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ABSTRACT 

The overarching objective of the research presented in this thesis was to characterize 

associations between cow, herd, and environmental data with insemination outcome, and develop 

machine learning algorithms (MLA) to predict the outcome of the first service (FS) after calving 

in lactating dairy cows. The specific objective of the study presented in Chapter I was to 

compare patterns of multiple cow behavioral, physiological, and performance parameters 

collected by automated sensors before insemination for cows that became pregnant or not at FS. 

A secondary objective was to explore associations between pregnancy outcome at FS with 

previous gestation and early lactation performance and events, and with environmental 

conditions before insemination. An observational retrospective cohort study was conducted using 

data collected at a commercial dairy farm. Daily values for milk yield, milk components percent 

and yield, rumination and eating activity, physical and walking activity, resting time and bouts, 

body temperature, milk conductivity, and body weight collected by wearable and non-wearable 

sensors from -14 to 56 d after calving for 932 primiparous and 2,070 multiparous cows with a FS 

pregnancy outcome were available for analysis. Daily data were summarized as the average of 

seven periods of 4 to 7 d long from -14 to 56 d after calving and from -27 to -11, -10 to -3, -2 to -

1 d relative to timed AI for FS. The most notable differences observed for primiparous cows 

were greater milk yield, milk components yield, and fewer lying bouts per day for pregnant than 

non-pregnant cows. For the multiparous cow group, non-pregnant cows produced more milk and 

milk fat, had greater body temperature, more activity, more resting time, and had greater body 

weight changes after calving than pregnant cows. Associations of different strength and direction 

between FS outcome with previous gestation and previous and current lactation features, events, 

and performance for primiparous and multiparous cows were observed. Substantial variability 



  

between parity groups for the direction and magnitude of differences between pregnant and non-

pregnant cows warrants use of parity either as a model predictor, or the development of parity-

specific models for predicting FS outcome of lactating dairy cows. Chapter II of this thesis 

presents the development and performance of multiple MLA for predicting FS outcome using 

data presented in Chapter I. Decision Trees, Support Vector Machine, Logistic Regression, and 

Extreme Gradient Boosting models were built and evaluated for primiparous and multiparous 

only and for both parities combined. Overall, we observed that these MLA trained with a 

combination of automated sensor cow behavioral, physiological and performance data, as well as 

herd outcomes and environmental data presented a wide range of performance. The best 

performing algorithms (i.e., most performance metrics values in the 90 to 95% range) were those 

for primiparous cows using Support Vector Machine and Logistic Regression models. Overall, 

the performance of MLA for multiparous cows was poor (i.e., all performance metrics <70%) 

considering the implications of predictions for practical application. In conclusion, different 

supervised MLA trained with a combination of cow parameters collected by automated wearable 

and non-wearable sensors, herd outcomes, and farm environmental conditions, presented large 

variation in performance despite using the same input data and the same algorithms. Large 

variation in algorithm performance due to parity suggested that different models might have to 

be developed for predicting FS outcome for primiparous and multiparous cows. Further research 

is needed to identify a combination of predictors, methods to summarize input data from 

predictors, and develop procedures to train MLA that yield the level of performance required for 

practical use of algorithms in commercial farms.    
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GENERAL INTRODUCTION 

Dairy farms allocate resources for optimizing reproductive management of lactating dairy 

cows because herd reproductive performance influences farm profitability and sustainability 

through direct effects on milk production efficiency, the herd exit dynamics, availability of 

replacements, and reproductive program implementation cost (De Vries, 2006; Meadows et al., 

2005; Giordano et al., 2011). Notably, recent improvements in herd management and technology 

implementation enhanced overall reproductive performance of lactating dairy cows through 

effects on reproductive outcomes such as days to insemination, service rate, and pregnancies per 

AI (P/AI) (Carvalho et al., 2018; Cardoso Consentini et al., 2021; Rial et al., 2022). These 

improvements have also generated new opportunities for maximizing dairy herd performance 

and profitability through targeted reproductive management (Giordano et al., 2022). Increasing 

the economic value of offspring and reducing replacement costs through use of sexed semen, 

beef semen, or embryo transfer (Wilson et al., 2005; DeJarnette et al., 2011), optimizing 

reproductive performance and profitability by manipulating timing of first service (Stangaferro et 

al., 2018), inseminating or not inseminating a cow based on expected profitability, and targeted 

use of hormonal therapies to increase fertility (Giordano et al., 2015; Wijma et al., 2016; Zolini 

et al., 2019), improve management (Bartolome et al., 2005; Wijma et al., 2017, 2018 ), or both 

(Perez et al., 2020) are examples of targeted reproductive management approaches. The suite of 

strategies available will likely expand as the dairy industry adapts to new market conditions, 

develops and adopts novel technologies, makes better use of data, and continues adjusting to 

increasing labor constraints.  

Implementation of targeted reproductive management interventions for dairy cattle 

depends upon the ability to identify cows with different reproductive potential before key 
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management interventions such as insemination, pregnancy testing, hormonal treatments, and 

culling are implemented. Therefore, an important new frontier in reproductive management 

decision-making is predicting the probability of pregnancy before insemination. To make 

accurate predictions, it is paramount to improve our understanding of intrinsic and extrinsic 

sources of variation of cow fertility and characterize associations and interactions between 

biological, management, and environmental factors with cow fertility. Characterizing the 

direction and strength of associations between potential predictors and fertility can help inform 

predictive models for identifying subgroups of cows with different reproductive potential. In this 

regard, a myriad of studies reported that cow-related factors and features such as age at calving, 

parity, experiencing adverse health conditions, milk volume and components yield, metabolic 

status, body condition score, body weight, and many others were positively or negatively 

associated with insemination outcomes (Rutten et al., 2016; Ghiasi et al., 2016; Caraviello et al., 

2006). Moreover, external factors and conditions that directly or indirectly affect cows, such as 

management practices (Rensis et al., 2015; Vercouteren et al., 2015) and environmental 

conditions (López-Gatius., 2012; Djelailia et al., 2020; Wolfenson et al., 2020), have also been 

associated with insemination success.  

Many sources of variation of cow fertility, and associations between predictors and 

insemination outcome are well-known and characterized (López-Gatius et al., 2012; Hempstalk 

et al., 2015; Rutten et al., 2016; Cockburn, 2020). Conversely, many others have not yet been 

described or have been poorly characterized because of previous limitations to generate and 

evaluate data for large numbers of cows under commercial farm conditions. This knowledge gap 

could be addressed by using novel sensor-based technologies that automatically collect and 

summarize cow behavioral, physiological, and performance parameters of cows. Sensor 
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technologies enable data collection from more cows and their environment, in real time, at more 

frequent intervals, without cow manipulation, and at lower cost. Other sensor and non-sensor 

technologies used to monitor and record dairy herd management practices and environmental 

conditions are also readily available on commercial farms. These multiple technologies could be 

leveraged to improve our understanding of factors known to affect fertility of individual herds 

and cows, and to discover novel associations and interactions among cow, herd management, and 

environmental parameters with reproductive success.  

Once associations between predictors and fertility are characterized, prediction models of 

cow fertility can be explored. Previous efforts focused on predicting fertility of individual AI 

services in lactating dairy cows with varying levels of success (Hempstalk et al., 2015; Rutten et 

al., 2016). These studies included a wide range of farm, herd, environmental, and cow level data. 

However, most of the cow level data included calving, health, and reproductive events, or 

aggregated production and reproductive performance data collected sparsely in previous 

lactations, or the lactation cycle of interest such as that obtained from dairy herd management 

software or monthly herd testing programs (Caraviello et al., 2006, Shahinfar et al., 2014). 

Conversely, no studies included data from behavioral, physiological, and performance 

parameters collected by automated wearable and non-wearable sensors for dairy cows. These 

sensor-generated parameters might offer additional predictive value as they might directly or 

indirectly reflect dynamic changes of dairy cow health, physiological, reproductive, and well-

being status at key time points before insemination. Moreover, data collected through continuous 

monitoring of cow parameters might be more predictive as it enables capturing variation in 

behavioral and physiological data with time granularity ranging from minutes to days, and milk 

production data for individual milkings.  



4 
 

A key step in the development of prediction tools to inform decision-making for 

reproductive management is the dentification of modeling approaches capable of generating 

accurate predictions despite the complexity of the underlying data and associations between 

predictors and outcomes of interest. In this regard, predicting the outcome of individual 

inseminations using large, integrated dairy cow, herd, and environmental data might require 

more powerful analytical tools than traditional statistical methods. To this end, machine learning 

algorithms (MLA) might be an alternative to traditional statistical methods that rely on 

parametric functions because MLA are more effective at generating predictions using large, 

complex, and heterogeneous datasets (Cockburn, 2020). Moreover, MLA might uncover 

complex relationships in the data and can generate predictions despite missing observations for 

some timepoints for some predictors (Neethirajan, 2020). 

Thus, the overarching objectives of the research presented herein were to characterize 

associations between cow, herd, and environmental data with the outcome of individual 

inseminations, and develop and evaluate MLA to predict the outcome of the first service (FS) 

after calving in lactating dairy cows. Specifically, the primary objective of the research presented 

in Chapter I was to compare the patterns of multiple cow behavioral, physiological, and 

performance parameters before insemination for cows that became pregnant or not at FS. A 

secondary objective was to evaluate the association between pregnancy outcome at FS with 

previous gestation and early lactation performance and events, as well as environmental 

conditions before insemination. Chapter II of this thesis presents the development and 

performance of multiple MLA trained for predicting FS outcome using all data collected for this 

study.  
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CHAPTER I 

ASSOCIATIONS BETWEEN SENSOR AND NON-SENSOR COW, HERD 

MANAGEMENT, AND ENVIRONMENTAL DATA WITH PREGNANCY OUTCOME 

AFTER FIRST SERVICE IN LACTATING DAIRY COWS  

INTRODUCTION 

A primary focus of most research with automated dairy cattle monitoring technologies 

has been the exploration of associations between dairy cow fertility and behavioral, 

physiological, and performance parameters monitored by sensors during the periestrus and estrus 

period (Reith et al., 2014; Schilkowsky et al., 2021; Giordano et al., 2022). As cows experience 

dramatic physical activity, rumination, eating behavior, and milk yield changes around estrus, 

monitoring these parameters has been used for exploring associations between estrus event 

features and the probability of pregnancy after insemination (Madureira et al., 2015; Cerri et al., 

2021; Tippenhauer et al., 2021). Remarkably, less emphasis has been placed on exploring 

potential associations between dairy cow reproductive outcomes with patterns and features of 

behavioral, physiological and performance parameters that are known indicators of the health, 

metabolic status, and well-being of cows during the peripartal period and early lactation 

(Antanaitis et al., 2018; Stangaferro et al., 2019). As proxies of cow health, metabolic status, and 

well-being, the dynamics of sensor-monitored parameters before insemination might be 

associated with and be predictive of the outcome of artificial insemination (AI) services in 

lactating dairy cows (Giordano et al., 2022). The dynamics of these sensor-monitored parameters 

might also be associated with cow fertility because their patterns reflect the response of cows to 

herd management practices and environmental conditions (Bello et al., 2012; Cockburn, 2020; 
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Neethirajan, 2020). Therefore, further research is needed to identify and characterize in detail 

potential associations between sensor-generated data in the peripartum and early lactation period 

and outcomes of value for reproductive management decision-making. A better understanding of 

these associations might facilitate the design and implementation of targeted reproductive 

management strategies for dairy cattle.  

Thus, the overarching goal of the research presented in this chapter was to characterize 

the association between multiple potential predictors of cow fertility and the outcome of first 

service (FS) in lactating dairy cows. Specifically, the primary objective was to compare the 

pattern of behavioral, physiological, and performance parameters collected by automated sensors 

for cows that became pregnant or not at FS. A secondary objective was to evaluate the 

association between pregnancy outcome at FS and previous gestation and early lactation 

performance and events, as well as environmental conditions before insemination.  

EXPERIMENTAL PROCEDURES 

 All procedures involving animals were approved by the Institutional Animal Care and 

Use Committee of Cornell University. 

Cows and General Management  

This observational retrospective cohort study was conducted using data collected at a 

commercial dairy farm in Tompkins County, New York from January of 2018 to April of 2020. 

During the study period the average number of milking cows was 1,376 (range: 1,296 to 1,455) 

and the average number of dry cows was 207 (range: 149 to 262). Cows were housed in free-stall 

barns with concrete flooring and six or eight rows of stalls. Fans and sprinklers were present 
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above the feeding lane. A TMR was delivered once daily, and cows had ad-libitum access to feed 

and water. Cows were milked in a 60-stall rotary parlor three times a day at ~8 h intervals. 

Cows were moved from the far-off dry pen to a close-up pen approximately 10 d before 

calving. For cows in the close-up pen, farm personnel conducted visual observation every hour to 

identify cows with impeding signs of calving including increased activity, restlessness, tail 

raising, dripping milk, and the visualization of the amniotic sac. Cows with obvious signs of 

calving were moved to an adjacent bedded pack with straw bedding to facilitate calving and 

monitor calving progression. Calving event information was recorded by farm personnel into 

dairy herd management software (DairyComp305, ValleyAg software, Tulare, CA). After 

calving cows were moved to a milking cow pen where they remained for one day or three 

milkings. Thereafter, cows were moved to pens of primiparous or multiparous cows based on 

their lactation number. 

After calving cows were monitored daily by trained personnel for detection of clinical 

health disorders. Visual observation and clinical examination of cows was conducted after 

milking with cows restrained in self-locking headgates or in a palpation rail. Clinical 

examination consisted of evaluation of general appearance and attitude, presence of fetal 

membranes and uterine content, feet appearance, abdominal auscultation, and manure 

appearance. Mastitis was evaluated at every milking by fore-stripping during milking. Cows with 

a putative case of clinical mastitis were moved to a hospital pen.  

 

Reproductive Management and Study Eligibility Criteria 

Cows received their first service by timed artificial insemination (TAI) after 

synchronization of ovulation with the Double-Ovsynch protocol (GnRH, 7 d later PGF2α, 3 d 
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later GnRH, 7 d later PGF2α, 56 h later GnRH and 16 to 18 h TAI) as described in Souza et al. 

(2008) and modified by Wiltbank et al. (2015). Primiparous cows received TAI at 84 ± 3 DIM (n 

= 932; pregnancies per AI (P/AI) = 62.3%) whereas multiparous cows received TAI at 67 ± 3 (n 

= 1,823; P/AI = 48.7%) or 81 ± 3 DIM (n = 247; P/AI = 38.9%). Multiparous cows received TAI 

at 81 ± 3 DIM if had a record of retained placenta and metritis after calving. Pregnancy diagnosis 

(PD) was conducted at 32 ± 3 d after AI and re-confirmation of pregnancy at 63 ± 3 d after AI by 

transrectal ultrasonography (Easi-Scan, IMV imaging, Rochester, MN).  

Criteria for inclusion in the study were the availability of a first service outcome after 

following the farm standard operating procedures for reproductive management and having data 

for at least half of the variables used to explore associations between predictors and the outcome 

of interest. During the study period a total of 4,239 calvings were recorded. Out of these calving 

events, 837 cows did not have a first service outcome because left the herd before first AI and 

400 cows with a first service outcome did not meet the inclusion criteria for the study. Reasons 

for data exclusion for first service outcomes included lack of compliance with the 

synchronization of ovulation protocol for TAI (n = 79), AI at detected estrus (n = 104), and AI 

with no outcome (n = 217). Thus, the total number of cows with a first service outcome available 

for analysis was 3,002 with 932 from primiparous and 2,070 from multiparous cows. Because 

the period of eligibility for inclusion in the study was sufficient for some cows to have a first 

service outcome in more than one lactation, 1,135 cows provided data for more than one 

lactation.  
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Behavioral, Physiological and Performance Parameters Data Collection and Summarization 

Upon entry to the close-up pen, cows received a neck-mounted (placed on the left side) 

3D accelerometer (n = 2,016; Silent Herdsman, Afimilk Ltd., Kibbutz Afikim, Israel) and a 

reticulum-rumen bolus sensor tag (n = 1,081; Smaxtec, Graz, Austria). Neck-mounted sensors 

were removed at ~30 DIM or at herd removal due to sale or death. Behaviors monitored by the 

neck-mounted tag included eating and rumination activity reported hourly in arbitrary units 

(AU), single .csv files were received from the company, we added the units from the hourly 

values to get a daily total for eating and rumination. The reticulum-rumen bolus tag monitored 

reticulum-rumen temperature reported in degrees Celsius and physical activity reported in AU. 

Both temperature and physical activity were reported every 10 min; this information was 

retrieved in one .csv file per cow from the system API provided by the company.  

After calving, all cows received a leg-mounted sensor tag (AfiAct II, Afimilk Ltd., 

Kibbutz Afikim, Israel) attached to the right rear leg. Behaviors monitored and recorded by this 

tag included walking activity (number of steps) and resting behavior. The latter was reported as 

rest bouts (number of lying bouts per day), and total resting time per day (minutes).  

After calving, live weight in kilograms was recorded daily after each milking by a walk 

over scale (AfiWeight, Afimilk Ltd., Kibbutz Afikim, Israel). As more than one value per day 

may have been collected for some cows, a BW daily value is the average of all values captured 

in a day.  

At every milking, an inline milk meter (Afimilk MPC, Afimilk Ltd., Kibbutz Afikim, 

Israel) and milk analyzer (Afilab, Afimilk Ltd., Kibbutz Afikim, Israel) recorded milk yield (g), 

milk components [fat (%), protein (%), lactose (%)], and milk conductivity (mmHo). Values for 

fat yield (kg), protein yield (kg), lactose yield (kg) were calculated by multiplying milk yield 
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(kg) by milk components [fat (%), protein (%), lactose (%)]. All data from AFI systems was 

initially received from the company; afterwards, we exported the data in .dif files that were 

transformed in .xlsx files. 

Data for behavioral, physiological, and performance parameters from -14to 56 d after 

calving were summarized in daily values regardless of the frequency of data collection by the 

different sensor systems [milk yield (accumulated), milk components % (average), milk 

components yield (accumulated), fat-to-protein ratio (average), total rumination and eating 

activity (count of AU), body temperature (average), milk conductivity (average), physical 

activity (count of AU), walking activity (count of steps), rest time (accumulated), and lying bouts 

(count of events), body weight (average)]. Thereafter, daily data were summarized as the average 

of the following time periods (n = 7) in relationship to calving: -14 to -8, -7 to -3, -2 to 2, 3 to 7, 

8 to 14, 15 to 28, 29 to 56 d. Data were also collected and summarized in periods (n= 3) during 

synchronization of ovulation as for the period from -14 to 56 DIM as follows: -27 to -11, -10 to -

3, -2 to -1 d before timed AI. 

To reduce the potential influence of outliers on results, values above or below the mean ± 

3 standard deviations for each parameter of interest were removed. The mean and standard 

deviation was calculated using the entire dataset for each parameter of interest. For reticulo-

rumen temperature, all values below 37 ºC were removed. Summary statistics and the number of 

records that were capped for each parameter of interest are presented by parity group in Tables 1 

and 2, respectively.  
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Table 1. Mean, standard deviation, minimum, maximum, number of outliers above and below 

the group mean, and total number of daily values for primiparous cows.  

 Item 

Parameter¹ Mean SD Min Max 
Below mean 

- 3 SD (n) 

Above mean 

+ 3 SD (n) 

Total daily 

records (n) 

Milk (kg) 33.1 9.06 5.38 65.5 0 495 47,457 

Fat (%) 3.91 0.57 2.00 5.68 634 13 47,457 

Fat (kg) 1.29 0.05 0.11 3.72 634 13 47,457 

Protein (%) 3.00 0.24 2.17 3.73 30 109 47,457 

Protein (kg) 0.99 0.02 0.12 2.44 30 109 47,457 

Lactose (%) 4.70 0.20 3.86 5.58 577 2 47,457 

Lactose (kg) 1.56 0.02 0.21 3.65 577 2 47,457 

Conductivity 

(mmHo) 
8.95 0.81 4.40 13.8 601 16 47,457 

Walking 

(steps/h) 
210 56.3 21 406 1,302 0 47,373 

Rest Bout (#) 11.7 4.29 3.00 26.0 277 0 47,373 

Rest time (min) 551 136 109 1,033 51 55 47,373 

Weight (kg) 551 48.8 358 892 1 5 30,682 

Activity (AU) 4.61 1.19 0.82 8.01 86 312 19,888 

Eating (AU) 517 115 100 869 98 477 34,870 

Rumination 

(AU) 
385 111 23.3 784 91 462 34,870 

¹Data obtained from cow attached (activity, temperature, eating and rumination) and non-attached (milk production, 

components, and body weight) sensors. 
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Table 2. Mean, standard deviation, minimum, maximum, number of outliers above and below      

the group mean, and total number of daily values for multiparous cows.  

