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RNA Polymerase II (Pol II) is the central enzyme in eukaryotic mRNA transcription.  In 

recent years, structural studies have provided insights into the mechanism of Pol II.  A 

full understanding of the mechanisms of transcription will require structural insights 

into the numerous complexes of Pol II with transcription factors involved in in vivo 

transcription.  However, these structural studies are hampered by the limited resolution 

produced by crystals of such complexes.  Improved crystallographic methods designed 

to enhance structural data obtainable from such complexes have been developed taking 

advantage of the anomalous scattering due to intrinsic zinc ions in Pol II.  These 

approaches have been validated using the known structure of 12 subunit Pol II, and 

were able to provide additional insights into its structure. 
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CHAPTER 1: INTRODUCTION 
 

The research described in this work primarily concerns improvements to X-ray 

crystallographic data processing techniques necessitated by the problems posed by 

crystals of RNA Polymerase II complexes.  This necessitates an introduction covering 

two disparate areas: a description of the role of RNA Polymerase II in biological 

processes to indicate the biological relevance of these crystallographic problems; and an 

overview of macro-molecular X-ray crystallography, in order to illustrate how these 

problems arose and how they were resolved. 

 

1.1 The Need of Crystallographic Methods Improvement for the Analysis 

of RNA Polymerase II Complexes 

Many structural studies have been reported on cellular RNA Polymerases, mainly but 

not exclusively on archael polymerase and Saccharomyces cerevisiae RNA Polymerase 

II (Pol II).  X-ray structures of Pol II that correspond to several stages of the 

transcription reaction have been determined.  However, despite the large number of 

transcription factors interacting with Pol II during the transcription process, few 

structures of Pol II with transcription factors are available.  As of June 2009, X-ray 

structures of one TFIIB-Pol II (Bushnell et al., 2004) complex and several TFIIS-Pol II 

(Kettenberger et al., 2003; Wang et al., 2009) complexes have been published.  An EM 

surface of the TFIIF-Pol II complex has also been determined (Chung et al., 2003).   

 

The comparatively few transcription factor complex structures available do not indicate 

a lack of biological interest.  Instead, this reflects the difficulty of determining such 

structures.  The large asymmetrical protein complexes formed by Pol II yield crystals 

capable of providing only low-resolution diffraction data.  The resolution limit of these 
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crystals give rise to difficulties in several fundamental steps of the crystallographic 

process: in particular, phase determination and structure refinement.  The research 

described in this work is primarily focused on methods to reduce the difficulty of 

determining structures of complexes of RNA Polymerase II. 

 

1.2 Biological Function of RNA Polymerase II 

1.2.1 Overview of RNA Polymerase  

RNA polymerases are the core enzymes responsible for the synthesis of RNA from 

sequences encoded in template DNAs.  Cellular RNA polymerases are large multi-

subunit proteins, ranging in composition and size from as small as 4 subunits and 

approximately 400 KDa in prokaryotes and as large as 17 subunits and approximately 

690 KDa in eukaryotes.  There are three main classes of eukaryotic RNA Polymerase 

(Pol), known as Pol I, Pol II and Pol III.  Pol I is responsible for the transcription of 

ribosomal RNAs.  Pol II transcribes precursors of messenger RNA (mRNA) and a 

variety of non-coding RNA moieties, including micro-RNAs and anti-sense RNAs.  Pol 

III synthesizes transfer RNAs, 5S rRNA and U6 snRNA.   

 

Ensuring appropriate and accurate production of pre-mRNAs is a key component of 

gene regulation.  Transcription by Pol II is an integration point for the activities of 

numerous regulatory factors, and occurs in concert with the processing pathways 

necessary for the generation of mature mRNAs from raw transcripts. 

 

1.2.2 General Transcription Factors  

In addition to the numerous regulatory and processing factors required for in vivo 

transcription, Pol II requires the assistance of five additional protein factors to 

transcribe pre-mRNA from template DNA: TFIIF, TFIID, TFIIB, TFIIE and TFIIH 
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(Orphanides et al., 1996).  The activities of these factors are required at different points 

in transcription, and some transcription factors play multiple roles in transcription.  The 

conventional model for the assembly of Pol II and the basal transcription factors is one 

of ordered stepwise assembly in which a growing pre-initiation complex (PIC) 

accumulates additional transcription factors (Figure 1.1).  The first step in this assembly 

process is the binding of the TATA-box binding protein (TBP) and TBP-associated 

factor (TAF) components of TFIID to the promoter region of the target gene.  This is 

followed by binding of TFIIB, which stabilizes the TFIID-DNA interaction and assists 

with start site selection, forming a BD complex (Thomas and Chiang, 2006).  The 

asymmetrical nature of TFIIB binding to the TFIID-DNA complex provides a basis for 

downstream directionality of transcription (Orphanides et al., 1996). Separately, TFIIF 

binds to Pol II, forming the Pol-F complex, which is recruited to the BD complex to 

form the DB-Pol-F complex.  TFIIE, which assists with promoter melting, is the next 

factor recruited, resulting in the DB-Pol-EF complex.  TFIIE also assists in recruiting 

the remaining basal transcription factor, TFIIH which provides the kinase and DNA 

helicase activities essential for transcription initiation.  TFIIA, which is required for 

activated transcription, may also play a role in basal transcription.  An alternative model 

for PIC formation was suggested by observations that Pol II complexes containing 

several general transcription factors could be purified from cells (Orphanides et al., 

1996; Thomas and Chiang, 2006).  In this model, a pre-assembled holoenzyme complex 

binds in a single step to the template DNA. 

 
Post-translational modifications of several components of the Pol II machinery play 

significant roles throughout the transcription cycle.  TFIIB auto-acetylates, which 

enhances its ability to recruit TFIIF-Pol II to the DB complex (Sims et al., 2004).  The 

RAP74 subunit of human TFIIF is phosphorylated (Orphanides et al., 1996), although  
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Figure 1.1: Pol II Complexes Formed During the Transcription Cycle 

Pol II with phosphorylated CTD is illustrated by the presence of green Ps on the tail of 
Pol II.  DNA is shown as blue bar, RNA as black curved lines.  Transcriptional 
initiation is illustrated following the stepwise-assembly model. 
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the functional role of these modifications is currently unclear.  Rpb1, the largest subunit 

of Pol II, undergoes cycles of phosphorylation and de-phosphorylation during 

transcription; these modifications, discussed in more detail below, occur primarily in 

the carboxy-terminal domain (CTD) of this subunit, which consists of a series of 

conserved hepta-peptide repeats with consensus sequence Y1S2P3T4S5P6S7 (Allison et 

al., 1988; Nonet et al., 1987; Saunders et al., 2006).   

 

1.2.3 The Basal Transcription Cycle 

Transcription does not proceed monotonously from PIC assembly through initiation and 

processive elongation to termination.  Instead, transcription progresses through discrete 

stages of open complex formation, promoter escape, promoter-proximal pausing, 

productive elongation, and termination.  The transitions between these stages require 

assistance from specific transcription factors, and are targeted by various regulatory 

factors.   

 

The first step following the assembly of the PIC at the promoter is the separation of the 

template and non-template DNA strands into a structure known as the transcription 

bubble.  The ATP-dependant helicase activity of TFIIH, enhanced by TFIIE, is required 

for DNA melting and bubble formation (Timmers, 1994).  Upon melting, the template 

strand must be positioned such that the correct start site is located in the Pol II active 

site.  Start site selection involves the B-finger domain of TFIIB (Li et al., 1994), and the 

Rpb9 subunit of Pol II (Sun et al., 1996).  Following start site positioning, initiation of 

transcription may occur.  Transcription of each nucleotide requires three distinct 

biochemical steps: nucleotide selection, catalysis, and translocation.  In nucleotide 

selection, a ribonucleotide triphosphate enters the nucleotide addition site and base pairs 

with the template DNA; mismatched ribonucleotides are discriminated against in this 
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step.  The second step is the formation of a phosphodiester bond between the product 

RNA and incoming ribonucleotide.  Finally, the translocation step clears the active site 

for the next nucleotide by shifting the DNA-RNA hybrid by one base pair concurrent 

with the unwinding of one base pair at the downstream end of the hybrid and a 

rewinding of the template and non-template DNA strands at the upstream edge of the 

transcription bubble. 

 

During early elongation, a series of short transcripts are often created and released in a 

process known as abortive elongation.  The CTD, which is hypo-phosphorylated during 

PIC formation and initiation, becomes phosphorylated by the CDK7 subunit of TFIIH 

(Thomas and Chiang, 2006).  Abortive elongation continues until the transcript reaches 

a length of 25-30 nucleotides (Pal and Luse, 2003).  At this point, Pol II, accompanied 

by TFIIF and other elongation factors, escapes from the initiation scaffold and enters 

into the productive elongation stage.  This transition from abortive initiation to 

processive elongation is highly regulated, and the biochemical mechanisms involved are 

currently being investigated.  Similarly, the termination step of transcription is another 

highly regulated step.  Although the many details remain to be determined, it is known 

that termination is coupled to events involved in 3’-end RNA processing (Howe, 2002; 

Richard and Manley, 2009). 

 

1.2.4 Co-transcriptional RNA Processing  

The production of mature messenger RNA and other Pol II transcripts requires several 

processing steps in addition to transcription: 5’ cap addition, intron splicing, and 3’ 

poly-A tail addition (Figure 1.1).  The transcripts produced by Pol I and Pol III are not 

processed in this manner, implying that enzymes involved in pre-mRNA processing 

have a mechanism for distinguishing transcripts on the basis of the polymerase 
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complexes that produced them.  This is currently believed to be accomplished by 

coupling of pre-mRNA processing reactions to Pol II transcription (Howe, 2002). 

 

The first mRNA processing step is the formation of a 5’ cap structure, which is required 

for efficient splicing, nuclear export, and mRNA stability (Proudfoot et al., 2002).  

Three enzymatic activities are required for cap formation: an RNA triphosphatase, a 

guanylyl-transferase and a methyltransferase.  The enzymes responsible for the first two 

activities form a hetero-dimer in yeast (abbreviated CE), and are expressed as a single 

polypeptide in mammals (Ho et al., 1998).  The methyltransferase activity is provided 

by a separate protein (Abd1 in S. cerevisiae), which functions separately from CE 

(Schroeder et al., 2004).  Cap addition occurs only after 20-30 bases of RNA have been 

transcribed (Rasmussen and Lis, 1993) and may be correlated with the transition from 

abortive to productive elongation occurring at this point (Pal and Luse, 2003).  

Phosphorylation of the Pol II Rpb1 CTD, discussed further below, in required for 

efficient capping in vivo and enhances the activity of CE (Cho et al., 1997; Ho et al., 

1998; McCracken et al., 1997; Yue et al., 1997).  

 

Intron splicing is another processing reaction that is required for mRNA maturation, and 

occurs co-transcriptionally (Proudfoot, 2000).  3’ RNA processing is also coupled to 

transcriptional termination, and the poly-A tail is required for the termination and 

release steps in this process (Zorio and Bentley, 2004). 

 

One common theme of the various co-transcriptional RNA processing reactions is that 

each event requires interaction with Pol II and formation of a complex with Pol II, in 

order to insure appropriate functionality.  The information regarding the structural 

characteristics of these complexes, as well as the regulated transcribing Pol II molecules 
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which are the substrate for their formation, could greatly assist the understanding of the 

biochemical mechanisms that underlie co-transcriptional RNA processing.  A robust 

structural characterization of the core polymerase will be essential for the investigation 

of the higher-order complexes involved in these events. 

 

1.2.5 Structural Organization of Pol II 

A significant amount of structural data is available for RNA polymerase.  The vast 

majority of this data has been provided by X-ray crystallography.  The size of the 

protein currently precludes structure determination by nuclear magnetic resonance 

(NMR).  Electron microscopy (EM) has been used in cases where X-ray structures are 

not available, but produces lower resolution information (up to 18 Å for Pol II).  The 

available structures of cellular prokaryotic and eukaryotic RNA Polymerases have 

provided a wealth of information regarding the basic mechanism of transcription, as 

well as illustrating commonalities between the two enzyme systems. 

 

Pol II is composed of 12 different subunits, named Rpb1 to Rpb12, with a total 

molecular mass of 511 KDa (Table 1.1 and Figure 1.2).  Pol II shares five subunits 

(Rpb5, Rpb6, Rpb8, Rpb10 and Rpb12) with Pol I and Pol III (Woychik and Young, 

1990; Woychik et al., 1990).  The two largest Pol II subunits, Rpb1 and Rpb2, 

contribute approximately 65% of the total mass of the protein.  Five of these subunits 

are homologous to prokaryotic polymerase subunits, at the sequence and structure 

levels.  Among these, Rpb1 is homologous to the prokaryotic β’ subunit, and Rpb2 is 

homologous to the prokaryotic β.  There are two copies of the α subunit in prokaryotic 

RNA Polymerase, which are homologous to eukaryotic Pol II subunits Rpb3 and Rpb11 

(Ebright, 2000; Sweetser et al., 1987).  The ω subunit of the prokaryotic enzyme shows 

limited homology to Rpb6 of Pol II, based on sequence and the quaternary structures  
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Table 1.1: Saccharomyces cerevisiae RNA Polymerase II Subunit Composition 
 

Mass (KDa) Number of Residues Mass Percentage
Intact Pol II 511.7 4525 100.00%

Rpb1 191.0 1733 37.33%
Rpb2 138.0 1224 26.97%
Rpb3 35.0 318 6.84%
Rpb4 25.4 221 4.96%
Rpb5 25.0 215 4.89%
Rpb6 17.9 115 3.50%
Rpb7 19.0 171 3.71%
Rpb8 16.5 146 3.22%
Rpb9 14.3 122 2.79%
Rpb10 8.3 70 1.62%
Rpb11 13.6 120 2.66%
Rpb12 7.7 70 1.50%  
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Figure 1.2: RNA Polymerase II Subunit Architecture 

The locations of Pol II subunits are indicated by color coding, as shown in insert. 
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(Minakhin et al., 2001) (Figure 1.3).  Two Pol II subunits, Rpb4 and Rpb7, are required 

for promoter dependent initiation and form a sub-complex dissociable from the main 

body of the polymerase (Edwards et al., 1991).  The core Pol II, without Rpb4/7, is able 

to elongate RNA in vitro when provided with an appropriate substrate (Gnatt et al., 

1997).  The original Pol II structures were determined using crystals of the 10-subunit 

form (Cramer et al., 2001; Fu et al., 1999; Gnatt et al., 1997; Gnatt et al., 2001), and the 

highest resolution data for Pol II to date also comes from these crystals (Westover et al., 

2004). 

 

The most prominent feature of the Pol II structure is a large cleft in the center of the 

molecule (Figures 1.4 and 1.5).  The polymerase active site, marked by two catalytic 

magnesium ions, is located at the base of this cleft.  In addition to the magnesium ions, 

the tertiary structure is stabilized by eight non-catalytic zinc ions; however the C-

terminal zinc site of Rpb9 has been implicated in start site selection (Hull et al., 1995).  

The internal face of the cleft is mainly formed by Rpb1 and Rpb2 (Figures 1.2 and 1.4).  

A domain referred to as the Clamp (Figure 1.5) forms one side of this cleft (Cramer et 

al., 2000), and has been observed in three conformational states, differing primarily in 

the distance from the clamp to the opposite side of the cleft.  The most widely ‘open’ 

conformation has only been observed in 10-subunit Pol II structures in the absence of 

nucleic acids (Bushnell et al., 2002; Cramer et al., 2001; Kaplan et al., 2008; Wang et 

al., 2006; Westover et al., 2004).  The presence of DNA/RNA, or presence of the 

Rpb4/7 sub-complex, is sufficient to shift the clamp into a more closed conformation.  

A 'collapsed' conformation has been observed only in the initial EM structures, with 

even less space available inside the channel (Craighead et al., 2002; Darst et al., 1991).  

