)
(2.29)

These equations can be made equivalent to the slow-flow equations (2.9a) and

(2.9d) found earlier via two-variable expansion by once again defining a new slow-

time variable (see 2.2), and writing R̄1 and θ̄1 as functions of this new time variable.

˙̄R1 =
dR̄1

dη
η̇ = ε

dR̄1

dη
(2.30)
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˙̄θ1 =
dθ̄1

dη
η̇ = ε

dθ̄1

dη
(2.31)

Then by dividing (2.28) and (2.29) through by ε we recover the slow-flow equations

(2.9a) and (2.9d) (with k1 = 0).

dR̄1

dη
= −µR̄3

2
sin (θ̄3 − θ̄1) +

R̄1

2

(
1 − R̄1

2

4

)
(2.32)

dθ̄1

dη
=

µR̄3

2R̄1

cos (θ̄3 − θ̄1) −
µ

2
(2.33)

In the same manner we can find equivalent slow-flow equations for R̄2, R̄3, θ̄2, and

θ̄3 that match those obtained earlier via two-variable expansion.



CHAPTER 3

INVESTIGATION OF THE PARAMETER SPACE FOR THE

IN-PHASE MODE

The in-phase mode (x = y) resides in a 4-dimensional subspace of the original

problem (2.1) and satisfies

ẍ − ε
(
1 − x2

)
ẋ + x = εµ (w − x) (3.1)

ẅ − ε
(
1 − w2

)
ẇ + p2w = ε2µ (x −w) (3.2)

The slow-flow equations for the in-phase mode are found easily by setting R1 = R2

and φ1 = φ2 in (2.10). With these substitutions the slow-flow for the in-phase

mode, ignoring redundant equations, is

dR1

dη
= −µR3

2
sin φ +

R1

2

(
1 − R2

1

4

)
(3.3a)

dR3

dη
= µR1 sinφ +

R3

2

(
1 − R2

3

4

)
(3.3b)

dφ

dη
=

µ

2

[(
2R1

R3
− R3

R1

)
cos φ − 1

]
− ∆ (3.3c)

The above set of equations represent a three-dimensional invariant subspace of the

original slow-flow (2.10). Mathematically, the subspace is defined as the Cartesian

product of R+ ×R+ × S1.

To find equilibrium points of the in-phase slow-flow we set equations (3.3) equal

to 0.

−µR3

2
sinφ +

R1

2

(
1 − R2

1

4

)
= 0 (3.4a)

µR1 sinφ +
R3

2

(
1 − R2

3

4

)
= 0 (3.4b)

17
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µ

2

[(
2R1

R3
− R3

R1

)
cos φ − 1

]
−∆ = 0 (3.4c)

Thus, for a particular pair of µ and ∆ in parameter space, an equilibrium point

must satisfy all three of these nonlinear equations.

3.1 Saddle-Node Bifurcation Curves

To find the curves in parameter space representing saddle-node bifurcations (or

folds) of equilibria we first need to manipulate the three equilibrium equations

(3.4) into a more usable form. We now follow essentially the procedure given in

[4], [9] for the problem of two weakly-coupled van der Pol oscillators.

First we solve equation (3.4c) for cos (φ), giving

cos (φ) =
− (µ + 2∆)R1R3

µ (R2
3 − 2R2

1)
(3.5)

Next we find two linearly independent linear combinations of the remaining two

equations. First, we multiply (3.4b) by R1 and subtract from it R3 times (3.4a)

and solve for sin (φ).

sin (φ) =
R1R3 (R2

3 − R2
1)

4µ (R2
3 + 2R2

1)
(3.6)

We can now use the identity cos2 φ + sin2 φ = 1 to get

R2
1R

2
3 (µ + 2∆)2

µ2 (R2
3 − 2R2

1)
2 +

R2
1R

2
3 (R2

3 −R2
1)

2

16µ2 (R2
3 + 2R2

1)
2 = 1 (3.7)

This gives us the first of our independent equations. We find a second one by

multiplying (3.4a) by 2R1 and adding to it R3 times (3.4b) to get

R2
3 + 2R2

1 =
1

4

(
R4

3 + 2R4
1

)
(3.8)
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Equations (3.7) and (3.8) allow us to find possible saddle-node bifurcation curves

in the ∆ − µ parameter space. We first eliminate R3 from both equations. The

resulting equation (neglecting any unnecessary factors) is further simplified by

replacing R1 with R̄1 = R2
1 giving us

9R̄1
6 − 156R̄1

5 − 32µ2R̄1
4 − 128∆µR̄1

4 − 128∆2R̄1
4
+ 1072R̄1

4 − 576µ2R̄1
3

−3648R̄1
3
+ 6912µ4R̄1

2
+ 10240∆µ3R̄1

2
+ 14336∆2µ2R̄1

2
+ 7168µ2R̄1

2

+8192∆3µR̄1
2
+ 7168∆µR̄1

2
+ 4096∆4R̄1

2
+ 7168∆2R̄1

2
+ 6144R̄1

2

−36864µ4R̄1 − 53248∆µ3R̄1 − 69632∆2µ2R̄1 − 21504µ2R̄1 − 32768∆3µR̄1

−20480∆µR̄1 − 16384∆4R̄1 − 20480∆2R̄1 − 4096R̄1 + 36864µ4 + 16384∆µ3

+16384∆2µ2 + 16384µ2 = 0 (3.9)

Since a saddle-node bifurcation will occur at a double root, we further require that

the derivative of (3.9) with respect to R̄1 also be satisfied.

54R̄1
5 − 780R̄1

4 − 128µ2R̄1
3 − 512∆µR̄1

3 − 512∆2R̄1
3
+ 4288R̄1

3 − 1728µ2R̄1
2

−10944R̄1
2
+ 13824µ4R̄1 + 20480∆µ3R̄1 + 28672∆2µ2R̄1 + 14336µ2R̄1

+16384∆3µR̄1 + 14336∆µR̄1 + 8192∆4R̄1 + 14336∆2R̄1 + 12288R̄1 − 36864µ4

−53248∆µ3 − 69632∆2µ2 − 21504µ2 − 32768∆3µ − 20480∆µ − 16384∆4

−20480∆2 − 4096 = 0 (3.10)

We can now eliminate R̄1 from (3.9) and (3.10) to obtain an equation in terms of

∆ and µ only. Using MACSYMA, this results in three different curves. The first
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curve is given by

