
TAIL INFERENCE: WHERE DOES THE TAIL BEGIN?
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Abstract. The quality of estimation of tail parameters, such as tail
index in the univariate case, or the spectral measure in the multivari-
ate case, depends crucially on the part of the sample included in the
estimation. A simple approach involving sequential statistical testing is
proposed in order to choose this part of the sample. This method can be
used both in the univariate and multivariate cases. It is computationally
efficient, and can be easily automated. No visual inspection of the data
is required. We establish consistency of the Hill estimator when used in
conjunction with the proposed method, as well describe its asymptotic
fluctuations. We compare our method to existing methods in univari-
ate and multivariate tail estimation, and use it to analyze Danish fire
insurance data.

1. Introduction

Let F be a univariate distribution (function). F is said to have a regularly

varying right tail of index α > 0 if the tail function F̄ = 1− F satisfies

(1.1) lim
x→∞

F̄ (tx)

F̄ (x)
= t−α

for all t > 0. The index α measures the heaviness of the tail. The smaller is

α, the heavier is the right tail of the distribution. An encyclopedic treatment

of regular variation is given by Resnick (1987, 2007).

Estimating the tail index α is of crucial importance in many applications

of stochastic models, and a number of estimators have been designed for that

purpose. The best known estimator of the tail index is the Hill estimator,

introduced by Hill (1975), and it is defined as follows. Assume that X1,n ≤
X2,n ≤ . . . ≤ Xn,n are the order statistics from a positive sample (or from

the positive part of a general sample) X1, . . . , Xn. The Hill estimator based
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on k upper order statistics is defined as

(1.2) Hk,n :=
1

k

k−1∑
i=0

log
Xn−i,n
Xn−k,n

If the sample is an i.i.d. sample from a distribution with a regularly varying

right tail with tail index α, then, under the conditions n → ∞, k → ∞
and k

n → 0, the Hill estimator Hk,n converges in probability to γ = 1
α

(see Mason (1982)). If, additionally, k/ log logn → ∞, then even almost

sure convergence holds (Deheuvels et al. (1988)). The role of the condition
k
n → 0 is to ensure that only data from the tail enter into the estimation. It

has also been shown that the Hill estimator remains consistent under certain

deviations from the i.i.d. assumption; a summary is in Theorem 6.4.6 of

Embrechts et al. (1997).

In practice, when the Hill estimator is applied to a finite sample, a problem

of choosing the appropriate number k of upper order statistics to construct

the estimator arises. This problem becomes particularly critical because

the Hill estimator has proved to be very sensitive to the choice of k. This

sensitivity is shared by other estimators of the tail index, such as the Pickands

estimator (see Dekkers and de Haan (1989)) and the moment estimator (see

Dekkers et al. (1989)). Sometimes visual techniques are used: the estimator,

e.g. the Hill estimator, is plotted for a range of k, and then one looks for a

part of the plot that looks stable. The corresponding stable value is used to

estimate α, and several smoothing techniques have been introduced to assist

in this visual analysis; see Resnick and Stărică (1997). Still, the procedure

is difficult to automate, and even visually it is sometimes difficult to use, as

the so-called “Hill horror plots” demonstrate; see Embrechts et al. (1997).

A systematic way of selecting a “good” number of upper order statistics

in Hill estimator originated with Hall (1990) and is based on the assumption

that distribution F satisfies a further assumption of second order regular

variation (which we introduce below). Under this assumption it becomes

possible to look for k = k(n) that minimizes the asymptotic bias of the

estimator. This method was later refined by Danielsson et al. (2001) who

suggested a two-level bootstrap procedure that works under minimal a priori
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available information. An alternative approach of finding this asymptotically

optimal number k of upper order statistics was suggested, under slightly more

restrictive assumptions, by Drees and Kaufmann (1998).

In contrast, instead of viewing the problem of selecting the number k in

Hill estimator (or any related estimator) as a problem of optimizing asymp-

totic efficiency, we view it as the problem of deciding which part of a given

sample contains reliable information on the tail of the distribution F . Put

another way, we would like to know where in a sample the tail begins. Much

of our motivation lies in the multivariate context: given a sample of random

vectors (potentially, in a highly dimensional space) with an appropriately

defined regularly varying tail we would like to test a variety of different

subvectors of these vectors for tail independence. This involves repeated es-

timation of the so called tail measure, a time consuming procedure, which is

also highly sensitive to the contamination of the tail by the center of the dis-

tribution (see Resnick (2007)). It is, therefore, desirable to have a reasonably

quick way of deciding which part of the sample belongs to the tail.

Our approach is based on a simple idea which we now introduce informally.

It is well known that, under the assumption (1.1) of regular variation, vague

convergence of point processes holds,

Nn =
n∑
i=1

δXi/an
v⇒N∗ ,

where δx is a point mass at x, and (an) a positive sequence satisfying

F̄ (an) ∼ 1/n as n→∞. Further, N∗ is a Poisson random measure on (0,∞]

with measure measure µ∗(x,∞] = x−α, x > 0; see Resnick (1987). We inter-

pret this result as saying that any upper order statistics in the sample that

fall in the tail region behave like points of a Poisson random measure with a

power intensity. This property can be tested statistically, and sequentially.

