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The speed with which new online content becomes available has exacerbated
the well known problem of information overload and motivated the innovation
of techniques that help people read and consume information. More specifically
for NLP, it has motivated researchers to design general models that can extract
from large collections of documents informative structured information, such as
information about events — what’s happening around the world. The extracted
structured information (e.g., participants, locations, objects involved in an event)
is essential for a variety of downstream tasks such as knowledge base population,
question answering, and document analysis.

In recent years, with the progress in research on deep learning, the community
has seen improvements on many sentence-level information extraction tasks such
as named entity recognition and relation extraction. But less progress has been
made on document-level extraction problems (where the elements to be extracted
are spread across the document), despite the fact that document-level extraction
is closer to what is needed by end users. Existing methods largely ignore the
document-level context and split the full extraction problem into separate tasks
which cause error propagation. Plus, they rely heavily on manually annotated
resources developed for a fixed domain-specific output schema, and, as a result,
are not data-efficient or general enough to handle unanticipated schema changes

at deployment time.



In this dissertation, we introduce models and frameworks to address these short-
comings of prior work. To better incorporate the document-level context we pro-
pose a multi-granularity machine reader, which interprets sentences in the context
of preceding and following sentences. To help neural network-based models bet-
ter capture the output structure and dependencies between events, we propose a
generative learning-based framework for the extraction problem, which tackles this
complicated task in one pass, avoiding error propagation introduced by traditional
pipeline-based systems. Finally, we formulate the (zero-shot) event extraction
problem as a question answering task and develop a question answering-based
framework, to allow the model to conduct extraction for roles given few/no anno-
tated examples. To further exploit the advantages of the QA-based framework, we
propose a learning-based method that automatically generates synthetic question-

answer pairs for data augmentation purposes.
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CHAPTER 1
INTRODUCTION

1.1 Overview

Over the years, how people absorb information has changed dramatically. For ex-
ample, in the 1950s, without the existence of the Internet, almost no information
was available online. While nowadays, with the explosion of information online,
many personal devices (e.g., cell phones, tablets, laptops) are pushing what’s hap-
pening around the world to people virtually 24 hours a day. This amount of
information is over the bar that one can consume, which causes the well-known
phenomenon called information overload. This phenomenon has motivated re-
search into building better “machine readers” that can automatically process large
amounts of textual information. They read through the documents sentence by
sentence and extract information necessary for downstream tasks like automatic
question answering and knowledge-base population as well as supporting higher-
level applications in areas like personal decision-making and government policy

making (case/legal documents).

To facilitate downstream tasks like answering user questions or adding new
knowledge/facts into a knowledge base to tackle information overload problems
in people’s lives, researchers have introduced the task called Information Extrac-
tion (IE). More formally, IE is the automatic identification and classification of
instances of user-specified types of entities (e.g., names of places, people, organiza-
tions), relations (e.g., person-X is-parent-of person-Y), and events (e.g., an event
trigger word and the corresponding entities involved) from text [Grishman, 2019].

And the output is of a structured format (e.g., database) that is machine-readable.



An example of this will be provided later in Figure 1.1.

My goal in this dissertation is to improve machine learning-based methods for
extracting structured information from documents and to develop new methods

that achieve decent performance given few annotated training examples.

1.2 Information Extraction from Documents

In this dissertation, we focus on extracting information at the document level.
The templates to be extracted have a complex structure and the entities/relations
involved in each template might be scattered across the document. To be more
specific, given a domain of interest, the goal is to extract from it important contents
like the happening of certain events. Consider the example from Figure 1.1 in
which the input is an article regarding a terrorist incident. In the task, a set
of role names are pre-defined (i.e., representing a fixed schema) for the domain,
which is terrorism. For example, the roles include perpetrator-individual and
weapon. Also in the task, a set of possible event types (e.g., Attack, Bombing) are

pre-specified.

The target is to build systems that can automatically identify all events in
the domain and extract their types and role-fillers in the form of a structured
template, one for each distinct event in the input text!. There might be zero or
multiple (>= 1) templates extracted from each document and zero or multiple

role-filler entities to be extracted for each role.

This document-level extraction problem is generally decomposed into two steps,

'For the example in Figure 1.1, the system is expected to extract three templates — one for
an Attack, another for a Bombing, the last for an Arson.



Several attacks were carried out in La Paz
last night, one in front of government
house ...

The self-styled "Zarate armed forces"
sent simultaneous written messages to the
media, calling on the people to oppose ...

The first attack occurred at 22:30 in
front of the economic ministry, just
before President Paz Zamora concluded
his message to ...

Roberto Barbery, has reported that
dynamite sticks were hurled from a car.

The second attack occurred at 23:35,
just after the cabinet members had left
government house where they had
listened to the presidential message.

A bomb was placed outside the house in
the parking lot that is used by cabinet
ministers. The police ...

As of 5:00 today, people found that an
old shack on the estate was set ablaze...

Event 1 Template

Attack

Perpetrator Indiv.

Perpetrator Org

Zarate armed forces

Physical Target

economic ministry

Weapon

dynamite sticks

Victim

Event 2 Template

Bombing

Perpetrator Indiv.

Perpetrator Org

Zarate armed forces

Physical Target

government house

Weapon

bomb

Victim

Event 3 Template

Arson

Perpetrator Indiv.

Perpetrator Org Zarate armed forces
Physical Target old shack

Weapon -

Victim -

Figure 1.1: Extracting Structured Information from Documents (Template Filling).

1. Event/trigger detection: In the event detection step, the system should read
through the input sequence to determine/detect the existence of events (e.g.,

a trigger word or expression).

2. Role-filler entity extraction?: In the role-filler entity extraction phase, the
system should extract entity spans corresponding to the roles associated with

the template type.

Generally, to extract the correct information from a document, a system needs
to model the entire document and its complex output structure well [Ji and Grish-
man, 2008; Liao and Grishman, 2010; Yang and Mitchell, 2016]. One difficulty is
that, from a single input sentence alone, it is often hard/ambiguous to determine

the type of the event. For example, “left” might mean someone left a place or

2Under the ACE [Linguistic Data Consortium, 2005] setting, this is called argument extrac-
tion.



ended a position, depending on the document-level context. Another difficulty is
that there are often more than multiple interrelated events described in the docu-
ment, and jointly extracting them and modeling the structure between them while

avoiding error propagation is important.

However, there are two main challenges for document-level information extrac-

tion that are not tackled by prior methods:

e Challenge I: Document-level Context and Complex Output Struc-
ture. Ignoring document-level context is problematic when the information
needed to recognize an event argument is spread across multiple sentences.
For the example below, determining whether to extract “government house”
in sentence 1 as a role-filler entity of type physical-target depends on the

additional context in sentence 2.

[S1] The second attack occurred at 23:35, just after the cabinet members
had left [government house] physical-target Where they had listened

to the presidential message.

[S2] A [bomb] yeapon Was placed outside the house in the parking lot

that is used by cabinet ministers.

One approach to incorporate the contextual information is through corefer-
ence resolution (CR) [Yang and Mitchell, 2016] — the CR system would first
connect “government house” in S1 with “the house” in S2. But this approach

typically suffers from error propagation due to multiple stages of processing.

What’s more, the structure of the required extractions from an entire doc-
ument is quite complex in comparison to the sentence-level extraction: the
number of frames is not pre-determined (e.g., for the document in Figure 1.1,

a fourth event might need to be extracted if the article continues) and the



information associated with each event frame can be dispersed throughout
the document. To conduct the extraction correctly, the system needs to cap-
ture within-event structure (i.e., the dependency between entities of different
roles) — for example, “bomb” is more often used in a bombing event; entity
“house” of role physical-target and “bomb” of role weapon might appear
together often. In addition, capturing cross-event dependency is important —
the same entity might be responsible for multiple events across the document
even though it is mentioned only once (e.g., Zarate armed forces in Fig-
ure 1.1 is of role perpetrator-organization across all templates). However,
current end-to-end learning-based systems, in spite of their high accuracy, ig-
nore this structured information and often make inconsistent predictions at

test time [Wadden et al., 2019; Du et al., 2021a].

e Challenge II: High Cost and Limited Availability of Annotations.
Annotations for document-level extraction problems are harder and more
costly to obtain as compared to sentence-level extraction tasks. It is time-
consuming and usually requires people with domain expertise [Jain et al.,
2020; Li et al., 2021]. Another relevant challenge faced by current IE sys-
tems’ formulation is that: when systems are trained on a limited amount
of resources with a fixed schema of roles (e.g., event frames with only
organization, recipient, outcome and, time), they are trained in a dis-
criminative way — predicting roles of the detected argument spans. Under
this formulation, they are not able to handle unseen but relevant roles (e.g.,

participant, place) at deployment time.

Motivated by these major challenges, my research work in the area of informa-
tion extraction and question generation tackles them from different perspectives.

They are described later in this dissertation.



1.3 Contributions

The main contribution of this dissertation is the development of context-aware
end-to-end methodologies for extracting structured information from textual doc-

uments. More specifically, we make the following contributions:

Multi-Granularity Contextualized Encoding of Document Context.
Few works in the literature of information extraction have gone beyond individual
sentences to make extraction decisions. This is problematic when the information
needed to make an extraction decision is spread across multiple sentences. To
mitigate the problem, we propose a novel multi-granularity reader for document-
level role-filler extraction (a sub-task of template filling). When reading through
the documents to make extraction decisions, our approach dynamically aggregates
information captured by neural representations learned at different levels of gran-
ularity (e.g., the sentence- and paragraph-level). In this work, we also investigate
how the length of maximum context captured affects the models’ performance.

More information on the techniques and experiments is explained in Chapter 3.

Generative Transformers for Document-level Template Filling. The
complexity of the document-level extraction tasks comes not only from the need
to keep a potentially lengthy context in mind, but also due to the complex struc-
ture of the desired output (i.e., multiple templates that are inter-related are to
be extracted; within each template, entities of different roles are dependent). In

consideration of this,

1. We introduce a generative transformer-based encoder-decoder framework

(GRIT) for role-filler entity extraction (REE) that is designed to model



the context at the document level: it can make extraction decisions across
sentence boundaries; is implicitly aware of noun phrase coreference, and can

respect within-event cross-role dependencies in the template;

2. Further, we extend the GRIT model to also handle the full task of template
filling (GTT) — GTT goes beyond extracting information for a single event
and handles the case where multiple events/templates are described in the
document. We demonstrate that the sequence-to-sequence learning setup is

good at capturing cross-event structure when doing predictions.

The GRIT and GTT approaches and experiments will be described in detail in
Chapter 4.

Formulating Event Extraction as Question Answering. Prior methods in
the IE literature rely heavily on entity information/annotations and are unable to
extract fillers for event argument roles that are not seen during training. Plus,
pipeline-based methods have generally been used for event extraction during de-
coding — they generally perform trigger detection — entity recognition — arqument
role assignment. Instead, we introduce a new paradigm for event extraction by for-
mulating it as a question answering (QA) task that extracts the event arguments
in an end-to-end manner (Chapter 5). We design a set of increasingly natural
question generation templates to better access “knowledge” implicitly encoded the
pre-trained language models during this process. We also show that our frame-
work is capable of extracting event arguments for roles not seen at training time
(i.e., in a zero-shot learning setting). In Chapter 5, more information about this

QA-driven framework can be found.



Generation of Paragraph-Level Question-Answer Pairs. To help mitigate
the problem of limited annotation availability and help with data augmentation,
we study the task of generating from Wikipedia articles question-answer pairs that
cover content beyond a single sentence. We propose a neural network approach
that incorporates coreference knowledge via a novel gating mechanism. Compared
to models that only take into account sentence-level information, we find that the
linguistic knowledge introduced by the coreference representation aids question
generation significantly, producing models that outperform the current state-of-
the-art. As shown by follow-up work in the literature of information extraction,
the synthetic QA-pairs generated by machine learning models can help boost the

performance of IE systems.

1.4 Roadmap

The remainder of this dissertation is organized as follows. Firstly in Chapter 2,
we’ll provide background on task definitions and an overview of the relevant ma-
chine learning-based approaches, especially approaches based on neural networks.
We introduce our work on multi-granularity contextualized encoding for model-
ing document-level context for extracting event role-filler mentions in Chapter 3.
In Chapter 4, we first present the work on a generative end-to-end transformer-
based model for extracting event entities; then we continue into the details on
how to extend it to do hierarchical decoding for the case where there are multiple
events/templates in a single document (i.e., template filling). In Chapter 5, we
demonstrate how to build QA-driven models that operate by accessing knowledge
embedded in pre-trained neural models and allow the introduction of new roles

at test time. In Chapter 6, we present our question generation framework for au-



tomatically generating/harvesting synthetic QA pairs that has been shown to be
beneficial for the event extraction task when used to provide additional training

data.



CHAPTER 2
BACKGROUND AND RELATED WORK

In this chapter, we first present an overview of the information extraction prob-
lem, and existing research on sentence-level extraction and document-level extrac-
tion tasks. We then present existing branches of neural network-based methods
that are related to our work presented in this dissertation. In later chapters, we

will discuss our proposed models and analysis in detail.

2.1 Information Extraction

The literature on information extraction (IE) dates back to close 1994 when the
Advanced Research Projects Agency (ARPA) begin to support research to develop
the “new technology” called TE [Okurowski, 1993]. The goal was to tackle the in-
creasing demands on processing and analyzing large volumes of online data. MUC
conferences (Message Understanding Conference) first defined several extraction
tasks called “template filling”. The target is to fill a predefined “template” (repre-
senting a stereotypical event or situation) with information directly extracted from
the document, as well as concepts like amounts, or ontology entities that have to
be inferred through additional processing. Among the evaluations, MUC-1 and
MUC-2 used Navy exercise message traffic as the corpus; MUC-3 and MUC-4’s
input articles are news about terrorism in Latin America [Chinchor et al., 1993].
Methods developed for these tasks at that time involved a long pipeline and relied

on manually designed specific patterns for each domain [Grishman, 2012].

After a series of MUC evaluations (i.e., MUC-1 to MUC-7), it becomes clear

that annotating training data and supervised training is effective for improving
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IE systems’ performance. In addition, a working group was formed which recom-
mended extracting a set of elementary events and their arguments rather than a
monolithic template. Under such considerations, Automatic Content Extraction
(ACE) evaluation ! in 2005 provided a larger collection of news articles across three
languages (i.e., English, Chinese, and Arabic). Each document is represented by
a set of entities (7 types), relations (6 types), and events (8 types). One major
difference to MUC is that: the arguments to a relation or event must occur in
one single sentence under the ACE formulation. Extracting the named entities
involves identifying and classifying all the names in the corpus. After grouping
entity mentions which are coreferential and assigning each group a semantic type
in the schema, people have the entities. In addition, after extraction for entities,
people can determine the relations between pairs of entities (e.g., part-whole,
personal-social). The extraction of an event includes the identification of the
trigger word — the main word that describes the event, and the extraction of event
arguments with roles (each type of event has a predefined set of argument roles

based on the annotation guideline).

