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A hierarchical approach, together with the United Residue (UNRES) model of

the polypeptide chain, is used to study protein structure prediction.

First, an efficient method has been developed as an extension of the hierarchical

approach for packing α-helices in proteins. The results for 42 proteins show that

the approach reproduces native-like folds of α-helical proteins as low-energy local

minima. Moreover, this technique successfully predicted the structure of the largest

protein obtained so far with the UNRES force field in the sixth Critical Assessment

of Techniques for Protein Structure Prediction (CASP6).

Next, two popular methods of global optimization are coupled, and the perfor-

mance of the resulting method is compared with that of its components and with

other global optimization techniques. The Replica-Exchange Method together with

Monte Carlo-Minimization (REMCM) was applied to search the conformational

space of coarse-grained protein systems described by the UNRES force field. In

summary, REMCM located global minima for four proteins faster and more consis-

tently than two of three other global optimization methods, while being comparable

to the third method used for comparison.

Finally, efficient methods for calculating thermodynamic averages were imple-

mented with the UNRES force field, namely a Replica Exchange method (REM),



a Replica Exchange Multicanonical method (REMUCA), and Replica Exchange

Multicanonical with Replica Exchange (REMUCAREM), in both Monte Carlo

(MC) and Molecular Dynamics (MD) versions. The algorithms were applied to

one peptide and two small proteins (with α-helical and α+β topologies). To com-

pare the different methods, thermodynamic averages are calculated, and it is found

that REM MD has the best performance. Consequently, free energy maps are com-

puted with REM MD, to evaluate the folding behavior for all test systems.
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Chapter 1

Introduction
The work presented in this thesis is applied to proteins and, therefore, this chapter

is devoted to a brief overview of the following topics. First, a short overview

of proteins and protein folding is given. Next, techniques for protein studies,

including both experimental and computational methods, are described. This is

followed by a section explaining a procedure for protein structure prediction, which

was developed in our laboratory. Next, a description is provided as to how our

algorithms are tested in community-wide blind-test experiments. The final section

in this chapter discusses the author’s contributions to the topics mentioned above.

1.1 Proteins

Proteins play important roles in virtually all biological processes. They are re-

sponsible for the molecular design of life by performing diverse functions such as

enzymatic catalysis, mechanical support, immune protection, or generation and

transmission of nerve impulses.

Proteins are composed of basic structural units called amino acids. An α-amino

acid (shown in Figure 1.1) consists of an amino group, a carboxyl group, a Cα H

group, and a unique R group. All the groups are bonded to an α carbon atom.

There are 20 types of amino acids commonly found in proteins, differing only in

their unique R group, which is also known as a side chain. The remarkable range

1



2

of functions performed by proteins is due to the diversity in these twenty amino

acids.

N C

C
α

O H

OH

H H

R

Figure 1.1: Description of an amino acid

To form a protein, amino acids are linked together by peptide bonds, where

the α-carboxyl group of one amino acid is joined together with the α-amino group

of another amino acid. The resulting chain is referred to as a polypeptide chain,

and when the amino acids are parts of a polypeptide chain they are referred to as

amino-acid residues. The peptide plane (which is described by the four atoms N,

H, C, and O of Fig. 1.2) is fairly rigid and planar. This arises because the link

between the carbonyl carbon atom and the nitrogen atom has partial double bond

character. The peptide group can therefore exist in cis and trans forms, with small

variations of the torsional angle around this bond in both forms. The trans (from

latin meaning ”across”) form of the peptide group is that in which the consecutive

R-groups are locked on the opposite sides of the CO-NH peptide group, whereas

the cis (from latin meaning ”on this side”) form is when they are locked on the

same side (Fig. 1.3). Figure 1.2 shows the peptide plane in a polypeptide chain.

An important feature of proteins is that they have well-defined unique three-

dimensional structure. This unique 3D structure (also termed the native struc-
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CH
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CH
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CH
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Amino Carboxy
terminusPeptide bondsterminus

Figure 1.2: Description of the polypeptide chain and the peptide bond
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Figure 1.3: Trans (A) and cis (B) forms of a polypeptide chain
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ture) is the biologically active form of the protein. In summary, four basic levels

of protein structure exist. Primary structure refers to the amino acid sequence.

Secondary structure corresponds to the spatial arrangement of neighboring amino

acid residues within a chain. Some of these arrangements are fairly regular and

give rise to periodic structure. The two main secondary structure components are

the α-helix and the β-strand. Tertiary structure refers to the spatial arrangement

of residues far from each other in the sequence. This is the three-dimensional

shape which determines a protein’s function. In addition to tertiary structure,

proteins containing multiple subunits possess quaternary structure, which is the

spatial arrangement of the subunits and the nature of their contacts.

1.2 Protein Folding

Essentially the protein folding problem can be summarized in one sentence: Given

a sequence of amino acids, what is the tertiary (3D) structure of the protein, and

how does it get there from the newly synthesized polypeptide chain.

The Protein Folding problem was first investigated experimentally by Anfin-

sen.1 His experiment demonstrated that reduced and unfolded bovine pancreatic

ribonuclease A (RNase A), could be spontaneously refolded by oxidation of all

of its sulfhydryl groups to produce four disulfide bonds, which produced a native

biologically-active structure. This result forms the underlying thermodynamic hy-

pothesis, which states that the native conformation is expected to have the lowest

free energy of the system (i.e., the protein plus its solvent environment).

Another underlying aspect concerning the protein folding problem is known as

the Levinthal Paradox.2 The paradox states that protein cannot find its native

state by an exhaustive search through all possible conformations. This comes from
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realization that a full enumeration of all possible conformations would require an

unrealistic amount of time, and thus proteins would never fold in real time; there-

fore, physical interactions must play an important role in forming the appropriate

native fold.

1.3 Structure Prediction

Structure prediction has been one of the most important tasks in computational

structural biology, with the goal of being able to predict the nature of the inter-

residue interactions that lead to three-dimensional protein structures and their

folding pathways from their amino acid sequences. Motivation for protein structure

prediction, i.e., prediction of relevant interactions, stems from vastly different fields

such as:

1. Medicine: helping to understand biological functions, since binding of pro-

teins with ligands and with other proteins, nuclueic acids, carbohydrates and

lipids constitute much of the cellular activity of living organisms.

2. Drug Design: Screening target libraries for docking drugs.

3. Agriculture: genetic engineering of richer and more resistant crops.

4. Industry: Synthesis of enzymes (e.g. those that can be incorporated in a

mixture with detergents).

1.3.1 Experimental Methods

In practice there are two experimental methods used for protein structure deter-

mination. X-ray Crystallography and nuclear magnetic resonance (NMR) spec-
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troscopy.

X-ray Crystallography3 requires protein crystals, which are formed by vapor

diffusion from purified protein solutions under optimal conditions. The crystals

are subjected to X-ray radiation and the resulting diffraction pattern can be inter-

preted as a reflection of the primary beam source from sets of parallel planes in the

crystal. The amplitudes and phases of the diffraction data are used to calculate

electron density maps. The corresponding protein structure can then be obtained

by fitting the amino acid sequence to the electron density maps.

NMR,4 on the other hand, does not require a protein crystal, but treats the

protein in solution. Subjecting the solution to a powerful external magnetic field

and high frequency radiation results in the splitting of the degenerate energy levels

of nuclear spin states. The environment of the component atoms of the proteins

determines the magnitude of the energy level splitting and can be used to identify

resonance frequencies with particular atoms in the protein. The result is a network

of distances involving pairs of spatially-proximate hydrogen atoms. The distances

are derived from the Nuclear Overhauser Effects (NOEs) between neighboring

atoms. The resulting distances together with other experimental information are

converted to a 3D structure with a computational procedure in which an energy

function is minimized and structure coordinates which conform to the experimental

data are found. Recently, an extra step has been added to the NMR procedure,

in which the resulting models are used again to calculate the spectra, and by

matching of the calculated spectra to the experimental one, an iterative procedure

for improvement is pursued.
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1.3.2 Computational Methods

The computational approach to protein structure prediction can be classified into

two main categories: Comparative modeling, and Ab initio approach.

Comparative modeling uses the existing database of experimentally determined

protein structures5 as starting points. This class can be further split into two main

subclasses: Homology modeling, and Threading. Homology modeling is based on

the assumption that two homologous proteins (proteins that share similar amino-

acid sequences) will presumably contain similar 3D structures.6–11 The sequence of

the solved structure is modified to that of the unknown structure and the resulting

optimized conformation is the predicted three-dimensional model of the unknown

structure. Threading12–18 scans the amino acid sequence of the unknown structure

against a database of experimental structures,.19–23 A scoring function is evaluated

for each comparison to assess the compatibility of the sequence to the structure,

thereby producing plausible three-dimensional models.

The Ab initio (also known as De novo) approach is based on the physical prin-

ciples governing the interactions of amino acids in a polypeptide chain and the

surrounding solvent. This approach, which is composed of two key components, is

described in more detail in section 1.4. First, an accurate model of the physical in-

teraction within the polypeptide chain is necessary. This is captured in a potential

energy function which describes the interatomic physical interactions. The poten-

tial energy function must be accurate enough to capture the important interactions

yet simple enough, so that calculations can be performed with today’s computa-

tional power in real time. Force fields of different resolutions (from all-atom to

highly simplified coarse grained models) have been developed. Second, assuming

an accurate energy function is available, the native fold of the protein populates its
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global energy minimum, based on Anfinsen’s hypotheses, which must be located.

This task is carried out by a variety of global optimization techniques ranging from

energy minimization,24–27 to Monte Carlo-based methods28 to Molecular Dynamics

procedures.29–31

1.4 Hierarchical Approach to protein structure prediction

As mentioned above, Anfinsen’s thermodynamic hypothesis states that the native

structure of a protein is the global minimum of the free energy of a protein plus the

surrounding solvent. Global optimization of a potential-energy function is therefore

a first-choice approach to physics-based protein-structure prediction. However, it is

computationally impossible at present to search the conformational space of an all-

atom protein plus explicit water even with the aid of modern global-optimization

techniques. Therefore, a hierarchical approach was developed in our laboratory

for the computation of protein structure. The approach consists of the following

stages:

1. A virtual-bond representation of the polypeptide chain, described by a united-

residue (UNRES)32–42 potential, and an efficient procedure (Conformational

Space Annealing, CSA),26, 43, 44 are used to search the conformational space

of the virtual-bond chain rapidly. The combination of UNRES and CSA nar-

rows the region of conformational space in which the global minimum is likely

to lie, which can be achieved at this stage with the simplified virtual-bond

model but not with the all-atom model. A cluster analysis of the resulting en-

semble of conformations is carried out, and the lowest-energy conformations

are selected for the next stages of the procedure.
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2. Next, the lowest-energy conformations obtained in stage 1 are converted to

all-atom chains.45, 46

3. The all-atom energy of the chains is searched with the Electrostatically-

Driven Monte Carlo procedure (EDMC),47, 48 and its energy, expressed by

the Empirical Conformational Energy Program for Peptides (ECEPP/3)

force field,49 is minimized with a Secant Unconstrained Minimization Solver

(SUMSL)50 subject to the Cα distance constraints from the parent united-

residue models.

4. Final energy refinement is carried out with the ECEPP/3 force field49 plus

the Solvent Radii Fixed with atomic solvation parameters OPTimized (SR-

FOPT)51 surface-hydration model and the EDMC47, 48 method as a search

technique, with gradual reduction of the Cα . . .Cα distance constraints of the

parent model (until they vanish at the end of the procedure).

This approach has been successfully implemented and tested in blind tests of

protein structure predictions, as described in section 1.5.

1.5 CASP

CASP (Critical Assessment of Techniques for Protein Structure Prediction)52 is a

blind test in the Protein Structure Community that takes place every two years.

Its goal is to assess the abilities of computational models to predict structures

of proteins based solely on their amino acid sequence. Computational groups

from all over the world are presented with amino acid sequences of proteins whose

structures are not yet publicly known. The number of structures and the length

of sequences to be predicted increase in every event. Computational groups have
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approximately three months to complete their calculations and submit their top

five predicted models for each protein for evaluation. Our group has successfully

participated in these exercises and the results from recent CASP5 and CASP6

events are summarized in reference 53.

1.6 Summary of the present work

This thesis describes the author’s contribution to the hierarchical approach to

protein folding.

First, chapter 2 describes an efficient method, which has been developed for

packing α-helices in proteins. It treats α-helices as rigid bodies and uses a simpli-

fied Lennard-Jones potential with Miyazawa-Jernigan contact-energy parameters

to describe the interactions between the α-helical elements in this coarse-grained

system. Global conformational searches to generate packing arrangements are car-

ried out rapidly with a Monte Carlo-minimization type of approach. The results

for 42 proteins show that the approach reproduces native-like folds of α-helical

proteins as low-energy local minima of this highly-simplified potential function.

These results are based on the work published in reference 54. This method can

be considered as an extra level of the hierarchy in the hierarchical procedure (it is

even a more coarse-grained model than UNRES, i.e., it would be used before point

1 in section 1.4).

Next, because the work in chapters 4 and 5 in this thesis is based on the

united residue (UNRES) model of the polypeptide chain, chapter 3 provides a

brief overview of all the aspects of the UNRES force field, and its parameter

optimization.

In chapter 4, two popular methods of global optimization are coupled, and its
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performance is compared with its separate components and with other global op-

timization techniques. The Replica-Exchange Method together with Monte Carlo-

Minimization (REMCM) was applied to search the conformational space of coarse-

grained protein systems described by the UNRES force field. The method consists

of several noninteracting copies of Monte Carlo simulation, and minimization was

used after every perturbation to enhance the sampling of low-energy conforma-

tions. REMCM was applied to five proteins of different topology, and the re-

sults were compared to those from other optimization methods, namely Monte

Carlo-Minimization (MCM), Conformational Space Annealing (CSA) and Con-

formational Family Monte Carlo (CFMC). In summary, REMCM located global

minima for four proteins faster and more consistently than either MCM or , and

it converged faster than CSA on three of the five proteins tested. A performance

comparison was also carried out between REMCM and the traditional Replica

Exchange method (REM) for one protein, with REMCM showing a significant im-

provement. Moreover, because of its simplicity, it was easy to implement, thereby

offering an alternative to other global optimization methods used in protein struc-

ture prediction. This chapter is based on work in reference 55.

In chapter 5 efficient methods for calculating thermodynamic averages were im-

plemented with the united residue (UNRES) force field, namely a Replica Exchange

method (REM), a Replica Exchange Multicanonical method (REMUCA), and

Replica Exchange Multicanonical with Replica Exchange (REMUCAREM), were

implemented with the coarse-grained UNRES force field in both Monte Carlo and

Molecular Dynamics versions. The MD algorithms use the constant-temperature

Berendsen thermostat, with the velocity Verlet algorithm and variable time step.

The algorithms were applied to one peptide (20 residues of Alanine with free ends;
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ala20) and two small proteins, namely an α-helical protein of 46 residues (the B-

domain of the staphylococal protein A; 1BDD), and an α+β-protein of 48 residues

(the E. Coli Mltd Lysm Domain; 1E0G). Calculated thermodynamic averages,

such as canonical average energy and heat capacity, are in good agreement among

all simulations for poly-L-alanine, showing that the algorithms were implemented

correctly, and that all three algorithms are equally effective for small systems. For

protein A, all algorithms performed reasonably well, although some variability in

the calculated results was observed whereas, for a more complicated α + β-protein

(1E0G), only Replica Exchange was capable of producing reliable statistics for

calculating thermodynamic quantities. Finally, from the Replica Exchange molec-

ular dynamics results, we calculated free energy maps as functions of RMSD and

radius of gyration for different temperatures. The free energy calculations show

correct folding behavior for poly-L-alanine and protein A while, for 1E0G, the na-

tive structure had the lowest free energy only at very low temperatures. Hence,

the entropy contribution for 1E0G is larger than that for protein A at the same

temperature. A larger contribution from entropy means that there are more ac-

cessible conformations at a given temperature, making it more difficult to obtain

an efficient coverage of conformational space to obtain reliable thermodynamic

properties. At the same temperature, ala20 has the smallest entropy contribution,

followed by protein A, and then by 1E0G. This work is based on reference 56.

Since previously-developed methods for global optimization are either imple-

mented ( is utilized in chapter 2), or used for comparison ( and CSA are used in

chapter 4), appendix A gives a brief overview of these methods.
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Chapter 2

Packing helices in proteins by global

optimization of a potential energy

function ∗

2.1 Introduction

The problem of determining the structure of a protein starting from its amino-

acid sequence has been approached from many different directions. Knowledge-

based methods cannot predict entirely new folds, while ab-initio methods have

this capability but are generally less accurate and more computationally intensive.

One class of ab-initio methods is based on the minimization of a potential energy

function. This immediately presents the challenge of producing a potential function

that identifies the native fold as the lowest-energy structure, yet remains simple

enough to permit adequate sampling of the conformational space.

If the secondary structure is known, the space that needs to be searched be-

comes much smaller, but still contains a very large number of incorrect packing

arrangements. The secondary structure can either be predicted from the sequence

∗Published as Nanias, M.; Chinchio, M.; Pillardy, J.; Ripoll, D.R.; Scheraga,

H.A., Proc. Natl. Acad. Sci. USA 2003, 100, 1706. Copyright (2003) National

Academy of Sciences, U.S.A.
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(using programs such as Jpred/Jnet1,2 Psipred3 etc.) or it can be extracted from

the preliminary output of another method. Here, we demonstrate the feasibility

of using a highly simplified energy-based method to pack secondary-structure el-

ements in which the positions of residues within these elements are fixed. Each

residue is represented by just one interaction center and the potential employed is

much simpler than in previous work.4 Because helical structures have a simple ge-

ometry, the procedure is applied to 42 mainly α-helical proteins. It is shown that,

for most structures with six or fewer helices, a limited number of plausible con-

formations can be identified that contain native-like structures, while completely

wrong folds are eliminated. The resulting ensemble of conformations can then be

used as a starting point for a search with a more detailed model and potential,

such as UNRES,5 to refine and rank the predicted conformations. Some of the

proteins investigated are 100-200 residues long (which overcomes a limitation of

some previous studies6), but this does not seem to present any problems.

2.2 Methods

Our procedure uses an energy-driven Monte-Carlo-like search to generate an en-

semble of plausible structures, and consists of three main parts. First a simplified

representation of a protein is constructed. Then, a potential function is developed

to assign an energy to a given conformation. Finally, a search is carried out to find

the optimal (lowest-energy) arrangement of secondary structure elements.
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2.2.1 Protein Representation

Given a sequence of amino acids and the corresponding secondary-structure assign-

ment, we represent a protein only by its Cα atoms. Coordinates for loop residues

are left unspecified (see the following section), while coordinates for residues in α-

helical regions are constructed using ideal parameters,5, 7 namely, 3.6 residues per

turn, 1.5 Å per residue along the helix axis, and 3.8 Å virtual Cα-Cα bond-length.

Helices are then treated as rigid objects, simply described by the positions of their

centroids and their orientations, while the relative positions of the residues within

a given α-helix are fixed.

2.2.2 Potential Energy Function

The energy function is the pairwise interaction between two residues, m and n, of

amino acid type i and j:

U(rmn) = eij

[q
(

r0

rmn

)p

± p
(

r0

rmn

)q

q ± p

]

(2.1)

where p, q (q < p) and r0 are adjustable parameters, rmn is the distance between

the Cα atoms of residues m and n, and eij is the contact energy associated with

residues of types i and j. The signs are chosen to obtain a repulsive interaction if

eij > 0, or negative if eij < 0, and to ensure that U(r0) = eij, as in a Lennard-Jones

potential. The main purpose is to capture the tendency for nonpolar residues to

be buried in the cores of proteins.7 The contact potential developed by Miyazawa

and Jernigan8 has been shown to represent the properties of nonpolar residues

accurately,9 and it also provides interaction energies for the polar residues. The

matrix of contact energies provided by Miyazawa and Jernigan10 is used for the
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parameters eij. In their treatment, Miyazawa and Jernigan consider two residues

to be in contact if the distance between their side-chain centroids is less than 6.5Å.