 Item 

Parameter¹ 
Mea

n 
SD Min Max 

Below mean 

- 3 SD (n) 

Above mean 

+ 3 SD (n) 

Total daily 

records (n) 

Milk (kg) 45.1 11.6 5.38 78.9 640 10 98,529 

Fat (%) 3.93 0.61 2.00 5.68 44 1,029 98,529 

Fat (kg) 1.77 0.07 0.11 4.48 44 1,029 98,529 

Protein (%) 2.94 0.26 2.17 3.73 54 556 98,529 

Protein (kg) 1.33 0.03 0.11 2.94 54 556 98,529 

Lactose (%) 4.69 0.23 3.86 5.58 1,397 1 98,529 

Lactose (kg) 2.12 0.03 0.21 4.40 1,397 1 98,529 

Conductivity 

(mmHo) 
9.12 1.14 4.40 13.8 3,888 52 98,529 

Walking 

(steps/h) 
180 54.3 1.00 406 1,649 0 108,341 

Rest Bout (#) 9.39 3.64 1.00 26.0 206 0 108,341 

Rest time (min) 579 157 109 1,033 131 440 108,341 

Weight (kg) 677 72.3 408 892 0 295 52,227 

Activity (AU) 4.42 1.11 0.81 8.01 183 1,108 51,675 

Eating (AU) 476 120 100 869 280 1,457 64,926 

Rumination 

(AU) 
402 124 23.3 784 218 1,376 64,926 

¹Data obtained from cow attached (activity, temperature, eating and rumination) and non-attached (milk production, 

components, and body weight) sensors. 
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Environmental Data Collection 

Ambient temperature and relative humidity inside and outside of freestall barns was 

recorded every 10 min using a HOBOnet Field Monitoring Systems (Onset Computer 

Corporation, Bourne, MA), this data was exported in .csv files from the company’s website and 

averaged into daily values.  

Based on these data temperature and humidity index (THI) was calculated using the 

formula described in (Mader, et al. 2006): 

THI = (0.8 x AT) + ((RH/100) x (AT-14.4)) + 46.4 

where AT is the ambient temperature (°C), and RH is the relative humidity (%). 

Average daily THI values were estimated and organized by date. Thereafter, THI daily 

values were matched by date for each day a cow was included in the dataset for analysis.  

 

Calving Features and Health Events Data Collection 

All data for calving events, health events, and previous lactation or heifer period data 

were extracted from dairy herd management software (Dairy Comp 305, Valley Ag Software, 

Tulare, CA).  

Calving event data collected for the lactation that provided the first service outcome 

included: date of calving, cow age at first calving (n = 2,762 had and 240 did not have a record), 

calving ease [1 = no assistance (n = 2,949); 2 = slight problem (n = 30); 3 = needed assistance (n 

= 7); 4 = considerable force (n = 12); 5 = extreme difficulty (n = 4)], number of calves born 

[singleton (n = 2,900); twins (n = 102)], calf sex [female (n = 1,723); male (n = 1,279)], and 

whether the calf born dead or alive [alive (n = 2,897); dead (n = 105)].  
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The occurrence and DIM at diagnosis of metritis (n = 338), retained placenta (n = 152), 

ketosis (n = 194), indigestion (n = 12), displaced abomasum (n = 94), mastitis (n = 213), 

lameness (n = 302), milk fever (n = 11), pneumonia (n = 15), and events of major physical 

injuries (n = 12) were collected. Information was collected only for events that occurred from 0 

to 56 d after calving. Health disorders were grouped as uterine disease (i.e., cows with retained 

placenta, metritis, or both; n = 400), metabolic and digestive [i.e., cows with ketosis, displaced 

abomasum, indigestion, or more than one of these disorders (n = 256)]; and other [pneumonia, 

milk fever, and injuries; (n = 37)]. Cows with mastitis (n = 216) and lameness events (n = 321) 

were not grouped. Thereafter, a dichotomous variable (i.e., DZ; 0 = no disease, 1 = disease) was 

created to form groups of cows that had at least one (n = 956) versus no health disorders (n = 

2,046) recorded. 

 

Previous Lactation Production and Reproductive Performance Data  

Reproductive outcomes retrieved were number of inseminations, days open (multiparous 

cows only), days dry (multiparous cows only), calving interval (multiparous cows only) and 

gestation length. Data were retrieved for the non-lactating period for primiparous cows and the 

lactation preceding the lactation from which the first service TAI outcome was included in the 

analysis for multiparous cows. Previous lactation (PL) whole lactation milk, fat, and protein 

yield, and milk yield adjusted to 305 d of lactation (M305) were collected for multiparous cows 

(n = 1,861).  

 

Statistical Analysis 

The study followed an observational retrospective cohort design with a convenience 

sample.  
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All data analyses were conducted separately for primiparous and multiparous cows, but 

the same variables were offered to models for primiparous and multiparous cows unless 

otherwise stated.  

Continuous outcomes with repeated measurements including daily milk yield, milk 

components (fat, protein, lactose) yield and percent, fat-to-protein ratio, milk conductivity, 

walking activity, rest bouts, total resting time per day, and absolute BW were evaluated from 

calving until 56 d after calving with data grouped in periods of time before and after calving as 

described. Reticulum-rumen temperature, and physical activity, were evaluated from -14 until 56 

d after calving. Eating and rumination activity, were evaluated from -14 until 28 d after calving. 

Normality of the data was evaluated for all variables using the Shapiro-Wilk statistic and 

graphical methods generated with PROC UNIVARIATE in SAS (SAS v9.4, SAS Institute, Cary, 

NC). No data transformations were necessary because all variables were normally distributed. 

Data for these outcomes were analyzed by ANOVA with repeated measurements using PROC 

MIXED of SAS. Models for each outcome of interest included FS outcome group (i.e., pregnant 

vs. non-pregnant), time (i.e., time periods in relationship to calving), and the pregnancy status 

group-by-time interaction as explanatory variables. Disease group (i.e., no disease vs. at least one 

health disorder from calving up to 56 d after calving) and season of calving (cold vs. warm) were 

forced in all models to control for the effect of season and health disorders. The cold season was 

defined as the period from September 21 to June 20 and the warm season from June 21 to 

September 20. For multiparous cows, the effect of parity (i.e., second vs. third and greater parity) 

was forced in all models. Cow within pregnancy group was included as a random effect in all 

models. Cow was the subject of repeated measurements, and all models were run using an 

autoregressive (AR-1) covariance structure. The ddfm option of PROC MIXED was used to 
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improve the statistical performance of the t-test and F-test. The Least Significant Difference 

(LSD) post hoc mean separation test was used to determine differences between groups of 

means. 

Similar analyses were conducted for variables available from -27 to -1 d after first service 

TAI. Available data were daily milk yield, milk components yield and percent, fat-to-protein 

ratio, milk conductivity, walking activity, rest bouts, total resting time per day, absolute BW, 

reticulum-rumen temperature, and physical activity.  

Continuous outcomes with no repeated measurements including previous lactation 

production (total milk, total fat, and total protein yield, and milk projected to 305 d of lactation) 

and reproductive outcomes (number of inseminations, days open, days dry, calving interval and 

gestation length), and BW change after calving were analyzed by ANOVA using PROC MIXED 

of SAS. Data for BW consisted of percent change between 3 d after calving and the nadir for 

BW, percent change from the BW nadir to 56 d after calving, and total percent change from 3 to 

56 d after calving. Models for each outcome of interest included group (e.g., pregnant vs. non-

pregnant) as explanatory variable. Disease group and season of calving were forced to control for 

their effect on the outcome of interest. Parity group was forced for multiparous cow group 

models as described.  

The association between BW change group after calving (i.e., loss, no change, or gain) 

for the three time periods evaluated, calving features (i.e., singleton vs. twin births, stillbirth vs. 

no stillbirth, and calf sex), and disease occurrence up to 56 d after calving (i.e., no disease or at 

least one health disorder) and P/AI to first service was analyzed using logistic regression with the 

GLIMMIX procedure of SAS fitting a binary distribution. Disease group (except in models to 



22 
 

evaluate the effect of disease group) and season of calving (cold vs. warm) were forced in all 

models whereas parity was forced in models for multiparous cows.  

All explanatory variables and their interactions were considered significant if P ≤ 0.05, 

while 0.05 < P ≤ 0.10 was considered a tendency. All outcomes are presented as LSM ± SEM 

obtained with the LSMEANS option of the MIXED and GLIMMIX procedures of SAS.  

 

RESULTS 

Behavioral, Physiological and Performance Parameters for Primiparous Cows 

Milk and component yields. Milk yield from 0 to 56 d after calving (Figure 1A) differed over 

time (P < 0.001), was greater (P = 0.02) for pregnant (26.2 ± 0.23 kg/d) than non-pregnant cows 

(25.4 ± 0.28 kg/d), but there was no group by time interaction (P = 0.38). In addition, there was 

an effect of season of calving (P < 0.001), whereby cows that calved during the cold season had 

greater milk yield (26.4 ± 0.20 kg/d) than cows that calved during the warm season (25.2 ± 0.32 

kg/d). Cows with health disorders (25.1 ± 0.32 kg/d) recorded up to 56 d after calving had lesser 

(P < 0.001) milk yield than cows without health disorders (26.6 ± 0.20 kg/d). 

Butterfat yield from 0 to 56 d after calving (Figure 1B) differed over time (P < 0.001), 

was greater (P = 0.02) for pregnant (1.08 ± 0.01 kg/d) than non-pregnant cows (1.05 ± 0.01 

kg/d), but there was no group by time interaction (P = 0.89). In addition, there was an effect of 

season of calving (P = 0.03), whereby cows that calved during the cold season had greater 

butterfat yield (1.08 ± 0.01 kg/d) than cows that calved during the warm season (1.05 ± 0.01 

kg/d). Cows with health disorders (1.05 ± 0.01 kg/d) recorded up to 56 d after calving tended to 

have lesser (P = 0.06) butterfat yield than cows without health disorders (1.08 ± 0.01kg/d). 
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Protein yield from 0 to 56 d after calving (Figure 1C) differed over time (P < 0.001), was 

greater (P = 0.04) for pregnant (0.78 ± 0.01 kg/d) than non-pregnant cows (0.76 ± 0.01 kg/d), but 

there was no group by time interaction (P = 0.60). In addition, there was an effect of season of 

calving (P < 0.001), whereby cows that calved during the cold season had greater protein yield 

(0.79 ± 0.01 kg/d) than cows that calved during the warm season (0.74 ± 0.01 kg/d). Cows with 

health disorders (0.74 ± 0.01 kg/d) recorded up to 56 d after calving had lesser (P < 0.001) 

protein yield than cows without health disorders (0.79 ± 0.01kg/d).  

Lactose yield from 0 to 56 d after calving (Figure 1D) differed over time (P < 0.001), was 

greater (P = 0.03) for pregnant (1.23 ± 0.01 kg/d) than non-pregnant cows (1.20 ± 0.01 kg/d) but 

there was no group by time interaction (P = 0.58). In addition, there was an effect of season of 

calving (P = 0.04), whereby cows that calved during the cold season had greater lactose yield 

(1.23 ± 0.01 kg/d) than cows that calved during the warm season (1.20 ± 0.01 kg/d). Cows with 

health disorders (1.18 ± 0.01 kg/d) recorded up to 56 d after calving had lesser (P < 0.001) 

lactose yield than cows without health disorders (1.25 ± 0.01 kg/d). 

Milk yield from -27 to -1 days before timed AI (Figure 2A) differed over time (P < 0.01), 

but there was no difference (P = 0.18) for pregnant (37.4 ± 0.32 kg/d) and non-pregnant cows 

(36.8 ± 0.39 kg/d), and there was no group by time interaction (P = 0.83). In addition, there was 

an effect of season of calving (P < 0.001), whereby cows that calved during the cold season had 

greater milk yield (38.2 ± 0.28 kg/d) than cows that calved during the warm season (36.1 ± 0.43 

kg/d).  

Butterfat yield from -27 to -1 days before TAI (Figure 2B) differed over time (P < 0.001), 

pregnant cows (1.38 ± 0.01 kg/d) tended (P = 0.10) to have greater butterfat yield than non-

pregnant cows (1.36 ± 0.01 kg/d), but there was no group by time interaction (P = 0.31).  
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Protein yield from -27 to -1 days before TAI (Figure 2C) differed over time (P < 0.01), 

but there was no difference (P = 0.24) for pregnant (1.13 ± 0.01 kg/d) and non-pregnant cows 

(1.12 ± 0.01 kg/d), and there was no group by time interaction (P = 0.89). Cows with health 

disorders (1.11 ± 0.01 kg/d) recorded up to 56 d after calving tended to have lesser (P = 0.08) 

protein yield than cows without health disorders (1.14 ± 0.01 kg/d).  

Lactose yield from -27 to -1 days before TAI (Figure 2D) tended to differ over time (P = 

0.07). In addition, pregnant cows (1.75 ± 0.01 kg/d) tended to have greater lactose yield (P = 

0.08) than non-pregnant cows (1.71 ± 0.02 kg/d) but there was no group by time interaction (P = 

0.78). There was an effect of season of calving (P < 0.001), whereby cows that calved during the 

cold season had greater lactose yield (1.78 ± 0.01 kg/d) than cows that calved during the warm 

season (1.69 ± 0.02 kg/d).  
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Figure 1. Milk (A), butterfat (B), protein (C), and lactose (D) yield from 0 to 56 d after calving for primiparous cows that were pregnant (n = 566) or non-

pregnant (n = 330) after first service. Values are presented as LSM ± SEM. 
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Figure 2. Milk (A), butterfat (B), protein (C), and lactose (D) yield from -27 to -1 d before TAI for primiparous cows that were pregnant (n = 566) or non-

pregnant (n = 330) after first service. Values are presented as LSM ± SEM.
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Milk component percentages and fat-to-protein ratio. Butterfat percent from 0 to 56 d after 

calving (Figure 3A) differed over time (P < 0.001) but there was no difference (P = 0.24) for 

pregnant (4.30 ± 0.02%) and non-pregnant cows (4.28 ± 0.02%), and there was no group by time 

interaction (P = 0.46). In addition, cows without health disorders (4.21 ± 0.01%) recorded up to 

56 d after calving had lesser (P < 0.001) butterfat percent than cows with health disorders (4.36 ± 

0.02%). 

Protein percent from 0 to 56 d after calving (Figure 3B) differed over time (P < 0.001) 

but there was no difference (P = 0.46) for pregnant (3.00 ± 0.01%) and non-pregnant cows (3.00 

± 0.01%), and there was no group by time interaction (P = 0.48). In addition, there was an effect 

of season of calving (P < 0.01), whereby cows that calved during the cold season had greater  

protein percent (3.03 ± 0.01%) than cows that calved during the warm season (2.97 ± 0.01%). 

Fat-to-protein ratio from 0 to 56 d after calving (Figure 3C) differed over time (P < 

0.001) but there was no difference (P = 0.25) for pregnant (1.45 ± 0.01) and non-pregnant cows 

(1.43 ± 0.01), and there was no group by time interaction (P = 0.56). In addition, there was an 

effect of season of calving (P < 0.005), whereby cows that calved during the warm season had 

greater fat-to-protein ratio (1.46 ± 0.01) than cows that calved during the cold season (1.42 ± 

0.01). Cows without health disorders (1.41 ± 0.01) recorded up to 56 d after calving had lesser (P 

< 0.001) fat-to-protein ratio than cows with health disorders (1.47 ± 0.01). 

Lactose percent from 0 to 56 d after calving (Figure 3D) differed over time (P < 0.001) 

but there was no difference in (P = 0.66) for pregnant (4.66 ± 0.01%) and non-pregnant cows 

(4.66 ± 0.01%), and there was no group by time interaction (P = 0.37). In addition, there was an 

effect of season of calving (P < 0.001), whereby cows that calved during the warm season had 

greater lactose percent (4.69 ± 0.01%) than cows that calved during the cold season (4.62 ± 
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0.01%). Cows with health disorders (4.65 ± 0.01%) recorded up to 56 d after calving tended to 

have lesser (P = 0.09) lactose percent than cows without health disorders (4.67 ± 0.01%). 

For butterfat percent from -27 to -1 days before TAI (Figure 4A) there was a tendency (P 

= 0.10) for the group by time interaction, an effect of time (P < 0.001) but there was no 

difference (P = 0.64) for pregnant (3.71 ± 0.02%) and non-pregnant cows (3.70 ± 0.02%). In 

addition, there was an effect of season of calving (P < 0.001), whereby cows that calved during 

the warm season had greater butterfat percent (3.83 ± 0.03%) than cows that calved during the 

cold season (3.59 ± 0.02). Cows without health disorders (3.67 ± 0.02%) recorded up to 56 d 

after calving had lesser (P < 0.05) butterfat percent than cows with health disorders (3.74 ± 

0.03%). 

Protein percent from -27 to -1 days before TAI (Figure 4B) differed over time (P = 0.02) 

but there was no difference (P = 0.64) for pregnant (3.03 ± 0.01%) and non-pregnant cows (3.04 

± 0.01%), and there was no group by time interaction (P = 0.26). In addition, there was an effect 

of season of calving (P < 0.001), whereby cows that calved during the warm season had greater 

protein percent (3.09 ± 0.01%) than cows that calved during the cold season (2.97 ± 0.01%). 

Cows with health disorders (3.02 ± 0.02%) recorded up to 56 d after calving tended to have less 

(P = 0.07) protein percent than cows without health disorders (3.05 ± 0.01%). 

There was a group by time interaction (P = 0.05) for fat-to-protein ratio from -27 to - 1 d 

before TAI (Figure 4C). from -2 to -1 d before TAI Non-pregnant cows had lower fat-to-protein 

ratio (1.22 ± 0.01) than pregnant cows (1.24 ± 0.01). There was also an effect of time (P < 0.001) 

but no effect of group (P = 0.49; pregnant cows 1.22 ± 0.01 and non-pregnant cows 1.23 ± 0.01). 

In addition, there was an effect of season of calving (P < 0.01), whereby cows that calved during 

the warm season had greater fat-to-protein ratio (1.24 ± 0.01) than cows that calved during the 
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cold season (1.21 ± 0.01). Cows with health disorders (1.24 ± 0.01) recorded up to 56 d after 

calving had greater (P < 0.01) fat-to-protein ratio than cows without health disorders (1.21 ± 

0.01).  

Lactose percent from -27 to -1 days before TAI (Figure 4D) differed over time (P < 

0.001), was greater (P = 0.03) for pregnant (4.68 ± 0.01%) than non-pregnant cows (4.65 ± 

0.01%), but there was no group by time interaction (P = 0.34). In addition, there was an effect of 

season of calving (P < 0.01), whereby cows that calved during the warm season had greater 

lactose percent (4.68 ± 0.01%) than cows that calved during the cold season (4.65 ± 0.01%).  
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Figure 3. Butterfat percent (A), protein percent (B), fat-to-protein ratio (C), and lactose percent (D) from 0 to 56 d after calving for primiparous cows that were 

pregnant (n = 566) or non-pregnant (n = 330) after first service. Values are presented as LSM ± SEM. 

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

0 to 2 3 to 7 8 to 14 15 to 28 29 to 56
L

a
c
to

s
e
 (

%
)

Days after calving

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0 to 2 3 to 7 8 to 14 15 to 28 29 to 56

F
a
t/

p
ro

te
in

 r
a
ti

o

Days after calving

3.4

3.6

3.8

4.0

4.2

4.4

4.6

4.8

5.0

5.2

0 to 2 3 to 7 8 to 14 15 to 28 29 to 56

B
u

tt
e
rf

a
t 

(%
)

Days after calving

2.8

2.9

3.0

3.1

3.2

3.3

3.4

0 to 2 3 to 7 8 to 14 15 to 28 29 to 56

P
ro

te
in

 (
%

)

Days after calving

Group: P = 0.27

Time: P < 0.001

Group * Time: P = 0.46

Group: P = 0.46

Time: P < 0.001

Group * Time: P = 0.48

Group: P = 0.25

Time: P < 0.001

Group * Time: P = 0.56

Group: P = 0.66

Time: P < 0.001

Group * Time: P = 0.37

A B

DC

Pregnant Non-pregnant



31 
 

 

Figure 4. Butterfat percent (A), protein percent (B), fat-to-protein ratio (C), and lactose percent (D) from -27 to -1 d before TAI for primiparous cows that were 

pregnant (n = 566) or non-pregnant (n = 330) after first service.  Values are presented as LSM ± SEM. 
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Rumination activity. Rumination activity from -14 to 28 d after calving (Figure 5A) differed 

over time (P < 0.001) but there was no difference (P = 0.37) for pregnant (358 ± 4 AU) and non-

pregnant cows (353 ± 5 AU), and there was no group by time interaction (P = 0.52). In addition, 

there was an effect of season of calving (P < 0.001), whereby cows that calved during the cold 

season had greater rumination activity (368 ± 4 AU) than cows that calved during the warm 

season (342 ± 5 AU).  

 

Eating activity. Eating activity from -14 to 28 d after calving (Figure 5B) differed over time (P < 

0.001) but there was no difference (P = 0.95) between pregnant (509 ± 4AU) and non-pregnant 

cows (509 ± 5 AU), and there was no group by time interaction (P = 0.84). In addition, there was 

an effect of season of calving (P < 0.05), whereby cows that calved during the warm season had 

greater eating activity (516 ± 6 AU) than cows that calved during the cold season (503 ± 4 AU). 

Cows with health disorders (487 ± 6 AU) recorded up to 56 d after calving had lesser (P < 0.001) 

eating activity than cows without health disorders (531 ± 4 AU). 