Specifically, one can perform appropriate statistical tests on the subsamples

Xn−k+1,n, Xn−k+2,n, . . . , Xn,n while increasing k, and terminate the proce-

dure once the k upper order statistics stop resembling points of a Poisson

random measure with a power intensity.
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Interestingly, Hill himself suggested a sequential statistical procedure for

choosing k in his original paper Hill (1975). He considered the case when

the distribution F had an exact Pareto tail beyond an unknown threshold

D. If Xn−k−1,n > D, then, under the exact Pareto tail assumption, the

random variables iVi := i log
Xn−i,n
Xn−i−1,n

for i = 0, 1, 2 . . . , k are independent

exponential random variables of parameter α. On the other hand, for k too

large, the behavior of {iVi} would exhibit discrepancies from the exponential

distribution. One can sequentially use exponential goodness of fit tests on

{iVi : i = 1, . . . k} for increasing k, until the hypothesis of exponentiality is

rejected.

One can view Hill’s procedure as a differential version of our sequential

procedure. It has been criticized, perhaps too harshly, by Hall and Welsh

(1985) as tending to result in too large a number k of order statistics. We

use Hill’s procedure as one of the benchmarks against which we test our

approach in Section 3.

The formal definition of the our estimation procedure is given in Section 2.

As the previous discussion indicates, we only need to decide how to test for

a Poisson process with a power intensity. The test we choose in this paper

becomes a certain test for exponentiality, but it is possible that other tests

will perform equally well or, perhaps, even better. We prove the consistency

of our estimator, and present a weak limit theorem describing the deviations

of the estimator from the true value of the tail exponent. In Section 3 we test

the performance of our estimator on simulated univariate data, and compare

it to several benchmark estimators. We investigate how our rule of deciding

on the tail part of the sample performs in estimation of the tail measure on

simulated bivariate data in Section 4, and on Danish fire insurance data in

Section 5.

2. The estimation procedure

Recall from the previous section that we would like to test sequentially

the upper order statistics for resembling points of a Poisson process with

a power intensity. We use the following property of a Poisson process: if



TAIL INFERENCE: WHERE DOES THE TAIL BEGIN? 5

V1 > V2 > . . . > Vk are the largest points of a Poisson process on (0,∞) with

the mean measure µ∗(x,∞) = x−α, x > 0, then {Vi/Vk, i = 1, . . . , k − 1},
considered as a set, forms an i.i.d. sample from the Pareto distribution with

the tail x−α, x > 1, and taking the logarithms transforms this sample into

an i.i.d. sample of exponential random variable with the mean γ = 1/α.

Accordingly, our procedure for deciding on the number k of the upper order

statistics to use in the Hill estimator consists of sequentially testing the

samples {log
Xn−i,n
Xn−k,n

: i = 0, 1 . . . k−1} for the null hypothesis of exponential

distribution. Our choice of sample fraction k used in the tail estimation is

then Nn − 1, where Nn is the smallest k such that the test described above

rejects the null hypothesis of exponentiality.

In order to implement this procedure one has to choose a test of expo-

nentiality. Once this has been done, the only remaining choice is that of the

significance level of the test. Such choices are needed in all procedures to se-

lect the number of the order statistics to use (recall the subsample size in the

bootstrap procedure of Danielsson et al. (2001), or the threshold sequence of

Drees and Kaufmann (1998)). We suggest a canonical way of choosing this

significance level that appears to work reasonably well in the situations we

have tried.

To test for exponentiality we choose the moment statistic

Qk,n =

√
k

2

 1
k

∑k−1
i=0

(
log

Xn−i,n
Xn−k,n

)2
(
1
k

∑k−1
i=0 log

Xn−i,n
Xn−k,n

)2 − 2

 ;

its large sample distribution under the null hypothesis assumption of expo-

nentiality is the standard normal distribution (Dahiya and Gurland (1972)).

One could try to implement a sequential testing procedure by choosing a crit-

ical value ω (perhaps, a 99% quantile with respect to the limiting standard

normal distribution) and use N∗n − 1 upper order statistics, where

(2.1) N∗n := inf{k : 1 ≤ k ≤ n, |Qk,n| ≥ ω}

The problem with this implementation is that N∗n stays tight as the sample

size increases, and this contradicts the obvious requirement that to get any

averaging effect we need to take more and more order statistics into account.
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Therefore, the critical value needs to increase with the sample size n. We

achieve this by selecting an increasing sequence θn ↑ ∞; this is the degree of

freedom we mentioned above. On the other hand, in order to avoid taking

into account too many order statistics, we choose to make it easier to reject

the null hypothesis for larger k. It turns out that a good way to put all of

this together is to set

(2.2) Nn := inf

{
k : 1 ≤ k ≤ n, |Qk,n| ≥ ω

√
θn
k

}
.

We will see in Theorem 1 below that, under a suitable growth condition on

θn, this definition of Nn makes it, roughly, proportional to θn.

In order to state our first result, we introduce formally the notion of

second order regular variation. Let U =
(

1
1−F

)←
be the generalized inverse

function. We assume that there exists ρ < 0 and a function A regularly

varying at infinity with exponent ρ such that

(2.3) lim
r→∞

U(rx)
U(r) − x

γ

A(r)
= xγ

xρ − 1

ρ

(recall that γ = 1/α). We also assume, without loss of generality, that A is

continuous and |A| is eventually decreasing.