In eq. 2.1, the interaction is smoothed and equals eij only at the special contact

distance r0 (even when the interaction is purely repulsive).

The energy for a multi-helical structure is then calculated by summing over

the interactions between all residue pairs belonging to distinct α-helices. There is

no interaction between residues within an α-helix (since the relative coordinates

are fixed), nor with residues belonging to loops. For this reason, coordinates for

residues in loops are not necessary. The only contribution that loops make to the

energy is a penalty if the distance between the ends of two helices connected by a

loop becomes greater than the maximum length allowed for that loop (the number

of bonds times the virtual Cα-Cα bond length, 3.8Å).

2.2.3 Global Optimization

To search the conformational space of a particular structure, an efficient global

optimization method, Conformation-Family Monte Carlo (CFMC),11 previously

developed in our laboratory, was employed with small modifications. This search is

based on a conformational family database, which is an ensemble of conformations

clustered into families.

The starting point for the search is the sequence and secondary-structure in-

formation. Helices are then built, using values of ideal α-helices as mentioned

above.

The procedure clusters structures into families, in which each structure is sim-

ilar to at least one other conformation within its family. A structure is said to
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be similar to another structure or a family if a distance measure provides a value

which is smaller than a chosen cutoff. The same is true for two structures being

identical except that the cutoff values are stricter. The two distance measures used

are explained in a following section.

To control the computational expense, the number of families and the num-

ber of structures within one family have a limit of Nf and Nc, respectively. The

ensemble is initialized with Nf non-redundant structures selected randomly and

then energy-minimized with the SUMSL algorithm.12 This defines the initial phase

after which the actual search starts. In each iteration of the search, a confor-

mation is selected with a probability according to its Boltzmann weight. This

structure is subsequently perturbed, its energy is minimized, and similarity, en-

ergy and metropolis tests are carried out to determine whether it will be kept

in the ensemble and/or it forms a new family. The temperature was adjusted to

maintain a reasonable fraction of new generating families. Thus, the conforma-

tions are improved iteratively, and the search is biased to investigate the regions of

the lowest-energy families while trying to explore different areas of conformational

space effectively. In every iteration, the perturbed structure is checked quickly to

determine whether loops could be constructed without clashes. This is done by

treating the Cα atoms of the loops as spheres with diameter set to the bond length.

Using a soft-sphere potential [cubic in the extent (distance) of overlap] and subject

to bond-length constraints, the energies of these residues are then minimized and

checked to determine whether any clashes within each loop or between loops and

α-helices occurred.

Since CFMC was originally applied to a united-residue model, it had to be

modified for a rigid-body treatment of secondary-structure elements; i.e., a differ-
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ent method for producing new conformations, described in the following section,

was applied. Also, a new distance measure was devised to suit the objective of

finding an ensemble of different folds.

2.2.4 Methods for Producing New Conformations.

Two major classes of moves were used for producing new conformations. The

first one, called Global Move, produces radically different structures. This involves

moves, such as randomizing the positions and orientations of all helices, by trans-

lational and rotational motions of any number of helices. Helices are allowed to flip

upside down or have the positions of any two of them swapped while keeping the

relative orientation unchanged. Moves are chosen randomly and can be combined

in any number of ways to perturb the generating structure.

The second class, called Local Move, is designed to produce very similar struc-

tures. Like global moves, it also involves translations and rotations of α-helices,

but only by much smaller distances and angles. The values by which the helices

are translated and rotated are chosen randomly but they are bound by an upper

limit which is different in global and local moves (Global: translation up to 15Å,

rotation up to 360◦; Local: translation up to 4Å, rotation up to 50◦). Local moves

can also rotate a helix (up to 180◦) or shift it (up to 3Å) along its axis. The

idea behind these moves is that, if a conformation has correct packing but wrong

relative orientation, a local move should try to improve it.
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2.2.5 Distance Measures

Two methods were used to describe the similarity of two structures.

1. rmsd between Cα atoms in helices. Unfortunately, the Cα rmsd does not

provide an unambiguous measure to determine if the correct (i.e., native-

like) fold is obtained. For example, if the alignment is not very good, the

rmsd will be high but the folded protein might have correct orientation of

secondary-structure elements. Also this number grows with the size of the

protein; therefore, comparison of performance of the method for two proteins

of different size is not straightforward. This measure was used only to present

the results.

2. Center of Mass rmsd and Maximum Angle (CMrmsd & MaxAngle). This

distance measure was devised as a replacement for the Cα rmsd. The method

works as follows. The centers of mass of each helix in the two conformations

to be compared are superimposed. The angle between the axes of every

pair of corresponding helices is calculated and the maximum angle taken.

The center of mass rmsd and the maximum angle are the two values used

to determine similarity. This measure works better for differentiating the

correct orientation of helices from the wrong ones, and thus was used in the

search for the definition of the families.

2.2.6 Protein Targets

Three main sources of target α-helical proteins were used in the simulations,

namely, all 24 α-helical proteins from Zhang et al.,13 a set of α-helical proteins

obtained from other simulations in our laboratory, and a set extracted from the
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SCOP database14 (version 1.61), in which only proteins from the α-class and be-

longing to different families were considered. All three sources provided 42 proteins

(36-188 residues long), which were a representative and diverse pool of target struc-

tures. The secondary structure information used in our simulations was determined

by applying the dssp algorithm15 to the native structure.

2.3 Results

To produce a set of consistent results, most of the adjustable parameters were

kept uniform for all the proteins tested. The potential parameters p, q and r0

were set to 15, 14 and 7.5Å, respectively. While a different set of parameters could

perform slightly better for a particular protein, the values used were chosen for

best performance over the entire set of 42 proteins, particularly the smaller ones

(up to 5 helices).

The computations were carried out primarily on dual AMD Athlon MP 1800+

based machines (although only one processor was used). The searches for all 42

searches consisted of 10,000 iterations each, which kept the time for a complete

search between 1 and 10 hours, depending on the protein size. Primarily, one

such run was carried out for each protein, although several runs were carried out

for a few models to check reproducibility. The similarity between structures was

determined according to the CMrmsd & MaxAngle measure described above (to

belong to the same family, the MaxAngle cutoff was 60◦ and the CMrmsd cutoff

was between 2.5Å and 4.5Å, depending on the protein size and complexity, i.e.,

number of α-helices). To generate diverse packing arrangements, 75% of the moves

were global, and only 25% were local. The size of the ensemble was increased with
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protein complexity (from 100 families, each containing 4 structures, to 250 families,

each containing 6 structures). At the end of each search, the entire ensemble was

reclustered according to a stricter criterion: each structure within a family had to

be similar to the lowest-energy member, not just to any other structure in that

family. This was done to strengthen the link between a given structure and its

family number (which is determined by sorting families according to the energy of

their lowest member). Naturally, this increases the number of families, but it also

makes the family number a more relevant property of a structure.

Tables 2.1 and 2.2 present the results of the simulations. 1dv5 had the structure

closest to the native fold, with rmsd = 2.2Å, which was also found as the global

minimum (i.e. the lowest-energy structure in the lowest-energy family). 1i6z and

1a6s also had native-like global-minimum structures, 1kdx and 1dlw had structures

resembling the native-like fold within the lowest-energy family.

Figure 2.1 shows the difficulty of obtaining structures with native-like folds

for proteins with increasing numbers of helices. The three graphs are plots for

the percentage of all proteins with the corresponding number of helices in the 20,

60 and 130 lowest-energy families, respectively, for which the method retrieves a

fold within the rmsd indicated in the inset. For example, the structures of all

three-helix proteins were within 4.5Å rmsd from their native, where the computed

structures were ranked in the 20 lowest-energy families of the final ensemble. It

is important to note that, as the number of helices increases, the percentage of

successful computations within the same rmsd decreases.

Figure 2.2 shows a superposition of a computed structure for 1nfo with its

native structure. The superimposed structures agree to within 4.8Å rmsd and

show that the overall orientation of all helices is qualitatively correct. This is not
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Table 2.1: Protein name (pdb id), followed by the number of helices, the total
number of residues (excluding the non-helical residues at the N- and
C-termini), and the number of residues only in helices. The last three
columns show the best results obtained for the 20, 60 lowest-energy,
and all families, respectively. The entry indicates the rmsd value in
Å measured on Cα atoms of helices from the native, followed by the
corresponding family number (in parentheses). The empty fields indi-
cate that the value to the left is not improved by including more families.
(b) The following are fragment proteins: 1lbu: 1lbu1−83; 1ffh: 1ffh2−88;
1aisB: 1aisB1108−1205; 1b0nA: 1b0nA1−68; 1bmtA: 1bmtA651−740.

Nres Best Result rmsdmin

Protein N tot hel low 20 low 60 all
1cktA 3 61 47 3.6(9)
1dv5 3 75 34 2.2(1)
1fex 3 50 31 3.4(6)
1g2h 3 36 28 3.4(20)
1gab 3 42 35 2.9(6)
1hdp 3 44 33 3.7(11)
1i6z 3 114 102 2.5(1)

1kdxA 3 66 50 2.6(1)
1lbub 3 60 32 3.9(6)
1lea 3 48 39 3.1(7)
1lre 3 66 55 3.4(10)

2occH 3 53 42 4.0(15) 3.0(21)
1a04 4 56 45 4.9(19) 4.7(31)
1a6s 4 85 46 4.4(1)
1bw6 4 43 29 4.1(17) 3.6(25) 2.7(93)
1c5a 4 61 46 4.6(7) 4.4(23)
1eij 4 59 41 4.8(5) 4.6(21) 3.7(159)
1ffhb 4 83 63 3.7(11) 3.7(11) 3.0(75)
1hdj 4 61 40 5.2(16) 3.9(22)

1unkA 4 67 48 4.7(18) 3.7(28) 3.2(146)
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Table 2.2: (a) Protein name (pdb id), followed by the number of helices, the total
number of residues (excluding the non-helical residues at the N- and
C-termini), and the number of residues only in helices. The last three
columns show the best results obtained for the 20, 60 lowest-energy,
and all families, respectively. The entry indicates the rmsd value in
Å measured on Cα atoms of helices from the native, followed by the
corresponding family number (in parentheses). The empty fields indi-
cate that the value to the left is not improved by including more families.
(b) The following are fragment proteins: 1lbu: 1lbu1−83; 1ffh: 1ffh2−88;
1aisB: 1aisB1108−1205; 1b0nA: 1b0nA1−68; 1bmtA: 1bmtA651−740.

Nres Best Result rmsdmin

Protein N tot hel low 20 low 60 all
2abd 4 79 49 6.9(16) 4.1(28)

1aisBb 5 88 67 6.7(4)
1b0nAb 5 60 42 5.4(3)

1b0x 5 62 43 4.0(7) 3.3(29)
1beg 5 91 55 6.2(11) 6.2(11) 5.5(83)

1bmtAb 5 79 61 6.6(2) 6.6(2) 3.7(65)
1ctj 5 82 46 8.3(20) 7.4(35) 5.4(230)
1f1f 5 85 48 5.9(8)
1f68 5 100 66 8.8(13) 8.2(37) 6.2(93)
1lpe 5 138 117 3.4(6)
1nfo 5 136 110 3.0(9)
1nkl 5 70 54 5.2(14) 4.0(25)

1qc7A 5 74 58 8.1(14) 6.6(34) 5.5(145)
2ezyA 5 83 54 6.7(17) 6.0(46) 5.4(129)
1bxm 6 92 50 7.0(4) 7.0(4) 6.4(229)
1fio 6 188 162 10.3(12) 6.1(25)
1ngr 6 71 49 7.3(18) 5.4(59)
1rzl 6 71 49 7.1(7) 5.7(32) 4.8(123)
1a0b 7 109 87 11.1(4) 8.4(24) 8.0(140)
1dlw 7 112 72 6.1(1)
1emy 7 145 107 11.4(9) 8.4(57) 8.1(281)
1ezt 8 125 89 12.6(13) 11.2(59) 11.0(175)
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Figure 2.1: Percentage of all proteins with corresponding number of helices for
which at least one structure was generated within the rmsd from the
native indicated in the inset. The graphs correspond to the 20, 60, and
130 lowest-energy families respectively.
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the best conformation obtained; the rmsd of the best one is 3.0Å (see Table 1).

To determine the stability of the procedure with different positions of secondary

structure elements in the sequence, several simulations were carried out on 6 of

the 42 proteins (pdb codes: 1lre, 2abd, 1a6s, 1g2h, 1hdp and 1ctj) with different

assignments of secondary structure, according to dssp and JNET/JPRED, respec-

tively. The results are shown in Table 2.2 and are quite comparable with the

ones from Table 2.1; thus, it seems that our procedure is stable with respect to

secondary-structure assignment.

From Figure 2.1, it is clear that, as the number of helices grows, the perfor-

mance of the method decreases. One source of difficulty is the imperfection of the

potential function itself. Given all the simplifications in this approach, it would be

unreasonable to expect the global-energy minimum to identify the native structure

in all cases. For example, loops can play a role in determining the structure,16 but

are neglected here. Also, some of the proteins examined are only parts of larger

structures, the effects of which are also neglected. However, native structures ide-

ally should always be present among the low-energy conformations, as shown in

Fig 2.3. This has been confirmed for 41 of the above proteins (the exception being

1ais) by performing searches restricted to the neighborhood of the native structure.

Native-like structures with low energies are generally present, even when searches

without such restrictions fail to find them (examples being 1a0b, 1emy, 1ezt). The

reason for this is the complexity of the fold and the large number of local energy

minima in the search space. Even with a simplified potential, searches for proteins

with 6 or more helices are not complete in 10,000 steps. In these cases, models

within 6.0Å from the native are found within the final ensemble only if two helices

are omitted from the comparison (i.e., 5- instead of 7-helix fragments for 1a0b
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Table 2.3: Stability of procedure with respect to different secondary structure as-
signment. Protein name, Hdssp, number of helices according to dssp.
HJNET , number of helices predicted by JNET/JPRED. Q3, percent-
age of correctly predicted secondary structure. rmsdmin, lowest rmsd
in Å (corresponding family number in parentheses) from the native
structure in the whole ensemble, and in the 10 lowest energy-families,
respectively.

rmsdmin

Protein Hdssp HJNET Q3 all 10
1lre 3 3 76 3.6(77) 5.5(1)
2abd 4 4 86 3.9(145) 4.9(3)
1a6s 4 4 68 4.7(9) 4.7(9)
1g2h 3 4 53 5.1(25) 5.2(7)
1hdp 3 3 82 2.3(3) 2.3(3)
1ctj 5 4 83 5.2(56) 8.3(4)
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and 1emy, and 6- instead of 8-helix fragments for 1ezt). 1ais is the only protein

for which native-like structures have significantly higher energies than the global

minimum. Closer examination reveals that this structure is much more compact

than the others, and in fact the results are improved by decreasing the parameter

r0 from 7.5Å to 6.0Å.

2.4 CASP6 Results

The repacking algorithm was employed in the latest CASP6 exercise, which took

place between April and September 2004. Sixty-two targets whose structures were

determined by experimental techniques, were available for prediction, out of which

our group submitted predictions for 32 targets. Due to the fact that the repack

algorithm works only on α-helical proteins, its use was limited to a few targets,

which were predicted to have only an α-helical fold. This procedure produced

great results for target T0198. Target T0198 is a large 235-residue α-helical pro-

tein (phosphate transport system regulator PhoU from T. maritima; PDB ID code

1SUM), classified by CASP assessors as a fold recognition/analogy target. The

protein is composed of six α-helices, which form a bundle and a small C-terminal

β-hairpin. After secondary structure prediction showed that this protein is mainly

α-helical, the repack algorithm was applied in the computation of its structure. The

lowest-energy conformations resulting from repack were converted to the UNRES

representation and were subjected to a local search by using the UNRES poten-

tial.17 The structures obtained from this two-stage procedure were clustered and

energy-ranked together with structures resulting from the regular UNRES/CSA

search. One model resulting from the two-stage procedure, ranked as model 5,
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Figure 2.4: Fragment superposition of the submitted model 5 of T0198 with the ex-
perimental structure (1SUM). 153 residues superimpose within RMSD
of 5.9 Å. Experimental structure is shown in white, whereas the sub-
mitted model is shown in black.

was submitted as a prediction. This model was our best prediction with overall

rmsd 9.8 Å over all Cαs, but with correct topology of the bundle (see Fig. 2.4 in

which 153 nonconsecutive residues superimpose within RMSD of 5.9 Å). Also, 139

residues (62% of the sequence; the first three α-helices of the six-helix bundle) fit a

6.0-Å rmsd cut-off (data not shown), and 203 residues (86% of the sequence) that

constitute the whole protein, except that the C-terminal part contains mainly a

β-hairpin, with a 8.0-Å rmsd cut-off (data not shown).

Figure 2.5 shows a global distance test (GDT) analysis of T0198. GDT analysis

is used in the CASP exercise to evaluate and compare the quality of predictions of

different groups. The graph shows the largest set of Cα atoms that can fit under

a distance (not rmsd) cutoff (i.e., all residues from the native and the submit-
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ted model are compared sequentially and the number of residues that are within

the specified distance cutoff is reported). The global distance test total score

(GDT TS) provides a reasonable single value approximation of the quality of the

tertiary structure prediction. It is defined as the average of four separate GDT

calculations identifying maximal sets of residues at 1, 2, 4 and 8 Å distance cutoffs.

The blue curve shows the results of model 5 predicted with repack and UNRES, the

green curves are the results of our traditional UNRES/CSA approach, whereas the

brown curves represent the results of other groups. The repack model for T0198

had the correct topology with 141 residues (62%) fitting a 8-Å distance cut-off,

with a GDT TS score of 31.78 % corresponding to 12th place in the ranking of 454

models and is thus far the largest protein predicted correctly by our physics-based

approach.

2.5 Discussion

Packing of secondary structure elements is one of the important steps in achieving

the ultimate goal of predicting a structure from sequence. We have developed an

energy-based method to generate a variety of folds by treating α-helices as rigid

bodies, applying a simple potential and searching the conformational space with

a Monte Carlo-type search. Despite the simplicity of our model, we were able to

produce native-like folds ranked in low-energy families for many proteins.

Although the method provided good results for proteins with a small number

of helices, there is considerable room for improvement in our procedure. It is im-

portant to note that it is the number of helices rather than the size of the protein

that seems to cause difficulties. A more systematic approach to generate diverse

topologies would increase the probability of locating native-like folds.18 Further
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improvements could come from modifications to the contact energies that take into

account the environment of a residue19 (i.e., the kind of secondary structure ele-

ment to which it belongs), or by carrying out a systematic optimization procedure

for the potential parameters.20 Another possibility is the improvement of the func-

tional form of the potential or the protein representation, which could be further

simplified to reduce the large number of local minima in our conformational space.

Although generating folds is an important step, the main purpose of this ex-

ercise is to continue with the refinement of the generated models by using them

as input for an algorithm with a more detailed representation of the polypeptide

chain, such as the united-residue model.5 The procedure described here greatly

reduces the number of helical conformations that have to be explored with the

united-residue model.

Currently only α-helices are treated by this simple procedure, but inclusion

of β-strands and sheets in the model is a natural extension. For this, it will be

necessary to address the issue of hydrogen bonds which is currently not treated.
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Chapter 3

The UNRES Model of the Polypeptide

Chain

3.1 The UNRES force field

In this section, the UNRES model of polypeptide chains and the corresponding

force field is described briefly. In the UNRES model,1–11 a polypeptide chain is

represented by a sequence of α-carbon (Cα) atoms linked by virtual bonds with

attached united side chains (SC) and united peptide groups (p). Each united

peptide group is located in the middle between two consecutive α-carbons. Only

these united peptide groups and the united side chains serve as interaction sites,

the α-carbons serving only to define the chain geometry, as shown in Figure 3.1.

All virtual bond lengths (i.e. Cα · · · Cα and Cα · · · SC) are fixed; the distance

between neighboring Cα’s is 3.8 Å corresponding to trans peptide groups, while

the side-chain angles (αSC and βSC), and virtual-bond (θ) and dihedral (γ) angles

can vary.