 

Body temperature. Reticulo-rumen temperature from -14 to 56 d after calving (Figure 5C) 

differed by time (P < 0.001). In addition, pregnant cows (39.7 ± 0.01 °C) tended to have greater 

temperature (P < 0.10) than non-pregnant cows (39.6 ± 0.01 °C), but there was no group by time 

interaction (P = 0.92). There was an effect of season of calving (P = 0.02), whereby cows that 

calved during the warm season had greater temperature (39.7 ± 0.01 °C) than cows that calved 

during the cold season (39.6 ± 0.01 °C). Reticulo-rumen temperature from -27 to -1 days before 

TAI (Figure 6A) differed by time (P < 0.001), but there was no difference (P = 0.54) between 

pregnant (39.4 ± 0.01 °C) and non-pregnant cows (39.4 ± 0.01 °C), and there was no group by 
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time interaction (P = 0.19). Cows that calved during the cold season tended (P = 0.09), to have 

greater temperature (39.4 ± 0.01 °C) than cows that calved during the warm season (39.3 ± 0.01 

°C).  

 

Milk conductivity. Milk conductivity from 0 to 56 d after calving (Figure 5D) differed over time 

(P < 0.001) but there was no difference (P = 0.23) for pregnant (9.14 ± 0.03 mmHo) and non-

pregnant cows (9.09 ± 0.04 mmHo), and there was no group by time interaction (P = 0.63). In 

addition, there was an effect of season of calving (P < 0.001), whereby cows that calved during 

the warm season had greater milk conductivity (9.22 ± 0.05 mmHo) than cows that calved during 

the cold season (9.01 ± 0.03 mmHo). There was a group by time interaction (P < 0.001) for milk 

conductivity from -27 to - 1 d before TAI (Figure 6B) because from -27 to -11 d before TAI non-

pregnant cows had lower conductivity than pregnant cows. Conversely, from day -2 to -1 d 

before TAI pregnant cows had lower conductivity than non-pregnant cows. There was also an 

effect of time (P < 0.001) but no effect of group (P = 0.85; pregnant cows 9.07 ± 0.03 mmHo 

and or non-pregnant cows 9.08 ± 0.03 mmHo). In addition, there was an effect of season of 

calving (P < 0.01), whereby cows that calved during the cold season had greater conductivity 

(9.13 ± 0.03 mmHo) than cows that calved during the warm season (9.03 ± 0.04 mmHo).  
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Figure 5. Rumination activity (A), eating activity (B), body temperature (C), and milk conductivity (D) from 0 to 56 d after calving for primiparous cows that 

were pregnant or not after first service. For rumination and eating activity data was available from 451 pregnant and 245 non-pregnant cows, for body 

temperature from 168 pregnant and 84 non-pregnant cows and for milk conductivity from 566 pregnant and 330 non-pregnant cows. Values are presented as 

LSM ± SEM
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Figure 6. Body temperature (A) and milk conductivity (B) from -27 to -1 d before TAI for primiparous cows that 

were pregnant or not after first service. For body temperature data was available from 168 pregnant and 84 non-

pregnant cows and for milk conductivity data was available from 566 pregnant and 330 non-pregnant cows. Values 

are presented as LSM ± SEM 
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Physical activity. Physical activity as determined by the reticulum-ruminal bolus from -14 to 56 

d after calving (Figure 7A) differed over time (P < 0.001) but there was no difference (P = 0.95) 

between pregnant (4.66 ± 0.07 AU) and non-pregnant cows (4.67 ± 0.09 AU), and there was no 

group by time interaction (P = 0.15). There was a group by time interaction (P = 0.01) for 

physical activity from -27 to - 11 d before TAI (Figure 8A) because pregnant cows (4.30 ± 0.05 

AU) tended to have lower activity than non-pregnant (4.46 ± 0.07 AU) cows. There was also an 

effect of time (P = 0.03) but no effect of group (P = 0.26); pregnant cows (4.37 ± 0.05 AU) and 

or non-pregnant cows (4.46 ± 0.07 AU). Cows with health disorders (4.34 ± 0.07 AU) recorded 

up to 56 d after calving tended to have lesser (P = 0.07) physical activity than cows without 

health disorders (4.49 ± 0.05 AU). 

 

Walking activity. From 0 to 56 d after calving (Figure 7B), walking activity differed over time (P 

< 0.001) but there was no difference (P = 0.39) between pregnant (214 ± 1.95 steps/h) and non-

pregnant cows (211 ± 2.37 steps/h), and there was no group by time interaction (P = 0.47). In 

addition, there was an effect of season of calving (P < 0.005), whereby cows that calved during 

the warm season had greater walking activity (217 ± 2.73 steps/h) than cows that calved during 

the cold season (208 ± 1.67 steps/h). Cows with health disorders (206 ± 2.72 steps/h) recorded 

up to 56 d after calving had lesser (P < 0.001) walking activity than cows without health 

disorders (219 ± 1.69 steps/h). There was a group by time interaction (P < 0.001) for walking 

activity from -27 to -1 d before TAI (Figure 8B) because from -27 to -11 d before TAI, pregnant 

(190 ± 1.93 steps/h) cows had less walking activity than non-pregnant cows (193 ± 2.39 steps/h). 

Conversely, from d -10 to -3 d before TAI non-pregnant (191 ± 2.39 steps/h) cows had less 

walking activity than pregnant (193 ± 1.96 steps/h) cows. There was no effect of time (P = 0.74), 
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and no effect of group (P = 0.98) [pregnant cows (192 ± 1.88 steps/h) and or non-pregnant cows 

(192 ± 2.29 steps/h)].  

 

Resting behavior. Total resting time per day from 0 to 56 d after calving (Figure 7C) differed 

over time (P < 0.001); however, there was no difference (P = 0.39) between pregnant (541 ± 

4.74 min/d) and non-pregnant cows (546 ± 5.76 min/d), and there was no group by time 

interaction (P = 0.85). In addition, there was an effect of season of calving (P = 0.05), whereby 

cows that calved during the cold season had greater resting time per day (551 ± 4.07 min/d) than 

cows that calved during the warm season (537 ± 6.63 min/d). Total resting time per day from -27 

to -1 d before TAI (Figure 8C) differed over time (P < 0.001) but there was no difference (P = 

0.97) between pregnant (627 ± 4.35 min/d) and non-pregnant cows (627 ± 5.29 min/d), and there 

was no group by time interaction (P = 0.78). In addition, there was an effect of season of calving 

(P < 0.001), whereby cows that calved during the cold season had greater resting time per day 

(650 ± 5.90 min/d) than cows that calved during the warm season (604 ± 3.90 min/d).  

The number of lying bouts per day from 0 to 56 d after calving (Figure 7D) differed (P < 

0.001) over time, was greater (P = 0.04) for non-pregnant (11.9 ± 0.20 bouts/d) than pregnant 

cows (11.4 ± 0.16 bouts/d), but there was no group by time interaction (P = 0.72). For the 

number of lying bouts from -27 to -1 days before TAI (Figure 8D), there was a tendency (P = 

0.07) for a group by time interaction, and an effect of time (P < 0.001) but there was no 

difference (P = 0.18) for pregnant (10.20 ± 0.13 bouts/day) and non-pregnant cows (10.43 ± 0.16 

bouts/day).  
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Figure 7. Physical activity (A), activity (B), rest time (C), and lying bouts (D) from 0 to 56 d after calving for primiparous cows that were pregnant or not after 

first service. For physical activity data was available from 168 pregnant and 84 non-pregnant cows, for activity, rest time and lying bouts data was available from 

566 pregnant and 329 non-pregnant cows. Values are presented as LSM ± SEM
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Figure 8. Physical activity (A), walking activity (B), rest time (C), and lying bouts (D) from -27 to -1 d before TAI for primiparous cows that were pregnant or 

not after first service. For physical activity data was available from 168 pregnant and 84 non-pregnant cows, for activity, rest time and lying bouts data was 

available from 566 pregnant and 329 non-pregnant cows. Values are presented as LSM ± SEM
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Behavioral, Physiological and Performance Parameters for Multiparous Cows 

Milk and component yields. Milk yield from 0 to 56 d after calving (Figure 9A) differed over 

time (P < 0.001) but there was no difference (P = 0.21) for pregnant (36.3 ± 0.21 kg/d) and non-

pregnant cows (36.7 ± 0.20 kg/d), and there was no group by time interaction (P = 0.30). There 

was an effect of season of calving (P < 0.001), whereby cows that calved during the cold season 

had greater milk yield (37.2 ± 0.16 kg/d) than cows that calved during the warm season (35.8 ± 

0.26 kg/d). Cows with health disorders (34.9 ± 0.23 kg/d) recorded up to 56 d after calving had 

lesser (P < 0.001) milk yield than cows without health disorders (38.0 ± 0.18 kg/d). Cows with 

≥3 lactations had greater (P < 0.001) milk yield (37.2 ± 0.2 kg/d) than cows with 2 lactations 

(35.7 ± 0.2 kg/d).  

Butterfat yield from 0 to 56 d after calving (Figure 9B) differed over time (P < 0.001) but 

there was no difference (P = 0.22) for pregnant (1.49 ± 0.01 kg/d) and non-pregnant cows (1.50 

± 0.01 kg/d), and there was no group by time interaction (P = 0.76). There was an effect of 

season of calving (P < 0.001), whereby cows that calved during the cold season had greater 

butterfat yield (1.52 ± 0.01 kg/d) than cows that calved during the warm season (1.47 ± 0.01 

kg/d). Cows with health disorders (1.45 ± 0.01 kg/d) recorded up to 56 d after calving had lesser 

(P < 0.001) butterfat yield than cows without health disorders (1.54 ± 0.01 kg/d). Cows with ≥3 

lactations had greater (P < 0.001) butterfat yield (1.54 ± 0.01 kg/d) than cows with 2 lactations 

(1.45 ± 0.01 kg/d). 

Protein yield from 0 to 56 d after calving (Figure 9C) differed over time (P < 0.001) but 

there was no difference (P = 0.89) for pregnant cows (1.06 ± 0.01 kg/d) and non-pregnant cows 

(1.07 ± 0.01 kg/d), and there was no group by time interaction (P = 0.15). In addition, there was 

an effect of season of calving (P < 0.001), whereby cows that calved during the cold season had 
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greater protein yield (1.09 ± 0.01 kg/d) than cows that calved during the warm season (1.04 ± 

0.01 kg/d). Cows with health disorders (1.01 ± 0.01 kg/d) recorded up to 56 d after calving had 

lesser (P < 0.001) protein yield than cows without health disorders (1.12 ± 0.01 kg/d). Cows with 

≥3 lactations had greater (P < 0.001) protein yield (1.09 ± 0.01 kg/d) than cows with 2 lactations 

(1.04 ± 0.01 kg/d). 

Lactose yield from 0 to 56 d after calving (Figure 9D) differed over time (P < 0.001) but 

there was no difference (P = 0.68) for pregnant (1.72 ± 0.01 kg/d) and non-pregnant cows (1.73 

± 0.01 kg/d), and there was no group by time interaction (P = 0.11). In addition, there was an 

effect of season of calving (P < 0.001), whereby cows that calved during the cold season had 

greater lactose yield (1.75 ± 0.01 kg/d) than cows that calved during the warm season (1.70 ± 

0.01 kg/d). Cows with health disorders (1.65 ± 0.01 kg/d) recorded up to 56 d after calving had 

lesser (P < 0.001) lactose yield than cows without health disorders (1.79 ± 0.01 kg/d). Cows with 

≥3 lactations had greater (P < 0.001) lactose yield (1.76 ± 0.01 kg/d) than cows with 2 lactations 

(1.69 ± 0.01 kg/d). 

Milk yield from -27 to -1 days before TAI (Figure 10A) differed over time (P < 0.001), 

was greater (P = 0.04) for non-pregnant (49.6 ± 0.29 kg/d) than pregnant cows (48.9 ± 0.30 

kg/d), but there was no group by time interaction (P = 0.12). There was an effect of season of 

calving (P < 0.05), whereby cows that calved during the cold season had greater milk yield (49.7 

± 0.23 kg/d) than cows that calved during the warm season (48.8 ± 0.38 kg/d). Cows with health 

disorders (48.7 ± 0.34 kg/d) recorded up to 56 d after calving had lesser (P < 0.005) milk yield 

than cows without health disorders (49.8 ± 0.26 kg/d). Cows with ≥3 lactations had greater (P < 

0.001) milk yield (50.9 ± 0.29 kg/d) than cows with 2 lactations (47.5 ± 0.20 kg/d). 
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Butterfat yield from -27 to -1 days before TAI (Figure 10B) differed over time (P < 

0.001), was greater (P = 0.04) for non-pregnant (1.77 ± 0.01 kg/d) than pregnant cows (1.74 ± 

0.01 kg/d), but there was no group by time interaction (P = 0.90). There was an effect of season 

of calving (P < 0.005), whereby cows that calved during the warm season had greater butterfat 

yield (1.78 ± 0.01 kg/d) than cows that calved during the cold season (1.72 ± 0.01 kg/d). Cows 

with health disorders (1.74 ± 0.01 kg/d) recorded up to 56 d after calving tended to have lesser (P 

= 0.09) butterfat yield than cows without health disorders (1.76 ± 0.01 kg/d). Cows with ≥3 

lactations had greater (P < 0.001) butterfat yield (1.83 ± 0.01 kg/d) than cows with 2 lactations 

(1.67 ± 0.01 kg/d). 

For protein yield from -27 to -1 days before TAI (Figure 10C) there was a tendency (P = 

0.08) for the group by time interaction, and effect of time (P < 0.001) but there was no difference 

(P = 0.31) for pregnant (1.48 ± 0.01 kg/d) and non-pregnant cows (1.50 ± 0.01 kg/d). Cows with 

health disorders (1.47 ± 0.01 kg/d) recorded up to 56 d after calving had lesser (P < 0.001) 

protein yield than cows without health disorders (1.51 ± 0.01 kg/d). Cows with ≥3 lactations had 

greater (P < 0.001) protein yield (1.55 ± 0.01 kg/d) than cows with 2 lactations (1.1.43 ± 0.01 

kg/d). 

Lactose yield from -27 to -1 days before TAI (Figure 10D) differed over time (P < 

0.001), non-pregnant cows (2.27 ± 0.01 kg/d) tended (P = 0.08) to have greater lactose yield than 

pregnant cows (2.24 ± 0.01 kg/d), but there was no group by time interaction (P = 0.32). In 

addition, cows with health disorders (2.23 ± 0.02 kg/d) recorded up to 56 d after calving had 

lesser (P < 0.005) lactose yield than cows without health disorders (2.28 ± 0.01 kg/d). Cows with 

≥3 lactations had greater (P < 0.001) lactose yield (2.33 ± 0.01 kg/d) than cows with 2 lactations 

(2.18 ± 0.01 kg/d). 



 
 

43 
 

 

Milk component percentages and fat-to-protein ratio. There was a group by time interaction (P 

= 0.05) for butterfat percent from 0 to 56 d after calving (Figure 11A). Pregnant cows (4.16 ± 

0.01%) had lesser butterfat percent from 0 to 2 d after calving than non-pregnant cows (4.24 ± 

0.01%). There was also a tendency (P = 0.09) for the effect of group because butterfat percent 

was greater for non-pregnant (4.19 ± 0.01%) than pregnant cows (4.16 ± 0.01%). Cows with 

health disorders (4.23 ± 0.23%) recorded up to 56 d after calving had greater (P < 0.001) 

butterfat percent than cows without health disorders (4.12 ± 0.01%). Cows with ≥3 lactations 

tended to have greater (P = 0.07) butterfat percent (4.19 ± 0.01%) than cows with 2 lactations 

(4.16 ± 0.01%).  

There was a group by time interaction (P < 0.005) for protein percent from 0 to 56 d after 

calving (Figure 11B) because pregnant cows had greater protein percent than non-pregnant cows 

starting at 8 to 14 d after calving. There was also an effect of time (P < 0.001) but there was no 

effect of group (P = 0.14; pregnant 2.98 ± 0.01 kg/d, non-pregnant cows 2.96 ± 0.01 kg/d). There 

was an effect of season of calving (P < 0.001), whereby cows that calved during the cold season 

had greater protein percent (3.00 ± 0.01%) than cows that calved during the warm season (2.95 ± 

0.01%). Cows with health disorders (2.95 ± 0.01%) recorded up to 56 d after calving had lesser 

(P < 0.001) protein percent than cows without health disorders (3.00 ± 0.01%). Cows with ≥3 

lactations had greater (P = 0.01) protein percent (2.98 ± 0.01%) than cows with 2 lactations (2.96 

± 0.01%). 
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Figure 9. Milk (A), butterfat (B), protein (C), and lactose (D) yield from 0 to 56 d after calving for multiparous cows that were pregnant (n = 902) or non-

pregnant (n = 959) after first service. Values are presented as LSM ± SEM 
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Figure 10. Milk (A), butterfat (B), protein (C), and lactose (D) yield from -27 to -1 d before TAI for multiparous cows that were pregnant (n = 902) or non-

pregnant (n = 959) after first service. Values are presented as LSM ± SEM
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Fat-to-protein ratio from 0 to 56 d after calving (Figure 11C) differed over time (P < 

0.001), was greater (P = 0.04) for non-pregnant (1.43 ± 0.01) than pregnant cows (1.41 ± 0.01) 

but there was no group by time interaction (P = 0.73). In addition, there was an effect of season 

of calving (P = 0.02), whereby cows that calved during the warm season had greater fat-to-

protein ratio (1.43 ± 0.01) than cows that calved during the cold season (1.41 ± 0.01). Cows with 

health disorders (1.45 ± 0.01 kg/d) recorded up to 56 d after calving had greater (P < 0.001) fat-

to-protein ratio than cows without health disorders (1.39 ± 0.01).  

There was a group by time interaction (P < 0.001) for lactose percent from 0 to 56 d after 

calving (Figure 11D) because pregnant cows had greater lactose percent than non-pregnant cows 

up to 8 to 14 d after calving. There was also an effect of group whereby lactose percent from 0 to 

56 d after calving was greater (P < 0.01) for pregnant (4.72 ± 0.01%) than non-pregnant cows 

(4.70 ± 0.01%), and there was an effect of time (P < 0.001). Cows that calved during the warm 

season tended (P = 0.08) to have greater lactose percent (4.72 ± 0.01%) than cows that calved 

during the cold season (4.70 ± 0.01%). Cows with health disorders (4.70 ± 0.01%) recorded up 

to 56 d after calving had lesser (P = 0.01) lactose percent than cows without health disorders 

(4.72 ± 0.01%). Cows with ≥3 lactations had lesser (P = 0.03) lactose percent (4.70 ± 0.01%) 

than cows with 2 lactations (4.72 ± 0.01%). 

There was a group by time interaction (P < 0.003) for butterfat percent from -27 to -1 

days before TAI (Figure 12A). From -27 to -11 d before TAI pregnant (3.57 ± 0.01%) cows had 

lower butterfat percent than non-pregnant cows (3.58 ± 0.01%). Conversely, from day -2 to -1 d 

before TAI non-pregnant (3.56 ± 0.01%) cows had lower butterfat percent than pregnant (3.58 ± 

0.01%) cows. There was also an effect of time (P = 0.01) but there was no difference (P = 0.98) 

for pregnant (3.57 ± 0.01%) or non-pregnant cows (3.57 ± 0.01%). There was an effect of season 
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of calving (P < 0.001), whereby cows that calved during the warm season had greater butterfat 

percent (3.66 ± 0.02%) than cows that calved during the cold season (3.48 ± 0.01%). Cows with 

≥3 lactations had greater (P < 0.001) butterfat percent (3.61 ± 0.02%) than cows with 2 lactations 

(3.53 ± 0.02%). 

There was a group by time interaction (P = 0.04) for protein percent from -27 to -1 days 

before TAI (Figure 12B) because non-pregnant had less protein percent than pregnant cows from 

-27 to -11 and -10 to -3 d before TAI. There was also an effect of time (P < 0.001) and pregnant 

cows (3.04 ± 0.01%) tended (P = 0.08) to have greater protein percent than non-pregnant cows 

(3.02 ± 0.01%). There was an effect of season of calving (P < 0.001), whereby cows that calved 

during the warm season had greater protein percent (3.06 ± 0.01%) than cows that calved during 

the cold season (3.01 ± 0.01%). Cows with health disorders (3.02 ± 0.01%) recorded up to 56 d 

after calving tended (P = 0.09) to have lesser protein percent than cows without health disorders 

(3.04 ± 0.01%). Cows with ≥3 lactations had greater (P < 0.005) protein percent (3.05 ± 0.01%) 

than cows with 2 lactations (3.01 ± 0.01%). 

There was a group by time interaction (P < 0.001) for fat-to-protein ratio (Figure 12C) 

because non-pregnant cows had greater fat-to-protein ratio than pregnant cows from -27 to -11 

and -10 to -3 d before TAI. There was also an effect of time (P < 0.001) but there was no effect 

of group (P = 0.20; pregnant 1.18 ± 0.01, non-pregnant cows 1.19 ± 0.01). There was an effect of 

season of calving (P < 0.001), whereby cows that calved during the warm season had greater fat-

to-protein ratio (1.20 ± 0.01) than cows that calved during the cold season (1.16 ± 0.01). Cows 

with health disorders (1.20 ± 0.01) recorded up to 56 d after calving tended to have greater (P = 

0.09) fat-to-protein ratio than cows without health disorders (1.17 ± 0.01). Cows with ≥3 
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lactations tended to have greater (P = 0.10) fat-to-protein ratio (1.19 ± 0.01) than cows with 2 

lactations (1.18 ± 0.01). 