Next, we’ll mainly focus on the perspective of sentence-level and document-level
(event) extraction, and introduce more details including various tasks and datasets
in both subsections. We provide a brief summary and comparison between different

representative IE datasets in Table 2.1.
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‘Document—level Entity Mentions Relations Events Multiple Events

MUC-3,4 v v v
ACED5 v v v v
GENIA [Kim et al., 2003] v v v v
TACRED [Zhang et al., 2017] v v

SciERC [Luan et al., 2018] v v

SciREX [Jain et al., 2020] v v v

DocRED [Yao et al., 2019 v v v

RAMS [Ebner et al., 2020] v v

WikiEvents [Li et al., 2021] v v v

Table 2.1: Comparison of Representative IE Datasets.

2.1.1 Sentence-level Extraction Tasks

As we mentioned previously, in the ACE05 [Doddington et al., 2004; Walker et al.,
2006]? dataset, arguments to a relation or event must occur in one single sentence.
For the example below, the input sentence contains one event triggered by the
word “sale”. All the annotated arguments of the event (e.g., “operations”, “French

company”) are within the same sentence.

... As part of the 11-billion-dollar sale of USA Interactive’s film and
television [operations|prtifact to the [French company|pyyer and its
[parent company|gyyer in December 2001, [USA Interactive]se11er re-
ceived 2.5 billion dollars in preferred shares in Vivendi Universal En-

tertainment.

Notice that, in the ACE dataset, the input sentence is in a document and additional
document-level context could still be leveraged. In addition, the input sentence

might contain multiple events represented by different trigger words.

As for entity mention and relation extraction, apart from the ACE dataset,

Zhang et al. [2017] introduce the TACRED dataset, which is obtained via crowd-

http://www.itl.nist.gov/iad/mig/tests/ace/2005/doc/ace05-evalplan.v2a.pdf
2catalog.ldc.upenn.edu/LDC2006T06
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sourcing and targeted towards TAC KBP relations (reusing the entity and re-
lation types of the TAC KBP tasks). Specifically for in the scientific domain,
SciERC [Luan et al., 2018] dataset is collected from 500 Al-related papers’ ab-
stracts and defines scientific terms and relations for knowledge graph construc-
tion. It is with annotations for scientific entities and their relations. The GENIA?
dataset [Kim et al., 2003] consists of sentences from the molecular biology do-
main and includes term annotations (e.g., proteins, genes, and cells) and relation

annotations (e.g., protein-protein interactions).

2.1.2 Document-level Extraction Tasks

Document-level extraction dates back to the template filling tasks from the MUC
conferences [Grishman and Sundheim, 1996] for specific scenarios. The evaluations
required extracting string fillers (e.g., participating entities) that can be directly
found in the text and categorical fillers (e.g., attribute values, amounts, effect on
the event target) that need to be inferred. In this dissertation, our works using
the MUC datasets only tackle the extraction of string fillers. Readers can refer to
Figure 1.1 for a general idea of what the template filling task looks like. To find
the full template definition, readers can refer to Grishman [2019]. In contrast to
sentence-level event extraction, the document-level template filling task introduces

several complications:

e There is no explicit event trigger annotation in this formulation. Directly
grouping the participants together into multiple templates involves more

stages (e.g., the system needs to first identify how many events there are

3http://www.geniaproject.org/genia-corpus
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in the document).

e Role-filler entities for the same template/event spread across multiple sen-
tences, determining their relations (i.e., whether two entities are involved in

the same event) becomes harder as compared to the sentence-level extraction.

e To completely get the extractions correct, the system also needs to model the

coreference structure to avoid spurious role-filler entity mention extractions.

Recently, there have been newer datasets such as RAMS [Ebner et al., 2020]
and WIKIEVENTS [Li et al., 2021] for document-level event extraction. More
specifically, Ebner et al. [2020] found that 38.1% of the annotated events in AIDA-
1 have an argument outside the sentence containing the trigger and they release
RAMS, which contains annotations for cross-sentence implicit arguments covering
a wide range of event types. However, their dataset only annotates one event for
each document. WIKIEVENTS has complete event and coreference annotations for
each document, based on the ontology from the KAIROS project?. For datasets of
languages other than English, Zheng et al. [2019] release a document-level event

extraction dataset Doc2EDAG, which contains Chinese financial announcements.

Apart from event extraction, SCiREX [Jain et al., 2020] annotates document-
level N-ary relations® for scientific articles with both automatic and human anno-
tation methods. Besides, there are some document-level N-ary relation extraction
datasets constructed via only distant supervision from a small number of manually
curated facts [Quirk and Poon, 2017; Peng et al., 2017], but inevitable labeling er-
rors often occur in them. Specifically for pairwise relation extraction, Yao et al.
[2019] annotated DocRED (via crowdsourcing) for document-level relation extrac-

tion between entities.

“https://www.ldc.upenn.edu/collaborations/currentprojects
SExtracting relations between more than two arguments.
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2.2 End-to-End Learning-based Methods

Researchers also tried to investigate how to apply end-to-end learning models to
IE tasks and bypass the process of heavy feature engineering (i.e., building a set of
linguistic features for each task). Neural network-based models have been demon-
strated to be effective on these IE tasks, achieving state-of-the-art performance on
most of the benchmarks. In this section, we focus on reviewing relevant branches
of models that are most relevant to this dissertation. More specifically, we first
provide a basic background for contextualized word representations provided by
pre-trained language models that are mostly treated as a base component of the
end-to-end IE models. Then, we review several representative branches of modeling

choices using neural networks for entity mentions and argument span extractions.

2.2.1 (Contextualized) Word Representations

Around 2013, researchers investigated methods for learning good word embed-
dings that could be for improving downstream tasks (e.g., Skip-gram [Mikolov
et al., 2013] and GloVe [Pennington et al., 2014]). These embeddings capture the
semantic similarity of words by embedding all words in a dense low-level represen-
tation. They are called distributed representations as compared to the “one-hot”
representation of words in the previous feature-based approaches. The pre-trained
embeddings have been proved to be effective for many NLP tasks like named en-
tity recognition and document classification. Although being powerful, they are
context-free and static and fail to capture higher-level concepts in the context,
such as semantic roles, syntactic structures, and anaphora [Qiu et al., 2020]. Later

there has been a trend of research on learning contextualized word representations.
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These efforts include models based on transformers [Vaswani et al., 2017a] like
GPT-2 [Radford et al., 2018] and BERT [Devlin et al., 2019]; as well as models
based on LSTMs [Hochreiter and Schmidhuber, 1997] like ELMo [Peters et al.,
2018]. These models are pre-trained on a large amount of unlabeled free text via
different training objects. For downstream tasks, people usually fine-tune the pre-
trained models on the target dataset, and words are represented in the context of
other words (dynamic embedding). Most later research for many NLP tasks has
reported the advantages of contextualized word representations over context-free
word embeddings. In addition, it has been shown that pre-trained language mod-
els are better at capturing long-range dependencies [Wadden et al., 2019], thus

benefiting from cross-sentence context.

Our models to be introduced in this dissertation for IE problems are based on

contextualized word representations provided by pre-trained models.

2.2.2 Modeling Choices for Entity /Argument Extraction

ﬂput sequence: \
As part of the 11-billion-dollar sale of USA Interactive's film and television operations to the French company ...

Sequence labeling-based System Qutput:
OO0 0O (¢} O 0O (¢} O O o Ba O O Bb Ib

Span Extraction-based System Output:
<12, 12>: artifact
<15, 16>: buyer

Neural Generation-based System Output:

K[S] operations operations [SEP] French company [SEP] ... /

Figure 2.1: Output Format for Different Neural Network-based Methods.

Next, we review several branches of modeling choices based on neural net-
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works for entity mention/argument span extraction — the traditional BIO sequence
labeling-based model, the span-based extraction model, and the more recent neu-
ral generation-based models. For better intuitive comparison, we provide their

corresponding output formats in Figure 2.1.

Sequence Labeling-based Extraction Approaches Entity mention recogni-
tion and argument span extraction have been commonly treated as a sequence
labeling problem. For the input sequence in the example, models predict the cor-
responding tag for each token in it — B.x, I.x or O. The prefix “B” marks the
beginning of a span, and “I” means inside of a span. A token not belonging to
any span is tagged with “O”. “x” stands for the specific type for the span. The
sequence labeling-based models have benefited substantially from the use of neu-
ral representations [Collobert et al., 2011; Lample et al., 2016]. Later, researchers
found that adding the conditional random field component (CRF) on top of the
neural network units like LSTM can help with structured learning for sequences —
Huang et al. [2015] propose the LSTM-CRF model. On top of that, Ma and Hovy

[2016]) found performance could be further improved by incorporating character-

level representations of words via CNN (LSTM-CNN-CRF).

Span-based Extraction Approaches Different from the sequence labeling
paradigm, models using a span extraction paradigm directly predict the beginning
and ending offsets of the gold entity mention from words in the input sequence, as
well as the type/role for it. Inspired by end-to-end span-based models for corefer-
ence resolution [Lee et al., 2017], DYGIE [Luan et al., 2019] introduces a general
framework that share span representations using dynamically built span graphs

and shows that the span-based method naturally excels at extracting entities with
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overlapping spans as compared to sequence-labeling based approach [Katiyar and
Cardie, 2018]. DYGIE++[Wadden et al., 2019] extended the DYGIE framework to
also extract events. From the technical perspective, it leverages BERT embeddings

to build more robust multi-sentence representations.

Inspired by the progress on certain NLP problems when formalizing them as
question answering/machine reading comprehension tasks [McCann et al., 2018],
Li et al. [2019b,a] convert the named entity recognition & relation extraction task
into a multi-turn question answering problem. In their formulation, the model
for NER is also span-based — predicting the beginning and ending offsets for the

mention entity in the input sequence.

To tackle the error propagation problem caused by pipeline-based systems and
making models capable of handling unanticipated roles at deployment time in the
low annotation setting, we propose to formulate event extraction as a QA task
and introduce a new framework — models answer questions generated with annota-
tion guideline information to extract the event trigger and corresponding argument
spans (chapter 5). As compared to the pure span enumeration methods like DY-
GIE, our framework includes a question generation stage, the generated questions
encode informative prior knowledge (e.g., natural language descriptions/definitions
for argument roles). In addition, as shown by Liu et al. [2020], the QA-based event
extraction framework can also benefit from additional QA pairs or synthetically
generated QA pairs. Motivated by the importance of generating synthetic QA
pairs, we present a neural network-based framework for the automatic generation

of QA pairs from Wikipedia in chapter 6.
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Neural Generation-based Approaches As shown in Figure 2.1, the
generation-based system output needs to be specifically designed: for the example
input, the output sequence consists of the start token ([S]), followed by the entity
mentions of the first role Buyer (“operations”), followed by the separator token
([SEP]), followed by the entity mentions of the second role (“French company”),
etc. The target for the neural generation model is to “generate” the raw output
sequence, and based on the sequence we can obtain the extracted entity mentions

and event templates at inference time.

T5 [Raffel et al., 2019] is a framework that casts problems such as machine
translation and summarization as text-to-text tasks in natural language, leveraging
the transfer learning power of a transformer-based language model. But T5 is
not tested on more complex structured prediction problems in IE. Paolini et al.
[2021] propose a generation-based framework based on T5 and call it Translation
between Augmented Natural Languages (TANL) and demonstrate its effectiveness
on structured prediction tasks like joint entity mention and relation extraction and

semantic role labeling.

Our models GRIT [Du et al., 2021a] and GTT [Du et al., 2021b] for template

filling fall under this branch. Details of them will be introduced in chapter 4.
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CHAPTER 3
MULTI-GRANULARITY ENCODING FOR DOCUMENT
CONTEXT

In this chapter, we investigate how well end-to-end neural sequence models
(with pre-trained language model representations) perform on document-level role
filler extraction problem. We propose a novel multi-granularity reader to better
capture representations learned at different levels of granularity of the document
context (i.e., the sentence- and paragraph-level), instead of making extraction de-
cisions based on only sentence-level context. The work described in this chapter is

mainly described in Du and Cardie [2020)].

As described in chapter 1, the goal of document-level event extraction! is to
identify in an article events of a pre-specified type along with their event-specific
role fillers, i.e., arguments. The complete document-level extraction problem gen-
erally requires role filler extraction, noun phrase coreference resolution and event
tracking/detection (i.e., determine which extracted role fillers belong to which
event). In this work, we focus only on role filler extraction. Figure 3.1 pro-
vides a representative example of this task. Given an article consisting of multiple
paragraphs/sentences, and a fixed set of event types (e.g., terrorist events) and as-
sociated roles (e.g., PERPETRATOR INDIVIDUAL, VICTIM, WEAPON), we aim to
identify those spans of text that denote the role fillers for all events. This generally
requires both sentence-level understanding and accurate interpretation of the con-
text beyond the sentence. Examples include identifying “Teofilo Forero Castro”
(mentioned in S3) as a victim of the car bomb attack event (mentioned in S2),

determining there’s no role filler in S4 (both of which rely mainly on sentence-level

!The task is also referred to as template filling MUC-4 [1992].
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/[Sl] ... by special urban troops, four\
terrorists have been arrested in
soacha.

[S2] They are responsible for the car
bomb attack on the Newspaper El
Espectador, to a series of bogota

dynamite at'tacks, to.the freeing of a Per.p.etrator four terrorists
group of paid assassins. Individual
[S3] The terrorists are also connected Perpe'Fratf)r B
to the murder of Organization

) e Target Newspaper El
[S4] General Ramon is the —) Espectador
commander of the 13" infantry Machine reader
brigade. reads through  Victim )
[S5] He said that at least two of those | the document
arrested have fully confessed to Weapon car bomb,
having taken part in the accident of dynamite

in
soacha, Cundinamarca.

[S6] .. triumph over organized crime,
its accomplices and its protectors.

\: J

Figure 3.1: The document-level event role filler extraction task.

understanding, and identifying “four terrorists” in S1 as a perpetrator individual

(which requires coreference knowledge across sentence boundaries).

Recent work in document-level event role filler extraction has employed a
pipeline architecture with separate classifiers for each type of role and for relevant
context detection [Patwardhan and Riloff, 2009; Huang and Riloff, 2011]. However
these methods: (1) suffer from error propagation across different pipeline stages;
and (2) require heavy feature engineering (e.g., lexico-syntactic pattern features
for candidate role filler extraction; lexical bridge and discourse bridge features for
detecting event-relevant sentences at the document level). Moreover, the features
are manually designed for a particular domain, which requires linguistic intuition

and domain expertise [Nguyen and Grishman, 2015].

Neural end-to-end models have been shown to excel at sentence-level informa-
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tion extraction tasks, such as named entity recognition [Lample et al., 2016; Chiu
and Nichols, 2016] and ACE-type within-sentence event extraction [Chen et al.,
2015; Nguyen et al., 2016; Wadden et al., 2019]. However, to the best of our
knowledge, no prior work has investigated the formulation of document-level event
role filler extraction as an end-to-end neural sequence learning task. In contrast
to extracting events and their role fillers from standalone sentences, document-
level event extraction poses special challenges for neural sequence learning models.
First, capturing long-term dependencies in long sequences remains a fundamental
challenge for recurrent neural networks [Trinh et al., 2018]. To model long se-
quences, most RNN-based approaches use backpropagation through time. But it’s
still difficult for the models to scale to very long sequences. We provide empirical
evidence for this for event extraction in the section for experiments. Second, al-
though pretrained bi-directional transformer models such as BERT [Devlin et al.,
2019] better capture long-distance dependencies as compared to an RNN architec-
ture, they still have a constraint on the maximum length of the sequence, which is

below the length of many articles about events.