The Protrusion and Stalk domains form the opposite side of the cleft.  In 12-subunit  
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Figure 1.3: Structural Homology between Eukaryotic and Prokaryotic RNA 

Polymerases 

Conserved subunits are colored by homology, as indicated by pairs of names near center 
line. Eukaryotic subunits with no prokaryotic counterparts are in sand.  Prokaryotic 
model: PDB ID 2PPB (Vassylyev et al., 2007), Eukaryotic model: PDB ID 3FKI 
(Meyer et al., 2009).  
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Figure 1.4: Structural Features of RNA Polymerase II 

Notable structural features of Pol II, colored following inset. 
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Figure 1.5: Conformations of the Clamp Domain 

Clamp domain is shown in red throughout. 
Open conformation from PDB ID 1I3Q (Cramer et al., 2001); 
Closed conformation from PDB ID 3FKI (Meyer et al., 2009) with Rpb4/7 hidden; 
Collapsed conformation modeled on basis of EM surfaces (Craighead et al., 2002; Darst 
et al., 1991). 
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structures, the Rpb4/7 sub-complex projects at an angle away from the Clamp side of 

the polymerase. 

 

As shown in several structures of Pol II in complex with DNA and RNA, the DNA 

enters through a large open channel along the base of the cleft, with the template and 

non-template strands separating approximately two thirds of the way into this channel 

(Gnatt et al., 2001; Westover et al., 2004).  A channel between Rpb1 and Rpb2 is well 

positioned to be the path of the nascent RNA transcript, after it separates from the 

DNA/RNA hybrid, and has been named the RNA exit channel (Cramer et al., 2000).  

This channel could provide an explanation for the extent of RNA protection observed 

biochemically (Gu et al., 1996).   An opening below the active site is referred to as the 

secondary channel, and is thought to allow for the entry of nucleotide triphosphates and 

may also accommodate the transcript when backtracking, or reverse translocation, 

occurs (Wang et al., 2009). 

 

Several regions within the cleft, referred to using the nomenclature originating from 

(Cramer et al., 2000) and (Cramer et al., 2001), have been implicated for specific 

activities in the transcription reaction (Figure 1.4).  The Bridge helix, Rpb1 812-847, is 

conserved in archaeal and eukaryotic RNA polymerases, and has been implicated in 

translocation (Bar-Nahum et al., 2005; Brueckner and Cramer, 2008; Westover et al., 

2004).  In all eukaryotic RNA polymerase structures to date, the Bridge helix observed 

to be straight.  However, in prokaryotic structures, the Bridge helix is seen as either 

straight (Temiakov et al., 2005) or kinked (Zhang et al., 1999) at residues corresponding 

to Rpb1 831 and 832 (Gnatt et al., 2001).   The bending of the bridge helix is thought to 

play a role in translocation of template DNA (Gnatt et al., 2001).  The downstream 
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region of template DNA in the transcription bubble crosses over the bridge helix.  

Above the template DNA, Fork Loop 1 (Rpb2 462-481) (FL1) makes contacts with a 

loop structure named Rudder (Rpb1 310-324); these two regions may contribute to 

preventing collapse of the transcription bubble and stabilization of the hybrid.  An 

additional loop structure, Fork Loop 2 (Rpb2 502-509) (FL2) is found near the site 

where the double-stranded DNA separates into template and non-template strands.  As 

will be discussed further in Chapter 3, FL2 is a mobile element.  However, it is in 

position to sterically block the approach of the non-template strand towards the active 

site, as well as to hydrogen bond with the template strand (Gnatt et al., 2001; 

Kettenberger et al., 2004; Wang et al., 2006).  The Trigger Loop (Rpb1 1070-1101), is 

located below the Bridge helix, and has been implicated in the correct positioning of 

incoming NTPs in the active site through hydrogen bond interactions with incoming 

nucleotides and the Bridge helix (Wang et al., 2006).  The interaction of the Trigger 

Loop with the Bridge helix has also been implicated in the translocation step (Bar-

Nahum et al., 2005; Brueckner and Cramer, 2008; Kaplan and Kornberg, 2008). 

 

The C-terminal domain (CTD) of Rpb1 (unstructured region in Figure 1.4) mentioned 

earlier is composed of tandem repeats of a seven amino acid motif.  The number of 

repeats in the CTD varies with species: 26-27 in Saccharomyces cerevisiae, 52 in 

human, 34 in Caenorhabditis elegans (Corden et al., 1985; Orphanides et al., 1996).  

This repeat motif is a unique feature of eukaryotic Pol II's and has a consensus sequence 

of Y1S2P3T4S5P6S7.  Several of these residues are potential phosphorylation sites, and 

the serine residues are known to be phosphorylated and de-phosphorylated in vivo 

(Phatnani and Greenleaf, 2006; Zhang and Corden, 1991).  The phosphorylation state of 

the CTD is highly regulated, and correlated with the state of Pol II in the transcription 

cycle (Saunders et al., 2006).  In general, the CTD of Pol II unengaged with DNA is in 
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the hypo-phosphorylated state (abbreviated as CTDa).  During initiation and early 

elongation, serine residues at position 5 (Ser5) are preferentially phosphorylated by the 

general transcription factor TFIIH.  As elongation progresses, serine residues at position 

2 (Ser2) becomes increasingly phosphorylated.  By the time transcription reaches 

termination, the CTD is hyper-phosphorylated (abbreviated as CTDo) (Hirose and 

Ohkuma, 2007).  Phosphorylation of Ser7 has been implicated in snRNA expression, 

although not in mRNA transcription (Egloff et al., 2007).  The threonine at position 4 is 

also a potential target for phosphorylation (Wong et al., 2007), although no information 

on its relevance to transcription is available.  The isomerisation state of the proline 

residues within the CTD has also been implicated in transcriptional regulation (Shaw, 

2007).  When the CTD has been removed (abbreviated CTDb), Pol II remains 

competent for in vitro transcription in purified reconstituted systems.  However, the 

CTD is required for in vitro transcription from systems reconstituted from cell extracts 

(Li and Kornberg, 1994).  The phosphorylation state of the CTD has also been 

implicated in transcriptional termination (Gudipati et al., 2008).  In addition, a 

minimum of 8 to 10 copies of the concensus CTD repeat  is required for cell viability in 

yeast (Nonet et al., 1987; West and Corden, 1995).  In the context of the complete Pol 

II, CTD phosphorylation states are referred to as Pol IIa, Pol IIo, and Pol IIb, 

respectively. 

 

The CTD is known to interact physically with several transcription factors, and 

synthetic CTD peptides have been used in co-crystals with three transcription factors.  

In each of these, the serine-phosphorylated CTD (Fabrega et al., 2003; Meinhart and 

Cramer, 2004; Verdecia et al., 2000; Zhang et al., 2006) was observed in a different 

conformation, supporting the idea that it functions as a flexible binding platform for 

various regulatory factors.  In all published Pol II structures to date, the CTD has been 
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maintained in the hypo-phosphorylated state (Pol IIa). However, no electron density has 

been observed for this region, suggesting that CTDa is disordered in the context of Pol 

II.   

 

Although much is known about the structural basis of the core enzymatic activity of Pol 

II, considerably less is known regarding the structural basis of regulated transcription in 

vivo.  Transcription in vivo is a highly regulated process involving numerous 

macromolecular complexes anchored on the core Pol II molecule.  Biochemical studies 

have identified many regulatory components and in many cases elucidated their 

functions.  The understanding of the mechanism based on these transcription complexes 

would be greatly deepened by structural knowledge of the relevant complexes.  

However, there are many obstacles to the determination of these structures.  In this 

work, I described adaptations and improvements to crystallographic techniques for 

addressing the problems associated with X-ray structure determination in the S. 

cerevisiae Pol II system.  

 

1.3 Crystallography Introduction 

 

The purpose of macromolecular X-ray crystallography is to determine the structure of a 

molecule of biological interest.  Structural knowledge of a biological molecule can 

provide insights into catalytic functions and relationships between proteins that are not 

apparent at the sequence level.  The process of structure determination by x-ray 

crystallography involves crystallization, diffraction data collection, phase 

determination, and building and refining a model of the molecule of interest.  In order to 

explain the ways these stages fit together, they be explained by working backwards 
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from the goal, a model of the molecule of interest, towards the starting point, the 

collection of diffraction images. 

 

1.3.1 Conceptual Background 

A brief conceptual overview of some of the mathematical basis underlying x-ray 

crystallography can be helpful to provide the groundwork for understanding the steps 

involved in structure determination.  A crystal is composed of an arrangement of atoms 

that repeat periodically in three dimensions.  Any crystal can be decomposed into two 

parts: 1) the lattice, which describes the periodicity of the crystal; and 2) the unit-cell, 

which consists of the contents of the repeating unit.  The observations in a 

crystallographic experiment are a collection of images representing two-dimensional 

slices of the three-dimensional diffraction pattern arising from the crystal.  The Fourier 

Transform (FT) is used to relate this diffraction pattern to the electron density produced 

by the atoms present in the crystal; this electron density is responsible for the scattering 

of X-ray photons during the diffraction experiment. 

 

The Fourier series of a function is a discrete set of wave functions.  Each component 

wave function has three terms: an amplitude, a phase, and a unique frequency.   Under 

some circumstances, it is clearer to represent these components as complex numbers, 

with a real part and imaginary part.  With an infinite number of terms, any periodic 

function can be exactly reproduced by its corresponding Fourier series.  The Fourier 

Transform of a function can be thought of as the Fourier series with the discrete sum 

replaced by the integral of a complex continuous function.  The domain of the Fourier 

Transform is often referred to as reciprocal, or inverse, space.  The electron density 

within the crystal can be thought of as the convolution of the periodic crystal lattice 

with the electron density of a single copy of the unit-cell.  Equivalently, the Fourier 
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Transform of a crystal is the product of the respective Fourier Transforms of the crystal 

lattice and the contents of a unit-cell.  The discrete nature of the lattice function implies 

that the transform of the crystal is also discrete, as illustrated by the regularly spaced 

spots observed in a diffraction pattern.  

 

A macromolecular crystal can be represented by a periodic function, at least to a first 

approximation, due to the crystal lattice.  Any point in the unit-cell is equivalent to all 

other points that are related by a translation of one or more unit-cell lengths.  This 

translational equivalence is the most basic symmetry element found in any crystal.  The 

electron density in a crystal lacks imaginary components, so all diffraction patterns also 

exhibit a center of symmetry at the origin of the diffraction pattern.  This center of 

symmetry, known as Friedel's law, is inexact in the presence of anomalous scattering, as 

discussed below.  In the majority of cases, biological crystals have additional symmetry 

elements in which related points within the unit-cell are equivalent: related by a rotation 

or translation of less than one unit-cell length, or both.  Crystallographic symmetry 

elements repeat over the entire crystal lattice, and reduce the volume of unique space in 

the crystal to a region known as the asymmetric unit.  Non-crystallographic symmetry 

(NCS) elements, which are not related to lattice symmetry, can also be present within 

the asymmetric unit.  NCS often arises due to internal symmetry in a macromolecule, 

such as a virus capsid or homo-multimeric membrane ion channel.  Due to the chiral 

nature, or handedness, of biological molecules, symmetry elements containing a 

mirroring operator can not occur in real space, although they may be present in 

reciprocal space.  Centering operators, or lattice centering, representing translational 

shifts of less than one unit-cell without a rotational component, can also occur in 

biological crystals. 
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The collection of crystallographic symmetry operators comprises the space group of the 

crystal, and produces a variety of effects.  The presence of a symmetry operator can 

restrict the allowed angles between unit-cell edges, and may place restrictions on the 

lengths of the unit-cell edges.  Symmetry operators also exhibit their effects in 

reciprocal space.  The allowed phase values for some crystallographic indices can be 

restricted to two values (separated by 180 degrees) as a consequence of symmetry.  

These reflections are known as centric reflections.  For other indices, symmetry related 

components of the structure factor cancel out, restricting the amplitude to zero.  These 

reflections are considered to be systematically absent.   

 

1.3.2 Model – Final Result of Diffraction Experiment 

The goal of a crystallographic experiment is to produce a model of the molecule of 

interest.  This model consists of coordinates of the atoms present in the unit-cell.  

Crystallographic models are essentially static: only very limited dynamic information, 

in the form of temperature factors, is available.  In contrast to the coordinates, several 

different methods have been developed to model temperature factors.  The temperature 

factor of an object is related to its mobility and positional disorder.  An isotropic 

temperature factor models the mobility as uniform in all directions.  In some cases, the 

thermal motion is greater in some directions than others; anisotropic temperature factors 

can be used for these cases.  The modeled object can be a single atom, a group of atoms, 

or an entire molecule, depending on the type of temperature factor model that is used.  

Any regions that exhibit significant mobility are likely to vary considerably between 

different copies of the unit-cell, preventing their observation. 

 

A model is not a direct outcome of a diffraction experiment.  The X-ray photons interact 

only with electron clouds in the crystal, not the atomic centers whose coordinates are 
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used in the model.  The measured amplitudes are combined with a source of phase 

information to allow the calculation of an electron density map by inversion of the 

Fourier Transform.  The model is initially built into this map.  The structure factors 

(amplitude and phase) that the model would produce can be calculated, and compared 

with their experimental values.  The model is then refined against experimental 

observations, and updated in an iterative manner until the differences between the 

calculated observable values match their experimentally measured values sufficiently 

closely.   

 

Data over-fitting and model bias can cause significant problems, both during the initial 

model building stage and its subsequent refinement.  Over-fitting formally refers to a 

model refined with more parameters than justified by the available number of 

observations.  Over fitting can result in a model with apparently good statistical 

qualities, but this is a result of fitting the errors rather than the data.  This issue is 

mainly dealt with by the use of cross-validation, where a subset of diffraction data is not 

used during refinement, in order to produce unbiased statistics.  The 'free' statistics 

should improve along with the 'working' statistics determined using reflections used for 

refinement; a worsening or lack of improvement of the 'free' statistics may indicate the 

occurrence of over fitting. In an illustrative example (Jones et al., 1991; Kleywegt and 

Jones, 1995), Jones and co-workers built and refined a model with the direction of the 

peptide chain in reverses from the known structure, and observed only a slight 

difference in resulting standard statistics, although the ‘free’ statistics were able to 

reveal the presence of problems. 

 

Model bias occurs when a region appears in the maps due to its presence in the pre-

existing model used to determine phase values, not its presence in the data.  This can 
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occur because the phase terms have a stronger influence on the map than the amplitudes 

(Read, 1997).  There are a variety of approaches for reducing the effects of model bias.  

One type of approach involves down-weighting map coefficients for which the phase is 

expected to be less accurate.  This is estimated based on the agreement of the calculated 

amplitude with the observed amplitude, as well as the overall agreement between the set 

of calculated and observed amplitudes.  The σA weighting scheme (Read, 1986) is the 

weighting scheme that is most commonly used at present.  The other type of approach 

consists of various types of omit maps, in which maps phased using models with and 

without a region are compared.  Composite omit maps can be created where each region 

of the map (Bhat, 1988), or model, is removed in sequence.  A final combined map is 

reconstituted using electron density from the omit region of each of these maps.  

 

1.3.3 Electron Density Map 

The calculation of an electron density map requires a set of phase terms corresponding 

to the set of amplitudes to be used.  Since the phases of a diffraction pattern can not be 

measured directly, they have to be determined by other means.  Several methods have 

been developed, each with different advantages and disadvantages.  For small 

molecules, statistical constraints and the extremely high observation to parameter ratio 

allow direct determination of phase values.  However, the requirements of these 

methods are far outside what can be provided by the majority of macromolecular 

crystals, Pol II crystals in particular.  The remaining two approaches can be broadly 

divided into two classes: experimental phasing and model phasing. 