There was a group by time interaction (P = 0.03) for lactose percent (Figure 12D) 

because from -27 to -11 d before TAI non-pregnant cows had lesser lactose percent than 

pregnant cows. There was an effect of time (P < 0.001) but no overall difference (P = 0.19) for 

pregnant (4.58 ± 0.01%) and non-pregnant cows (4.57 ± 0.01%). Cows that calved during the 

warm season had greater (P = 0.04) lactose percent (4.59 ± 0.01%) than cows that calved during 

the cold season (4.57 ± 0.01%). Cows with ≥3 lactations had lesser (P < 0.01) lactose percent 

(4.56 ± 0.01%) than cows with 2 lactations (4.59 ± 0.01%). 
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Figure 11. Butterfat percent (A), protein percent (B), fat-to-protein ratio (C), and lactose percent (D) in milk from 0 to 56 d after calving for multiparous cows 

that were pregnant (n = 902) or non-pregnant (n = 959) after first service. Within time points, an asterisk (*) represents differences (P ≤ 0.05) for pairwise 

comparisons between pregnant and non-pregnant. Values are presented as LSM ± SEM
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Figure 12. Butterfat percent (A), protein percent (B), fat-to-protein ratio (C), and lactose percent (D) in milk from -27 to -1 d before TAI for multiparous cows 

that were pregnant (n = 902) or non-pregnant (n = 959) after first service. Values are presented as LSM ± SEM
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Rumination activity. For rumination activity from -14 to 28 d after calving (Figure 13A) there 

was a tendency (P = 0.06) for a group by time interaction, and effect of time (P < 0.001) but 

there was no difference (P = 0.14) between pregnant (358 ± 3.33 AU) and non-pregnant cows 

(361 ± 3.42 AU). In addition, there was an effect of season of calving (P < 0.001), whereby cows 

that calved during the cold season had greater rumination activity (382 ± 2.77 AU) than cows 

that calved during the warm season (338 ± 4.04 AU). Cows with health disorders (340 ± 3.85 

AU) recorded up to 56 d after calving had lesser (P < 0.001) rumination activity than cows 

without health disorders (380 ± 2.90AU).  

 

Eating activity. There was a group by time interaction (P = 0.01) for eating activity from 0 to 56 

d after calving (Figure 13B). Pregnant cows (455 ± 4.73 AU) had lesser eating activity than non-

pregnant cows (456 ± 4.62 AU) at -7 to -3 d before calving, whereas the opposite was observed 

after calving because pregnant cows had greater eating activity (458 ± 4.68 AU) than non-

pregnant cows (446 ± 4.55 AU) at 3 to 7 d after calving. There was an effect of time (P < 0.001) 

but there was no overall effect of group (P = 0.81; pregnant cows 461 ± 3.67 AU and non-

pregnant cows 459 ± 3.57 AU). Cows with health disorders (436 ± 4.14 AU) recorded up to 56 d 

after calving had greater (P < 0.001) eating activity than cows without health disorders (483 ± 

3.11 AU). Cows with 2 lactations had greater (P < 0.001) eating activity (471 ± 3.07 AU) than 

cows with ≥3 lactations (448 ± 3.47 AU).  

 

Body temperature. There was a group by time interaction (P < 0.001) for body temperature from 

0 to 56 d after calving (Figure 13C). From -14 to -3 d before calving, non-pregnant cows had 

lower body temperature than pregnant cows. Conversely, from day 3 to 7 up to 15 to 28 d after 
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calving, non-pregnant cows had greater body temperature than pregnant cows. There was also an 

effect of time (P < 0.001) but no effect of group (P = 0.12; pregnant cows 39.65 ± 0.01 °C and or 

non-pregnant cows 39.63 ± 0.01 °C). In addition, there was an effect of season of calving (P < 

0.001), whereby cows that calved during the warm season had greater body temperature (39.69 ± 

0.01 °C) than cows that calved during the cold season (39.58 ± 0.01 °C). Cows with health 

disorders (39.66 ± 0.01 °C) recorded up to 56 d after calving had greater (P < 0.001) body 

temperature than cows without health disorders (39.62 ± 0.01 °C). Cows with 2 lactations had 

greater (P < 0.001) body temperature (39.70 ± 0.01 °C) than cows with ≥3 lactations (39.58 ± 

0.01 °C). Reticulo-rumen temperature from -27 to -1 days before TAI (Figure 14A) differed over 

time (P < 0.001) and was greater (P < 0.001) for non-pregnant (39.66 ± 0.01 °C) than pregnant 

cows (39.32 ± 0.01 °C) but there was no group by time interaction (P = 0.85). In addition, there 

was an effect of season of calving (P = 0.02), whereby cows that calved during the warm season 

had greater temperature (39.36 ± 0.01 °C) than cows that calved during the cold season (39.33 ± 

0.01 °C). Cows with 2 lactations had greater (P < 0.001) temperature (39.37 ± 0.01 °C) than 

cows with ≥3 lactations (39.32 ± 0.01 °C). 

 

Milk conductivity. Milk conductivity from 0 to 56 d after calving (Figure 13D) differed by time 

(P < 0.001) but there was no difference (P = 0.24) for pregnant (9.21 ± 0.04 mmHo) and non-

pregnant cows (9.15 ± 0.04 mmHo), and no group by time interaction (P = 0.77). In addition, 

there was an effect of season of calving (P < 0.001), whereby cows that calved during the warm 

season had greater conductivity (9.33 mmHo) than cows that calved during the cold season (9.01 

mmHo). Milk conductivity from -27 to -1 days before TAI (Figure 14B) differed over time (P < 

0.001), was greater (P < 0.01) for non-pregnant (9.49 ± 0.02 mmHo) than pregnant cows (9.41 ± 
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0.02 mmHo) but there was no group by time interaction (P = 0.17). In addition, there was an 

effect of season of calving (P < 0.01), whereby cows that calved during the cold season had 

greater milk conductivity (9.49 ± 0.02 mmHo) than cows that calved during the warm season 

(9.41 ± 0.03 mmHo). Cows with 2 lactations tended to have lesser (P = 0.06) milk conductivity 

(9.42 ± 0.02 mmHo) than cows with ≥3 lactations (9.48 ± 0.02 mmHo). 
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Figure 13. Rumination activity (A), eating activity (B), body temperature (C), and milk conductivity (D) from 0 to 56 d after calving for multiparous cows that 

were pregnant or not after first service. For rumination and eating activity data was available from 832 pregnant and 892 non-pregnant cows, for body 

temperature from 391 pregnant and 358 non-pregnant cows and for milk conductivity from 902 pregnant and 959 non-pregnant cows. Within time points, an 

asterisk (*) represents differences (P ≤ 0.05) for pairwise comparisons between pregnant and non-pregnant. Values are presented as LSM ± SEM
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Figure 14. Body temperature (A) and milk conductivity (B) from -27 to -1 d before TAI for multiparous cows that 

were pregnant or not after first service. For body temperature data was available from 391 pregnant and 358 non-

pregnant cows and for milk conductivity data was available from 902 pregnant and 959 non-pregnant cows. Values 

are presented as LSM ± SEM 
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Physical activity. There was a tendency for a group by time interaction (P = 0.06) for physical 

activity from -14 to 56 d after calving, whereby non-pregnant cows had greater physical activity 

up to calving but lesser physical activity starting the first week after calving (Figure 15A). There 

was also an effect of time (P < 0.001) but there was no effect of group (P = 0.51; pregnant 4.46 ± 

0.04 AU and non-pregnant cows 4.45 ± 0.04 AU). Cows without health disorders (4.40 ± 0.04 

AU) recorded up to 56 d after calving tended to have lesser (P = 0.06) physical activity than 

cows with health disorders (4.51 ± 0.05 AU). There was a group by time interaction (P < 0.001) 

for physical activity from -27 to -1 d before TAI whereby non-pregnant cows had greater 

physical activity levels (pairwise comparisons P <0.05 in spite of significant interaction). (Figure 

16A). There was also an effect of time (P < 0.005) but there was no effect of group (P = 0.44; 

pregnant 4.34 ± 0.04 AU and non-pregnant cows 4.38 ± 0.04 AU). In addition, there was an 

effect of season of calving (P = 0.02), whereby cows that calved during the warm season had 

lesser activity (4.29 ± 0.05 AU) than cows that calved during the cold season (4.44 ± 0.04 AU). 

Cows with 2 lactations tended to have greater (P = 0.06) physical activity (4.42 ± 0.04 AU) than 

cows with ≥3 lactations (4.30 ± 0.05 AU). 

 

Walking activity. Walking activity from 0 to 56 d after calving (Figure 15B) tended to be greater 

(P = 0.06) for pregnant (195 ± 1.24 steps/h) than non-pregnant cows (192 ± 1.21 steps/h), 

differed over time (P < 0.001), but there was no group by time interaction (P = 0.36). In addition, 

there was an effect of season of calving (P = 0.02), whereby cows that calved during the cold 

season had lesser walking activity (192 ± 0.93 steps/h) than cows that calved during the warm 

season (196 ± 1.59 steps/h). Cows with health disorders (189 ± 1.38 steps/h) recorded up to 56 d 

after calving had lesser (P < 0.001) walking activity than cows without health disorders (198 ± 

1.08 steps/h). Cows with 2 lactations had greater (P < 0.001) walking activity (198 ± 1.24 
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steps/h) than cows with ≥3 lactations (190 ± 1.20 steps/h). There was a group by time interaction 

(P < 0.005) for walking activity from -27 to -1 days before TAI (Figure 16B) because from -27 

to -11 d before TAI pregnant cows had lesser protein percent than non-pregnant cows. There was 

an effect of time (P < 0.001) but there was no overall group difference (P = 0.50) for pregnant 

(161 ± 1.39 steps/h) and non-pregnant cows (162 ± 1.36 steps/h). In addition, cows without 

health disorders (163 ± 1.21 steps/h) recorded up to 56 d after calving had more (P = 0.05) 

walking activity than cows with health disorders (160 ± 1.58 steps/h). Cows with 2 lactations had 

more (P < 0.001) walking activity (168 ± 1.40 steps/h) than cows with ≥3 lactations (155 ± 1.36 

steps/h). 

 

Resting behavior. Resting time from 0 to 56 d after calving (Figure 15C) differed by time (P < 

0.001) but there was no difference (P = 0.26) between pregnant (568 ± 3.81 min/d) and non-

pregnant cows (526 ± 3.72 min/d), and no group by time interaction (P = 0.65). In addition, there 

was an effect of season of calving (P < 0.001), whereby cows that calved during the warm 

season had lesser resting time (551 ± 4.89 min/d) than cows that calved during the cold season 

(579 ± 2.86 min/d). Cows with health disorders (576 ± 4.25 min/d) recorded up to 56 d after 

calving had greater (P < 0.001) resting time than cows without health disorders (553 ± 3.33 

min/d). Cows with ≥3 lactations had greater (P < 0.003) resting time (572 ± 3.69 min/d) than 

cows with 2 lactations (558 ± 381 min/d). There was a tendency for a group by time interaction 

(P = 0.06) for resting time from -27 to -1 d before TAI (Figure 16C), an effect of time (P < 

0.001), and an overall effect of group as resting time was greater (P = 0.001) for pregnant (653 ± 

4.70 min/d) than non-pregnant cows (634 ± 4.60 min/d). In addition, there was an effect of 

season of calving (P = 0.02), whereby cows that calved during the warm season had greater 

resting time (652 ± 5.98 min/d) than cows that calved during the cold season (635 ± 3.59 min/d). 
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Cows with health disorders (651 ± 5.34 min/d) recorded up to 56 d after calving had greater (P = 

0.01) resting time than cows without health disorders (636 ± 4.07 min/d). Cows with ≥3 

lactations had greater (P < 0.003) rest time (665 ± 4.60 min/d) than cows with 2 lactations (622 ± 

4.71 min/d). 

The number of lying bouts per day from 0 to 56 d after calving (Figure 15D) differed 

over time (P < 0.001) but there was no difference (P = 0.70) for pregnant (9.56 ± 3.81 bouts/d) 

and non-pregnant cows (9.51 ± 0.09 bouts/d), and there was no group by time interaction (P = 

0.87). Cows that calved during the warm season tended (P = 0.06) to have more lying bouts 

(9.66 ± 0.12 bouts/d) than cows that calved during the cold season (9.40 ± 0.07 bouts/d). Cows 

with health disorders (9.71 ± 0.11 bouts/d) recorded up to 56 d after calving had more (P < 0.01) 

lying bouts than cows without health disorders (9.36 ± 0.08 bouts/d). Cows with 2 lactations had 

greater (P < 0.001) lying bouts (9.81 ± 0.09 bouts/d) than cows with ≥3 lactations (9.25 ± 0.09 

bouts/ d). The number of lying bouts per day from -27 to -1 d before TAI (Figure 16D) differed 

over time (P < 0.001) but there was no difference (P = 0.36) for pregnant (9.95 ± 0.11 bouts/d) 

and non-pregnant cows (9.82 ± 0.11 bouts/d), and there was no group by time interaction (P = 

0.32).  
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Figure 15. Physical activity (A), walking activity (B), rest time (C), and lying bouts (D) from 0 to 56 d after calving for multiparous cows that were pregnant or 

not after first service. For physical activity data was available from 416 pregnant and 391 non-pregnant cows, for activity, rest time and lying bouts data was 

available from 900 pregnant and 959 non-pregnant cows. Values are presented as LSM ± SEM
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Figure 16. Physical activity (A), walking activity (B), rest time (C), and lying bouts (D) from -27 to -1 d before TAI for multiparous cows that were pregnant or 

not after first service. For physical activity data was available from 416 pregnant and 391 non-pregnant cows, for activity, rest time and lying bouts data was 

available from 900 pregnant and 959 non-pregnant cows. Values are presented as LSM ± SEM. 
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Body weight change after calving for primiparous and multiparous cows  

 

Absolute BW from 0 to 56 d after calving (Figure 17A) differed with time (P < 0.001) as 

cow lost weight after calving but there was no difference (P = 0.11) for pregnant (558 ± 2.91 kg) 

and non-pregnant cows (552 ± 3.61 kg), and no group by time interaction (P = 0.45). In addition, 

cows without health disorders (562 ± 2.61 kg) recorded up to 56 d after calving had greater (P < 

0.005) BW than cows with health disorders (549 ± 4.01 kg). Absolute BW for primiparous cows 

from -27 to -1 d before TAI (Figure 17B) differed by time (P < 0.001) as cows continued to lose 

weight until FS, but there was no difference (P = 0.88) for pregnant (567 ± 2.75 kg) and non-

pregnant cows (567 ± 3.44 kg), and no group by time interaction (P = 0.91). In addition, cows 

without health disorders (572 ± 2.46 kg) recorded up to 56 d after calving had greater (P = 0.03) 

absolute body weight than cows with health disorders (562 ± 3.83 kg).  

The percent BW change between 3 d after calving and the BW nadir (Figure 18) was not 

different (P = 0.39) for pregnant (-4.99 ± 0.32%) and non-pregnant (-4.58 ± 0.40%) cows. For 

the period between the nadir for body weight and 56 d after calving, the percent body weight 

change (Figure 18) was not different (P = 0.14) for pregnant (2.34 ± 0.21%) and non-pregnant 

cows (2.80 ± 0.27%). There was an effect of season of calving (P < 0.001), whereby cows that 

calved during the warm season had greater change in body weight (3.26 ± 0.29%) than cows that 

calved during the cold season (1.89 ± 0.19%), and cows with health disorders (3.18 ± 0.30%) 

recorded up to 56 d after calving had greater (P < 0.001) change in body weight than cows 

without health disorders (1.96 ± 0.19%). For the period from 3 to 56 d after calving (Figure 18) 

the percent change in body weight was not different (P = 0.18) for pregnant (-2.13 ± 0.48%) and 

non-pregnant (-2.88 ± 0.37%) cows.  
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There was no difference (P = 0.67) for P/AI for cows with BW loss (68.7%, n = 57), no 

change (63.3%, n = 100), or gain (64.1%, n = 166) between 3 d after calving and the BW nadir 

(Figure 20A). There was also no difference (P = 0.32) in P/AI for cows that had BW loss 

(69.6%, n = 96), no change (61.8%, n = 97), or gain (66.0%, n = 169) for the period between the 

body weight nadir and 56 d after calving (Figure 20A). For cows grouped based on BW change 

for the period between the 3 and 56 d after calving (Figure 20A), there was no difference (P = 

0.89) in P/AI for cows that had BW loss (67.1%, n = 49), no change (65.3%, n = 93), or gain 

(64.7%, n = 178).  

Multiparous cows. There was a group by time interaction (P = 0.04) for absolute body weight 

from 0 to 56 d after calving (Figure 17C) because pregnant cows (722 ± 3.00 kg) had lesser body 

weight than non-pregnant cows (729 ± 3.11 kg) at 0 to 2 d after calving but not thereafter. Body 

weight changed over time (P < 0.001) as cows lost weight until 56 DIM, but there was no 

difference between groups (P = 0.18). Average body weight for the whole period was 687 ± 2.85 

and 691 ± 2.97 kg for pregnant and non-pregnant cows, respectively. Cows with ≥3 lactations 

had greater (P < 0.003) body weight (725 ± 2.70 kg) than cows with 2 lactations (653 ± 3.14 kg). 

Absolute body weight from -27 to -1 d before TAI (Figure 17D) differed by time (P < 

0.001) because cows lost BW overtime but there was no difference (P = 0.15) for pregnant cows 

(667 ± 3.37 kg) and non-pregnant cows (673 ± 3.56 kg), and no group by time interaction (P = 

0.25). In addition, cows with ≥3 lactations had greater (P < 0.001) body weight (701 ± 3.18 kg) 

than cows with 2 lactations (639 ± 3.77 kg).  

The percent body weight change between 3 d after calving and the nadir (Figure 19) was 

greater (P = 0.02) for non-pregnant (-8.51 ± 0.37%) than pregnant cows (-7.94 ± 0.34%). Cows 

with health disorders (-8.55 ± 0.41%) recorded up to 56 d after calving had greater (P = 0.02) 
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change in percent body weight than cows without health disorders (-7.40 ± 0.31%). The percent 

body weight change between the nadir and 56 d after calving (Figure 19) was not different (P = 

0.73) for pregnant (0.28 ± 0.16%) and non-pregnant cows (0.36 ± 0.18%). The change in percent 

body weight between 3 d after calving and 56 d after calving (Figure 19) was greater (P = 0.03) 

for non-pregnant (-8.25 ± 0.41%) than pregnant cows (-7.08 ± 0.39%). Cows with health 

disorders (-8.34 ± 0.46%) recorded up to 56 d after calving had greater (P = 0.01) change in 

percent body weight than cows without health disorders (-6.99 ± 0.35%).  

There was no difference (P = 0.42) in P/AI for cows with BW loss (46.9%, n = 164), no 

change (51.4%, n = 149), or gain (52.9%, n = 92) body weight between 0 d after calving and 56 

d after calving for body weight (Figure 20B). There was an effect of season of calving (P = 

0.03), whereby cows that calved during the warm season had greater P/AI (58.0 ± 3.83%) than 

cows that calved during the cold season (48.9 ± 2.20%), and cows with 2 lactations tended to 

have greater (P = 0.07) P/AI (56.8 ± 3.13%) than cows with ≥3 lactations (50.2 ± 2.71%). For 

cows grouped based on body weight change between the nadir for body weight and 56 d after 

calving (Figure 20B), the group that lost (55.4%, n = 206) body weight tended to have greater (P 

= 0.07) P/AI than cows that had no change (47.28%, n = 174), whereas cows that gained (54.3%, 

n = 138) body weight had similar P/AI than cows that lost or had no change. For cows grouped 

based on body weight change between 3 and 56 d after calving (Figure 20B), there was no 

difference (P = 0.82) in P/AI for cows that lost (49.58%, n = 176), had no change (49.2%, n = 

146), or gained (52.3%, n = 80) BW. There was an effect of season of calving (P = 0.02), 

whereby cows that calved during the cold season had greater P/AI (51.3 ± 2.25%) than cows that 

calved during the warm season (41.4 ± 3.82%). 
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Figure 17. Body weight for pregnant and non-pregnant primiparous cows from 0 to 56 days after calving (A) and from -27 to -1 days before TAI (B). Body 

weight for pregnant and non-pregnant multiparous cows from 0 to 56 days after calving (C) and from -27 to -1 days before TAI (D). For primiparous cows, data 

was available from 395 pregnant and 217 non-pregnant cows whereas for multiparous cow data was available from 561 pregnant and 530 non-pregnant cows. 

Within time points, an asterisk (*) represents differences (P ≤ 0.05) for pairwise comparisons between pregnant and non-pregnant. Values are presented as LSM 

± SEM  
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Figure 18. Percent body weight change from 3 d after calving to the nadir for body weight, nadir for body weight to 56 d after calving, and from 3 to 56 d after 

calving for pregnant and non-pregnant primiparous cows, data was available from 362 pregnant and 189 non-pregnant cows. 
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Figure 19. Percent body weight change from 3 d after calving to the nadir for body weight, nadir for body weight to 56 d after calving, and from 3 to 56 d after 

calving for pregnant and non-pregnant multiparous cows, data was available from 518 pregnant and 476 non-pregnant cows  
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Figure 20. Association between body weight change group (i.e., loss, no change, gain) for specific time points from 0 to 56 days after calving and first service 

P/AI for (A) primiparous and (B) multiparous cows. For primiparous cows, data was available from 362 pregnant and 189 non-pregnant cows, for multiparous 

cows from 518 pregnant and 476 non-pregnant cows.
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Effect of Health Disorders on Pregnancies per AI for Primiparous and Multiparous cows 

 

Primiparous cows. There was no difference (P = 0.42) in P/AI (Figure 21) between cows with 

(60.0%, n = 132) and cows without (63.1%, n = 449) health disorders up to 56 d after calving. In 

addition, there was no difference (P = 0.44) for cows that calved during the warm (63.8 ± 3.38%) 

and cold season (60.9 ± 2.08%). 