In the sections below, we study how to train and apply end-to-end neural models
for event role filler extraction. We first formalize the problem as a sequence tagging
task over the tokens in a set of contiguous sentences in the document. To address
the aforementioned challenges for neural models applied to long sequences, (1) we
investigate the effect of context length (i.e., maximum input segment length) on
model performance, and find the most appropriate length; and (2) propose a multi-
granularity reader that dynamically aggregates the information learned from the
local context (e.g., sentence-level) and the broader context (e.g., paragraph-level).
A quantitative evaluation and qualitative analysis of our approach on the MUC-

4 dataset [MUC-4, 1992] both show that the multi-granularity reader achieves
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substantial improvements over the baseline models and prior work.

3.1 Related Work

Event extraction has been mainly studied under two paradigms: detecting the
event trigger and extracting the arguments from an individual sentence (e.g., the
ACE task [Doddington et al., 2004]?, v.s. at the document level (e.g., the MUC-4

template filling task [Sundheim, 1992]).

Sentence-level Event Extraction The ACE event extraction task requires
extraction of the event trigger and its arguments from a sentence. For example,

(13

in the sentence Iraqi soldiers were killed by U.S. artillery ...”, the goal is
to identify the “die” event triggered by killed and the corresponding arguments
(PLACE, VICTIM, INSTRUMENT, etc.) Many approaches have been proposed to
improve performance on this specific task. Li et al. [2013, 2015] explore various
hand-designed features; Nguyen and Grishman [2015]; Nguyen et al. [2016]; Chen
et al. [2015]; Liu et al. [2017, 2018] employ deep learning based models such as
recurrent neural networks and convolutional neural network. Wadden et al. [2019]
utilize pre-trained contextualized representations. The approaches generally focus

on sentence-level context for extracting event triggers and arguments and rarely

generalize to the document-event extraction setting (Figure 3.1).

Only a few models have gone beyond individual sentences to make decisions.
[Ji and Grishman, 2008] enforce event role consistency across documents. [Liao
and Grishman, 2010] explore event type co-occurrence patterns to propagate event

classification decisions. Similarly, [Yang and Mitchell, 2016] propose jointly ex-

*https://catalog.ldc.upenn.edu/LDC2006T06
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tracting events and entities within a document context. Also related to our work
are [Duan et al., 2017b] and [Zhao et al., 2018], which utilize document embeddings
to aid event detection with recurrent neural networks. Although these approaches
make decisions with cross-sentence information, their extractions are still at the

sentence level.

Document-level Event Extraction has been studied mainly under the classic
MUC paradigm [MUC-4, 1992]. The full task involves the construction of answer
key templates, one template per event (some documents in the dataset describe
more than one events). Typically three steps are involved — role filler extraction,
role filler mention coreference resolution and event tracking). In this work we only

focus on role filler extraction.

From the modeling perspective, recent work explores both the local and addi-
tional context to make the role filler extraction decisions. GLACIER [Patwardhan
and Riloff, 2009] jointly considers cross-sentence and noun phrase evidence in a
probabilistic framework to extract role fillers. TIER [Huang and Riloff, 2011] pro-
poses to first determine the document genre with a classifier and then identify
event-relevant sentences and role fillers in the document. Huang and Riloff [2012]
propose a bottom-up approach that first aggressively identifies candidate role fillers
(with lexico-syntactic pattern features), and then removes the candidates that are
in spurious sentences (i.e., not event-related) via a cohesion classifier (with dis-
course features). Similar to Huang and Riloff [2012], we also incorporate both
intra-sentence and cross-sentence features (paragraph-level features), but instead
of using manually designed linguistic information, our models learn in an auto-
matic way how to dynamically incorporate learned representations of the article.

Also, in contrast to prior work that is pipeline-based, our approach tackles the
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task as an end-to-end sequence tagging problem.

There has also been work on unsupervised event schema induction [Chambers
and Jurafsky, 2011; Chambers, 2013] and open-domain event extraction [Liu et al.,
2019] from documents: the main idea is to group entities corresponding to the
same role into an event template. Our models, on the other hand, are trained in

supervised way and the event schemas are pre-defined.

Apart from event extraction, there has been increasing interest on cross-
sentence relation extraction Mintz et al. [2009]; Peng et al. [2017]; Jia et al. [2019].
This work assumes that mentions or entities are provided, and thus is more of
a pairwise mention/entity-level classification problem. Our work instead focuses
on role filler /span extraction using sequence tagging approaches; role filler type is

determined during this process.

Capturing Long-term Dependencies for Neural Sequence Models When
training neural sequence models such as RNNs, capturing long-term dependencies
in sequences remains a fundamental challenge [Trinh et al., 2018]. Most approaches
use backpropagation through time (BPTT) but it is difficult to scale to very long
sequences. Many variations of models have been proposed to mitigate the effect
of long sequence length, such as Long Short Term Memory (LSTM) Networks
[Hochreiter and Schmidhuber, 1997; Gers et al., 1999; Graves, 2013] and Gated
Recurrent Unit Networks [Cho et al., 2014]. Transformer based models [Vaswani
et al., 2017b; Devlin et al., 2019] have also shown improvements in modeling long
text. In our work for document-level event role filler extraction, we also implement
LSTM layers in the models as well as utilize the pre-trained representations pro-

vided by the bi-directional transformer model. From an application perspective,
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we investigate the suitable length of context to incorporate for the neural sequence
tagging model in the document-level extraction setting. We also study how to
mitigate problems associated with long sequences by dynamically incorporating
both sentence-level and longer context (i.e., paragraph-level) representations in

the model (Figure 3.3).

3.2 Methodology

In the following we describe (1) how we transform the document into paired token-
tag sequences and formalize the task as a sequence tagging problem (Section 3.2.1);
(2) architectures of our base k-sentence reader (Section 3.2.2) and multi-granularity

reader (Section 3.2.3).

3.2.1 Constructing Paired Token-tag Sequences from Doc-

uments and Gold Role Fillers

We formalize document-level event role filler extraction as an end-to-end sequence
tagging problem. Figure 3.2 illustrates the general idea. Given a document and
the text spans associated with the gold-standard (i.e., correct) fillers for each role,
we adopt the BIO (Beginning, Inside, Outside) tagging scheme to transform the

document into paired token/BIO-tag sequences.

We construct example sequences of variant context lengths for training and test-
ing our end-to-end k-sentence readers (i.e., the single-sentence, double-sentence,

paragraph and chunk readers). By “chunk”, we mean the chunk of contiguous
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[$1] ... by special urban troops, four \
terrorists have been arrested in
soacha. four terrorists _have been arrested in  soacha
" k sentences J J
[S2] They are responsible for the car B-Perpin I-Perpln (0] o (0] (0] [¢]
bomb attack on the newspaper el
espectador, to a series of bogota -
dyzamite attacks, ... 8 @ are responsible for the car bomb attack on the newspaper
[S3] The terrorists are also connected — 0 o 0 0O B-We.apon FWeapon O o . o B-Target
to the murder of , el espectador ) to  a series of bogota dynamite attacks
Constructing . |-Taget |-Target (0] [¢] [¢] (0] (0] (o] B-Weapon o]
[S4] General Ramon is the commander sequences ofrlength k
th i
\ of the 13%infantry brigade. (k=1 in this example) General ramon is the commander of the 13th infantry brigade .
k j with BIO labels. 0 0 0O 0 O 0O 0 O 0 0 0
Sample same number of
Perpetrator A —— .
Individual otinterroris negative sequences to Training the
Perpetrator construct a balanced sequence reader
Organization training set.
Target newspaper el espectador .. B-Perpind I-Perpind [e] (0] o
- L RRlayer
Weapon car bomb, dynamite t

BiLSTM Layer

Embedding Layer

four terrorists who are apparently

Figure 3.2: An overview of our framework for training the sequence reader for
event role filler extraction.

sentences which is right within the sequence length constraint for BERT — 512
in this case. Specifically, we use a sentence splitter® to divide the document into
sentences $1, So, ..., S,. 1o construct the training set, starting from each sentence
i, we concatenate the k contiguous sentences (s; to s;1x_1) to form overlapping
candidate sequences of length k: sequence 1 consists of {si,..., s}, sequence 2
consists of {sa,...,Sk11}, etc. To make the training set balanced, we sample the
same number of positive and negative sequences from the candidate sequences,
where "positive” sequence contains at least one event role filler, and “negative”
sequences contain no event role fillers. To construct the dev/test set for inference,
where the reader is applied, we simply group the contiguous k sentences together
in order, producing 7 sequences (i.e., sequence 1 consists of {sq,..., s}, sequence

2 consists of {Sgi1,...,Sar}, etc.) For the paragraph reader, we set k to average

paragraph length for the training set, and to the real paragraph length for test set.

We denote the token in the sequence with x, the input for the k-sentence reader

Shttps://spacy.io/
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is X = {xgl), xgl), ceey xl(ll), ...,xgk),a:gk), ...,a:l(f)}; where :cz(-k) is the i-th token of the

k-th sentence, and [, is the length of the k-th sentence.

3.2.2 k-sentence Reader

Since our general k-sentence reader does not recognize sentence boundaries, we

simplify the notation for the input sequence as {1, xa, ..., z,,, } here.

Embedding Layer In the embedding layer, we represent each token z; in the
input sequence as the concatenation of its word embedding and contextual token

representation:

e Word Embedding: We use the 100-dimensional GloVe pre-trained word em-
beddings [Pennington et al., 2014] trained from 6B Web crawl data. We keep
the pre-trained word embeddings fixed. Given a token z;, we have its word

embedding: xe; = E(z;).

o Pre-trained LM representation: Contextualized embeddings produced by pre-
trained language models [Peters et al., 2018; Devlin et al., 2019] have been
proved to be capable of modeling context beyond the sentence boundary and
improve performance on a variety of tasks. Here we employ the contextu-
alized representations produced by BERT-base for our k-sentence labeling
model, as well as the multi-granularity reader to be introduced next. Specif-
ically, we use the average of all the 12 layers’ representations and freeze the

weights [Peters et al., 2019] during training after empirical trials*. Given the

4Using the representations of the last layer, or summing all the 12 layers’ representations give
consistently worse results.
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sequence {1, Ts, ..., Ty, }, we have:

xby, xby, ..., xb,, = BERT(z1, T2, ..., Tp,)

We forward the concatenation of the two representations for each token to the
upper layers:

x; = concat(xe;, xb;)

BiLSTM Layer To help the model better capture task-specific features between
the sequence tokens. We use a multi-layer (3 layers) bi-directional LSTM encoder

on top of the token representations, which we denote as BiLSTM:

{P1, P2, .-, Pm} = BiLSTM({x1, X2, ..., X;n })

CRF Layer Drawing inspirations for sentence-level sequence tagging models on
tasks like NER [Lample et al., 2016]. Modeling the labeling decisions jointly rather
than independently improves the models performance (e.g., the tag “I-Weapon”
should not follow “B-Victim”). We model labeling decisions jointly using a condi-

tional random field [Lafferty et al., 2001].

After passing {p1, p2, ..., Pm} through a linear layer, we have P of size mx size
of tag space, where P; ; is the score of the tag j of the i-th token in the sequence.

For a tag sequence y = {y1, ..., Ym }, we have the score for the sequence-tag pair as:

score(X,y) = Z Ayi7yi+1 + Z Piy
=1

1=0

A is the transition matrix of scores such that A, ; represents the score of a

transition from the tag ¢ to tag j. A softmax function is applied over scores for
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() S

Concatenated representations Rep. Fusion
from sentences in the paragraph
t concatenation + * * * * * * *
{+ * * * + * * +\ Paragraph-Level BiLSTM
Sentence-Level Sentence-Level Sentence-Level t
BiLSTM BiLSTM BiLSTM
Embedding Layer
Embedding Layer Embedding Layer Embedding Layer [S1] ... four terrorists have been arrested in soacha.
i X [S2] ... the car bomb attack on the newspaper el espectador ...
[S1] ... four terrorists have  [S2] ... the car bomb [S3]... murder teofilo [83]... murder teofilo forero castro ...
been arrested in soacha. attack on the newspaper  forero castro ...

el espectador ...

Figure 3.3: Overview for our multi-granularity reader. The dark blue BiLSTM,,y.
produces sentence-level representations for each token, the yellow BiLSTM,4,q. Pro-
duces paragraph-level representations for each token.

all possible tag sequences, which yield a probability for the gold sequence ygoq.

The log-probability of the gold tag sequence is maximized during training. During

decoding, the model predicts the output sequence that obtains the maximum score.

3.2.3 Multi-Granularity Reader

To explore the effect of aggregating contextualized token representations from
different granularities (sentence- and paragraph-level), we propose the multi-

granularity reader (Figure 3.3).

Similar to the general k-sentence reader, we use the same embedding layer here
to represent the tokens. But we apply the embedding layer to two granularities
of the paragraph text (sentence- and paragraph-level). Although the word em-
beddings are the same for the embedding layers from different granularities, the
contextualized representations are different for each token — when the token is

encoded in the context of a sentence, or in the context of a paragraph.
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Correspondingly, we build two BILSTMs (BiLSTM,,,; and BiLSTM,,,. ) on top

of the sentence-level contextualized token representations:

1 ~(1 ~(k ~ (k
{X() . xgl),...,xl(k),...,xl(k)}

,and the paragraph-level contextualized token representations:

ED, gD g0 by

1 X e X7

Sentence-Level BILSTM The BiLSTM,.,,. is applied sequentially to each sen-

tence in the paragraph:

~(1) =~ ~ Y x X
{pg )a pgl), ceey p( )} = BlLSTMsent ({Xg )’Xé )’ ’Xl(ll)})

~ (k) ~(k - (k . ~(k) =(k ~(k
{pg ),pé ), ...,pl(k)} = B1LSTMsent,({x§ ,xg ), ---le(k)})

Then we have the sentence-level representations for each token in the paragraph

~(1 ~(1 ~(k ~(k
as {1, oo, B s ooy DY, s BL )

Paragraph-Level BILSTM Another BiLSTM layer (BiLSTM,,,,.) is applied to
the entire paragraph (as compared to BiLSTM;.,;, which is applied to each sen-

tence), to capture the dependency between tokens in the paragraph:

. (1 . (1 . (k ~ (k ~(1) ~(1 (K NG
{pg ), v pl(l), ey pg ), e pl(k)} = BiLSTM,4rq. ({Xg , ...,Xl(l), ..,xl(k), ...,Xl(k)})
Fusion and Inference Layer For each token x (the i-th token in the j-
th sentence), to fuse the representations learned at the sentence-level (f)ij )) and
paragraph-level (f)gj )), we propose two options — the first uses a sum operation,

and the second uses a gated fusion operation:

31



o Simple Sum Fusion:

p =B +p

e (lated Fusion: The gated fusion compute the gate vector ggj) with its

(J

sentence-level token representation p, ) and paragraph-level token represen-

()

tation p,;”’, to control how much information should be incorporated from

the two representations.
g = sigmoid(W1p? + Wap” + b)
V) =g 0B+ (1 - g) 0 50

® : element-wise product

Similarly to in the general k-sentence reader, we add the CRF layer (sec-
tion 3.2.2) on top of the fused representations for each token in the paragraph
{pgl)7 s pl(ll), s pgk), s pl(}]:)}, to help jointly model the labeling decisions between

tokens in the paragraph.