45349632µ14 + 221709312∆µ13 + 690508800∆2µ12 + 9027936µ12

+492475904∆3µ11 + 38320128∆µ11 + 2529857536∆4µ10 + 105827328∆2µ10

−4323051µ10 + 3420995584∆5µ9 + 231647232∆3µ9 − 5105708∆µ9

+3827613696∆6µ8 + 453522432∆4µ8 − 35909484∆2µ8 + 539217µ8

+3541827584∆7µ7 + 721944576∆5µ7 − 63304320∆3µ7 + 3036832∆µ7

+2745761792∆8µ6 + 919879680∆6µ6 − 80637888∆4µ6 + 8802064∆2µ6

−12636µ6 + 1759248384∆9µ5 + 912162816∆7µ5 − 38032128∆5µ5

+7835616∆3µ5 − 183192∆µ5 + 930873344∆10µ4 + 701669376∆8µ4

+40007424∆6µ4 − 3381904∆4µ4 − 841176∆2µ4 − 81µ4 + 392167424∆11µ3

+410910720∆9µ3 + 81358848∆7µ3 − 3334912∆5µ3 − 1019520∆3µ3

+2640∆µ3 + 128974848∆12µ2 + 177340416∆10µ2 + 65590272∆8µ2

+7929600∆6µ2 + 231360∆4µ2 + 20304∆2µ2 + 29360128∆13µ + 51904512∆11µ

+30167040∆9µ + 7749632∆7µ + 889344∆5µ + 35328∆3µ + 16∆µ

+4194304∆14 + 8650752∆12 + 6033408∆10 + 1937408∆8 + 296448∆6

+17664∆4 + 16∆2 = 0 (3.11)

Equation (3.11) plots as two triangular regions in parameter space (see Figure 3.1).

The sides of the triangular regions represent either a saddle-node or an infinite-

period bifurcation of equilibria (see Chapter 4).

The second saddle-node bifurcation curve equation found is

µ + 2∆ = 0 (3.12)

Equation (3.12) is a straight line bisecting the triangular regions given by (3.11)
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Figure 3.1: Saddle-node bifurcation curves in parameter space.

and does not correspond to bifurcations taking place in the 3-dimensional in-phase

slow-flow subspace. However, equation (3.12) does appear to be a bifurcation curve

in the larger 5-dimensional slow-flow (2.10) and thus will play a roll when studying

the larger 5-dimensional problem. A third equation is also obtained but it does

not represent a bifurcation curve of the in-phase slow-flow equations and has no

significance to this problem. It is due to additional zeros added to the problem by

MACSYMA in the course of eliminating variables. These extra zeros appear every

time the ELIMINATE command is used and so it is understood from now on we

simply ignore these extraneous zeros.
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3.2 Hopf Bifurcation Curves

Next we seek to find conditions for the existence of any limits cycles present in the

in-phase slow-flow. They will be born in a supercritical Hopf bifurcation where

a stable equilibria loses its stability when two of its eigenvalues become purely

imaginary. Let
(
R̄1, R̄3, φ̄

)
be such an equilibrium point (satisfying (3.4)). To

investigate the behavior of its eigenvalues we linearize the in-phase slow-flow (3.4)

around the equilibrium point, resulting in the Jacobian matrix

Df =




1
3
− 3R̄1

2

8
−µ sin φ̄

2
−µR̄3 cos φ̄

2

µ sin φ̄ 1
3
− 3R̄3

2

8
µR̄1 cosφ

µR̄3 cos φ̄

2R̄1
2 + µ cos φ̄

R̄3
−µR̄1 cos φ̄

R̄3
2 − µ cos φ̄

2R̄1

µR̄3 sin φ̄
2R̄1

− µR̄1 sin φ̄
R̄3




(3.13)

The Jacobian can be simplified by using equations (3.5) and (3.6) to eliminate

cos (φ) and sin (φ). The resulting characteristic equation, which contains only R̄1

and R̄3 is of the form

λ3 + c2λ
2 + c1λ + c0 = 0 (3.14)

where the coefficients c0, c1, c2 are given as

c2 = −R̄3
4
+ 6R̄1

2
R̄3

2 − 4R̄3
2
+ 2R̄1

4 − 8R̄1
2

4
(
R̄3

2
+ 2R̄1

2
) (3.15a)

c1 = (3R̄3
12 − 23R̄1

2
R̄3

10
+ 4R̄3

10
+ 9R̄1

4
R̄3

8
+ 52R̄1

2
R̄3

8 − 16µ2R̄3
8 − 64∆µR̄3

8

−64∆2R̄3
8 − 16R̄3

8
+ 106R̄1

6
R̄3

6 − 128R̄1
4
R̄3

6 − 128µ2R̄1
2
R̄3

6 − 512∆µR̄1
2
R̄3

6

−512 ∆2R̄1
2
R̄3

6 − 24R̄1
8
R̄3

4 − 224R̄1
6
R̄3

4 − 384µ2R̄1
4
R̄3

4 − 1536∆µR̄1
4
R̄3

4

−1536∆2R̄1
4
R̄3

4
+ 128R̄1

4
R̄3

4 − 200R̄1
10

R̄3
2
+ 448R̄1

8
R̄3

2 − 512µ2R̄1
6
R̄3

2

−2048∆µR̄1
6
R̄3

2 − 2048∆2R̄1
6
R̄3

2
+ 48R̄1

12
+ 64R̄1

10 − 256µ2R̄1
8 − 1024∆µR̄1

8

−1024∆2R̄1
8 − 256R̄1

8
)/(64(R̄3

2 − 2R̄1
2
)2(R̄3

2
+ 2R̄1

2
)2) (3.15b)
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c0 = −((11R̄1
2
R̄3