Theorem 1. Let ω > 0 and (θn) an increasing sequence such that θn ↑ ∞

and θn = o

(
n

2|ρ|
1+2|ρ|

)
as n→∞. Then

Nn

θn
⇒ τω , where τω is the first time

a standard Brownian motion hits ±ω.

To prove the theorem, first we need the following lemma, which is a func-

tional version of Lemma 3.5.5 in de Haan and Ferreira (2006). In this lemma

we work with spaces of the type D[0,∞), D2[0,∞), D[δ,∞) and D2[δ,∞)

for δ > 0. The latter spaces are, of course, only notationally different from

the former spaces. We endow the D2 spaces with the (strong) J1 topology.

See Whitt (2002) for details.
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Lemma 2.1. For n ≥ 1 define

M j
θn,n

(t) =



0 if 0 ≤ t < 1

θn
1

bθntc
∑bθntc−1

i=0

(
log

Xn−i,n
Xn−bθntc,n

)j
if

1

θn
≤ t ≤ n

θn
1

n

∑n−1
i=0

(
log

Xn−i,n
X1,n

)j
if t >

n

θn
,

j = 1, 2. Then

√
θnt


M1
θn,n

(t)

γ
− 1

M2
θn,n

(t)

γ2
− 2

⇒ [
W1(t)
W2(t)

]

in D2[0,∞), where
(
(W1(t),W2(t)), t ≥ 0

)
is a two-dimensional zero mean

Brownian motion with covariance matrix[
1 4
4 20

]
.

Proof. Fix 0 < ε < |ρ|. As in Lemma 3.5.5 in de Haan and Ferreira (2006),

there are i.i.d. Pareto(1) random variables Y1, Y2, . . . , Yn (i.e. P (Y1 > y) =

1/y for y ≥ 1), a function A0 ∼ A and r0 > 0 with the property that

log(
Yn−i,n
Yn−k,n

) +A0(Yn−k,n)
1

ρ

((
Yn−i,n
Yn−k,n

)ρ
− 1

)
(2.4)

−ε|A0(Yn−k,n)|1
ρ

(
Yn−i,n
Yn−k,n

)ρ+ε
≤1

γ
log

Xn−i,n
Xn−k,n

≤

log(
Yn−i,n
Yn−k,n

) +A0(Yn−k,n)
1

ρ

((
Yn−i,n
Yn−k,n

)ρ
− 1

)
+ε|A0(Yn−k,n)|

(
Yn−i,n
Yn−k,n

)ρ+ε
if Yn−k,n > r0; note that the latter condition is satisfied for large n if k =

O(θn) = o (n) under the assumptions of the lemma.
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Hence for fixed T > 0, eventually (i.e. for n large) we have

(2.5)

bθntc√
θn

(
M1
θn,n

(t)

γ
− 1

)
≤ 1√

θn

bθntc−1∑
i=0

(
log

Yn−i,n
Yn−bθntc,n

− 1

)

+
1

ρ

√
θnA0(Yn−bθntc,n)

1

θn

bθntc−1∑
i=0

((
Yn−i,n

Yn−bθntc,n

)ρ
− 1

)

+ε
√
θn|A0(Yn−bθntc,n)| 1

θn

bθntc−1∑
i=0

((
Yn−i,n

Yn−bθntc,n

)ρ+ε)
for every t ∈ [0, T ]. Note that all the terms in the right hand side of (2.5)

(which we interpret as 0 for 0 ≤ t < 1/θn) are in D[0, T ]. Let us denote the

second and the third terms by W
(2)
n (t) and W

(3)
n (t), correspondingly. We

start with showing that

(2.6) sup
0≤t≤T

|W (2)
n (t)| → 0 in probability as n→∞.

Since
A0(Yn−bθntc,n)

A(Yn−bθntc,n)
→ 1 a.s uniformly in t ∈ [0, T ], we may and will

replace A0 by A in this calculation. Further, as |A| is eventually decreasing,

for n large enough we have

|A(Yn−bθntc,n)| ≤ |A(Yn−bθnT c,n)|

for all relevant t. Furthermore, by Corollary 2.2.2 in de Haan and Ferreira

(2006),
bθnT c
n

Yn−bθnT c
P→ 1 ,

and, since A is regularly varying,
A(Yn−bθnT c)

A( n
bθnT c)

P→ 1 .

Putting everything together, we see that, in order to prove (2.6), it is enough

to prove that

lim
n→∞

P

 sup
0≤t≤T

∣∣∣∣∣∣
√
θnA(

n

bθnT c
)

1

θn

bθntc−1∑
i=0

((
Yn−i,n

Yn−bθntc,n

)ρ
− 1

)∣∣∣∣∣∣ > ζ

 = 0 .