3.3 Experiments and Analysis

We evaluate our models’ performance on the MUC-4 event extraction benchmark
[IMUC-4, 1992], and compare to prior work. We also report findings on the effect
of context length on the end-to-end readers’ performance on this document-level

task.
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3.3.1 Dataset and Evaluation Metrics

MUC-4 Event Extraction Dataset The MUC-4 dataset consists of 1,700 doc-
uments with associated answer key (role filler) templates. To make sure our results
are comparable to the previously reported results on this dataset, we use the 1300
documents for training, 200 documents (TST1+TST2) as the development set and

the 200 documents (TST3+TST4) as the test set.

Evaluation Metrics Following the prior work, we use head noun phrase match
to compare the extractions against gold role fillers for evaluation °; besides noun
phrase matching, we also report ezact match accuracy to capture how well the
models are capturing the role fillers’ boundary®. Our results are reported as Pre-
cision (P), Recall (R) and F-measure (F-1) score for the macro average for all the
event roles. In Table 3.2, we also present the scores for each event role (i.e., PER-
PETRATOR INDIVIDUALS, PERPETRATOR ORGANIZATIONS, PHYSICAL TARGETS,

VICTIMS and WEAPONS) based on the head noun match metric.

3.3.2 Baseline Systems and Our Systems

We compare to the pipeline and manual feature engineering based systems:
GLACIER [Patwardhan and Riloff, 2009] consists of a sentential event classi-
fier and a set of plausible role filler recognizers for each event role. The final
extraction decisions are based on the product of normalized sentential and phrasal

probabilities; TIER [Huang and Riloff, 2011] proposes a multi-stage approach. It

*Duplicate role fillers (i.e., extractions for the same role that have the same head noun) are
conflated before being scored; they are counted as one hit (if the system produces it) or one miss
(if the system fails to produce any of the duplicate mentions).

6Similarly, duplicate extractions with the same string are counted as one hit or miss.
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processes a document in three stages: classifying narrative document, recognizing
event sentence and noun phrase analysis. Cohesion Extract [Huang and Riloff,
2012] adopts a bottom-up approach, which first aggressively identifies candidate
role fillers in the document and then refines the candidate set with cohesion sen-
tence classifier. Cohesion Extract obtains substantially better precision and with

similar level of recall as compared to GLACIER and TIER.

To investigate how the neural models capture the long dependency in the con-
text of variant length (single-sentence, double-sentence, paragraph or longer), we
initialize the k in k-sentence reader to different values to build the: Single-
Sentence Reader (k = 1), which reads through the document sentence-by-
sentence to extract the event role fillers; Double-Sentence Reader (kK = 2),
which reads the document with step of two sentences; Paragraph Reader (k = #
sentences in the paragraph), which reads the document paragraph-by-paragraph;
Chunk Reader (kK = maximum # of sentences that fit right in the length con-
straint for pretrained LM models), which reads the document with the longest step

(the constraint of BERT model).

The final row in Table 3.1 & 3.2 presents the results obtained with our Multi-
Granularity Reader. Similar to the paragraph-level reader, it reads through
document paragraph-by-paragraph, but learns the representations for both intra-

sentence and inter-sentence context.

3.3.3 Results and Findings

We report the macro average results in Table 3.1. To understand in detail how

the models extract the fillers for each event role, we also report the per event role
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‘ Head Noun Match ‘ Exact Match
‘Prec. Recall F-1 ‘Prec. Recall F-1

GLACIER [Patwardhan and Riloff, 2009] 47.80 57.20 52.08 - - -
TIER [Huang and Riloff, 2011] 50.80 61.40 55.60 - - -
Cohesion Extract [Huang and Riloff, 2012] | 57.80 59.40 58.59 - - -

w/o contextualized embedding

Single-Sentence Reader 48.69 56.11 52.14 | 46.16 53.16 49.41
Double-sentence Reader 56.37 47.53 51.57 | 53.70 43.95 48.34
Paragraph Reader 53.19 53.16 53.17 | 49.45 49.26  49.35
Chunk Reader 61.76 37.04 46.31 | 56.91 34.92 43.28
w/ contextualized embedding
Contextualized Single-Sentence Reader 4732  61.26 53.39 | 44.40 | 57.67 50.17
Contextualized Double-sentence Reader 57.17 53.36 55.20 | 53.38 49.22 51.22
Contextualized Paragraph Reader 56.78 52.64 54.64 | 53.36 49.65 51.44
Contextualized Chunk Reader 60.90 41.10 49.07 | 55.18 37.51 44.66

Multi-Granularity Reader 56.44 | 62.77 59.44‘ 52.03 56.81 54.32

Table 3.1: Macro average results for the document-level event role filler extraction
task (highest number of the column boldfaced).

‘ Perplnd ‘ PerpOrg ‘ Target ‘ Victim ‘ Weapon
| P R F1] P R F1 | P R F1 | P R F1] P R F1

GLACIER

[Patwardhan and Riloff, 2009]
TIER

[Huang and Riloff, 2011]
Cohesion Extract

[Huang and Riloff, 2012]

51 58 54 34 45 38 42 72 53 55 58 56 57 53 55

ISy
N
o
3
ISU
[
ot
I

49 51 68 61 63 59 61 62 64 63

o
Iy

54 57 56 49 51 55 68 61 63 59 61 62 64 63

IS)]
&

w/o contextualized embedding

Single-Sentence Reader 38.38 50.68 43.68 | 40.98 69.05 51.44 | 62.50 42.76 50.78 | 36.69 55.79 44.27 | 64.91 62.30 63.58
Double-Sentence Reader 50.00 35.14 41.27 | 63.83 35.71 45.80 | 61.62 44.83 51.90 | 51.02 54.74 52.81 | 55.41 67.21 60.74
Paragraph Reader 42.51 51.35 46.52 | 44.80 54.76 49.28 | 70.33 43.45 53.71 | 53.75 47.37 50.36 | 54.55 68.85 60.87
Chunk Reader 65.63 26.19 37.44 | 50.00 45.45 47.62 | 77.78 22.62 35.05 | 55.00 21.15 30.56 | 60.42 69.77 64.76
w/ contextualized embedding

C-Single-Sentence Reader 4497 5270 4853 | 35.15 73.81 47.62 | 71.74 24.83 36.89 | 33.63 77.89 46.98 | 51.11 77.05 61.46
C-Double-Sentence Reader 63.49 31.76 42.34 | 53.25 48.81 50.93 | 69.52 50.34 5840 | 44.03 62.11 51.53 | 55.56 73.77 63.38
C-Paragraph Reader 4392 53.38 48.19 | 52.94 54.76 53.84 | 74.19 44.83 55.89 | 50.57 46.32 48.35 | 62.30 63.93 63.10
C-Chunk Reader 57.14 27.38 37.02 | 47.62 40.91 44.01 | 70.27 29.76 41.81 | 59.46 42.31 49.44 | 70.00 65.12 67.47
Multi-Granularity Reader ‘ 53.08 52.23 52.65 ‘ 50.99 67.88 | 58.23 ‘ 60.38 64.10  62.18 ‘ 49.34 62.05 54.97 ‘ 68.42 67.57 67.99

Table 3.2: Per event role results based on head noun match metric (“C-" stands for
contextualized). The highest F-1 are boldfaced for each event role.

results in Table 3.2. We summarize the results into important findings below:

o The end-to-end neural readers can achieve nearly the same level or signif-
icantly better results than the pipeline systems. Although our models rely
on no hand-designed features, the contextualized double-sentence reader and

paragraph reader achieves nearly the same level of F-1 compared to Co-
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hesion Extraction (CE), judging by the head noun matching metric. Our
multi-granularity reader performs significantly better (~60) than the prior

state-of-the-art.

Contextualized embeddings for the sequence consistently improve the neural
readers’ performance. The results show that the contextualized k-sentence
readers all outperform their non-contextualized counterparts, especially when
k > 1. The trends also exhibit in the per event role analysis (Table 3.2). To
notice, we freeze the transformers’ parameters during training (fine-tuning

yields worse results).

It’s not the case that modeling the longer context will result in better neural
sequence tagging model on this document-level task. When increasing the
input context from a single sentence to two sentences, the reader has a better
precision and lower recall, resulting in no better F-1; When increase the
input context length further to the entire paragraph, the precision increases
and recall remains the same level, resulting in higher F-1; When we keep
increasing the length of input context, the reader becomes more conservative
and F-1 drops significantly. All these indicate that focusing on the local
(intra-sentence) and broader (paragraph-level) context are both important
for the task. Similar results regarding the context length have also been

found in document-level coreference resolution [Joshi et al., 2019].

Our multi-granularity reader that dynamically incorporates sentence-level and
paragraph-level contextual information performs significantly better, than the
non end-to-end systems and our base k-sentence readers on the macro av-
erage F-1 metric. In terms of the per event role performance (Table 3.2),
our reader: (1) substantially outperforms CE with a ~ 7 F-1 gap on the

PERPETRATOR ORGANIZATION role; (2) slightly outperforms CE (~1 on
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the Target category); (3) achieves nearly the same-level of F-1 on PERPE-

TRATOR INDIVIDUAL and worse F-1 on VICTIM category.

3.4 Further Analysis

‘ Head Noun Match | Exact Match
‘ Precision Recall F-1 ‘ Precision Recall F-1

Multi-granularity Reader |  56.44 62.77 59.44 | 52.03 56.81 54.32

w/o gated fusion 48.09 67.32  56.10 43.75 62.37 51.43
w/o BERT 59.16 50.80  54.66 55.48 46.99  50.88
w/o CRF layer 50.52 96.95  53.54 47.02 53.55  50.07

Table 3.3: Ablation study on modules’ influence on the multi-granularity reader.

We conduct an ablation study on how modules of our multi-granularity reader
affect its performance on this document-level extraction task (Table 3.3). From the
results, we find that: (1) when replacing the gated fusion operation with the simple
sum of the sentence- and paragraph-level token representations, the precision and
F-1 drop substantially, which proves the importance of dynamically incorporating
context; (2) when removing the BERT’s contextualized representations, the model
becomes more conservative and yields substantially lower recall and F-1; (3) when
replacing the CRF layer and make independent labeling decisions for each token,

both the precision and recall drops substantially.

We also do an error analysis with examples and predictions from different mod-
els, to understand qualitatively the advantages and disadvantages of our models.
In the first example below (green span: gold extraction, the after is the span’s
event role), the multi-granularity (MG) reader and single-sentence reader correctly
extracts the two target expressions, which the paragraph reader overlooks. Al-

though only in the last sentence the attack and targets are mentioned, our MG
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reader successfully captures this with focusing on both the paragraph-level and

intra-sentence context.

... the announcer says president virgilio barco will tonight disclose his gov-
ernment’s peace proposal. ...... . Near the end, the announcer adds to the
initial report on the el tomate attack with a 3-minute update that adds 2

injured, 21 houses destroyed, and 1 bus burned.

In the second example (Féd'spati: false positive perplnd extraction by the single-
sentence reader), although “members of the civil group” appears in a sentence about
explosion, judging from paragraph-level context or reasoning about the expression
itself should help confirm that it is not perpetrator individual. The MG and

paragraph reader correctly handles this and also extracts “the bomb”.

An attack came at approximately 22:30 last night. Members of the
civil group and the peruvian investigative police went to the site of the
explosion. The members of the republican guard antiexplosives brigade are
investigating to determine the magnitude of the bomb used in this

attack.

There’s substantial improvement space for our MG reader’s predictions. There
are many role fillers which the reader overlooks. In the example below, “La Tan-
dona” being a perpetrator organization is implicitly expressed in the document
and the phrase did not appear elsewhere in the corpus. But external knowledge

(e.g., Wikipedia) could help confirm its event role.

... Patriotic officer, it is time we sit down to talk, to see what we can do with
our fatherland, and what are we going to do with La Tandona e

To continue defending what, we ask you. ... .
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In the last example, there are no explicit expression such as “kill” or “kidnap”
in the context for the target. Thus it requires deeper understanding of the entire
narrative and reasoning about the surrounding context to understand that “Jorge

Serrano Gonzalez” is involved in a terrorism event.

.. said that the guerrillas are desperate and ... . The president expressed his
satisfaction at the release of Santander department senator Jorge Serrano
Gonzalez , whom he described as one of the most important people

that colombian democracy has at this moment.

3.5 Chapter Summary

In this chapter, we demonstrate that document-level event role filler extraction
could be successfully tackled with end-to-end neural sequence models. Investiga-
tions on how the input context length affects the neural sequence readers’ perfor-
mance show that context of very long length might be hard for the neural sequence
labeling models to capture and results in lower performance. We propose a novel
multi-granularity reader to dynamically incorporate not only sentence-level con-
textualized representations, but also paragraph-level representations. Evaluations
on the benchmark dataset and qualitative analysis prove that our model achieves

substantial improvement over prior work.
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CHAPTER 4
GENERATIVE TRANSFORMERS FOR DOCUMENT-LEVEL
EXTRACTION

In chapter 3, we discussed the importance of modeling contextual information
beyond sentence-level and proposed the multi-granularity reader for extracting
entity mentions. Apart from the additional context, modeling the structure and
dependencies between different events is also important and is another challenge,
as we’ve mentioned in chapter 4. In this chapter, we explore how to build neural
generative models to model the within-event and across-event dependencies in the
document-level template filling task. This work was published in Du et al. [2021a)]
and Du et al. [2021b].

Document-level template filling [Sundheim, 1991, 1993; Grishman and Sund-
heim, 1996] is a classic problem in information extraction (IE) and NLP [Jurafsky
and Martin, 2014]. It is of great importance for automating many real-world tasks,
such as event extraction from newswire [Sundheim, 1991]. The complete task is
generally tackled in two steps. The first step detects events in the article and as-
signs templates to each of them (template recognition); the second step performs

role-filler entity extraction (REE) for filling in the templates.

In contrast to sentence-level event extraction (see, e.g., the ACE evaluation
[Linguistic Data Consortium, 2005]), document-level template filling introduces
several complications especially in terms of the output structure. First, role-filler
entities must be extracted even if they never appear in the same sentence
as an event trigger. In Figure 4.1, for example, the WEAPON and the first
mention of the telephone company building (TARGET) appear in a sentence that

does not explicitly mention the explosion of the bomb; Second, real documents
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often describe multiple events which are often related (Figure 4.6). From
the example in Section 4.3, we can observe that between-events dependencies are
important (e.g., a single organization can participate in multiple events) and can
span the entire document (e.g., event-specific targets can be distant from their
shared perpetrator organization). As a result of these complications, end-to-end
sentence-level event extraction models [Chen et al., 2015; Lample et al., 2016],
which dominate the literature, are ill-suited for the REE task, which calls for

models that encode information and track entities across a longer context.