14 − 12R̄3
14 − 45R̄1

4
R̄3

12
+ 24R̄1

2
R̄3

12 − 48µ2R̄3
12

−192∆µR̄3
12 − 192∆2R̄3

12
+ 16R̄3

12
+ 12R̄1

6
R̄3

10
+ 108R̄1

4
R̄3

10 − 384µ2R̄1
2
R̄3

10

−1536∆µR̄1
2
R̄3

10 − 1536∆2R̄1
2
R̄3

10 − 48R̄1
2
R̄3

10
+ 64µ2R̄3

10
+ 256∆µR̄3

10

+256∆2R̄3
10

+ 90R̄1
8
R̄3

8 − 216R̄1
6
R̄3

8 − 1248µ2R̄1
4
R̄3

8 − 4992∆µR̄1
4
R̄3

8

−4992∆2R̄1
4
R̄3

8 − 96R̄1
4
R̄3

8
+ 640µ2R̄1

2
R̄3

8
+ 2560∆µR̄1

2
R̄3

8
+ 2560∆2R̄1

2
R̄3

8

+132R̄1
10

R̄3
6 − 288R̄1

8
R̄3

6 − 2304µ2R̄1
6
R̄3

6 − 9216∆µR̄1
6
R̄3

6 − 9216∆2R̄1
6
R̄3

6

+384R̄1
6
R̄3

6
+ 2560µ2R̄1

4
R̄3

6
+ 10240∆µR̄1

4
R̄3

6
+ 10240∆2R̄1

4
R̄3

6

−504R̄1
12

R̄3
4
+ 576R̄1

10
R̄3

4 − 3072µ2R̄1
8
R̄3

4 − 12288∆µR̄1
8
R̄3

4

−12288∆2R̄1
8
R̄3

4
+ 5120µ2R̄1

6
R̄3

4
+ 20480∆µR̄1

6
R̄3

4
+ 20480∆2R̄1

6
R̄3

4

+304R̄1
14

R̄3
2
+ 192R̄1

12
R̄3

2 − 3072µ2R̄1
10

R̄3
2 − 12288∆µR̄1

10
R̄3

2

−12288∆2R̄1
10

R̄3
2 − 768R̄1

10
R̄3

2
+ 5120µ2R̄1

8
R̄3

2
+ 20480∆µR̄1

8
R̄3

2

+20480∆2R̄1
8
R̄3

2 − 384R̄1
14 − 1536µ2R̄1

12 − 6144∆µR̄1
12 − 6144∆2R̄1

12

+512R̄1
12

+ 2048µ2R̄1
10

+ 8192∆µR̄1
10

+ 8192∆2R̄1
10

)/(512(R̄3
2 − 2R̄1

2
)2(R̄3

2

+2R̄1
2
)3)) (3.15c)

For a Hopf bifurcation to occur, there must exist a pair of purely imaginary eigen-

values satisfying (3.14). This requires the characteristic equation to be of the form

[9]

λ3 − αλ2 + β2λ − β2α = 0 (3.16)

Equation (3.16) requires that

c0 = c1c2 (3.17)

To turn (3.17) into an equation representing a curve in parameter space, we have

to eliminate R̄1 and R̄3 using equations (3.8) and (3.9). Using (3.8) to eliminate
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R̄3 we can reduce (3.17) to

8019 ¯̄R8
1 − 138672 ¯̄R7

1 + 11232µ2 ¯̄R6
1 + 44928∆µ ¯̄R6

1 + 44928∆2 ¯̄R6
1 + 963468 ¯̄R6

1

−101376µ2 ¯̄R5
1 − 405504∆µ ¯̄R5

1 − 405504∆2 ¯̄R5
1 − 3380832 ¯̄R5

1 + 6912µ4 ¯̄R4
1

+55296∆µ3 ¯̄R4
1 + 165888∆2µ2 ¯̄R4

1 + 195456µ2 ¯̄R4
1 + 221184∆3µ ¯̄R4

1 + 781824∆µ ¯̄R4
1

+110592∆4 ¯̄R4
1 + 781824∆2 ¯̄R4

1 + 6014784 ¯̄R4
1 − 36864µ4 ¯̄R3

1 − 294912∆µ3 ¯̄R3
1

−884736∆2µ2 ¯̄R3
1 + 455168µ2 ¯̄R3

1 − 1179648∆3µ ¯̄R3
1 + 1820672∆µ ¯̄R3

1

−589824∆4 ¯̄R3
1 + 1820672∆2 ¯̄R3

1 − 4143616 ¯̄R3
1 + 27648µ4 ¯̄R2

1 + 221184∆µ3 ¯̄R2
1

+663552∆2µ2 ¯̄R2
1 − 1459200µ2 ¯̄R2

1 + 884736∆3µ ¯̄R2
1 − 5836800∆µ ¯̄R2

1

+442368∆4 ¯̄R2
1 − 5836800∆2 ¯̄R2

1 − 1290240 ¯̄R2
1 + 294912µ2 ¯̄R1 + 1179648∆µ ¯̄R1

+1179648∆2 ¯̄R1 + 1867776 ¯̄R1 + 524288µ2 + 2097152∆µ + 2097152∆2

+524288 = 0 (3.18)

where ¯̄R1 = R̄1
2
. Finally, we use (3.9) to eliminate ¯̄R1, giving us

206046997776µ16 + 128246239872∆µ15 − 1055299653504∆2µ14

+151716144096µ14 − 4792910330880∆3µ13 − 959470912224∆µ13

−10067384941056∆4µ12 − 4022175416544∆2µ12 − 76183604811µ12

−13620666378240∆5µ11 − 8422624949760∆3µ11 − 1162076374872∆µ11

−11038023456768∆6µ10 − 9771098692608∆4µ10 − 2453769115848∆2µ10

−53727633963µ10 − 1633265565696∆7µ9 − 5111334563328∆5µ9

−2698414682336∆3µ9 − 368730619308∆µ9 + 10450239639552∆8µ8

+4596633773568∆6µ8 − 930295796592∆4µ8 − 500042378940∆2µ8 − . . .



25

. . .− 10567871928µ8 + 18955313086464∆9µ7 + 14654584700928∆7µ7

+2928072365568∆5µ7 − 65251243872∆3µ7 − 43666800936∆µ7

+20325924864000∆10µ6 + 19734795325440∆8µ6 + 6459457683968∆6µ6

+646749530928∆4µ6 − 25863482760∆2µ6 − 842897393µ6

+15864307384320∆11µ5 + 18526299439104∆9µ5 + 7894980157440∆7µ5

+1385895931968∆5µ5 + 75604570176∆3µ5 − 1221626868∆µ5

+9417278619648∆12µ4 + 12970012852224∆10µ4 + 6670762715136∆8µ4

+1563045302976∆6µ4 + 151762831008∆4µ4 + 2639537484∆2µ4

−16895076µ4 + 4277139406848∆13µ3 + 6902205382656∆11µ3

+4225522688000∆9µ3 + 1243790340096∆7µ3 + 175856646912∆5µ3

+9882465920∆3µ3 + 104063568∆µ3 + 1433187385344∆14µ2

+2690954035200∆12µ2 + 1939282108416∆10µ2 + 685956946944∆8µ2

+123792201984∆6µ2 + 10341576000∆4µ2 + 273469584∆2µ2

+1086528µ2 + 328866988032∆15µ + 711039909888∆13µ

+596824129536∆11µ + 250006241280∆9µ + 55862845440∆7µ

+6480411648∆5µ + 338812032∆3µ + 5262144∆µ

+41108373504∆16 + 101577129984∆14 + 99470688256∆12

+50001248256∆10 + 13965711360∆8 + 2160137216∆6

+169406016∆4 + 5262144∆2 + 43264 = 0 (3.19)

Equation (3.19) is plotted in Figure 3.2. The dashed lines represent sections of the

curve where condition (3.16) no longer hold and thus no Hopf bifurcation occurs

there.
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Figure 3.2: Hopf (plus saddle-node) bifurcation curves in parameter space.