Let µρ = 1/(1− ρ) = EY ρ
1 . For large n we have

P

 sup
0≤t≤T

∣∣∣∣∣∣
√
θnA(

n

bθnT c
)

1

θn

bθntc−1∑
i=0

((
Yn−i,n

Yn−bθntc,n

)ρ
− 1

)∣∣∣∣∣∣ > ζ
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≤ P

 sup
0≤t≤T

∣∣∣∣∣∣
√
θnA(

n

bθnT c
)

1

θn

bθntc−1∑
i=0

((
Yn−i,n

Yn−bθntc,n

)ρ
− µρ

)∣∣∣∣∣∣ > ζ/2

 ,

since √
θnA(

n

bθnT c
)→ 0

as n → ∞, by the growth assumption on the sequence (θn). The process

above is a step function with jumps at multiples of
1

θn
, hence largest value of

the process is achieved at one of these steps. Therefore, the above probability

does not exceed
bTθnc∑
j=1

P

(∣∣∣∣∣√θnA(
n

bθnT c
)

1

θn

j−1∑
i=0

((
Yn−i,n
Yn−j,n

)ρ
− µρ

)∣∣∣∣∣ > ζ/2

)

≤
bTθnc∑
j=1

(√
θnA(

n

bθnT c
)
)2 4

ζ2θ2n
E

[
j−1∑
i=0

((
Yn−i,n
Yn−j,n

)ρ
− µρ

)]2
.

For each fixed j, by the Renyi representation,
{
Yn−i,n
Yn−j,n

}
i

d
=
{
Y ∗j−i,j

}
i

where Y ∗0 , Y ∗1 , . . . , Y ∗j−1 are, once again, i.i.d. Pareto(1) random variables.

Therefore,

E

[
j−1∑
i=0

((
Yn−i,n
Yn−j,n

)ρ
− µρ

)]2
= jVar(Y ∗ρ).

By the growth assumption of the sequence (θn) we conclude that

bTθnc∑
j=1

(√
θnA(

n

bθnT c
)
)2 4

ζ2θ2n
E

[
j−1∑
i=0

((
Yn−i,n
Yn−j,n

)ρ
− µρ

)]2

≤
(√

θnA(
n

bθnT c
)
)2 4

ζ2
Var(Y ∗ρ)

1

θ2n

bTθnc∑
j=1

j → 0

as n→∞. This proves (2.6). In the same way we can show that

(2.7) sup
δ≤t≤T

|W (3)
n (t)| → 0 in probability as n→∞.

Applying the corresponding lower bounds, we see that

(2.8)
bθntc√
θn

(
M1
θn,n

(t)

γ
− 1

)
− 1√

θn

bθntc−1∑
i=0

(
log

Yn−i,n
Yn−bθntc,n

− 1

)
→ 0

t ∈ [δ,∞), uniformly on compact intervals, in probability. Next, we recall

that log Y1 is a standard exponential random variable, so that the differences
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log Yn−i,n− log Yn−i−1,n, i = 0, 1, . . . , n−1 are independent exponential ran-

dom variables with the means 1/(i + 1), i = 0, 1, . . . , n − 1. Therefore,

denoting the ith of these exponential random variables by Ei/(i+ 1), we see

that for k = 1, . . . , n,
k−1∑
i=0

log
Yn−i,n
Yn−k,n

=
k−1∑
i=0

Ei .

Therefore,

(2.9)
bθntc√
θn

(
M1
θn,n

(t)

γ
− 1

)
− 1√

θn

bθntc−1∑
i=0

(Ei − 1)→ 0

t ∈ [δ,∞), uniformly on compact intervals, in probability. Squaring (2.4)

and repeating the argument gives us

(2.10)
bθntc√
θn

(
M2
θn,n

(t)

γ2
− 2

)
− 1√

θn

bθntc−1∑
i=0

(
(E2

i − 2
)
→ 0,

t ∈ [δ,∞), uniformly on compact intervals, in probability.

By Theorem 12.6.1 and Remark 12.6.2 in Whitt (2002), the statement of

the lemma will follow once we check that

1√
θn

( ∑bθntc−1
i=0 (Ei − 1)∑bθntc−1
i=0 ((E2

i − 2)

)
⇒
[
W1(t)
W2(t)

]
in D2[δ,∞), where

(
(W1(t),W2(t)), t ≥ δ

)
is a two-dimensional zero mean

Brownian motion covariance matrix[
1 4
4 20

]
.

This is, however, an immediate consequence of the multivariate version of

Donsker’s theorem; see e.g. Theorem 4.3.5 in Whitt (2002). �

Proof of theorem. We start by showing that for any δ > 0,

(2.11)
√
tQ∗n(t)⇒ 1

2
(W2(t)− 2W1(t))

in D[δ,∞), where
(
(W1(t),W2(t)), t ≥ 0

)
is the two-dimensional Brownian

motion of Lemma 2.1, and

Q∗n(t) =

Qbθntc,n if δ ≤ t ≤ n

θn
,

Qn,n if t >
n

θn
.
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By Theorem 16.7 in Billingsley (1999), we have to prove convergence in

D[δ, T ] for each δ < T <∞. Straightforward algebra shows that

√
tQ∗n(t) =

√
θnt

2

(
M2
θn,n

(t)/γ2 − 2)− 4
(
M1
θn,n

(t)/γ − 1)(
M1
θn,n

(t)
)2
/γ2

−
√
θnt

(
M1
θn,n

(t)/γ − 1)2(
M1
θn,n

(t)
)2
/γ2

:= V (1)
n (t)− V (2)

n (t) ,

δ ≤ t ≤ T , while for 0 ≤ t < 1/n we define both V (1)
n (t) = 0 and V (2)

n (t) = 0.

Call

D(1)
n (t) =

√
θnt

2

[(
M2
θn,n(t)/γ2 − 2)− 4

(
M1
θn,n(t)/γ − 1)

]
, δ ≤ t ≤ T.