 

 

 

 

23 



 

1.3.3.1 Maps Calculated Using Model Phasing 

In this approach, values for amplitudes and phases are calculated from model (in 

conjunction with unit-cell and symmetry parameters).  These phases can then be used to 

calculate a map using the observed amplitudes.  If the model that has been used is 

sufficiently similar to the molecule of interest, this map can provide more information 

than is present in the model.  This additional information is often revealed through the 

use of difference Fourier techniques.  Since the phases used in map calculation have 

more influence on the electron density than the amplitude that are used, care must be 

taken to avoid introducing bias towards elements of the model that are not present in the 

data.  The refinement process discussed earlier makes use of model phases as an 

essential component, and is also susceptible to model bias.  

 

In order for the resulting phases to be useful, the model must be correctly positioned 

and oriented in the unit-cell.  This process of searching and model phasing is known as 

Molecular Replacement (MR), and can be broken down into several stages.  First, a 

model "sufficiently similar" to the contents of the crystal must be identified, although 

this is complicated by not knowing for certain if a model is sufficiently similar until 

after the process has succeeded.  Models of proteins that are homologous to the target 

protein are frequently used, as are models representing a part of the molecules of 

interest (for example, one subunit of a two-component complex).  Regions of the search 

model that are expected to differ, such as side chains, mobile loops, or non-conserved 

regions, are usually removed prior to searching.  The temperature factor of the model is 

typically reset to a uniform value, in order to reduce the potential of introducing 

inaccurate temperature factor differential.  Once a potential starting model or models 

have been identified, it has to be positioned in the unit-cell.  This requires identifying 

three rotational parameters and three translational parameters for each copy of the 
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molecule in the asymmetric unit.  For computational reasons, the search process is 

usually broken down into two stages: identification of potential rotational solutions 

followed by translational searching for each of the rotational solutions. 

 

1.3.3.2 Maps Calculated Using Experimental Phasing 

Experimental phasing is an umbrella term covering several different approaches for 

obtaining phases which do not require a starting model.  Fundamentally, all of these 

techniques make use of small differences between two or more measurements of 

amplitudes related in a known manner.  These small differences may be caused by 

addition of heavy atoms, as in Isomorphous Replacement, or they may be caused by X-

ray fluorescence effects, as in Multiple-Wavelength Anomalous Diffraction (MAD), or 

a combination of these effects.  Although the experimental methods for generating 

crystals capable of providing the necessary amplitude differences vary, the overall 

phase calculation procedures are very similar (Ramakrishnan and Biou, 1997). 

 

Regardless of the experimental method used to generate amplitude differences, 

positions of the responsible scatters must be determined prior to phase calculation.  

These sites are often referred to as heavy atom sites, although they are not necessarily 

due to heavy atoms (for example, the "heavy atom" in question may be a change in 

scattering due to a change in wavelength or due to radiation damage).  Once these sites 

are located, initial phases can be calculated.  Experimental phases are mathematically 

ambiguous, in that two phase values are equally possible for a single source of phase 

information.   

 

The original method used for generating amplitude differences for the purpose of phase 

determination was the process referred to as isomorphous replacement (IR).  In this 
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approach, heavy atom compounds are soaked into a macromolecular crystal, and useful 

derivative crystals are created when the heavy atoms bind to discrete sites on the 

macromolecule without disturbing the crystal packing in the lattice.  In the ideal case, 

the only change in the crystal is the binding of the heavy atoms.  Other changes that 

occur, such as changes in crystal packing, unit-cell parameters or conformational 

changes, reduce the degree of isomorphism, or similarity, between the derivative crystal 

and the unmodified native crystal.  If large enough changes occur, the two crystals will 

no longer be isomorphous.  This results in the derivative being unusable for phasing, as 

the derivative structure factor is no longer equivalent to the native structure factor plus 

the heavy atom structure factor.  Accordingly, one of the bottlenecks in IR is the 

identification of suitable derivative crystals.  This process is referred to as Single 

Isomorphous Replacement (SIR), or Multiple Isomorphous Replacement (MIR), 

depending on the number of derivative crystals. 

 

The other major method used for generating amplitude difference for phasing involves 

exploiting the changes in the atomic scattering factor due to X-ray energy.  Each 

element has characteristic electron resonance energies, and incident X-rays near these 

energies cause anomalous scattering effects due to atomic fluorescence.  The real part of 

the atomic scattering factor drops sharply near a particular resonance energy, and 

recovers quickly above or below that energy.  This results in a change between the 

structure factor at this energy, referred to as the inflection point wavelength, and that at 

a wavelength away from the resonance energy, known as the remote wavelength.  In 

effect, this change in real scattering factor is equivalent to the change caused by the 

addition of heavy atoms, although it is generally smaller in magnitude.  In this work, I 

will use the term “dispersive” to refer to amplitude differences, or phases, due to a 

change in the real component of the scattering factor, regardless of the source.  If the 
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same crystal can be used for measurements at both wavelengths, then the possibility of 

non-isomorphism is eliminated, although radiation damage can still be a limiting factor.   

 

In addition to changes in the real part of the scattering factor, X-ray energies slightly 

above the resonance energy, cause a large increase in the imaginary component of the 

scattering factor.  This wavelength is referred to as the anomalous peak wavelength.  In 

most cases, the imaginary component of atomic scattering is sufficiently small that it 

can be neglected.  For cases where there are atoms with a sufficiently large imaginary 

component of scattering factor, Friedel’s law no longer holds.  Therefore, there is a 

measureable amplitude difference between a reflection with index (h, k, l) and that with 

index (-h, -k, -l).  In the presence of meaningful anomalous signal, the Friedel pair is 

referred to as a Bijvoet pair.  This difference can be exploited as a source of phase 

information independent from that derived from dispersive changes in the real 

scattering.  For clarity, I will refer to amplitude difference or phase information due to 

changes in the imaginary component of the scattering factor as “anomalous”.  When 

phase information based on imaginary scattering alone is used, it is referred to as single 

anomalous scattering (SAS) or single anomalous dispersion (SAD).  It can also be 

combined with SIR, referred to as SIRAS; or with MIR, referred to as MIRAS.  When 

SAS is used in combination with the change in the real part scattering, it is referred to as 

multiple-wavelength anomalous dispersion (MAD).  The dispersive phase information 

is independent of the anomalous phase information; therefore, MAD is capable of 

providing unambiguous phase values from a single crystal. 

 

In principle, two independent sources of phase information allow unambiguous 

identification of the correct phase value.  In practice, this is not necessarily the case due 

to the presence of error.  Often maps calculated with multiple independent phase 
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sources may remain difficult to interpret.  The next stage is to reduce phase errors by a 

process known as phase improvement, or density modification.  These methods make 

use of additional information from various sources to improve the map.  These 

procedures are frequently required to produce interpretable maps from experimental 

phases, although they are sometimes applied to model-phased maps as well.  These 

methods use alternate sources of information as constraints on either the map, or phase 

set, and produce a phase set more consistent with these additional constraints.   

 

One approach, known as solvent flattening, applies the constraint that the electron 

density should be featureless in the solvent region by assigning a constant value to all 

solvent regions of the map.  Solvent flipping, a related procedure, works similarly, but 

uses a more involved procedure to determine the new value for a point with the solvent 

region.  Either of these procedures requires the use of a solvent mask, which can be pre-

existing or procedurally generated.  Other constraints can be used as well.  Non-

crystallographic symmetry (NCS) and histogram matching both provide additional 

constraints on density with the protein region: NCS by constraining the density of 

related molecules to the same value and histogram matching by adjusting the overall 

density with the protein region to match that for previously well-determined values.  

 

An additional factor that complicates experimental phase determination is the issue of 

handedness.  Biological macromolecules are chiral; however, this information is lost 

due to the center of symmetry that is present in the diffraction pattern.  The standard 

crystallographic statistics generated by a set of heavy atom sites in the incorrect hand 

will match those generated in the correct hand.  For high resolution maps (better than 3 

Å), this issue can be resolved because the correct hand can be recognized by visual 

inspection of secondary structural elements in the protein density.  In lower resolution 
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maps, the level of detail available does not permit this distinction.  Cross-anomalous 

difference maps can be used in these cases to determine handedness. 

 

1.3.4 Data Reduction 

Before any phasing procedure or map calculation can occur, a set of structure factor 

amplitudes is needed.  These amplitudes are the experimental observations; however 

they are the result of several processing steps.  The spot intensities observed in a 

diffraction image are directly related to the structure factor amplitudes used for phase 

determination and map calculation. 

 

The vast majority of macromolecular diffraction experiments currently measure the 

diffraction by collecting a series of diffraction images of the crystal as it is rotating in an 

X-ray beam.  The first step in producing amplitudes from images is to determine the 

parameters necessary for the prediction of spot locations, a process known as indexing.  

This process has been currently highly automated, but a conceptual understanding of the 

process greatly assists troubleshooting of cases in which the automated procedure fails.  

In order to predict the locations of diffraction spots, several parameters are necessary.  

Some of these parameters specify the experimental setup, such as the X-ray beam 

properties (e.g. wavelength, divergence), distance from the crystal to the detector, and 

rotational position of the goniometer.  Others specify properties of the images, such as 

the position of the un-diffracted X-ray beam on the image, the number of pixels and size 

of the image.  The orientation of the crystal and unit-cell parameters are also required; 

these are determined by the auto-indexing procedure.  Errors in the input parameters 

produce varying degrees of error in the output unit-cell parameters.  Large errors in 

wavelength or crystal-to-detector distance will allow indexing; however the lengths of 

the unit-cell edges will be incorrect by a constant factor.  Errors in the direct beam 
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position produce the most significant problems during indexing.  In the best cases, 

errors in the direct beam cause auto-indexing to fail, or produce solutions with 

obviously incorrect spot positions.  More serious errors may result in a valid indexing 

solution, but one where the origin is inaccurate, meaning that the spots are predicted 

correctly, but intensities are assigned to incorrect (h, k, l) indices.  Such errors do not 

manifest themselves until several steps later in the data reduction process. An initial 

space group is also assigned, based on a collection of symmetry operators consistent 

with the unit-cell parameters that are determined during indexing.  Symmetry related 

reflections are not usually checked at this stage, so the initial space group may be 

incorrect.  In addition, symmetry elements with a translational component (such as 

differentiating screw axes from rotation axes) are usually not distinguished at the 

indexing stage; however lattice centering operators can be detected.   

 

The next stage of data reduction is to determine the total intensity for each reflection.  

This is done in two procedural steps: integration and merging.  The integration process 

determines the total intensity for each predicted spot within each image.  The total 

intensity for a reflection may be spread over several diffraction images, depending on 

mosaicity (three-dimensional spot width), beam divergence and the rotational range 

covered by the image.  The crystal orientation, machine parameters, and unit-cell 

parameters, can be refined during integration to compensate for initial inaccuracies and 

allow for small shifts during data collection.   

 

The merging process produces a single estimate of the intensity of a reflection from its 

observations as a spot which may cross consecutive images and spots observed at 

symmetry related positions.  This is the first stage to explicitly use the space group in 

the form of symmetry operators, rather than as constraints on the cell parameters.  
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Accordingly, any symmetry element that is not present in the crystal will first be 

apparent at this stage, although the absence of a symmetry element that hasn't been 

assigned is generally not evident during the merging step.  Errors in the origin of the 

reciprocal lattice during indexing will also be detectable at this point, as the 

observations that are combined during merging will not be truly equivalent.  The 

merging process also needs to consider the phasing strategy to be used.  If anomalous 

scattering is to be used, then the intensities of Friedel mates should not be merged, as 

this would result in a loss of anomalous signal.  On the other hand, if the dataset is to be 

phased with molecular replacement, or used to generate dispersive phases, then the 

Friedel mates can be merged to increase the accuracy of the measurement. 

 

The final stage of reducing diffraction images to structure factor amplitudes is to 

convert the intensities to amplitudes, and place the amplitudes on an approximate 

absolute scale.  In order to place the data on an absolute scale, an estimate of the total 

scattering in the crystal, or equivalently the asymmetric unit, is necessary.  This requires 

some information about the mass of the macromolecule as well as how many copies of 

the molecule are present.  The mass of the macromolecule, in combination with the size 

of the unit-cell, is also used to determine the solvent percentage of the unit-cell. 

 

1.3.5 Diffraction Data Collection 

The main factor influencing the quality of data obtained during a diffraction experiment 

is the quality of the crystals.  However, several experimental factors should be 

considered in order to allow extraction of the maximum possible amount of information 

from the available crystals.  The typical X-ray diffraction experiment uses a single 

crystal rotating about one or more axes in a monochromatic X-ray beam.  A single 

image generally covers an angular range of 0.5 to 2.0 degrees.  The width of an image is 
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dictated by the mosaicity of the crystal.  Larger mosaicities will result in fewer spots 

being fully recorded in a single image.  The total angular range required to collect a 

complete dataset depends on the space group and the initial orientation of the crystal.  A 

crystal with high symmetry may require only 60 to 90 degrees of data for a complete 

dataset.  For crystals of lower symmetry, an angular range of 180 degrees would be 

required.  Collection of a wider angular range than required for completeness can 

improve the dataset by increasing the multiplicity of observations for each reflection.  

However this improvement may be negated by damage caused to the crystal by 

prolonged radiation exposure.  The phasing strategy to be used is another factor 

influencing data collection.  For data to be phased using a model, or used to derived 

dispersive (or isomorphous) experimental phases, Friedel pairs can be considered 

equivalent.  Data in which usable anomalous signal is expected must treat the equivalent 

Friedel pairs of reflections as non-equivalent Bijvoet pairs, requiring a doubling of the 

angular range required for a complete dataset.  To maximize the measurement of the 

anomalous signal available, the Bijvoet mates should be measured with as short time 

between them as possible, in order to minimize amplitude differences due to X-ray 

source fluctuations, accumulating radiation damage, and other effects.  In some cases, 

the crystal can be aligned so that both members of a Bijvoet pair are recorded on the 

same image.  An alternative approach is to collect one or more images (recording spots 

at h, k, l indices) followed by images offset by 180 degrees (recording spots at –h, -k, -l 

indices).  An analogous procedure can be used for MAD data collection, shifting 

wavelengths instead of, or in addition to, shifting the angular range.  The wavelength 

used for data collection is particularly significant for anomalous or dispersive datasets.  

The anomalous scatterers may have slightly different absorbance edges when bound to a 

macromolecule than when in their elemental form, so the wavelengths should be chosen 

on the basis of an X-ray fluorescence scan of the experimental crystal.  
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 For datasets where anomalous data is not of importance the wavelength used is of less 

importance, and is generally selected to minimize air scattering, or maximize the 

intensity available.  For non-synchrotron sources, wavelength selection is determined by 

the anode in the X-ray generator (copper anodes producing 1.54 Å X-rays are most 

commonly used).  Other experimental parameters, such as exposure time and crystal-to-

detector distance, need to be optimized for data collection.  Decreasing the distance 

between the detector and the crystal allows for recording of higher resolution spots, but 

reduces spot separation; in practice the resolution of the crystal usually dictates the 

choice for distance.  The exposure time for an image should be chosen to maximize the 

signal to noise ratio for the spots, while minimizing the number of saturated pixels.  In 

practice, it is sometimes not possible to do this within a single dataset.  In these cases, 

multiple 'passes' can be made, with one selected to record high resolution spots, and 

another optimized for low resolution reflections. 

 

1.4 Application of Crystallography to the Study of Pol II Structures 

A variety of Pol II complexes play essential roles in transcription.  As mentioned 

earlier, the limited structural knowledge of such complexes is due to the technical 

obstacles in determining Pol II complex structures.  Although these difficulties are 

inherent to Pol II complexes, similar difficulties could be expected for structures of 

other large macromolecular complexes.   

 

The first bottleneck to any structure determination is the production of material.  The 

purification of Pol II alone, in either 10 subunit or 12 subunit forms, is a substantial 

undertaking.  The number of subunits prevents the standard route of cloning into E. coli 

and over-expressing.  The best current approach is to purify Pol II directly from a 
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suitable source, such as S. cerevisiae.  For a complex, this difficulty is enhanced by 

requiring formation of a stoichiometric complex of Pol II and the additional factor.  

