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On the development of general purpose computational program 
for nonlinear analysis of soft/hard structures 

SeungDeog KIM* 

*Department of Architectural Engineering, Semyung University 
  579 Sinweol-Dong, Jecheon, Chungbuk 390-711, Korea 
  sabinus@semyung.ac.kr 

Abstract 
Spatial structures have to be analyzed by considering geometric nonlinearity, and the nonlinear problem is very 
sensitive to initial conditions. The efficiency of a computer program depends on the possibility of convergence 
and the speed in nonlinear procedure. 

This study introduces NASS, short for Nonlinear Analysis for Spatial Structures - a new nonlinear analysis 
program under development. NASS, the first of its kind, is being developed for both soft and hard structures to 
get nonlinear solutions and to target a general purpose computational program. Using examples NASS ability in 
both soft and hard structures is proved. 

1.  Introduction 
Structural designers use a variety of multi-purpose and commercial structural analysis computer programs to 
design various types of buildings. Unfortunately, in the spatial structures field we cannot find useful common 
programs for large-span roofs. Most companies or laboratories design spatial structures by using in-house, 
untested programs. This lack of public verification of the program results in potentially unsafe structures. 
Particularly, spatial structures need to be analyzed by considering geometric nonlinearity, and the nonlinear 
problem is very sensitive to initial conditions. Also the efficiency of a computer program depends on the 
possibility of convergence and the speed in nonlinear procedure. 

In this study, I will introduce a new nonlinear analysis program NASS under development, short for Nonlinear 
Analysis for Spatial Structures. NASS is being developed for both soft and hard structures to get nonlinear 
solutions and to target a general purpose computational program for the first time. NASS has created many tools 
to solve various problems for spatial structures. 

2.  Functions of NASS 
Nowadays there are many structural systems in large span structures using new materials. To build safer and 
more economical large span structures, we need more advanced, stronger and more lightweight, materials. 
When a new material is developed to improve some existing problems, the design method also has to be 
advanced for the material. This evolution gives us the spatial structures to be built more reasonably, and to be 
more complicated in structural systems. Therefore we have too many structural systems to classify the systems 
clearly. 

Here I would like to propose a simple figure where various structural systems can be classified with ease, as 
shown in Figure 1. In this figure, first we can group into two parts according to materials. The first one is the 
hard structures which are made by reinforced concrete, steel frames and so on; initial structural shapes under 
unloading have been determined to be a fixed form. The other is the soft structures which are made by fabrics, 
cables and so on; initial structural shapes under unloading have not been determined. These two structural 
systems reveal different behaviors. In the former, structural stability changes from stable to unstable as the 
external load level gets higher and reaches a certain critical point. But the latter shows the opposite phenomenon, 
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namely from unstable to stable in an untensioned state. In structural design, therefore, the hard structures need to 
check the critical load due to the bucking phenomena, but the soft structures need shape finding due to the 
introduction of initial stresses. 

Secondly, we can group the spatial structures according to how to assemble; the one is built by continuous 
system such as shells and membrane structures, and the other is discrete system such as space frames and space 
cables. 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                              

Figure 1: Classification of spatial structures                        Figure 2: Flowchart of NASS 

To analyze various structural systems considering geometric nonlinearity, NASS is developing many tools to 
solve various problems for spatial structures, as follows: 

• For hard structures, such as continuum shells and space frames; 
     - Getting solutions of geometric nonlinear stress-deformation analysis 
     - Checking critical loads including snap-through and bifurcation 

• For soft structures, such as membrane structures and space cables; 
     -  Getting shape finding solutions, 

         -  Getting solutions of geometric nonlinear stress-deformation analysis 

• For construction analysis; 
       - Getting erection procedure analysis for space cables 

         - Getting pattern design plan for membrane structures 

Some numerical schemes are used in the package for the geometric nonlinear problems, such as the Newton-
Raphson method, the incremental method and so on. Users can select one or multi-schemes simultaneously from 
their experiences to improve the possibility of convergence and to accelerate their speed in nonlinear iteration 
procedure. Figure 2 shows the flowchart of NASS to explain the nonlinear procedures. 

3.  Soft structures 
As an example for the design of soft structures, the Western Dome is chosen in this article, as shown in Figure 3. 
This elliptical cone typed dome is built by PTFE fabric, and the projected plane has 31.4m and 25m of 
diameters in long direction and short direct, respectively, and the height is about 9.95m to the center of upper 
ring. For shape analysis, the initial shape is selected like in Figure 4, and the shape after shape analysis is shown 
in Figure 5. From the result of shape analysis, we can find that this shape needs reinforcement by cables, 
because it shows the bottleneck in the upper part of the structure. 
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Figure 3: Western Dome                           Figure 4: Initial step                  Figure 5: After shape analysis 

To avoid the bottleneck, strand ropes reinforce inside the PTFE fabric, and the results show in Figure 6 and 7, 
which are tensed by 5tonf and 10tf tension, respectively. Figure 8 shows the compared elevation lines. 

     
Figure 6: 5tf of tension cables     Figure 7: 10tf of tension cables                    Figure 8: Comparison of shapes 

After shape analysis for finding the initial shape, we can go on analyzing the nonlinear stress-deformation 
analysis to ensure the safety of the dome. Figure 9, 10 and 11 show the result subjected to dead load, wind-up 
load and wind-down load, respectively. 

       
Figure 9: After dead load                 Figure 10: After wind-up load       Figure 11: After wind-down load 

As a special point of soft structures, we have to prepare the fabric patterns for construction. NASS offers the 
pattern design, and the results for pattern design and construction drawings are shown in Figure 12 and 13, 
respectively. 

                  
Figure 12: Pattern design                                                  Figure 13: Construction drawings 
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4.  Hard structures 
For the design of hard structures, we have to check the structural instability. This is a geometric nonlinear 
problem, and it reveals very sensitive behavior depending on initial conditions. In shell typed roof structures, 
particularly, the critical load level is steeply going down according to amount of initial imperfections. The 
instability phenomena are classified in Figure 14. 

As an example for the design of hard structures, the Speedom checks the failure load by the bifurcation, as 
shown in Figure 15. Diameters of the elliptical dome are 180m and 150m in long direction and short direction, 
respectively. Figure 16 shows skeleton of the roof and finite element meshes. 

Figure 17 to 20 show the nonlinear load-displacement curves at selected nodes calculated by NASS which are 
under conditions of eccentric load distribution on its long axis and 0.2% imperfection of initial shape by the first 
buckling mode. From these curves, we can see that the nonlinear effect is clearly expressed at some critical 
nodes after the bifurcation phenomenon is come out in overall roof. 

     
Figure 14: Critical points                    Figure 15: Speedom                             Figure 16: Discretized mesh 

 
   Figure 17: Top nodes(-)        Figure 18: Top nodes(+) Figure 19: Bottom nodes(-)  Figure 20: Bottom nodes(+) 

5.  Conclusions 
In this study, author has introduced a new nonlinear analysis program NASS, short for Nonlinear Analysis for 
Spatial Structures. NASS, the first of its kind, is being developed for both soft and hard structures to get 
nonlinear solutions and to target a general purpose computational program. 