To approximate the asymptotes (for large ∆ and µ) to the Hopf bifurcation curves,

we go back to equation (3.19) and neglect terms that are not of the 16th power. This

leaves us with 17 of the original 81 terms in the equation. We solve the resulting

equations to find µ as a function of ∆. The resulting asymptote equations are

µ = −
2
(
73/4 +

√
59
√

7 − 119 − 4
(
71/4

))

9 (71/4)
∆ = −0.53119∆ (3.20a)

µ =
2
(
−73/4 +

√
59
√

7 − 119 + 4
(
71/4

))

9 (71/4)
∆ = 1.13308∆ (3.20b)

µ = −
2
(
−73/4 +

√
59
√

7 + 119 − 4
(
71/4

))

9 (71/4)
∆ = −0.78915∆ (3.20c)

µ =
2
(
73/4 +

√
59
√

7 + 119 + 4
(
71/4

))

9 (71/4)
∆ = 3.74282∆ (3.20d)

These asymptotes may be useful when the issue of large coupling (µ � 1) in (1.1)

is analyzed in the future.
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3.3 Other Bifurcation Curves

Besides the saddle-node and Hopf bifurcation curves found in the previous two

sections, there exist 6 other bifurcation curves in the parameter space that have

been found my numerical investigation of the slow-flow. Four of them are approx-

imated by the dotted lines in Figure 3.3 and their significance is discussed in the

next chapter.

Figure 3.3: Numerically computed bifurcation curves (dotted lines) in pa-

rameter space.

Finally, there exists two last bifurcation curves in the parameter space for which

we do not provide a good approximation for but whose existence is necessary for a

correct description of the qualitative nature of the in-phase dynamics in the next

chapter. They exist on each side of the upper triangular region, in between the

top Hopf bifurcation curve and the top numerically computed bifurcation curves

in Figure 3.3. A cartoon of one of these bifurcation curves is given in Figure 3.4.
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Figure 3.4: Final numerical bifurcation curves (dashed lines) in parameter

space.



CHAPTER 4

THE DYNAMICS OF THE IN-PHASE MODE

In the previous chapter we found bifurcation curves (both analytical and numer-

ical) separating regions of distinctly different behavior in the ∆ − µ parameter

space. Numerical integration of the in-phase slow-flow equations for the respec-

tive regions reveals three different types (see Figure 4.1) of dynamical behavior:

(1) phase drift, (2) weakly phase-locked motion, and (3) phase-locked motion. To

differentiate between these types of behavior, we will use the following definitions:

1. Phase drift occurs when the phase difference φ (η) between the pineal os-

cillator (w) and the eye (x = y) oscillators increases (or decreases) without

bound. In the slow-flow phase space, phase drift appears as a closed curve

(a limit-cycle) which is cyclic in φ. Positive (negative) drift refers to the

direction of the flow in φ. Such motion is referred to as an LCD (limit cycle

with drift).

2. A weakly phase-locked motion occurs when φ (η) is periodic. It is represented

in the phase space by a limit cycle which is topologically distinct from an

LCD. In this system weakly phase-locked motions are born in supercritical

Hopf bifurcations or in folds of limit cycles. Such motion is referred to as an

LCW (limit cycle with weak phase-locking).

3. Phase-locked motions are motions where φ (η) remains constant. These mo-

tions correspond to equilibria in the slow-flow phase space.

Figure 4.2 shows the bifurcation curves separating the parameter space into 10 la-

beled regions. The essential dynamical features and behavior found in each region

29
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Figure 4.1: Three distinct types of dynamical behavior for the slow-flow.

are summarized as follows:

• REGION I: There exist two unstable equilibrium points and one stable LCD.

All trajectories in the phase space experience negative drift.

• REGION II: There exist two unstable equilibrium points and one stable LCD.

All trajectories in the phase space experience positive drift.

• REGION III: There exist one stable and three unstable equilibrium points.

All trajectories tend to the stable equilibrium point.

• REGION IV: There exist one stable and one unstable equilibrium point. All

trajectories tend to the stable equilibrium point.

• REGION V: There exist two stable and two unstable equilibrium points. All
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trajectories tend to one of the two stable equilibrium points.

• REGION VI: There exist two stable equilibrium points. All trajectories tend

to one of the two stable equilibrium points. The also exists an unstable LCD.

• REGIONS A and D: There exist two unstable equilibrium points and a stable

LCW. All trajectories approach the stable limit cycle.

• REGIONS B and C: There exist one stable and one unstable equilibrium

point and a stable LCW. All trajectories are attracted to either the stable

equilibrium point or to the stable LCW. In addition there exists an unstable

motion which is an LCD at the region VI side of regions B and C, but which

is an LCW at the region IV side. The change from LCD to LCW occurs along

a curve (see Figure 3.4) in each of regions B and C via a saddle connection

bifurcation.

4.1 Transitions Between Regions of Parameter Space

To properly describe the dynamics of the slow-flow we explore how its dynamical

features change as we cross each bifurcation curve in parameter space. We only

look at bifurcation curve crossings on the right-hand side of the line µ = −2∆

in parameter space as the types of bifurcations represented by the bifurcation

curves are the same on both sides of this line. The numerical values given for the

bifurcation points are approximate and only intended to give an idea of where the

numerical bifurcation curves are.
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Figure 4.2: Regions of parameter space exhibiting distinctly different dynam-

ical behavior.

Region I to Region III to Region IV

Starting in Region I, we fix ∆ = 0.03 and travel in the positive µ-direction (see

Figure 4.3). At point A the phase space is dominated by a stable LCD and two

unstable equilibrium points, as shown in part A of Figure 4.4. Continuing upwards

to point B, we cross the saddle-node bifurcation curve (3.11) into Region III. It

is along this bifurcation curve that two new equilibria, one stable and the other

unstable, are born in an infinite-period bifurcation taking place along the stable

LCD (part B of Figure 4.4). As µ is increased even more the distance between

the two new equilibria increases and two of the unstable equilibria approach one

another. Finally, at point D in Figure 4.3 we cross the saddle-node bifurcation

curve (3.11) again, this time moving into Region IV. Along this curve one of the

two original unstable equilibrium points collides with the unstable equilibrium
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point born in the infinite-period bifurcation in a saddle-node bifurcation, leaving

only one stable and one unstable equilibria as we enter Region IV (part E of Figure

4.4).