This is accomplished by either reconstitution with a separately purified factor, or 

purification of the complex directly from yeast.  Once enough protein is available, the 

determination of good crystallization conditions presents the next obstacle.  The search 

for conditions capable of producing diffraction quality crystals is hampered by the 

relatively limited quantities of protein that can be produced.  Crystals available from 

good conditions can still present additional problems.  Careful handling is required to 

prevent mechanistic damage and oxidation of the Pol II protein, which contains oxygen-

sensitive zinc motifs.  Data collection at cryogenic temperatures is essential, in order to 

prevent radiation damage during data collection.  Crystals of Pol II require careful 

optimization of cryo-protectant conditions and freezing methodology, due to their high 

solvent content (up to 80%) and relatively weak lattice contacts.  Even with extensive 

work on the steps that are required for producing the best possible crystals, the 

diffraction obtained from the best crystals of Pol II complexes (3.5 to 4.5 Å) would be 

typically considered low resolution by the standards used for work on smaller 

macromolecules.   

   

Improvements in X-ray sources, data processing algorithms and software have 

dramatically simplified the process of determining a structure once crystals are 

available.  For a typical protein crystal, this process can be highly automated, and the 

time required for data processing can range from a few weeks to a few minutes.  

However, as judged by structures deposited in the Protein Data Bank (Berman et al., 

2000) (as of June 2009), the average structure has a resolution of approximately 2.2 

Angstroms, and a molecular mass of approximately 70 KDa.  By way of comparison, 

the average Pol II complex crystal has a molecular mass of 500 to 700 KDa and 
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diffracts to a resolution of up to 3.8 Angstroms.  The relatively low quality of 

diffraction data that is available requires careful optimization of the diffraction data 

processing, just as with the earlier stages (protein purification, crystallization, and cryo-

protection) in order to extract the maximum amount of structural information.  Work in 

the Fu lab on complexes of Pol II with TFIIF or RNA capping enzyme revealed several 

cases in which improvements to data processing could assist the determination of Pol II 

complex structures.  In order to ensure the effectiveness of these improvements, they 

were validated by testing them on diffraction data from the 12-subunit Pol II.   
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CHAPTER 2: MULTI-CRYSTAL ZINC-MAD PHASING OF 
POL II 

 

2.1 Introduction 

2.1.1 Why Zn-MAD? 

Following the initial determination of the 10-subunit Pol II structure (Cramer et al., 

2000), additional Pol II structures have become available.  There are structures of the 

full 12-subunit Pol II, both 10- and 12-subunit forms complexed with various nucleic 

acids and NTPs, and partial complexes with two different transcription factors, 

reviewed in (Cramer et al., 2008).  By far, the vast majority of these structures were 

phased by molecular replacement using an earlier model.  This approach bypasses many 

of the technical steps required for experimental phasing.  The search model is by 

definition highly homologous to the target, since the same core Pol II molecule is 

present in the crystal, although significant conformational changes may be present due 

to variation in clamp position or other potentially mobile domains of the polymerase.  

 

The potential limitations of this approach are illustrated by the structures of two 

complexes containing transcription factors that have been published.  In each case, the 

resolution of data provided by complex crystals was limited: 3.8 Å for the TFIIS 

complex (Kettenberger et al., 2003; Wang et al., 2009) and 4.5 Å for the TFIIB complex 

(Bushnell et al., 2004).  Possibly related to that limitation, only a portion of the 

transcription factor was able to be modeled.  Similarly, work in our lab on complexes 

with other transcription factors was only able to produce crystals with relatively low 

resolution, and poor electron density for additional factors using model derived phases.   
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The general properties of crystallographic structure factors offer three supporting 

explanations for why model derived phasing exhibits limitations for phasing Pol II 

complexes.  The first of these factors is the relative completeness of the model in a 

transcription factor complex.  The effectiveness of model phases is a function of the 

accuracy and completeness of the model (Read, 1986; Srinivasan and Ramachandran, 

1965).  Assuming the accuracy of the Pol II model is unchanged, lower quality density 

would be expected for a 200 kDa transcription factor than a 500 Da nucleotide, as the 

known Pol II model represents less of the total mass in the former case.  The second 

factor is the effect of phase error as a function of resolution.  As illustrated by Wilson 

statistics and atomic scattering factors, the average amplitude of a structure factor tends 

to decrease with increasing resolution.  Therefore, for a constant phase error, the root-

mean-square (RMS) error between the true structure factor and model derived structure 

factor will be greater for a low resolution reflection (Figure 2.1).  This increased RMS 

error in the structure factors translates directly into increased errors in the electron 

density map (Read, 1997).  The third factor is also related to resolution: the number of 

reflections increases roughly cubicly with increasing resolution.  Since the amplitudes 

associated with these reflections are the sole source of experimental information in the 

absence of experimental phases, as the resolution limit decreases there is simply less 

experimental information available.  

 
These limitations suggest that experimental phases would be necessary in order to phase 

Pol II complexes containing large transcription factors.  The insufficiency of model 

phasing was demonstrated by lack of additional protein density in co-crystals of TFIIF-

Pol II and CE-Pol II complexes using phases from the Pol II model (unpublished 

results).  In each of these cases, molecular replacement was able to correctly position 

the Pol II model with relative ease, but was not able to provide additional usable phase  

37 



 

 

Figure 2.1: Average Structure Factor Amplitude and RMS Error at High and Low 

Resolutions  

Distribution of average atomic scattering as a function of resolution is shown in top 
panel.  This distribution for a protein would show a hump at 4 Å due to secondary 
structural elements.  Harker diagrams for a low resolution, large amplitude reflection 
(bottom left) and high resolution, small amplitude reflection (bottom right) illustrate the 
RMS differences for a constant phase difference.  
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information regarding the non-Pol II portion of the complex.  MIRAS was the phasing 

approach that was used the first Pol II crystals (Cramer et al., 2000; Fu et al., 1999).  As 

discussed above, this approach requires the identification of suitable derivative crystals.  

The use of selenomethionine substituted proteins to generate anomalous signal for 

MAD or SAS is an approach that has become widely used.  However, selenomethionine 

substition is toxic to S. cerevisiae, and the partially substituted proteins are unable to 

produce sufficient phasing power for large complexes.  As an alternative, the use of 

intrinsic Zn ions present in Pol II for phase determination was investigated.  As 

described below, this approach was effective. 

 

2.1.2 Why Pol II Again? 

As described above, Pol II contains 8 Zn ions, which are believed to stabilize the 

tertiary structure.  Zinc produces a relatively weak anomalous signal, roughly 

comparable to selenium, which could be used as a potential source of experimental 

phase information.  However, the ratio of anomalous Zinc to non-anomalous light atoms 

in Pol II is extremely low: approximately 1 Zinc per 60 kDa protein, corresponding to a 

Bijvoet ratio of 1.32%.  For comparison, the median ratio for structures deposited in the 

Protein Data Bank (Berman et al., 2000) phased by means of Zn anomalous is 1 Zinc 

per approximately 16 kDa protein (Figure 2.2).   

 

A multi-crystal approach was adapted in order to enhance the weak phasing signal.  

Early work on CE-Pol II co-crystals indicated that this approach had the potential to 

allow for unbiased phasing of Pol II complex crystals.  In order to validate the potential 

of this approach, and identify important factors for producing the best possible 

experimental map, a control experiment was conducted to re-phase the 12-subunit Pol II 

using multi-crystal Zn-MAD. 
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Figure 2.2: Comparative Effectiveness of Zn Anomalous Phasing 

Histogram of molecular mass / number of Zn for structures phased using Zn anomalous.  
Entries were identified by reported phasing method, wavelength, and number of Zn sites 
according to RCSB Protein Data Bank (Berman et al., 2000) snapshot from Jan 5, 2009.  
The phasing effectiveness of Zn-MAD is 64.8 KDa/Zn for Pol II. 
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2.1.3 Multi-Crystal Approach Applied to Weak Anomalous Data 

Multi-crystal approaches are used in several ways in crystallographic data processing.  

In order to clarify the advantages and disadvantages of multi-crystal phasing, it is 

helpful to provide some details regarding the distinction between multi-crystal phasing 

and other multi-crystal methods.  Multi-crystal approaches differ in the stage of data 

processing at which combination occurs, which in turn places restrictions on the 

datasets suitable for combination. 

 

One of the earliest and most common multi-crystal approaches addresses the tendency 

of crystals to deteriorate during data collection due to radiation damage.  As a result of 

this, each crystal does not produce a dataset that is sufficiently complete.  Multiple 

crystals are used to allow collection of a complete dataset with sufficient redundancy.  

As discussed earlier, the merging step combines multiple, possibly partial, observations 

of the intensity for a single reflection from different frames or equivalent indices into an 

estimate of the intensity (and associated error) for that reflection.  The combination of 

multiple crystals at the reflection merging stage adds additional observations for these 

indices from the multiple datasets used.  Multi-crystal merging requires the crystals 

used to be isomorphous; otherwise the final intensity will be a mixture of multiple 

intensities rather than an improved estimate of a single intensity.  The end result of this 

approach is a more complete, ideally more accurate, or both, set of intensities than 

produced by any of the individual datasets used.  

 

An alternative multi-crystal approach is electron density averaging using multiple 

crystals.  As discussed earlier, density modification is the process of applying real-space 

constraints to a phase set in order to improve the phase values.  In multi-crystal density 
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modification, maps from multiple crystals are used as simultaneous sources of real-

space information in order to obtain phase improvement.  This approach does not 

require that the crystals used be isomorphous; indeed, the data used are frequently from 

different crystal forms with differing space groups.  The end result of this approach is a 

set of improved phases, in both crystal forms (Cowtan, 1994). 

 

In yet another approach, that is multi-crystal phasing, datasets from individual crystals 

are combined at the phasing step (Abrahams and Leslie, 1996).  This approach is 

somewhat analogous to MIR or MAD phasing, with the caveat that the input phase 

probability distributions are not fully independent.  Like multi-crystal averaging, the 

end result is an improved set of phases.  Similar to multi-crystal merging and MIR, the 

crystals used must be isomorphous, or the final result will be a degraded phase set rather 

than an improved one.  

 

2.2 Results on Zn-MAD Phasing of Pol II 

2.2.1 Zinc Signal is Sufficient for Locating Zinc-ions 

Determining the location of anomalous scatterers, such as Zn, is the first step of MAD 

phasing.  X-ray fluorescence scans clearly showed the presence of Zn in these crystals 

(Figure 2.3).  Difference Fourier is a standard technique used to allocate anomalous 

scatterers when a prior phase source is available.  Using this approach, peaks were 

observed in anomalous and dispersive difference maps phased with phases from the Pol 

II model. These peaks corresponded with the previously determined positions of zinc 

atoms in the Pol II structure (Figure 2.4).  This observation, in combination with the X-

ray fluorescence scans of the crystals (Figure 2.2), indicated that the zinc sites had been 

successfully located.  As anticipated, the dispersive difference maps showed weaker 

peaks, and more noise, than anomalous difference maps (Figure 2.4). 
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Figure 2.3: Representative X-ray Fluorescence Scan   

The fluorescence scan shows the presence of measurable zinc anomalous signal in one 
of the 12-subunit Pol II crystals, as indicated by the significant absorption at the 
inflection energy.  Arrows indicate the inflection energy (where real scattering due to 
anomalous effects is smallest) and peak energy (where imaginary scattering is 
maximized) for the K-edge of Zn.  f’ is the real component of scattering due to 
anomalous effects, and f’’ is the imaginary component of scattering due to anomalous 
effects. 
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Figure 2.4: Representative Model Phased Anomalous and Dispersive Difference Maps 

Three of eight zinc atoms are shown as grey spheres.  All maps are shown in green 
mesh, contoured at 3.0 σ.  Anomalous difference Fourier maps were phased using either 
full model (upper left) and partial model (lower left).  Dispersive difference Fourier 
maps were phased using full model (upper right) or partial model (lower right).  The 
partial model used for anomalous difference Fourier was the 12-subunit model 
described in the text with Rpb1 and Rpb2 removed.  The partial model used for 
dispersive difference Fourier was the same 12-subunit model with Rpb1 removed.  The 
closest distance between any two zinc atoms, or symmetry-related equivalents, is 16 Å. 
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In order to exclude the possibility that these peaks were due to bias in the model, the 

model was manually placed into an arbitrary position in the asymmetric unit.  

Difference maps calculated using the incorrectly placed model did not show any peaks.  

Similarly, the presence or absence of zinc atoms in the model that was used for phasing 

did not affect the presence of peaks in the difference maps, excluding the possibility 

that their presence was residual effects often associated with difference Fourier maps. 

 

Although the peaks observed in these difference maps were sensitive to the orientation 

and position of the model, they were relatively insensitive to its completeness.  The 

peaks were still observed in difference maps phased using a model from which the 

Rpb1 and Rpb2 subunits had been removed, corresponding to a model that was only 

approximately 40% complete (Figure 2.4, lower panels).  

 

The location of Zn sites in model phased difference maps avoids a potential requirement 

for the use of heavy-atom clusters.  In the original phasing of the first Pol II crystal, the 

use of heavy atom clusters was required in order to initiate experimental phasing, as the 

background noise from the polymerase prevented the location of discrete heavy atoms.  

In addition, potential problems with the handedness of the data were also avoided by 

using model phased difference maps.   

 

The use of difference Fourier techniques was essential for location of the zinc positions.  

Peaks corresponding to zinc ions were not detectable in either anomalous or dispersive 

difference Patterson maps.  Similarly, SAPI (Hao et al., 2003) was unable to locate the 

zinc sites using a tangent-formula approach.   
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2.2.2 Single Crystal Phasing 

Before phase combination, datasets from each of the individual crystals were phased 

individually.   For one of these crystals, it was possible to collect a full MAD dataset.  

The quality of difference Fourier maps roughly correlated with the phasing statistics and 

quality of solvent flattened maps from individual crystals, with SAS maps generally 

being of higher quality than dispersive maps.  As expected, the single crystal MAD 

phases were of higher quality than the component SAS or dispersive phases (Figure 

2.5).  The effects of radiation damage on dispersive data were illustrated by the 

behavior of a dataset that was not collected in wedges relative to the other dispersive 

maps.  Collecting the remote and inflection as two consecutive datasets produced a 

worse map in comparison to datasets where remote and inflection images were collected 

in wedges of 20 or 40 images. 

 

2.2.3 Multi-Crystal Map Agrees with the Known Model 

The single crystal maps produced were of varying quality, and showed density in 

physically impossible regions (for example, isolated islands with no connection to the 

remainder of the lattice) and contained regions of the model with no corresponding 

experimental density.  In order to improve upon these results, the following multi-

crystal approach was investigated.  Starting with the best diffracting crystal as a base, 

the remaining datasets were combined at the phase calculation step.  Datasets that 

improved the solvent flattened map were kept; otherwise the additional dataset was 

discarded.  Somewhat surprisingly, not all datasets resulted in a combined map after 

addition to the phase set.  During later projects, alternative methods to determine an 

optimal phase set were investigated, as described in the discussion.  The final 

experimental map was produced using a set of 2 anomalous datasets and 2 dispersive 

datasets from a total of 3 crystals, with a resolution of 4 Angstroms (Table 2.1).  This  
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Figure 2.5: Experimental Maps 

Representative solvent-flattened experimental maps, contoured at 1.0 σ, are shown as 
green mesh.  Pol II model is shown as grey ribbon, symmetry related model shown as 
red ribbon. 
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Table 2.1: Merging and Phasing Statistics for Pol II Datasets 

 
All datasets were in space-group C2221, with one molecule per asymmetric unit.  
Dataset naming scheme based on crystal and drop ID according to Limbro plate (e.g. 
A3X7 is crystal 7 from the well at row 3 column A).  Suffix (inf, rmt or pk) denotes X-
ray energy for Zn inflection, high-energy remote, or peak wavelength, respectively.  
Merging statistics are from SCALA, and phasing statistics are from PHASIT.  Datasets 
phased using dispersive differences are labeled SIR in the Type column.  Datasets 
phased using anomalous are labeled SAS in the Type column. 
 