Fortunately, neural models for event extraction that have the ability to model
longer contexts have been developed. Du and Cardie [2020], for example, ex-
tend standard contextualized representations [Devlin et al., 2019] to produce a
document-level sequence tagging model for event argument extraction. Both ap-
proaches show improvements in performance over sentence-level models on event
extraction. Regrettably, these approaches (as well as most sentence-level meth-
ods) handle each candidate role-filler prediction and event/template detection in
isolation. Consequently, they cannot easily exploit semantic dependencies between
closely related roles like the PERPIND and the PERPORG, which can share a por-
tion of the same entity span. “Shining Path members”, for instance, describes the
PERPIND in Figure 4.1, and its sub-phrase, “Shining Path”, describes the associ-
ated PERPORG. In addition, prior models cannot model the dependencies between
multiple templates across the template (e.g., some types of events are more likely

to co-occur).

Motivated by these, we introduce a novel end-to-end generative transformer
model — the “Generative Role-filler Transformer” (GRIT) (Section 4.2) for the

REE sub-task. Then we extend the GRIT model to build our framework GTT (Sec-

41



tion 4.3), and investigate the generative transformers’ potential in tackling the
entire template filling task in an end-to-end manner, instead of doing REE and

event recognition with two systems.

In Section 4.2 we focus on the role-filler entity extraction (REE) sub-task of
template filling (Figure 4.1)! and modeling details for our GRIT model. The in-
put text describes a bombing event; the goal is to identify the entities that fill any
of the roles associated with the event (e.g., the perpetrator, their organization,
the weapon) by extracting a descriptive “mention” of it — a string from the docu-
ment. In Section 4.3, we extend our GRIT model and propose the first end-to-end

generative learning framework (GTT) for the template filling full task.

For experiments, we evaluate GRIT on the MUC-4 [MUC-4, 1992] REE task.
Empirically, our model outperforms substantially strong baseline models. We also
demonstrate that GRIT is better than existing document-level event extraction
approaches at capturing linguistic properties critical for the task, including corefer-
ence between entity mentions and cross-role extraction dependencies. We evaluate
GTT on the MUC-4 template filling task. Empirically, our model substantially
outperforms both pipeline-based and end-to-end baseline models. In our analysis,
we demonstrate that our model is better at capturing between-event dependencies,

which are critical for documents that describe multiple events.

4.1 Related Work

Sentence-level Event Extraction Most work in event extraction has focused

on the ACE sentence-level event task [Walker et al., 2006], which requires the

n this sub-task, we assume there is one generic template for the entire document [Huang
and Riloff, 2011, 2012].
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detection of an event trigger and extraction of its arguments from within a single
sentence. Previous state-of-the-art methods include Li et al. [2013] and Li et al.
[2015], which explored a variety of hand-designed features. More recently, neural
network based models such as recurrent neural networks [Nguyen et al., 2016;
Feng et al., 2018], convolutional neural networks [Nguyen and Grishman, 2015;
Chen et al., 2015] and attention mechanisms [Liu et al., 2017, 2018] have also been
shown to help improve performance. Beyond the task-specific features learned by
the deep neural models, Zhang et al. [2019b] and Wadden et al. [2019] also utilize

pre-trained contextualized representations.

Only a few models have gone beyond individual sentences to make decisions.
Ji and Grishman [2008] and Liao and Grishman [2010] utilize event type co-
occurrence patterns to propagate event classification decisions. Yang and Mitchell
[2016] propose to learn within-event (sentence) structures for jointly extracting
events and entities within a document context. Similarly, from a methodological
perspective, our GRIT and GTT model also learn structured information, but it
learns the dependencies between different roles (within one template), as well be-
tween multiple events (across multiple templates). Duan et al. [2017b] and Zhao
et al. [2018] leverage document embeddings as additional features to aid event
detection. Although the approaches above make decisions with cross-sentence in-

formation, their extractions are still done the sentence level.

Document-level IE Document-level event role-filler mention extraction has
been explored in recent work, using hand-designed features for both local and ad-
ditional context [Patwardhan and Riloff, 2009; Huang and Riloff, 2011, 2012], and
with end-to-end sequence tagging based models with contextualized pre-trained

representations [Du and Cardie, 2020]. These efforts are the most related to our
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work. The key difference is that our work focuses on a more challenging, and more
realistic, setting: extracting role-filler entities rather than lists of role-filler men-
tions that are not grouped according to their associated entity. Also on a related
note, Chambers and Jurafsky [2011], Chambers [2013], and Liu et al. [2019] work
on unsupervised event schema induction and open-domain event extraction from

documents.

The full task of event template filling consists of REE and then grouping ex-
tracted entities into different templates (each of them representing an event). Sim-
plifications of the task Patwardhan and Riloff [2009]; Huang and Riloff [2011, 2012];
Du et al. [2021a] assume that there is one generic template and focus only on role-
filler entity extraction. However, real documents often describe multiple events
(Figure 4.6). Thus we investigate how to adapt of model for REE, for the full task

of template filling, which is more challenging.

Neural Generative Models with a Shared Module for Encoder and De-
coder Our GRIT model uses one shared transformer module for both the encoder
and decoder, which is simple and effective. For the machine translation task, He
et al. [2018] propose a model which shares the parameters of each layer between
the encoder and decoder to regularize and coordinate the learning. Dong et al.

[2019] presents a new unified pre-trained language model that can be fine-tuned

for both NLU and NLG tasks.
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4.2 Extracting Role-filler Entity (GRIT)

4.2.1 The Role-filler Entity Extraction Task and Evalua-

tion Metric

Input document:

A bomb exploded in a Pilmai alley destroying some
—>[water pipes].

According to unofficial reports, the bomb contained [125
to 150 grams of TnT] and was placed in the back of the
[Eilmai [telephone company building]].

The explosion o
panic but no casualties.

at 2350 on 16 January, causing

The explosion caused damages to the [telephone company
offices]. It also destroyed a [public telephone booth] and
—[water pipes]. |
Witnesses reported that the bomb was planted by [[two
men] wearing sports clothes], who escaped into the night.

They were later identified as [[Shining Path] members].

l

Gold extractions:

Role Role-filler Entities
P trat two men,
I:cll?\i;ua(ir two men wearing sports clothes,
Shining Path members
Perpetrator -
Organization Shining Path
water pipes,
water pipes
Physical Pilmai telephone company building,
Target telephone company building,
telephone company offices
public telephone booth
Weapon 125 to 150 grams of TnT
Victim -

Figure 4.1: Role-filler entity extraction (REE). The first mention of each role-filler
entity is bold in the table and document. The arrows denote coreferent mentions.
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We base the REE task on the original MUC? formulation [Sundheim, 1991],
but simplify it as done in prior research [Huang and Riloff, 2012; Du and Cardie,
2020]. In particular, we assume that one generic template should be produced for
each document: for documents that recount more than one event, the extracted
role-filler entities for each are merged into a single event template. Second, we
focus on entity-based roles with string-based fillers®>. The REE task is illustrated

by an example in 4.1.

e Each event consists of the set of roles that describe it (shown in Figure 4.1).

The MUC-4 dataset that we use consists of ~1k terrorism events.

e Each role is filled with one or more entities. There are five such roles
for MUC-4: perpetrator individuals (PERPIND), perpetrator organizations
(PERPORG), physical targets (TARGET), victims (VICTIM) and weapons
(WEAPON). These event roles represent the agents, patients, and instru-

ments associated with terrorism events [Huang and Riloff, 2012].

e Each role-filler entity is denoted by a single descriptive mention, a span of
text from the input document. Because multiple such mentions for each en-
tity may appear in the input, the gold-standard template lists all alternatives

(shown in Figure 4.1), but systems are required to produce just one.

Evaluation Metric The metric for past work on document-level role-filler men-
tions extraction [Patwardhan and Riloff, 2009; Huang and Riloff, 2011; Du and

Cardie, 2020] calculates mention-level precision across all alternative mentions for

2The Message Understanding Conferences were a series of U.S. government-organized IE eval-
uations.

30ther types of role fillers include normalized dates and times, and categorical “set” fills. We
do not attempt to handle these in the current work.
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each role-filler entity. Thus it is not suited for our problem setting, where entity-
level precision is needed, where spurious entity extractions will get punished (e.g.,
recognizing “telephone company building” and “telephone company offices” as two

entities will result in lower precision).

Drawing insights from the entity-based CEAF metric [Luo, 2005] from the
coreference resolution literature, we design a metric (CEAF-REE) for measuring
models’ performance on this document-level role-filler entity extraction task. It
is based on maximum bipartite matching algorithm [Kuhn, 1955; Munkres, 1957].
The general idea is that, for each role, the metric is computed by aligning gold and
predicted entities with the constraint that a predicted (gold) entity is aligned with
at most one gold (predicted) entity. Thus, the system that does not recognize the
coreferent mentions and use them for separate entities will be penalized in precision
score. For the example in Figure 4.1, if the system extracts “Pilmai telephone
company building” and “telephone company offices” as two distinct TARGETS,
the precision will drop. We include more details for our CEAF-TF metric in the

appendix.

4.2.2 REE as Sequence Generation

We treat document-level REE as a sequence-to-sequence task [Sutskever et al.,
2014] in order to better model the cross-role dependencies and cross-sentence noun
phrase coreference structure. We first transform the task definition into a source

and target sequence.

As shown in Figure 4.2, the source sequence simply consists of the tokens of the

original document prepended with a “classification” token (i.e., [CLS] in BERT),
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and appended with a separator token (i.e., [SEP] in BERT). The target sequence
is the concatenation of target extractions for each role, separated by the separator
token. For each role, the target extraction consists of the first mention’s beginning

(b) and end (e) tokens:

<S> etV eV [SEP]
egi),eg), ... [SEP]

3) 3 (3 3
€L, €1 €5, €5, - . [SEP]

Note that we list the roles in a fixed order for all examples. So for the example
used in Figure 4.2, egt), egi) would be “two” and “men” respectively; and eg‘i), ei)
would be “water” and “pipes” respectively. Henceforth, we denote the resulting

sequence of source tokens as g, x1,..., T, and the sequence of target tokens as

Yo, Y1y -+ Yn-
1trole (Perpind) 2" role (PerpOrg) 3 role (Target)
I I )
.. . ... build- .
two men [SEP] Shining Path [SEP] water pipes Pilmai ing public -
[ Pointer Selection ]
[CLS] ... Abomb exploded ... destroying some [water pipes]. ...
the bomb ... was placed in the back of the [Pilmai [telephone build-
company building]]. ... The explosion caused damages to the <S> two men [SEP] Shining Path [SEP] water pipes Pilmai ing
[telephone company offices]. It also destroyed a [public telephone | |
booth] and [water pipes] ... the bomb was planted by [[two men]
wearing sports clothes], escaped. ... later identified as [[Shining
Path] members]... [SEP]
\ J L J
Y Y

Source tokens Target tokens + Pointer embeddings

Figure 4.2: GRIT: generative transformer model for document-level event role-
filler entity extraction. (Noun phrase bracketing and bold in the source tokens are
provided for readability purposes and are not part of the source sequence.)
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4.2.3 Model: Generative Role-filler Transformer

Our model is shown in Figure 4.2. It consists of two parts: the encoder (left) for
the source tokens; and the decoder (right) for the target tokens. Instead of using a
sequence-to-sequence learning architecture with separate modules [Sutskever et al.,
2014; Bahdanau et al., 2015], we use a single pretrained transformer model [Devlin

et al., 2019] for both parts, and introduce no additional fine-tuned parameters.

) S X s
,&CJ @Q Q) @Q
& & @& &
source
tokens
target
tokens

Figure 4.3: Partially causal masking strategy (M). (White cell: unmasked; Grey
cell: masked).

Pointer Embeddings The first change to the model is to ensure that the de-
coder is aware of where its previous predictions come from in the source document,

an approach we call “pointer embeddings”. Similar to BERT, the input to the
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model consists of the sum of token, position and segment embeddings. However,
for the position we use the corresponding source token’s position. For example, for
the word “two”, the target tokens would have the identical position embedding of
the word “two” in the source document. Interestingly, we do not use any explicit
target position embeddings, but instead separate each role with a [SEP] token.
Empirically, we find that the model is able to use these separators to learn which

role to fill and which mentions have filled previous roles.

Our encoder’s embedding layer uses standard BERT embedding layer, which
applied to the source document tokens. To denote boundary between source and
target tokens, we use sequence A (first sequence) segment embeddings for the
source tokens, we use sequence B (second sequence) segment embeddings for the

target tokens.

We pass the source document tokens through the encoder’s embedding layer,
to obtain their embeddings xg, X1, ..., X,,. We pass the target tokens yo, y1, ..., Yn

through the decoder’s embedding layer, to obtain yg,y1, ..., ¥x.

BERT as Encoder / Decoder We utilize one BERT model as both the source
and target embeddings. To distinguish the encoder / decoder representations, we

provide a partial causal attention mask on the decoder side.

In Figure 4.3, we provide an illustration for the attention masks — 2-dimensional
matrix denoted as m. For the source tokens, the mask allows full source self-
attention, but mask out all target tokens. For i € {0, 1,...,m},

1, it 0<57<m

i?j =
0, otherwise
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For the target tokens, to guarantee that the decoder is autoregressive (the
current token should not attend to future tokens), we use a causal masking strat-
egy. Assuming we concatenate the target to the source tokens (the joint sequence

mentioned below), for i € {m +1,...,n},

;

1, if 0<j<m
M;;=41, if j>m and j<i

0, otherwise

\

The joint sequence of source tokens’ embeddings (xg,Xj,...,X,) and target
tokens’ embeddings (yo,¥1, ..., ¥n) are passed through BERT to obtain their con-

textualized representations,

A~

X0y X1y s Xmy Y05 Y

= BERT(X()a X155 Xmy Y05 -9 yn)

Pointer Decoding For the final layer, we replace word prediction with a simple
pointer selection mechanism. For target time step ¢ (0 <t < n), we first calculate

the dot-product between y, and Xg, Xy, ..., X,

20y 21y ”fm = Yt " X0, Yt - X1, -0, ¥t - X

Then we apply softmax to zg, 21, ..., z,, to obtain the probabilities of pointing to

each source token,

D0, D1y -, Pm = softmax(zq, 21, ..., Zm)

Test prediction is done with greedy decoding. At each time step ¢, argmax is
applied to find the source token which has the highest probability. The predicted

token is added to the target sequence for the next time step ¢t + 1 with its pointer
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embedding. We stop decoding when the fifth [SEP] token is predicted, which

represents the end of extractions for the last role.

In addition, we add the following decoding constraints,

e Tune probability of generating [SEP]. By doing this, we encourage the model
to point to other source tokens and thus extract more entities for each role,
which will help increase the recall. (We set the hyperparameter of downweigh

to 0.01, i.e., for the [SEP] token p = 0.01 x p.)

e Ensure that the token position increase from start token to end token. When
decoding tokens for each role, we know that mention spans should obey this

property. Thus we eliminate those invalid choices during decoding.

4.2.4 Experimental Setup

We conduct evaluations on the MUC-4 dataset MUC-4 [1992], and compare to
recent competitive end-to-end models [Wadden et al., 2019; Du and Cardie, 2020]
in IE (Section 4.2.5). Besides the normal evaluation, we are also interested in how
well our GRIT model captures coreference linguistic knowledge, and comparison
with the prior models. In Section 4.2.6, we present relevant evaluations on the

subset of test documents.