Multiparous cows. Cows (Figure 21) with health disorders (44.8%, n = 330) tended (P = 0.10) to 

have reduced P/AI than cows without health disorders (49.0%, n = 653). In addition, there was 

no difference (P = 0.54) for cows that calved during the warm (48.2 ± 2.29%) and cold season 

(46.6 ± 1.30%), and there was no difference (P = 0.18) for cows with 2 (48.8 ± 1.76%) or ≥3 

lactations (46.1 ± 1.71%). 
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Figure 21. Association between occurrence of health disorders recorded up to 56 d after calving and first service 

pregnancy per AI for primiparous and multiparous cows. For primiparous cows, data was available from 712 healthy 

and 220 cows with at least one health disorder, for multiparous cows from 1333 healthy and 737 cows with at least 

one health disorder. 
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Previous Lactation Production Performance for Multiparous Cows 

Previous lactation total milk yield (Figure 24) was greater (P < 0.001) for non-pregnant 

(12,792 ± 90.8 kg) than pregnant cows (12,335 ± 94.7 kg). In addition, cows that calved during 

the cold season tended to have greater (P = 0.08) milk yield (12,687 ± 69.9 kg) than cows that 

calved during the warm season (12,440 ± 123 kg/d). There was no difference (P = 0.47) for cows 

with (12,608 ± 119.9 kg/d) or without (12,519 ± 82.8 kg) health disorders up to 56 d after 

calving. Cows with ≥3 lactations had greater (P < 0.001) milk yield (13,410 ± 91.9 kg) than 

cows with 2 lactations (11,717 ± 93.9 kg). 

Previous lactation 305 d milk yield (Figure 24) was greater (P = 0.001) for non-pregnant 

(11,950 ± 68.6 kg) than pregnant cows (11,663 ± 71.5 kg). In addition, there was an effect of 

season of calving (P = 0.01), whereby cows that calved during the cold season had greater 305 d 

milk (11,942 ± 52.8 kg) than cows that calved during the warm season (11,672 ± 92.6 kg). There 

was no difference (P = 0.26) for cows with (11,754 ± 79.4 kg) or without (11,859 ± 62.5 kg) 

health disorders. Cows with ≥3 lactations had greater (P < 0.001) milk yield (12,740 ± 69.4 kg) 

than cows with 2 lactations (10,873 ± 70.9 kg). 

Previous lactation total fat yield (Figure 24) was greater (P < 0.001) for non-pregnant 

(483 ± 3.53 kg) than pregnant cows (462 ± 3.68 kg). In addition, cows with ≥3 lactations had 

greater (P < 0.001) fat yield (501 ± 3.57 kg) than cows with 2 lactations (444 ± 3.65 kg). There 

was no difference (P = 0.40) for cows that calved during the warm (470 ± 4.76 kg) and cold 

season (475 ± 2.72 kg), and there was no difference (P = 0.75) between cows with (472 ± 4.08 

kg) or without health disorders (473 ± 3.22 kg). 

Previous lactation total protein yield (Figure 24) was greater (P < 0.001) for non-pregnant 

(379 ± 2.58 kg) than pregnant cows (367 ± 2.69 kg). In addition, cows with ≥3 lactations had 
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greater (P < 0.001) fat yield (395 ± 2.61 kg) than cows with 2 lactations (351 ± 2.66 kg). There 

was no difference (P = 0.40) for cows that calved during the warm (371 ± 3.48 kg) and cold 

season (375 ± 1.98 kg), and there was no difference (P = 0.75) between cows with (374 ± 2.98 

kg) or without health disorders (372 ± 2.35 kg). 
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Figure 24. Previous lactation total milk, previous lactation 305 d milk, previous lactation total fat, and previous lactation total protein yield for multiparous cows 

that were pregnant (n = 983) or non-pregnant (n = 1,087) after first service. Values are presented as LSM ± SEM. 
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Previous Lactation Features and Reproductive Performance 

Gestation length (Figure 25) was greater (P < 0.001) for non-pregnant (276.56 ± 0.18 d) 

than pregnant cows (275.79 ± 0.18 d). In addition, there was an effect of season of calving (P = 

0.04), whereby cows that calved during the cold season had longer gestation length (276.46 ± 

0.14 d) than cows that calved during the warm season (275.89 ± 0.24 d). Cows without health 

disorders (276.59 ± 0.16 d) recorded up to 56 d after calving had greater (P < 0.001) gestation 

length than cows with health disorders (275.75 ± 0.21 d). Cows with ≥3 lactations had greater (P 

< 0.001) gestation length (276.92 ± 0.18) than cows with two lactations (275.43 ± 0.18 d). 

The calving interval for multiparous cows (Figure 25) was longer (P < 0.005) for non-

pregnant (385 ± 1.39 d) than pregnant cows (380 ± 1.45 d). In addition, cows that calved during 

the warm season tended to have longer (P = 0.08) calving interval (385 ± 1.87 d) than cows that 

calved during the warm season (381 ± 1.07 d). Cows with health disorders (387 ± 1.60 d) 

recorded up to 56 d after calving had greater (P < 0.001) calving interval than cows without 

health disorders (378 ± 1.26 d). Cows with two lactations had greater (P < 0.001) calving 

interval (386 ± 1.43) than cows with ≥3 lactations (379 ± 1.40 d). 

Non-pregnant cows (110 ± 1.52 d) had more (P = 0.04) days open in the previous 

lactation (Figure 25) than pregnant cows (106 ± 1.59 d). In addition, there was an effect of 

season of calving (P = 0.04), whereby cows that calved during the warm season had more days 

open (110 ± 2.07 d) than cows that calved during the cold season (105 ± 1.17 d). Cows with 

health disorders (103 ± 1.39 d) recorded up to 56 d after calving had more (P < 0.001) days open 

than cows without health disorders (113 ± 1.73 d). Cows with two lactations had greater (P = 

0.001) days open (112 ± 1.57) than cows with ≥3 lactations (104 ± 1.54 d). 
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Multiparous cows non-pregnant after first service (69.5 ± 1.14 d) tended to have greater 

(P = 0.10) days dry (Figure 25) than pregnant cows (67.3 ± 1.08 d). In addition, there was an 

effect of season of calving (P < 0.005), whereby cows that calved during the warm season had 

more days dry (71.0 ± 1.54 d) than cows that calved during the cold season (65.8 ± 0.79 d). 

Cows with health disorders (69.9 ± 1.24 d) recorded up to 56 d after calving had more (P = 0.03) 

days dry than cows without health disorders (66.8 ± 1.00 d). Cows with ≥3 lactations had more 

(P = 0.001) days dry (71.0 ± 1.18) than cows with two lactations (65.8 ± 1.05 d). 
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Figure 25. Gestation length, calving interval, days open, and days dry for multiparous cows that were pregnant (n = 983) or non-pregnant (n = 1,087) after first 

service. Values are presented as LSM ± SEM. 
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Association Between Temperature and Humidity Index (THI) Inside or Outside Cow Barns 

and Pregnancies per AI for Primiparous and Multiparous Cows 

 

Primiparous cows. There was no difference (P > 0.10) in P/AI between cows exposed to THI 

inside of cow barns of <72 or >72 at any time point evaluated from -14 to 56 days after calving 

(Figure 26). Likewise, there was no difference (P > 0.10) in P/AI between cows exposed to THI 

outside of cow barns of <72 or >72 at any time point evaluated from -14 to 56 days after calving 

(Figure 27).  
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Figure 26. Association between inside of cow barns THI and pregnancies per AI for primiparous cows. Data were available from 779 cows with THI<72 and 

71cows with THI>72.  
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Figure 27. Association between outside of cow barns THI and pregnancies per AI for primiparous cows. Data were available from 732 cows with THI<72 and 

71 cows with THI>72.  
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Multiparous cows. There was no difference (P > 0.10) in P/AI between cows exposed to THI 

inside of cow barns of <72 or >72 at any time point evaluated except from 29 to 56 days after 

calving at which P/AI was greater (P = 0.01) for cows that were exposed to THI<72 than >72 

(Figure 28). Likewise, there was no difference (P > 0.10) in P/AI between cows exposed to THI 

outside of cow barns of <72 or >72 at any time point evaluated except from 29 to 56 days after 

calving at which P/AI was greater (P = 0.01) for cows that were exposed to THI<72 than >72 

(Figure 29). 
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Figure 28. Association between inside of cow barns THI and pregnancies per AI for multiparous cows. Data were available from 1114 cows with THI<72 and 

123 cows with THI>72.  
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Figure 29. Association between outside of cow barns THI and pregnancies per AI for multiparous cows. Data were available from 1114 cows with THI<72 and 

123 cows with THI>72.  
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DISCUSSION 

A better understanding of associations between potential predictors of fertility and 

outcomes of individual AI services in lactating dairy cows might enable the implementation of 

targeted reproductive management (TRM) strategies in dairy herds (Giordano et al., 2022). As 

dairy cow fertility is affected by a myriad of biological, management, and environmental factors 

(López-Gatius, 2012), data for behavioral, physiological, and performance parameters generated 

by automated sensors might be useful for predicting cow fertility. Sensor parameter data might 

indicate the cow physiological status as well as cow responses to management and 

environmental conditions. To better understand these associations, we characterized the pattern 

of multiple behavioral, physiological, and performance parameters in cows that became pregnant 

or not at FS. Data were evaluated separately for primiparous and multiparous cows because of 

the well-known biological (Vercouteren et al., 2015), behavioral (Soriani et al., 2012), and 

productive (Lean et al., 1989) and reproductive performance (Bonneville-Hébert et al., 2011) 

differences among parities.  

Although there were no differences between pregnant and non-pregnant cows for most 

sensor data patterns explored, or between groups of cows created based on sensor parameters of 

interest, several associations were observed for performance outcomes for primiparous cows. 

Overall, data supported an association between milk production level and pregnancy success 

because pregnant cows had greater milk, butterfat, protein, and lactose yield up to 56 DIM. 

Although not statistically significant, most outcomes presented differences of similar magnitude 

during synchronization of ovulation before TAI. Lack of differences in components percent 

(except lactose for the -27 to -1 d before TAI) and the fat-to-protein ratio indicated that greater 

component yield was primarily because of milk production volume. Previous studies reported 
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conflicting results about the association between milk production and reproductive performance 

of lactating dairy cows with some studies reporting negative (Albarrán-Portillo et al., 2013), 

positive (Roxström et al., 2001), or no associations (Caraviello et al., 2006; Bello et al., 2012) 

with a large portion of this variation explained by farm-to-farm variation. Despite some expected 

within farm variation in management over time, data for the current study was from a single 

commercial farm in which cows were under the same general management and environment. 

Therefore, the greater milk and components production of pregnant primiparous cows, albeit 

small in magnitude, might have been linked to factors such as season of calving and health in 

early lactation. Indeed, calving in the cold season and not experiencing health disorders in early 

lactation were also positively associated with milk and components yield. Regardless of the 

cause, the combination of greater milk production, calving in the cold season, and not having 

health disorders might be good indicators of the likelihood of pregnancy in primiparous cows. 

This is not surprising because it is well-known that colder weather (Hansen, 2019) and better 

health (Fourichon et al., 2000) are associated with increased likelihood of pregnancy in lactating 

dairy cows. In contrast to primiparous cows, differences for milk and components yield for 

multiparous cows were observed only during synchronization of ovulation and the association 

between performance and FS outcome was the opposite than for primiparous cows. Non-

pregnant cows produced more milk and milk fat during the whole synchronization period 

whereas protein and lactose yield were slightly greater for non-pregnant cows closer to AI. 

Greater yield for non-pregnant cows was observed despite lesser protein and lactose percent in 

milk at some time points in early lactation and during synchronization. As for primiparous cows, 

both season of calving and occurrence of health events were associated with milk and milk 

components yield. However, and unlike for primiparous cows, some of the positive effects of 
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cold weather and better health on fertility to FS could have been overridden by the detrimental 

effects of the greater metabolic demands for milk production on fertility (Vercouteren et al., 

2015).   

The pattern of behavioral parameters monitored by sensors might be associated with 

pregnancy success at FS because of the direct associations between cow behavior with health and 

well-being. Behaviors such as rumination, eating, overall physical activity, walking activity, and 

resting were altered in cows with health disorders in early lactation (Liboreiro et al., 2015; 

Stangaferro et al., 2016; Stevenson et al., 2020) which, in turn, have been associated with 

decreased reproductive performance. Moreover, resting time has also been associated with cow 

performance and reproductive outcomes although data for this relationship has been unclear 

(Piñeiro et al., 2019). In our study we observed no differences between pregnant and non-

pregnant primiparous cows for most behavioral parameters except for number of lying bouts per 

day, which was greater for non-pregnant than pregnant cows. Although non-pregnant cows had 

consistently more lying bouts per day from 0 to 56 DIM and the last two days before TAI, based 

on the small magnitude of the difference (i.e., <0.5 bouts per day) between groups, and the lack 

of difference in resting time and physical activity, it is difficult to attribute much of the 

difference in likelihood of pregnancy success to differences in this behavior. A previous study 

reported a negative quadratic association between lying time in early lactation (i.e., up to 14 

DIM) and cyclicity by 42 DIM, but no association between lying time and the probability of 

pregnancy by 300 DIM for primiparous cows (Piñeiro et al., 2019). Another recent study using 

an ear-attached sensor that monitored resting behavior reported that cows with early ovulation 

(i.e., <33 DIM) had lesser resting time than cows that ovulated later (i.e., >33 DIM) after calving 

(Banuelos et al., 2021). Results from the latter study would suggest a negative association 
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between resting time and some favorable reproductive outcomes, as observed for primiparous 

cows in our study. Overall physical activity and walking time might be associated with resting 

behavior because as cows are active, they cannot be resting. For primiparous cows, we observed 

some minor differences and interactions for physical and walking activity during synchronization 

of ovulation that are unlikely to help explain differences in FS outcome, or the association 

between resting bouts and pregnancy outcome groups. Therefore, additional research is needed 

to confirm our findings and determine if resting behavior and indicators of physical activity are 

associated with pregnancy outcome to FS in primiparous cows. Overall, pregnant and non-

pregnant multiparous cows presented more differences for activity and resting behavior during 

synchronization of ovulation. Data indicated that non-pregnant cows had greater activity and less 

resting time than pregnant cows during the entire or portions of the period of synchronization of 

ovulation. As total resting time per day was consistently greater for pregnant than non-pregnant 

cows, this parameter might have predictive value of the fertility of cows.     

An association between rumination and eating time with FS outcome was expected as 

these parameters might be indicators of overall cow health and some recent studies linked these 

behaviors to return to cyclicity after calving. Cows that experienced health disorders in early 

lactation had reduced rumination and eating time on the days immediately before and after 

calving (Liboreiro et al., 2015; Stevenson et al., 2020), and around clinical diagnosis of health 

disorders (Stangaferro et al., 2016a,b; Perez et al., 2020; Rial et al., 2021). Cows that ovulated 

earlier after calving had greater eating time than cows that ovulated later (Banuelos et al., 2021). 

The lack of difference between pregnant and non-pregnant primiparous cows for rumination and 

eating time indicated no association between these parameters and FS pregnancy outcome. 

Differences of small magnitude and in opposing directions overtime for multiparous cows also 
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suggested lack of a strong association between rumination and eating behavior with pregnancy 

outcome for multiparous cows. Besides the fact that no association might exist between these 

parameters (as measured by the sensor used in our study) with pregnancy at FS in cows that 

receive TAI, there are several potential reasons for not observing differences. For example, 

rumination and eating behaviors typically change temporarily in cows are affected by health 

disorders. Thereafter, these parameters return to normal. Also, the effect of individual cows 

affected by health disorders at different DIM over the mean of a parameter of interest is 

distributed across a long period of time. Therefore, alterations to the early lactation patterns of 

sensor-monitored parameters such as rumination and eating time could have been masked by the 

normal patterns of cows not affected by health disorders, or periods of good health for cows 

affected by disorders. Other reasons for not observing larger differences is that rumination and 

eating behavior might only be associated with pregnancy success and be detectable by sensors 

when alterations occurs closer to the time of AI, and that the effect of cows affected by health 

disorders on the patterns of these behaviors was attenuated by the normal pattern from most 

cows not affected by health disorders. Unfortunately, rumination and eating time data were not 

available during the period of synchronization because of neck-attached sensor tags were 

removed at ~30 DIM.  

Milk conductivity is a physiological parameter that was expected to differ for pregnant 

and non-pregnant cows because it is a marker of udder health, and both clinical and subclinical 

mastitis were negatively associated with P/AI at FS in dairy cows (Fuenzalida et al., 2015). If 

conductivity differences truly exists at certain times before AI, such differences were likely to be 

masked because of the same reasons than rumination and eating behavior.   
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Non-pregnant cows were expected to have greater body temperature than pregnant cows 

during late gestation and early lactation because of known long-term detrimental effects of heat 

stress on follicle function and oocyte fertility (Hansen, 2019). Larger and more consistent 

differences were expected during synchronization of ovulation because the period of final follicle 

and oocyte maturation before ovulation is of high risk for occurrence of physiological anomalies 

that lead to poor fertility (Wolfenson et al., 2019). Although small in magnitude, the greater body 

temperature for pregnant primiparous cows (statistical tendency observed) from -14 to 56 DIM 

was contrary to our expectations and disagrees with the reported negative association between 

elevated temperature and dairy cow reproductive performance (Lees et al., 2019; Wolfenson et 

al., 2019; Hansen, 2019). On the other hand, greater body temperature was consistently observed 

through most of early lactation and during synchronization of ovulation for non-pregnant 

multiparous cows. Moreover, multiparous cows exposed to THI>72 (measured within or outside 

cow barns) from 29 to 56 DIM had approximately a 10 percentage point reduction in P/AI as 

compared to cows exposed to THI<72. Thus, the current data suggested that both body 

temperature and THI, as measured in our study, might be reasonable indicators of FS outcome, 

primarily for multiparous lactating dairy cows.  

Body weight was explored because of the known negative association between body 

tissue loss and reproductive performance in lactating dairy cows (Roche et al., 2009). Non-

pregnant cows were expected to lose more BW than pregnant cows, especially during early 

lactation when the most dramatic changes in BW are typically observed in lactating cattle (Bello 

et al., 2012). Although the difference was not significant, primiparous pregnant cows were 

consistently heavier by about 10 kg from 0 to 56 DIM. This difference in BW, for which the 

biological relevance is unclear, was reduced to less than 5 kg during the synchronization of 
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ovulation protocol. Moreover, there were also no differences in relative terms for the different 

periods after calving included in this study. Collectively, data suggested no association between 

the BW dynamic and FS outcome for primiparous cows in our dataset. Conversely, for 

multiparous cows, BW patterns for pregnant and non-pregnant cows were in line with 

expectations and suggested some potential to differentiate cows with different FS outcome. Of 

note, the difference in percent change in accumulated BW loss from calving to the BW nadir, 

and then up to 56 DIM might be used to aid in the prediction of FS outcome.   

Several previous studies documented associations between calving outcomes (Pinedo et 

al., 2020; Pascottini et al., 2020), the occurrence of health disorders (Pascottini et al., 2020), 

previous performance (Shahinfar et al., 2014), and environmental conditions prior to 

insemination (Hansen et al., 1999; Jordan, 2003;) with the outcome of individual inseminations. 

Therefore, we expected to identify several similar associations between the non-sensor data and 

FS outcome. No association between health in early lactation and FS fertility was evident for 

primiparous cows whereas a 5 percentage point reduction was observed for multiparous cows 

with at least one health disorder recorded. Although insufficient sample size or lack of a 

biological association are possible reasons for the similar P/AI of primiparous cows with or 

without health disorders, the long voluntary waiting period and use of all-TAI after a Double-

Ovsynch protocol might have contributed to the lack of difference between groups. Indeed, a 

long VWP with TAI at 88 DIM was associated with a greater proportion of cows without uterine 

health disorders, improved BCS, and a greater proportion of cyclic cows than when cows 

received TAI at 60 DIM (Stangaferro et al., 2018).  

Although the association between milk production and reproductive performance across 

herds can be equivocal and affected by a myriad of herd management factors and environmental 
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conditions (Caraviello et al., 2006; Bello et al., 2012), within herd, the association between 

individual cow milk yield in a previous lactation and reproductive outcomes in a subsequent 

lactation might be more consistent. Among several factors, the within cow association can be 

explained by the negative correlation between genetic potential for milk production and fertility 

(Carthy et al., 2016; Puangdee et al., 2017). In our study, consistent differences were observed 

for milk and milk components yields between pregnant and non-pregnant multiparous cows. 

Pregnant cows after FS produced less total milk, milk adjusted to 305 d of lactation, total fat, and 

total protein than non-pregnant cows. Fewer days in milk because of earlier pregnancy in the 

previous lactation in cows that became pregnant at FS could explain part of the difference in total 

milk and components yield. Nevertheless, pregnant cows also yielded 287 kg less milk adjusted 

to 305 d of lactation, and the 5 d shorter calving interval observed could not fully explain the 457 

kg more total milk yield per lactation for non-pregnant cows. Thus, a plausible explanation for 

the observed differences in milk and components yield is different biological milk production 

potential for cows pregnant versus non-pregnant at FS. This variation in production potential 

might be valuable for identifying cows with different likelihood of pregnancy at FS. 