Using some examples, NASS ability had been tested in both soft and hard structures, and we could see that the 
nonlinear program offers reliable results. 
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Lateral buckling load formulation for multi-strut beam string 
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Abstract 
In the beam string structure (BSS), the moment in the beam is effectively reduced by means of the strings and 
the struts. As a result, the beam is very slender and the BSS is suitable to cross a long span. In the BSS, the 
struts can be considered as supports for the beam through the strings. Usually, the struts are in compression, 
they should be designed to avoid buckling, but few researches can be found about the lateral buckling of the 
struts in the BSS. Because one end of the struts is jointed to the beam while the other end is connected to the 
strings, the buckling of the struts not only depends on the length of the struts and the stiffness of the joints, but 
also depends on the rise and the lateral stiffness of the beam, the layout of the strings and the number of the 
struts. In this paper, the lateral buckling load of the struts in multi-strut beam string structure is formulated.  

1.  Introduction 
Consider a one-strut beam string structure (BSS), the simplest BSS, as shown in Figure 1. The beam in the BSS 
is assumed to be an arch while the connection between the beam and the strut is a rigid joint. Because of the 
compression in the strut, which is caused by the tension in the strings, the strut should be designed carefully to 
avoid buckling [1]. 

The buckling of the strut may happens in in-plane’s direction (the beam-strut plane), or in lateral direction 
(perpendicular to the beam-strut plane, see Figure 1). The two ends of the strut are constrained by the strings 
and the beam in the in-plane’s direction, so the buckling in this direction can be calculated easily. On the other 
hand, the lateral buckling is influenced by the rise of the beam, the rotational stiffness of the joint and the lateral 
stiffness of the beam. The phenomenon of the lateral buckling of the struts in the BSS is very similar to the 
beam’s lateral buckling. Numerous researches on the beam’s lateral buckling and the bracing stiffness have been 
carried out. A summary of the research advances on this topic can be found in [2]. But no reference concerning 
the lateral buckling of the struts in the BSS can be found according to the author’s surveys.  

In order to reduce the maximum bending moment in the beam more effectively, more than one strut can be used 
in the BSS. In this paper, the lateral buckling load is formulated for the multi-strut BSS. 

 

 
Figure 1: Lateral buckling of the strut in the BSS 
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2.  Lateral buckling load formulation 
To simplify the analysis, we assume that the layout of the deformed BSS under the load w as shown in Figure 2 
is symmetrical to the middle point of the span so only the half of the structure is analyzed. The struts are 
vertically set and the inclination caused by the load is ignored in formulating process. The rise bi of the beam is 
measured from the horizontal line as shown in Figure 2. The BSS has 2n-1 (n≥1) struts and the joints between 
the struts and the beam are semi-rigid.  

 
Figure 2: Multi-strut BSS 

                                
Figure 3: Equilibrium at node i                  Figure 4: Lateral deformation of the struts and the beam  

 

Pi  axial force of strut; Ti  tension of string; 
bi  rise of the beam; li  distance between struts i and i-1; 
hi  length of strut; ai  length of string, . 

The lateral stiffness of the beam has a great influence on the buckling load of the strut. The low lateral stiffness 
of the beam may cause a very low buckling load. Here the lateral stiffness of the beam is considered in analysis 
while the torsion of the beam is neglected because the torsional stiffness can been considered in the joint 
rotational stiffness. 

In order to simplify the analysis, we assume that the resultant force of the two strings’ tensions at one node 
passes along the axis of the corresponding strut. From Figure 3, we have 

  (1) 

where φi and φi+1 are the angles of strings i and i+1 (see Figure 3). 
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For the multi-strut BSS, it is obviously that the struts buckle to the same lateral direction if the lateral buckling 
of the struts occurs. Let the strut i have a small lateral deformation yi as shown in Figure 4, at the same time, 
lateral deformation δi of the beam takes place. The lateral curvature of the strut i can be expressed as 

  (2) 

where xi and yi are the two coordinate axes shown in Figure 4, EiIi is the lateral bending stiffness of strut i, yhi is 
the lateral displacement at node i. 

The boundary condition for Eq.(2) is written as 

  (3) 

In Eq.(3), kθi is the rotational stiffness of the semi-rigid joint between strut i and the beam, M0i is the moment of 
the strut at xi=0. 

  (4) 

The lateral deformation of the strut and the tension in strings cause the lateral force in the beam. If the beam is 
not laterally constrained completely, it becomes laterally deformed under the lateral force. The lateral 
deformation δi of the beam can be written as 

  (5) 

cij in Eq.(5) can be calculated from the lateral stiffness of the beam. 

Let 

  (6) 

by solving Eq.(2) and using boundary condition Eq.(3), we have 

  (7) 

Writing Eq.(7) for all the struts, we obtain a matrix equation 

  (8) 
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where matrix A is summarized from the first three items of the left side of Eq.(7) and matrix B from the fourth 
item. Matrix B indicates the influence of the lateral deformation of the beam. yh is the vector of the lateral 
displacements of the struts. Through setting the determinant of the coefficient matrix of Eq.(8) be zero, the 
buckling condition is obtained. 

  (9) 

3.  Example of 3-strut BSS 
An example for finding the lateral buckling load of 3-strut BSS is given to illustrate the method suggested in the 
paper.  

By using Eq.(7), we get Eq.(10) for node 1 and Eq.(11) for node 2. 

  (10) 

  (11) 

If the beam is laterally constrained and the rigid joints between the struts and the beam are used, we have 
 and . In this case, by letting the determinant of the coefficient matrix of 

Eqs.(10,11) be zero, one equation for finding γ1 and γ2 is obtained. 

  (12) 

On the other hand, by using Eq.(1) for P1/P2 and Eq.(6), we have 

  (13) 

Using γ1 and γ2 obtained from Eqs.(12, 13), the critical compression Pcr1 and Pcr2 in strut 1 and 2 when the 
lateral buckling happens are calculated. 
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Abstract 
This text presents a mathematical modeling of a triangular membrane finite element. The deformation gradient 
tensor is written in terms of nodal displacements for a simple triangular element. The invariants of the Right 
Cauchy-Green deformation tensor are written in terms of nodal displacements. The total potential energy is 
minimized using a quasi-Newton method. In case of a compressible material, the total potential energy is 
minimized with respect to the nodal displacements and element thicknesses. The idea of minimizing the total 
potential energy to find equilibrium was first introduced by Coyette and Guisset [1] for cable network analysis. 
The advantages of this approach are: It is not necessary to derive the stiffness matrix; it is not necessary to solve 
any system of equations; it allows a simple static analysis instead of a pseudo-dynamic analysis (dynamic 
relaxation with kinetic damping). The computer code uses the limited memory BFGS to handle large scale 
problems as described by Nocedal and Wright [4]. It also employs a line search procedure with safeguards as 
described by Gill and Murray [2] and Lasdon [3]. The source and executable computer codes are available for 
download from the author's website (http://www.arcaro.org/tension/). 

1.  Introduction 
Figure 1 show the geometric entities used in the mathematical expressions. 

 

 
Figure 1 
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 1 1 3v v u u2= + −  (1) 

 2 2 1v v u u3= + −  (2) 

 3 3 2v v u u1= + −  (3) 

 
1 2

1 2

v vw
v v
×

=
×

 (4) 

 ( )T 1 2w v vα = ×  (5) 

 
1 2

1 2

v vw
v v
×

=
×

 (6) 

 ( )T 1 2w v vα = ×  (7) 

  (8) i iw w v  , i 1, 2,= × = 3

 ( ) ( )T T1 1 1 2 1 2z v v v v v v1⎡ ⎤= −⎢ ⎥⎣ ⎦
 (9) 

 ( ) ( )T T2 2 1 2 2 2z v v v v v v1⎡ ⎤= −⎢ ⎥⎣ ⎦
 (10) 

The unit vectors w and w  are orthogonal to the element’s surface in the undeformed state and deformed state 
respectively. Notice that these vectors points toward the observer, when nodes associated with the element 
appear counterclockwise. 