The UNRES force field has been derived as a Restricted Free Energy (RFE)

function of an all-atom polypeptide chain plus the surrounding solvent, where the

all-atom energy function is averaged over the degrees of freedom that are lost when

passing from the all-atom to the simplified system (i.e., the degrees of freedom of

the solvent, the dihedral angles χ for rotation about the bonds in the side chains,

38
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Figure 3.1: The UNRES model of polypeptide chains. The interaction sites are
side-chain centroids of different sizes (SC), and peptide-bond centers
(p) indicated by shaded circles, whereas the α-carbon atoms (small
empty circles) are introduced only to assist in defining the geometry.
The virtual Cα · · ·Cα bonds have a fixed length of 3.8 Å, corresponding
to a trans peptide group; the virtual-bond (θ) and dihedral (γ) angles
are variable. Each side chain is attached to the corresponding α-carbon
with a fixed “bond length”, bSCi

, variable “bond angle”, αSCi
, formed

by SCi and the bisector of the angle defined by Cα
i−1, Cα

i , and Cα
i+1,

and with a variable “dihedral angle” βSCi
of counterclockwise rotation

about the bisector, starting from the right side of the Cα
i−1, Cα

i , Cα
i+1

frame.
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and the torsional angles λ for rotation of the peptide groups about the Cα · · ·Cα

virtual bonds).5, 6, 12 The RFE is

F (X) = −RT ln

(

1

VY

∫

ΩY

exp [−E(X; Y)/RT ]dVY

)

(3.1)

where E(X; Y) is the all-atom ECEPP/3 energy function, X is the set of UNRES

degrees of freedom, Y is the set of degrees of freedom over which the average is

computed (e.g., the positions and orientations of solvent molecules, the side-chain

dihedral angles, etc.), R is the gas constant, T is the absolute temperature, ΩY is

the region of the Y subspace over which the integration is carried out, and VY is

the volume of this region.

The RFE is further decomposed into factors arising from interactions within

and between a given number of united interaction sites.6 Expansion of the fac-

tors into generalized Kubo cumulants13 facilitated the derivation of approximate

analytical expressions for the respective terms,5, 6 including the multibody or cor-

relation terms, which are derived in other force fields from structural databases or

on a heuristic basis.14 The theoretical basis of the force field is described in detail

in reference.6 The energy of the virtual-bond chain is expressed by eq. (3.2).

U =
∑

i<j

USCiSCj
+ wSCp

∑

i6=j

USCipj
+ wel

∑

i<j−1

Upipj
+ wtor

∑

i

Utor(γi) +

+ wtord

∑

i

Utord(γi, γi+1) + wb

∑

i

Ub(θi) + wrot

∑

i

Urot(αSCi
, βSCi

) +

+ w(3)
corrU

(3)
corr + w(4)

corrU
(4)
corr + w

(3)
turnU

(3)
turn + w

(4)
turnU

(4)
turn (3.2)

The different terms of the UNRES force field are depicted graphically6 in Figures

3.2 and 3.3. The term USCiSCj
represents the mean free energy of the hydrophobic

(hydrophilic) interactions between the side chains, which implicitly contains the

contributions from the interactions of the side chain with the solvent. The term
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Figure 3.3: UNRES force field, continued6



43

USCipj
denotes the excluded-volume potential of the side-chain – peptide-group

interactions. The peptide-group interaction potential (Upipj
) accounts mainly for

the electrostatic interactions (i.e., the tendency to form backbone hydrogen bonds)

between peptide groups pi and pj. Utor, Utord, Ub, and Urot are the virtual-bond

dihedral angle torsional terms, virtual-bond dihedral angle double-torsional terms,

virtual-bond angle bending terms, and side-chain rotamer terms; these terms ac-

count for the local propensities of the polypeptide chain. The terms U
(m)
corr represent

correlation or multibody contributions from the coupling between backbone-local

and backbone-electrostatic interactions and the terms U
(m)
turn are correlation contri-

butions involving m consecutive peptide groups; they are, therefore, termed turn

contributions. The correlation contributions were derived5, 6 from a generalized-

cumulant expansion13 of the restricted free energy (RFE) of the system consisting

of the polypeptide chain and the surrounding solvent. The multibody terms are

indispensable for reproduction of regular α-helical and β-sheet structures.

The internal parameters of Upipj
, Utor, Utord, U

(m)
corr, and U

(m)
turn were derived by fit-

ting the analytical expressions to the RFE surfaces of model systems computed by

quantum mechanics at the MP2/6-31G** ab initio level,10, 11 while the parameters

of USCiSCj
, USCipj

, Ub, and Urot were derived by fitting the calculated distribution

functions to those determined from the PDB.4 The w′s are the weights of the en-

ergy terms, and they were determined (together with the parameters within each

cumulant term) by optimization of the potential-energy function, as described in

the next section.
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3.2 Optimization of UNRES parameters

To properly represent the physical features of proteins, it is necessary that the

weights and the parameters in the UNRES energy function (Eq. 3.2) be opti-

mized. Following Anfinsen’s thermodynamic hypothesis15 and also works of other

authors,16–18 the first procedure7, 8 to optimize the UNRES energy function was

based on using a set of training proteins to maximize the energy gap between

the lowest-energy native-like structure and the lowest-energy non-native structure

(∆E) and/or the Z-score (Z) defined as the difference between the mean energy of

the native-like structures and the mean energy of the non-native structures divided

by the standard deviation of the energy of the non-native structures:7, 8

∆E = min
i∈nat

Ei − min
i∈non−nat

Ei (3.3)

Z =
(1/Nnat)

∑Nnat

i=1 Ei − (1/Nnon−nat)
∑Nnon−nat

i=1 Ei
√

(1/Nnon−nat)
∑Nnon−nat

i=1 E2
i − [(1/Nnon−nat)

∑Nnon−nat

i=1 Ei]2
(3.4)

where nat and non-nat indicate the sets of native-like and non-native conforma-

tions, respectively, and Nnat and Nnon−nat denote the number of native-like and

non-native structures, respectively. In the second-order cumulant expansion of the

free energy in temperature,18 the negative of the Z-score is approximately equal to

the ratio of the folding temperature (Tf ) to the glass-transition temperature (Tg);

the bigger this ratio the lower the glass-transition temperature compared to the

folding temperature which prevents trapping a system in one of the local minima

before the folded structure can be thermally accessed.

In the initial approach, the parameters to be optimized were the energy-term

weights [the w’s of Eq. (3.2)]. To optimize the energy gap and Z-score simulta-

neously and also to treat many training proteins, the Vector Monte Carlo (VMC)
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method8 was used. The complete algorithm involves iterations consisting of the

following three steps:7, 8 (i) updating the decoy set by a global search using the cur-

rent weights, (ii) a local search in the neighborhood of the experimental structure

with the current weights, in order to locate the lowest-energy native-like structure

corresponding to the current set of parameters of the energy function, and (iii)

determination of new weights by making ∆E and Z as negative as possible, by

using the VMC method. In the present version of the hierarchical optimization

procedure, both global and local conformation search steps are carried out with

the Conformational Space Annealing (CSA)19–21 algorithm. Steps (i) - (iii) are

iterated until the global CSA search finds the native-like structure as the lowest-

energy structure. This procedure was successful in optimizing the energy landscape

of proteins with simple topology, such as the 10-55 residue N-terminal domain

of staphylococcal protein A (a three-helix bundle), and betanova (a 20-residue

designed β-sheet peptide); using these two proteins simultaneously UNRES was

capable to fold α+β proteins.8 However, the approach failed for more complex

proteins, such as 1IGD (a 61-residue α+β-protein): the resulting force field could

not locate native-like structures of 1IGD (used as a training protein) in global CSA

searches despite the large energy and Z-score gaps achieved in optimization.

By carrying out model studies on 12-bead cubic-lattice protein models where

all conformations can be enumerated22 it was concluded that optimizing the energy

gap and Z-score is generally insufficient to obtain a searchable potential. It was

demonstrated22 that energy functions characterized by similar energy gap and Z-

score values can correspond to both excellent and very poor folders, even for the

simple models studied, and that the foldability depends strongly on the energy-

ordering of non-native structures with some native elements according to native
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likeness, i.e., their energy should decrease with increasing native-likeness (Figure

3.4). If this condition is not satisfied and only the native-like structures have

distinctively low energy, the resulting energy landscape can be compared to a golf

course, while it should resemble a funnel-like landscape18, 23 in which native-likeness

increases with decreasing energy. Therefore a hierarchical method of force-field

optimization9, 22, 24, 25 was designed in our laboratory, which is directed at lowering

the energy with increasing number of native-like elements. The conformational

space is divided into levels, each level containing conformations with similar degree

of native-likeness. Level 0 contains no native-like elements, level 1 contains single

native secondary-structure elements, and higher levels contain gradually increasing

native-like segments. The composition and sequence of levels is termed a structural

hierarchy. The construction of the hierarchy is depicted in Figure 3.4.

Both by model studies with lattice chains22 and by test optimization of the

UNRES force field,24 it was found that, for the optimization to succeed, the hier-

archy should follow the folding pathway. Our group implemented the experimental

information of folding whenever it was available;24, 25 otherwise the most proba-

ble folding pathways were constructed, which also gave good results.25 It should

be noted that using the experimental information about the folding pathway(s)

of training protein(s) in force field calibration is conceptually the same as using

experimental bond lengths, bond angles, formation heats, etc., in the calibration

of all-atom force fields or even the semiempirical methods of quantum mechanics

and does not introduce knowledge-based elements into the procedure because the

folding-pathway information is not directly implemented in the conformational

search procedure for the prediction of the structures of proteins with unknown

structure.
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Figure 3.4: Schematic illustration of energy-ordering of structures with increasing
native-likeness. The highest energy level (Level 0) is occupied by struc-
tures with either no or non-native secondary structure. Next (Level 1)
is occupied by the structures with one native secondary structure ele-
ment (the N-terminal β-hairpin or the C-terminal α-helix; the native-
like structure fragments are indicated by thicker lines). Yet lower en-
ergy (Level 2) have structures with both α-helix and β-hairpin, but
no or incorrect packing of these two substructures and/or shifted turn
in the β-hairpin. Finally, the native-like structures, with α-helix and
β-hairpin packed correctly occupy the lowest energy level (Level 3).
Because the number of structures with more and more defined native-
like elements decreases, such ordering of structures leads to diminishing
conformational entropy following the energy decrease, which is highly
desirable in order to find the native structure quickly in a spontaneous
energy-driven search of the conformational space.
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The hierarchical optimization algorithm is composed of the same steps as the

energy-gap and Z-score optimization algorithm outlined at the beginning of this

section except that, instead of the differences of the lowest energies of the confor-

mations of the ensembles [Eq. 3.3], the differences between their configurational

free energies (the free-energy gaps) are considered. This modification prevents op-

timization focusing on a conformation with accidentally outstandingly low energy.

The free energy of structural level i is defined as a direct Boltzmann average over

all conformations that belong to this level.

Fi(β) = − 1

β
ln

∑

k∈{i}

exp(−βEk) (3.5)

where {i} denotes the set of conformations of level i, Ek denotes the energy of

the kth conformation of this level, and β can be identified with 1/RT, T being

the absolute temperature, or treated as a parameter of the method. A classifica-

tion scheme was developed24 based on the similarity of elementary fragments and

larger portions (including the complete molecule) of a given conformation to those

of the experimental structure in terms of secondary structure, contact pattern,

and RMSD in which each conformation is represented by a binary number; this

enabled the conformations to be assigned automatically to the pre-specified struc-

tural levels.24 To increase the efficiency of optimization, the VMC method was

replaced9, 22, 24, 25 by minimization of a penalty function containing the differences

between the actual and the target free-energy and Z-score gaps between structural

levels whose most important part is defined by Eq. 3.6. This last modification led

to the optimization of the coefficients of the cumulant expansion of the correlation

terms and the well-depths of the side-chain interaction parameters in addition to
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the energy-term weights in Eq. 3.2.9, 24, 25

Φ =
1

4

∑

training

proteins

∑

β

n−1
∑

i=0

wβ
i











[

(Fi(β) − Fi+1(β)) − ∆β
i

]

if Fi(β) − Fi+1(β)) ≤ ∆β
i

0 otherwise

(3.6)

where ∆β
i is the minimum required free-energy gap between levels i and i+1 and

wβ
i is the weight assigned to the deviation of the actual (Fi(β) − Fi+1(β)) and

the requested (∆β
i ) free-energy gap between levels i and i+1 (the number of levels

being n+1) at reduced inverse temperature β. Other penalty terms such as, e.g.,

the penalty for deviating from correct local geometry of α-helices and β-sheets,

Z-score terms, etc., can also be present in Eq. 3.6; this is discussed in detail in

reference 24.

Using the hierarchical algorithm, the UNRES force field was first optimized

using 1IGD as the training protein24 and, finally four training proteins:25 1GAB26

(a 47-residue α-protein), 1E0L27 (a 28-residue β-protein), 1E0G28 (a 48-residue

α+β protein), and 1IGD29 [a 61-residue (α+β)-protein]. The force field obtained

with the four training proteins, hereafter referred to as the 4P force field, was

tested on a set of 66 proteins [26 α-, 15 β-, and 25 (α + β)-proteins with chain

length from 28 to 144 amino-acid residues].25 The average length of a continuous

segment matching the corresponding segment of the experimental structure within

6 Å RMSD and the percentage of correctly predicted chain length are 54 (67

%), 34 (45 %), 42 (55 %), and 45 (58 %) for the α, β, α + β, and all proteins,

respectively, and the length of the longest predicted continuous fragment is 96, 49,

and 70 residues for the α-, β-, and the α + β-proteins, respectively. These results

were achieved without using ancillary knowledge-based information from sequence

similarity, threading, secondary-structure prediction or fragment coupling. The
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two force fields mentioned above, obtained by hierarchical optimization were also

tested with success in the CASP5 and CASP6 experiments,30 respectively.



51

BIBLIOGRAPHY FOR CHAPTER 3

[1] Liwo, A.; Pincus, M. R.; Wawak, R. J.; Rackovsky, S.; Scheraga, H. A.,
Protein Sci. 1993, 2, 1697.

[2] Liwo, A.; Pincus, M. R.; Wawak, R. J.; Rackovsky, S.; Scheraga, H. A.,
Protein Sci. 1993, 2, 1715.

[3] Liwo, A.; O ldziej, S.; Pincus, M. R.; Wawak, R. J.; Rackovsky, S.; Scheraga,
H. A., J. Comput. Chem. 1997, 18, 849.

[4] Liwo, A.; Pincus, M. R.; Wawak, R. J.; Rackovsky, S.; O ldziej, S.; Scheraga,
H. A., J. Comput. Chem. 1997, 18, 874.
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Chapter 4

Replica-Exchange Monte

Carlo-with-Minimization as a global

optimization method with the UNRES

force field; comparison with MCM, CSA

and CFMC ∗

4.1 Introduction

Computation of the three-dimensional structures of proteins from their amino acid

sequence has been a formidable problem in structural biology and theoretical chem-

istry. One class of methods, known as physics-based ab initio, relies solely on

physical principles to obtain the three-dimensional protein structure.1

Structure determination involves two components, namely an accurate poten-

tial energy function to describe the interactions between amino acids and thereby

distinguish the native structure from non-native ones, and a procedure for global

optimization of the potential energy. Much research has been devoted to this prob-

lem. In particular, our laboratory has developed a hierarchical procedure the first

∗Published as Nanias, M.; Chinchio, M.; Oldziej, S.; Czaplewski, C.; Scheraga,

H.A., J. Comp. Chem. 2005, 26, 1472. Copyright (2005) John Wiley & Sons Inc.

53



54

step of which is the parameterization of a united-residue (UNRES) energy function;

this parameterization has been carried out on several proteins simultaneously,2, 3

based on the assumption that the native structure lies in the global minimum of the

energy hyper-surface,4 it is required that the global optimization method locates

this minimum. Global optimization is an extremely difficult procedure because

protein energy landscapes encompass a vast rugged area with many local minima

(traps), so that the search for the global minimum is nontrivial.

Global optimization has been at the center of many research fields, and a va-

riety of different methods have been used. Among those methods developed in

our laboratory, three are compared here. The first class includes modifications

of the Metropolis Monte Carlo procedure,5, 6 viz., Monte Carlo-with-Minimization

(MCM),7, 8 electrostatically-driven Monte Carlo (EDMC),9, 10 and Conformational

Family Monte Carlo (CFMC).11 The second class includes deformation-based meth-

ods, such as the diffusion-equation method (DEM),12 the distance-scaling method

(DSM),13 and the self-consistent basin-to-deformed-basin method (SCBDBM).14, 15

The third class includes genetic algorithms such as the Conformational Space

Annealing (CSA) method.16–18 A new method, Replica Exchange Monte Carlo-

with-Minimization (REMCM) combining the traditional Replica Exchange Method

(REM) with MCM, is introduced here. CSA, CFMC and MCM have been used

with the UNRES force field (described in section 3.1), and are compared with

REMCM in the current work. CSA is a hybrid method which combines genetic al-

gorithms, essential aspects of the build-up method and a local gradient-based min-

imization. It evolves the population of conformations through genetic operators

(mutations, and crossovers) to a final population optimizing their conformational

energy. CFMC maintains a database of low-energy conformations that are clus-
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tered into families. They are consequently improved iteratively by a Metropolis-

type Monte Carlo-with-local minimization, while annealing both in temperature

and in the number and size of the conformational families.

The Replica Exchange method (also known as Exchange Monte Carlo,19 or

Parallel Tempering20) was originally developed by Swendsen et al.21 for spin-glass

systems. This method has been used extensively in protein-folding simulations

using lattice models.22–25

This chapter applies REMCM to a coarse grain protein system described by the

UNRES model. It is not a review of global optimization methods used in protein-

structure prediction but is rather a description of the method and its application.

REMCM expands the idea of MCM, wherein minimization finds local minima in a

given basin, while replica exchange ensures the exploration of different regions of

the energy surface. The advantage of Replica Exchange lies in its simplicity and,

in contrast to other methods, it is not very sensitive to the few parameters involved

therein (e.g., simulated tempering depends heavily on the cooling schedule, and

generalized ensemble algorithms depend on successful estimation of weight factors).

In this work, REMCM is applied to five proteins of different topology, and the

performance is compared to those of three other methods, namely MCM, CSA

and CFMC.

4.2 Methods

4.2.1 Replica Exchange Monte Carlo (REM)

The Replica Exchange method is an extension of the Metropolis Monte Carlo

method. The underlying idea is to run different copies (replicas) of the system
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at different levels of a certain property (such as temperature). To summarize the

method, the following procedures are performed in each cycle:

1. Select several temperatures and assign a different random protein conforma-

tion to each temperature.

2. Monte Carlo simulation is carried out on each selected conformation at its

assigned temperature for a determined number of Monte Carlo steps by per-

forming the following:

(a) Obtain a new conformation by perturbing the parent conformation.

(b) Accept or reject the new conformation at its corresponding temperature

using the Metropolis acceptance criterion.

3. At a chosen interval, stop the MC simulation of each replica and attempt

an exchange of whole conformations between neighboring replicas. The ex-

change acceptance criterion is described below.

4. Continue MC with each newly formed conformation at each new temperature

as in step 2.

5. Iterate points 3 and 4 until the system converges to the lowest energy inde-

pendent of the temperature.

6. At the end, select the lowest-energy conformation over all trajectories and

temperatures.

Although different properties have been used in published work,26, 27 the prop-

erty of change across different replicas in the current context is temperature.