Since the limiting process in Lemma 2.1 is continuous, the weak convergence

holds also in the uniform topology (on [δ, T ]), and addition is continuous in

this topology. By Lemma 2.1 and continuous mapping theorem we conclude

that

D(1)
n (t)⇒ 1

2
(W2(t)− 4W1(t))

in D[δ, T ]. Furthermore, by Lemma 2.1,

M1
θn,n(t)/γ → 1

uniformly on [δ, T ] in probability. By Theorem 3.1 in Billingsley (1999) we

conclude that

V (1)
n (t)⇒ 1

2
(W2(t)− 4W1(t))

in D[δ, T ] as well. Similarly,

V (2)
n (t)→ 0

uniformly on [δ, T ] in probability, so that we may apply Theorem 3.1 in

Billingsley (1999) once again and obtain (2.11).

Fix x > 0, and write

P (Nn ≤ θnx) = P

(
|Qk,n| ≥ ω

√
θn
k

for some 1 ≤ k ≤ θnx

)
.

Therefore, for 0 < δ < x we have

P

(
|Qk,n| ≥ ω

√
θn
k

for some θnδ ≤ k ≤ θnx

)
≤ P (Nn ≤ θnx)
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≤ P

(
|Qk,n| ≥ ω

√
θn
k

for some θnδ ≤ k ≤ θnx

)

+P

(
|Qk,n| ≥ ω

√
θn
k

for some 1 ≤ k ≤ θnδ

)
.

We will show that for any 0 < δ < x

(2.12)

lim
n→∞

P

(
|Qk,n| ≥ ω

√
θn
k

for some θnδ ≤ k ≤ θnx

)
= P

(
sup
δ≤t≤x

|B(t)| ≥ ω
)
,

where
(
B(t), t ≥ 0

)
is a standard Brownian motion, while

(2.13) lim
δ→0

lim sup
n→∞

P

(
|Qk,n| ≥ ω

√
θn
k

for some 1 ≤ k ≤ θnδ

)
= 0 .

It will follow from the above relations that

P (Nn ≤ θnx)→ P
(

sup
0≤t≤x

|B(t)| ≥ ω
)

= P (τω ≤ x),

which is what we need for the statement of the theorem.

Observe that for any δ > 0,

P

(
|Qk,n| ≥ ω

√
θn
k

for some θnδ ≤ k ≤ θnx

)

= P

(
|
√
tQ∗n(t)| ≥

√
tω

√
θn

[θnt]
for some δ ≤ t ≤ x

)
= P

(
|
√
tQ∗n(t)| ≥ ω(1 + o(1)) for some δ ≤ t ≤ x

)
(with the same o(1) for all relevant t). Now (2.12) follows from (2.11) and

the continuity of the supremum distribution of the Brownian motion.

In order to show (2.13), we start with showing that, for any δ > 0, both

(2.14) inf
1≤k≤θnδ

M1
k,n is stochastically bounded away from 0, and

sup
1≤k≤θnδ

M1
k,n is stochastically bounded away from infinity.

To see this, we recall from the proof of Lemma 2.1 that(
M1
k,n, 1 ≤ k ≤ θnδ

)
=
(
M1,Y
k,n γ +Wk,n, 1 ≤ k ≤ θnδ

)
,

where (M1,Y
k,n ) is constructed using the standard Pareto random variables,

while

sup
1≤k≤θnδ

|Wk,n| → 0 in probability.
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Therefore, (2.14) will follow once we check it for the standard Pareto random

variables. However, we have seen that, in the latter case,(
M1,Y
k,n , 1 ≤ k ≤ θnδ

)
d
=
(1

k

k∑
i=1

Ei, 1 ≤ k ≤ θnδ
)
,

where E1, E2, . . . are i.i.d. standard exponential random variables, and,

hence, (2.14) follows from the law of large numbers.

We continue by writing

P

(
|Qk,n| ≥ ω

√
θn
k

for some 1 ≤ k ≤ θnδ

)

= P

(
k

∣∣∣∣∣M2
k,n − 2(M1

k,n)2

2(M1
k,n)2

∣∣∣∣∣ > ω
√
θn for some 1 ≤ k ≤ θnδ

)
and, using (2.14), we see that, in order to prove (2.13), it is enough to prove

that

(2.15) lim
δ→0

lim sup
n→∞

P
(
|Rk,n| ≥ ω

√
θn for some 1 ≤ k ≤ θnδ

)
= 0 ,

where

Rk,n = k
M2
k,n − 2(M1

k,n)2

2(M1
k,n)2

, k = 1, 2, . . . , n .

A straightforward algebra allows us to write the above probability as

P

(
k

2

∣∣∣∣∣(M2
k,n

γ2
− 2
)
− 4
(M1

k,n

γ
− 1
)

−2
(M1

k,n

γ
− 1
)2∣∣∣∣∣ > ω

√
θn for some 1 ≤ k ≤ θnδ

)
.