The scalars  and α α  are equal to twice the area of the element in the undeformed state and deformed state 
respectively. 

The scalars δ  and δ  are equal to the thickness of the element in the undeformed state and deformed state 
respectively. 

2.  Deformation gradient tensor 
The deformation gradient tensor can be written as: 

 ( ) ( ) ( )T T T1 1 2 2 3 31F I u w u w u w w w w
⎛ ⎞δ⎡ ⎤= + + + + −⎜ ⎟⎢ ⎥⎣ ⎦α δ⎝ ⎠

T  (11) 

Notice that, 

 1Fv v1=  (12) 

 2Fv v2=  (13) 

 3Fv v3=  (14) 

 ( ) ( )F w wδ = δ  (15) 

 2 
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3.  Right Cauchy-Green deformation tensor 
The invariants of the right Cauchy-Green deformation tensor and its derivatives with respect to displacements 
can be written as: 

 ( ) ( )
2

T T2 1 1 2
1 2

1c v z v z
⎛ ⎞δ⎡= − + ⎜ ⎟⎢⎣α δ⎝ ⎠

⎤
⎥⎦

 (16) 

 11
1 2

c 2 z
u
∂

=
∂ α

 (17) 

 21
2 2

c 2 z
u
∂

=
∂ α

 (18) 

 1c 2 ⎛ ⎞∂ δ
= ⎜ ⎟∂δ δ δ⎝ ⎠

 (19) 

 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

T T T T1 1 2 2 1 2 2 1
4

T T T T2 2 1 1 1 2 2 1
4

4

c
1 v v z z v v z z

1 v v z z v v z z

=

⎡ ⎤+ −⎢ ⎥⎣ ⎦α

⎡+ −⎢ ⎥⎣ ⎦α

⎛ ⎞δ
+⎜ ⎟δ⎝ ⎠

+

⎤ +  (20) 

 ( ) ( )T T2 1 1 1 12
1 4 4

c 4 4v z z v z z
u
∂

= −
∂ α α

2  (21) 

 ( ) ( )T T2 2 1 1 22
2 4 4

c 4 4v z z v z z
u
∂

= −
∂ α α

2  (22) 

 
3

2c 4 ⎛ ⎞∂ δ
= ⎜ ⎟∂δ δ δ⎝ ⎠

 (23) 

 

 
2

3c
⎛ ⎞δα

= ⎜ ⎟δα⎝ ⎠
 (24) 

 (
2

13
1 2

c 2 w v
u

⎛ ⎞∂ α δ
= ⎜ ⎟∂ α δ⎝ ⎠

)×  (25) 

 (
2

23
2 2

c 2 w v
u

⎛ ⎞∂ α δ
= ⎜ ⎟∂ α δ⎝ ⎠

)×  (26) 
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3
2

c 2 ⎛ ⎞∂ α δ
= ⎜ ⎟∂δ δα δ⎝ ⎠

 (27) 

4.  Solution strategy 
4.1  Incompressibility 
Set invariant 3 of the deformation gradient tensor F equal to 1 and solve for the deformed thickness. Simplify 
the expressions for the invariants of the right Cauchy-Green deformation tensor C. In this way, the thickness of 
the element in the deformed state is not a variable anymore. Minimize the total potential energy with respect to 
the displacements. 

 1δα δ
= ⇒ δ =

α
δα α

 (28) 

4.2  Compressibility 
In an attempt to improve convergence and also to avoid a solution with negative thickness, the repetition of the 
following steps, using the initial thickness and zero displacements as starting point, can be used to minimize the 
total potential energy. 

• Fix all thicknesses. Minimize the total potential energy with respect to the displacements only. 

• Fix all displacements. Minimize the total potential energy with respect to the thicknesses only. 

• Minimize the total potential energy with respect to the displacements and thicknesses. 

• Replace any negative thickness by the initial thickness. 

5.  Examples 
A Quasi-Newton method (limited memory self scaling BFGS) with implementation as described by Nocedal 
and Wright [4] and cubic interpolation line search with safeguards as described by Gill and Murray [2] and 
Lasdon [3] was used to minimize the total potential energy. Computer codes and examples for incompressibility 
and compressibility can be downloaded from the author’s website (http://www.arcaro.org/tension/). 

6.  Conclusion 
The analysis is static analysis instead of a pseudo-dynamic analysis. It is not necessary to derive the stiffness 
matrix expressions. It is not necessary to solve system of equations. It can handle large scale problems. It does 
not matter if the structure is under constrained. The approach can be extended for line and tetrahedral elements. 
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Abstract 

The purpose of testing method study for membrane material in large span structures is 

provided the basic testing method about the testing standard are assorting and surveying for 

applying the construction and calculation of structures. Some problems of membrane 

materials have fire proofing, lack of strength, self cleaning, tear capacity, durability, heat 

insulation, sound insulation and elasticity. For the solution of this problems, it will be tested 

the mechanical properties of architectural membrane material. In this study, the development 

on test method of membrane material will be proposed and tested by tensile strength, tearing 

resistance, cycling test, etc. The testing information of basic membrane gives the method of 

rational design, and can provide the safety truth and validity of large span building in spatial 

structure. And it will be analyzed to the shape finding and stress concentration of architectural 

membrane. The development of new material opened up new possibility for membrane 

structures by the testing results of membrane material. 

1. Introduction  

In modern times, synthetic fibres and grass fibres have been created, and coating materials 

that improve durability and fireproofing and waterproofing qualities have been newly 

developed. As a result, membrane structures have become as durable and safe structural 

material. Membrane structures are characterized by translucency, lightness of weight and 

application are suited its frame for large spaces. The development of new membrane materials 

open up new possibility for membrane structures. Comparable to stainless steel in its 

durability, it came to be recognized as a permanent structural material. It has proven truly 

epochal for development of membrane structures.  Permanent buildings using this material, 

especially large arenas, began to be widely constructed in the 1970s. At first, it was feared that 

a glass fibre fabric was not sufficiently durable and would disintegrate in time.  However, this 

membrane material, which is hardened with fluor polymers, has already maintained sufficient 

strength for 24 years. However there are problems of durability and the soiling if its surface. 

A design method based a allowable unit stress is generally used for membrane structures, and 

4.0 is frequently adopted throughout the world as the safety for a membrane material. The 

purpose of testing method study for membrane and cable material in large span structures is 

provided the basic data about the testing standard are assorting and surveying for applying the 

construction and calculation of structures. Membrane materials are characterized by 

translucency, lightness of weight and earlier membrane materials were foldable, but PTFE 

coated glass fibre fabric membrane is not folded or detached. It is permanent building material 

1
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and is incombustible, strong, durable and self-cleaning. It is important that advantage be taken 

of the merits of membrane when membrane structures used in combination with other 

structures. Some problems of membrane materials have fire proofing, lack of strength, self 

cleaning, tear capacity, durability, heat insulation, sound insulation and elasticity. Cable has 

some problems of connection part in construction of structures. For the solution of these 

problems, it has to test the membrane and cable material. Achieved the researches 

successfully, it is expected that advanced technical power and improved testing method for 

spatial structure material. This value is by no means satisfactory, but it takes into account the 

possible deterioration in the strength of the membrane material. In view of the low cost of 

membrane material, this safety factor may be the lowest society will accept. Past example of 

accidents in membrane structures show that damage is caused by tears spreading in the 

membrane material. Tears are generated by localized incidents that are not accounts for in 

structural calculations. The safety of membrane structures therefore depends a great deal on 

the design of details. In this study, the development on test method of membrane material was 

studied to the test of tensile strength, tearing resistance, and cycling load test, etc. 