57

In our computations, each replica is a Metropolis Monte Carlo simulation;

hence, each replica produces an ensemble which obeys a Boltzmann distribution

at each temperature. Thus, the probability of conformation X in replica m at

temperature Tm is

Pm(X) =
1

Zm

exp
[

− βmE(X)
]

, (4.1)

where βm is the inverse temperature defined as 1/(kBTm), E(X) is the energy of

conformation X, and Zm is the partition function
∫

exp( − βmE(X)dX). Many

replicas are treated at different temperatures Tm. The joint probability distribution

of the whole system, can be represented by multiplying the probabilities of all

replicas

Pall =
M
∏

m

Pm(Xm) (4.2)

where M is the number of replicas. The transition probability that conformation

X in replica m is exchanged with conformation Y in replica n can be written as

W (X, βm|Y, βn). In order for the system to be in equilibrium, the detailed balance

condition (also known as microscopic reversibility) has to be satisfied:

Pall(X, βm; Y, βn)W (X, βm|Y, βn) = Pall(Y, βm; X, βn)W (Y, βm|X, βn) (4.3)

Combining the previous equations, one obtains

W (X, βm|Y, βn)

W (Y, βm|X, βn)
= exp

[

−(βm − βn)
{

E(Y ) − E(X)
}]

(4.4)

Let

∆ ≡
[

(βm − βn)
{

E(Y ) − E(X)
}]

(4.5)

If one adopts the Metropolis method, the replica-exchange transition probability

can be expressed as

W (X, βm|Y, βn) = 1 for ∆ ≤ 0

= exp(−∆) for ∆ > 0 (4.6)
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i.e., if ∆ is less than or equal to 0, the exchange is performed (since the probability

is 1); otherwise a random number between 0 and 1 is generated and compared to

the factor exp(−∆). If the value of this factor is smaller, the exchange is performed;

otherwise the exchange is rejected.

An important requirement for the procedure to work correctly is the proper

choice of the temperature range and spacing. The lowest Tmin should be chosen

such that the protein is stable in the native form, and the highest Tmax should

be high enough for the protein to be unfolded. The temperature spacing between

replicas should be small enough so that the exchange would occur at reasonable

probabilities. This temperature spacing can be satisfied by the condition that the

energy fluctuation of a replica should be of the same order as the spacing of the

mean values of the replica energies26

∆Em ∼ Em+1 − Em (4.7)

By equipartition, we assume that the mean energy of a replica scales as Em ∼

kBTmf , where f is the number of degrees of freedom, and the energy fluctuation

scales26, 28 as ∆Em ∼ kBTm

√
f . This leads to the following expression

fkB(Tm+1 − Tm) ∼ kBTm

√

f (4.8)

Solving this recurrence relationship for Tm one obtains Tm ∼ exp(m/
√

f) which

suggests a choice of exponential dispersion of temperatures. Further, for a given

temperature range (Tmin and Tmax) the expression for Tm quantifies a number of

replicas necessary M ∼ ln(Tmax/Tmin)
√

f .
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4.2.2 Replica Exchange Monte Carlo-with-Minimization

(REMCM)

The REMCM procedure is almost exactly the same as the REM procedure de-

scribed in the previous section, with one modification. There is an extra step

between 2(a) and 2(b), in which the perturbed structure is minimized.

Adding the minimization to relax the conformations after every perturbation

changes the behavior of the classical Markov chain Monte Carlo. The simulations

are no longer free to sample the entire conformational space but are rather re-

stricted to the space of energy minima. This approach destroys the detailed balance

condition, which is absolutely essential for the calculation of thermodynamic vari-

ables. However, since the objective of this work is to locate global minima, the idea

is to sample the energy basins instead of spending time in higher energy regions.

In practice, the effect of energy minimization in replica exchange presents itself

through a different pattern of energy probability distributions which must overlap

in order to obtain a non-zero probability of exchange. Although, on average, the

higher temperature replicas sample higher-energy regions, they are still brought

down to the local minima at each temperature just as their low-energy counter-

parts. However, since they have high temperature, they more readily accept new

conformations. Thus, the high-temperature replicas sample different parts of the

conformational space, whereas the low-temperature replicas focus more strongly

on the area around the current conformation. By exchanging the replicas, a confor-

mation from a high temperature can be swapped into a lower-temperature replica

and, as in typical REM, it has a chance to explore the surroundings more properly.

On the other hand, going from low to high temperature provides the simulation

with a fresh starting point and, if the global energy basin is smooth, minimization
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can help even high-temperature replicas to locate the global minimum. The power

of the method lies in the fact that all the replicas have some reasonable chance of

locating the global minimum.

4.3 Computational Details

4.3.1 Test Systems

REMCM was applied as a global optimization method with the UNRES 4P force

field,3 and was tested on five proteins29–33 of which three were α-helical (1GAB,

1BDD, 1CLB), one consisted of a β-sheet (1E0L), and one was α+β (1IGD) (Table

1). These proteins were chosen so that basic α, β or α+β topologies were tested,

and their size was reasonable with respect to the computational time. To be com-

parable with CSA results, all the proteins except 1IGD had their length modified

from the original length in the PDB (Table 4.1) to the length as in reference.3

4.3.2 REMCM Implementation

Method Parameters

The performance of REMCM is affected by the following parameters: temperature

distribution and range, frequency of replica exchange, number of replicas, length

of simulation and frequency of individual move types. Section 4.2.1 suggests that

the exponential temperature distribution should be adopted. The choice for the

range and number of replicas, however, is not quite straightforward. The number

of replicas required to cover the energy space depends on the size of the system.

The lowest Tmin should be chosen such that the protein is stable in its native
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Table 4.1: Proteins used in the calculations, and their PDB id. Nres corresponds
to the number of residues in the PDB native structure, whereas Nres′ is
the protein length in our calculations because some end-segments whose
locations were not precise were removed.

Protein System PDB id Nres Nres′ Reference
Fbp28Ww Domain 1E0L 37 28 29
Albumin-Binding Domain 1GAB 53 47 32
Protein A 1BDD 60 46 30
Apo calbindin D9k 1CLB 76 75 31
IgG domain (protein G) 1IGD 61 61 33
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state, and the highest Tmax should preserve an unbiased sampling of any part of

the energy landscape (i.e., the sampling should ideally be able to overcome any

barrier). In a typical replica exchange method, it is important to have enough

replicas to maintain a sufficient overlap between neighboring replicas which will

guarantee a nonzero probability of exchange. Section 4.2.1 shows a quantitative

estimate for number of replicas required for traditional Replica Exchange Method.

As mentioned in section 4.2.2, the distribution overlap behavior is altered slightly

in REMCM, since the structures are relaxed through minimization. Minimization

effectively shifts the energy distributions towards the global minimum and broadens

the distributions for high-temperature replicas because both low and high-energy

regions are sampled at high temperature. This also results in an overlap of the

distributions for non-neighboring replicas, so that REMCM is even less sensitive

to the choice of temperature range than regular REM, and REMCM requires fewer

replicas than REM.

Due to the fact that REMCM is not as sensitive as REM to the choice of its

parameters, and to produce a set of consistent results, the number of replicas, tem-

perature range, and frequency of exchange were kept constant for all the proteins.

The number of replicas was set to 10 (the number of degrees of freedom ranged

from 112 for 1E0L to 304 for 1CLB, which would correspond to a range of 10-

18 replicas necessary for REM), with kTmin, kTmax set to 1 and 100 respectively

(where 1 and 100 corresponded to 20% and 60% acceptance rate, respectively),

and the exchange occurred every 10 steps. The exchange was carried out accord-

ing to the instructions described in reference34 in which the exchange starts from

the low to the high temperature, i.e., first we attempt to swap replicas 0 and 1,

then replicas 1 and 2, ..., replicas n-1 with n with increasing temperature. Each
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REMCM simulation was carried out with a total of 100,000 minimization steps for

all replicas (i.e., if 10 replicas were chosen, each replica would run for 10,000 MC

steps), and the exchange was attempted every 100 Monte Carlo steps (i.e., each

replica performed 10 MC steps before an exchange).

Moves

The Monte Carlo step in each replica consisted of a trial move followed by a min-

imization with the local minimizer SUMSL (Secant Unconstrained Minimization

Solver),35 a quasi-Newton method. The perturbation moves were attempted ac-

cording to the protocol described below:

1. Backbone angles (θ, γ) were perturbed at random within a randomly selected

fragment.

2. A local perturbation was applied to all the residues within a randomly se-

lected fragment, while keeping the rest of the molecule fixed.36

3. A helix or a strand was created within a randomly selected fragment.

4. If a hairpin or a nonlocal β-contact was detected in the parent conformation,

it was extended.

The choice of moves was made as follows. First, the simulations were carried

out with two basic moves: random perturbation of backbone angles (move #1),

and local perturbation of selected regions (move #2). However, the native global

minimum was not found in the test runs and, thus, the following topology-specific

moves were used in addition. For helical proteins, the helix move (move #3)

was added whereas, for β-strand proteins, the helix move was turned off and all

the β-strand moves (moves #3, 4) were added. It might be argued that these
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specific moves introduced a bias towards the experimental structure, and thus this

approach is invalid for a search for the global minimum for an unknown protein.

However, as in CSA, several simulations biased towards different topologies can be

carried out, of which the correct simulation produces structures lowest in energy.

Because of the perturbative nature of these moves, many structures with side-

chain clashes were produced with such bad geometry that even the local minimizer

was unable to improve them. Therefore, carefully designed local side-chain moves

were applied to relax the structures,36 after which the minimization move was

successful. The side-chain move relaxes the side-chains involved in a clash by

minimizing the side-chain energy while keeping the backbone frozen.

Parallel Algorithm Implementation

Typically the implementation of the algorithm on a parallel machine involves ty-

ing a replica to a single processor. When the exchange between replicas occurs,

one can either exchange the structure coordinates or the temperature; exchanging

temperature is much more efficient because it involves only two variables whereas

many more variables are involved in exchanging coordinates. Our approach to

parallelization was slightly different for the following reason. Given the nature of

minimization with SUMSL (each minimization step involves a different number of

energy evaluations), and the fact that our Linux cluster is very inhomogeneous

(i.e., the fastest processors operate at four times the speed of the slowest ones),

tying a replica to a single processor for the entire run would result in different sim-

ulation lengths for each replica. Furthermore, one might have a smaller number

of processors than replicas available or, on the other hand, one should be able to

take advantage of more processors than the number of replicas. The most time-
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consuming task is the energy minimization (i.e., the time to minimize the energy

of a conformation is much longer than the time to transfer the coordinates from

master to workers); thus, time to transfer coordinates causes no real overhead.

Hence, in our approach the master is the only processor which updates the struc-

tures, exchanges the replicas, and passes the structures to workers. The latter

are responsible for perturbing the structures and minimizing their energies. How-

ever, this approach poses one problem for successful scalability. When using many

processors, the energies of a large number of structures are being minimized in

several processors for each replica at any given time. After minimization, these

conformations are typically not compared to the structure that generated them

in the first place, which can lead to oscillations of high-low energy conformations

in the Markov chain. To circumvent this problem, the acceptance procedure is

modified as follows. When a worker returns an energy-minimized conformation to

the master, it is then compared to its original parent conformation (if the original

is different from the current one) and, if it is lower in energy, it is compared to

the current parent conformation with a standard Metropolis criterion. Otherwise,

the conformation is discarded. This reduces the high-low energy fluctuations and

allows for smoother behavior in energy vs. step number graphs.

4.3.3 Implementation of methods used for comparison

In order to compare REMCM to the other methods of interest here, each method

was implemented as described below.

The traditional Replica Exchange (REM) with UNRES was carried out as

follows. All four UNRES angles in every residue of the protein were subject to

a perturbation. One MC sweep consisted of updating all of these angles with a
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Metropolis evaluation for each perturbation. Twenty replicas were used to cover

the entire energy range for REM (REMCM used 10 replicas, but 10 replicas was not

enough to cover the energy range of REM). The frequency of exchange (number of

MC sweeps before an exchange) was kept the same as in the REMCM simulations.

The temperature range was shifted to lower values from the range used for REMCM

to make sure that the low-temperature replicas explored the low-energy regions.

The kT values ranged from 0.1 to 30, distributed exponentially, which corresponded

to MC acceptance rates from 5% to 70%.

Simulations with MCM were carried out with similar parameters as for REMCM.

The number of steps for each Monte Carlo-with-Minimization run was set to the

overall number of steps for REMCM. A total of five independent MCM simulations

were carried out for each protein, each run at a different temperature so that the

simulations were able to explore a reasonable range of the energy landscape, yet

still have a good chance of obtaining the global minimum.

CSA simulations were carried out with the usual three different sets of moves.

One set supported production of mainly α-helical structures, whereas the second

set was biased towards exploring β-strand conformations. The third set, on the

other hand, supported both types of structures equally likely. This focused the

search on different areas of the conformational space; thus, by comparing the

results, one could conclude whether the individual simulations converged to the

same ensemble of global minima.

For comparison of CFMC with REMCM, the side-chain clashes, produced by

perturbation moves, were checked before the actual minimization. As for REMCM,

this decreased the number of structures rejected by the local minimizer, thereby

decreasing the number of structures which had no chance of being accepted into
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the CFMC bank, and hence making the overall procedure much more efficient. In

addition, a short evaluation was carried out to find out how much the individual

(local and global) moves contributed, by successively turning off these moves. The

following three topological moves were added because the original CFMC had

limited success with the proteins considered here. The first two moves consisted

of choosing a fragment of n residues and creating either an ideal α-helix, or a β-

strand. The third move tested the sequence for secondary structure, located the

position of all the loops, and attempted to form a hairpin in one of the loops. This

improved the performance of CFMC in some although not in all the cases, as will

be seen in section 4.4.3.

4.4 Results and Discussion

4.4.1 Production runs

A total of five independent REMCM simulations were carried out for each protein

with the parameters described in section 4.3.2. To summarize the results, the

procedure was able to find the global minimum for four out of five tested proteins

(namely for 1E0L, 1BDD, 1GAB, 1CLB). As an example (using 1E0L), figure

4.1 shows the nature of the individual simulations within each replica and the

influence of temperature. The graphs show the energy of the simulation at a

particular temperature with respect to the MC step number. It can be seen that

the distribution at neighboring temperatures overlap and that the average energy

and the fluctuation correlate with the increase in temperature. Further, although

the higher temperature replicas sample higher energy regions, they still sample the

local minima; the latter important feature is not encountered in traditional REM.
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Figure 4.1: Energy of REMCM simulation of 1E0L at a particular temperature with respect to MC step number. Each plot
contains two replicas at neighboring temperatures. The temperatures are labeled from lowest (T1) to highest
(T10), and the average energy and its fluctuation increase with temperature as governed by the Metropolis
criterion. The exchange between replicas occurs every 100 Monte Carlo Steps.
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Figures 4.2 and 4.3 illustrate the energy vs RMSD profiles for all the proteins,

where each graph corresponds to a particular REMCM run, and each point within

a graph corresponds to a visited conformation in that particular run. Two plots

are shown for each protein; the left plot is an example of a successful run, whereas

the right plot shows an example of a not so successful simulation. Although only

two runs are shown for each protein, the conformational space visited is similar for

both simulations shown. 1E0L produced a native-like structure as a global mini-

mum in all five simulations, although three runs took a considerably longer time

to converge. Both 1E0L runs in Figure 4.2 show that the RMSD increases with

increasing energy, but the one on the right does not reach the global-minimum

energy. Overall, the energy correlated very well with RMSD in contrast to profiles

of 1GAB, 1BDD, and 1CLB. The dominance of non-native structures in the unsuc-

cessful runs leads to an almost uncorrelated nature of the Energy vs. RMSD plots

for these proteins. Although the procedure consistently identified global minima

for 1GAB and 1BDD as native like, it succeeded for only three simulations for

1CLB. Finally, Figure 4.3 shows a failure of REMCM for 1IGD where only one

simulation (shown on the left in Fig. 4) sampled the space below 10 Å, and even

these structures were high in energy. The expected global minimum is located at

around -747 kcal/mol (this minimum was located by CSA as mentioned in section

5.3), but REMCM reached only the -700 kcal/mol energy levels.

Figure 4.4 shows the superposition of the native structures for 1GAB, 1E0L,

1BDD and 1CLB with the best structures obtained within 10 kcal/mol of the global

minima. An outstanding superposition is obtained for 1GAB, with an RMSD

of 2.3 Å and energy -673.2 kcal/mol (7.8 kcal/mol above the global minimum).

The only discrepancy occurs in the loop between the first and second helix. It
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Figure 4.2: Energy vs. RMSD plots for 1E0L, 1GAB, and 1BDD. The left column
is an example of a good run, whereas the right column shows an unsuc-
cessful simulation. In the left column, the global energy structures also
have low RMSD values, whereas in the right column the simulation is
trapped in a higher-than-native energy but low RMSD (1E0L), or the
energy of the non-native conformations are on the same order as the
native structures (1GAB, 1BDD).
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Figure 4.3: Energy vs. RMSD plots for 1CLB, and 1IGD. The left column is an
example of a good run, whereas the right column shows an unsuc-
cessful simulation. In the left column, the global energy structures of
1CLB also have low RMSD values, whereas in the right column the
energies of some non-native conformations are on the same order as or
lower than the native structures (1CLB). For 1IGD, none of the runs
was successful, although the simulation visited structures closer to the
native but high in energy (left plot).
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can be seen that 1E0L deviates slightly at the C-terminus, where the computed

conformation is missing the native interaction between residues 32 and 20. The

energy of the low-energy structure of 1E0L is -286.1 kcal/mol (6.8 kcal/mol above

the global minimum) and the best fit is 4.2 Å from the native. The best fit reported

for 1BDD is 4.3 Å (10.5 kcal/mol above the global minimum), which, instead of

forming a second helix as in the native, forms two short ones with the second helix

in place of a loop. For 1CLB with an RMSD of 5.4 Å (9.2 kcal/mol above the

global minimum), the overall topology is correct, although helix 3 is longer and

more regular than in the native. These values are shown in Table 4.2. Finally,

a comparison of the native structure of 1IGD with the best structure obtained

within 10 kcal/mol is shown. It can be seen that the simulated conformation lacks

both β hairpins and, instead, is a three-helix bundle.

4.4.2 Comparison of REMCM to REM

Since REMCM is based on the REM-without-minimization method, an important

question arises as to whether the new modified method is faster and more consis-

tent in locating the global minimum than the traditional Replica Exchange method.

REM has been used mainly for calculations of thermodynamic properties; never-

theless, it has also been employed as a global optimization method.37 Experience

with Monte Carlo-with-Minimization has shown that addition of minimization to

traditional Monte Carlo improves the search procedure considerably,7, 8 suggesting

that adding minimization to the Replica Exchange method might show a similar

effect.

Fig 4.5 compares the performance of REM and REMCM showing the lowest

energy obtained for the given number of energy evaluations. The comparison was
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Figure 4.4: Stereo-views of the superposition of the experimental (black) and best
predicted structures (gray) within 10 kcal/mol energy cutoff from the
global minimum obtained by REMCM. (A) 1GAB (7.8 kcal/mol above
the global minimum, RMSD = 2.3 Å); (B) 1E0L (6.8 kcal/mol above
the global minimum, RMSD = 4.2 Å); (C) 1BDD (10.5 kcal/mol above
the global minimum, RMSD = 4.3 Å); (D) 1CLB (9.2 kcal/mol above
the global minimum, RMSD = 5.4 Å); (E) 1IGD (structure obtained
by REMCM, 7.0 kcal/mol above the global minimum, RMSD = 12
Å); (F) 1IGD (native structure). Because of the large RMSD between
the low-energy structure and the native structure, they are displayed
separately in (E) and (F).
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made for 1GAB, for which the energy landscape presumably is smooth, because

the folded state was obtained in all five independent REMCM simulations with

this protein; thus, REM might be expected to perform very well. It can be seen

that the lowest energies obtained with REM are higher by about 70 kcal/mol

than the lowest energies found by REMCM. A similar observation was also seen

in Molecular Dynamics simulations of several proteins using UNRES,38 where the

lowest energy obtained by Molecular Dynamics was much higher than the lowest

energy obtained by CSA. This effect might be explained by thermal motion which

is neglected when using minimization-based methods such as CSA or REMCM.