By (2.14), we can write now

P
(
|Rk,n| ≥ ω

√
θn for some 1 ≤ k ≤ θnδ

)
≤ P

(
k

2

(∣∣∣M2
k,n

γ2
− 2
∣∣∣+ 4

∣∣∣M1
k,n

γ
− 1
∣∣∣)) (1 +Kn) ≥ ω

√
θn

for some 1 ≤ k ≤ θnδ
)
,

where (Kn) is a tight family of nonnegative random variables. Since by

Lemma 2.1,

P

(
k

2

(∣∣∣M2
k,n

γ2
− 2
∣∣∣+ 4

∣∣∣M1
k,n

γ
− 1
∣∣∣) ≥ ω√θn for some 1 ≤ k ≤ θnδ

)
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= P

(
sup

0≤t≤δ

√
θnt
(∣∣∣M2

[θnt],n

γ2
− 2
∣∣∣+ 4

∣∣∣M1
[θnt],n

γ
− 1
∣∣∣) > ω

)
→ P ( sup

0≤t≤δ
|B(t)| > ω) ,

where (B) is some Brownian motion, the claim (2.13) follows. This completes

the proof of the theorem. �

The following theorem, which is the main theorem of this section, shows

that using the Hill estimator with the random number of upper order sta-

tistics given by (2.2) is, indeed, a consistent estimator of γ = 1/α. We also

derive a weak limit result for the deviations of the estimator from 1/γ. It

shows that these deviations are of the order 1/
√
θn, which is expected, since

by Theorem 1, the number Nn of the order statistics in the Hill estimator is

of the order θn.

Theorem 2. Let θn = o

(
n

2|ρ|
1+2|ρ|

)
as n→∞, and let Nn be given by (2.2).

The Hill estimator based on Nn upper order statistics is consistent, i.e.

HNn,n =
1

Nn

Nn−1∑
i=0

log
Xn−1,n
Xn−Nn,n

P→ γ

as n→∞. Furthermore,

(2.16)
√
θn

(
HNn,n

γ
− 1

)
⇒ G

(τω)1/2
,

where G is a standard normal random variable independent of the first hitting

time τω from Theorem 1.

Proof. The idea is to use a random stopping technique in a weak convergence

context. The formulation we will use is the one given in Theorem 2.2.1 in

Silvestrov (2004). If, for each n, (Xn(t), t ≥ 0) is a càdlàg process, and τn
is a nonnegative random variable, such that for all 0 ≤ a < b <∞,

(2.17)
(τn, sup

t∈[a,b)
Xn(t))⇒ (τ0, sup

t∈[a,b)
X0(t))

(τn, inf
t∈[a,b)

Xn(t))⇒ (τ0, inf
t∈[a,b)

X0(t))

for some continuous process (X0(t), t ≥ 0) and a nonnegative random vari-

able τ0, then Xn(τn)⇒ X0(τ0).
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It is, clearly, enough to prove the weak convergence (2.16), as the consis-

tence of the estimator would then follow automatically. Note that (2.16) is

equivalent to

(2.18)
√
θn

1

Nn

Nn−1∑
i=0

(1

γ
log

Xn−1,n
Xn−Nn,n

− 1
)
⇒ G

(τω)1/2
.

We will prove that, for any δ > 0,

(2.19)
√
θn

1

Nn ∨ θnδ

[Nn∨θnδ]−1∑
i=0

(1

γ
log

Xn−1,n
Xn−[Nn∨θnδ],n

− 1
)
⇒ G

(τω ∨ δ)1/2
.

The claim (2.18) would then follows from (2.13).

Note the that expression in the left hand side of (2.19) results from a

substitution of the random time

τn = max

(
δ,
Nn

θn

)
into the càdlàg process

Vn(t) =
√
θn

1

θnt

[θnt]−1∑
i=0

(1

γ
log

Xn−1,n
Xn−[θnt],n

− 1
)
, t ≥ δ .

According to (2.17) and to self-similarity of the Brownian motion, it is enough

to check that for all δ ≤ a < b <∞,

(2.20)
(

max

(
δ,
Nn

θn

)
, sup
t∈[a,b)

Vn(t)
)
⇒
(
τω ∨ δ, sup

t∈[a,b)

B(t)

t

)
,

where τω is, as before, the first hitting time of a standard Brownian motion,

independent of another standard Brownian motion B. We also need to prove

an analogous statement with suprema replaced by infima but, since the two

statements can be proved in the same way, we concentrate on suprema only.

In order to prove (2.20), it is enough to show that for any x ≥ δ and y ≥ 0,

P
(
Nn ≤ θnx, sup

t∈[a,b)
Vn(t) ≤ y

)
→ P

(
τω ≤ x, sup

t∈[a,b)

B(t)

t
≤ y
)
.

We have seen in an analogous situation in the proof of Theorem 1 that this

statement will follow once we check that for any 0 < δ′ < x,

P
(
θnδ
′ ≤ Nn ≤ θnx, sup

t∈[a,b)
Vn(t) ≤ y

)
→ P

(
sup

δ′≤t≤x
|B1(t)| ≥ ω, sup

t∈[a,b)

B(t)

t
≤ y
)
,
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where B and B1 are independent standard Brownian motions, which, in turn,

will be implied by the statement

(2.21) P
(

sup
δ′≤t≤x

|
√
tQ∗n(t)| ≥ w, sup

t∈[a,b)
Vn(t) ≤ y

)

→ P
(

sup
δ′≤t≤x

|B1(t)| ≥ ω, sup
t∈[a,b)

B(t)

t
≤ y
)
.