2. Testing Method of Membrane 

2.1 Tensile strength test 

Tensile test is applied a force longitudinally to a test piece of a specified length and width at a 

constant rate of extension and obtained determination of values for breaking strength and 

elongation from the recorded force-elongation curve. Unless otherwise specified, cut five test 

pieces in the machine direction and five in the cross-machine direction, ensuring that they are 

all taken at least 100  from edge and are equally distributed across the width and length of 

the specimen. Cut the test pieces 20-50 ±0.5  wide and of sufficient length to allow a jaw 

separation of 100  more, thus avoiding risks due to local heterogeneity of nonwovens or to 

undue cutting of long-fiber nonwovens. Wider test pieces and different forms of clamping 

may be used by agreement between the interested part, a note of these special conditions 

should be included in the test report. This method specified in ISO 5081(Textile-Woven-

Determination of breaking strength and elongation). 

2.2 Biaxial tensile test 

Using the tensile test method in which forces can be simultaneously applied in both warp and 

weft directions of a specimen of membrane material, load with a certain load ratio is applied 

in warp and weft directions to obtain the load strain relationship, then tensile stiffness and 

Poission’s ratio are calculated from the load strain relationship. The width of   relevant part of 

the specimen and length of the arm are 16 cm or more, and the specimen should have a 

symmetrical shape with respect to its warp and weft directions. Slit should be cut along the 

arms at intervals of 3-5. The specimen corners should be rounded with a radius of 5-15 cm. 

Final results are expressed as the means of more three specimens. Load ratio test have to 1:1, 

2:1, 1:2, 1:0, 0:1 and the standard tensile rate is generally 2-4 mm/min. This method specified  

in The Standard of Testing Method for Membrane Material(The membrane Structures 

Association of Japan, 1995). 

2.3 Tearing resistance test 

Tearing resistance test is marking of a trapezoid on a test piece and clamping of the non-

parallel sides of the trapezoid in the jaws of a tensile testing machine, and application of a 

continuously increasing extension to the test piece in such a way that a tear propagates across 
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its width. Unless otherwise specified, cut five test pieces in the machine direction and five in 

the cross-machine direction. The edge of the specimen should not normally form part of the 

test piece (75±1) (150±2) . Mark each test piece with an isosceles trapezoid using the 

template. Other dimensions, respecting the general proportions of the original test piece, may 

be agreed between interested part, especially in order to reproduce some in-use conditions 

cannot be compared. Condition the test pieces as specified in ISO 193. Carry out the testing in 

the standard atmosphere for testing. At the start of the test, set the clamps 25±1  apart and 

operate the machine at 100 /min. If the test piece does not tear at the cut, no result shall be 

registered. The tearing force will not usually be a single value but will generally appear as a 

series of maxima and minima.  

2.4 Fatigue resistance 

To estimate the fatigue resistance of the membrane material, as fatigue stress of rain and wind 

which the membrane material used in membrane structures would be exposed, sinusoidal 

tensile stress can be applied to the base material and joints of the membrane material.  After 

the cycle repeated  5 x 10
3 
times and 3 x 10

5
 times, the tensile strength and elongation at break 

are measured, and the change in strength is determined. Even after 5 x 10
3 
times and 3 x 10

5
 

times of the fatigue test, the base material and joints have the retention of tensile strength of 

about 90%. The material is proved to have sufficient endurance. The clamped parts have to be 

reinforced by thermally welding the same material. 

2.5 Folding endurance 

When the material is used as an architectural membrane material, it is expected that the 

material will be folded during processing and construction. Therefore, to confirm the folding 

endurance of the material, tensile test is conducted after folding test is performed. It is to be 

confirmed that the material do not decrease in tensile strength when it was folded along a 3-

mm-diam bar. When the material is used as an architectural membrane material, it is expected 

that workers may trample on the folded parts of the material during processing and 

construction. To confirm the endurance of the folded parts to repeated application of pressure, 

tensile test is conducted after the material is folded by a cylinder type folding tester. After the 

material was folded by pressing with a weight of about 1 kg/cm, the strength can reduce to 

about 80%. It is proved that the material did not show so significant deterioration in tensile 

strength. However, since the material uses glass fiber for its base, it is necessary to fold it with 

utmost care. After a 5.1-kg roll is rolled on a folded part of the membrane material 10 times, 

the tensile strength is measured to determine the decrease in strength. 

2.6 Creep properties 

Creep test was conducted to confirm the creeping state of the material under axial tensile load. 

In the creep test under the predetermined conditions, the base material and joints of the 

membrane material don’t show any abnormalities. Dimensions of test piece are to be 30  

wide and 320  long. Number of test piece has to be specimens in warp direction and in weft 

direction. Gap between two gage marks is to be 100 and clamp distance is 200  

2.7 Elastic constant 

Tension was applied to the membrane material in the warp and weft directions to determine 

the tensile rigidity based on the relationship between stress and strain. The test was conducted 

in accordance with testing method standard. Testing equipment has to use plane biaxial tensile 

3
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tester machine. Load ratio test have to 1:1, 2:1, 1:2, 1:0, 0:1, and loading pattern is conducted 

in accordance with testing method standard. 

2.8 Shear rigidity 

The shear rigidity values necessary for design and analysis of membrane structures were 

determined. The test is conducted in accordance with Testing Method Standard MSAJ/M01-

1993 (established by Membrane Structures Association of Japan). In a square frame, of which 

each corner can be freely rotated, a specimen with the prescribed tension introduced in the 

directions of warp and weft is mounted with the frame aligned in the direction of woven 

thread. Under this condition, the square frame is deformed in the diagonal direction, and in-

plane shear stiffness is determined from the relationship between the load obtained and 

displacement. The square frame of the tester has a pin t each corner and inner dimensions of 

16cm x 16cm or more. From the load displacement curve, the first load displacement is 

removed. From the average curve between the 2
nd

 and 3
rd

 load displacement points are 

connected.  

3. Testing Result of Membrane Material 

3.1 Mechanical capacity test of glass fiber membrane 

This part is shown the experimental results on tensile strength, cycling load test and tearing 

strength of membrane material for using spatial structures. Testing specimen is PTFE coated 

glass fiber and the thickness is 0.58mm.  In the results of tensile strength, the elastic modulus 

of glass fiber coating membrane was obtained 3618-4443 N/ . The break strain of glass fiber 

membrane was given to 5.83-7.08%.. In the results of tearing strength, PTFE coated glass 

fiber is showed the weakness of tearing resistance capacity.  

 

 

Fig.1 Stress-strain curve of glass fiber membrane by temperature 

(Specimen size: width 25mm x clamp space 100mm) 

 

Fig.2 Cycling load test of glass fiber membrane 
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Fig.3 Tearing strength test of glass fiber membrane 

 

 

Fig.4 Welding contact capacity test of glass fiber membrane 

 

3.2 Mechanical capacity test of polyester membrane 

Testing specimen is PVDF coated polyester of thickness 1.05mm. In the results of tensile 

strength, PVDF coated polyester membrane showed the weakness of initial tensile resistance 

capacity. The elastic modulus of polyester coating membrane was obtained 375-389 N/ . 