The present method of hierarchical optimization of protein energy landscapes2

uses the CSA method to generate decoys and thus ignores the entropy factor,

which consequently makes it very hard for methods such as MD or REM to reach

low-energy regions with UNRES. However, the advantage of introducing MCM to

REM is that the CSA global minimum can be attained. The convergence appears

to be faster for REMCM than REM in Fig 4.5., showing an improvement over the

traditional Replica Exchange method. Finally, the traditional Replica Exchange

method not only converged more slowly but also failed to locate the global energy

basin as seen in figure 4.5; the lowest-RMSD structures differed by 8 Å from

the native and were high in energy (not shown here). The low-energy structures

obtained by REM had RMSD’s of 14 Å from the native.

4.4.3 Comparison of REMCM to other methods

To evaluate the effectiveness of REMCM, a comparison was made to other global

optimization methods, specifically to Monte Carlo-with-Minimization (MCM),7, 8

Conformational Space Annealing (CSA),16–18 and Conformational Family Monte
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Figure 4.5: The graph shows the lowest energy obtained at a given energy-
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ent curves correspond to different simulations with the same starting
parameters for REMCM (solid line) and REM (dotted line).
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Carlo (CFMC).11 The comparison was carried out for all five proteins considered

in section 4.3.1 with the 4P force field.3

The performance comparison between MCM and REMCM is shown in Figure

4.6. The plots illustrate the lowest-energy structure obtained at a given energy-

evaluation step for the given number of energy evaluations. It can be seen that

MCM has problems consistently locating the global minimum. For 1E0L, only two

out of five MCM runs converged, while the other three were trapped. For 1GAB

and 1CLB, the statistics for MCM was even worse, showing that only one out of

five runs was successful in locating the low-energy basins, although the absolute

energies were not quite as low as for REMCM. 1BDD showed good results with

four out of five MCM runs, converging slightly slower than the REMCM runs.

Table 4.2 contains a summary of the simulation results with all proteins for

REMCM, CSA, CFMC, MCM and one comparison for 1GAB. The Table entries

show both the energy and Cα RMSD with respect to the native structure for a

best run with each method. The row marked as l corresponds to the lowest energy

structure found in that simulation run. The row marked as 10 (20) corresponds

to the best RMSD structure found up to 10 (20) kcal/mol higher than the lowest

energy observed. The empty fields indicate that the value was not improved by

including structures of higher energy. In comparison to CSA, REMCM obtains

comparable energies for all proteins except for 1IGD. For 1GAB, REMCM obtains

a structure lower than CSA by 12 kcal/mol. CFMC and MCM on the other hand

appear to become trapped in higher-energy conformations.

The comparison results for REMCM with CSA and CFMC are shown in Fig 4.7.

The plots show the lowest energy structure obtained at a given energy-evaluation

step for the given number of energy evaluations. In comparing the results, it is
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Figure 4.6: Performance comparison of MCM and REMCM. The comparison was
carried out for five proteins, and the plots denote the lowest energy
obtained at a given energy-evaluation step for the given number of en-
ergy evaluations. Different Curves correspond to different simulations
with the same starting parameters for REMCM (solid line) and MCM
(dotted line). It can be seen that REMCM converges faster and is also
more consistent in locating the global energy minima.
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Table 4.2: Best simulation runs for REMCM, CSA, CFMC, and MCM for each
protein. The results show both the energy (first row) and the corre-
sponding Cα RMSD (second row) with respect to the native. l corre-
sponds to the lowest energy structure found in a given simulation. 10
and 20 correspond to the best RMSD structures found 10 (20) kcal/mol
higher than the lowest energy observed. Empty fields indicate that the
value above is not improved in the higher energy structures.

REMCM CSA CFMC MCM REM
l kcal/mol -293 -296 -274 -293

Å (4.79) (4.73) (5.10) (4.76)
1E0L 10 kcal/mol -286 -288 -274 -290

Å (4.232) (3.780) (4.867) (4.14)
20 kcal/mol -277 -282

Å (3.616) (3.633)
l kcal/mol -681 -669 -672 -675 -627

Å (2.64) (2.93) (2.75) (2.59) (14.63)
1GAB 10 kcal/mol -673 -668 -666 -672 -619

Å (2.31) (2.89) (2.32) (2.54) (14.41)
20 kcal/mol -667

Å (2.27)
l kcal/mol -601 -605 -592 -601

Å (5.73) (4.77) (10.07) (5.74)
1BDD 10 kcal/mol -590 -598 -583 -591

Å (4.34) (4.79) (3.74) (3.98)
20 kcal/mol -586 -591 -581 -583

Å (3.85) (3.51) (3.40) (3.51)
l kcal/mol -1059 -1057 -1039 -1025

Å (5.61) (4.84) (5.28) (6.45)
1CLB 10 kcal/mol -1050 -1050 -1030 -1021

Å (5.38) (4.69) (4.63) (5.92)
20 kcal/mol -1041 -1043

Å (4.70) (4.31)
l kcal/mol -698 -747 -694 -675

Å (13.23) (5.61) (13.08) (10.88)
1IGD 10 kcal/mol -691 -738 -684 -671

Å (12.86) (4.70) (10.73) (10.71)
20 kcal/mol -680 -733

Å (12.21) (4.40)
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worthwhile to point out the difference in the overall shape of the simulation progress

in the different methods. CSA seems to descend in a smooth way, whereas CFMC

and REMCM seem to have a very sharp drop at the beginning. After this drop,

they either find the native basin fairly quickly or become trapped in a different part

of the surface, in which case it seems to take some time to locate the native basin.

For 1E0L, the most dependable procedure appears to be CSA, which consistently

converged to the global minimum, whereas CFMC became trapped at around -260

kcal/mol. REMCM obtained the global minimum, although in three simulations it

took a considerable number of energy evaluations before it reached the native basin.

When it did reach the native basin right away, however, it converged as fast as CSA.

For 1GAB and 1BDD, both REMCM and CFMC converged faster and, overall,

reached lower energies than CSA. Both 1E0L, and 1GAB were training proteins for

the 4P force field, and, in contrast to 1E0L, 1GAB posed no challenge to REMCM

and CFMC. From the graph for 1CLB in Fig 4.7, it is evident that REMCM

converges much faster than the other two methods. However, as mentioned in the

comparison of REMCM with MCM, only three of five simulations actually located

the native basin. The other simulations reached very low energies, but these were

populated mainly by non-native structures (as shown in Figure 4). It appears

that current UNRES parameters make 1CLB a hard target, especially since the

difference in energy between the native and non-native ensembles is very small.

Overall, however, REMCM was very efficient in locating low-energy structures.

Finally, the plot for 1IGD shows a complete failure of REMCM and CFMC to

locate the global minimum. This minimum was observed by CSA at around -

747 kcal/mol, but no variation of parameters in REMCM succeeded in obtaining

structures even below the -700 kcal/mol level. This protein was also used in the
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training set for the 4P force field, and like 1E0L (and unlike 1GAB) it posed

difficulty for REMCM and CFMC.

4.5 Conclusions

In this work, Replica Exchange coupled with Monte Carlo-with-Minimization was

applied to search the conformational space of five test proteins with the United

Residue force field. Adding minimization altered the behavior of a typical Replica

Exchange simulation, so that the high temperature replicas in REMCM also sam-

ple some of the low-energy subspace of the energy landscape. The test of this

procedure led to results which were compared to other optimization methods used

with UNRES, namely MCM, CSA and CFMC. Overall, REMCM was successful

on four out of five proteins tested; furthermore, it performed much more consis-

tently than MCM and CFMC in locating the global minima, and converged to

these low-energy regions much more efficiently than CSA. It failed to locate the

global minimum of 1IGD, for which only CSA was able to reach this native region.

Since 1IGD was also in the training set for the force field used in the computa-

tions, this raises an interesting question as to why REMCM and CFMC (methods

not used in the energy parameterization process) were unable to obtain the global

minimum. A possible answer might lie in the fact that both REMCM and CFMC

use similar kinds of perturbation moves, whereas CSA uses genetic operators to

evolve the population of conformations. In particular, our recent implementation

of CSA18 exchanges β-hairpins and non-local strand pairs between conformations,

thus enhancing the probability of forming β-structures. Without these moves even

CSA could not locate the global minimum of 1IGD because the β-structures dis-
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Figure 4.7: Performance comparison of different global optimization methods.
Solid line represents runs with REMCM, dotted line CFMC, while
dash-dot lines are CSA runs. The comparison was carried out for five
proteins, and the plots denote the lowest energy obtained at a given
energy-evaluation step for the given number of energy evaluations. It is
evident that CFMC and REMCM seem to converge faster than CSA,
although CFMC has a tendency to become stuck (e.g., 1E0L). CSA
outperforms the other two methods for 1IGD where it systematically
reaches a lower energy basin. REMCM appears to perform the best on
1CLB where it both converges faster and reaches lower energy struc-
tures, although three of the runs (similar to the right-hand panel in
Fig 4.3) produced non-native structures as the lowest energy. Thus,
the best results for REMCM are for 1GAB and for 1BDD.
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appeared during the course of CSA simulations in favor of α-helices.18 No similar

operators or genetic algorithm are present in REMCM, which could explain the

failure of this method to locate the global minimum of 1IGD. Because CSA was

used in the parameterization of the force field, this might also suggest that the

landscape is more biased towards this method, making it easier for CSA to explore

energy basins.

Nevertheless, REMCM seems to have some interesting features and has po-

tential as a stand-alone global optimization method applied to biological macro-

molecules. Moreover, because it is easy to implement and has few parameters to

adjust, it is very suitable for implementation in the future revision of our hierarchi-

cal optimization procedure.2 This optimization procedure is based on a hierarchi-

cal design of the potential-energy landscape such that the energy decrease follows

the increase of native-likeness.39 REMCM would add the aspect of updating the

conformations on the fly, thereby reducing the number of full CSA runs, which

are typically required after every iteration of the optimization procedure. This

could speed up the entire optimization process considerably, thus allowing us to

include more and larger proteins in the training set, resulting in a force field with

much greater predicting power. Finally, subjecting the parameterization process

to more than one optimization method might improve its performance with other

optimization methods.
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Chapter 5

Replica Exchange and Multicanonical

Algorithms with the coarse-grained

UNRES force field ∗

5.1 Introduction

Efficient sampling algorithms have been an essential component of methods for

studying protein structure and dynamics in structural biology and theoretical

chemistry. A variety of sampling algorithms have been used in our laboratory

and, depending on whether the goal is global optimization or folding simulations,

they can be be categorized in the following way.

For successful prediction of the three-dimensional structure of a protein (based

solely on its amino acid sequence), several classes of algorithms have been used.

The first class includes modifications of the Metropolis Monte Carlo procedure,1, 2

such as Monte Carlo-with-Minimization (MCM),3, 4 electrostatically-driven Monte

Carlo (EDMC),5, 6 Conformational Family Monte Carlo (CFMC),7 and Replica

Exchange Monte Carlo-with-Minimization (REMCM).8 The second class includes

deformation-based methods, such as the diffusion-equation method (DEM),9 the

distance-scaling method (DSM),10 and the self-consistent basin-to-deformed-basin

∗Published as Nanias, M.; Czaplewski, C.; Scheraga, H.A., J. Chem. Theo.

Comp. 2005, in press. Copyright (2006) American Chemical Society.
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method (SCBDBM).11, 12 The third class includes genetic algorithms such as the

Conformational Space Annealing (CSA) method.13–15 For the study of protein-

folding pathways, recently-applied Molecular Dynamics with the united-residue

(UNRES) force field16–19 has been shown to be particularly effective. To evalu-

ate thermodynamic properties, another class of sampling methods is necessary.

This is because minimization-based methods violate the condition of microscopic

reversibility required for producing Boltzmann statistics and, although methods

such as Molecular Dynamics or Metropolis Monte Carlo can be used for estimat-

ing thermodynamic properties as well as for a global search, they easily become

trapped for complex systems, and thus are not the most effective methods for

studying large systems.

The origins of one of the most popular advanced sampling methods, the Replica

Exchange method (also known as Exchange Monte Carlo,20 or Parallel Temper-

ing21), can be traced back to the work carried out by Swendsen and Wang22 for

spin-glass systems, and the more familiar form of the algorithm was developed

by Geyer23 with his use of Metropolis-coupled Markov chain Monte Carlo. In the

Replica Exchange method, several copies (replicas) of the system are simulated

with standard Metropolis Monte Carlo1, 2 or Molecular Dynamics procedures (each

replica differing from the others in a particular way, usually in temperature), while

permitting an exchange among the replicas, and thus surmounting barriers in the

rugged conformational energy landscapes. This method has been applied exten-

sively in protein-folding simulations using both lattice24–27 and off-lattice mod-

els.28–32

Recently, much attention has been paid to generalized ensemble algorithms

whose advantage is efficient sampling of the conformational energy landscape. In

this approach, efficient sampling does not mean locating the global minimum as
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quickly as possible, but rather covering the landscape in such a way as to provide

accurate statistics. Two well-known methods are the multicanonical algorithm33, 34

(also known as entropy sampling35, 36), and simulated tempering37 (also referred to

as the method of expanded ensembles38). The multicanonical algorithm performs a

one-dimensional random walk in energy space, while simulated tempering follows

a random walk in temperature space, thereby inducing a random walk in the

space of potential energy. Although these algorithms are generally too expensive

for locating global minima,39 they are useful for producing accurate statistics for

thermodynamic averages of observed variables. However the application of these

algorithms is nontrivial and very tedious; in particular, the need to obtain the

proper sampling weights often limits the use of generalized ensemble techniques.40

Due to the fact that the Replica Exchange method alleviates the problem of the

tedious estimation of weight factors in the multicanonical algorithms, combinations

of replica exchange with generalized ensemble methods have been developed, e.g.,

REMUCAREM41 i.e., Replica Exchange Multicanonical Algorithm with Replica

Exchange; others include Replica Exchange Simulated Tempering, or Simulated

Tempering Replica Exchange (REST, STREM, respectively).42 Other modifica-

tions of Replica Exchange include Replica Exchange with Solute Tempering,43

Model Hopping,44 Hamiltonian Replica Exchange,45 and the Replica-Exchange

Method Using a Generalized Effective Potential.46

Having demonstrated that the coarse-grained united-residue (UNRES) protein

model is helpful in surmounting problems with all-atom models,18, 47 we apply the

Replica Exchange method (REM), the Replica Exchange Multicanonical Method

(REMUCA), and the Replica Exchange Multicanonical Method with Replica Ex-

change (REMUCAREM), in both Monte Carlo and Molecular Dynamics versions,

to the UNRES model in the present work. The advantage of Replica Exchange lies
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in its simplicity and, in contrast to other methods, it is not very sensitive to the

few parameters involved therein (such as the cooling schedule in simulated temper-

ing, or the successful estimation of weight factors in multicanonical algorithms).

The power of REMUCA lies in the effective estimate of the multicanonical weight

factors from Replica Exchange simulations. REMUCAREM further exploits the

idea of running several replicas of multicanonical simulations with different set of

multicanonical weights. The motivation behind the present work is to test the

applicability of these algorithms to determine the thermodynamic properties of

large systems. The ability to compute thermodynamic properties will thereby en-

able us to improve our UNRES model, and consequently improve protein folding

simulations, i.e., bring our simulated results closer to experimental ones.

5.2 Methods

5.2.1 The UNRES force field

All the above-mentioned algorithms were implemented with the United Residue

force field, hence in this section, the UNRES model of polypeptide chains and the

corresponding force field is described briefly. In chapter 3 the UNRES model used

with Monte Carlo procedures was described, this section extends the description

of UNRES force field for Molecular Dynamics.

Molecular Dynamics with UNRES requires an extra degree of freedom, namely

the vibrations of the virtual-bond lengths, which are treated with an additional

harmonic potential. The complete UNRES potential-energy function for Molecular

Dynamics is then expressed by the following equation:18

UMD = UMC + wvib

∑

i

Uvib(di) (5.1)

where UMC is the Monte Carlo UNRES potential energy described in chapter 2
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(eq. 3.2) and Uvib(di), di being the length of the ith virtual bond, are the simple

harmonic potentials defined as Uvib(di) = (1/2) kdi
(di − d◦

i )2, where kdi
is the force

constant of the ith virtual bond, currently set at 500 kcal/(mol × Å2) and d◦
i is the

average length (corresponding to that used in the fixed-bond UNRES potential) of

the ith virtual bond; e.g., d◦
i = 3.8 Å for a Cα · · · Cα virtual bond corresponding

to a trans peptide group. As in previous work,18 the weight wvib was arbitrarily

set at 1.

5.2.2 Replica Exchange Method (REM)

The Replica Exchange method is an extension of the Metropolis Monte Carlo,

or Molecular Dynamics, methods. The underlying idea is to run different copies

(replicas) of the system at different levels of a certain property (such as temper-

ature). To summarize the method, a Monte Carlo (MC) or Molecular Dynamics

(MD) simulation is carried out on each selected conformation at its assigned tem-

perature for a determined number of MC or MD steps, after which the neighboring

replicas undergo an exchange with the acceptance criterion described below (in eq.

5.3). Let

∆ ≡
[

(βm − βn)
{

E(Y ) − E(X)
}]

(5.2)

where βm is the inverse temperature defined as 1/(kBTm), E(X) is the energy

of conformation X. If one adopts the Metropolis method, the replica-exchange

transition probability can be expressed as

W (X, βm|Y, βn) =











1 for ∆ ≤ 0

exp(−∆) for ∆ > 0
(5.3)

i.e., if ∆ is less than or equal to 0, the exchange is performed (since the probability

is 1); otherwise a random number between 0 and 1 is generated and compared to
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the factor exp(−∆). If the value of this factor is smaller, the exchange is performed;

otherwise the exchange is rejected.

To evaluate thermodynamic quantities at any temperature, it is essential to

extract maximum information from all replicas. For this purpose a multi-histogram

reweighting technique48, 49 can be used. For a replica exchange simulation with

M replicas at M distinct temperatures, a set of M energy histograms Nm(E) is

obtained. The densities of states [n(E)] are then obtained self-consistently from

the following WHAM48, 49 equations:

n(E) =

M
∑

m=1

g−1
m Nm(E)

M
∑

m=1

g−1
m nmexp(fm − βmE)

(5.4)

and

exp(−fm) ≡
∑

E

n(E)exp(−βmE) (5.5)

where Nm(E) is the histogram at temperature Tm, βm = 1/(kbTm) is the inverse

temperature, nm is the total number of samples in the mth replica, gm = 1 + 2τm,

and τm is the integrated autocorrelation time at temperature Tm. In biomolecular

systems, gm is approximately constant49 and, therefore, can be canceled in eq. 5.4.

The WHAM equations 5.4 and 5.5 are evaluated self-consistently and the resulting

densities of states are used to evaluate the expectation value of any observable A

in equation 5.6:

〈A〉T =

∑

E

A(E)n(E)exp(−βE)

∑

E

n(E)exp(−βE)
(5.6)

5.2.3 Multicanonical Algorithm (MUCA)

A single canonical simulation (MC or MD) by definition samples a very restricted

energy region. Furthermore, when sampling the conformations of the protein in
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low-energy regions, the multiple-minima problem is usually encountered and the

simulation can be trapped in a particular local energy minimum, making it difficult

to obtain a reliable estimate of the density of states of proteins. In determining

the density of states of a large system by simulation procedures, a clear criterion

is needed about the stage of simulations at which all of the conformational space

of the protein has been sampled sufficiently. Traditional MC or MD procedures

do not provide such a convergence criterion. For these reasons, a multicanonical

algorithm33, 34 (also known as Entropy Sampling35, 36) has been used for protein

studies. In section 5.2.4, we show why MUCA is combined with REM to produce

REMUCA, whose efficiency is explored in the present work. For this purpose, we

first outline MUCA. In the next paragraph, we present the background of Entropy

Sampling and tie it together with the Multicanonical Algorithm notation.