Some associations between FS outcome during the lactation of interest and features and 

performance outcomes of the previous lactation and gestation cycle were observed. Cows 

pregnant at FS had shorter gestation length, shorter calving interval, longer days open, and 

tended to have more days dry. As most of the differences between pregnant and non-pregnant 

cows were small in magnitude, the potential value of these outcomes for identifying cows with 

different likelihood of pregnancy at FS might be limited. Nevertheless, if a biological link exists 

between these variables and fertility, they may add value to predictive models of FS outcome.  



 
 

90 
 

Although the novelty of this study was on the type, variety, and number of associations 

explored for multiple potential predictors of fertility monitored for prolonged periods of time and 

FS outcomes, there were several limitations including the approach to data analysis. Data was 

aggregated and compared in ways expected to be meaningful for exploring biological 

associations and potential practical value. For example, aggregating data from -14 to 56 d after 

calving was aimed at identifying variability between pregnant and non-pregnant cows for the 

predictors of interest at the end of the previous gestation and early lactation when cows undergo 

dramatic behavioral, physiological and performance changes associated with cow fertility. Data 

aggregated during the synchronization of ovulation protocol aimed to capture potential 

associations for predictors and fertility during a period of dynamic changes in ovarian function 

and endocrine status that directly influence the likelihood of pregnancy. For both time periods, 

data was averaged for specific time points chosen to capture associations with key biological and 

management factors that would be potentially reflected on the patterns of the parameters of 

interest. Collectively, the choice of period of data aggregation, data partitioning, and data 

summarization and analysis might have prevented identifying more consistent associations in the 

data. Thus, future studies should consider different ways of collecting, splitting, summarizing, 

and analyzing data to uncover associations of potential value for predicting FS outcome in dairy 

cows.  

Another potential limitation of this study was that synchronization of ovulation with a 

fertility program such as Double-Ovsynch, and an extended VWP could have masked part of the 

variability in reproductive potential associated with the underlying factors captured in the sensor 

and non-sensor data used in this study. For example, GnRH-based fertility programs like 

Double-Ovsynch and an extended VWP offset part of the detrimental effects of anovulation and 
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poor uterine health in early lactation on first service P/AI (Herlihy et al., 2012; Stangaferro et al., 

2018). Other limitations of this study included use of data from a single farm, lack of data for 

some parameters for certain periods, and the small sample size for evaluating some outcomes 

such as P/AI. Therefore, larger studies with multiple farms including insemination of cows with 

other type of management such as insemination at detected estrus are needed.  

 

CONCLUSIONS 

In conclusion, differences in the pattern of several behavioral, physiological, and 

performance parameters monitored by automated sensors for cows that became pregnant or not 

at FS were observed. Likewise, associations with FS outcome were observed for early lactation 

events and environmental conditions. Collectively, these differences, which reflected underlying 

biological variation, and the influence of management and environmental factors on cow 

behavior, physiology, and performance, might be valuable for prediction of FS outcome in 

lactating dairy cows. Substantial variability between parities for the direction and magnitude of 

differences between pregnant and non-pregnant cows warrants use of parity either as a model 

predictor, or the development of parity-specific models when attempting to predict reproductive 

success of lactating dairy cows.  
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CHAPTER II 

PREDICTING PREGNANCY IN LACTATING DAIRY COWS USING MACHINE 

LEARNING ALGORITHMS INCORPORATING COW FEATURES AND PATTERNS 

OF BEHAVIORAL, PHYSIOLOGICAL, AND PERFORMANCE PARAMETERS 

COLLECTED BY SENSORS  

INTRODUCTION 

Recent improvements in reproductive performance, availability of reproductive 

technologies, and market changes supports targeted reproductive management (TRM) whereby, 

dairy farmers have options to optimize the performance and profitability of cows at every 

artificial insemination (AI) service or lactation cycle (Giordano et al., 2022). Through TRM, 

subgroups or individual cows that share certain features or biological conditions are managed 

differently based on predicted probabilities of estrus, pregnancy establishment, or pregnancy 

loss. For example, based on predictions of reproductive outcomes and events, use of sexed 

versus conventional semen, use of expensive versus cheap semen, use AI versus embryo transfer, 

AI at detected estrus versus timed AI, and post-AI hormonal therapy to increase pregnancy 

success could be used. Except for real time prediction of estrus events based on some measure of 

physical activity (Schilkowsky et al., 2021), short- and long-term prediction of reproductive 

outcomes and their features in support of targeted reproductive management is not yet possible. 

Thus, decision-making for targeted management is not widely used, or unfortunately subjective 

based on parameters (e.g., monthly milk production data, predicted transmitted abilities) that do 

not accurately predict reproductive outcomes.  
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Previous research and the results presented in Chapter I of this thesis have demonstrated 

multiple associations of different strengths between fertility of lactating cows to individual AI 

services and cow features, indicators of energy balance and metabolic status, behavioral, 

physiological and performance parameters, environmental conditions, and herd management 

factors (Soriani et al., 2012; Stangaferro et al., 2016; Antanaitis et al., 2018). Some of these 

associations have been sufficiently consistent and explain enough variation for the outcomes of 

interests to the extent that single point or a few measurements in time have been helpful at 

predicting reproductive outcomes (Hempstalk et al., 2015). However, use of more frequent 

measurements of cow biological, herd, and environmental parameters that change dynamically 

over time (as presented in Chapter I of this thesis) may substantially increase our ability to 

predict reproductive outcomes with modern data analytic tools.  

Machine learning algorithms (MLA) are a class of computer data-analytic techniques that 

automate prediction based on past observations. These algorithms are well suited for 

compressing massive data from many sources into one or a few user-friendly tools for predicting 

specific outcomes (Caraviello et al., 2006; Rutten et al., 2016). In dairy farming, developing 

MLA with data from wearable and non-wearable sensor data, cow performance records, 

facilities, and the environment is clearly a rich opportunity to improve management of cow 

health, reproduction, feeding, and milking. As for estrus, there is substantial evidence of 

associations of lactating dairy cow features, metabolic parameters, management factors, and 

environmental conditions with the probability of pregnancy after AI. Automated detection of 

such associations with MLA could make prediction of pregnancy possible. Indeed, previous 

research has shown that it is possible to predict the outcome of AI services using MLA 

techniques (Hempstalk et al., 2015). However, most studies (if not all) used static datasets 
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(retrospective, non-real-time modeling) and did not use a suite of behavioral, physiological and 

performance sensor parameters collected at high frequency and with high time granularity. The 

expectation is that major gains in predictive value can be achieved by using a combination of 

high granularity behavioral, physiological, and performance cow data collected by automated 

sensors with historical and real time data of herd performance and environmental conditions.  

Therefore, the primary objective of the study presented in this chapter was to evaluate the 

performance of supervised MLA for predicting pregnancy outcome after first service (FS) in 

lactating dairy cows using a combination cow behavioral, physiological, and performance 

parameters in combination with data for herd performance and farm environmental conditions. 

Specifically, we used the data presented in the study presented in Chapter I of this thesis to 

predict the outcome of the first AI service after calving in lactating dairy cows at a commercial 

dairy farm. 

EXPERIMENTAL PROCEDURES 

Data for behavioral, physiological, and performance parameters collected by the 

automated sensor systems for cows used in the study described in Chapter I were used for this 

study. Sensor data collected from -14 to 56 d after calving were summarized as either 

accumulated or average daily values regardless of the frequency of data collection [milk yield 

(accumulated), milk components percent (average), milk components yield (accumulated), fat-to-

protein ratio (average), total rumination and eating activity (count of AU), body temperature 

(average), milk conductivity (average), physical activity (count of AU), walking activity (count 

of steps), rest time (accumulated), lying bouts (count of events), and BW (average)].  

Thereafter, datasets were created for training and evaluation of MLA for prediction of 

first service (FS) outcome for primiparous and multiparous cows and for both parity groups 
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combined. A multi period (MultiP) dataset was generated using daily data summarized as the 

average of the following seven time periods in relationship to calving: -14 to -8, -7 to -3, -2 to 2, 

3 to 7, 8 to 14, 15 to 28, 29 to 56 d. This dataset contained 139 predictors in total. A single 

period (SingleP) dataset was created by calculating the average of all data available from 3 to 56 

DIM. This dataset contained 90 predictors in total. Finally, a synchronization period (SynchP) 

dataset was generated using data collected during synchronization of ovulation. For this dataset, 

data were summarized in three time periods during synchronization of ovulation: -27 to -11, -10 

to -3, -2 to -1 d before TAI. This dataset contained 199 predictors in total. 

All data for cow features, calving event features, health events, previous lactation 

production and reproductive performance, and environmental conditions as collected and 

summarized in Chapter I were also used in this study. These data were added to the MultiP, 

SingleP, and SynchP datasets to include sensor and non-sensor predictors in the same datasets.  

Finally, imputation with the mean for each variable (Zhang, 2016) was used to 

compensate for missing data for individual cows and certain periods of time for some sensor 

parameters. Algorithms were built and tested with datasets with or without imputation.  

Using the MultiP, SingleP, and SynchP datasets, four types of MLA were built and 

evaluated for primiparous (PP) and multiparous (MP) and for both PP and MP combined. The 

MLA methods used were Decision trees (DT), Support Vector Machine (SVM), Logistic 

Regression (LR), and Extreme Gradient Boosting (XGBoost). For model building and testing, 

the MultipP, SingleP, and SynchP datasets were randomized and split into two independent 

datasets used for training (80% of data) and testing (20% of data). All algorithms were built and 

evaluated using packages in RStudio Team (2020) using the RStudio: Integrated Development 
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for R (RStudio, PBC, Boston, MA). The sensitivity, specificity, positive predictive value, 

negative predictive value, and overall accuracy for each model was estimated.  

 

Description and Parametrization of Machine Learning Algorithms 

Decision trees. This supervised algorithm method uses a graphical representation of different 

choices and correlations between predictor variables and the dependent variable of interest. This 

type of classification algorithm (method = ‘class’) generates a model to calculate the probability 

of a cow being pregnant or not after FS (1 or 0). No restrictions were applied for maximum depth 

of the tree. RStudio packages used were the Recursive Partitioning and Regression Trees (rpart) 

to run the model, the Plot 'rpart' Models: An Enhanced Version of 'plot.rpart' (rpart.plot) to plot 

and print the visual trees of the model, and 'dplyr' Back End for Databases (dblyr) as a general 

utility functions tool to manage the database. 

 

Support Vector Machine (SVM). This supervised algorithm uses non-linear decision boundaries 

and creates an extra dimension to analyze data on a tree dimensional mapping. To this end, the 

algorithm uses a procedure to calculate all possible dimensions known as the kernel trick which 

creates non-linear boundaries between classes. Basically, kernels transform the data to classify it 

in a three-dimensional plane. For analysis, we used the following parameters: SVM-Type: eps-

regression (no restriction applies with value predetermined by the algorithm); SVM-Kernel: 

radial (no restriction applies with value predetermined by the algorithm); Cost: 1 (no restriction 

applies with value predetermined by the algorithm); Gamma: value determined by the algorithm 

specific for each model; and Epsilon: value determined by the algorithm specific for each model. 

Because of the three-dimensional method used by the algorithm, there is no direct probabilistic 
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interpretation for the non-linear class separation. One of the packages used was the Misc 

Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071) TU 

Wien. This package manages imports: graphics, grDevices, class, stats, methods, utils; and 

suggests: cluster, mlbench, nnet, randomForest, rpart, SparseM, xtable, Matrix, MASS, and slam; 

(e1071), Tools: Moving Window Statistics, GIF, Base64, ROC AUC, etc. We also used the 

(caTools) package which contains several basic utility functions including: moving (rolling, 

running) window statistic functions, read/write for GIF and ENVI binary files, fast calculation of 

AUC, LogitBoost classifier, base64 encoder/decoder, round-off-error-free sum and cumsum, 

etc.. The 'dplyr' Back End for Databases (dblyr) was used as a general utility functions tool to 

manage the database. 

 

Logistic Regression. This supervised algorithm uses the logistic or sigmoid function to establish 

the relationship between the independent variables and the output. This algorithm can manage 

multiple independent variables and calculates the probability of an event to happen or not (0 or 

1). For this analysis the following parameters were used: family = binomial and link = logit. The 

was a 'dplyr' Back End for Databases (dblyr) as a general utility functions tool to manage the 

database. 

 

Extreme Gradient Boosting (XGBoost). This algorithm is an efficient implementation of the 

gradient boosting framework from Chen & Guestrin (2016). This package is its R interface and 

includes efficient linear model solver and tree learning algorithms. The package automatically 

runs parallel computation on a single machine which could be more than 10 times faster than 

existing gradient boosting packages. The package supports various objective functions, including 
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regression, classification, and ranking. For this analysis we used the following parameters: 

maximum depth of the tree (max_depth) = 4, learning rate (eta) = 0.25, number of threads used 

during training (nthread) = 2, number of trees or boosting iterations (nrounds) = 30. To set a 

binary classifier model (objective) = binary: logistic and to control the loss reduction required to 

create a new leaf-node (gamma) = 0.5.   
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RESULTS 

Performance metrics (Se = sensitivity, Sp = specificity, PPV = positive predictive value, 

NPV = positive predictive value, and overall accuracy) for all MLA for all analyses conducted 

for primiparous, multiparous, and primiparous and multiparous cows combined are presented in 

Tables 1, 2, and 3, respectively. Results for the top five performing algorithms for each parity 

group and for both parity groups combined are highlighted in the text. 

 

Primiparous Cows  

Support Vector Machine using the SingleP dataset with imputation had Se of 96.8%, Sp 

of 96.7%, PPV of 98.4%, NPV of 93.7%, and accuracy of 96.8%. Parameters used to generate 

these results were: SVM-Type: eps-regression, SVM-Kernel: radial, cost: 1, gamma: 

0.02083333, epsilon: 0.1, Number of Support Vectors: 690 (Table 1). 

Support Vector Machine using the SynchP dataset with imputation had Se of 96.7%, Sp 

of 90.8%, PPV of 95.1%, NPV of 93.7%, and accuracy of 94.6%. Parameters: SVM-Type: eps-

regression, SVM-Kernel: radial, cost: 1, gamma: 0.005714286, epsilon: 0.1, Number of Support 

Vectors: 746, Number of Fisher Scoring iterations: 4 (Table 1). 

Logistic Regression using the SingleP dataset with imputation had Se of 97.3%, Sp of 

81.1%, PPV of 88.6%, NPV of 95.2%, and accuracy of 90.9%. (Table 1). 

XGBoost using the SynchP dataset with missing data, had Se of 83.9%, Sp of 69.4%, 

PPV of 84.6%, NPV of 68.3%, and accuracy 79.0%. (Table 1). 

XGBoost using the SynchP dataset with imputation had Se of 88.5%, Sp of 62.2%, PPV 

of 74.8%, NPV of 80.9%, and accuracy of 76.9%. (Table 1). 
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Multiparous Cows 

Support Vector Machine using the MultiP dataset with imputation had Se of 45.4%, Sp of 

70.3%, PPV of 60.0%, NPV of 56.8%, and accuracy of 58.0%. Parameters used were: SVM-

Type: eps-regression, SVM-Kernel: radial, cost: 1, gamma: 0.01694915, epsilon: 0.1, number of 

Support Vectors: 1656 (Table 2). 

XGBoost using the SingleP dataset with imputation had Se of 49.8%, Sp of 63.6%, PPV 

of 57.3% and NPV of 57.7%, and accuracy of 57.7% (Table 2). 

XGBoost using the MultiP dataset with imputation had Se of 49.8%, Sp of 65.6%, PPV 

of 58.6%, NPV of 54.1%, and accuracy of 56.8% (Table 2). 

Decision Tree using the SynchP dataset with missing data had Se of 51.2%, Sp of 61.7%, 

PPV of 56.8%, NPV of 56.3%, and accuracy of 56.5% (Table 2). 

XGBoost using the SingleP dataset with imputation had Se of 50.7%, Sp of 61.2%, PPV 

of 56.2%, NPV of 55.9%, and accuracy of 56% (Table 2). 
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Table 1. Type of algorithm, type of dataset, use of imputation, and performance metrics observed for prediction of first service 

pregnancy outcome of primiparous cows using different types of machine learning algorithms. 

 

Parity 1 

Machine Learning 

Algorithm 
Dataset Imputation TN TP FN FP sensitivity specificity PPV NPV Accuracy 

Decision Tree SingleP Yes 10 94 29 53 76.4% 15.9% 63.9% 25.6% 55.9% 

Decision Tree MultiP Yes 20 82 41 43 66.7% 31.7% 65.6% 32.8% 54.8% 

Decision Tree SynchP Yes 19 92 31 44 74.8% 30.2% 67.6% 38.0% 59.7% 

Decision Tree MultiP No 12 78 45 51 63.4% 19.0% 60.5% 21.1% 48.4% 

Decision Tree SynchP No 6 107 16 57 87.0% 9.5% 65.2% 27.3% 60.8% 

Decision Tree SingleP No 10 104 19 53 84.6% 15.9% 66.2% 34.5% 61.3% 

Logistic Regression SynchP Yes 39 88 24 35 78.6% 52.7% 71.5% 61.9% 68.3% 

Logistic Regression MultiP Yes 48 93 15 30 86.1% 61.5% 75.6% 76.2% 75.8% 

Logistic Regression SingleP Yes 60 109 3 14 97.3% 81.1% 88.6% 95.2% 90.9% 

SVM MultiP Yes 2 120 3 61 97.6% 3.2% 66.3% 40.0% 65.6% 

SVM SynchP Yes 59 117 4 6 96.7% 90.8% 95.1% 93.7% 94.6% 

SVM SingleP Yes 59 121 4 2 96.8% 96.7% 98.4% 93.7% 96.8% 

XGBoost SingleP Yes 11 97 26 52 78.9% 17.5% 65.1% 29.7% 58.1% 

XGBoost MultiP Yes 19 89 34 44 72.4% 30.2% 66.9% 35.8% 58.1% 

XGBoost SynchP Yes 51 92 12 31 88.5% 62.2% 74.8% 81.0% 76.9% 

XGBoost MultiP No 18 94 29 45 76.4% 28.6% 67.6% 38.3% 60.2% 

XGBoost SingleP No 17 99 24 46 80.5% 27.0% 68.3% 41.5% 62.4% 

XGBoost SynchP No 43 104 20 19 83.9% 69.4% 84.6% 68.3% 79.0% 

Metrics used to evaluate MLA: TN (True Negatives), TP (True Positives), FN (False Negatives), FP (False Positives), PPV (Positive Predictive Value) 

NPV (Negative Predictive Value) in the testing dataset.  
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Table 2. Type of algorithm, type of dataset, use of imputation, and performance metrics observed for prediction of first 

service pregnancy outcome of multiparous cows using different types of machine learning algorithms. 

 

Parity 2 

Machine Learning 

Algorithm 
Dataset Imputation TN TP FN FP sensitivity specificity PPV NPV Accuracy 

Decision Tree SingleP Yes 142 85 120 67 41.5% 67.9% 55.9% 54.2% 54.8% 

Decision Tree MultiP Yes 124 97 108 85 47.3% 59.3% 53.3% 53.4% 53.4% 

Decision Tree SynchP Yes 141 88 117 68 42.9% 67.5% 56.4% 54.7% 55.3% 

Decision Tree MultiP No 165 64 141 44 31.2% 78.9% 59.3% 53.9% 55.3% 

Decision Tree SynchP No 129 105 100 80 51.2% 61.7% 56.8% 56.3% 56.5% 

Decision Tree SingleP No 153 69 136 56 33.7% 73.2% 55.2% 52.9% 53.6% 

Logistic Regression SynchP Yes 71 96 138 109 41.0% 39.4% 46.8% 34.0% 40.3% 

Logistic Regression MultiP Yes 75 93 134 112 41.0% 40.1% 45.4% 35.9% 40.6% 

Logistic Regression SingleP Yes 73 101 136 104 42.6% 41.2% 49.3% 34.9% 42.0% 

SVM MultiP Yes 147 93 112 62 45.4% 70.3% 60.0% 56.8% 58.0% 

SVM SynchP Yes 59 91 150 114 37.8% 34.1% 44.4% 28.2% 36.2% 

SVM SingleP Yes 64 86 145 119 37.2% 35.0% 42.0% 30.6% 36.2% 

XGBoost SingleP Yes 137 102 103 72 49.8% 65.6% 58.6% 57.1% 57.7% 

XGBoost MultiP Yes 133 102 103 76 49.8% 63.6% 57.3% 56.4% 56.8% 

XGBoost SynchP Yes 68 88 141 117 38.4% 36.8% 42.9% 32.5% 37.7% 

XGBoost MultiP No 134 97 108 75 47.3% 64.1% 56.4% 55.4% 55.8% 

XGBoost SingleP No 128 104 101 81 50.7% 61.2% 56.2% 55.9% 56.0% 

XGBoost SynchP No 78 89 131 116 40.5% 40.2% 43.4% 37.3% 40.3% 

Metrics used to evaluate MLA: TN (True Negatives), TP (True Positives), FN (False Negatives), FP (False Positives), PPV (Positive Predictive 

Value) NPV (Negative Predictive Value) in the testing dataset. 
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Primiparous and Multiparous Cows Combined 

Support Vector Machine using the SynchP dataset with imputation had Se of 61.6%, Sp 

of 62.2%, PPV of 68.2%, NPV of 55.1%, and accuracy of 61.8%. Parameters: SVM-Type: eps-

regression, SVM-Kernel: radial, cost: 1, gamma: 0.005050505, epsilon: 0.1, Number of Support 

Vectors: 2402 (Table 3). 