The break strain of polyester membrane was given to 24-29%. This paper proposed the testing 

methods and experimental results of tearing resistance strength of membrane material for 

using spatial structures.  
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Fig.5 Stress-strain curve of  polyester membrane by temperature 

(Specimen size: width 25mm x clamp space 100mm) 

 

 

Fig.6 Tearing strength test of  polyester membrane by temperature 

 

 

Fig.7 Cycling load test of polyester membrane 

 

3.3 Mechanical capacity test of ETFE film 

ETFE is abbreviation of Ethylene Tetra Fluoro Ethylene, a sort of colorless and transparent 

granules. ETFE film  has superior ability of daylight transmission and elongation. The tensile 

strength of ETFE film changes from 40Mpa to 60Mpa and the tensile at break can get to about 

300-400%. 

 

 

Fig.8 Dumbbell-shaped specimen of  ETFE film(t=0.25mm) 
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Fig.9 Stress-strain curves of  ETFE film(t=0.25mm) 

 

 

Fig.10 Stress-strain curves of  ETFE film by temperature 

 

 

Fig.11 Cycling load test of  ETFE film 
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Fig.12 Tearing strength test of  ETFE film 

 

 

4. Conclusion 

This paper was proposed the mechanical testing method of membrane material, and some 

testing results was showed about tensile test, tearing resistance test and cycling load test. The 

testing information of basic membrane material gives the method of rational design, and can 

provide the safety truth and validity of large span building in spatial structure. The 

development of new material opened up new possibility for membrane structures by the 

testing results of membrane material. 
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Abstract 
In this paper we will show simplified geometric programs developed to determine the form of specific cases of 
grid-shells, as well as of tent constructions. The development of these computer programs is based on the 
appropriate knowledge and application of analytical geometry, whereas some special algorithms based on the 
simplified electronic modeling of membranes applying the computer programs Auto-Cad and Excel, will be 
explained and discussed. Some examples of grid-shells and newly built tent constructions designed and 
developed by applying the procedures described before, will show the efficiency and accuracy of the simplified 
computer programs and algorithms specially developed for these purposes. 

1.  Introduction 
Computers offer powerful tools to design and analyze light weight structures. In the field of architectonical 
design, nowadays it is possible to apply the virtual reality to practically any form conceived and designed by the 
architect or structural designer. Nevertheless, the building of physical models is still very useful for the active 
architects, as well as for the students; but just to obtain enough parameters to evaluate the approximately final 
shapes of the structure. The precise formfinding procedures of light weight structures in order to determine their 
geometry or the cutting patterns of specific cases, like tent constructions or grid-shells, can be very quickly 
carried out by using computers and the many computer programs developed by special groups worldwide. 
Unfortunately, many of these computer programs are very expensive and the students or most of the active 
architects are unable to acquire this software.  

2.  Description 
First, we will briefly describe the computer program GEOG (Geometry of Grid-Shells). With GEOG we can 
generate a translation surface where the generatrix and directrix are catenaries. In previous papers and Simposia, 
we have reported the many advantages that this special shapes offer: the shape corresponds to a funicular system 
(the inverted form of a hanging net); four symmetrical nodes are on the same plane (plane plates of glass, timber 
or reinforced concrete for instance, can be used as covering elements); a universal knot-bars system with 
constant length allows the building of grid-shells with different curvatures using always the same structural 
elements. Wit GEOG we can generate different shape possibilities in a few seconds and afterwards we can 
decide the final geometry to be built whose geometrical definition is completely delivered. During a sabbatical 
staying at the University of Essen in Germany, we joined the geometry delivered by GEOG with the computer 
programs developed by the research groups of Professor G. Thierauf, thus it was possible to start immediately 
after the final shape was defined with the mechanical calculations and structural behavior of the structure. The 
figure 1 shows a grid-shell calculated with GEOG, an example of calculations with Professor Thierauf’s 
program and a grid-shell for a Court House conceived, designed and built in Mexico City. 
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Figure 1:  Example of computational formfinding process for a grid-shell 

We will now describe computer aided processes that we have developed in our Laboratory of Structures and that 
we have called electronic modeling. These processes are analog to common physical modeling methods, like 
modeling clay for instance; but in this case assisted by computers and the Auto-CAD and Excel programs. 
Instead of modeling physical material, we model virtual nets modifying their geometry and looking for 
obtaining a proper and right geometry. A correct geometry is the basis for an equilibrated mechanical behavior, 
in accordance with the building materials and the final shape of the structural project. 

The electronic modeling process will be described with the formfinding methods applied to the project of a 
tension structure for a historical building in the downtown of Mexico City. Figs. 2 and 3. The challenge was to 
cover two courtyards with different dimensions in order to cover a surface of approximately 540 m2. 

 

                        
              Figure 2: First sketches and physical study model of a tension structure 

First, let us consider a section of the surface related to a fix three-coordinate system; its boundary lines and its 
anchoring points, secondly let us fill these surfaces with straight lines with 45° on the xy-plane and finally let us 
generate on this surface, a new net with parallel lines to the x- and y-axis and with variable curvature. This will 
be the first digital net, which will be used to start the electronic modeling of the surface: 

 
 

Figure 3: Three stages of the electronic modeling of a tension structure 
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It follows an interactive analysis process for each knot, which will be moved in the z-axis in such a way that a 
homogeneous anticlastic curvature is guaranteed on every single point of the surface. This surface can be 
manipulated in order to be adapted to the desired shape conceived by the architect or structural designer or in 
order to enhance its capability to drain the raining waters for instance. Once the final net is accepted by 
architects and structural engineers, the determination of the cutting patterns is determined. In the next figures we 
can compare the final surfaces obtained through our electronic modeling with the surfaces generated with the 
program EASY developed at the University of Berlin, Germany. 

 

 
Figure 3: Compare the upper membrane generated by electronic modeling with the lower membrane generated 

with EASY 

Finally, let us discuss another way of electronic modeling and formfinding process for the project developed by 
a group of Mexican architects at the University of Mexico for the roof of the Aquarium of the Mexican Centre 
of the Turtle. The project is inspired in the shell of the Lute Turtle (Dermochelys coriacea). The covered area is 
2,400 m2 and it is located in Mazunte, Oaxaca. 

         
Figure 4: Lute Turtle (Dermochelys coriacea) and architectural proposal 

The architects determined the final external form they wanted, but they did not know how to solve a structural 
system adequate to their conception. Thus they asked us for developing a proposal based on a structural system 
of timber and metal and a double sheet of tensile membrane necessary because of thermic isolation. It was an 
interesting challenge for us and after a few days of analysis of possible proposals; finally we got out that a 
suitable solution would be a combination of a synclastic curvature surface (a translation surface) with a HP-
Surface (Hyperbolic paraboloid Surface.) Parabolas were used for the directrix and generatrix curves of both 
translation surfaces.  
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Figure 5: Combination of a synclastic with an anticlastic surface. 

The obtained combination of the synclastic with the anticlastic surfaces produces a continuous clean surface and 
fulfilled the formal intentions of the architects.   

 

 
Figure 5: Final project 

3.  Conclusions 
The examples, formfinding methods and computational calculations shown in this paper enable us to assert that 
by applying geometry with simplified computational methods, it is possible to develop formfinding processes to 
conceive, design and build light weight structures. Examples of grid-shells and tension structures, as well as a 
combination of both structural systems developed in our Laboratory of Structures will be shown. Our research 
works show an inexpensive alternative proposal for students, architects and structural designers. We are 
conscious of the limitations of these proposals and it is not our aim to compete with the research groups all over 
the world, who have developed very efficient and suitable computer programs for the design, calculation and 
construction of light weight structures. 
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Abstract 
      As the start for establishing the 3 dimensional extension technique, this paper discusses the visco-elastic 
characteristic and its evaluation method of ETFE film, and considers the example and effect of the curved 
surface fabrication by extension. Since yield strength per unit width serves as an extremum, 10 to 20% of 
extension is the optimal. It was checked that smooth curved surface form has been formed with target rise near 
10% as a result of 3 dimensional extension, and that the stable rigidity had been acquired. 