Figure 4.3: Path followed when crossing from Region I into Region III and

then into Region IV.
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Figure 4.4: 2-dimensional cartoon of 3-dimensional bifurcations: (a) Two

unstable equilibrium points separated by a stable LCD. (b) An infinite-period

bifurcation occurs along stable LCD creating new stable and unstable equilib-

rium points. Dashed line represents structurally unstable (bifurcating) LCD.

(c) Two unstable equilibrium points converge on each other. (d) A saddle-node

bifurcation occurs between two unstable equilibrium points. (e) One stable and

one unstable equilibrium point remain.
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Region I to Region D to Region IV

Starting again in Region I (point A in Figure 4.5) we have a stable LCD and two

unstable equilibrium points. As we move in the positive µ-direction towards Region

IV, we hit a new bifurcation curve at approximately (∆, µ) = (0.2, 0.303). This new

curve, for which we have no analytical formula, represents saddle-node connections

(heteroclinic bifurcations) where the stable LCD interacts with the non-isolated

equilibria found on the singular surfaces R1 = 0 and R3 = 0 (see Chapter 5 or

[4] for a more thorough description of this bifurcation). As we pass into region D,

the saddle-connection breaks and we are left with a stable LCW with two unstable

equilibrium points (part C of Figure 4.6). Moving through region D to point D we

pass through the Hopf bifurcation curve (3.19) where one of the unstable equilibria

undergoes a supercritical Hopf bifurcation, destroying the LCW. Thus we are left

with one stable and one unstable equilibria in Region IV.
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Figure 4.5: Path followed when crossing from Region I into Region D and

then into Region IV.
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Figure 4.6: 2-dimensional cartoon of 3-dimensional bifurcations: (a) Two

unstable equilibrium points separated by a stable LCD. (b) A heteroclinic

(saddle-connection) bifurcation occurs. Dashed line represents structurally

unstable (bifurcating) LCD. (c) After the saddle-connection bifurcation the

stable LCD becomes a stable LCW surrounding an unstable equilibrium. (d)

The stable LCW decreases in size until a super-critical Hopf bifurcation hap-

pens. (e) One stable and one unstable equilibrium point remain.



38

Region VI to Region V to Region IV

Beginning this time in Region VI we have two stable equilibria and one unstable

LCD (part A of Figure 4.8). Moving diagonally to point B in Figure 4.7, we cross

the upper part of the upper-triangle portion of the saddle-bifurcation curve (3.11),

where two unstable equilibria appear in an infinite-period bifurcation along the

unstable LCD. Continuing through Region V the equilibrium points separate until

at point D in Figure 4.7 a stable and unstable equilibria collide in a saddle-node

bifurcation, leaving one unstable and one stable equilibria in Region IV.

Figure 4.7: Path followed when crossing from Region IV into Region V and

then into Region VI.



39

Figure 4.8: 2-dimensional cartoon of 3-dimensional bifurcations: (a) Two sta-

ble equilibrium points separated by an unstable LCD. (b) An infinite-period bi-

furcation occurs along the unstable LCD creating two new unstable equilibrium

points. Dashed line represents structurally unstable (bifurcating) LCD. (c) A

stable and unstable equilibrium point converge on each other. (d) A saddle-

node bifurcation occurs between a stable and unstable equilibrium point. (e)

One stable and one unstable equilibrium point remain.
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Region IV to Region C to Region VI

Beginning in Region IV, we start at (∆, µ) = (−0.06, .48) and this time decrease

∆. As we approach Region C at point B in Figure 4.9 (∆ = −.0708), a global

bifurcation occurs - a fold of LCWs, giving us one stable and one unstable equilibria

plus one stable and one unstable LCW as we enter region C. Continuing through

Region C, the stable LCW decreases in size around the unstable equilibria, while

the unstable LCW increases in size. Midway through, at pont D in Figure 4.9,

the unstable LCW forms a heteroclinic trajectory with the singular surface at

approximately ∆ = −.085, after which the unstable LCW becomes an unstable

LCD (see parts D and E of Figure 4.9). When we cross the Hopf curve (3.19)

going into Region VI, the stable LCW shrinks down to the unstable equilibria

and a supercritical Hopf bifurcation takes place. Thus we are left with two stable

equilibria and an unstable LCD in Region VI.
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Figure 4.9: Path followed when crossing from Region IV into Region C and

then into Region VI.
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Figure 4.10: 2-dimensional cartoon of 3-dimensional bifurcations: (a) One

stable and one unstable equilibrium point exist. (b) A fold of LCWs occurs

around the unstable equilibrium point. Dashed line represents structurally un-

stable (bifurcating) LCW. (c) As the LCWs separate, the stable LCW shrinks

in size while the unstable LCW grows. (d) A heteroclinic (saddle-connection)

bifurcation occurs. Dashed line represents structurally unstable (bifurcating)

LCW. (e) A Hopf bifurcation occurs as the stable LCW collapses to the un-

stable equilibrium point. (f) Two stable equilibria exist and are separated by

an unstable LCD.
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4.2 Analysis of the Slow-Flow Dynamics

In terms of the biological applications of this work, we are interested in regions

in parameter space where there exist a stable equilibrium point of the slow-flow.

Mathematically this corresponds to a phase-locked in-phase motion of the original

six-dimensional problem (1.1). Biologically, it corresponds to the in-phase synchro-

nized behavior of the circadian rhythms in each of the eyes (the x and y oscillators)

in relation to that of the extra-ocular circadian system (the w oscillator). As stated

in the introduction, the existence of a phase-locked in-phase motion is important

because it has been conjectured that if the melatonin rhythms in the retinae of

Japanese quails were to be the primary circadian pacemaker they would need to

be (i) tightly coupled and (ii) in-phase so to produce a coherent rhythm. [10]

In Figure 4.10 the regions of parameter space where such synchronized motions ex-

ist have been shaded. We see that for a given coupling strength µ, synchronization

can only occur if the natural frequency of the extra-ocular oscillator, 1 + ε∆, is

within a certain detuning range, ∆min ≤ ∆ ≤ ∆max. This is commonly referred to

as the range of synchronization or entrainment. Inversely, we can state that given

an extra-ocular oscillator with a natural frequency slightly detuned from that of

the eye oscillators, there exists a minimum coupling strength µmin necessary in or-

der to synchronize the rhythms. These results agree with those from earlier studies

on the synchronization of coupled (or forced) nonlinear oscillators (see [11] for an

example).