Dataset Λ a b c I/sigma completeness multiplicity resolution Rsym
A4X4inf 1.282 221.95 394.36 280.92 5.5 (2.2) 99.8 (99.8) 5.9 (6.0) 81-7.65 0.117 (0.296)
A4X4rmt 1.279 220.23 392.52 280.80 5.8 (2.5) 99.9 (100.0) 6.9 (7.1) 112 – 6.9 0.109 (0.271)

A4X6inf 1.283 220.85 394.45 282.08 4.1 (2.4) 99.8 (99.8) 13.2 (13.6) 182-7.2 0.154 (0.295)
A4X6rmt 1.265 221.13 394.38 281.72 4.3 (2.5) 99.8 (99.9) 12.4 (12.8) 91-7.3 0.148 (0.280)

A3X7pk 1.282 220.56 391.38 280.39 7.5 (3.3) 99.6 (99.6) 13.7 (14.1) 182-6.5 0.084 (0.235)
A3X7pk-ANISO 1.282 220.56 391.38 280.39 4.7 (2.0) 85.5 (64.1) 9.3 (3.6) 182-4.15 0.143 (0.369)
A3X7inf 1.283 220.22 391.27 280.45 6.7 (2.6) 99.2 (99.2) 8.8 (9.0) 182-7.3 0.104 (0.290)
A3X7rmt 1.276 220.22 391.27 280.45 7.5 (2.9) 99.2 (99.3) 8.8 (9.1) 182-7.2 0.093 (0.274)

A2X10pk 1.282 220.69 394.33 281.31 7.3 (2.4) 100.0 (100.0) 11.5 (11.9) 182-6.2 0.090 (0.298)

A2X11inf 1.283 222.12 394.37 281.80 6.9 (2.6) 82.2 (83.5) 4.6 (4.7) 91-6.6 0.088 (0.278)
A2X11rmt 1.276 222.12 394.37 281.80 6.8 (2.9) 82.6 (83.9) 4.7 (4.8) 87-6.5 0.092 (0.256)

master(ANISO) 3.8 (1.6) 85.2 (63.9) 26.8 (3.6) 158-4.15 0.165 (0.453)
master(ISO) 4.1 (2.7) 100.0 (100.0) 67.5 (27.7) 158-6.5 0.153 (0.266)  
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map agreed almost completely with the pre-existing model, demonstrating that the zinc 

anomalous signal is sufficient to phase a protein of this size (Figure 2.5). 

 

2.2.4 Determination of the Solvent Mask is a Critical Step  

The Pol II crystals used typically diffracted to resolutions of 8 to 6 Angstroms.  

However, one crystal used in this study allowed the collection of a 4 Angstrom dataset.  

During initial processing of the data, it was treated as a 6.5 Angstrom dataset.  Once an 

optimal phase set had been identified, the higher resolution data was incorporated.  

Surprisingly, the solvent flattened map produced from this phase set was worse than the 

comparable map at 6.5 Angstroms.  Comparison of the solvent masks used showed that 

the higher resolution phase set did not produce a reasonable solvent mask when using 

the standard spherical averaging procedure (Wang, 1985).  After conversion of the 

lower resolution mask to the appropriate grid suitable for solvent flattening at the higher 

resolution, density modification procedures were able to produce a good experimental 

map (Figure 2.5 D).   

 

2.2.5 Simulation Suggests Multi-Crystal Zn-MAD Should be Effective for 

Complexes up to ~1 MDa 

In order to further investigate the limits of this phasing approach, a numerical 

experiment was conducted.  Simulated data was generated for Pol II by calculating 

structure factors incorporating appropriate f’ and f’’ values for all atoms, and generating 

errors.  The number of Zn atoms was varied from a maximum of 8 (as in native Pol II) 

to 1.  Multiple simulated crystals were created by independent repetition of the error 

generation procedure, up to a maximum of 10 for each number of Zn atoms.  As 

anticipated, the number of datasets required to produce a good protein map increased as 

the number of Zn sites decreased.  Assuming 4 isomorphous crystals supplying a full 
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MAD dataset, or the equivalent number of SAS and dispersive datasets from more 

crystals, as a practical limitation, it was found that 4 to 5 zinc sites would be sufficient 

for phasing Pol II (Figure 2.6 and Table 2.2). 

 

Somewhat unexpectedly, the contribution of the non-Zn atoms (light atoms) to the total 

anomalous scattering exhibited a substantial effect on the simulation results.  During 

initial testing of the simulation procedure, the anomalous contribution of the light atoms 

was set to zero.  Under these conditions, a single simulated crystal with a single Zn 

atom was able to produce a high quality map.  Under more realistic conditions, where 

anomalous scattering from the light atoms were set to theoretical values, a greater 

number of Zn sites and crystals were required.   

 

2.2.6 The Experimental Map Shows Previously Un-modeled Regions of 

Pol II 

The final experimental map agreed very closely with the existing Pol II model.  

However, additional density was observed at several regions.  Closer inspection showed 

that this density corresponded to regions where the model had gaps.  A preliminary 

poly-alanine model was built for three of these regions: fork loop 1 in the Rpb1 subunit, 

part of the Rpb2 protrusion (B437-B446), and part of Rpb4 (D113-D117).  Initial 

attempts to refine the model using the MLKF (Murshudov et al., 1997) and MLHL 

(Pannu et al., 1998) targets in CNS (Brünger et al., 1998) were unsuccessful.  These 

regions, along with a workable refinement scheme that was later implemented, are 

discussed in more detail in chapter 3.  The model containing the newly built regions, 

along with master amplitudes and experimental phases, was deposited in the Protein 

Data Bank as entry 2B8K (Meyer et al., 2006). 
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Figure 2.6: Maps from Simulation 

Duplicates of maps calculated using simulated multi-crystal datasets showing examples 
of unsuccessful (two crystals, 4 zinc) and successful (5 crystals, 4 zinc; 2 crystals, 8 
zinc) simulation runs.  Models are shown as grey ribbon; maps contoured at 1 σ are 
shown as green mesh. 



 

 

 

 

 

 

 

Table 2.2: Simulation Summary Statistics  

Bold entries represent conditions where the simulated map matched the model.  
Underlined entries represent conditions where there were slight differences between 
the simulated map and model.  Values are the average of two independent simulation 
runs. 
 
A. Correlation coefficients (C.C.) between Pol II Fc map and maps from simulated data
Map C.C. # Crystals = 1 2 3 4 5 6 7 8 9

# Zn = 8 0.579
10

0.660 0.600 0.669 0.759 0.598 0.729 0.588 0.764 0.754
7 0.327 0.641 0.691 0.586 0.689 0.741 0.625 0.581 0.617 0.756
6 0.241 0.528 0.546 0.649 0.555 0.693 0.616 0.644 0.652 0.615
5 0.423 0.549 0.591 0.433 0.576 0.550 0.512 0.680 0.564 0.716
4 0.401 0.457 0.634 0.521 0.700 0.566 0.631 0.661 0.722 0.652
3 0.326 0.273 0.432 0.374 0.345 0.708 0.364 0.426 0.556 0.573
2 0.436 0.264 0.241 0.424 0.406 0.212 0.427 0.578 0.526 0.517
1 0.183 0.151 0.329 0.305 0.390 0.369 0.366 0.414 0.309 0.461

B. Real space R-factors (RSR) between the Fc map and maps from simulated data
RSR # Crystals = 1 2 3 4 5 6 7 8 9

# Zn = 8 0.557
10

0.512 0.554 0.502 0.438 0.556 0.455 0.575 0.445 0.433
7 0.720 0.522 0.479 0.569 0.491 0.444 0.545 0.586 0.554 0.429
6 0.774 0.603 0.591 0.517 0.601 0.496 0.544 0.532 0.530 0.556
5 0.664 0.586 0.571 0.673 0.579 0.594 0.628 0.502 0.593 0.474
4 0.670 0.662 0.524 0.610 0.473 0.583 0.553 0.513 0.472 0.531
3 0.724 0.761 0.669 0.715 0.737 0.477 0.728 0.686 0.599 0.577
2 0.634 0.756 0.782 0.666 0.683 0.813 0.678 0.566 0.619 0.622
1 0.797 0.809 0.712 0.726 0.678 0.697 0.699 0.667 0.742 0.643  
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2.3 Discussion 

The quality of the final experimental map demonstrates that there is sufficient 

anomalous signal from the intrinsic Zn atoms to produce a high quality phase set that 

is not susceptible to model bias.  Although the use of an existing model is essential in 

the initial location of the phasing sites, errors in the initial protein model do not affect 

the experimentally phased map.  In addition, the increased effects of phase error on 

low resolution reflections discussed in the introduction of this chapter do not affect the 

difference Fourier techniques used for Zn site location.  This is due to the fact that the 

anomalous difference ( |F+ – F-|) and dispersive difference (|Fremote – Finflection|) do not 

show the same resolution dependence as the native amplitudes discussed in the 

introduction of this chapter.  The effects of model completeness on anomalous and 

dispersive difference maps show that this technique of heavy atom site location 

requires only approximately 50% of model to be used, suggesting that the Zn sites 

could be located in Pol II complexes where Pol II represents only half of the total 

mass.  The simulation results indicate that the size limitation for Zn-MAD phasing 

depends largely on the number of compatible crystals from which data can be 

collected, and that complexes where Pol II represented 50-60% of the total mass 

should be within practical limits.  Therefore, this phasing approach should be effective 

for phasing Pol II complexes with a total mass of up to 1 MDa using the 8 Zn sites 

present in native Pol II. 

 

Several potential problem areas in multi-crystal phasing were also identified.  The 

small amplitude differences due to Zn anomalous scattering require that care be taken 

to minimize errors in the measurement of amplitude differences.  Dispersive data 

worked best when collected in wedges covering a relatively small angular range, to 

minimize any variations due to radiation damage or X-ray source fluctuations.  
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Anomalous data collected using wedges offset by 180 degrees similarly minimized 

differences between Bijvoet pairs.  The shift in X-ray energy, or angular offset, 

introduces a delay between images collected at the edges of each wedge, during which 

the alternate wedge is collected.  When reducing the diffraction data, the results 

obtained using the integration program MOSFLM (Leslie, 1992) were improved when 

the images were integrated in chronological, rather than rotational, order.  This was 

rationalized as avoiding large jumps in the parameters modeling the setup of the X-ray 

station, which could lead to increased errors.  Due to the way MOSFLM handles the 

orientation matrix, improved results were obtained by storing the orientation matrix 

after integrating a single wedge, and reloading this orientation matrix for proceeding 

to the next angular wedge.    

 

The second problem area is the identification of a compatible set of individual datasets 

for phase combination.  Some of the collected datasets made the combined map worse 

rather than better upon combination.  This effect has been attributed to non-

isomorphism between different crystals.  Differences in the unit-cell parameters of 

different crystals were not helpful for detecting non-isomorphism, nor were merging 

R-factors.  As is widely known, unit-cell parameters determined by auto-indexing at 

low resolution are not determined very precisely.  This was observed by indexing the 

same dataset using spots from different images: variations of as much as 5 Å were 

observed in these cases.  Cross-crystal dispersive difference maps were evaluated as 

another source of information, but also proved insufficiently sensitive.  In the work on 

Pol II, the only method that was able to determine if a phasing dataset would improve 

the combined phase set or not was to check the solvent flattened maps.  During later 

work on crystals of Pol II complexes, attempts were made to improve methods for 

identifying an optimal phase combination by other means.  These efforts were 
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motivated partially to reduce the time required, and partially to avoid any potential 

subjectivity when comparing the maps.  Cluster analysis was one approach 

investigated.  This was done by using the QT clustering algorithm (Heyer et al., 1999) 

to cluster un-flattened single crystal maps, using real space statistics (real-space R-

factor and map correlation coefficient) as a distance metric.  The clustering approach 

was able to cluster by phasing source (SAS or dispersive), but was ultimately 

unhelpful for identifying an optimal phase combination.  This failure was attributed to 

the presence of the ambiguous 'noise' peak in the phase probability distributions.  

During work on the CE-Pol II complex, phase probability distributions were compared 

directly.  This was done by phasing each dataset individually, selecting a small subset 

(5 to 10) of well-phased reflections present in all datasets, and visually comparing 

plots of their phase probability distributions.  This approach was able to indentify the 

same phase set as determined by another experimenter (Man Hee Suh) by visual map 

comparison. 

 

The observation that combination of some datasets degrades, rather than improves, the 

quality of the combined phases was explained by the degree of overlap between their 

respective phase probability distributions.  Experimental phase distributions are bi-

modal.  When combining two independent phase distributions (for example single 

crystal MAD or MIR) each probability distribution would have a peak at or near the 

true phase which would be reinforced.  The second, or noise, peak of these 

distributions would not overlap, resulting in a lower phase probability in the region of 

the incorrect peaks.  When combining probability distributions from the same type of 

phasing (for example, zinc SAS), overlap would occur at the true peak and at the noise 

peak.  Phases from incompatible crystals would have little or no overlap, producing a 

flatter combined probability distribution.  One possible theoretical objection to multi-
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crystal phasing is that it combines probability distributions that are not fully 

independent.  While this is a statistically valid objection, combination of non-

independent information occurs relatively often in crystallography.  For example, the 

phases combined in single crystal MAD are not fully independent: knowing the 

location of the peaks in one probability distribution allows one to predict that the other 

probability distribution will be higher in those regions, although it will only be higher 

at the true peak.   

 

The third problem area that was identified was that the solvent flattening procedure 

depends critically on the use of a reasonably accurate solvent mask.  When this was 

not the case, as in initial solvent flattening of the high resolution phase set, the map 

was of significantly poorer quality.   

 

Although the focus of this work was to determine the feasibility of this method for 

phasing Pol II complexes using intrinsic zinc, it is not limited to such complexes.  An 

analogous approach would be useable for determining experimental phases for other 

complexes with weak anomalous scatterers in cases where a partial structure is 

available. 

 

The mechanistic implications of the newly built regions are discussed along with their 

refinement in Chapter 3. 

 

2.4 Materials and Methods 

2.4.1 Data Collection and Reduction  

Diffraction data were collected at National Synchrotron Light Source (NSLS) 

beamline X25.  X-ray fluorescence scans were used to confirm the presence of zinc 
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signal in the crystals, and identify appropriate wavelengths for data collection.  The 

fluorescence scans were repeated during data collection, and wavelength was adjusted 

as needed.  Anomalous datasets were collected in wedges of 20 degrees alternating 

with the same angular range that was offset by 180 degrees.  Dispersive datasets were 

collected in wedges of 20 or 45 degrees, alternating between inflection and remote 

wavelengths, with the exception of the crystal named A2X11 (Table 2.1), which was 

collected in two passes. 

 

Diffraction data were integrated and indexed using MOSFLM 6.23 (stand-alone 

version)(Leslie, 1992).  Indexing was performed using spots from three non-

consecutive images (i, i+45 degrees, i+90 degrees).  Integration was performed 

following each wedge in the order in which it had been collected.  MOSFLM was 

modified to allow storing of the orientation matrix at arbitrary times (originally, this 

version of MOSFLM would only store orientation matrices after indexing or cell 

refinement) to prevent loss of orientation parameters due to program crashes during 

integration.  This facility was used to store the orientation matrix after integration of a 

wedge, and reload after integration of the alternate (other wavelength, or 180 degree 

offset) wedge.  As discussed in the results section, this was found to produce improved 

results.  With the CCP4-6.1.0 (Collaborative Computational Project, 1994) release, 

this facility was incorporated into the official version of MOSFLM (Leslie, 1992).  

Merging was performed in SCALA (Evans, 2006) from CCP4-4.2.2.  Statistics for all 

datasets are shown in Table 2.1. 