1.  Introduction 
      There are advantages in ETFE film , such as that it is transparent, lightweight, easy to manufacture a large-
sized panel by heat-sealing both films and excelling in the durability over ultraviolet rays. Therefore, it is well 
used in membrane structure construction in recent years. Film is low strength compared with textile materials, 
and since thermal expansion and a viscous distortion are large, it is used as the short air cushion of the distance 
between fulcrums in many cases. In the manufacture field of plastics, high strengthening by drawing of a film is 
general. it is possible to fabricate a low rise panel of high yield strength or to fabricate a high rise panel of 
smooth curved surface with little weld line. As the start for establishing the 3 dimensional extension technique, 
this paper discusses the visco-elastic characteristic and its evaluation method of ETFE film, and considers the 
example and effect of the curved surface fabrication by extension. 

2.  Drawing of ETFE film 
      SS curve of an ETFE film is shown in Figure 1. Usually, as for film structure, it is common to design with 
allowable stress design method or ultimate strength design method. By allowable stress design, the stress 
corresponding to the 2% strain of near the 1st yield point is often made into the upper limit stress. By ultimate 
strength design, the stress corresponding to the 10% strain of near the 2nd yield point is often made into the 
upper limit stress. In the manufacture field of plastics, high strengthening by drawing of a film is general, and 
fabrication of PET resin products and films are the example of representation. Figure 2 shows the relation 
between a strength ratio (A) and the rate of extension, the relation between the thickness ratio at the time of 
biaxial extension (B), and the rate of extension, and the relation between the product (C) of (A) and (B), and the 
rate of extension about the ETFE film. The yield stress ratio is the value, which divided the each stress of SS 
curve by the 1st yield point stress. In calculation of the thickness after biaxial extension, the extension ratio is 
assumed to be 1:1 and volume is assumed to be constant. From a viewpoint of raising yield strength, the 
extension effect of the range of the extension rate of 300 to 400% is high. However, drawing is accompanied by 
reduction in thickness, the fall of tear resistance, impact resistance fall, and the fall of wear and abrasion 
resistance. Therefore, it is not appropriate to use a film with the high degree of extension for the outer layer of 
air cushions. Taking the above characteristics into consideration, since yield strength per unit width (C) serves 
as an extremum, 10 to 20% of extension is the optimal. 

      Consideration of anisotropy is indispensable necessity although it is easy at the time of material manufacture 
to extend the direction of 1 axis like the roll direction. It seems that there is no example performed positively 
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since the rise becomes high although it is possible at the time of the inflation of a film cushion to perform 
biaxial extension by pressure. Extension by prestretching is possible also at the time of panel attachment. As for 
especially a simple-shaped panel, it is possible for the plane film which does not perform draping to also carry 
out curved surface fabrication by prestretching and high-pressure extension. If the above-mentioned method is 
used, it is possible to fabricate a low rise panel of high yield strength or to fabricate a high rise panel of smooth 
curved surface with little weld line. It seems that however, there is also no example which performed these 
positively. The first reason is because there is a possibility of producing partial plastic elongation at the time of 
prestretching, since the strain of the 1st yield point of ETFE film is only 2%. The second reason is that the 
structural analysis technique as which SS curve in 2 to 20% of strain domain indicates a complicated visco-
plastic behavior, and estimates this with sufficient accuracy is not yet established. So, as the start for 
establishing the above-mentioned technique, this paper discusses the visco-elastic characteristic and its 
evaluation method of ETFE film, and considers the example and effect of the curved surface fabrication by 
extension. 
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Figure 1: Stress strain curve of ETFE film 
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Figure 2: Drawing of ETFE film 
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3.  Heating pressurization fabrication 
The outline of a heating pressurization fabrication experiment is shown in Figure 3. 
 Procedure 1: Film panel (a plane, two sheets) is attached to a frame. 
 Procedure 2: Keeping at 60 ℃ within a heat insulation container, the inside of a cushion is pressurized 
          (1st Inflation) and plastic deformation is added. 
 Procedure 3: At the room temperature of 20 ℃, the cushion is pressurized (2nd Inflation) to check  
         shape and rigid stability. 

Figure 4 shows the rise change and SS curve among inflation processes. Stress and strain of SS curve have 
calculated by having assumed an equally tensioned spherical surface. It was checked that smooth curved surface 
form has been formed with target rise near 10% as a result of 3 dimensional extension, and that the stable 
rigidity had been acquired. SS curve and the 1st yield points are shown in Figure 5 according to temperature. 
The strain of the 1st yield points are around 2%, and is almost the same at every temperature. On the other hand, 
the yield stress in 60 ℃ is almost half of the yield stress in 20 ℃, and temperature dependency of yield stress is 
strong. Figure 6 shows creep curves according to temperature. The creep strain of the ETFE film of normal 
temperature shows clearly that it becomes a nonlinear relation to load stress. If load stress becomes 50% or 
more of the 1st yield point especially, creep distortion will increase notably. The creep strain in 60℃ shows the 
tendency similar to the strain at the time of applying high load stress in normal temperature, and, as for this, it is 
considered to be a reason that the 1st yield point fell by the rise in heat. As mentioned above, under high 
temperature, since it is accompanied by the fall of yield stress, it becomes easy to perform plastic processing by 
low-pressure power. However, it needs to be cautious of that it is in the tendency for the viscous behavior of an 
ETFE film to advance very slowly, and creep strain being in an increase process, even if 72 hours pass. 
Therefore, it is important to evaluate a plasticity permanent strain and a viscosity time dependence strain by 
pressurization or extension by prestretching with sufficient accuracy. 
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Figure 3: Heating pressurization fabrication experiment 
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Figure 4: Rise change and SS curve during heating pressurization fabrication experiment 
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Figure 5: SS curves at different temperature 
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Figure 6: Creep curve at different temperature 

  

4.  Conclusion 
    Since yield strength per unit width serves as an extremum, 10 to 20% of extension is the optimal. It was 
checked that smooth curved surface form has been formed with target rise near 10% as a result of 3 dimensional 
extension, and that the stable rigidity had been acquired. 

 

References 
[1] Schwitter C., "The Use of ETFE Foils in Lightweight Roof Constructions", Proc. of IASS Symposium 

1994(Atlanta), pp622-631, 1994 
[2] Kawabata M, Moriyama F. and Aida H., "Viscoelastic characteristic of ETFE film", vol 19, pp.1-8, 

Research Report on Membrane Structures 2005 (Japanese) 
[3] Kawabata M. and Moriyama F.; "Study on Viscoelastic Characteristics and Structural Response of Film 

Membrane Structures", Proceedings of the IASS-APCS 2006 International Symposium, 
MB01.150~MB01.151, 2006 

[4] Kawabata M.; " Viscoplastic Properties of ETFE Film and Structural Behavior of Film Cushion", 
Proceedings of the IASS 200 International Symposium, 2007 

 4 



 
Proceedings of the 6th International Conference on 

Computation of Shell and Spatial Structures 
IASS-IACM 2008: “Spanning Nano to Mega” 

28-31 May 2008, Cornell University, Ithaca, NY, USA 
John F. ABEL and J. Robert COOKE (eds.) 