We also note that in Regions V, VI, B, and C of Figure 4.2 there exist multiple

stable in-phase phase-locked motions. While the biological significance of regions
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Figure 4.11: Regions of parameter space where stable phase-locked motion

is possible.

of multiple stable behavior existing primarily when the eye oscillators have a higher

frequency (and thus a shorter period) than that of the extra-ocular circadian sys-

tem are unknown, it would indicate a possible dependence for steady-state motion

on the initial conditions for the circadian oscillators and possible hysteresis.



CHAPTER 5

THE SLOW-FLOW ON SINGULAR SURFACES

In the 3-dimensional in-phase slow-flow phase space the surfaces R1 = 0 and R3 = 0

are singular surfaces in the sense that as a trajectory approaches either of these

surfaces the slow-flow equations governing its evolution become ill-defined (both

R1 and R3 are found in the denominator of terms in equations (3.3)). There-

fore the analysis of the dynamics on these surfaces requires a more sophisticated

mathematical analysis.

5.1 Slow-Flow on the Singular Surface R1 = 0

The process of finding the slow-flow along a singular surface is called scaling the

singularity. To find the slow-flow on the singular plane R1 = 0 we change inde-

pendent variables to (following [4])

dτ =
dη

R1

(5.1)

In terms of our original independent time variable t

dτ =
ε

R1
dt (5.2)

Substituting (5.1) into the slow-flow equations (3.3) we get the following scaled

system

dR1

dτ
= −µR1R3

2
sinφ +

R2
1

2

(
1 − R2

1

4

)
(5.3a)

dR3

dτ
= µR2

1 sinφ +
R1R3

2

(
1 − R2

3

4

)
(5.3b)

dφ

dτ
=

µ

2

[(
2R2

1

R3
− R3

)
cos φ − R1

]
− R1δ (5.3c)

45
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Substituting R1 = 0 into (5.3) gives the dynamics on the singular surface

dR1

dτ
= 0 (5.4a)

dR3

dτ
= 0 (5.4b)

dφ

dτ
= −µR3

2
cos (φ) (5.4c)

Thus R1 and R3 remain constant on the singular surface R1 = 0 while only the

phase-difference φ changes. Furthermore, there exist two 1-dimensional subspaces

(lines) of non-isolated equilibria at φ = ±π
2

(assuming µ > 0 and ignoring the even

more singular case when R3 = 0). To find the stability of the non-isolated equilibria

within the singular plane, with R̄3 denoting the R3 value of an equilibrium point,

we solve the first-order ODE (5.4c) to get

ln

(
1 − sin (φ)

1 + sin (φ)

)
= µR̄3τ + c1 (5.5)

where c1 is a constant. Solving for sin (φ) gives

sin (φ) =
1 − c2e

µR̄3τ

1 + c2eµR̄3τ
(5.6)

where c2 is a new constant dependent on c1. As τ → ∞, sin (φ) → −1 by the

right-hand side of (5.6) and thus φ → −π
2
. Likewise, as τ → −∞, sin (φ) → 1 and

thus φ → π
2
. Therefore, on the singular surface R1 = 0 the subspace corresponding

to φ = −π
2

is stable and φ = π
2

is unstable (note that this may not hold when

we consider stability in the larger 3-dimensional phase-space). This result can be

shown graphically as a flow on the φ-circle (see Figure 5.1).

To further understand the nature of the dynamics near these nonisolated equilib-

rium points we linearize around the equilibria and solve for the linearized slow-flow.
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Figure 5.1: Flow on the φ-circle for R1 = 0 [5].

The Jacobian of the scaled system (5.3) is




−µ sin (φ)R3+R3
1−2R1

2
−µ sin (φ)R1

2
−µ cos (φ)R1R3

2

−R3
3−4R3−16µ sin (φ)R1

8
−R1(3R2

3−4)
8

µ cos (φ)R2
1

−µR3+2∆R3−4µ cos (φ)R1

2R3
−µ cos (φ)(R2

3+2R2
1)

2R2
3

µ sin (φ)(R2
3−2R2

1)
2R3




(5.7)

Evaluating the Jacobian at equilibriumpoints on the lines (R1, R3, φ) =
(
0, R̄3,±π

2

)

gives 


∓µR̄3

2
0 0

R̄3

2

(
1 − R̄3

2

4

)
0 0

−µ
2
−∆ 0 ±µR̄3

2




(5.8)

We can now find the eigenvalues and eigenvectors associated with the Jacobian

matrix and solve for the linearized slow-flow near the equilibria.




R1(τ )

R3(τ )

φ(τ )




= k1




0

1

0




+ k2




0

0

1




e±
µR̄3

2
τ + k3




1

± R̄3
2−4
4µ

±µ+2∆
2µR̄3




e∓
µR̄3

2
τ (5.9)
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The

[
0 1 0

]T

eigenvector and its eigenvalue λ = 0 are associated with the singu-

lar nature of the equilibria and their neutral stability in the 3-dimensional phase-

space. The

[
0 0 1

]T

eigenvector corresponds to the flow within the R1 = 0

singular surface. The positive eigenvalue λ = µR̄3

2
associated with the line of non-

isolated equilibria at φ = π
2

once again shows that this line is unstable in the

singular surface. Likewise, at φ = −π
2

the line of equilibria is stable due to its

negative eigenvalue. The final eigenvector

[
1 ± R̄3

2−4
4µ

±µ+2∆
2µR̄3

]T

describes how

trajectories enter (exit) the singular surface from (to) the rest of the phase space.

Because of the nonisolated nature of the equilibria the eigendirections form a 2-

dimensional manifold in the phase space [4]. The negative eigenvalue λ = −µR̄3

2

associated with the line of nonisolated equilibria at φ = π
2

shows that trajectories

enter the singular surface along this manifold and exit via the manifold originating

from the line φ = −π
2
. Note that assuming µ > 0 and R3 > 0 the stability of the

nonisolated equilibria within the singular plane does not change.