Support Vector Machine using the SingleP dataset with imputation had Se of 59.7%, Sp 

of 60.5%, PPV of 68.2%, NPV of 51.4%, and accuracy of 60.0%. Parameters were: SVM-Type: 

eps-regression, SVM-Kernel: radial, cost: 1, gamma: 0.01694915, epsilon: 0.1, Number of 

Support Vectors: 2275 (Table 3). 

XGBoost using the SingleP dataset with imputation had Se of 63.3%, Sp of 55.8%, PPV 

of 60.2%, NPV of 59.1%, and accuracy 59.7% (Table 3). 

XGBoost using the SingleP dataset with missing data had Se of 66.9%, Sp of 48.6%, 

PPV of 57.9%, NPV of 58.2%, and accuracy 58% (Table 3). 

Logistic Regression using the SingleP dataset with imputation had Se of 58.1%, Sp of 

57.5%, PPV of 64%, NPV of 51.4%, and accuracy of 57.8% (Table 3). 
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Table 3. Type of algorithm, type of dataset, use of imputation, and performance metrics observed for prediction of first service 

pregnancy outcome of primiparous and multiparous cows combined using different types of machine learning algorithms. 

 

Parity 1 and Parity 2+ 

Machine Learning 

Algorithm 
Dataset Imputation TN TP FN FP sensitivity specificity PPV NPV Accuracy 

Decision Tree SingleP Yes 153 177 131 139 57.5% 52.4% 56.0% 53.9% 55.0% 

Decision Tree MultiP Yes 144 198 110 148 64.3% 49.3% 57.2% 56.7% 57.0% 

Decision Tree SynchP Yes 97 227 81 195 73.7% 33.2% 53.8% 54.5% 54.0% 

Decision Tree MultiP No 111 220 88 181 71.4% 38.0% 54.9% 55.8% 55.2% 

Decision Tree SynchP No 138 192 116 154 62.3% 47.3% 55.5% 54.3% 55.0% 

Decision Tree SingleP No 95 247 61 197 80.2% 32.5% 55.6% 60.9% 57.0% 

Logistic Regresion SynchP Yes 75 91 141 95 39.2% 44.1% 48.9% 34.7% 41.3% 

Logistic Regresion MultiP Yes 141 186 151 122 55.2% 53.6% 60.4% 48.3% 54.5% 

Logistic Regresion SingleP Yes 150 197 142 111 58.1% 57.5% 64.0% 51.4% 57.8% 

SVM MultiP Yes 134 213 95 158 69.2% 45.9% 57.4% 58.5% 57.8% 

SVM SynchP Yes 161 210 131 98 61.6% 62.2% 68.2% 55.1% 61.8% 

SVM SingleP Yes 150 210 142 98 59.7% 60.5% 68.2% 51.4% 60.0% 

XGBoost SingleP Yes 149 196 112 143 63.6% 51.0% 57.8% 57.1% 57.5% 

XGBoost MultiP Yes 163 195 113 129 63.3% 55.8% 60.2% 59.1% 59.7% 

XGBoost SynchP Yes 134 181 158 127 53.4% 51.3% 58.8% 45.9% 52.5% 

XGBoost MultiP No 153 188 120 139 61.0% 52.4% 57.5% 56.0% 56.8% 

XGBoost SingleP No 142 206 102 150 66.9% 48.6% 57.9% 58.2% 58.0% 

XGBoost SynchP No 122 182 170 126 51.7% 49.2% 59.1% 41.8% 50.7% 

Metrics used to evaluate MLA: TN (True Negatives), TP (True Positives), FN (False Negatives), FP (False Positives), PPV (Positive Predictive Value) 

NPV (Negative Predictive Value) in the testing dataset. 
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DISCUSSION 

In the present study, we evaluated the performance of four different supervised MLA for 

predicting the outcome of the FS after calving in lactating Holstein cows. We compared the 

predictive ability of several different algorithms using a dataset in which data from 14 d before to 

56 d after calving was summarized for multiple periods, or a dataset that summarized data in a 

single value from 3 to 56 d after calving. Both datasets aimed to capture potential cow biological 

variation and the influence of management and environment on cow biology during early 

lactation that could be associated with FS outcome. A third dataset that relied primarily on data 

collected during synchronization of ovulation before first service TAI was used to explore the 

potential predictive value of algorithms using data that more closely reflects cow biology and the 

influence of management and environment but closer to insemination. These different 

approaches to summarize data were used because there are no standard procedures, guidelines, or 

known best practices to build and test MLA for prediction of pregnancy outcome in lactating 

dairy cattle. 

As for any test used for predicting outcomes of interest for dairy reproductive 

management or any other area of dairy herd management, the interpretation of performance 

metrics depends upon the implications of the decisions made based on the test outcome. 

Moreover, depending on the type of decision, the implications of greater sensitivity, specificity 

or the positive and negative predictive values would be different. In this regard, because the type 

and possible combinations of management strategies that can be implemented as part of TRM 

programs is vast, the interpretation of the results of the current study depend upon the context in 

which models would be used in practice. For example, in some cases it may be more valuable to 

use predictive models that yield better sensitivity whereas in other cases greater specificity 
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would be more valuable. Regardless of the potential use of model predictions, the results of this 

study demonstrated that large variation can be expected in MLA performance even when the 

same data is used for model development and testing. Our results also suggested that the same 

MLA methods can present dramatic variation in performance when data for predictors are 

summarized differently as was the case with the MultiP, SingleP, and SynchP datasets. Another 

interesting observation of this study was the effect of data imputation. This method of 

compensating for missing data had mixed effects on MLA performance. Although in general 

algorithms performed better with imputation, substantial improvements in MLA performance 

were not always observed or were of small magnitude.   

To the best of our knowledge, this is one of the first studies aimed at training MLA for 

predicting FS outcome in lactating dairy cows using behavioral, physiological, and performance 

data collected with high time granularity by automated wearable and non-wearable sensors. 

Therefore, direct comparisons with previous studies is difficult. Most of the previous studies 

used datasets with limited behavioral and physiological data or included performance data from 

monthly tests or whole lactations (Caraviello et al., 2006; Rutten et al., 2016). Most studies also 

developed algorithms for primiparous and multiparous cows combined (Hempstalk et al., 2015; 

Ghiasi et al., 2016) and for all AI services rather than FS only (Caraviello et al., 2006). Despite 

these limitations, there were some similarities between some of these previous studies and our 

study. For example, large variation was observed among different types of MLA using the same 

datasets (Shahinfar et al., 2014; Hempstalk et al., 2015; Wełeszczuk et al., 2022) and data 

imputation did not dramatically change algorithm performance (Zhang et al., 2010; Zhang, 

2016).   
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Overall, we observed that MLA trained with a combination of automated sensor cow 

behavioral, physiological and performance data, as well as herd performance and environmental 

data from a single commercial farm presented a wide range of performance for predicting 

pregnancy success of FS after calving for primiparous and multiparous cows. The best 

performing algorithms were primarily those developed for primiparous cows. Among those, 

Support Vector Machine (SVM) and Logistic Regression (LR) had the best better performance 

among all MLA developed and tested. Of note, a SVM algorithm yielded performance metrics in 

the mid-to-high 90% range with an interesting balance of high Se and Sp (both above 95%). If 

repeatable under commercial farm conditions when data is fed in real time to this type of MLA, 

these results are encouraging because the model might be suitable for use in practice. 

Nevertheless, because we used a relatively small dataset from a single commercial farm and the 

lack of validation with an independent dataset, additional research with larger, independent 

datasets, and ideally from more than one commercial farm is needed before this type of models 

can be deployed for use on farms.  

Two other algorithms with the highest performance for predicting FS outcome in 

primiparous cows were developed with LR and SVM algorithms with the SingleP or SynchP 

dataset, respectively. These algorithms had similar Se and NPV but substantially lower Sp and 

PPV than the best performing algorithm for primiparous cows. Thus, SVM, and potentially LR 

might be the most suitable for predicting FS outcome for primiparous cows with similar type of 

data than that used in this study. More interestingly, was the fact that three algorithms with best 

performance used the SingleP and SynchP datasets. These observations would suggest that 

summarizing data in a single value that accumulates or averages all values from the early 

postpartum period or during synchronization of ovulation for first service, might yield better 
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results for predicting FS outcome than when using data summarized in multiple periods for late 

gestation and early lactation, as done for the MultiP dataset. In agreement, the two other 

algorithms in the top five performing algorithms used the SynchP dataset. The latter, which were 

developed with XGBoost, had substantially lower Sp and NPV as compared with the best 

performing SVM and LR algorithms. Thus, their potential value would be limited compared to 

other algorithms developed by other methods.  

Developing different MLA models for primiparous and multiparous cows was explored 

because of the potential effects of known and expected differences in biology, performance, and 

reproductive outcomes for these two groups of cows. In agreement with these expectations, there 

were dramatic differences in MLA performance not only when data for primiparous and 

multiparous cows was used separately, but also when data for the different parity groups were 

combined. Compared with results for primiparous cows, the performance of algorithms for 

predicting FS outcome for multiparous cows was poor and likely of low value for practical 

application. None of the top five performing algorithms had performance metrics above 70%, 

with most values in the range of ~45 to 60%. These contrasting results for primiparous and 

multiparous cows are intriguing because the same type of data, which was collected and 

summarized using the same methods, and was offered to the same MLA methods generated 

highly disparate outcomes. Therefore, it is plausible to speculate that a main reason for the 

differences in MLA performance between parity groups was the underlying patterns, 

relationships, and dependencies in the input data used for predictions for each parity group. 

Although not entirely surprising as MLA do not use the same relationships and patterns in the 

data to generate predictions than traditional statistical methods, it was interesting that algorithms 

for primiparous cows performed better than for multiparous cows considering the larger number, 
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greater variety, and greater magnitude of differences observed in the analysis of patterns and 

associations between input data and FS outcome presented in Chapter I. Certainly, there is a 

myriad of other factors that could explain the observed differences in MLA performance. 

Nevertheless, those are more difficult to identify and elucidate because of the complex manners 

in which the input data with its underlying, patterns, relationships, and dependencies are used by 

the functions of different MLA to predict the outcome of interest.  

 

CONCLUSIONS 

In conclusion, supervised MLA trained with a combination of cow behavioral, 

physiological, and performance parameters collected by automated wearable and non-wearable 

sensors, and data for herd performance and farm environmental conditions from a single 

commercial farm presented large variation in performance. As parity group was a major source 

of variation in MLA predictive ability, different models might have to be developed for 

predicting FS outcome for primiparous and multiparous cows. Our results also demonstrated that 

the same MLA methods can present dramatic variation in performance when input data for 

predictors are summarized differently.   
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CHAPTER III 

OVERALL CONCLUSIONS AND FUTURE RESEARCH 

1. OVERALL CONCLUSIONS 

The overarching objectives of the research presented in this thesis were to characterize 

associations between cow, herd, and environmental data with the outcome of individual 

inseminations, and develop and evaluate MLA to predict the outcome of the first service (FS) 

after calving in lactating dairy cows. A better understanding of associations between potential 

predictors of fertility and outcomes of individual AI services in lactating dairy cows might 

enable the implementation of targeted reproductive management (TRM) strategies in dairy 

herds. 

The primary objective of the study presented in Chapter I of this thesis was to compare 

the pattern of behavioral, physiological, and performance parameters collected by automated 

sensors for cows that became pregnant or not at FS. A secondary objective was to evaluate the 

association between pregnancy outcome at FS and previous gestation and early lactation 

performance and events, as well as environmental conditions before insemination. Therefore, we 

conducted an observational retrospective cohort study using data from a commercial dairy farm. 

In this study, we observed that for primiparous cows there were no differences between pregnant 

and non-pregnant cows for most sensor data patterns explored, or between groups of cows 

created based on sensor parameters of interest. Nevertheless, some associations were observed 

for performance outcomes because pregnant cows had greater milk, butterfat, protein, and 

lactose yield up to 56 DIM. Contrary to our expectations, we observed no differences between 

pregnant and non-pregnant primiparous cows for most behavioral parameters except for number 

of lying bouts per day, which was greater for non-pregnant than pregnant cows.  
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For multiparous cows, we observed consistent differences for milk and milk components 

yields between pregnant and non-pregnant mostly during the previous lactation cycle. Pregnant 

cows after FS produced less total milk, milk adjusted to 305 d of lactation, total fat, and total 

protein than non-pregnant cows. Fewer days in milk in the previous lactation because of earlier 

pregnancy in cows that became pregnant at FS seemed to explain part of the difference in total 

milk and components yield. Some associations were also observed between FS outcome during 

the lactation of interest and features and performance outcomes of the previous lactation and 

gestation cycle. Cows pregnant at FS had shorter gestation length, shorter calving interval, longer 

days open, and tended to have more days dry. However, because most of these differences were 

small in magnitude, the potential value of these outcomes for identifying cows with different 

likelihood of pregnancy at FS might be limited.  

Unlike for primiparous cows, a few more associations were observed for behavioral and 

physiological parameters in multiparous cows. Most notable was the greater body temperature 

observed through most of early lactation and during synchronization of ovulation for non-

pregnant multiparous cows. Moreover, multiparous cows exposed to THI>72 (inside or outside 

barns) in early lactation had a substantial reduction in P/AI as compared with cows exposed to 

THI<72. Thus, the current data suggested that both body temperature and THI, as measured in 

our study, might be reasonable indicators of FS outcome for multiparous lactating dairy cows. 

Moreover, BW patterns for multiparous pregnant and non-pregnant cows were in line with 

expectations and suggested some potential to differentiate cows with different FS outcome. Of 

note, the difference in percent change in accumulated BW loss from calving to the BW nadir, 

and then up to 56 DIM might be used to aid in the prediction of FS outcome.   
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The overaching objective of the study presented in Chapter II of this thesis was to 

evaluate the performance of supervised MLA for predicting pregnancy outcome after FS in 

lactating dairy cows using a combination behavioral, physiological, and performance parameters 

in combination with data for herd performance and farm environmental conditions. We used the 

data presented in Chapter I of this thesis to predict the outcome of the first AI service after 

calving. We compared the predictive ability of several different MLA using dataset that captured 

biological, herd performance and environmental conditions variation at different stages of the 

lactation cycle and prior to first insemination in dairy cows. In this exploratory research, we used 

different approaches to summarize data because of the lack standard procedures, guidelines, or 

known best practices to process input data and build and test MLA for prediction of pregnancy 

outcome in lactating dairy cattle. Based on the performance of the multiple MLA developed and 

tested, we learned that a wide range of performance for predicting pregnancy success of FS after 

calving can be expected. Interestingly, we observed large variation in performance between 

primiparous and multiparous cows. Some models for primiparous cows had Se, Sp, PPV, and 

NPV in excess of 90 to 95% whereas none of the models for multiparous cows had values for 

performance metrics above 70%. Also, some types of MLA had greater overall performance than 

others despite the use of the same data for training of all algorithms. For this study, we 

concluded that supervised MLA trained with a combination of cow behavioral, physiological, 

and performance parameters collected by automated wearable and non-wearable sensors, and 

data for herd performance and farm environmental conditions are likely to present large variation 

in performance. Moreover, because parity group was a major source of variation in MLA 

predictive ability, different models might have to be developed for predicting FS outcome for 

primiparous and multiparous cows.  
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In summary, a main contribution of the research presented in this thesis was to better 

understand associations between multiple cow, herd, and environmental parameters with the 

outcome of the FS postpartum in lactating dairy cows. Elucidation of these relationships provides 

new opportunities to explore novels methods to group cows for targeted reproductive 

management based on their probability to conceive after AI. Another contribution was to 

improve our understanding of the process of developing and testing MLA for prediction of 

pregnancy outcome at FS. Overall, we learned that many challenges and bottlenecks remain in 

the process of MLA development for reproductive outcome predictions.  

 

2. FUTURE RESEARCH 

The studies presented in this thesis had several limitations. Among the most notable were 

the use of data from a single dairy farm, the methods used to aggregate and summarize data for 

analysis of association with FS pregnancy outcome and development of MLA, lack of data for all 

periods evaluated for some parameters, and no accounting for data interactions for the evaluation 

of associations between input data and FS pregnancy outcome. The use of data from a single 

farm reduced the confounding effects of the between-herds variability observed when data from 

multiple herds are included. However, using a single farms limited the interpretation of results 

and the scope of inference to the herd in which the study was conducted. Thus, future studies 

should be designed to include data from multiple commercial dairy farms that generate the same 

type of data for the cow, herd, and environmental parameters of interest. Future studies including 

data for patterns of behavioral, physiological, and performance parameters collected by 

automated sensors over periods of days, weeks, and months should explore different methods 

and strategies to aggregate and summarize data for exploring associations with pregnancy 
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outcome, and for developing MLA to predict pregnancy outcome. Rather than using averages or 

accumulated values for periods of time before AI, data for the same periods could be used to 

categorize cows into groups with levels that reflect cow biological, physiological, or 

performance outcomes. For example, cows could be grouped based on the observation of peaks, 

nadirs, increase and decrease rates overt time, or the duration of periods of no change for specific 

parameters collected by sensors. Moreover, metrics of data variation such as the coefficient of 

variation, standard deviation, number of standard deviations above or below the mean for a 

group could be used to group cows or as the direct input data for analysis. Issues related to lack 

of data for all cows and all periods could be addressed by ensuring that all cows for which 

outcomes will be evaluated or predictions generated have functional wearable sensors attached 

and their data is properly collected from non-wearable sensors. Designing prospective studies 

could help mitigate this issue provided that access to all sensor systems is possible. A potential 

solution to explore interactions between multiple parameters and the outcome of interest is to run 

multivariable models for exploring two- and three-way interactions in the data. A caveat of 

running such models is the complexity of some of the models if all variables are to be offered at 

the same time and the difficulties of interpreting data from some interactions.    

Future research should also explore associations between the parameters of interest and 

pregnancy outcome for all AI services rather than FS only. Although there might be enough 

interest on the development and implementation of targeted reproductive management strategies 

for first service, there might be value on developing the same type of management strategies for 

second and greater AI services.  

Lastly, models developed with MLA to predict pregnancy outcome should be evaluated 

in prospective studies under real world conditions at commercial dairy farms with data from 
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cows that were not used for training the models used for prediction. Evaluating the performance 

of these models with independent datasets in commercial farms will help determine their true 

potential value dairy herd reproductive management.  
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SUPPLEMENTARY DATA, TABLES, AND FIGURES 

Decision Tress Outputs 

Variables used in tree construction for SingleP parity 1 dataset with imputation (figure 

1A): changebwnadir_dim56, difbw3_5, difdim3_dim56, eatlast_3, fatyield8, lactyield8, protein8, 

pywcr, restbout8, restperbout8, resttime8, thi_inside, thi_outside, warmcold, yield8. 

Variables used in tree construction for MultiP parity 1 dataset with imputation (figure 

1B): conductivity2, conductivity3, fatyield2, lactose1, lactose5, restbout2, restbout4, 

restperbout5, thi_inside, yield4, yield5.        

Variables used in tree construction for SynchP parity 1 dataset with imputation (figure 

1C): activity, activity2, afc, animalactivity2, conductivity3, dcc, difnadir_dim56, eatlast_2, 

eatlast1, fatyield2, fatyieldsynch3, fpratio4, fpratiosynch3, lactosesynch3, milkingtime4, 

protyield4, protyieldsynch3, restbout2, restbout3, restperbout2, restperbout3, restperboutsynch1, 

restperboutsynch3, rumlast3, yield2, yield3.            

Variables used in tree construction for SingleP parity 1 dataset with missing data (figure 

1D): conductivity8, difbw2_5, difnadir_dim56, eatlast_3, fatyield8, fpratio8, lactose8, lactyield8, 

restbout8, restperbout8, resttime8, rumlast_3, rumlast8, thi_inside, yield8.         

Variables used in tree construction for MultiP parity 1 dataset with missing data (figure 

2A): eatlast_1, fat4, fatyield2, fatyield4, fpratio1, lactose1, lactose5, milkingtime5, protein5, 

restbout4, restperbout1, rumlast3, yield5       

Variables used in tree construction for SynchP parity 1 dataset with missing data (figure 

2B): activity4, animalactivity2, animalactivitysynch1, bolustempsynch1, conductivity4, 

fatyield2, lactose1, lactosesynch3, protyield4, restperbout2, restperbout3, restperbout4, 

restperboutsynch2.    
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Variables used in tree construction for SingleP parity 2 dataset with imputation (figure 

3A): afc, changebwnadir_dim56, ddry, difbw345, pltotf, thi_inside, thi_outside.         

Variables used in tree construction for MultiP parity 2 dataset with imputation (figure 

3B): changebwnadir_dim56, ddry, eatlast3, lactose1, restbout5, restperbout3, resttime5, 

thi_inside, thi_outside.         

Variables used in tree construction for SynchP parity 2 dataset with imputation (figure 

3C): afc, lactyieldsynch3, pltotf, protyield3, protyieldsynch1, pywcr, restperbout1, weight1.         