To this end note that

Vn(t) =
1

t

[√
θn t

(
M1
θn,n

(t)

γ
− 1

)]
,

and the map
(
f(t), t ≥ δ

)
→
(
f(t)/t, t ≥ δ

)
is continuous on D[δ,∞).

Therefore, the argument leading to (2.11) applies, and it gives us the joint

convergence[√
tQ∗n(t), t ≥ δ′
Vn(t), t ≥ δ′

]
⇒
[1
2

(
W2(t)− 4W1(t)

)
, t ≥ δ′

W1(t)
t , t ≥ δ′

]
,

whereW1 andW2 are as in Lemma 2.1. It is a simple matter to compute the

correlations and check that W1 and (W2−4W1)/2 are independent standard

Brownian motions. Therefore, (2.21) follows, and the proof of the theorem

is complete. �

Remark 3. We have already mentioned that, according to Theorem 2, the

deviations of our estimator from the true value of γ are of the order 1/
√
θn.

Since, under conditions of that theorem, the rate of growth of θn can go all

the way up to n
2|ρ|

1+2|ρ| , our estimator can almost achieve the optimal rate of

decay of the asymptotic deviation from the true γ, given by n
−|ρ|

1+2|ρ| ; see e.g.

Danielsson et al. (2001). Since the exponent ρ of the second order regular

variation (2.3) is unknown, one could, potentially, combine our method with

the bootstrap technique of Danielsson et al. (2001). We do not pursue this

approach. In fact, our goal is not necessarily asymptotic efficiency, since

for some distributions it can take a very long time until these asymptotics

become effective. Our goal is, rather, determining, for a given sample size,

which (upper) part of the sample appears, statistically, to be consistent with

being in the tail region. For this purpose, sequences (θn) that increase at a

much slower rate, appear to be appropriate. In fact, as the reader will see
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in the subsequent sections, we advocate using logarithmically fast increasing

sequences.

3. Testing the estimator on simulated data

In this section we evaluate our procedure (2.2) for selecting the number

of upper order statistics in the Hill estimator on simulated univariate data.

We compare the resulting performance of the estimator with the bootstrap

procedure of Danielsson et al. (2001) , the optimal sample fraction choice of

Drees and Kaufmann (1998), and to the original testing procedure of Hill

(1975). For the test data we choose i.i.d. samples from the Student-t dis-

tribution and from the symmetric stable distribution. We have chosen these

distributions because the “usual” Hill plots are often difficult to interpret in

these cases. Recall that for the Student-t distribution, the tail exponent α is

equal to the number of degrees of freedom. For the Student-t distribution we

considered the cases α = 1, 3, 4, while for the stable distribution, we tested

the cases α = 1 and α = 1.7.

The Hill estimator has been shown to be consistent not only on i.i.d.

data but also under certain kinds of dependence, (see Hsing (1991), Resnick

and Stărică (1995), Resnick and Stărică (1998)). This includes the class

of moving average processes, and we also test our estimator on the MA(1)

process Yt=Xt + Xt−1 where Xt are i.i.d. Student-t random variables with

3 degrees of freedom. The tail index in this case is equal to 3.

We have tested our estimator with logarithmic sequences θn = log n and

θn = (log n)2. In all cases we chose ω to be the 95th quantile of the standard

normal distribution. The results of the simulation are displayed in the tables

below. Table 1 and 2 present the results using sample size n = 5000 and

n = 50000 of absolute values of the above distribution respectively. Each

simulation was performed 250 times. The following information is displayed.

• The testing procedure suggested by Hill (1975) using the moment

statistic with significant level .05.

• Our choice of the sample fraction Nn with θn = log n.

• Our choice of the sample fraction Nn with θn = (log n)2.
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• The choice of sample fraction using bootstrap method proposed by

Danielsson et al. (2001) with n1 going from 1000 to 4000 in incre-

ments of 250 for sample size 5000 and from 10000 to 35000 in in-

crements of 2500 for sample size 50000. In both case the number of

bootstrap samples is 500.

• The optimal sample fraction choice k̂opt of Drees and Kaufmann

(1998) with the initial β̃n based on the upper 2
√
n order statistics,

rn = 2.5β̃nn
.25, ψ = .7 and ρ0 = 1.

The results in Table 1 and Table 2 indicate that we consistently obtain

good results with θn = (log n)2. Our choice of the number of order statistics

to use in the Hill estimator performs reasonably well with both moderate and

large sample sizes. Its computational complexity is significantly lower than

that of the competing methods. In particular, our estimator significantly

outperform the other estimators in the notoriously difficult case of the stable

distribution with parameter α = 1.7.

4. Estimation of the spectral measure

It is particularly important to have a procedure to determine which part

of the sample belongs to the tail region, in the multivariate context. Our

approach, discussed above in the univariate context, can be conveniently

applied in the multivariate context as well. In this section we explore, on

simulated bivariate data, how well our approach detects the tail region.