5.2 Slow-Flow on the Singular Surface R3 = 0

To find the slow-flow on the singular plane R3 = 0 we once again change indepen-

dent variables, this time defining the new time variable as

dτ =
dη

R3
(5.10)

Substituting this into the slow-flow equations (3.3) we get the following scaled

system

dR1

dτ
= −µR2

3

2
sinφ +

R1R3

2

(
1 − R2

1

4

)
(5.11a)

dR3

dτ
= µR1R3 sin φ +

R2
3

2

(
1 − R2

3

4

)
(5.11b)
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dφ

dτ
=

µ

2

[(
2R1 −

R2
3

R1

)
cos φ− R3

]
− R3∆ (5.11c)

Substituting R3 = 0 into (5.11) gives the dynamics on this singular surface as

dR1

dτ
= 0 (5.12a)

dR3

dτ
= 0 (5.12b)

dφ

dτ
= µR1 cos φ (5.12c)

Thus R1 and R3 remain constant this singular surface as well, while only the phase-

difference φ changes. Furthermore, there exist two 1-dimensional subspaces (lines)

of non-isolated equilibria at φ = ±π
2

(assuming µ > 0 and ignoring the even more

singular case when R1 = 0). To find the stability of the non-isolated equilibria

within the singular plane we solve the first-order ODE (5.12c) to get

ln

(
1 + sin (φ)

1 − sin (φ)

)
= 2µR̄1τ + c1 (5.13)

where c1 is a constant and R̄1 a given equilibrium value. Solving for sin (φ) gives

sin (φ) =
c2e

2µR̄1τ − 1

c2e2µR̄1τ + 1
(5.14)

where c2 is a new constant dependent on c1. Performing the same analysis as in

the previous section, as τ → ∞, sin (φ) → 1 by the right-hand side of (5.14) and

thus φ → π
2
. Likewise, as τ → −∞, sin (φ) → −1 and thus φ → −π

2
. Therefore,

on the singular surface R3 = 0 the subspace corresponding to φ = π
2

is stable

and φ = −π
2

is unstable (note that this may not hold when we consider stability

in the larger 3-dimensional phase-space). Thus these 1-dimensional subspaces of

nonisolated equilibria corresponding to φ = ±π
2

have the opposite stability within

this singular plane as they do within the other singular plane R1 = 0 (see Figure

5.2).
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Figure 5.2: Flow on the φ-circle for R3 = 0.

To further understand the nature of these nonisolated equilibrium points we lin-

earize around the equilibria and solve for the linearized slow-flow. The Jacobian

of the scaled system (5.11) is




−3R2
1−4

8
−8µ sin φR3+R3

1−4R1

8
−µ cosφR2

3

2

µ sin φR3 −R3
3−2R3−2µ sinφR1

2
µ cos φR1R3

µ cosφR2
3+2µ cosφR2

1

2R2
1

−2µ cos φR3+(µ+2∆)R1

2R1

µ sin φR2
3−2µ sinφR2

1

2R1




Evaluating the Jacobian at equilibriumpoints on the lines (R1, R3, φ) =
(
R̄1, 0,±π

2

)

gives 


0 R1

2

(
1 − R2

1

4

)
0

0 ±µR1 0

0 −µ
2
− δ ∓µR1




(5.15)

We can now find the eigenvalues and eigenvectors associated with the Jacobian
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(5.15) and solve for the linearized slow-flow near the equilibria, giving




R1(τ )

R3(τ )

φ(τ )




= k1




1

0

0




+ k2




0

0

1




e∓µR̄1τ + k3




∓ R̄1
2−4
8µ

1

∓µ+2δ
4µR̄1




e±µR̄1τ (5.16)

The

[
1 0 0

]T

eigenvector and its eigenvalue λ = 0 are associated with the sin-

gular nature of the equilibria and their neutral stability within the 3-dimensional

phase-space. The

[
0 0 1

]T

eigenvector corresponds to the flow within the R3 = 0

singular surface. The negative eigenvalue λ = −µR̄1 associated with the line of

nonisolated equilibria at φ = π
2

shows once again that this line is stable in the

singular surface. Likewise, at φ = −π
2

the line of equilibria is unstable due to its

positive eigenvalue. The final eigenvector

[
∓ R̄1

2−4
8µ

1 ∓µ+2δ
4µR̄1

]T

again describes

how trajectories enter (exit) the singular surface from (to) the rest of the phase

space and all the eigendirections taken together form a 2-dimensional manifold

in the phase-space. The positive eigenvalue λ = µR̄1 associated with the line of

nonisolated equilibria at φ = π
2

shows that trajectories leave the singular surface

along this manifold and enter via the manifold originating from the line φ = −π
2
.

Figure 5.3 shows the nature of the slow-flow on the singular planes for two of the

nonisolated equilibria.

5.3 Further Analysis of the Singular Dynamics

Now that we have found the flows within the singular surfaces and the means by

which a trajectory can enter (exit) the singular surfaces from (to) the rest of the

phase space, we discuss two fundamental ways in which these dynamics affect the

global dynamics found in the phase space.
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Figure 5.3: Examples of flows on the two singular planes R1 = 0 and R3 = 0.

First, the two 2-dimensional manifolds formed by the eigenvectors of the noniso-

lated equilibria on a singular surface play a role in the bifurcation between LCDs

and LCWs (along the numerically computed bifurcation curves separating Regions

I and D and Regions II and A shown in Figure 4.2). The mechanism by which

the transition is accomplished was previously reported on in the problem of two

weakly-coupled van der Pol oscillators [4]. Figure 5.4 shows a trajectory experi-

encing negative phase-drift when (∆, µ) = (0.2, 0.3024) (just on the Region I side

of the previously mentioned numerical curve).

One can see that the phase-drift trajectory lies on the outside of the pair of 2-

dimensional manifolds emanating from the singular surface R3 = 0. If we now

increase µ to a value of 0.304 we see (Figure 5.5) that the there now exists a sta-

ble LCW limit-cycle that lies entirely within the pair of 2-dimensional manifolds.
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Figure 5.4: Example of stable negative drift when (∆, µ) = (0.2, 0.3024)

Thus as a stable LCD bifurcates to an LCW there exists, by continuity, a saddle

connection [4].

Secondly, knowing how trajectories enter and leave the singular surfaces helps

us piece together a little of what occurs along the singular line µ = −2∆ in pa-

rameter space. As mentioned previously, this line is not technically a bifurcation

curve in the 3-dimensional in-phase problem (3.3), but it does appear to represent

a bifurcation curve in the larger 5-dimensional slow-flow (2.10).