 

2.4.2 Zinc Site Location 

Anomalous and dispersive difference maps were calculated in PHASES (Furey and 

Swaminathan, 1997) using model derived phases.  Molecular replacement (MR) using 
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AMORE (Navaza, 1994), with either 12-subunit models (PDB IDs 1NIK(Bushnell 

and Kornberg, 2003) or 1NT9 (Armache et al., 2003)) or the 10-subunit model (PDB 

ID 1I6H (Gnatt et al., 2001) with nucleic acids removed), positioned the model in the 

same location of the unit-cell, allowing for symmetry relations and alternative origins 

available in C2221.  A hybrid model, consisting of the core 10 subunits from 1NIK and 

Rpb4/Rpb7 model from 1NT9, was used.  The B-factor of the model was reset to the 

Wilson B-factor of the low resolution master dataset.  This model was subjected to 

rigid-body refinement in CNS 1.1 (Brünger et al., 1998) against the native amplitudes 

from the low resolution master dataset, using the rigid-body domains as listed in Table 

2.3 and visualized in Figure 2.7.  Matthew's coefficient calculations showed that a 

single copy of Pol II in the asymmetric unit would correspond to a solvent content of 

79%, and two copies would correspond to a solvent content of 59%.  However, no MR 

solutions for a second molecule were found without substantial steric clashes.   

 

2.4.3 Master Dataset and Reference Scaling 

Two master datasets were produced, differing primarily in which anomalous dataset 

from crystal A3X7 was included, one limited to 6.5 Å dataset, and the other to 4.0 Å.  

Otherwise, the master datasets included all datasets collected.  Each wedge of data was 

included in merging as an individual run within SCALA (from the CCP4-4.2.2 

distribution), requiring minor modification of SCALA to deal with the amount of data 

input. 

 

The appropriate master dataset was used as a reference for scaling of data from 

individual crystals prior to phasing.  For dispersive datasets, the inflection was scaled 

to the master dataset; followed by scaling the appropriate remote dataset to the 

inflection, using CMBISO of PHASES in both cases.  Anomalous datasets were also  
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Table 2.3: Definitions of Rigid Body Domains of 12-Subunit RNA Polymerase II 

 

Domain Chain Residues 

Shelf A 808-876, 1058-1141, 1275-1395 

 F 69-155 

Clamp A 1-346, 1396-1436 

 B 1151-1244 

Jaw-Lobe A 1142-1274 

 B 218-405 

 I 1-39 

Core C All 

 J All 

 K All 

 L All 

 A 347-807, 1437-1733 

 B 1-217, 406-1150 

 I 1-122 

Rpb47 D All 

 G All 

Rpb8foot H All 

Rpb1foot A 877-1057 

Rpb5 E All 
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Figure 2.7: Rigid Body Domains of RNA Polymerase II 

Location of rigid-body domains (listed in Table 2.3) displayed according to the color 
code in insert. 
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scaled to the master dataset using CMBANO, also of PHASES.  The master 

amplitudes used for reference scaling were removed from reflection data files prior to 

phasing. 

 

Although procedurally identical, the two-step scaling process is important because the 

stages are logically distinct.  Internal scaling for dispersive datasets was required to 

ensure that the amplitude difference due to wavelength change were sufficiently 

accurate.  Placing all datasets on a uniform scale before phasing was also required due 

to the method used to pick the 'native' amplitude produced by PHASIT.  In PHASIT, 

the first amplitude seen by the program is used as the output 'native', or phased, 

amplitude.  Variations in scale between individual datasets could produce additional 

noise.  Although the scale factor between individual datasets is refined during phasing, 

numerical refinement is often less robust than one might like when using low 

resolution data. 

 

2.4.4 Phase Calculation and Density Modification 

Experimental phases were calculated using PHASIT of PHASES.  Dispersive datasets 

were treated as SIR, with the inflection playing the role of the native, and inflection 

acting as the derivative (Ramakrishnan and Biou, 1997).  Anomalous datasets were 

treated as native anomalous.  Zinc sites for each derivative were treated as additional 

atom types, with Δ(f') and f'' values determined from X-ray fluorescence scans of each 

crystal.  No external phase information was used during phase refinement.  For multi-

crystal phasing, data from each crystal was input as a new derivative, requiring minor 

changes of PHASIT to allow for the large number of additional atom types.   
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Solvent flattening was performed using PHASES for single crystal datasets, and each 

multi-crystal phase set as well.  Un-flattened maps were not visually compared, due to 

their tendency to resemble solid blocks of electron density.  A limited grid search for 

solvent flattening parameters solvent percentage and sphere radius was conducted, 

settling on a sphere radius of 13.0 Å and solvent percentage of 75%.  Solvent flipping 

(Abrahams and Leslie, 1996) was implemented in PHASES by a modification of 

BNDRY.  This was found to produce slightly worse, when using with γ-correction 

(Abrahams, 1997), to severely worse, without γ-correction, maps than solvent 

flattening.  This approach was not used further. 

 

2.4.5 Use of High-Resolution Data 

Once a good phase combination from the multiple crystals had been identified using 

the available low-resolution dataset, the 4.0 Å SAS data from crystal A3X7 was 

additionally incorporated.  The master dataset and reference scaling described above 

was repeated.  The solvent mask generated by low resolution solvent flattening was 

converted to the high resolution grid, and used for solvent flattening without further 

modification.  Although experimental phases covered the entire resolution range used, 

centric reflections beyond the resolution range covered by multiple crystals could not 

be phased by SAS, which was the only phase source available.  For these reflections, 

phase extension was performed using the existing solvent mask. 

 

2.4.6 Simulation Procedures 

Standard structure factor calculation programs generally neglect the anomalous 

scattering factor f'', and do not allow for changes in f'.  In order to produce calculated 

data incorporating these effects, I modified the FCAL2 program from B. C. Wang’s 

group and used it to calculate and output F(+) and F(-) for all reflections within the 
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experimental resolution range.  Anomalous scattering factors (f' and f'') for zinc atoms 

at inflection, peak and remote wavelengths were set according to values from X-ray 

fluorescence scans.  Anomalous scattering factors for the remaining atom types, none 

of which were near an absorption edge at the wavelengths used, were calculated at the 

same wavelengths using CROSSEC (Cromer, 1983) of CCP4.  This anomalous 

scattering information was incorporated into a parameter file, and three versions of the 

program were compiled (one for each wavelength with the appropriate anomalous 

scattering factors).  Native amplitudes at each wavelength were generated by 

averaging F(+) and F(-).  Eight sets of ideal anomalous data were calculated using the 

Pol II model containing one to eight Zn sites. 

 

The next step was the simulation of errors for all of the simulated anomalous 

amplitudes.  In order to produce simulated data of similar statistical characteristics to 

the experimental data, additional care was taken to insure the distribution of errors in 

the simulated data matched that in the experimental data.  In preparation for error 

simulation, the simulated amplitudes (Fsim) were scaled to the multi-crystal master 

amplitudes, and σF,sim was set to σF,master.  Fsim and σF,sim were converted to intensities 

(Isim and σI_master), and the Box-Muller procedure (Box and Muller, 1958) was used to 

apply normally distributed errors, as opposed to the uniformly distributed numbers 

typically obtained from random number generation routines.  After errors had been 

applied to Isim, the data were reconverted to amplitudes.  This error generation step 

was repeated for each wavelength of each simulated crystal used, to produce 

independent errors.  The number of crystals was varied from 1 to 10 for each set of 

simulated data. 
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For each fixed number of crystals and number of zinc sites, the simulated data were 

phased and subjected to solvent flattening using the same parameters as with the 

experimental setup, with the exception of placing the Zn sites in a different alternative 

origin in order to avoid accidentally mixing simulated and experimental data.  The 

maps were visually checked in PYMOL (DeLano, ).  Real space statistics (map 

correlation coefficient (Lunin and Woolfson, 1993) and real-space R-factor (Drenth, 

1999)) were calculated for each map, relative to the FC map, as an additional means of 

comparison.  This procedure of simulation, processing and evaluation was repeated 

twice for additional consistency. 



 

 

CHAPTER 3: REFINEMENT OF POL II MODEL USING 
ZINC ANOMALOUS SCATTERING AS ADDITIONAL 

DATA 
 

3.1 Introduction 

The end goal of X-ray crystallography is the establishment of a model that accurately 

reflects the structure of the molecule(s) in the crystal.  An initial model can be 

generated by several different approaches: manual tracing based on visual inspection 

of the electron density map, automated model building programs, or by adapting of a 

model from another source for part(s) or all of the molecules in question.  This 

preliminary model generally provides only an approximate match to the data, and 

whenever possible is optimized, or refined, in order to better match the available data.  

The refinement of a model against the observed data, and its subsequent validation, is 

the final stage of crystallographic analysis.  For the majority of X-ray structures that 

are determined at moderate to high resolutions, this process has become relatively 

standardized and over time has received a decreasing amount of attention and 

description.   

 

The refinement of structures at low resolutions, however, presents distinct problems 

that have as yet not been as clearly resolved as work done at higher resolutions (e.g. 

better than 3.0 Å).  Low resolution maps, even those of high quality, by definition do 

not provide the same level of detail available at higher resolutions.  As discussed in 

Chapter 2, the number of experimental observations available is substantially reduced 

at lower resolutions, and the effects of phase error are relatively more severe.  Crystals 

of larger macromolecules often diffract weakly, and produce data only to low 
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resolutions.  In addition, a large macromolecule by definition contains more atoms 

than a smaller one, resulting in a concomitant increase in the number of parameters to 

be refined. A survey of published Pol II models indicates that the standard refinement 

protocols tend not to produce high quality models at low resolution. Table 3.1 shows 

some relevant statistics from representative Pol II models.  On the other hand, 

structures determined at high resolution, for example 1Y14 (Armache et al., 2005) and 

1TWF (Westover et al., 2004), have reasonable values for geometric and refinement 

statistics (Table 3.1 B).  At lower resolutions, these statistical measures show a trend 

of reduced model quality.  In some cases, severe geometrical distortions are visually 

apparent (one example shown in Figure 3.1). 

 

There are several potential pitfalls in refinement, particularly when using low 

resolution data.  The most significant of these is over-fitting the model.  In order for a 

model to represent a robust solution to the optimization problem that is refinement, the 

formulation used must be over-determined, with many more experimental 

observations than the parameters of the model to be determined.  With the exception 

of ultra-high resolution (better than 1.0 Å) crystals, this condition is not met by the 

number of amplitudes that can be collected from protein crystals.  Fortunately, protein 

structures are composed of a relatively limited number of building blocks (amino acid 

residues, small molecule ligands, ions, etc) whose structures have previously been 

established.  The structures of these components are, with few exceptions, known to 

high accuracy, and the geometric parameters (bond angles and lengths, chiral centers, 

etc) of these components can be used as constraints on the model during refinement, 

effectively increasing the number of observations.  Even when making use of 

geometric observations, the observation to parameter ratio drops substantially as 

resolution decreases (Table 3.1A and Table 3.2).  Crystallographic refinement  
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Table 3.1A: Observation to Parameter Ratios for Representative RNA Polymerase 

Models 

Ratio 1 = observations (reflections) / parameters 
Ratio 2 = observations (reflections + restraints) / parameters 
 
PDB ID Resolution (Å) Description Ratio 1 Ratio 2
1Y14 2.3 Rpb4/7 alone 2.161 3.891
1TWF 2.3 10-subunit Pol2 + UTP 2.085 3.889
2E2J 3.5 10-subunit Pol2 elongation + GMPCP 0.720 2.498
1WCM 3.8 12-subunit Pol2 0.984 2.805
3FKI 3.8 12-subunit Pol2 (anomalous included in refinement) 2.083 3.689
2B8K 4.15 unrefined 12-subunit RNA Polymerase II 0.622 0.804  

 
“R_Tested”, rms bond, angle and chiral values are from REFMAC5.  Ramanchandran 
and Cβ deviations are from MOLPROBITY.  Real space statistics (“CC,full”, 
“CC,masked”, “RSR,full” and “RSR,masked” were calculated as described in text.  
Final model from this refinement is PDB ID 3FKI, indicated in bold. 
 

Table 3.1B: Geometric Statistics for Representative RNA Polymerase Models 

 

PDB 
ID 

rms 
Bond 

rms 
Angle 

rms 
Chiral 

Ramachandran
Favored (%) 

Ramachandran
Outliers (%) 

Rotamer 
Outliers 

(%) 

Cβ 
Deviations 

>0.25 Å 
1Y14 0.007 1.378 0.100 94.49 1.07 2.87 0 
1TWF 0.008 1.311 0.089 89.55 1.68 4.86 0 
2E2J 0.012 1.431 0.119 85.41 3.52 10.89 17 
1WC
M 0.009 1.538 0.103 72.46 7.46 8.55 3 
3FKI 0.005 0.855 0.057 87.84 2.87 3.74 2 
2B8K 0.010 1.732 0.111 72.22 7.69 8.64 7 

Table 3.1C: Refinement Statistics for Representative RNA Polymerase Models 

PDB ID R_Reported Rfree_Reported R_Tested CC, full CC, masked RSR, full RSR, masked
1TWF 0.247 0.294 0.310 0.688 0.774 0.500 0.200
1WCM 0.257 0.285 0.296 0.698 0.801 0.501 0.182
1Y14 0.228 0.274 0.240 0.778 0.838 0.409 0.157
2E2J 0.242 0.306 0.313 0.657 0.762 0.516 0.202
3FKI 0.291 0.315 NA 0.774 0.848 0.446 0.148  
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Figure 3.1: Examples of Geometric Distortions Observed in Poorly Refined Models 

Measured bond distances are indicated as blue text, dictionary values for bond 
distances in standard amino-acids (from CCP4-6.1.0 monomer library) are shown in 
red text.  Close up of residues E1MET and E50MET from PDB entry 1TWC.  Model 
shown in stick representation:  oxygen in red, nitrogen in blue, carbon in red, sulfur in 
yellow.  Atoms with large distance deviations are shown as crosses. 
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Table 3.2: Ideal Observation to Parameter Ratios for Different Refinement 

Approaches 

Bold entries highlight observation-to-parameter ratio at 3 Å.  Underlined entries 
represent equivalent values for alternate refinement formulations.  The refined Pol II 
model was used for determining the number of parameters; different columns show 
different B-factor formulations.  “B_atomic” used individual isotropic B-factors.  
“TLS” used 20 TLS groups with a single global B-factor.  “B_over” used a single 
isotropic B-factor.  The number of reflections was determined using all possible 
reflections for the experimental unit-cell and space-group. 
Reflections / Parameters
Target: Normal Amplitudes Normal plus Anomalous Amplitudes
Resolution (Å) B_atomic TLS B_over B_atomic TLS B_over

1.00 52.49 69.84 69.99 105.06 139.77 140.06
1.50 15.62 20.78 20.82 31.23 41.54 41.63
2.00 6.62 8.81 8.83 13.23 17.61 17.64
2.50 3.40 4.53 4.54 6.80 9.05 9.07
2.80 2.43 3.23 3.24 4.85 6.45 6.47
3.00 1.98 2.63 2.63 3.95 5.26 5.27
3.25 1.56 2.07 2.08 3.11 4.14 4.15
3.50 1.25 1.66 1.67 2.50 3.32 3.33
3.80 0.98 1.30 1.30 1.96 2.60 2.61
4.00 0.84 1.12 1.12 1.68 2.23 2.24
4.25 0.70 0.93 0.94 1.40 1.87 1.87
4.50 0.59 0.79 0.79 1.18 1.57 1.58
4.75 0.50 0.67 0.67 1.01 1.34 1.34
5.00 0.43 0.58 0.58 0.87 1.15 1.15
6.00 0.25 0.34 0.34 0.50 0.67 0.67
7.00 0.16 0.21 0.21 0.32 0.43 0.43
8.00 0.11 0.14 0.14 0.22 0.29 0.29

(Reflections and Restraints ) / Parameters
Target: Normal Amplitudes Normal plus Anomalous Amplitudes
Resolution (Å) B_atomic TLS B_over B_atomic TLS B_over

1.00 54.55 72.58 72.73 107.11 142.50 142.80
1.50 17.67 23.51 23.56 33.28 44.28 44.37
2.00 8.67 11.54 11.57 15.29 20.34 20.38
2.50 5.46 7.26 7.28 8.86 11.78 11.81
2.80 4.48 5.96 5.98 6.91 9.19 9.21
3.00 4.03 5.36 5.38 6.01 7.99 8.01
3.25 3.61 4.81 4.82 5.17 6.88 6.89
3.50 3.30 4.40 4.41 4.55 6.06 6.07
3.80 3.03 4.04 4.04 4.01 5.34 5.35
4.00 2.89 3.85 3.86 3.73 4.97 4.98
4.25 2.76 3.67 3.68 3.46 4.60 4.61
4.50 2.65 3.52 3.53 3.24 4.31 4.32
4.75 2.56 3.41 3.41 3.06 4.07 4.08
5.00 2.49 3.31 3.32 2.92 3.89 3.89
6.00 2.31 3.07 3.08 2.56 3.40 3.41
7.00 2.22 2.95 2.95 2.37 3.16 3.17
8.00 2.16 2.88 2.88 2.27 3.02 3.03  
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algorithms incorporating such constraints, in the form of a chemical dictionary of 

known monomers, have been developed, allowing improved refinement of moderate 

resolution structures.  However, for crystals diffracting to lower resolutions, such as 

the 12-subunit Pol II (up to 3.8 Å), the traditional treatment is insufficient.  Additional 

measures need to be taken in order to ensure meaningful refinement results. 