Dataset and Evaluation Metric The MUC-4 dataset consists of 1,700 doc-
uments with associated templates. Similar to [Huang and Riloff, 2012; Du and
Cardie, 2020], we use the 1300 documents for training, 200 documents (TST1+TST2)

as the development set and 200 documents (TST3+TST4) as the test set. Each
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document in the dataset contains on average 403.27 tokens, 7.12 paragraphs. In

Table 4.1, we include descriptions for each role in the template.

Roles ‘ Descriptions

PERPIND | A person responsible for the incident.
PERPORG | An organization responsible for the incident.
TARGET A thing (inanimate object) that was attacked.
VICTIM The name of a person who was the obvious

or apparent target of the attack

or who became a victim of the attack.
WEAPON | A device used by the perpetrator(s) in carrying.

Table 4.1: Natural Language Descriptions for Each Role.

We use the first appearing mention of the role-filler entity as the training signal

(thus do not use the other alternative mentions during training).

We use CEAF-REE which is covered in Section 4.2.1 as the evaluation metric.
The results are reported as Precision (P), Recall (R) and F-measure (F1) score for
the micro-average for all the event roles (Table 4.2). We also report the per-role

results to have a fine-grained understanding of the numbers (Table 4.3).

Baselines We compare to recent strong models for (document-level) informa-
tion/event extraction. CohesionExtract [Huang and Riloff, 2012] is a bottom-up
approach for event extraction that first aggressively identifies candidate role-fillers,
and prune the candidates located in event-irrelevant sentences.* Du and Cardie
[2020] propose neural sequence tagging (NST) models with contextualized repre-
sentations for document-level role filler mentions extraction. We train this model
with BIO tagging scheme to identify the first mention for each role-filler entity and
its type (i.e., B-PerpInd, I-PerpInd for perpetrator individual). DYGIE++ [Wad-

den et al., 2019] is a span-enumeration based extraction model for entity, relation,

“Instead of using feature-engineering based sentence classification to identify event-relevant
sentences, we re-implement the sentence classifier with BiLSTM-based neural sequence model.
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and event extraction. The model (1) enumerates all the possible spans in the doc-
ument; (2) concatenates the representations of the span’s beginning & end token
and use it as its representation, and pass it through a classifier layer to predict
whether the span represents certain role-filler entity and what the role is. Both the
NST and DYGIE++ are end-to-end and fine-tuned BERT [Devlin et al., 2019]
contextualized representations with task-specific data. We train them to identify
the first mention for each role-filler entity (to ensure fair comparison with our pro-
posed model). Unsupervised event schema induction based approaches [Chambers
and Jurafsky, 2011; Chambers, 2013; Cheung et al., 2013] are also able to model
the coreference relations and entities at document-level, but have been proved to
perform substantially worse than supervised models [Patwardhan and Riloff, 2009;
Huang and Riloff, 2012]. Thus we do not compare with them. We also exper-
imented with a variant of our GRIT model — instead of always pointing to the
same [SEP] in the source tokens to finish extracting the role-filler entities for a
role, we use five different [SEP] tokens. During decoding, the model points to the
corresponding [SEP] as the end of extraction for that role. This variant does not

improve over the current best results and we omit reporting its performance.

4.2.5 Results

In Table 4.2, we report the micro-average performance on the test set. We observe
that our GRIT model substantially outperforms the baseline extraction models in

precision and F1, with an over 5% improvement in precision over DYGIE++-.

Table 4.3 compares the models’ performance scores on each role (PERPIND,
PERPORG, TARGET, VICcTIM, WEAPON). We see that, (1) our model achieves

the best precision across the roles; (2) for the roles that come with entities con-
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Models ‘ P R F1

CohesionExtract

[Huang and Riloff, 2012] | 3% 3953 4714
NST

[Du and Cardie, 2020] 56.82  48.92  52.58
DYGIE++

[Wadden et al., 2019] 57.04  46.77  51.40
GRIT | 64.19"*  47.36  54.50*

Table 4.2: Micro-average results (the highest number of each column is boldfaced).
Significance is indicated with **(p < 0.01),"(p < 0.1) — all tests are computed using the
paired bootstrap procedure [Berg-Kirkpatrick et al., 2012].

| PERPIND | PERPORG | TARGET | VieTiM | WEAPON
NST 2 =4 =4 5 / 5
(Du and Cardie, 2020) 48.39 / 32.61 / 38.96 | 60.00 / 43.90 / 50.70 | 54.96 / 52.94 / 53.93 | 62.50 / 63.16 / 62.83 | 61.67 / 61.67 / 61.67
DyGIE++ 59.49 / 34.06 / 43.32 | 56.00 / 34.15 / 42.42 | 53.49 / 50.74 / 52.08 | 60.00 / 66.32 / 63.00 | 57.14 / 53.33 / 55.17
[Wadden et al., 2019 ’ ’ ' ’ ' ’ ’ ’ ' ’ ’ ’ ’ ’ '
GRIT | 65.48 / 39.86 / 49.55 | 66.04 / 42.68 / 51.85 | 55.05 / 44.12 / 48.98 | 76.32 / 61.05 / 67.84 | 61.82 / 56.67 / 59.13

Table 4.3: Per-role performance scored by CEAF-REE (reported as P/R/F1, high-
est F1 for each role are boldfaced).

taining more human names (e.g., PERPIND and VICTIM), our model substantially
outperforms the baselines; (3) for the role PERPORG, our model scores better pre-
cision but lower recall than neural sequence tagging, which results in a slightly
better F1 score; (4) for the roles TARGET and WEAPON, our model is more con-
servative (lower recall) and achieves lower F1. One possibility is that for role like
TARGET, on average there are more entities (though with only one mention each),
and it’s harder for our model to decode as many TARGET entities correct in a

generative way.

4.2.6 Discussion

How well do the models capture coreference relations between men-

tions? We also conduct targeted evaluations on subsets of test documents whose
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| k=1 | 1<k<125 | 125<k<15 | 15<k<175 | k>1.75

(Du and Cardie, 2020] 63.83 / 51.72 / 57.14 | 57.45 / 38.57 / 46.15 | 60.32 / 49.03 / 54.09 | 64.81 / 50.00 / 56.45 | 66.67 / 51.90 / 58.36
DyGIE++ 72.50 / 50.00 / 59.18 | 70.00 / 40.00 / 50.91 | 60.48 / 48.39 / 53.76 | 52.94 / 38.57 / 44.63 | 66.96 / 48.73 / 56.41
[Wadden et al., 2019 : ' ' ’ ’ ’ ’ ’ ’ o ’ ’ ’ ’ ’

GRIT | 65.85 /46.55 / 54.55 | 74.42 / 45.71 / 56.64 | 73.20 / 45.81 / 56.35 | 67.44 / 41.43 / 51.33 | 69.75 / 52.53 / 59.93

Table 4.4: Evaluations on the subsets of documents with increasing number of
mentions per role-filler entity. k denotes the average # mentions per role-filler
entity. Results for each column are reported as Precision / Recall / F1. The
highest precisions are boldfaced for each bucket.

gold extractions come with coreferent mentions. From left to right in Table 4.4, we
report results on the subsets of documents with increasing number (k) of possible
(coreferent) mentions per role-filler entity. We find that: (1) On the subset of
documents with only one mention for each role-filler entity (k = 1), our model has
no significant advantage over DYGIE++4 and the sequence tagging based model;
(2) But as k increases, the advantage of our GRIT substantially increases — with

an over 10% gap in precision when 1 < k < 1.5, and a near 5% gap in precision

when k£ > 1.5.

From the qualitative example (document excerpt and the extractions in Fig-
ure 4.4), we also observe our model recognizes the coreference relation between
candidate role-filler entity mentions, while the baselines do not, which shows that
our model is better at capturing the (non-)coreference relations between role-filler

entity mentions. It also proves the advantage of a generative model in this setting.

How well do models capture dependencies between different roles? To
study this phenomenon, we consider nested role-filler entity mentions in the docu-
ments. In the example of Figure 4.1, “shining path” is a role-filler entity mention
for PERPORG nested in “two shining path members” (a role-filler entity mention
for PERPIND). The nesting happens more often between more related roles (e.g.,

PERPIND and PERPORG) — we find that 33 out of the 200 test documents’ gold
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[P1]... a bomb exploded at the front door of the
[home of a peruvian army general], causing dam-
ages but no casualties. ... [P2] The terrorist attack
was ..., by ... who hurled a bomb at the [home of
general enrique franco], in the San ... [P3] The
bomb seriously damaged the [general’s [vehicle]],
... and those of [neighboring [houses]].

| TARGET

e home of peruvian army general,
home of general enrique franco

e vehicle, general’s vehicle

e houses, neighboring houses

Gold Role-
filler Entities

e home of peruvian army general

NST e home of general enrique franco

e home of peruvian army general
DYGIE++ e home of general enrique franco
e houses

e home of peruvian army general

GRIT
e houses

Figure 4.4: Our model implicitly captures coreference relations between mentions.

extractions contain nested role-filler entity mentions between the two roles.

PERPORG (all docs) | PERPORG (33/200)

P/R/F1 | P/R/F1
NST 56.00 / 34.15 / 42.42 | 80.00 / 44.44 / 57.14
DYGIE++ | 60.00 / 43.90 / 50.70 | 61.54 / 35.56 / 45.07
GRIT | 66.04 / 42.68 / 51.85 | 80.77 / 46.67 / 59.15

Table 4.5: Evaluation on the subset of documents that have nested role-filler entity
mentions between role PERPIND and PERPORG (highest recalls boldfaced).

In Table 4.5, we present the CEAF-REE scores for role PERPORG on the
subset of documents with nested roles. As we hypothesized beforehand, GRIT is
able to learn the dependency between different roles and can learn to avoid missing
relevant role-filler entities for later roles. The results provide empirical evidence:
by learning the dependency between PERPIND and PERPORG, GRIT improves
the relative recall score on the subset of documents as compared to DYGIE++-.

On all the 200 test documents, our model is ~ 2% below DYGIE++ in recall;
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while on the 33 docs, our model scores much higher than DYGIE++ in recall.

...[[[guerrillas] of the [FARC] and the [popular
liberation army]] (EPL)] attacked four towns in
northern Colombia, leaving 17 guerrillas and 2
soldiers dead and 3 bridges partially destroyed. ...

| PERPIND PERPORG
Gold Role- o guerrillas, e EPL, popular
filler Entities guerrillas of FARC liberation army
and popular e FARC
liberation army (EPL)
NST & DYGIE++ | e guerrillas
e FARC
GRIT e guerrillas e popular

liberation army

Figure 4.5: Our model captures dependencies between different roles.

For the document in the example of Figure 4.5, our model correctly extracts
the two role-filler entities for PERPORG: “FARC” and “popular liberation army”,
which are closely related to the PERPIND entity “guerrilla”. While DYGIE++

and NST both miss the entities for PERPORG.

Decoding Ablation Study In the table below, we present ablation results
based on the decoding constraints. These illustrate the influence of the decoding
constraints on the our model’s performance. The two constraints both significantly
improve model predictions. Without downweighing the probability of pointing to

[SEP], the precision increases but recall and F1 significantly drops.

| P R F1 | A(F1)

GRIT 64.19 47.36 54.50
— [SEP] downweigh 67.43 40.12 50.31 | -4.19
— constraint on pointer offset | 62.90 45.79 53.00 | -1.50

Table 4.6: Decoding Ablation Study
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Additional Parameters and Training Cost Finally we consider additional
parameters and training time of the models: As we introduced previously, the
baseline models DYGIE++ and NST both require an additional classifier layer
on top of BERT’s hidden state (of size H) for making the predictions. While our
GRIT model does not require adding any new parameters. As for the training time,
training the DYGIE++ model takes over 10 times longer time than NST and our
model. This time comes from the DYGIE++ model requirement of enumerating
all possible spans (to a certain length constraint) in the document and calculating

the loss with their labels.

‘ additional params ‘ training cost

DYGIE++ 2H (#roles + 1) ~20h
NST H(24#roles + 1) ~1h
GRIT ‘ 0 ‘ <40min

Table 4.7: Additional Parameters and Training Cost.
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Several attacks were carried out in La Paz
last night, one in front of government
house ...

The self-styled "Zarate armed forces"
sent simultaneous written messages to the
media, calling on the people to oppose ...

The first attack occurred at 22:30 in
front of the economic ministry, just
before President Paz Zamora concluded
his message to ...

Roberto Barbery, has reported that
dynamite sticks were hurled from a car.

The second attack occurred at 23:35,
just after the cabinet members had left
government house where they had
listened to the presidential message.

A bomb was placed outside government
house in the parking lot that is used by
cabinet ministers. The police ...

As of 5:00 today, people found that an
old shack on the estate was set ablaze,

4.3 Extracting Event Templates (GTT)

Event 1 Template | Attack

Perpetrator Indiv. | -

Perpetrator Org Zarate armed forces
Physical Target economic ministry
Weapon dynamite sticks
Victim -

Event 2 Template | Bombing

Perpetrator Indiv. | -

Perpetrator Org Zarate armed forces
‘ Physical Target government house

Weapon bomb

Victim -

Event 3 Template | Arson

Perpetrator Indiv.

Perpetrator Org Zarate armed forces
Physical Target old shack

Weapon -

Victim -

Figure 4.6: The template-filling task. Role-filler entity extraction is shown on the
left, and template recognition is shown on the right. Our system performs both of
these document-level tasks with a single end-to-end model.

4.3.1 Task Definition: Template Filling

Assume we are given a set of m event types (71, ..., T,,). Each event template

contains a set of k roles (ry, ..., r). For a document consisting n words x;, xs,
.., T, the system is required to extract d templates, where d > 0 (d is not given
as input). Each template consists of k + 1 slots: the first slot represents the event

type (one of T, ..., T},,). The rest of the k slots correspond to an event role (one
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of r1, ..., 7¢). The system is required to fill in entities for the corresponding role,

which may be filled in as null.

4.3.2 Methodology

Our framework is illustrated in Figure 4.7. First we transform the template filling
task into a sequence generation problem. Then, we train the base model on the
source-target sequence pairs, and apply the model to generate the sequence; finally

the sequence is transformed back to structured templates.

Event 1 Template | Attack Event 2 Template | Bombing
Perpetrator Indiv. | - Perpetrator Indiv. |-
Perpetrator Org | Zarate armed forces Perpetrator Org Zarate armed forces

Physical Target economic ministry Physical Target government house

Weapon dynamite sticks Weapon bomb

Victim Victim

Template 1 Template 2
\ \

Attack <T1 REEs> [SEP_T] Bombing <T2 REEs> [SEP_T] ...

1
Generative Transformers
[CLS] 1
Arttack, Bombing, Arson, Kidnapping, ... [CLS] Artack <T1REEs> [SEP_T] Bombing <T2 REEs> [SEP_T]
[SEP_T]
(Document tokens): Several attacks were
carried out in La Paz last night ...
[SEP]
\ J \ J
Source tokens Target tokens

Figure 4.7: Our generative framework for end-to-end template filling.