Variables used in tree construction for SingleP parity 2 dataset with missing data (figure 

3D): animalactivity_3, cr4wkavg, pltotf, protein8, pywcr.            

Variables used in tree construction for MultiP parity 2 dataset with missing data (figure 

4A): pltotf, protein5, pywcr, resttime1. 

Variables used in tree construction for SynchP parity 2 dataset with missing data (figure 

4B): animalactivity_2, cr4wkavg, eatlast2, fpratio3, fpratiosynch2, lactose1, lactosesynch3, 

pltotf, pywcr, restperbout1, yield4.           

Variables used in tree construction for SingleP parity 1 and 2+ dataset with imputation 

(figure 5A): ddry, lact, pltotf, pywcr.   

Variables used in tree construction for MultiP parity 1 and 2+ dataset with imputation 

(figure 5B): activity4, ddry, fatyield2, lactyield5, pltotf, pltotp, pywcr, rumlast_1. 

Variables used in tree construction for SynchP parity 1 and 2+ dataset with imputation 

(figure 5C): conductivitysynch3, eatlast_2, milkingtime2, pltotf, pywcr, restperboutsynch3, 

weightsynch3.       

Variables used in tree construction for SingleP parity 1 and 2+ dataset with missing data 

(figure 5D): lact, pltotf, protein8, pywcr.    
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Variables used in tree construction for MultiP parity 1 and 2+ dataset with missing data 

(figure 6A): lact, pltotf, protein5, pywcr, resttime1. 

Variables used in tree construction for SynchP parity 1 and 2+ dataset with missing data 

(figure 6B): cr4wkavg, fpratio3, fpratiosynch2, lact, lactose1, pltotf, pywcr.        
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Figure 1. Variables used in tree construction for: SingleP parity 1 dataset with imputation (A), MultiP parity 1 dataset with imputation (B), SynchP parity 1 

dataset with imputation (C), and SingleP parity 1 with missing data (D), data from 609 primiparous lactating dairy cows. 
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Figure 2. Variables used in tree construction for: MultiP parity 1 with missing data (A), SynchP parity 1 dataset with missing data (B), data from 609 

primiparous lactating dairy cows. 
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Figure 3. Variables used in tree construction for: SingleP parity 2 dataset with imputation (A), MultiP parity 2 dataset with imputation (B), SynchP parity 2 

dataset with imputation (C), and SingleP parity 2 with missing data (D), data from 1010 multiparous lactating dairy cows.
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Figure 4. Variables used in tree construction for: MultiP parity 2 with missing data (A), SynchP parity 2 dataset with missing data (B), data from 1010 

primiparous lactating dairy cows. 
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Figure 5. Variables used in tree construction for: SingleP parity 1 and 2+ dataset with imputation (A), MultiP parity 1 and 2+ dataset with imputation (B), 

SynchP parity 1 and 2+ dataset with imputation (C), and overlap parity 1 and 2+ with missing data (D), data from 1,619 lactating dairy cows (n = 609 

primiparous; n = 1,010 multiparous). 
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Figure 6. Variables used in tree construction for: MultiP parity 1 and 2+ dataset with missing data (A), SynchP parity 1 and 2+ dataset with missing data (B), 

data from 1,619 lactating dairy cows (n = 609 primiparous; n = 1,010 multiparous). 
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Logistic Regression Outputs 

 

Table 4. Coefficients for Logistic Regression for primiparous cows with SingleP dataset using 

imputation for the missing data. 

SingleP dataset with imputation for Parity 1 

Coefficients: Estimate Std. Error z value Pr(>|z|)   

protyield8 1.36E+01 5.64E+00 2.416 0.0157 * 

ce 2.35E+00 1.19E+00 1.978 0.0479 * 

(Intercept) -8.99E+01 5.00E+01 -1.796 0.0725 . 
Signif. codes:  0.01 ‘*’ 0.05 ‘.’  
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Table 5. Coefficients for Logistic Regression for primiparous cows with MultiP dataset using 

imputation for the missing data.  

MultiP dataset with imputation for Parity 1 

Coefficients: Estimate Std. Error z value Pr(>|z|)   

restperbout4 -7.22E-02 2.68E-02 -2.697 0.007 ** 

animalactivity_2 5.79E-01 2.24E-01 2.583 0.00979 ** 

activity3 -9.54E-03 4.60E-03 -2.075 0.03799 * 

ce 2.55E+00 1.26E+00 2.027 0.04264 * 

animalactivity_1 -6.54E-01 3.36E-01 -1.946 0.05165 . 

restperbout5 5.30E-02 2.82E-02 1.878 0.06044 . 

(intercept) -1.10E+02 6.01E+01 -1.829 0.06744 . 

fat1 3.73E+00 2.07E+00 1.802 0.07147 . 

animalactivity2 7.27E-01 4.07E-01 1.787 0.0739 . 

animalactivity3 -9.15E-01 5.17E-01 -1.771 0.07656 . 

fpratio1 -1.07E+01 6.41E+00 -1.666 0.0958 . 

fat2 -4.96E+00 3.00E+00 -1.65 0.09897 . 
Signif. codes:  0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’  
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Table 6. Coefficients for Logistic Regression for primiparous cows with SynchP dataset using 

imputation for the missing data. 

SynchP dataset with imputation for Parity 1 

Coefficients: Estimate Std. Error z value Pr(>|z|)   

animalactivitysynch1 -4.93E+00 1.35E+00 -3.644 0.000269 *** 

conductivitysynch3 -1.89E+00 5.56E-01 -3.402 0.00067 *** 

conductivitysynch1 2.28E+00 7.13E-01 3.204 0.001356 ** 

animalactivity_2 8.60E-01 2.72E-01 3.158 0.001589 ** 

(intercept) -2.47E+02 8.49E+01 -2.915 0.003562 ** 

animalactivity2 1.38E+00 5.01E-01 2.75 0.00596 ** 

activitysynch1 -2.10E-02 7.90E-03 -2.662 0.007772 ** 

animalactivity_1 -9.76E-01 3.81E-01 -2.565 0.010321 * 

lactyieldsynch2 -4.66E+00 2.05E+00 -2.273 0.023031 * 

animalactivitysynch2 3.62E+00 1.64E+00 2.211 0.027015 * 

bolustempsynch1 -6.01E+00 2.78E+00 -2.161 0.030729 * 

metdig_30_n -3.28E+00 1.53E+00 -2.141 0.032272 * 

lng2_5 -9.34E-01 4.44E-01 -2.101 0.0356 * 

bolustempsynch2 7.91E+00 3.79E+00 2.089 0.036748 * 

difdim3_dim56 3.28E-02 1.60E-02 2.056 0.039806 * 

thi_inside -4.61E-02 2.26E-02 -2.044 0.040928 * 

restbout2 -2.12E-01 1.05E-01 -2.016 0.043832 * 

thi_outside 3.50E-02 1.78E-02 1.961 0.049857 * 

restperbout4 -5.40E-02 2.78E-02 -1.943 0.052013 . 

ce 2.83E+00 1.47E+00 1.93 0.053572 . 

restboutsynch2 4.58E-01 2.40E-01 1.911 0.055972 . 

restperboutsynch2 7.48E-02 3.98E-02 1.877 0.060539 . 

resttime2 4.98E-03 2.65E-03 1.875 0.06078 . 

protyield4 -2.68E+00 1.47E+00 -1.825 0.067944 . 

activitysynch2 1.60E-02 8.83E-03 1.814 0.069687 . 

protyieldsynch1 2.53E+00 1.42E+00 1.778 0.075361 . 

protein3 -9.74E+00 5.54E+00 -1.756 0.079026 . 

lactose3 2.17E+00 1.30E+00 1.677 0.093478 . 

yieldsynch2 1.78E-01 1.06E-01 1.675 0.094021 . 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’  
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Table 7. Coefficients for Logistic Regression for multiparous cows with SingleP dataset using 

imputation for the missing data. 

SingleP dataset with imputation for Parity 2+ 

Coefficients: Estimate Std. Error z value Pr(>|z|)   

resttime8 7.08E-03 1.92E-03 3.686 0.000228 *** 

thi_inside -3.19E-02 9.50E-03 -3.361 0.000777 *** 

thi_outside 2.30E-02 7.05E-03 3.266 0.00109 ** 

pltotf -3.42E-03 1.13E-03 -3.03 0.002443 ** 

restbout8 -3.20E-01 1.09E-01 -2.924 0.003456 ** 

restperbout8 -4.91E-02 1.75E-02 -2.803 0.005065 ** 

pltotm -2.88E-04 1.25E-04 -2.31 0.020888 * 

cr4wkavg 1.93E-02 8.77E-03 2.194 0.028212 * 

plm305 2.22E-04 1.03E-04 2.149 0.031621 * 

changebwdim3_dim56 7.23E-01 3.46E-01 2.09 0.036659 * 

changebwdim3_nadir -7.36E-01 3.81E-01 -1.931 0.053514 . 

pltotp 5.83E-03 3.26E-03 1.786 0.074103 . 

difdim3_dim56 -7.60E-02 4.54E-02 -1.672 0.094502 . 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’  
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Table 8. Coefficients for Logistic Regression for multiparous cows with MultiP dataset using 

imputation for the missing data. 

MultiP dataset with imputation for Parity 2+ 

Coefficients: Estimate Std. Error z value Pr(>|z|)   

changebwnadir_dim56 -0.1682211 0.0553111 -3.041 0.00236 ** 

thi_outside 0.0233387 0.0079796 2.925 0.00345 ** 

thi_inside -0.0322547 0.0110808 -2.911 0.0036 ** 

pltotf -0.0034583 0.0012284 -2.815 0.00487 ** 

changebwdim3_dim56 0.1664522 0.0620613 2.682 0.00732 ** 

changebwdim3_nadir -0.1774954 0.0679487 -2.612 0.009 ** 

pltotm -0.0003438 0.000135 -2.547 0.01086 * 

weight2 -0.0097272 0.0038794 -2.507 0.01216 * 

pltotp 0.0088579 0.00357 2.481 0.01309 * 

eatlast3 -0.004009 0.00162 -2.475 0.01333 * 

(intercept) 62.0878426 28.322579 2.192 0.02837 * 

fat2 3.9701407 1.8148922 2.188 0.0287 * 

milkingtime2 0.0065341 0.0029921 2.184 0.02898 * 

bolustemp3 -1.0012771 0.4904263 -2.042 0.04119 * 

fat1 -2.409918 1.2054816 -1.999 0.04559 * 

plm305 0.0002142 0.0001086 1.972 0.04858 * 

bolustemp_1 1.0751974 0.5566556 1.932 0.05342 . 

cr4wkavg 0.0184164 0.0096755 1.903 0.05699 . 

activity3 -0.0056545 0.0030126 -1.877 0.06052 . 

fatyield2 -3.6680709 1.9592183 -1.872 0.06118 . 

lact -0.1468522 0.080239 -1.83 0.06722 . 

conductivity3 0.350557 0.1979996 1.77 0.07664 . 
Signif. codes: 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’  
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Table 9. Coefficients for Logistic Regression for multiparous cows with SynchP dataset using 

imputation for the missing data 

SynchP dataset with imputation for Parity 2+ 

Coefficients: Estimate Std. Error z value Pr(>|z|)   

thi_outside 2.67E-02 8.66E-03 3.082 0.00206 ** 

(intercept) 1.21E+02 4.24E+01 2.841 0.0045 ** 

fat1 -5.66E-01 2.08E-01 -2.726 0.00642 ** 

thi_inside -3.25E-02 1.21E-02 -2.701 0.00692 ** 

activitysynch1 -1.29E-02 4.93E-03 -2.617 0.00886 ** 

animalactivitysynch1 -1.73E+00 6.92E-01 -2.506 0.01223 * 

pltotf -3.14E-03 1.34E-03 -2.351 0.01871 * 

animalactivitysynch2 1.95E+00 8.74E-01 2.231 0.02566 * 

lame_30_n -8.94E-01 4.01E-01 -2.229 0.02582 * 

fpratiosynch1 4.08E+00 1.83E+00 2.223 0.02622 * 

bolustempsynch1 -3.15E+00 1.42E+00 -2.211 0.02704 * 

fatsynch3 1.95E+00 8.89E-01 2.19 0.02855 * 

lactose4 -1.52E+00 7.30E-01 -2.08 0.03752 * 

pl_metdig_30_n -1.22E+00 5.88E-01 -2.077 0.03777 * 

lngnadir_dim56 6.89E-01 3.33E-01 2.068 0.03866 * 

milkingtime2 6.47E-03 3.17E-03 2.04 0.04132 * 

lact -1.70E-01 8.42E-02 -2.019 0.0435 * 

activitysynch3 8.81E-03 4.39E-03 2.004 0.04506 * 

fpratio4 -3.02E+00 1.52E+00 -1.994 0.04618 * 

pl_mast_30_n -1.97E+00 1.02E+00 -1.929 0.05369 . 

pltotm -2.64E-04 1.41E-04 -1.871 0.06128 . 

weight4 6.37E-03 3.47E-03 1.839 0.06592 . 

yieldsynch2 -1.48E-01 8.04E-02 -1.838 0.06611 . 

fatsynch1 -1.87E+00 1.03E+00 -1.816 0.06937 . 

conductivity3 3.72E-01 2.07E-01 1.796 0.07253 . 

bolustemp_1 1.04E+00 5.82E-01 1.788 0.07382 . 

activity3 -5.70E-03 3.22E-03 -1.771 0.07655 . 

weight2 -6.32E-03 3.63E-03 -1.743 0.08139 . 

pltotp 6.64E-03 3.82E-03 1.742 0.08157 . 

cr4wkavg 1.79E-02 1.05E-02 1.706 0.08808 . 

pl_lame_30_n -1.38E+00 8.20E-01 -1.688 0.09143 . 

protein4 -1.93E+00 1.14E+00 -1.682 0.09249 . 

lactose1 6.06E-01 3.60E-01 1.682 0.09261 . 

changebwdim3_nadir 2.65E-01 1.58E-01 1.68 0.09295 . 

bolustempsynch2 2.57E+00 1.53E+00 1.676 0.09366 . 

conductivitysynch3 -4.90E-01 2.93E-01 -1.672 0.09457 . 



 
 

143 
 

metdig_30_n -6.31E-01 3.79E-01 -1.666 0.09579 . 

bolustempsynch3 -1.93E+00 1.17E+00 -1.647 0.09959 . 
Signif. codes:  0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’  
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Table 10. Coefficients for Logistic Regression for primiparous and multiparous cows with 

SingleP dataset using imputation for the missing data. 

SingleP dataset with imputation for Parity 1 and Parity 2+ 

Coefficients: Estimate Std. Error z value Pr(>|z|)   

thi_outside 1.65E-02 5.64E-03 2.918 0.00352 ** 

pltotf -3.24E-03 1.12E-03 -2.879 0.00399 ** 

parity -4.86E-01 1.83E-01 -2.654 0.00795 ** 

thi_inside -1.96E-02 7.58E-03 -2.583 0.00978 ** 

pltotp 7.83E-03 3.20E-03 2.447 0.01439 * 

pldcc -3.27E-02 1.55E-02 -2.112 0.03473 * 

resttime8 2.61E-03 1.27E-03 2.056 0.03981 * 

pltotm -2.19E-04 1.16E-04 -1.889 0.0589 . 

twns -8.60E-01 5.08E-01 -1.695 0.09011 . 

restbout8 -1.08E-01 6.43E-02 -1.672 0.09449 . 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’  
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Table 11. Coefficients for Logistic Regression for primiparous and multiparous cows with 

MultiP dataset using imputation for the missing data. 

MultiP dataset with imputation for Parity 1 and Parity 2+ 

Coefficients: Estimate Std. Error z value Pr(>|z|)   

changebwnadir_dim56 -1.37E-01 4.10E-02 -3.332 0.000863 *** 

pltotf -3.45E-03 1.20E-03 -2.885 0.00392 ** 

thi_outside 1.68E-02 6.04E-03 2.788 0.005296 ** 

pltotp 8.85E-03 3.40E-03 2.602 0.009267 ** 

changebwdim3_dim56 1.15E-01 4.56E-02 2.519 0.011772 * 

activity3 -5.98E-03 2.39E-03 -2.5 0.012427 * 

protyield3 9.07E+00 3.87E+00 2.34 0.019266 * 

conductivity3 3.88E-01 1.69E-01 2.301 0.021407 * 

thi_inside -1.93E-02 8.55E-03 -2.26 0.023852 * 

eatlast3 -2.72E-03 1.22E-03 -2.229 0.025781 * 

changebwdim3_nadir -1.05E-01 4.74E-02 -2.22 0.026436 * 

yield4 -8.29E-02 3.97E-02 -2.088 0.036817 * 

pldcc -3.27E-02 1.62E-02 -2.016 0.043792 * 

changebw4_5 -8.63E-02 4.32E-02 -1.996 0.045917 * 

activity5 4.41E-03 2.28E-03 1.937 0.052768 . 

bolustemp3 -7.57E-01 3.98E-01 -1.901 0.057292 . 

lactyield1 3.74E+00 1.99E+00 1.879 0.060177 . 

restperbout1 -1.27E-02 6.78E-03 -1.867 0.061886 . 

yield1 -1.16E-01 6.32E-02 -1.838 0.066069 . 

twns -9.62E-01 5.25E-01 -1.834 0.066695 . 

bolustemp_1 8.14E-01 4.46E-01 1.825 0.068007 . 

protyield5 -5.77E+00 3.22E+00 -1.791 0.073343 . 

lact -1.14E-01 6.55E-02 -1.737 0.082355 . 

resttime5 2.01E-03 1.19E-03 1.687 0.091684 . 

protein4 -5.31E+00 3.16E+00 -1.679 0.093246 . 

ce 8.86E-01 5.31E-01 1.67 0.095013 . 

eatlast4 1.76E-03 1.06E-03 1.665 0.095931 . 

eatlast2 1.62E-03 9.74E-04 1.662 0.096465 . 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’  

 

  



 
 

146 
 

Table 12. Coefficients for Logistic Regression for primiparous and multiparous cows with 

SynchP dataset using imputation for the missing data. 

SynchP dataset with imputation for Parity 1 and Parity 2+ 

Coefficients: Estimate Std. Error z value Pr(>|z|)   

(intercept) 1.53E+02 4.23E+01 3.62 0.000295 *** 

fat1 -6.16E-01 1.98E-01 -3.103 0.001915 ** 

lngnadir_dim56 9.89E-01 3.38E-01 2.928 0.003416 ** 

bolustempsynch1 -4.07E+00 1.42E+00 -2.856 0.004296 ** 

thi_outside 2.25E-02 8.57E-03 2.621 0.008775 ** 

lame_30_n -1.02E+00 3.93E-01 -2.594 0.009483 ** 

animalactivitysynch1 -1.66E+00 6.44E-01 -2.571 0.010131 * 

utd_30_n -8.39E-01 3.31E-01 -2.536 0.011222 * 

pl_metdig_30_n -1.36E+00 5.45E-01 -2.498 0.012505 * 

fpratiosynch1 4.05E+00 1.73E+00 2.34 0.019292 * 

tbrd -6.90E-01 2.99E-01 -2.309 0.020934 * 

twns -1.47E+00 6.60E-01 -2.225 0.026102 * 

yield4 -6.25E-02 2.82E-02 -2.217 0.026633 * 

pl_mast_30_n -2.45E+00 1.11E+00 -2.209 0.027176 * 

activity4 6.95E-03 3.17E-03 2.194 0.028207 * 

metdig_30_n -7.72E-01 3.55E-01 -2.173 0.029801 * 

animalactivitysynch2 1.73E+00 8.08E-01 2.143 0.032145 * 

pltotp 8.10E-03 3.80E-03 2.131 0.033073 * 

thi_inside -2.51E-02 1.18E-02 -2.12 0.03398 * 

protyield1 2.48E+00 1.17E+00 2.116 0.034374 * 

fpratio1 1.36E+00 6.47E-01 2.097 0.036033 * 

fatsynch1 -2.60E+00 1.27E+00 -2.05 0.040327 * 

dz30_n 1.10E+00 5.40E-01 2.033 0.042033 * 

pl_lame_30_n -1.63E+00 8.05E-01 -2.023 0.043093 * 

pltotf -2.66E-03 1.33E-03 -2.001 0.045446 * 

pl_dz30_n 1.18E+00 5.92E-01 1.986 0.047058 * 

changebwdim3_nadir 2.07E-01 1.06E-01 1.958 0.050182 . 

activitysynch1 -9.54E-03 4.89E-03 -1.95 0.051117 . 

pl_other_30_n 1.92E+00 9.96E-01 1.926 0.05406 . 

activity3 -6.18E-03 3.27E-03 -1.89 0.0588 . 

mast_30_n -8.32E-01 4.44E-01 -1.873 0.061083 . 

lactyield1 -1.27E+00 6.85E-01 -1.849 0.064389 . 

lactose1 6.25E-01 3.44E-01 1.817 0.069221 . 

resttime4 2.85E-03 1.58E-03 1.799 0.072 . 

cr4wkavg 1.85E-02 1.03E-02 1.791 0.073234 . 

pl_utd_30_n -9.72E-01 5.47E-01 -1.779 0.075201 . 
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lactosesynch3 2.15E+00 1.21E+00 1.77 0.076649 . 

resttimesynch1 4.83E-03 2.73E-03 1.77 0.076755 . 

yieldsynch2 -1.31E-01 7.43E-02 -1.759 0.078647 . 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’  

 

 