 

In order to overcome this problem with refining the Pol II model, an alternative 

refinement approach was investigated.  The main feature of this approach was to 

maximize the observation to parameter ratio to the extent possible at the available 

resolution.  This was made possible by two technical advances: 1) the development of 

a refinement target directly incorporating F(+) and F(-) (Skubák et al., 2004), and 2) the 

use of TLS groups for modeling temperature factors (Howlin et al., 1989; Schomaker 

and Trueblood, 1968) in place of atomic temperature factors.   

 

The direct use of SAS (F(+) and F(-) ) data in the target function (referred to here as the 

FPFM target) results in a large increase in the number of experimental observations 

usable in refinement.  As discussed earlier, the amplitudes used in refinement usually 

neglect anomalous scattering.  Treating each member of a Bijvoet pair as an 

independent observation increases the number of observations by roughly twice as 

many.  Although F(+) and F(-) are typically correlated, the anomalous difference which 

is implicitly incorporated into the refinement target is not correlated with the mean 

amplitude.  For crystals in a space group containing centric reflections, the phase 

restriction at these amplitudes constrains the amplitudes of both members of the 

Bijvoet pair to be equal even in the presence of significant anomalous scattering.  In 

addition, if the dataset used in refinement is not fully complete, there will most likely 

be some reflections where only one member of the Bijvoet pair has been observed.  
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Therefore, in practice the increase in the number of effective observations for 

refinement is slightly less than a complete doubling.  This approach has been proven 

to be effective in test cases (Skubak et al., 2004; Skubák et al., 2005), but had not been 

evaluated for large structures such as Pol II.  In particular, diffraction data available 

were limited to lower resolution than present in test cases; additionally, the available 

anomalous signal from Zn present in Pol II data was weaker than those in published 

test cases.   

 

The use of Translation-Libration-Screw Rotation, or TLS (Schomaker and Trueblood, 

1968), groups assisted in the improvement of the observation to parameter ratio by 

decreasing the number of parameters used in the model.  As discussed in Introduction, 

a crystallographic model consists of  the positions of the atoms in the unit-cell as well 

as their degree of mobility, as described by  their temperature factors.  The use of 

atomic temperature factors for individual atoms would have increased the number of 

parameters by approximately 30,000.  However, use of a single overall temperature 

factor would not accurately reproduce the varying degrees of thermal motion of the 

different parts, or domains, of Pol II.  As a compromise approach, TLS groups were 

used as group anisotropic temperature factors.  This allowed for improved modeling of 

thermal motion within molecule while using only approximately 200 temperature 

factor parameters. 
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3.2 Results 

 

3.2.1 Low-Resolution Refinement of 12-Subunit Pol II With the Aid of 

Zn SAS Data 

Using this approach, the observation-to-parameter ratio for the 12-subunit Pol II 

model at 3.8 Å is comparable to that obtained for the 10-subunit Pol II model at 2.3 Å 

(Westover et al., 2004), which is the highest resolution dataset publicly available as of 

summer 2009 (Table 3.1 A).  Consistent with the improvement in this ratio, geometric 

and stereo-chemical statistics showed improvement relative to other 12-subunit 

models reported at comparable, or better, resolution (Table 3.1 B).  These 

improvements were confirmed by comparison of the electron density maps calculated 

using the refined model with those calculated using the unrefined model or other 

published Pol II models (Figures 3.2 and 3.3).  The improved map quality also 

manifested in an improvement in real space statistics (map correlation coefficient and 

real-space R-factor); particularly for the protein-occupied region (masked statistics) 

(Table 3.1 C). 

 

The reciprocal space statistics (Rwork and Rfree) improved during the course of 

refinement.  However, these R-factors did not show improvement in comparison with 

the published R-factors for the other Pol II structures.  These statistics were 

recalculated for the previously published structures, using the deposited models and 

structure factor amplitudes.  These calculations showed a general trend for the 

recalculated R-factors to be higher than those reported in the literature (Table 3.1 C).  

This trend was confirmed using R-factors calculated by the Uppsala Electron Density 

Server (Kleywegt et al., 2004), which also returned values higher than those reported.  
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Figure 3.2: Comparison of Refined 2Fo-Fc Maps  

σA weighted 2FO-FC composite omit maps (Bhat, 1988) contoured at 1 σ are shown as 
green mesh, respective Pol II models shown as grey sticks.  1WCM (3.8 Å) and 
2VUM (3.4 Å) were refined without anomalous data.  Top row (A, B and C) are 
centered on one interface between Rpb1 and Rpb2 (A63 and B884).  Middle row (D, E 
and F) are centered on Rpb2 (B666 and B679).  Bottom row (G, H and I) centered on 
a loop in Rpb4 (D9 through D20).
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Figure 3.3: Comparison of Refined 2Fo-Fc Maps  

Maps and models are displayed as in Figure 3.2.  Top row (A, B, C) centered on Rpb8 
(H75 and H137).  Middle row (D, E and F) centered on Rpb2 (B429 and B431).  
Bottom row (G, H and I) centered on Rpb3 and Rpb8 (C218 and H48). 
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3.2.2 Biological Implications from the Improved 12-Subunit Pol II 

Structure 

As discussed in Chapter 2, the experimental map allowed modeling of three additional 

regions of 12-subunit Pol II, but these preliminary models were not refined in the 

initial study.  In the course of SAS-assisted refinement, additional density was 

observed in difference Fourier maps which allowed building of several additional 

regions.  The majority of these newly modeled regions are relatively small, and have 

no biological function ascribed to them.  Nonetheless, several of these regions have 

been implicated in transcriptional roles (Figure 3.4). 

 

As mentioned in Chapter 2, Fork Loop 1 (Figure 1.4) was initially modeled on the 

basis of the multi-crystal Zn-MAD experimental map (Figure 3.4).  The backbone 

conformation shifted substantially during the course of the refinement, with the 

refined backbone 2.5 to 5 Å further away from the Rudder element (Figure 3.5).  

However, as a result of the side chains in the refined model, and absent in the previous 

unrefined model, the average distance between Fork Loop 1 and the rudder is 

approximately the same.  Although Fork Loop 1 has been observed in several other 

Pol II structures containing nucleic acids bound to the polymerase, this model is the 

first definition of Fork Loop 1 in free Pol II.   

 

Fork Loop 2 (Figure 1.4) was not observed in the multi-crystal Zn-MAD experimental 

map.  However, omit density for this region appeared as the refinement progressed, 

allowing it to be modeled. 

 

The Protrusion domain (Figure 1.4) is one of two stalk-like projections in Rpb2 that 

rise from the active site cleft.  The experimental multi-crystal map revealed electron  
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Figure 3.4: Experimental and Model Phased Maps for Regions with Biological 

Implications 

Clamp Top of Rpb1 (A187-A195) (experimental, A; model phased, B); Fork Loop 1 
of Rpb2 (B462-B481) (experimental, C; model phased, D); Protrusion of Rpb2 (B437-
B446) (experimental, E; model phased, F). Existing models are shown in grey, new 
regions in blue, electron density contoured at 1.0 σ in green.  
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Figure 3.5: Change in Fork Loop 1 Conformation Before and After Refinement 

Unrefined Fork Loop 1 Model as Magenta Ribbon (2B8K) 
Refined Fork Loop 1 Model as Yellow Sticks (3FKI) 
Rudder shown as Orange Ribbon (3FKI)  
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density for this region, which allowed for initial modeling of a portion of the 

Protrusion.  Further modeling was made possible by maps based on the refined model 

(Figure 3.4).  This region was not observed in other published Pol II structures. 

 

As mentioned in Introduction, the Clamp domain (Figure 1.4) is located on the 

opposite side of the cleft from the Protrusion domain.  Weak additional density was 

observed for this region in the multi-crystal Zn-MAD experimental map, although it 

was not modeled during that study.  The omit density map after refinement allowed 

modeling of this region (Figure 3.4), which was absent in previously published Pol II 

structures.   

 

3.3 Discussion 

 

3.3.1 Crystallographic Discussion  

The improvements in model and map quality demonstrate that including anomalous 

data in the refinement target function produces a Pol II model of higher quality than 

those refined using traditional refinement targets at comparable resolution.  The 12-

subunit Pol II structure refined by this method is of comparable quality to the 10-

subunit Pol II structures refined at higher resolution (3.4 Å).  The improvement in 

model quality was also illustrated by the observation that solvent flattening of the 

unrefined model phases, using the final mask used for multi-crystal phasing, did not 

show any of the additional regions of density that were observed in either the 

experimental map or maps phased with the refined model.   

 

In some ways this improved result is expected, as increasing the observation-to-

parameter ratio is expected to result in a more accurate determination of the model 
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parameters, which in turn typically results in a higher-quality model (and therefore 

more accurate model-derived phases).  However, at the onset of this experiment it was 

not known if this improvement would be obtained, for several reasons.  The increase 

in the number of observations depends on the presence of a sufficient Zn anomalous 

signal within a single anomalous dataset.  As discussed in Chapter 2, a single SAS 

dataset was not sufficient for experimental phasing of Pol II.  Insufficient anomalous 

signal would have meant that the number of independent observations did not in fact 

increase in the data used for refinement. 

 

In addition, earlier efforts to incorporate model derived phases in more traditional 

methods were unhelpful.  Direct phase combination of experimental and unrefined-

model phases did not produce improved maps, despite adjustment of combination 

weights.  Earlier attempts to incorporate phase information into refinement by using 

the MLHL refinement target (Pannu et al., 1998) also failed to produce any useful 

results in the case of 12-subunit Pol II, although others have reported using this 

approach successfully for low resolution refinement (DeLaBarre and Brunger, 2006).  

One common factor shared by both of these approaches is that the experimental phase 

information was used in the form of Hendrickson-Lattman (HL) phase coefficients 

(Hendrickson and Lattman, 1970).  In contrast, by combining SAS-phasing directly 

with information from the model (Skubák et al., 2004), there is no intermediate 

representation of the experimental phase information.  The HL representation of phase 

probabilities is only exact in the case of a uni- or bi-modal phase probability 

distribution.  In the case of combination of a uni-modal model phase probability 

distribution and a bi-modal phase probability distribution from SAS, the HL 

representation would no longer be exact.  It is possible that avoiding this intermediate 
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approximation allowed successful use of both model and experimental information 

through the FPFM target function. 

 

In the absence of a theoretical understanding of the degree of over-determination, it is 

not straightforward to determine what the minimum resolution is required for valid 

results for a given refinement formulation.  However, comparison of observation-to-

parameter ratios for different refinement formulations at different resolutions provides 

an empirical way to estimate the minimum resolution required for meaningful 

refinement using different approaches.  For a given structure, the number of available 

observations varies according to the resolution of the data, the number of restraints, 

and the decision to use anomalous amplitudes.  The number of parameters varies 

mainly with the type of B-factor parameterization used.  Table 3.2 lists the 

observation-to-parameter ratio for several different formulations across a wide range 

of resolutions using the SAS refined model, and assuming all possible reflections 

within the resolution limit were available for refinement.  Taking isotropic atomic B-

factor refinement against native amplitudes at 3.0 Å as a point of comparison (Table 

3.2, upper section), the refinement approach described here could be expected to 

produce meaningful results for data limited to 4.75 Å (Table 3.2, lower section). 

 

3.3.2 Biological Discussion 

 

3.3.2.1 Fork Loop 1 

Fork Loop 1 is composed of residues 461-480 in Rpb2 (the second largest Pol II 

subunit).  Fork Loop 1 is located above the floor of the cleft, and approximately two-

thirds of the way back towards the wall at the end of the cleft (Figure 1.4).  It interacts 

with the Rudder domain of Rpb1 310-324 (Figure 3.6).  Fork Loop 1 and the Rudder  
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Figure 3.6: Representative Fork Loop 1 Conformations 

The open conformation is represented by 2NVZ, shown in red.  The closed 
conformation is represented by 1Y1W, shown in cyan.  The free conformation, after 
SAS refinement, is labeled by PDB ID 3FKI, shown in yellow.  Rudder (orange 
ribbon), Bridge Helix (green surface), and Fork Loop 2 (blue surface) are also shown 
for structural context and orientation. 
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both interact with the DNA/RNA hybrid in the barrel region of the cleft, suggesting 

that they are responsible for stabilizing the binding of the hybrid, and may play a role 

in maintaining strand separation.  Biochemical experiments have shown that deletion 

 

of Fork Loop 1 results in a loss of transcriptional activity in mammalian Pol II 

(Jeronimo et al., 2004).  However, deletion studies in Pyrococcus furiosus indicated 

that Fork Loop 1 is not required for transcriptional initiation or elongation (Naji et al., 

2008).  In addition, prokaryotic RNA Polymerases lack a region corresponding to Fork 

Loop 1.  This discrepancy could be explained by comparison of the sizes of the gap 

between the Rudder in prokaryotic and eukaryotic structures.  In prokaryotic RNA 

Polymerase, the size of the gap between the rudder and opposing side of the cleft is 

approximately 3.6-4 Å.  This compares to approximately 3.9 Å in Pol II when Fork 

Loop 1 is localized, versus approximately 7 Å if Fork Loop 1 were not present.  Under 

the relatively reasonable assumption that the size of the DNA/RNA hybrid does not 

vary significantly between organisms, the lack of a requirement for a Fork Loop 1 

element in some species could be attributed to the narrower opening between the 

Rudder and the opposite side of the cleft. 

 

In previous structures of Pol II, Fork Loop 1 has only been observed in the presence of 

nucleic acids, suggesting that this region is only ordered in the presence of 

DNA/RNA.  The observation of this region in free Pol II indicates that this is not 

always the case. 