4.3.3 Template Filling as Sequence Generation

We first transform the task’s input and output data into specialized source and
target sequence pair encodings. As shown in Figure 4.7 and below, the source

sequence consists of the words of the document (z1, x, ..., ) prepended with the
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general set of tokens representing all event/template types (71, ..., T),); as well as
a separator token denoting the boundary between event templates ([SEP_T]). We
also add a classification token ([CLS]) and another separator token ([SEP]) at the
beginning and end of this source sequence. [CLS] works as the start token, [SEP]

denotes the boundary between REEs.

[CLS] Ty, ..., T, [SEP_T]

T1, %2, .oy Tp, [SEP]

The target sequence consists of the concatenation of template extractions, sep-
arated by the separator token ([SEP_T]). For template i, the sub-sequence consists

of its event type T and its role-filler entity extractions < Role-filler Entities >®):

[CLS] TW, < Role-filler Entities >

[SEP_T] T®, < Role-filler Entities >

[SEP_T] T, < Role-filler Entities >

For the < Role-filler Entities > of template ¢, following Du et al. [2021a],
we use the concatenation of target entity extractions for each role, separated by
the separator token ([SEP]). Each entity is represented with its first mention’s

beginning (b) and end (e) tokens:

e1,.¢1,,.- [SEP] e, el ,.. [SEP] €} €] ...
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4.3.4 Base Model and Decoding Constraints

Next we describe the base model as well as special decoding constraints for template

filling.

BERT as Encoder and Decoder Our model extends upon the GRIT model
for REE [Du et al., 2021a]. The base setup utilizes one BERT [Devlin et al., 2019]
model for processing both the source and target tokens embeddings. To distinguish
the encoder / decoder representations, it uses partial causal attention mask on the
decoder side [Du et al., 2021a]. The joint sequence of source tokens’ embeddings
(ag,ai, ..., a,,) and target tokens’ embeddings (bg,by,...,b,) are passed through

BERT to obtain their contextualized representations,

ag, A1y .oey Al bo..., bltgt

= BERT(ay, by, ..., ay,,., b, ..., by,,,)

Pointer Decoding For the final decoder layer, we replace word prediction with
a simple pointer selection mechanism. For target time step t, we first calculate the

dot-product between b; and &g, a4, ..., a,,,

A~

C0,017 "”clsrc - bt : a(),bt . a17 "”bt : alsrc

Then we apply softmax to ¢, ¢y, ..., ¢, to obtain the probabilities of pointing
to each source token (which may be a word or an event type), test prediction is
done with greedy decoding. At each time step, argmax is applied to find the source

token which has the highest probability. The decoding stops when a stop token is
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predicted.

p())pl) "”plsr-c = SOftma‘X(C()? Cl? °tt Clsrc)

We also add several special decoding constraints for template filling: (1) down-
weighting factor (0.01) to the probability of generating [SEP] and [SEP_T], in
order to calibrate recall; (2) decoding cutoff stop when it ends the &' template
(k =maximum number of events in one document); (3) a constraint to ensure that

the pointers for the start and end token for one entity are in order.

4.3.5 Experiments

We conduct evaluations on the MUC-4 dataset [MUC-4, 1992]. MUC-4 consists
of 1,700 documents with associated templates. We follow prior work in split:
1,300 documents for training, 200 documents (TST1+TST2) as the development set
and 200 documents (TST3+TST4) as the test set. We use the metric for template
filling [Chinchor, 1992] and, as in previous work, map predicted templates to gold
templates during evaluation so as to optimize scores. We follow content-based
mapping restrictions, i.e., the event type of the template is considered essential for

the mapping to occur.’

Missing template’s slots are scored as missing, spurious
template’s slots are scored as spurious. Note that in our work, since we do not
extract the set fillers other than the event/template type, they do not affect the

performance.

5The content-based mapping restrictions were added to MUC-4 to prevent fortuitous mappings
which occurred in MUC-3 [Chinchor, 1992].

64



Models ‘Event Type PERPIND PERPORG TARGET VICTIM WEAPON

GRIT-PIPELINE 62.28 38.40 35.36 36.30 54.97 53.45
DYGIE++ [Wadden et al., 2019] 61.95 32.44 25.73 45.04 49.48 51.60
SEQTAGGING [Du and Cardie, 2020] 60.22 30.59 26.79 36.60 43.62 51.70
GTT ‘ 67.44 44.04 41.79 32.39 54.12 59.71

Table 4.8: Per-slot F'1 score.

Baselines and Additional Related Work As an ablation baseline, we employ
a pipeline, GRIT-PIPELINE, that first uses the GRIT model for role-filler entity
extraction, and then assigns event types to each of the entities as a multi-label
classification problem. We assign types by transforming the problem to multi-
class classification (MCC) [Spolaor et al., 2013]. As there are 6 event types (i.e.,
kidnapping, attack, bombing, robbery, arson, forced work stoppage) in MUC-4, we
use 2% labels for the MCC problem.

We also compare to end-to-end baselines without modeling between-event de-
pendencies, DYGIE++ [Wadden et al., 2019]° is a span-enumeration based ex-
tractive model for information extraction. The model enumerates all the possible
spans in the document and passes each representation through a classifier layer
to predict whether the span represents certain role-filler entity and what the role
is. SEQTAGGING is a BERT-based sequence tagging model for extracting the role-
fillers entities. A role-filler entity can appear in templates of different event types
(e.g., “Zarate armed force” appear in both attack and bombing event). For both
baselines, the prediction goal is multi-class classification. More specially, we adapt
the DYGIE—++4 output layer implementation to first predict the role-filler entity’s

role class, and then predicts its event classes conditioned on the entity’s role.

Note that Chambers [2013] and Cheung et al. [2013] propose to do event schema

induction with unsupervised learning. Given their unsupervised nature, empiri-

50Qur own re-implementation.
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cally the performance is worse than supervised models [Patwardhan and Riloff,

2009]. Thus we do not add these as comparisons.

Models ‘ P R F1
GRIT-PIPELINE 63.88 37.56  47.31
DYGIE++

[Wadden et al., 2019] 61.90  36.33  45.79
SEQTAGGING

[Du and Cardie, 2020] 46.80  38.30  42.13
GrT | 61.69 42.36 50.23"

Table 4.9: Micro-average results on the full test set.

4.3.6 Results and Analysis

Results on the full test set are shown in Table 4.9. We report the micro-average
performance (precision, recall and F1). We see that our framework substantially
outperforms the baseline extraction models in precision, recall and F1, with ap-
proximately a 4% F1 increase over the end-to-end baselines. It outperforms the

GRIT-PIPELINE system by around 3% F1 (* denotes p < 0.05).

Per-slot F1 score is reported in Table 4.8. The results demonstrate that
our framework more often predicts the correct event type, performs better on
PeErRPIND and PERPORG, and achieves slightly worse performance with GRIT-
PIPELINE on roles that appear later in the template (i.e., TARGET and VICTIM).
We also found that DYGIE++ performs better on TARGET, mainly due to its

high precision in role assignment for spans.

Between-Event Dependencies We also show results (Table 4.10) on the subset

of documents that contains more than one gold event. We see the F'1 score for
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Models P R F1 A

GRIT-PIPELINE | 65.17 26.05 37.22 -21.33%
DYGIE++ 69.90 27.05 39.01 -14.81%
SEQTAGGING 51.00 29.06 37.02 -12.13%
GTT 56.76 38.08 45.58 -9.26%

Table 4.10: Performance on the subset of documents which contain more than one
gold event. A: relative change of F1, as compared to the Full Test setting.

all systems drops substantially, proving the difficulty of the task, as compared to

the single/no event case. When compared to the Full Test setting in Table 4.9,

the baselines all increase in precision and drop substantially in recall, while our

approach’s precision and recall drop a little. This change is understandable, as

the baseline systems are more conservative and tend to predict fewer templates.

As the number of gold templates increases, the fewer templates predictions have a

better chance of getting matched, but their recall drops as well.
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Figure 4.8: F1 on subset of documents with E events.

How performance changes when FE increases In Figure 4.8, we see that

when the number of gold events in the document is smaller (F = 1, 2), our approach

performs on par with the pipeline-based and DYGIE++ baselines. However, as
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E grows larger, the baselines’” F1 drop significantly (e.g., over -10% as E grows

from 2 to 3).

Qualitative Case Analysis Consider the input document (doc id TST3-MUC4-0080)
below, which contains an attack and a bombing template. In the gold annotations,
“Farabundo Marti National Liberation Front” acts as PERPORG in both events.
Our model correctly extracts the two events and the PERPORG in each while Dy-
GIE++ only predicts the attack event with its PERPORG role entity correctly.
Although GRIT-PIPELINE gets both events correct, it failed to extract this PER-

PORG entity for the second event.

Official sources today reported that at least eight people, including soldiers, rebels,
and civilians, were killed during clashes between the army and guerrillas over the

past weekend in various points of the country.

Military spokesmen for the 6th infantry brigade, headquartered in the eastern usu-
lutan department, told acanefe that two rebels were killed and one wounded during

a clash with government troops in San Agustin.

Meanwhile, the armed forces press committee (Coprefa) reported that the bodies of
two guerrillas, who were presumably killed during clashes with the army, were found

by soldiers in the outskirts of Santa Tecla, in the central la libertad department.

Coprefa reported that two soldiers were killed during a clash with members of the
Farabundo Marti National Liberation Front (FMLN) in Comasagua, about
28 km to the southwest of (San) Salvador, where a rebel attack on a coffee processing

plant was successfully repelled.

It reported that a civilian was killed in the crossfire and that a soldier was also
killed during clashes in Zaragoza, south of San Salvador, where two guerrillas were

wounded.
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Salvadoran (red) cross sources today reported that a 48-year-old woman identified
as Maria Luz Lopez was wounded last night when a powerful bomb, which damaged

several businesses in (San) Salvador, exploded.

The bomb was planted in a heavily commercial area of downtown (San) Salvador
causing heavy property loses, according to the owners who provided no specific

figures.

This is the fourth dynamite attack on businesses in (San) Salvador so far in 1990.

4.4 Chapter Summary

We revisit the classic NLP problem of template filling and its sub-task REE. We
demonstrate that they are still challenging but more realistic problems in IE, and
prior methods are not able to handle well the complex output structures and
dependencies. We introduce an effective end-to-end transformer based generative
model GRIT for REE, which learns the document representation and encodes the
dependency between role-filler entities and between event roles. GRIT outperforms
the baselines on the task and better captures the coreference linguistic phenomena;
We also extend GRIT and propose the generative learning model called GTT for
the full template filling task. GTT better dependencies across the document and

performs substantially better on multi-event documents.
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CHAPTER 5
EXTRACTION BY ANSWERING (ALMOST) NATURAL
QUESTIONS

In chapter 3 and chapter 4, we’ve introduced modeling techniques for tackling
the challenges introduced by the document-level context and complex structure.
Another major challenge for IE as we mentioned in chapter 1 is the high cost of
annotations, which motivates design of models with better generalizability (e.g.,
achieving decent performance with few annotated examples.) Next, in this chap-
ter, we introduce a question answering based framework for information extraction.
More specifically, we firstly generate template-based semantically meaningful ques-
tions and then answer questions to detect event triggers and extract corresponding

arguments.

A recap for the event extraction task (ACE style) is illustrated via an example
in Figure 5.1, which depicts an ownership transfer event (the event type), triggered
by the word “sale” (the event trigger) and accompanied by its extracted arguments
— text spans denoting entities that fill a set of (semantic) roles associated with

the event type (e.g., BUYER, SELLER and ARTIFACT for ownership transfer events).

Input: Extracted Event:

As part of the 11-billion-dollar Transaction-

sale of USA Interactive's film and Event type Transfer-Ownership
television operations to the Trigger “gale”

French company and its parent — msp “French company”,
company in December 2001, USA Buyer “parent company”
Interactive received 2.5 billion Args.| Seller | “USA Interactive”
dollars in preferred shares in Artifact | “operations”
Vivendi Universal Entertainment. Place |-

Figure 5.1: Event extraction example from the ACE 2005 corpus.

Recent successful approaches to event extraction have benefited from dense fea-
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tures extracted by neural models [Chen et al., 2015; Nguyen et al., 2016; Liu et al.,
2018] as well as contextualized lexical representations from pretrained language
models [Zhang et al., 2019b; Wadden et al., 2019]. These approaches, however,
exhibit two key weaknesses. First, they rely heavily on entity information for ar-
gument extraction. In particular, event argument extraction generally consists of
two steps — first identifying entities and their general semantic class with trained
models [Wadden et al., 2019] or a parser [Sha et al., 2018], then assigning argument
roles (or no role) to each entity. Although joint models [Yang and Mitchell, 2016;
Nguyen and Nguyen, 2019; Zhang et al., 2019a; Lin et al., 2020] have been proposed
to mitigate this issue, error propagation [Li et al., 2013] still occurs during event
argument extraction. A second weakness of neural approaches to event extraction
is their inability to exploit the similarities of related argument roles across event
types. For example, the ACE 2005 [Doddington et al., 2004] CONFLICT.ATTACK
events and JUSTICE.EXECUTE events have TARGET and PERSON argument roles,
respectively. Both roles, however, refer to a human being who is affected by an
action. Ignoring the similarity can hurt performance, especially for argument roles
with few /no examples at training time. Plus, the traditional models are unable to

handle unanticipated roles at deployment time.

In this paper, we propose a new paradigm for the event extraction task — for-
mulating it as a question answering (QA)/machine reading comprehension (MRC)
task (Contribution 1). The general framework is illustrated in Figure 5.2. Using
BERT [Devlin et al., 2019] as the base model for obtaining contextualized repre-
sentations from the input sequences, we develop two BERT-based QA models —
one for event trigger detection and the other for argument extraction. For each,
we design one or more Question Templates that map the input sentence into the

standard BERT input format. Thus, trigger detection becomes a request to iden-
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tify “the action” or the “verb” in the input sentence and determine its event type;
and argument extraction becomes a sequence of requests to identify the event’s
arguments, each of which is a text span in the input sentence. Details will be
explained in Section 5.1. To the best of our knowledge, this is the first attempt to

cast event extraction as a QA task.

Treating event extraction as QA overcomes the weaknesses in existing methods
identified above (Contribution 2): (1) Our approach requires no entity anno-
tation (gold or predicted entity information) and no entity recognition pre-step;
event argument extraction is performed as an end-to-end task; (2) The question
answering paradigm naturally permits the transfer of argument extraction knowl-
edge across semantically related argument roles. We propose rule-based question
generation strategies (including incorporating descriptions in annotation guide-
lines) for templates creation, and conduct extensive experiments to evaluate our
framework on the Automatic Content Extraction (ACE) event extraction task and
show empirically that the performance on both trigger and argument extraction
outperform prior methods (Section 5.2.2). Finally, we show that our framework
extends to the zero-shot setting — it is able to extract event arguments for unseen

roles (Contribution 3).