 

 1 

Shape finding of membrane structures by the natural  
force density method 

Ruy M.O. PAULETTI*, Paulo M. PIMENTA 

*Polytechnic School, University of São Paulo 
P.O. Box 61548, 05424-970 São Paulo, Brazil 
pauletti@usp.br 

Abstract 
This work presents an extension of the force density method for the initial shape finding of cable and membrane 
structures, which leads to the solution of a system of linear equations. This method is called the natural force 
density method (see Pauletti and Pimenta [12]), and preserves the linearity of the original force density method. 
Furthermore, if it is applied iteratively in the lines prescribed herein, it may lead to a viable equilibrium 
configuration with a uniform, isotropic plane Cauchy stress state. This means that a minimal surface for a 
membrane can be achieved through a succession of viable configurations. This is an advantage, if compared to 
Newton’s Method, which may also converge to a minimal solution, but through a series of unfeasible 
configurations.  

1.  Introduction 
Since Frei Otto’s pioneering works in the 1950’s, taut structures (encompassing both cable and membrane 
structures) constitute an important research field in architecture and engineering. They are light, elegant and 
effective structures, whose applications range from large stadium roofs and high-rise building walls to 
pneumatic furniture or aerospace equipment.  The design of taut structures is integrated to their analysis, in a 
process that includes procedures for shape finding patterning and load analysis. Some references on the design 
of taut structures are Haber and Abel [1], Knudson [2], Tabarrok and Qin [3], Moncrief and Topping [4] and 
Barnes [5].   

A versatile way to pose the overall design process of taut structures is via the Finite Element Method (FEM). It 
directly provides, besides a viable shape, also a map of the stresses to which the structure is subjected. It is also 
adequate to determine the behavior of the structure under design loads, as well as to transfer data to the 
patterning routines. On the other hand, procedures based on the FEM or in other forms of structural analysis 
result in nonlinear analyses, and require specification of a convenient initial geometry, load steps and boundary 
conditions, which are not always defined ab initio.  

An alternative method for finding viable configurations, which avoids the problems related to nonlinear 
analysis, is given by the force density method, which was first proposed in the context of cable nets (Schek [6], 
Linkwitz [7], Gründig et al. [8]). Some analogous procedures for the shape finding of membrane structures have 
already been proposed in the literature, e.g. Singer [9] and Maurin and Motro [10]. However, these procedures 
are not linear and thus require iterations for solution. In this way, the advantage of the original force density 
method is lost, and there is no clear reason to replace a nonlinear structural analysis by another nonlinear 
procedure. 

With the aid of the natural approach introduced by Argyris [11] for the Finite Element Method, this work 
presents an extension of the force density method for the initial shape finding of cable and membrane structures, 
which leads to the solution of a system of linear equations. This method is called the natural force density 
method (see Pauletti and Pimenta [12]), and preserves the linearity of the original force density method. 
Furthermore, if it is applied iteratively in the lines prescribed herein, it may lead to a viable configuration with a 
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uniform, isotropic plane Cauchy stress state. This means that a minimal surface for a membrane can be achieved 
through a succession of viable configurations. This is an advantage, if compared to Newton’s Method, which 
may also converge to a minimal solution, but through a series of unfeasible configurations.  

2.  Formulation 
Consider a three-noded plane triangular finite element. Let rα  and α , 1,2,3α = , be the element side 
lengths at a reference and at a viable, equilibrium configuration, respectively. It can be shown that the 
equilibrium of this element can be expressed by three pair of loads acting along the sides of the element. We 

collect this loads into a natural force vector P 1 2 3
T

n n n nP P P⎡ ⎤= ⎢ ⎥⎣ ⎦ , and define the vector of the natural 

force densities according to n P Λ P11 2 3
T

n nn n n −⎡ ⎤= = =⎢ ⎥⎣ ⎦ , where { }diagΛ 1 2 3= . 

Thereafter, we show that, for prescribed natural force densities n , there is a linear relationship between the 

natural force vector Pn  and element nodal coordinates ξ 1 2 3
T⎡ ⎤= ⎢ ⎥⎣ ⎦x x x , according to ,=P kξ  

where , 1,2, 3I I =x , are the position vectors of the element nodes at the equilibrium configuration and k is 

a constant element stiffness matrix given by 
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We thus arrive to linear problem at the structural level, after assembling the load and stiffness contributions of 
all elements. 

Instead of prescribing directly the natural force densities n  for each element,  it is more convenient to prescribe 
their 2nd Piola-Kirchhoff stresses σ , which relate to their natural force densities according to 
n Λ σ2 1r r r rV − −= A C , where rV  is the element volume at the reference configuration, 

{ }diagΛ 1 2 3
r r r r=  , and   
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where ( ) 1r r r r rcα β γ β γ
−= − ⋅l l  are the cosines of the internal angles of the triangular finite element at the 

reference configuration (indexes ( ), ,α β γ  cyclically permute).   

3.  Applications 
As an application of the linear natural force density method, we consider the transformation of the same plane, 
square reference mesh into different surfaces, all of then determined in a single step. First row of Figure 1 shows 
two hypars generated by prescribing displacements on the four vertices, along with a uniform 2nd Piola-
Kirchhoff stress field on the membrane and different normal loads at the border cables. Second row of Figure 1 
shows the same reference square mesh transformed into two other shapes, simply prescribing displacements to 
some selected nodes.  
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Figure 1 : Viable configurations generated through the imposition of different sets of nodal displacements and 

border cable force densities to the same plane squared reference mesh. 

 

As a second example, we consider a helicoidal soap film surface, inspired by a physical experiment illustrated by 
Isenber [13]. A flat, unit square, reference geometry (Figure 2d) is deformed, such that sides S1 and S2 are 
transformed into small radial segments, of length 0.01. Side S2 is also displaced of 4.0, transversally to the 
reference plane. Side S3 is deformed into a helix. Side S4 is constrained to slip over the vertical axis, whose total 
length is 4.0. Figure 2a shows both the initial reference mesh and the resulting viable geometry, associated to a 
Cauchy stress field with quite high concentrations close to borders S2, S3 and S4. Subsequent iterations do not 
introduce significant alterations on geometry, but do smooth the stress field. After 10 iterations, a practically 
uniform and isotropic Cauchy stress field is achieved. Thus, the minimal surface associated with the prescribed 
boundary is indeed obtained.  
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Figure – An helicoidal soap film  
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Abstract 
This study presents a random strategy for topology generation to investigate diversity of tensegrity structures. 
The process of finding shape in self-equilibrium with generated topology is separated into two design processes: 
(a) find the feasible force densities satisfying the non-degeneracy condition by the adaptive force density 
method proposed by the authors, and (b) determine nodal coordinates satisfying equilibrium equations by 
optimization techniques. A number of new stable structures, of which no struts physically interact with each 
other, are derived and presented as numerical examples. 

1.  Introduction 
Tensegrity structures are prestressed pin-jointed structures, featured by their ‘discontinuous’ struts (in 
compression) balanced by ‘continuous’ cables (in tension) [1]. The main tasks in the design problem of 
tensegrity structures are to determine topology (connectivity of nodes and members) and stable shape (in terms 
of nodal coordinates) in self-equilibrium, hence it is also called form-finding problem. However, the topology 
issue has been discussed in only few studies, for example reference [2], while most of them concentrate on 
finding the self-equilibrium shapes with a given topology. Thus, the first objective in the study is to present a 
random strategy to investigate new topology for tensegrity structures.  