 

While the Rudder confirmation is relatively constant in available Pol II structures, 

Fork Loop 1 varies between two main conformations, differing mainly in their 

distance from the rudder (Figure 3.6).  There appears to be no relationship between the  
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Figure 3.7: Grouping of Fork Loop 1 Conformations 

PDB ID and authors for structures with Fork Loop 1 localized (Rudder shown as cyan ribbon) 
Close Conformations (red): 
2R92, E.LEHMANN,F.BRUECKNER,P.CRAMER 
2R93, E.LEHMANN,F.BRUECKNER,P.CRAMER 
1Y77, H.KETTENBERGER,K.-J.ARMACHE,P.CRAMER 
2VUM, F.BRUECKNER,P.CRAMER 
2JA6, F.BRUECKNER,U.HENNECKE,T.CARELL,P.CRAMER 
1Y1W, P.CRAMER,H.KETTENBERGER,K.-J.ARMACHE 
2R7Z, G.E.DAMSMA,A.ALT,F.BRUECKNER,T.CARELL,P.CRAMER 
2JA7, F.BRUECKNER,U.HENNECKE,T.CARELL,P.CRAMER 
2JA5, F.BRUECKNER,U.HENNECKE,T.CARELL,P.CRAMER 
2JA8, F.BRUECKNER,U.HENNECKE,T.CARELL,P.CRAMER  
Far Conformations (blue): 
1R9T, K.D.WESTOVER,D.A.BUSHNELL,R.D.KORNBERG 
1SFO, K.D.WESTOVER,D.A.BUSHNELL,R.D.KORNBERG 
2E2H, D.WANG,D.A.BUSHNELL,K.D.WESTOVER,C.D.KAPLAN,R.D.KORNBERG 
2E2I, D.WANG,D.A.BUSHNELL,K.D.WESTOVER,C.D.KAPLAN,R.D.KORNBERG 
2E2J, D.WANG,D.A.BUSHNELL,K.D.WESTOVER,C.D.KAPLAN,R.D.KORNBERG 
2NVQ, D.WANG,D.A.BUSHNELL,K.D.WESTOVER,C.D.KAPLAN,R.D.KORNBERG 
2NVT, D.WANG,D.A.BUSHNELL,K.D.WESTOVER,C.D.KAPLAN,R.D.KORNBERG 
2NVX, D.WANG,D.A.BUSHNELL,K.D.WESTOVER,C.D.KAPLAN,R.D.KORNBERG 
2NVZ, D.WANG,D.A.BUSHNELL,K.D.WESTOVER,C.D.KAPLAN,R.D.KORNBERG 
2YU9, D.WANG,D.A.BUSHNELL,K.D.WESTOVER,C.D.KAPLAN,R.D.KORNBERG 

SAS Refined Conformation (green)
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Fork Loop 1 conformation and nucleotides bound, pH, or crystallization conditions.  

However, there is a clear relationship between which research group deposited the 

structure, and which conformation Fork Loop 1 was present in (Figure 3.7).  Fork 

Loop 1 observed in free Pol II is further from the Rudder, and slightly closer to the 

bottom of the cleft, than either of conformations observed in engaged Pol II.  This 

suggests that a conformational change may be required for hybrid engagement.  Given 

its location and contacts with the Rudder (Figure 3.6), Fork Loop 1 must undergo 

conformational rearrangement in order to open a path for single-stranded template 

DNA to reach the active site during open complex formation, and to allow release of 

the template DNA during termination.  The conformational variability of Fork Loop 1 

and its absence due to delocalization in the majority of free Pol II structures reported 

to date, indicate that this region has some degree of structural flexibility. 

 

3.3.2.2 Fork Loop 2 

Fork Loop 2 consists of residues 502-510 in Rpb2, and is located in front of and below 

Fork Loop 1, and forms part of the Cleft floor underneath the incoming DNA duplex.  

This region has been observed previously in some but not all Pol II structures with 

DNA and RNA present; and not in structures of free Pol II.  Fork Loop 2 is located at 

the point where the double stranded DNA unwinds into single-stranded template and 

non-template; because of this, it is thought to be involved in the formation and 

maintenance of the transcription bubble (Gnatt et al., 2001).  Two conformations of 

Fork Loop 2 have been previously observed (Kettenberger et al., 2004; Wang et al., 

2006), differing mainly in the direction in which the loop bends.  The conformation 

observed in free Pol II refined with the SAS data appears to be an intermediate 

between them (Figure 3.8), supporting the idea that this region is highly mobile. 
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Figure 3.8: Representative Fork Loop 2 Conformations 

Three Fork Loop 2 conformations: red and green ribbons show two engaged 
conformations; Blue ribbon shows the nucleic acid-free conformation from the SAS-
refined model.  Fork Loop 1 (orange surface) and Bridge Helix (yellow surface) are 
shown for orientation and context. 
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3.3.2.3 Protrusion 

The Protrusion domain is a region of Rpb2 forming one of four stalk-like projections 

emanating from the top of Pol II (Figure 1.4).  Several stretches of residues within this 

region that are absent in existing Pol II models.  Additional density was also observed 

in this region in the experimental multi-crystal map, as well as multi-crystal maps of 

other Pol II complexes (Ceg1/Cet1-Pol II and Spt5-Pol II, unpublished results).  An 

initial poly-alanine model was built for some of the missing residues, as described in 

Chapter 2.  The model for this region was completed by the addition of side-chains, 

and subsequent refinement.  Additional residues were later added on the basis of omit 

maps as refinement progressed (Figure 3.4 E and F; Figure 3.9 B).  However, some 

segments of this region remain difficult to model, due to unclear electron density (not 

shown). 

 

Residues in this region have recently been implicated in interacting with TFIIF (Chen 

et al., 2007) based on cross-linking data.  The newly built region has two cross-linking 

sites nearby, 18-30 Å away (Figure 3.9 A).  In addition, cryo-EM reconstructions of 

the Pol II-TFIIF complex also exhibited density nearby this region which was 

attributed to TFIIF (Chung et al., 2003).   

 

The Protrusion loops, including the newly modeled region, appear to exhibit a range of 

conformational variability in existing structures, as shown by its absence from 

previous structures.  For 12-subunit crystals, a portion of this variation may be due the 

lack of neighboring molecules in the crystal lattice to stabilize this region of the 

protein (Armache et al., 2003; Bushnell and Kornberg, 2003; Meyer et al., 2006).  The 

distance between symmetry related molecules in both crystal forms of 10-subunit Pol  
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Figure 3.9: Conformations of Protrusion and Clamp-Top Loops 

Panel A shows the positions of residues implicated in interactions with TFIIF (cyan) 
and TFIIE (green) relative to the loops that were revealed after SAS refinement.  The 
conformations of the newly modeled loops are shown in more detail: Red region in 
Panel B for the Protrusion Loop; Magenta region in Panel C for the Clamp-Top Loop. 
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II is substantially smaller.  Despite this, the Protrusion loops were also disordered in 

the higher-resolution 10-subunit Pol II structures (Cramer et al., 2000; Cramer et al., 

2001).  The conformation of the newly modeled Protrusion Loop, as well as that of the 

additional loop for which the density did not permit modeling, is likely to change upon 

interaction with TFIIF.   

  

3.3.2.4 Clamp-Top 

The Clamp domain forms the other side of the cleft opposite to the Protrusion (Figures 

1.1 and 1.4).  The Clamp contacts the DNA and RNA extensively (Gnatt et al., 2001; 

Kettenberger et al., 2004).  This region has been known to be mobile since the earliest 

structural results on Pol II.  Additional density for the loop element at the top of the 

Clamp, Clamp-Top Loop which has been missing in previous structures, was modeled 

during this refinement (Figure 3.4 A and B; Figure 3.9 C).  The position of this loop 

makes it unlikely that it is directly involved in interactions with nucleic acids.  

However, residues surrounding this loop have been implicated in interaction with 

TFIIE (Chen et al., 2007).  As with the Protrusion loops, the absence of the Clamp-

Top Loop in previous structures suggests that this region has a degree of 

conformational flexibility greater than that of the Clamp domain as a whole.   

 

3.4 Materials and Methods 

The same diffraction datasets used in the phasing experiment described in Chapter 2 

were used for refinement.  Anomalous and normal amplitudes from the best diffracting 

crystal (A3X7 in Table 2.1) were used for refinement of the model after reprocessing 

in HKL2000 (Otwinowski and Minor, 1997) which allowed recovery of data to 3.8 Å. 
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In preparation for refinement with SAS data from the bound Zn ions, the anomalous 

site parameters (positional and occupancy) were initially refined in BP3 (Pannu and 

Read, 2004) against the single crystal SAS amplitudes.  The unrefined 12-subunit Pol 

II model (Meyer et al., 2006) was subjected to geometry regularization, removal of 

incomplete amino acids, and replacement of poly-alanine stretches with the correct 

sequence.  Temperature factors (atomic B-factors) of the model were all reset to a 

uniform value of 77, following the Wilson B-factor of the normal amplitudes. 

 

Refinement proceeded according to the standard practice of cycles of reciprocal space 

refinement alternating with manual model adjustment and real-space refinement.  The 

positional parameters for the Zn sites were refined in concert with the polymerase 

model using REFMAC5D (Skubak et al., 2004).  The constant for relative weighting 

of X-ray and geometry terms as defined in REFMAC (Murshudov et al., 1997) was 

determined manually, as the auto-weighting scheme produced severe geometry 

distortions (comparable to those shown in Figure 3.1), although with improved R-

factors.  Weighting terms for real-space refinement in COOT (Emsley and Cowtan, 

2004) were determined similarly.  In the final stages of refinement, problematic 

regions were identified using ADIT (Berman et al., 2000), MOLPROBITY (Lovell et 

al., 2003), and COOT.   

 

In the initial stage, only positional parameters and an overall temperature factor were 

refined.  Once this had converged, positional parameters were further refined with 

TLS groups.  To select TLS groups, two different approaches were evaluated.  The 

first approach was to use the known rigid-body domains of Pol II (Table 2.3 and 

Figure 2.7) as TLS groups.  The second approach was to conduct several cycles of 

refinement of atomic temperature factors only, without positional refinement.  The 
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resulting model was then used as input to the TLS Motion Determination server 

(Painter and Merritt, 2006), which suggested TLS groups for each subunit of Pol II.  

Possibly due to the restriction of TLS groups to individual peptides, this approach did 

not perform any better than the rigid-body groups.  As such, the first approach was 

chosen for defining the TLS groups used in later refinement.  These TLS groups were 

expanded as needed to account for the regions that had increased flexibility, which 

was manifested as negative thermal atomic displacements and regions of negative FO-

FC density.   
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CHAPTER 4: SUMMARY AND FUTURE DIRECTIONS 
4.1 Summary  

The progress made through this work resolves two crystallographic problems 

hampering the determination of Pol II complex structures.  In the first, multi-crystal 

phasing using intrinsic Zn present in Pol II allows relatively straightforward 

determination of high quality experimental phases; circumventing the issue of model 

bias in model-derived phases at low resolutions.  In the second, enhancement of the 

observation-to-parameter ratio in refinement, was made possible by incorporating 

anomalous amplitudes directly in refinement and using of TLS groups.  At low 

resolutions, this approach allows for the determination of a higher quality model than 

could be achieved using standard refinement methodologies. 

 

Although the problems addressed here pertain to Pol II crystals, and especially crystals 

of Pol II-containing complexes, they are not necessarily limited the Pol II system.  

Large macromolecular complexes play essential roles in many biological processes.  

Crystallographic structural models of these complexes will be essential for 

illuminating their mechanisms.  However, crystals of large complexes often diffract 

poorly, and producing high-resolution crystals of such complexes can be difficult.  

The inherent internal dynamics of many macromolecular complexes, in conjunction 

with our current understanding of bio-molecular crystallization, suggest that the 

process of producing high-resolution crystals of large macromolecules will not 

become substantially easier in the immediate future.  The strategies adopted in this 

work suggest that meaningful biological results can be obtained even with relatively 

weakly-diffracting crystals, which may be more easily produced.   
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The use of anomalous data arising from the Zn ions intrinsic to the Pol II system was 

essential for the main results discussed in this work.  However, the essential 

component is the presence of an anomalous signal arising from a large 

macromolecule, not that the anomalous signal is due to Zn as opposed to that from 

iron, selenium, bromine, iodine or sulfur.  Therefore these approaches can be applied 

to any macromolecular crystal with a weak anomalous signal, whether due to intrinsic 

metal ions, derivatization with heavy atom compounds, or selenomethionine 

substitution. 

 

4.2 Future Directions 

These results provide a starting point for three lines of research.  This work was 

conducted with the primary goal of resolving crystallographic problems presented by 

low-resolution diffraction data from Pol II complexes.  Therefore, the most 

straightforward avenue of research opened by this work is to apply these methods to 

novel complexes of Pol II, such as complexes of Pol II with elongation factor Spt5 and 

RNA capping enzyme.   

 

The remaining potential directions concern the methods themselves.  Both of the 

technical approaches discussed here, multi-crystal phasing and optimizing 

observation-to-parameter ratio in refinement, proved effective in dealing with low-

resolution diffraction data from Pol II crystals, distinguishing them from the 

substantially longer list of ineffective approaches.  The overall philosophy guiding 

both approaches described in this work was to extract the maximum amount of 

information available from the available data.  Still, further improvements are possible 

in both phasing and refinement techniques.   
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For multi-crystal phasing, the main remaining limitations are in the finding of 

anomalous scattering sites and identification of an optimal combination of phasing 

datasets.  The location of scattering sites for crystals of Pol II complexes is likely to 

remain straightforward in the near future, as the current approach of using model-

phased anomalous and dispersive difference maps should prove effective for much 

larger complexes than are currently contemplated as targets.  The identification of an 

optimal, or at least sufficient, combination of phasing datasets remains as one of the 

more time-consuming steps in the process.  An extension of the probability plotting 

method discussed in Chapter 2 could potentially reduce the time required.  As 

incompatible phasing datasets are currently attributed to crystal non-isomorphism, 

alternative methods to detect non-isomorphism at low resolutions may facilitate this 

process.  The elimination of non-isomorphous datasets from the multi-crystal phase set 

is preferable to allowing them to degrade the final result, but means that some 

experimental information is being discarded.  It may be possible to compensate for 

non-isomorphism in multi-crystal phasing by incorporation of a cross-crystal 

transformation matrix, similar to that used in multi-crystal averaging, into the phase 

calculations.  If successful, such a procedure could potentially expedite multi-crystal 

phasing by both reducing the number of datasets that need to be collected, and 

reducing the time spend processing that data. 

 

Several questions remain regarding the refinement of models at low resolutions, and 

additional improvements may be possible.  The incorporation of anomalous 

amplitudes (F(+) and F(-)) into refinement  proved crucial in the refinement of Pol II at 

3.8 Å.  In contrast, the incorporation of SAS or MAD phases in refinement as a 

probability distribution (MLHL (Pannu et al., 1998)) did not allow for successful 

refinement of the model, despite a roughly equivalent increase in the number of 

93 



 

observations.  Although this difference in performance could be due to either allowing 

the refinement of the zinc sites during model refinement or the use of un-approximated 

phase information in the refinement target, it remains an unsettled question.  

Additionally, it may be possible to further improve the observation-to-parameter ratio 

used in refinement.  It should be possible to incorporate information from additional 

sets of amplitudes into refinement.  For example, incorporating datasets collected at 

inflection and remote, in addition to peak wavelength in a MAD experiment would 

provide an additional increase in the number of independent observations usable for 

model refinement. 

 

The third potential direction for this research was inspired by an observation from the 

simulation carried out to investigate phasing efficiency, as described in Chapter 2: in 

the absence of anomalous scattering from the light atoms in the protein, a single zinc 

atom was sufficient to allow phasing.  Although the anomalous scattering due to a 

single light-atom is very small at the Zn absorption edge, the combined effect from 

tens of thousands of these individual atoms can be significant.  This combined effect 

can be sufficient to interfere with the phasing process.  In effect, the errors present in 

current experimental phases are a combination of random experimental errors and 

calculation errors due to the non-random anomalous scattering from the “non-

anomalous” atoms in the protein which are currently unaccounted for.  Therefore, 

compensating for this residual anomalous scattering, even partially, could minimize 

the errors in experimental phase values due to the neglect of anomalous scattering 

from the light atoms.  One potential approach to this problem is to incorporate an 

inverse transformed likelihood residual map (Fortelle and Bricogne, 1997) into the 

heavy-atom (or anomalous-scatterer) structure factor used during phase calculation. 
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