Looking back at the linear singular slow-flow solutions (5.9) and (5.16) near the

nonisolated equilibria, and in particular the third eigenvectors which permit entry

and exit from the singular surfaces, we note that along the line µ = −2∆ they be-

come

[
1 ± R̄3

2−4
4µ

0

]T

and

[
∓ R̄1

2−4
8µ

1 0

]T

respectively. Therefore a trajectory
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Figure 5.5: Example of stable LCW when (∆, µ) = (0.2, 0.304)

can only enter or exit the singular surfaces from the planes φ = ±π
2
. Furthermore,

the original in-phase slow-flow equation governing the flow in the φ-direction (3.3c)

becomes

dφ

dη
=

µ

2

(
2R1

R3

− R3

R1

)
cos (φ) (5.17)

showing that the planes φ = ±π
2

are invariant, meaning that a trajectory with an

initial condition on either of these planes will stay on that plane for all time. Thus

the phase-space can be considered to be divided into 2 distinct regions. We leave

the discussion here as the significance of these special circumstances is beyond the

scope of this thesis.



CHAPTER 6

CONCLUSIONS

In this thesis we have begun to investigate the dynamical behavior of a system of

three weakly-coupled van der Pol oscillators. From our biological motivation an

indirect coupling scheme was envisioned, with two identical eye oscillators coupled

via a third oscillator representing the extra-ocular circadian system of the Japanese

quail. Of particular interest to us were the existence of in-phase motions of the

eye oscillators that are phase-locked to those of the extra-ocular oscillator.

Using singular perturbation methods (the method of two-variable expansion and

the method of averaging), we reduced the four-dimensional in-phase subspace prob-

lem (2.10) to a three-dimensional slow-flow (3.3). With computational tools we

successfully computed the bifurcation curves (3.11) and (3.19) for the in-phase

subspace (see Figure 6.1). Furthermore, the qualitative behavior of each distinct

region in the parameter space was determined and three main types of dynami-

cal behavior were found - phase-locked motion, weakly phase-locked motion, and

phase-drift.

55



56

Figure 6.1: Bifurcation curves in parameter space.

Figure 6.2: Regions of parameter space where stable phase-locked motion is

possible.
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Of biological importance is the existence of stable equilibria in the slow-flow (found

in Regions III, IV, V, VI, B, and C as shown in Figure 6.2). These equilibrium

points correspond to stable phase-locked motions of the original four-dimensional

in-phase problem (3.1). The use of linear coupling as well as the restriction of

µ > 0 (excitatory coupling) are in agreement with previous work [2]. It is inter-

esting to note that the regions of bi-stable dynamical behavior generally occur for

∆ < 0. This corresponds to the eye oscillators having a higher frequency (and

thus shorter period) than the extra-ocular oscillator. Future work is necessary for

a better understanding of the biological significance (if any) of this result. Fur-

thermore, future work is needed to investigate whether the in-phase subspace of

the original problem (2.1) is an attracting subspace and how the stability of the

out-of-phase subspace relates to that of the in-phase subspace.

This work on the in-phase subspace dynamics is reminiscent of the problem of two

weakly-coupled van der Pol oscillators [4], [5]. In those works the same three types

of dynamical behavior were present and the mechanism of bifurcation between

phase-drift (LCD) and weakly phase-locked motion (LCW) was first elucidated.

The resulting bifurcation diagram for two weakly-coupled van der Pol oscillators

is shown in Figure 6.3. We see that the addition of a third van der Pol oscillator

(with indirect coupling) has destroyed the symmetry of the bifurcation diagram

and created a second, smaller triangular region for ∆ < 0.

Due to symmetry in the problem of two weakly-coupled van der Pol oscillators,

everywhere in Figure 6.3 where there is one stable equilibrium point, (R1, R2, φ) =

(
R̄1, R̄2, φ̄

)
, there is a second one at (R1, R2, φ) =

(
R̄2, R̄1, φ̄ + π

)
. Therefore all
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regions of the parameter space where there exist phase-locked motions are regions

of bi-stability (Figure 6.4). However, from the description of the in-phase dynam-

ics given in Chapter 4 we see that the regions of bi-stability have decreased and

been shifted upwards (Figure 6.5).

Figure 6.3: Bifurcation curves for two weakly-coupled van der Pol oscillators

(modified from [4], [5])

This raises the important questions of where the new triangular region originated

from and how the problems of two weakly-coupled van der Pol oscillators and three

indirectly weakly-coupled oscillators are mathematically connected. While a the-

oretical investigation of these questions is beyond the scope of this thesis, some

simple numerical investigations provide some insight.
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Figure 6.4: Regions of bi-stability (shown in black) for two weakly-coupled

van der Pol oscillators

The equations of motion for two weakly-coupled van der Pol oscillators are

ẍ − ε
(
1 − x2

)
ẋ + x = εµ (w − x) (6.1a)

ẅ − ε
(
1 − w2

)
ẇ + p2w = εµ (x− w) (6.1b)

We see that equations (6.1) are similar to (3.1), the equations of motion governing

the in-phase mode of three indirectly-coupled van der Pol oscillators, except for a

missing factor of 2 in the w-equation. Thus we now generalize (3.1), writing the

governing equations for the in-phase mode of N van der Pol oscillators indirectly

coupled via a central oscillator as

ẍ − ε
(
1 − x2

)
ẋ + x = εµ (w − x) (6.2a)

ẅ − ε
(
1 − w2

)
ẇ + p2w = εNµ (x− w) (6.2b)
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Figure 6.5: Regions of bi-stability (shown in black) for the slow-flow (3.3).

We note that setting N = 1 in (6.2) gives the equations (6.1) for two weakly-

coupled van der Pol oscillators and setting N = 2 gives the equations for the in-

phase mode of three indirectly coupled van der Pol oscillators (3.1). We can now

investigate, for example, how the saddle-node bifurcation curves (3.11) change as

N is continuously changed from 2 to 1. Note, however, that allowing N to take on

non-integer values turns the problem into a purely mathematical one, as it makes

no sense to consider fractions of oscillators.

Figure 6.6 shows the saddle-node bifurcation curves for different values of N . We

see that as N decreases from 2, the upper triangular region increases in size and

moves towards the origin. At the same time, the lower triangular region straightens

out towards the µ-axis. When N = 1 the regions coincide symmetrically about

the µ-axis. We note that this is not a conclusive result, but indicates that further
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theoretical investigations of equations (6.2) are warranted.

Figure 6.6: Saddle-node bifurcation curves in parameter space associated

with equation (6.2) for different values of N : (A) N = 2, (B) N = 1.5, (C)

N = 1.25, (D) N = 1.1.
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