We recall briefly the notion of multivariate regular variation; see Resnick

(2007) for details. The distribution of a d-dimensional random vector X is

said to be regularly varying with index α if there exists a random vector Θ

taking values on the unit sphere Sd−1 in Rd such that

(4.1) limx→∞
P (|X| > tx, X|X| ∈ B)

P (|X| > x)
= t−αP (Θ ∈ B)

for all Θ-continuity Borel subsets of Sd−1. This, clearly, implies that all

marginal distributions are also regularly varying with index α, and the same

is true for the length (the radial component) of the observations. The law of

Θ on the unit sphere is called the (normalized) spectral measure.
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The natural way to estimate the spectral measure is via

µ̂(B) =

∑n
i=1 1

(|Xi|>m,
Xi
|Xi|
∈B)∑n

i=1 1(|Xi|>m)
;

see Resnick (2007). Here wherem is some threshold, usually chosen to be one

of the upper order statistics R(k) of the radial components of Xis. The task

is to select this threshold so as to base the estimator on the maximal number

of observations that fall in the tail region. One approach is to use the so-

called “Stărică plots”, introduced in Stărică (1999) and involving plotting the

radial order statistics via
{(

Rn−j
Rn−k

,
Rn−j
Rn−k

j
k

)
, 1 ≤ j ≤ n

}
for different values

of k (see Resnick (2007)), p. 314. A “good” choice of k would result in a

plot staying, roughly, around the value equal to 1, and one would use in

estimating the spectral measure the observations corresponding to the radial

upper order statistics from that k on. This procedure is mostly done visually.

The automated procedure to pick k by minimizing some distance function

does not generally seem to be reliable.

Our testing procedure for deciding which observations to use in estimating

the spectral measure is as follows. We partition the unit sphere Sd−1 into

s subsets. If there is a sufficient number of observations with the spherical

component faling in the ith subset, say, Si, we apply (2.2) to the radial

components of these observations and determine the value, say, r∗i , so that

all observations with the spherical component in Si and radial component

greater than r∗i , are taken to be in the tail region. We then use m = maxi r
∗
i

in the estimation of the tail measure. In the case of a nonnegative bivariate

sample, for instance, we simply use Si = [(i− 1)
π

2s
, i
π

2s
]} for i = 1, 2, . . . , s.

We first simulate 5000 i.i.d. bivariate random vectors whose coordinate

are independent Pareto(1) random variables. The true spectral measure puts

equal mass at 0 and π
2 , and nowhere else.

Based on our simulation, any k between 1000 and 2000 seems to produce

an acceptable Stărică plot. The plot for the case k = 1000 is show in Figure

1. In Figure 2, we plot the cdf of the spectral measure using our method

of choosing sample fraction with s = 1 and choices of θn. We also plot the

cdf using the 1000th order statistic of the radius as threshold. The Stărică
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method appears to take too much data into account, and our method with

θn = log n on the other hand takes too little data. Overall, the choice

θn = (log n)2 appears to perform the best.

0 5 10

0.7

0.8

0.9

1

1.1

Figure 1. Starica plots for 5000 bivariate independent
Pareto random variables using k = 1000
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1

 

 

log(n)

log(n)
2

k=1000

Figure 2. The spectral measure of 5000 independent bivari-
ate Pareto random variables.

In order to explore what might happen of the multivariate observations

are not, sequentially, i.i.d., we simulated 5000 absolute values of observations

from a bivariate MA(1) model(
Y1,i
Y2,i

)
=

(
X1,i +X1,i−1 + Zi
X2,i +X2,i−1 + Zi

)
,

where Xj,i, j ∈ {1, 2}, i ∈ {1, 2, ..., n} are i.i.d. Student-t random variables

with 3 degrees of freedom, Zi are i.i.d. standard normal random variables,
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and {Xj,i} and {Zi} are independent. Once again, the true spectral measure

has equal mass at 0 and π
2 .

The Stărică plot for k = 100 is shown in Figure 3. In our simulations, any

k from 50 to 500 produced similar Stărică plots, so it was hard to choose

one of them as the best. In Figure 4, we plot the cdf of the spectral measure

using our method of choosing sample fraction with s = 1 and two choices

of θn. We also plot the cdf using the 100th order statistic of the radius

as the threshold. The figure shows that none of the estimators performed

particularly well in this situation.
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Figure 3. Starica plots for 5000 realizations of bivariate
ARMA using k=100
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Figure 4. The spectral measure of 5000 realizations of bi-
variate ARMA.
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5. Tail analysis of the Danish fire insurance data

In this section we explore the bivariate spectral measure analysis for

a three-dimensional Danish fire insurance data set. The data consists of

recorded damage to building, damage to content and loss of profits from

fires in which the total loss exceed 1 million Danish Kroner (mDKK), from

1980 to 2002. This data set has 6870 recorded fires and accounts for 90% of

the Danish fire insurance market.

We preprocessed the data as follows. We first used the Danish consumer

price index to adjust all the losses to the 2011 values. Next, we omitted all

incidents in which the total loss was below 1 mDKK in 1980 numbers which

left us with a data set of size 2867. We applied the Pareto transform to the

marginals, x′ =
1

1− F̂ (x)
, using the corresponding marginal empirical c.d.f.

This was done in order to convert the data to the same tail index 1 for each

marginal.

Displayed in Figure 5 are the scatter plots of the processed data. Here X

denotes the damage to content, Y denotes the loss of profit and Z denotes

the damage to building.

Figure 6 shows the estimated spectral measures with s = 1 and different

choices θn. In all plots, the damage to building displays marked independence

in the extremes of both loss of profit and loss of content. As expected, the

estimated spectral measure does not show extremal independence between

the damage to content and loss of profit (but there a large mass seems to be

concentrated in the neighborhood of 0).
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