Moreover, even for the same topology, there exist numerous different shapes satisfying equilibrium equations; 
not all of them are stable in three-dimensional space, though. The adaptive force density method [3] is such a 
numerical method that converges fast, and more importantly, guarantees a stable structure. Hence, it is adopted 
in the study to find the self-equilibrium shape for the topology generated by the proposed random strategy. 

In summary, to study diversity of tensegrity structures, we adopt an iterative procedure with the following three 
processes in each step:  

• Topology: Starting from a ground structure with every pair of nodes connected by a member, either cable 
or strut, one cable is removed randomly in each iterative step. 

• Feasible force densities: Implement the adaptive force density method (AFDM) to find the feasible force 
densities that satisfy the non-degeneracy condition for a three-dimensional tensegrity structure. 

• Self-equilibrium shape: Optimization techniques are utilized to find the optimal configuration subject to 
specified constraints, with the assumption that we do not have a priori knowledge about its final 
configuration. 

2.  Equilibrium and stability 
Consider a tensegrity structure with m members and n nodes. Its topology is described by the connectivity 
matrix : for member k connected by nodes i and j (i<j), the ith and jth elements in the kth row of C are 1 
and −1, respectively, while the other entries in the row are zero. 

m n×∈C \
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Let x, y and z ( ) denote nodal coordinates, and n∈\ [ ]T1, , , m
i mq q q=q … … \∈  denote force densities (prestress-to-

length ratio). Hence, the coordinate differences in each direction can be calculated as u = Cx, v = Cy, w = Cz , 
and the geometry matrix G( 6m×∈\ ) is defined as  

 [ ]G = Uu, Vv, Ww, Uv, Uw, Vw , (1) 

where U, V and W are the diagonal forms of u, v and w, respectively. 

Defining the force density matrix  as n n×∈E \

 , (2) Tdiag( )=E C q C

self-equilibrium equations of the structure in each direction can be written as 

 . (3) Ex = Ey = Ez = 0

The necessary condition for a non-degenerate tensegrity structure is that the force density matrix E has rank 
deficiency of at least four. It should be noted that this is not a sufficient condition for a non-degenerate structure. 

A super stable structure is always stable irrespective of level of prestress introduced to it; hence, a super stable 
structure is preferable in designing a tensegrity structure. The authors presented the three necessary and 
sufficient conditions for super stability of a tensegrity structure [4]:  

(a) The force density matrix E is positive semi-definite;  

(b) The force density matrix E has rank deficiency of four; and  

(c) The geometry matrix G is full-rank.   

3.  Form-finding 
This section presents a random strategy for topology generation, briefly introduces the adaptive force density 
method for finding the feasible force densities, and then presents two optimization problems for searching for 
the optimal configuration. 

3.1  Topology Generation 
A ground structure is defined as the structure of which every pair of nodes are connected by a member, either a 
strut or a cable. Hence, a ground structure consists of 2( nm C )=  members in total. To ensure that struts are not 
connected with each, the number sm f struts is /n t most; i.e., sm he typical number of struts is / 2n , 

 even, such that every node is connected by a strut and no struts share the same node.  
 o a  T

for n
2  / 2n≤ .

New topologies are generated by removing cables one by one, while all the struts will remain. As there is no 
‘correct’ measure for removing a cable, the cable to be removed is randomly selected: the number  of cables 
connected to node i is multiplied by a random value 

c
in

[1,2]ir ∈ , and the two nodes connected by a cable with the 
maximum value of  is then removed.  c

i in r

This random strategy enables us to generate various topologies, and moreover, the numbers of cables connected 
to each node turn out to be roughly the same. 

Once the topology is determined, we are in the position to find the self-equilibrium shape for the structure. The 
AFDM is divided into two subsequent processes: finding the feasible force densities, and determining the nodal 
coordinates.  

3.2  Feasible force densities 
The force density matrix E has rank deficiency of four if and only if it has four zero eigenvalues. Since E is the 
function of only force densities q when topology is determined, eigenvalue analysis is applied to E  so as to 
satisfy the non-degeneracy condition: the four smallest eigenvalues of E are set to zeros to produce a new E 
having four zero eigenvalues, and q is then updated from the new E using the least squares method. 

 2 
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The force density matrix calculated from the updated q as in Eq.(3) may not satisfy the non-degeneracy 
condition precisely; hence, it is necessary to iteratively apply eigenvalue analysis to E. 

It is notable that the first two necessary and sufficient conditions for a super stable structure are satisfied 
applying the above-mentioned eigenvalue analysis to the force density matrix, and the third condition is related 
to nodal coordinates determined in the next subsection.  

3.3  Nodal coordinates 
Since a tensegrity structure is a prestressed pin-jointed structure, its shape is described in terms of nodal 
coordinates, which can be arbitrarily determined as long as the equilibrium equations in Eq.(3) are satisfied. 
This gives us some limited freedom to search for the desired configuration. 

As cables tend to pull the nodes closer while struts push them farther, it would be a good idea to find the self-
equilibrium shape by maximizing lengths of cables with limited lengths of struts. Letting denote the 
minimum length of cables, while 

min
cl

sl  denote lengths of struts and sl�  their upper bounds, the following problem is 
considered:  

     Opt1:   Maximize     min
cl

s s≤l l�s.t.      (4) 

Eq.(3)  

Moreover, the structure will degenerate into a two- or even one-dimensional structure if the geometry matrix G 
is rank deficient; i.e., it has zero singular value. The smaller difference among the singular values of G may give 
us a more preferable configuration, hence, we consider the following optimization problem denoting the 
maximum and minimum singular values of G as  and min

Gλ : max
Gλ

     Opt2:   Maximize    min
Gλ / max

Gλ  

s s≤l l�s.t.          (5) 

Eq.(3) 

4.  Numerical examples 
This section is to present the self-equilibrium shapes of tensegrity structures with different numbers of nodes. 
Only the structures consisting of n/2 struts and n (even) nodes are considered. All struts will have the same force 
densities, and the initial force densities for starting the adaptive force density method are specified as −1 for 

fou es. Finding the feasible force densities by the AFDM 
as hown in Figure.1.(a); struts of the 

structure intersect with each other at the center. Solving the problem Opt2 gives a similar structure. 

Removing the cables one by one generates many different topologies, and some of the stable structures of which 
struts do not physically intersect with each other are shown in Figure.1. 

struts and +1 for cables. Upper bounds of all struts are set as 1. Both of the optimization problems in Eqs.(4) and 
(5) are solved using the optimization tool provided by Matlab [5]. 

The ground structure for the structure with six nodes consists of 15 members, including three struts and twelve 
cables. Every node is connected by one strut and r cabl
and solving the problem Opt1 determine the super stable structure  s

 
     (a) Ground structure,       (b) Structure with ten cables,       (c) Prismatic structure. 

Figure 1: Structures consisting of six nodes and three struts. 
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Figure 2: Structures consisting of eight nodes and four struts. 

 4 

        
Figure 3: Structures consisting of ten nodes and five struts. 

As more complicated cases, some of the structures with eight and ten nodes are shown in Figures.2 and 3, 
respectively. 

5.  Conclusions 
We have investigated topology and self-equilibrium shapes of tensegrity structures in this study. Consecutively 
removing cables from a ground structure generates many new structures. However, there seems to be no 

versal olo ca  although 
e final t b s ers such that 

these structures cannot be

The random strategy adopted in the study for topology generation enables us to investigate the diversity of 
connectivities of members and nodes, and the adaptive force density method guarantees a super stable structure. 

Numerical investigations show that solving problem Opt1 tends to converge to a uniform configuration even 
different initial solutions are given, while Opt2 tends to generate more elegant configurations expanding fully in 
the three-dimensional space.  
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