In the present work, we use the term ”conformation” to indicate a particular

structure and the term ”state” to denote all the conformations that either have a

given energy or are within a small energy interval. The probability of occurrence of

a conformation x with energy E, denoted as P (x), and the probability of occurrence

of a state with energy E, denoted as P (E), are related to each other in a canonical

ensemble by the following relations, with E being written for E(x):

P (x) ∝ exp(−βE) (5.7)

P (E) ∝ n(E)exp(−βE) = exp[S(E)/kB − βE] (5.8)

where kB is the Boltzmann constant, β = 1/kBT with T being the temperature,

n(E) is the number of conformations with energy E (i.e., density of states), and

S(E) = kBln[n(E)] is the entropy of the state with energy E.

The Entropy Sampling method is based on an artificial distribution of states,

in which the probability of occurrence of a state with energy E is scaled by the

exponential of the negative of the entropy of the state, S(E). In Entropy Sampling,
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the probabilities of occurrence of a conformation x and a state with energy E,

respectively, are defined as

P (x) ∝ exp{−S[E(x)]/kB} (5.9)

P (E) ∝ n(E)exp[−S(E)/kB] (5.10)

where n(E) and S(E) have similar meanings as described above. Equations 5.9 and

5.10 can be related to equations 5.7 and 5.8 by first setting β = 0 (i.e., temperature

to infinity) in equations 5.7 and 5.8 and then multiplying the resulting probabilities

by the weight factor exp[−S(E)/kB]. The physical meaning of this modification

is that the larger the conformational entropy of a state, the smaller is the weight

given to the state. In this way, the probabilities of occurrence of all states with

different energies are constant in the new distribution, i.e., P (E) of equation 5.10

is a constant, taken as 1.

To connect the Entropy Sampling formalism to the commonly-used Multicanon-

ical Algorithm, we can define a new variable, the multicanonical energy Emu, in

the following way

Emu(E; T0) = T0S(E) = kBT0ln[n(E)] (5.11)

where T0 is the reference temperature, and S(E) is the microcanonical entropy

as above. The reference temperature is the temperature at which the MC or MD

multicanonical simulation is carried out. It should be noted that the reference

temperature theoretically plays no role in calculating thermodynamics, because

the formula for obtaining thermodynamic quantities (eq. 5.6) is independent of

T0; however, in practice, the value chosen for T0 affects the sampling efficiency of

numerical simulations. Equations 5.9 and 5.10 then become

P (x) ∝ exp{−Emu[E(x); T0]/T0kB} (5.12)
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P (E) ∝ n(E)exp[−Emu(E; T0)/T0kB] (5.13)

Consequently, the multicanonical Monte Carlo simulation is carried out with the

following modified Metropolis acceptance criterion:

W (X|Y ) =











1 for ∆Emu ≤ 0

exp(−β0∆Emu) for ∆Emu > 0
(5.14)

where β0 = 1/kBT0 and ∆Emu ≡ Emu[E(Y ); T0] − Emu[E(X); T0].

The multicanonical molecular dynamics simulation is carried out by integrating

the following modified Newton equation;50–52 see eq. 21 of reference 50:

ṗk = −∂Emu(E; T0)

∂qk

=
∂Emu(E; T0)

∂E
fk (5.15)

where pk is the momentum, qk is the generalized coordinate of the kth atom, and

fk is the force on the kth atom. Specifically the UNRES MD equation of motion

(eq. 32 of reference 16) is modified as

q̈(t) = −G−1 ∂Emu(U ; T0)

∂U
∇qU [q(t)] (5.16)

where U [being U(x)] is the UNRES potential energy (UMD of eq. 5.1), q(t) are

the generalized coordinates at time t, and G is the mass matrix (eq. 26 of reference

16). In practice, one can use cubic splines to approximate ∂Emu(U ; T0)/∂U .

Because the density of states is usually not known a priori, the multicanonical

weights are usually obtained by iterating short runs;36, 53–55 i.e. Emu is obtained

such that equation 5.13 is constant for all energies E. For this purpose, one uses the

single histogram reweighting technique to obtain a new estimate of the densities

of states after each iteration:

n(E) =
Nmu(E)

exp[−β0Emu(E; T0)]
(5.17)

where Nmu is the histogram obtained from the multicanonical simulation (either

MC or MD), and exp[−β0Emu(E; T0)] = 1/n(E) are the input multicanonical
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weights. The new estimates of the density of states are then used in equation

5.11 to obtain new values of Emu and hence new input weights. This procedure

is repeated until the histogram Nmu obtained from the multicanonical simulation

is sufficiently flat (i.e. the probability of visiting any part of the energy space is

constant). The resulting weights are then used for a long multicanonical simulation,

from which thermodynamic quantities can be calculated.

To obtain expected averages from a multicanonical simulation, the single his-

togram reweighting technique (eq. 5.17) is first used to obtain a new estimate of

the densities of states. The new estimates of densities of states are then used in

equation 5.6 to obtain the thermodynamic averages.

5.2.4 Replica Exchange Multicanonical Algorithm

(REMUCA)

MUCA without REM converges very slowly and consequently is inefficient.56–58

Therefore, we have explored the use of REMUCA, which differs from MUCA

in how the starting weights for the simulation are obtained. While MUCA re-

quires short iterative multicanonical simulations, REMUCA obtains the starting

weights from a short Replica Exchange simulation, by first obtaining the densities

of states from REM, which are then used to estimate the multicanonical weights

{exp[−Emu(E; T0)/kBT0]} with equation 5.11. In practice, the values for the multi-

canonical potential energy, Emu(E; T0), obtained from replica exchange, are reliable

only in the range of 〈E〉Tmin
≤ E ≤ 〈E〉Tmax

, where Tmin and Tmax are the lowest

and highest temperatures in REM, and Emin = 〈E〉Tmin
and Emax = 〈E〉Tmax

are

the canonical expectation values at those temperatures; i.e., we use multicanoni-

cal sampling only in the region between Emin and Emax, and canonical sampling

outside of this region. The reason why the weights are reliable only between Emin
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and Emax is because Tmin and Tmax (which determine Emin and Emax) are chosen

arbitrarily for the REM simulation, such that the region sampled by overlapping

replicas between Emin and Emax contains both the native structure and the most

probable non-native structures. Therefore, the best region sampled by REM is

the one between Emin and Emax, which determines that the multicanonical input

weights should be reliable only between Emin and Emax. In principle, any sampling

can be used below Emin and above Emax as long as the simulation returns back to

the multicanonical region which should contain both the native structure and the

most probable non-native structures; in practice this calculation has been carried

out with canonical sampling.

The only reason to explore the canonical region is to force a random walk

from the multicanonical region, which may have wandered out of the multicanon-

ical region, to return to the multicanonical region. In essence, by sampling for

thermodynamic data only in the multicanonical region, it is being assumed that

the multicanonical region is large enough to encompass both the native structure

and the more probable (i.e., lower-energy) parts of the ensemble of non-native

structures. In addition, at the upper (Emax) and lower energy (Emin) boundaries

between the multicanonical and canonical regions, the constant probability in the

multicanonical region decreases in the canonical region.

The canonical sampling is carried out by extrapolating the multicanonical en-

ergies [Emu(E, T0)] linearly.56 It should be noted that only data from the multi-

canonical region (between Emin and Emax) are used for calculating thermodynamic

properties. Hence, the energy space in REMUCA is divided into three regions as
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follows:

ε0
mu(E) ≡



























Emu(Emin; T0) + ∂Emu(E;T0)
∂E

∣

∣

∣

Emin

(E − Emin) for E ≤ Emin

Emu(E; T0) for Emin ≤ E ≤ Emax

Emu(Emax; T0) + ∂Emu(E;T0)
∂E

∣

∣

∣

Emax

(E − Emax) for E ≥ Emax

where ε0
mu(E) is substituted for Emu(E; T0) in eq. 5.14 (for MC) and 5.16 (for

MD), and T0 is the reference temperature for the Monte Carlo and Molecular

Dynamics simulation (the temperature at which the MC or MD simulation is

carried out). Again the reference temperature bears no significance in the results

of the thermodynamic quantities (because eq. 5.6 is independent of T0). The rest of

the simulation for both MC and MD proceeds as in traditional MUCA simulation

(eq 5.14 for MC, and eq. 5.16 for MD) with ε0
mu replacing Emu.

5.2.5 Multicanonical Replica-Exchange Method

(MUCAREM)

We also explore the use of the REMUCAREM algorithm, whose core is the same as

that of the MUCAREM algorithm. Therefore, we first present the theoretical back-

ground of MUCAREM, and later extend the discussion to REMUCAREM. Just as

REM consists of several replicas of canonical MC or MD simulations, MUCAREM

consists of several replicas of multicanonical simulations. The difference between

REM and MUCAREM is that the replicas in REM are associated with different

temperatures whereas, in MUCAREM, the replicas are associated with different

energy ranges over which multicanonical simulations are carried out. The advan-

tage of the MUCAREM approach over the traditional REM is that the probability

distributions of energies of different replicas are broader in MUCAREM than in

REM; therefore, a smaller number of replicas is required to cover the entire energy

range.
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The starting weights are obtained by short iterations of MUCA simulations, as

described earlier in section 5.2.3. The following procedures are carried out in each

cycle:

1. Select an energy range for each replica, for which the replica will carry out the

MUCA simulation. This energy range of a given replica should overlap the

energy ranges of the neighboring replicas, and the combined energy range

from all replicas should cover the whole energy space (i.e., the combined

energy range should contain the native structure and the most probable

non-native structures). Assign a different random protein conformation to

each energy range.

2. A MUCA simulation with MC or MD is carried out on each selected con-

formation within its energy range for a determined number of MC or MD

steps. The MC or MD simulations are carried out with equations 5.14 or

5.16, respectively, where Emu is replaced by εm
mu defined as follows:

εm
mu(E) ≡



























Emu(Em
min; Tm) + ∂Emu(E;Tm)

∂E

∣

∣

∣

Em
min

(E − Em
min) for E ≤ Em

min

Emu(E; Tm) for Em
min ≤ E ≤ Em

max

Emu(Em
max; Tm) + ∂Emu(E;Tm)

∂E

∣

∣

∣

Em
max

(E − Em
max) for E ≥ Em

max

where m is the replica index (m = min . . . max), and min and max are

the lowest and highest temperature replicas. Em
min is then the canonical

expectation value of the energy of the mth replica at temperature T m
min

[

Em
min = 〈E〉T m

min

]

, and similarly Em
max is the canonical expectation value

of the energy of the mth replica at temperature T m
max

[

Em
max = 〈E〉T m

max

]

for the mth multicanonical replica. It should be noted that T m
min and T m

max

are different for different replicas (for different m’s) and thus determine a

different multicanonical energy range Em
min and Em

max for different replicas.



100

Therefore, the multicanonical simulation with each replica is carried out in

a different energy range (Em
min and Em

max).

3. After carrying out a selected number of MC or MD steps, stop the simulation

of each replica and attempt an exchange of the whole conformations between

neighboring replicas with the following transition probability:

W (Y |X) =











1 for ∆ ≤ 0

exp(−∆) for ∆ > 0
(5.18)

where ∆ ≡ βm+1

{

εm+1
mu [E(Y )]−εm+1

mu [E(X)]
}

−βm

{

εm
mu[E(Y )]−εm

mu[E(X)]
}

.

4. Continue the simulation with each newly formed conformation at each new

energy range as in step 2.

5. Iterate points 3 and 4 until the system sufficiently covers the entire energy

range.

As in REM, the densities of states are obtained from self consistent evaluation

of the following modified WHAM equations:

n(E) =

M
∑

m=1

g−1
m Nm(E)

M
∑

m=1

g−1
m nmexp(fm − βmεm

mu(E))

(5.19)

and

exp(−fm) ≡
∑

E

n(E)exp( − βmεm
mu(E)) (5.20)

where Nm(E) is the histogram at temperature Tm, βm = 1/(kbTm) is the inverse

temperature, nm is the total number of samples in the mth replica, gm is defined

as in section 5.2.2. The resulting densities of states are then used to evaluate the
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expectation value of any observable in equation 5.6, with gm cancelling out, as in

eq. 5.4.

5.2.6 Replica Exchange Multicanonical with Replica Ex-

change Method (REMUCAREM)

MUCAREM without input weights from REM converges very slowly and conse-

quently is inefficient.56–58 Therefore we have explored the use of REMUCAREM,

which, as in REMUCA, obtains the starting weights from Replica Exchange simu-

lations as opposed to iterative short MUCA simulations. Everything else proceeds

in the same manner as in MUCAREM.

5.3 Implementation Details

All the simulations were carried out on one peptide (20 residues of Alanine with

free ends; ala20) and two small proteins, namely the B-domain of staphylococal

protein A (an α-protein; 46 residues; 1BDD),59 and the E. Coli Mltd Lysm Do-

main (an α+β-protein; 48 residues; 1E0G).60 The ala20 peptide was used to check

whether the algorithms perform correctly, and the proteins were chosen so that

basic α and α+β topologies were tested, and their size was reasonable with re-

spect to the computational time. As in our previous work,61 the length of protein

1BDD was shortened from the original 60 residues in the PDB to 46 residues. The

set of UNRES energy parameters, designated as the 4P force field61 and used in

the present work, was derived by optimizing the parameters for four proteins si-

multaneously: 1E0L62 (a β-protein ; 37 residues), 1E0G60 (an α + β protein; 48

residues), 1IGD63 (an α + β protein; 61 residues) and 1GAB64 (an α-protein; 53

residues).
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The Monte Carlo (MC) simulations with REM, REMUCA and REMUCAREM

were carried out as follows. All four UNRES angles in every residue of the pro-

tein were subjected to a perturbation. One MC sweep consisted of updating all of

these angles for each residue in the sequence, with a Metropolis evaluation after

each perturbation. The Molecular Dynamics (MD) simulations with these same

algorithms were carried out with the Berendsen thermostat,65 using the velocity

Verlet algorithm66 with variable time step to integrate the equations of motion.

The variable time step was accomplished by scaling the time step δt by powers of

2.16 The cutoff change of acceleration δacut for the scaling procedure was increased

to δacut = 4 Å/mtu,16 to allow for the multiplication of the forces in the modified

Newton equation (in eq. 5.16, MUCA MD utilizes a factor that multiplies the

forces, i.e., accelerations, which would cause the maximum change of acceleration

δamax to exceed the cutoff value δacut, and thus the time step would be unnec-

essarily reduced). The time step was set at 4.89 fs to yield stable trajectories.16

However, this is only a formal time step and, because of the reduction of the num-

ber of degrees of freedom in UNRES, the time step is several times larger compared

with all-atom MD (see reference 16 for details). The coupling constant to the ther-

mal bath was increased to 0.2445 ps to overcome the limitation of the Berendsen

thermostat and produce a more Boltzmann-like distribution.17 Replica Exchange

MD was carried out using multiplexing,67 in which several replicas were simulated

at each temperature. Since MC lacks the gradient and is consequently much less

efficient at exploring the energy space than MD, the temperature range in the MC

version of REM was lower than that of the REM MD simulations (so that the

low-temperature replicas in REM MC would involve a sufficient number of moves

to explore the low energy basins), and the number of replicas and the frequency of

exchange in REM was much higher in MC. In all the simulations (both MC and
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MD), the system was equilibrated for 20% of the simulation length, and the last

80% of the simulation was used for the calculations. All Monte Carlo simulations

were started from random conformations, and the starting point for all molecular

dynamics simulations was an extended chain; because the system was equilibrated

and, because REM uses high-temperature replicas, and both REMUCA and RE-

MUCAREM perform a random walk in the energy space, the simulations were

independent of the starting conditions.

5.4 Results and Discussion

5.4.1 Poly-L-alanine

First, to test the algorithms, a very simple poly-L-alanine system (20 residues) was

chosen, and REM, REMUCA, and REMUCAREM simulations were carried out

with both MC and MD. The parameters used in all simulations for ala20 are shown

in Table 5.1. REM simulations were carried out first, from which the densities of

states were obtained. It was found that the densities of states obtained from REM

simulations were not precise enough for REMUCA, because REMUCA simulations

did not perform a random walk (i.e. did not have flat energy histograms). There-

fore, after the first iteration of REMUCA simulations, the densities of states were

reweighted with eq. 5.17 and, with these weights, a second iteration of REMUCA

simulations was carried out. The second set of weights used for REMUCA were

also used for REMUCAREM simulations. The simulation weights for alanine are

shown as a solid or dashed curve in Figure 5.1. The dashed line shows an example

of the multicanonical energy function (eq. 5.11), used in the modified Metropolis

criterion in MC simulations (eq. 5.14), while the solid line shows its derivative, a
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Table 5.1: Parameters used in ala20 simulations. Replicas column shows the num-
ber of replicas used for each simulation. Temp shows the reference tem-
perature (K) or range of temperatures for simulations (for REMUCA
MC and REMUCAREM MC, the reference temperature cancels out in
the equations; therefore, the corresponding fields are empty). Step is
the number of UNRES MD time steps, where the maximum time step
was set to 4.9 fs in all MD simulations. A sweep is defined as perturbing
all four angles at all the positions along the peptide sequence (for ala20,
sweep is equal to 80 energy evaluations).

Simulation Replicas Temp Steps/Sweeps
REM MD 16 400-2000 16,000,000
REMUCA MD 1 100 10,000,000
REMUCAREM MD 2 100,101 20,000,000
REM MC 30 100-2000 2,000,000
REMUCA MC 1 1,000,000
REMUCAREM MC 2 1,000,000
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Figure 5.1: The parameters used for multicanonical simulations. The dashed line
denotes the multicanonical energy function (eq. 5.11), while the solid
line denotes the derivative of this function fitted with cubic splines.
The derivatives are used as a multiplicative factor [∂Emu(E; T0)/∂E]
in the modified Newton equation (eq. 5.15) in molecular dynamics.
The flat regions of the derivative curve show where the multicanonical
simulation changes to the canonical simulation.

factor multiplying the force in the modified Newton equation (eq. 5.16).

The results are summarized in Figures 5.2 and 5.3 Figure 5.2 consists of six

plots. Three plots on the top correspond to MC simulations, whereas the three

plots on the bottom correspond to MD simulations. The two plots in each column

are for REM, REMUCA, and REMUCAREM simulations, respectively. Each plot

depicts the logarithm of the probabilities ln[P (E)] as a function of energy (E) for

the given simulation. By comparing the top row to the bottom row, it can be seen
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Figure 5.2: Histogram curves for simulations with alanine. The plots depict the logarithm of the probabilities as a function
of energy. The top-row plots are from MC simulations (REM, REMUCA, REMUCAREM, from left to right
respectively). The bottom-row plots are from MD simulations. For REM, and REMUCAREM (left, and right
columns) each curve corresponds to an individual replica at a different temperature (for REM) or different energy
range (for REMUCAREM); see Table 5.1 for the number of such replicas.
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that MC simulations cover a smaller energy range than their MD counterparts.

This is due to the fact that the MD energy function contains the extra vibra-

tion term (eq. 5.1) adding to the energy range for MD simulations. It is evident

from the plots that REMUCA MC and REMUCAREM MC are flatter {constant

ln[P (E)]} than REMUCA MD and REMUCAREM MD. This discrepancy proba-

bly arises from the fact that the MD versions of multicanonical simulations utilize

the derivative of the multicanonical energy function (eq. 5.16), whereas the MC

simulations use only the multicanonical energy function itself (eq. 5.14, Fig. 5.1).

As mentioned in the Methods section, the derivatives are fitted using cubic splines,

which can cause problems if the entropy function is not smooth (the derivative will

be rough, which will cause numerical instabilities in the integration of eq. 5.16).

By comparing the plots for REM MC and REMUCA MC, it can be seen that

REMUCA MC does not cover the entire low-energy region, but rather stops before

-200 kcal/mol. This is because we shifted the low-energy boundary for multicanon-

ical sampling up from the canonical average evaluated by the lowest temperature

replica. The reason for doing this is that, when the boundary was lower in energy,

the MC multicanonical simulations would walk in the entire energy range until they

encountered the low-energy region, at which point the simulations would become

trapped in deep local minima out of which they did not escape for the remainder

of the simulation (data not shown). This issue was easily resolved for ala20 MC

simulations by simply raising the low-energy boundary, but the issue reappears

during both MC and MD simulations with 1BDD and 1E0G, and is discussed

further when describing the results for 1BDD and 1E0G.

Figure 5.3 also shows two rows of plots, one for MC and one for MD simulations.

The first column corresponds to simulations with poly-L-alanine. Each plot con-
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Figure 5.3: Thermodynamic quatities calculated by various methods for ala20, 1BDD and 1E0G Heat capacity as well as
average energy as a function of temperature for REM (solid line), REMUCA (dashed line) and REMUCAREM
(dotted line) simulations with MC (top row) and MD (bottom row). The columns correspond to ala20, 1BDD, and
1E0G, from left to right, respectively. Good agreement for all three simulations for both MC and MD versions
can be observed for ala20; some overlap is observed for 1BDD, and only REM results (see text) are shown for
1E0G.
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sists of two graphs, one is the heat capacity, and the other is the average energy as

a function of temperature. Each graph contains three curves, each corresponding

to REM, REMUCA and REMUCAREM simulations, respectively. The average

energy was calculated with eq. 5.6, and the heat capacity was evaluated according

to the following formula:

CV = β2 〈E2〉T − 〈E〉2T
N

(5.21)

For both MC and MD simulations with ala20, all the curves overlap, suggesting

that the simulations converged to the same distribution. The main peak of the

specific heat curve indicates the temperature of the peptide collapse. For a sim-

ple system such as ala20, the collapse occurs simultaneously with folding to the

native α-helical state. This temperature appears to be 1400 K for MC and 1500

K for MD. It is important to note that the UNRES temperature has no relevance

to the experimental temperature because UNRES is a coarse-grained potential in

which the non-essential degrees of freedom have been averaged out, and energy

parameter optimization was carried out with a hierarchical procedure68 to provide

the steepest decrease of energy with increasing native likeness69 while ignoring the

correspondence between the simulated and experimental thermodynamic charac-

teristics of folding. Moreover, the decoy sets were generated using the CSA method

which walks only in the space of local minima, thus violating the detailed balance

condition. As mentioned further in the Conclusions section, we are currently re-

vising our hierarchical force field optimization procedure,69 to introduce entropy

using methods applied in the present work, and consequently to capture as much

physics as possible.
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5.4.2 1BDD

We repeated the same procedure for 1BDD as for ala20. The parameters used for

the simulations with 1BDD are described in Table 5.2. Similarly, as for ala20, the

results for 1BDD are shown in Figure 5.4. First, since 1BDD has more degrees

of freedom than ala20, we used a larger number of replicas in both REM MC and

REM MD algorithms and, in REM MD, we additionally multiplexed each replica

to have more trajectories from which to sample. Although it might appear that,

by using more replicas, REM would perform much better than both REMUCA

and REMUCAREM, the advantage of REMUCAREM (as mentioned in section

5.2.5) is that a smaller number of replicas is required to cover the entire energy

range. To provide a fair comparison, we used the same number of steps for both

REM and REMUCAREM (see Table 5.2); although many more steps were used

in REMUCAREM than in REMUCA, the results with REMUCAREM are not

substantially improved over those with REMUCA, as discussed later in this section.

As for poly-L-alanine, the density of states from the Replica Exchange simulations

was insufficient to carry out a random walk with REMUCA and REMUCAREM;

therefore, the densities of states were reweighted. The multicanonical histogram

curves in Figure 5.4 correspond to one iteration of reweighting. Additionally, we

encountered a trapping problem in the low-energy region for both MC and MD

simulations. As for ala20, we increased the low multicanonical energy boundary

to escape the trapping regions (Fig 5.4 shows that REMUCA and REMUCAREM

MC and MD do not sample all the way to the lowest energy; i.e. not beyond

-500 kcal/mol). To verify whether moving the multicanonical energy boundary is

acceptable, we show the RMSD results in Figure 5.5. The left column shows the

energy versus RMSD profile for Replica Exchange simulations. As can be seen
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Table 5.2: Parameters used in 1BDD and 1E0G simulations. Replicas column
shows the number of replicas used for each simulation. Temp shows
the reference temperature (K) or range of temperatures for simulations
(for REMUCA MC and REMUCAREM MC, the reference tempera-
ture cancels out in the equations; therefore, the corresponding fields
are empty). Step is the number of UNRES MD time steps, where the
maximum time step was set to 4.9 fs in all MD simulations. A sweep is
defined as 192 and 184 energy evaluations (4 angles for each residue in
the chain) for 1BDD and 1E0G, respectively. (b) Multiplexed replicas.
30(x4) means that 4 replicas for each temperature (with 30 tempera-
tures) were simulated.

Protein Simulation Replicas Temp Steps/Sweeps
1BDD REM MD 30(x4)b 200-1800 240,000,000

REMUCA MD 1 50 20,000,000
REMUCAREM MD 8 50- 400 240,000,000
REM MC 50 50-1800 10,000,000
REMUCA MC 1 1,000,000
REMUCAREM MC 2 1,000,000

1E0G REM MD 30(x4)b 200-1800 240,000,000
REM MC 50 50-2000 10,000,000



112

-10

-8

-6

-4

-2

-600 -400 -200  0  200

ln
(P

)

Energy [kcal/mol]

1BDD, REM MC

-10

-8

-6

-4

-2

-600 -400 -200  0  200  400

ln
(P

)

Energy [kcal/mol]

1BDD, REM MD

-14

-12

-10

-8

-6

-4

-600 -400 -200  0  200

ln
(P

)

Energy [kcal/mol]

1BDD, REMUCA MC

-12

-10

-8

-6

-4

-600 -400 -200  0  200  400

ln
(P

)

Energy [kcal/mol]

1BDD, REMUCA MD

-16

-14

-12

-10

-8

-6

-4

-2

-600 -400 -200  0  200

ln
(P

)

Energy [kcal/mol]

1BDD, REMUCAREM MC

-12

-10

-8

-6

-4

-600 -400 -200  0  200  400

ln
(P

)

Energy [kcal/mol]

1BDD, REMUCAREM MD

Figure 5.4: Histogram curves for simulations with 1BDD. The plots depict the logarithm of the probabilities as a function
of energy. The top-row plots are from MC simulations (REM, REMUCA, REMUCAREM, from left to right
respectively). The bottom-row plots are from MD simulations.For REM, and REMUCAREM (left, and right
columns) each curve corresponds to an individual replica at a different temperature (for REM) or different energy
range (for REMUCAREM); see Table 5.2 for the number of such replicas.
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Figure 5.5: Simulation results for 1BDD. The top-row plots are from MC simulations (REM, REMUCA, REMUCAREM,
from left to right, respectively). The bottom-row plots are from MD simulations. The left-column shows Energy
versus RMSD coverage of the energy space. The middle-column shows the random walk of the REMUCA
simulations, and the right-column shows the random walk for all REMUCAREM replicas (one after another).
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from this column, both REM MC and REM MD cover a wide conformational

space, which includes the native structure (centered ∼ 4.5 Å for REM MC, and ∼

4.0 Å for REM MD). The middle and the right columns show an RMSD trajectory

for REMUCA and REMUCAREM simulations, respectively. It can be seen that

the system folds and unfolds several times over the course of the run, i.e., attains

the low-RMSD region. Even though the multicanonical simulation should perform

a random walk in the energy space, it is more important that the simulation fully

samples the conformational space, which can be observed in both the REMUCA

and REMUCAREM RMSD trajectories.

The middle column of Figure 5.3 shows the calculated heat capacities and av-

erage energies for both MC and MD REM simulations with 1BDD. By contrast

to the simulations with poly-L-alanine, 1BDD heat capacities have broad irregu-

lar peaks. The irregular peak is an overlap of two peaks, one corresponding to

a collapse to a more compact state but without the final folding, and one corre-

sponding to a transition to the native state, as will be shown later in Figure 5.7.

For 1BDD, REM, REMUCA and REMUCAREM peaks do not coincide as they

do for poly-L-alanine. The fact that all simulations differ in the shape of their

heat capacity curve suggests that all simulations have not converged to the same

distribution. The reason why the REMUCA and REMUCAREM curves do not

cover the whole temperature range is that the multicanonical region was restricted

to avoid trapping (i.e., the low multicanonical energy boundary was increased).

5.4.3 1E0G

Finally, for 1E0G, Replica Exchange successfully sampled the energy space, and

produced reasonable statistics for thermodynamic quantities (Fig. 5.6). The left
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column of Figure 5.6 shows the histograms for Replica Exchange simulations with

both MC (top) and MD (bottom). The middle column depicts plots of energy as

a function of RMSD from the experimental structure, showing that the simula-

tions cover an extended portion of the energy space. It can be seen that the REM

MD simulation reaches the native state within an RMSD of around 4.5 Å and has

low energy, whereas the REM MC simulation barely touches 5 Å RMSD, with-

out reaching the low-energy region, which suggests incomplete N- and C-terminal

β-strand contacts (correct β-strand packing provides a large contribution to de-

creasing the energy of the native structure, and is necessary for the RMSD to

be below 5 Å). For multicanonical simulations (REMUCA and REMUCAREM),

we were unable to obtain proper multicanonical weights, which would enable the

system to carry out a random walk in the energy space. Even after several itera-

tions of reweighting, the system would walk towards the low energy states, where

it would stay for the remainder of the simulation. This behavior is shown in the

right column of Figure 5.6, where a REMUCAREM simulation is shown for MC

and a REMUCA simulation for MD. For REMUCAREM MC, it is evident that

the lower energy replica (replica 1) reaches low energies and remains trapped in a

low-energy region, whereas the high energy replica (replica 2) carries out a random

walk. A similar behavior is observed for MD simulations (trapping of REMUCA

MD is shown in Figure 5.6). This observation is similar to that from a study

carried out by Bhattacharya and Sethna, who showed that, in the case of glassy

systems, even multicanonical simulations have problems carrying out a random

walk, and instead become trapped in metastable states.70 They implemented the

Entropy Sampling version of the algorithm with Lennard-Jones glasses, and ob-

served that simulations that have dynamic updating of the microcanonical entropy
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Figure 5.6: Simulation results for 1E0G. The top-row plots are from MC simulations, whereas the bottom-row plots are from
MD simulations. The left-column shows the histogram curves for REM. Each curve corresponds to an individual
replica at a different temperature. The middle column shows energy versus RMSD coverage of the energy space.
The right-column shows energies at a series of steps of REMUCAREM for MC (top, with two replicas), and
REMUCA for MD (bottom).
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function perform a random walk in the energy space, while the simulations with

fixed weights (precomputed by iterative procedures) became trapped in metastable

states. The dynamic updating of the weights (i.e., eq. 5 of ref. 36) is essentially

a single histogram reweighting on the fly with the difference that not all regions

might be visited, and typically the time between updates is much shorter. Dynamic

updating ensures that the system does not remain in the same conformation for

a long time. However, it also introduces discontinuities, and negative gradients

into the Emu function, which poses problems for the MD version of the REMUCA

algorithm, with MD being more sensitive to the input weights because of its use

of derivatives. The dynamic updating procedure pushes the system out of trapped

states, but this violates the detailed balance condition, and thus no longer guaran-

tees convergence to the proper distribution or correct estimates of thermodynamic

quantities. Because of the trapping problem, we did not calculate average ener-

gies and heat capacities from both REMUCA and REMUCAREM simulations for

1E0G (see Fig. 5.3).

The third column of Figure 5.3 shows the calculated heat capacities and average

energies for both MC and MD REM simulations with 1E0G. A sharp single peak

for the heat capacity is observed for REM MC whereas a broader peak is observed

for REM MD simulations, and in both cases it is centered at around 1270 K. As

mentioned above (energy vs. RMSD plot in Fig. 5.6), the REM MC simulation

does not quite sample the native region. This observation, and the fact that the

heat capacity for REM MC has a sharper peak, suggests that REM MC predicts

a collapse to a more compact state but without the final folding (i.e., there is no

low-energy structure below 5 Å RMSD as shown in the energy vs. RMSD plot in

Fig. 5.6). On the other hand, the statistics from REM MD contains the native
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region (shown in the energy vs. RMSD plot in Fig. 5.6) and thus incorporates the

contribution of the native region to the thermodynamic quantities. The collapse

to a more compact structure and final folding do not seem to coincide (see the

upcoming discussion about Fig. 5.7), which broadens the heat capacity curve. For

MC, the sharp peak is centered at 1270 K (Fig. 5.3) which corresponds roughly to

-130 kcal/mol of average energy. From the energy vs. RMSD plot in Figure 5.6,

it can be seen that the highest allowed energy for the collapsed structure (RMSD

∼ 5 Å) is also around -130 kcal/mol. Folding to the native state for MD occurs

at lower energies, which broadens its heat capacity peak (see the discussion about

Fig. 5.7 in section 5.4.4)

5.4.4 Free energy diagrams

From our tests on ala20, 1BDD, and 1E0G, we conclude that Replica Exchange

Molecular dynamics is the most efficient method for sampling and calculating ther-

modynamic quantities with a rugged energy landscape such as the 4P force field,

applied to larger systems. Since the free energy is the most important quantity for

the description of equilibrium properties of proteins, we used REM MD to calcu-

late free energy profiles for ala20, 1BDD, and 1E0G. For this purpose, we used the

densities of states obtained from the multi-histogram analysis (eq. 5.4). From the

densities of states, we calculated the microcanonical entropy, S(Ei) = kBln
[

n(Ei)
]

,

for all conformations collected from the simulations, and used it to compute the mi-

crocanonical free energies with the following expression: F (Ei, T ) = Ei − TS(Ei).

To plot the restricted canonical free energy as a function of RMSD (r) and radius

of gyration (ρ), we calculated the restricted canonical free energy by evaluating
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the following expression for each grid point:

F (r, ρ, T ) = −kBT ln
∑

Ei∈N(r,ρ)

exp

(−F (Ei, T )

kBT

)

(5.22)

where the index i enumerates conformations within the histogram bins, N(r, ρ),

for given ranges of RMSD and radius of gyration.

Figure 5.7 shows the restricted canonical free energy plots as a function of

RMSD and radius of gyration for various temperatures. Each column corresponds

to simulations with ala20, 1BDD and 1E0G, from left to right, respectively. The

temperatures are chosen so that the highest temperature is higher than that of

the heat capacity peak (first row), within the peak (second row), below the peak

(third row), and at zero K (fourth row) from top to bottom, respectively.

The highest temperature free energy plot for ala20 shows that, at this temper-

ature, the peptide is preferentially completely unfolded, as indicated by the high

RMSD (greater than 5 Å) and the high radius of gyration (greater than 9 Å),

whereas at the heat capacity peak temperature (1460 K) the lowest free energy

region connects both the native and the non-native basins (RMSD between 2 and

5 Å). For 1000 K, the free energy surface already appears very similar to the free

energy surface at 0K, which represents the potential energy surface. The native

state (RMSD lower than 2 Å) is the lowest free energy at this temperature, con-

firming our observation from the heat capacity curve. It should be noted that the

range of energies observed in the potential energy plot is much larger than the

range observed with non-zero temperatures, showing that the search for the native

state is very much facilitated in the restricted canonical free energy surface. In

other words, the restricted canonical free energy differences do not need to be very

large in order to pass from the unfolded to the folded state, whereas large potential

energy barriers must be crossed to pass from the unfolded to the folded state in
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Figure 5.7: Free energy (in kcal/mol, indicated by the colored bars at the top of
each graph) as a function of RMSD and radius of gyration for various
temperatures. The free energy surfaces were calculated from the REM
MD simulations (see text). The columns correspond to simulations
with ala20, 1BDD, 1E0G, from left to right, respectively. The temper-
atures are chosen so that the highest temperature is higher than that of
the heat capacity peak (first row), within the peak (second row), below
the peak (third row), and at zero K (fourth row) for comparison.
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the potential energy surface. For ala20, we conclude that, even though the force

field was optimized without any thermodynamics, we still observe a correct folding

behavior.

For protein A (1BDD), the restricted canonical free energy plots look similar

to the plots for ala20. At high temperature, unpacked, open structures with high

RMSD and radius of gyration are observed. At 1000 K, the low free energy region

connects unfolded non-native states with compact states (both native and non-

native). At much lower temperature (600 K), the lowest free energy regions belong

to the native basin (centered around 5 Å RMSD) and to the mirror image (centered

around 9 Å RMSD). It should be noted that, for ala20, the native region had the

lowest free energy at 1000 K whereas, for 1BDD, the temperature had to be lowered

to 600 K for this to occur. Finally, the potential energy plot is again similar to the

low-temperature free energy plot, but has a much larger energy range. It should

be noted that, at 600 K, the free energy has well defined regions of low free energy

whereas, for the potential energy, the native state is more evenly connected with

compact but non-native states, which has been observed previously in MD studies

with protein A in our laboratory (all 10 simulations successfully folded protein A

with the 4P force field at 800 K).18

For 1E0G, the high-temperature plot again shows a preference for unfolded

structures. For 1000 K, the compact structures are not quite preferential in free

energy. From previous MD work with 1E0G in our laboratory,18 it was found that

the successful folding trajectory starts with formation of non-interacting helical

structures, which then collapse to a native HTH motif (15 Å RMSD) and finally to

one with 3.9 Å RMSD from the experimental structure. The HTH motif structures

appear to be preferable in terms of free energy at 1000 K, which is still within the
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broad peak of the heat capacity for 1E0G. For low temperature, such as 600 K, the

low free energy region connects the HTH motif to compact native-like structures

without β-strand contacts (around 6 Å RMSD). However, the fully formed native

structure (centered at 4.5 Å RMSD) is at higher free energy, and it appears at the

lowest free energy region only at very low temperatures (where the free energy plot

is similar to the potential energy plot). Liwo et al observed that only 6 out of 10

canonical MD simulations at 800 K yielded native-like structures.18 Our free energy

calculations show that the lowest free energy corresponds to non-native compact

structures (i.e., with low radius of gyration, but high RMSD); however the native

structures (with RMSD less than 5 Å) have slightly higher free energy. Therefore

the non-native conformations are more probable, but the native structures still

have a finite probability to occur. Thus, our free energy calculations agree with

the results obtained by Liwo et al.

Since the temperature must be extremely low in order for the native state to

be the global minimum of the free energy, the entropy contribution is much larger

than that for the same temperature in protein A and ala20. A larger contribution

from entropy means more accessible conformations for a given temperature. There-

fore, the multicanonical simulations have to sample a larger number of accessible

conformations, which becomes difficult for 1E0G.

From Fig. 5.7, it can be seen that, for a simple system such as ala20, the

collapse occurs simultaneously (at 1460 K) with folding to the native α-helical

state (RMSD values and radii of gyration for low free energy regions decrease

simultaneously with temperature from 1700 K to 1460 K to 1000 K). For protein

A and 1E0G, the low free energy region at 1000 K extends all the way to the

low radius of gyration and high RMSD values. For protein A, two low free energy
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regions remain as the temperature is decreased to 600 K, one being the native, and

one being the mirror image. For 1E0G, the low free energy region at 600 K with

low radius of gyration but high RMSD appears first and, as the temperature is

lowered (not shown here), the native region becomes the lowest free energy basin.

However, this occurs at very low temperatures, as described above. This explains

why the heat capacity peaks for both protein A, and 1E0G are broad and irregular.

The two main events, collapse, and folding to the native state, occur at different

temperatures.

5.5 Conclusions

In the present work, we implemented REM, REMUCA and REMUCAREM algo-

rithms with the UNRES force field, utilizing Monte Carlo and Molecular Dynamics

techniques. First, we tested all the algorithms on a simple poly-L-alanine system.

For both the MC and MD algorithms, we obtained good agreement for heat ca-

pacity and average energy curves, which shows that all the simulations converged

to the same distribution, and that our implementation works as expected.

Next, we applied the simulations to two proteins, namely to 1BDD and 1E0G.

First, the 1BDD simulations performed reasonably well. The best performance was

observed for the Replica Exchange algorithm in both the MC and MD simulations,

since REM appeared to be much less sensitive to the input parameters (the only

important parameter is the distribution of temperatures). In order to carry out a

random walk, REMUCA and REMUCAREM depend on a proper estimation of the

input weights and, as for ala20, both REMUCA and REMUCAREM simulations

had to be reweighted in order to obtain reasonably flat histograms. A trapping

problem occurred at low energies, which was alleviated by raising the lower energy
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boundary for multicanonical simulations. However, by excluding a certain energy

region from being sampled, the agreement among the heat capacity curves for all

simulations was not so good.

Since 1E0G has a more complicated fold than 1BDD, multicanonical simula-

tions broke down, and only Replica Exchange simulations were capable of exploring

the energy region and computing the thermodynamic averages. This observation

agrees with that from the study by Aleksenko et al71 who concluded that the gen-

eralized ensemble approach is a useful study tool for proteins up to 30-40 residues

with simple topology such as the α-helix. Furthermore, since the MD version of

REMUCA and REMUCAREM use the derivative of the entropy function, MD

multicanonical simulations are even more sensitive than their MC counterparts;

therefore, they are more difficult to implement. Conversely, MD is much more

capable of exploring the energy landscape than MC; hence, MD simulations are

much more useful for larger systems.

Finally, we analyzed data from our REM MD simulations for all three test

systems, and calculated free energy maps as a function of RMSD and radius of

gyration. The free energy calculations show the correct folding behavior for poly-

L-alanine and protein A while, for 1E0G, the native structure had the lowest free

energy only at very low temperatures; hence, the entropy contribution is much

larger than that for the same temperature in protein A and ala20. The larger

contribution from entropy means more accessible conformations for a given tem-

perature. For the same temperature, ala20 has the smallest entropy contribution,

followed by protein A, and then by 1E0G.

Although both REMUCA and REMUCAREM seem to have potential as sam-

pling methods applied to smaller systems, Replica Exchange utilizing MD, coupled
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with multiplexing, appears to offer more insight into the behavior of protein fold-

ing for more complicated systems with a rough energy landscape. Moreover, since

Replica Exchange is easy to implement and has few parameters to adjust, it is very

suitable for implementation in the future revision of our hierarchical optimization

procedure,69 which is currently under development in our laboratory. The new

optimization procedure is based on a hierarchical design of the potential-energy

landscape such that the energy decrease follows the increase of native-likeness68 and

utilizes MD as a sampling method to capture as much physics as possible. Prelimi-

nary tests (unpublished data) show that Replica Exchange together with Umbrella

Sampling72 (introduced when the native region is not sufficiently covered with the

initial parameter set) covers a broader region of conformational space, and thus

produces better statistics for hierarchical optimization. Consequently, this will

allow us to produce a coarse-grained force field suitable for Molecular Dynamics

simulations, which will be capable of more accurate evaluation of thermodynamic

quantities.
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Chapter 6

Conclusion
In the present work, we studied protein folding with a coarse-grained representation

of the polypeptide chain. For this purpose, three projects were reported in present

work.

First, to extend the scope of our method of energy-based protein-structure

prediction to large proteins, we developed an efficient method for searching for

optimal packing of α-helices.1 It treats α-helices as rigid bodies and uses a simpli-

fied Lennard-Jones potential with Miyazawa-Jernigan contact-energy parameters2

to describe the interactions between the α-helical elements in this coarse-grained

system. Global conformational searches to generate packing arrangements rapidly

are carried out with a CFMC type of approach. The results for 42 proteins show

that the approach reproduces native-like folds of α-helical proteins as low-energy

local minima of this highly simplified potential function. The method was applied

with very good results in the CASP6 exercise; we correctly predicted the topology

of target T0198 (a 235-residue protein). Currently, only α-helices are treated by

this simple procedure, but inclusion of β-strands and sheets in the model would

extend the applicability of the procedure to many proteins. For this, it will be

necessary to address the issue of hydrogen bonds which is currently not treated.

Next, we combined the Replica Exchange Monte Carlo (REMC)3 method with

our Monte Carlo-Minimization (MCM)4, 5 method into the Replica Exchange Monte

Carlo with Minimization (REMCM) method6 and applied it to global conforma-
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tional searches of UNRES chains. Like MCM, the REMCM method is based

on perturbation of the current conformation and subsequent local energy mini-

mization; then the acceptance/rejection of the new conformation is based on the

Metropolis test. However, as in REMC, trajectories are run at various tempera-

tures and conformations can change their assignment to particular temperatures

based on a modified Metropolis test. Application of this method to test proteins:

protein A (α), 1CLB (α), 1E0L (α + β), and 1IGD (α + β) showed that REMCM

performs better than MCM, REMC, and CFMC7 and comparably to CSA.8 Al-

though REMCM is a promising global optimization technique, the focus in our

laboratory has been slowly shifting to predict not only the final folded structure

but also the kinetics and mechanism of folding. Because the global optimization

methods using minimization violate the detailed balance condition, methods which

provide canonical sampling such as MC or MD are much more useful for this pur-

pose.

Finally, we implemented efficient methods for calculating thermodynamic av-

erages with UNRES,9 namely a Replica Exchange method (REM),3 a Replica Ex-

change Multicanonical method (REMUCA),10 and Replica Exchange Multicanoni-

cal with Replica Exchange (REMUCAREM),10 in both Monte Carlo and Molecular

Dynamics versions. Application to a small peptide (ala20) and two small proteins

(1BDD, 1E0G) showed that calculated thermodynamic averages, such as canonical

average energy and heat capacity, were in good agreement among all simulations

for poly-L-alanine, showing that the algorithms were implemented correctly, and

that all three algorithms are equally effective for small systems. For larger sys-

tems, such as 1BDD and 1E0G, Replica Exchange appeared as the most capable

technique for sampling rugged energy surfaces such as UNRES. Especially Replica
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Exchange Molecular Dynamics coupled with multiplexing appears to be a powerful

and scalable method for calculating thermodynamic quantities. For these reasons

we used REM MD to calculate free energy surfaces for all systems, which en-

abled us to visualize the deficiencies of the UNRES force field with current energy

parameters.

The last project in the present work describes a first attempt to calculate ther-

modynamic averages with the UNRES force field. In order to bring the calculated

results closer to experimental ones, the UNRES energy function must be repa-

rameterized for canonical simulations such as MC or MD. For this to occur, the

CSA method has to be replaced by MD as the component of the hierarchical op-

timization of the UNRES energy function, responsible for providing decoy sets

for different levels. This would effectively replace a database representing local

minima of the conformational space, with a database of MD decoys, which would

provide configurational entropy for the system. Decoy sets would be generated by

running REM MD simulations at temperatures corresponding to complete unfold-

ing, partial folding, and complete folding. These temperatures can be chosen based

on experimental data of folding for the training proteins. The MD runs would be

carried out with restrains imposed on the quantitative measures of native-likeness

of parts of the molecule and/or the entire molecule. Different restraints would cor-

respond to different extent of folding according to the pre-defined hierarchy. The

Weighted Histogram Analysis Method (WHAM)11, 12 can be used to remove the

restraining potentials from the calculated free energies and averages. This would

provide much better coverage of the conformational space compared to the proce-

dure described in section 3.2 where only global and local (in the neighborhood of

the experimental structure) CSA searches are carried out. Once a more physical
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UNRES force field is obtained, kinetic and thermodynamic studies can be carried

out on large systems.

Although REMD is a powerful method for exploring free energy landscapes, it

does not provide direct information about kinetics. To circumvent this problem,

the algorithm developed by Andrec et al.13 could be implemented. In this algo-

rithm the power of REMD sampling is combined with a kinetic network model

to provide kinetics. REMD simulations are used to generate a lattice of states

which are then constructed into a network, and kinetic transitions between states

that have sufficient structural similarity are allowed. The qualitative features of

the kinetics and corresponding pathways between macrostates can be understood

by analyzing the overall network structure or constructing kinetic Monte Carlo

”trajectories” that consist of Markovian random walks on the lattice.

Because the secondary degrees of freedom are removed in the UNRES repre-

sentation of the polypeptide chain, UNRES provides both a decrease in the cost

of computation and extension of the time scale. Recently, kinetic studies with

the UNRES force field on Staphylococcal protein A were carried out, using 400

Langevin dynamics trajectories.14 The results suggest that the UNRES force field

is well suited for studying the kinetics of folding. It is evident that Replica Ex-

change MD provides an improvement in sampling of the conformational space over

traditional MD, and therefore if kinetic information about the system could be

retrieved from such simulations, this should allow for kinetic studies with systems

for which traditional molecular dynamics is ineffective. By implementing the ki-

netic network model with REMD using UNRES and applying it to larger systems,

a powerful tool would be created especially in helping to clarify issues such as the

nature of folding funnels, intermediates, and kinetic bottlenecks.
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Appendix A

Chapter 2: CFMC; Chapter 4: CSA,

CFMC
The following sections describe the global optimization methods used with the

UNRES force field.

A.1 Conformational Space Annealing (CSA)

Conformational Space Annealing (CSA)1–3 is a powerful global optimization method

that has been used successfully with UNRES in the CASP3 through CASP6 blind

structure prediction exercises.4–6 CSA employs a genetic algorithm and maintains

a population of parent structures which evolve using genetic operators. It differs

from other genetic optimization methods by carrying out local energy minimiza-

tion for all conformations, using the Secant Unconstrained Minimization Solver

(SUMSL),7 and by employing a similarity measure to maintain a database of con-

formations.

The algorithm anneals in the conformational space by decreasing the similarity

measure over the course of the run, which enables CSA not only to search the

entire conformational space globally for low-energy fold families (at the start of the

search), but also to search the candidate fold families more locally for the lowest-

energy representatives (at the end of the search). The purpose of the similarity
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cutoff is to maintain a diverse population of structures, i.e. to make sure that the

saved conformations are suitably different from one another. At the beginning of

a search, the similarity measure cutoff is large, which forces the diverse population

to be scattered sparsely in conformation space. As the search progresses, the cutoff

decreases and the conformations in the population are allowed to have a higher

degree of similarity. By the end of the search, the cutoff is small, and structures

in the population can be close, permitting a better local search of the low-energy

regions discovered earlier in the search.

Figure A.1: CSA algorithm1, 2, 8

Figure A.1 shows the basic CSA algorithm. First, a set of random confor-

mations is produced by generating random, non-overlapping conformations and

minimizing them locally. This random set is the first CSA bank and its conforma-
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tions are unchanged through the entire search. The CSA bank is a changing set of

conformations that represent the best structures at the current stage of the search.

At the beginning of the search, the CSA bank is just a copy of the first CSA bank.

The initial cutoff distance is taken as one-half the average distance between all the

structures in the first CSA bank.

Most of CSA work takes place in a loop in which the parent conformations

generate new trial conformations which are subsequently minimized and used to

update the CSA bank. Each such iteration is called a CSA step. Seed confor-

mations used to generate new conformations are chosen from the CSA bank. To

ensure that all the conformations in the CSA bank are eventually used as seeds,

and that particular conformations are not overused, CSA keeps track of which

seeds have already been used, and preferentially selects unused seeds. Within a

single Step, CSA also tries to select seeds that are conformationally diverse by

picking additional seeds that are not close to the seeds already selected during the

Step.

A variety of methods are used to generate the trial conformations. A seed

conformation is taken from the CSA bank and then perturbed by copying portions

of local structure from a different conformation in the CSA bank or first CSA

bank. The combinations of perturbing variables that can be taken from the other

conformation are:

1. The side-chain α and β angles for a single residue.

2. The backbone γ and θ angles for a single residue.

3. All four angles for a single residue.

4. All four angles for a window of consecutive residues.
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5. All four angles for a window of consecutive residues comprising a β-hairpin.

6. Pair of remote interacting β-strands.

7. Several non-genetic moves have been added3 to improve the sampling effi-

ciency of the CSA method:

(a) A seed can be perturbed by shifting the position of one of its β-hairpins

by one or two residues.

(b) Carefully designed local move (where only a portion of a backbone can

be perturbed, while keeping the rest of the protein frozen).9

Each trial conformation is checked for overlapping side chains, which are removed

and carefully designed side-chain moves are applied to relax the conformations.9

During each minimization stage not only trial conformations, but also the seed

structures, are minimized, in case the seed structures had not been fully minimized

previously due to a cutoff in the allowed number of energy or gradient evaluations

per minimization.

To update the bank, a new structure is either added, rejected or it replaces

an old structure. If the new structure has higher energy than every conformation

in the Bank, it is discarded. If the new structure is a reminimization of a seed

conformation, it replaces the seed conformation if it is lower in energy, otherwise it

is discarded. If the new structure is not a reminimized seed structure, then its dis-

tances from all conformations in the Bank are computed. If no Bank conformations

are within the cutoff distance, the new conformation replaces the highest-energy

structure in the Bank. If the new structure within the cutoff distance of one or

more structures in the Bank, their energies are compared and the lower energy

conformation is kept.
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Once the Bank has been updated, the distance cutoff is decreased (until it

reaches a minimum cutoff value), and CSA begins a new CSA step by selecting

a new set of seed conformations. If all the CSA bank structures have been used

as seeds, then all the conformations are once again considered unused so that all

can be used as seeds again. This recycling of previous seed structures is usually

limited to two times. If the maximum number of recyclings has already been

reached and the search is not yet complete, the sizes of the First Bank and Bank

are increased by an amount equal to their initial sizes. CSA then continues from

the the beginning, generating new random conformations that are then added to

the First Bank and Bank. The search continues with a larger pool of random and

current structures from which to choose.

The conformational “distance” between two conformations in the UNRES ge-

ometry is defined as the absolute value of the difference in backbone dihedral angles

between the two conformations, averaged over all such angles in the structure.

A.2 Conformational Family Monte Carlo (CFMC)

Conformational Family Monte Carlo incorporates some of the features of CSA,

but uses a Monte Carlo approach rather than a genetic algorithm, and explicitly

clusters the population of structures into conformational families. A database of

conformations is maintained and updated throughout the search, with the confor-

mations divided into families based upon their Cα coordinate rms distances from

one another by means of a minimal-tree clustering method.10 A maximum of Nfam

families are allowed at any time, and the families are separated by a distance cutoff

dfam; i.e., no conformation in one family will be within dfam of a conformation in

another family. Within a family, a maximum of Nconf conformations are allowed,
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and no conformations are permitted to be within a distance cutoff dconf of one

another. These distance cutoffs may be decreased over the course of a search; such

an annealing scheme serves a similar purpose as in CSA—it focuses on smaller,

low-energy regions later in the search. By using the metropolis criterion CFMC

also anneals in temperature over the course of the run, thus the annealing scheme

is expanded into two dimensions.

Figure A.2 shows the basic CFMC algorithm. The first step of CFMC is to

generate a starting database of distinct conformations. Nfam random structures

are generated and locally minimized, with each one starting as a representative of a

different family. Of course, any conformations within dfam of others are eliminated

and replaced with new ones to ensure that all the starting conformations in the

database truly represent different families.

After the starting database is constructed, CFMC enters its main loop, in

which new conformations are generated, minimized, and then incorporated into

the database. Initially, the lowest-energy family (judging by the lowest-energy

structure in each) in the database is chosen as the generating family. A random

conformation from the generating family is chosen based on a Boltzmann criterion

of the energies of the conformations in the family relative to the energy spread of

the family. This structure is then perturbed in one of ten possible ways, falling

into two broad “global” and “local” categories. In each broad category there are

five move types:

1. Backbone perturbations in a single residue.

2. Side-chain perturbations in a single residue.

3. Backbone perturbations in a window of consecutive residues.
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4. Side-chain perturbations in a window of consecutive residues.

5. Interpolation of two conformations, in which the variables of two structures

are averaged to generate a new conformation.

Each of the first four types of perturbations have two subclasses; the angles

affected by the moves can be perturbed by adding random values to them, or by

taking the values from another conformation in the database. For small, local

moves, the range of the random perturbations is small, and values can be taken

only from other conformations in the same family. For larger, global moves, the

range of the random perturbations is larger, and values can be taken only from

conformations in other families. The last type of move averages all the variables

of the current structure with another structure in the database, with a random

relative weighting of the two conformations. Again, the other conformation used

in the interpolation is another conformation in the same family, or a conformation

in a different family, depending on whether the move is a local or global one. Once

the new conformation is generated, it is locally minimized and then evaluated for

inclusion in the database.

When evaluating a new conformation, its distance from all the existing confor-

mations in the database must be calculated. With these distances, the families to

which the conformation could belong (i.e., those containing a conformation closer

than dfam), and the conformations to which it is very close (i.e., closer than dconf),

can be determined. If there is a very close conformation in the database that has

lower energy than the current structure being evaluated, then the current struc-

ture is rejected. If there are no existing families to which the new conformation

could belong, it represents a new family. If there is room for another family in

the database, it is added; otherwise, it replaces the highest-energy family if it has
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a lower energy than that family. The second case to consider is when the new

conformation clearly belongs in only one existing family. If the new conformation

is not very close to one of the existing ones, and there is room in the family for

another conformation, it is added to the family. If it is very close to existing con-

formations, the very close conformations are eliminated, since a check has already

been made that the new conformation has lower energy than all those very close

to it. If there aren’t any very close conformations, but there isn’t room for a new

one in the family, the new conformation replaces the highest-energy conformation

in the family, if that highest-energy conformation is also higher in energy than

the new conformation. Since this process may have eliminated conformations that

connected the family together, the family must be checked to see if it has split into

more than one family. If it has split, and there isn’t room for more families in the

database, the highest-energy families are eliminated. The last case is when the

new conformation potentially belongs to several different families. In this case, all

those families are merged into one, any very close conformations are eliminated,

the high-energy conformations are eliminated if the family is too large, and the

family is reclustered to check if it split as the result of any eliminations. If it has

split, and there isn’t room for more families in the database, the highest-energy

families are eliminated.

Once the database is updated, the family to which the new conformation be-

longs is compared to the generating family. If the family to which the new family

belongs is different than the generating family, the Metropolis criterion is applied

to determine whether the generating family will switch to the new one. If the gen-

erating family was eliminated or merged during the updating procedure, then the

generating family is changed to the new family. If both the generating family and
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the new conformation were eliminated, however, then a new generating family is

chosen based on a Boltzmann criterion of the family energies relative to the family

energy spread. The energy of a family is defined as the energy of its lowest-energy

member.

In order to parallelize CFMC, several threads with different generating fami-

lies are started concurrently, and each thread can produce new conformations for

minimization and testing on several processors at once. Since all the threads are

simultaneously modifying the same database and the generating families for the

threads are continually changing, all the threads are periodically reset and the

generating families set to distinct families. Also, since several different conforma-

tions for a single thread are generated from the same generating family, special

care is taken to maintain an appropriate sequence of current conformations and

generating families.11
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Figure A.2: CFMC algorithm11
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R.; O ldziej, S.; Wedemeyer, W. J.; Gibson, K. D.; Arnautova, Y. A.; Saunders,
J.; Ye, Y.-J.; Scheraga, H. A., Proc. Natl. Acad. Sci., USA 2001, 98, 2329.

[6] Oldziej, S.; Czaplewski, C.; Liwo, A.; Chinchio, M.; Nanias, M.; Vila, J.A.;
Khalili, M.; Arnautova, Y.A.; Jagielska, A.; Makowski, M.; Schafroth, H.D.;
Kazmierkiewicz, R.; Ripoll, D.R.; Pillardy, J.; Saunders, J.A; Kang, Y.K.;
Gibson, K.D.; Scheraga, H.A., Proc. Natl. Acad. Sci. USA 2005, 102, 7547.

[7] Gay, D. M., ACM Trans. Math. Software 1983, 9, 503.

[8] Lee, J.; Pillardy, J.; Czaplewski, C.; Arnautova, Y.; Ripoll, D. R.; Liwo, A.;
Gibson, K. D.; Wawak, R. J.; Scheraga, H. A., Comp. Phys. Comm. 2000,
128, 399.

[9] Chinchio, M.; Scheraga, H. A., J. Comp. Chem. 2005, To be submitted for
publication.
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