5.1 Methodology

In this section, we first provide an overview for the framework (Figure 5.2), then go
deeper into details of its components: question generation strategies for template

creation, as well as training and inference of QA models.
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5.1.1 Framework Overview

Trigger BERT QA

question model for
Input sentence: ~ template trigger
As part of the 11-billion-dollar instantiation [CLS] the action [SEP] As part of aneson As part of ... sale
sale of USA Interactive's film and ... sale of ... film and television of ... film and

television operations ... operations ... television
operations to the
French company
and its parent

company ...
- R Buyer: [CLS] Who is the buying
Buyer i;:;th ;‘;‘;F;l“yy ' Buyer ;r;:;th ;‘;T;)i:;y ' Artif: ag[zn]isi? \a;;Le? Detected event:
i i rtifact: at was . .
“USA Interactive “USA Interactive” bought in sale? z[:)pe-t:rransacnon’
e — T . . ranster-
. giaa? . g’ Seller: [CLS] Who is the selling
Seller | “USA Interactive’ Seller | “USA Interactive’ .
e e agent in sale? OWHCYShlPs
Artifact | “operations” Applying Artifact | “operations” BERT QA Place: [CLS] Where the event Argument Triggered by: sale
e ° takes place in sale? uestion
Place |=USAZ dynamic Place | “USA” e B,
————————| threshold to argument + ) temp}at;
keep only top extraction nstantiation
arguments

[SEP] <input sentence>

Figure 5.2: Our framework for event extraction (ACE style).

Our QA framework for event extraction relies on two sets of Question Templates
that map an input sentence to a suitable input sequence for two instances of a
standard pre-trained bidirectional transformer (BERT [Devlin et al., 2019]). The
first of these, BERT_QA Trigger (green box in Figure 5.2), extracts from the input
sentence the event trigger which is a single token, and its type (one of a fixed set
of pre-defined event types). The second QA model, BERT_QA_Arg (orange box
in Figure 5.2), is applied to the input sequence, the extracted event trigger and
its event type to iteratively identify candidate event arguments (spans of text)
in the input sentence. Finally, a dynamic threshold is applied to the extracted
candidate arguments, and only the arguments with probability above the threshold

are retained.

The input sequences for the two QA models share a standard BERT-style

format:

[CLS] <question> [SEP| <sentence> [SEP]

where [CLS] is BERT’s special classification token, [SEP] is the special token to

denote separation, and jsentence; is the tokenized input sentence. We provide
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details on how to obtain the <question> in Section 5.1.2. Details on the QA

models and the inference process will be explained in Section 5.1.3.

5.1.2 Question Generation Strategies

For our QA-based framework for event extraction to be easily moved from one
domain to the other, we concentrated on developing question generation strategies
that not only worked well for the task, but can be quickly and easily implemented.
For event trigger detection, we experiment with a set of four fixed templates —
“what is the trigger”, “trigger”, “action”, “verb”. Basically, we use the fixed
literal phrase as the question. For example, if we choose the “action” template,
the input sequence for the example sentence in Figures 5.1 and 5.2 is instantiated

as:

[CLS] action [SEP] As part of the 11-billion-dollar sale ... [SEP]

As for event argument extraction, we design three templates with argument

role name, basic argument based question and annotation guideline based question,

respectively:
Template 1~ Template 2 Template 3
Argument . . o .
(Role name) (Type + Role question)  (Annotation guideline question)
Artifact artifact What is the artifact? What is being transported?
Agent agent Who is the agent? Who is responsible for the transport event?
Vehicle vehicle What is the vehicle? What is the vehicle used?
Origin origin What is the origination? Where the transporting originated?

Destination | destination =~ What is the destination? Where the transporting is directed?

Table 5.1: Arguments (of event type MOVEMENT. TRANSPORT) and corresponding
questions from three templates. “in <trigger>” is not added to the questions in
this example.
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e Template 1 (Role Name) For this template, jquestion; is simply instan-

tiated with the argument role name (e.g., artifact, agent, place).

e Template 2 (Type + Role) Instead of directly using the argument role
name (<role name>) as the question, we first determine the argument role’s
general semantic type — one of person, place, other; and construct the asso-
ciated “WH” word question — who for person, where for place and what for

all other cases, of the following form:
<WH_word> is the <role name> ?

Examples are shown in Table 1 for the arguments of event type MOVE-
MENT.TRANSPORT. By adding the WH word, more semantic information is

included as compared to Template 1.

e Template 3 (Incorporating Annotation Guidelines) To incorporate
even more semantic information and make the question more natural sound-
ing, we utilize the descriptions of each argument role provided in the ACE
annotation guidelines for events [Linguistic Data Consortium, 2005] for gen-

erating the questions.

e + “in <trigger>" Finally, for each template type, it is possible to encode
the trigger information by adding “in <trigger>" at the end of the question
(where <trigger> is instantiated with the real trigger token obtained from the
trigger detection phase). For example, the Template 2 question incorporating

trigger information would be:

<WH _word> is the <argument> in <trigger>?

To help better understand all the strategies above, Table 5.1 presents an ex-

ample for argument roles of event type MOVEMENT. TRANSPORT. We see that the
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annotation guideline based questions are more natural and encode more semantics
about a given argument role, than the simple Type + Role question “what is the

artifact?”.

5.1.3 Question Answering Models

We use BERT [Devlin et al., 2019] as the base model for getting contextu-
alized representations for the input sequences for both BERT_QA Trigger and
BERT_QA_Arg. After the instantiation with question templates the sequences are

of format [CLS| <question> [SEP| <sentence> [SEP].

Then we get the contextualized representations of each token for trigger de-
tection and argument extraction with BERT7, and BERT,,,, respectively. For the

input sequence (e, s, ..., ex) prepared for trigger detection, we have:

E= [el, €q, ..., eN]

€1,€eq,...,eny = BERTTT(€1,€2, ceey GN)

For the input sequence (aq, as, ..., aps) prepared for argument span extraction,

we have:

A = [a;,ay,...,ay]
aj,as,...,ay = BERT 4,¢(aq, ag, ..., ap)
The output layer of each QA model, however, differs: BERT_QA _Trigger pre-
dicts the event type for each token in sentence (or None if it is not an event trigger),

while BERT_QA _Arg predicts the start and end offsets for the argument span with

a different decoding strategy.
More specifically, for trigger prediction, we introduce a new parameter ma-
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trix Wy, € R¥*T where H is the hidden size of the transformer and 7T is the
number of event types plus one (for non-trigger tokens). softmax normalization is
applied across the T types to produce P,,., the probability distribution across the

event types:

Py, = softmax(EW,,) € R x N

At test time, for trigger detection, to obtain the type for each token eq, e, ..., en,

we simply apply argmax to Fj,.

For argument span prediction, we introduce two new parameter matrices
W, € RF*! and W, € RP*!: softmax normalization is then applied across the
input tokens aq, as, ..., aps to produce the probability of each token being selected

as the start/end of the argument span:

Ps(i) = softmax(aiws)

P.(i) = softmax(a; W,)

To train the models (BERT_QA _Trigger and BERT_QA_Arg), we minimize the
negative log-likelihood loss for both models, parameters are updated during the
training process. In particular, the loss for the argument extraction model is the
sum of two parts: the start token loss and end end token loss. For the training
examples with no argument span (no answer case), we minimize the start and end

probability of the first token of the sequence ([CLS]).

Ear‘g - Earg,start + Earg,end

Inference with Dynamic Threshold for Argument Spans At test time,
predicting the argument spans is more complex — for each argument role, there

can be several or no spans to be extracted. After the output layer, we have the
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probability of each token a; € (ay, as, ..., apr) being the start (Ps(i)) and end (P.(7))

of the argument span.

Algorithm 1: Harvesting Argument Spans Candidates
Input : Py(i), where i € {1, ..., M},
P.(i), where i € {1, ..., M}
Output: valid candidate spans for the argument role

1 for start + 1 to M do

2 for end < 1 to M do

3 if start or end not in the input sentence then continue;
4

5

if end — start + 1 > MazSpanLength then continue;
if P(start) < Ps([CLS]) or P.(end) < P.([CLS]) then continue;
// add the valid candidate span to the set

6 score <— Ps(start) + P.(end);
7 no_ans_score < Ps(1) + P.(1) — score;
8 candidates.add([start, end, no_ans_score])
9 end
10 end

Algorithm 2: Automatic Filtering on Argument Candidates

Input : dev_candidates(i), i € {1,...,dev_n},
test_candidates(i), i € {1, ..., test_n}.
Output: A set of top arguments from test_candidates

// get the best dynamic threshold

1 sort(dev_candidates, key = no_ans_score);

2 best_thresh +— 0;

3 best_res <— 0;

4 for i <+ 1 to dev_n do

5 thresh < dev_candidates(i).no_ans_score;

6 result < eval(dev_candidates with no_ans_score <= thresh);
7 if result > best_res then best_thresh < thresh;

8 best_res < result;

9 end

// apply the best threshold
10 final_arguments «— {};
11 for i < 1 to test_n do
12 if test_candidates(i).no_ans_score <= best_thresh then
final_arguments.add(test_candidates(i));
13 end

Firstly, we run an algorithm to harvest all valid argument spans candidates for
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each argument role (Algorithm 1). Basically, we:

1. Enumerate all the possible combinations of start offset (start) and end offset

(end) of the argument spans (line 1-2);

2. Eliminate the spans not satisfying the constraints: start and end token must
be within the sentence; the length of the span should be shorter than a
maximum length constraint; Argument spans should have larger probability
than the probability of “no argument” (which is stored at the [CLS] token)
(line 3-5);

3. Calculate the relative no answer score (no_ans_score) for the candidate span

and add the candidate to list (line 6-8).

Then we run another algorithm to filter out candidate arguments that should
not be included (Algorithm 2). More specifically, we obtain a probability threshold
(best_thresh) that helps achieve best evaluation results on the dev set (line 1-9)
and keep only those arguments with no_ans_score smaller than the threshold (line
10-13). With the dynamic threshold for determining the number of arguments
to be extracted for each role!, we avoid adding a (hard) hyperparameter for this

purpose.

Another easier way to get final argument predictions is to directly include all
the candidates with no_ans_score < 0, which does not require tuning the dynamic

threshold best_thresh.

I'Each role has a separate threshold.
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5.2 Experiments

5.2.1 Dataset and Evaluation Metric

We conduct experiments on the ACE 2005 corpus [Doddington et al., 2004], it
contains documents crawled between year 2003 and 2005 from a variety of areas
such as newswire (nw), weblogs (wl), broadcast conversations (bc) and broadcast
news (bn). The part that we use for evaluation is fully annotated with 5,272 event

triggers and 9,612 arguments. We use the same data split and pre-processing step

as in the prior works [Zhang et al., 2019b; Wadden et al., 2019].

As for evaluation, we adopt the same criteria defined in Li et al. [2013]: An
event trigger is correctly identified (ID) if its offsets match those of a gold-standard
trigger; and it is correctly classified if its event type (33 in total) also matches the
type of the gold-standard trigger. An event argument is correctly identified (ID) if
its offsets and event type match those of any of the reference argument mentions
in the document; and it is correctly classified if its semantic role (22 in total)
is also correct. Though our framework does not involve the trigger/argument
identification step and tackles the identification + classification in an end-to-end
way, we still report the trigger/argument identification’s results to compare to
prior work. It could be seen as a more lenient evaluation metric, as compared to
the final trigger detection and argument extraction metric (ID 4 Classification),
which requires both the offsets and the type to be correct. All the aforementioned
elements are evaluated using precision (denoted as P), recall (denoted as R) and

F1 scores (denoted as F1).
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5.2.2 Results

Evaluation on ACE Event Extraction We compare our framework’s perfor-
mance to a number of prior competitive models: dbRINN [Sha et al., 2018] is
an LSTM-based framework that leverages the dependency graph information to
extract event triggers and argument roles. Joint3EE [Nguyen and Nguyen, 2019]
is a multi-task model that performs entity recognition, trigger detection and ar-
gument role assignment by shared BiGRU hidden representations. GAIL [Zhang
et al., 2019b] is an ELMo-based model that utilizes a generative adversarial net-
work to help the model focus on harder-to-detect events. DYGIE++ [Wadden
et al., 2019] is a BERT-based framework that models text spans and captures
within-sentence and cross-sentence context. OnelE [Lin et al., 2020] is a joint

neural model for extraction with global features.?

‘ Trigger Identification ‘ Trigger ID + Classification
| P R F1 | P R F1

dbRNN [Sha et al., 2018] - - - 74.10  69.80 71.90
Joint3EE [Nguyen and Nguyen, 2019 70.50 74.50 72.50 | 68.00 71.80 69.80
GAIL-ELMo [Zhang et al., 2019b] 76.80 71.20 73.90 | 74.80 69.40 72.00
DYGIE++, BERT + LSTM [Wadden et al., 2019 - - - - - 68.90
DYGIE++, BERT FineTune [Wadden et al., 2019) - - - - - 69.70
Our BERT FineTune 69.77 76.18 72.84 | 67.15 73.20 70.04
BERT_QA _Trigger (best trigger question strategy) | 74.29 77.42 75.82 | 71.12 73.70 72.39

Table 5.2: Trigger detection results.

In Table 5.2, we present the comparison of models’ performance on trig-
ger detection. We also implement a BERT fine-tuning baseline and it reaches
nearly same performance as its counterpart in DYGIE+4. We observe that our
BERT_QA Trigger model with the best trigger questioning strategy reaches com-

parable (better) performance with the baseline models.?

2Slightly different from our and Wadden et al. [2019]’s data pre-processing, OnelE skips lines
before the <text> tag (e.g., headline, datetime).

3Note that OnelE is concurrent to our work and reports better performance. On trigger
detection, it reaches 74.7 F1 as compare to our 72.39. On argument extraction (affected by
trigger detection), it reaches 56.8 as compared to our 53.31.
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‘ Argument Identification ‘ Argument ID + Classification

| P R Fi. | P R F1

dbRNN [Sha et al., 2018] - - 57.20 - - 50.10
Joint3EE [Nguyen and Nguyen, 2019] - - - 52.10 52.10 52.10
GAIL-ELMo [Zhang et al., 2019b] 63.30 48.70 55.10 61.60 45.70 52.40
DYGIE++, BERT + LSTM [Wadden et al., 2019] - - 54.10 - - 51.40
DYGIE++, BERT + LSTM ensemble [Wadden et al., 2019] - - 55.40 - - 52.50
BERT_QA _Arg (annot. guideline question template) 58.02 50.69  54.11 56.87 49.83 53.12*

w/o dynamic threshold 53.39 54.69  54.03 50.81 52.78 5177
BERT_QA _Arg (ensemble argument question template 2&3) | 58.90 52.08 55.29 56.77 50.24 53.31

Table 5.3: Argument extraction results. *

0.05).

indicates statistical significance (p <

In Table 5.3, we present the comparison between our model and baseline sys-
tems on argument extraction. Notice that the performance of argument extraction
is directly affected by trigger detection. Because argument extraction correctness
requires the trigger to which the argument refers to be correctly identified and
classified. We can observe: (1) Our BERT_QA_Arg model with the best argument
question generation strategy (annotation guideline based questions) outperforms
prior work significantly, although it uses no entity recognition resources; (2) Drop
of F1 performance from argument identification (correct offset) to argument ID +
classification (both correct offset and argument role) is only around 1%, while the
gap is around 3% for prior models which rely on entity recognition and a multi-step
process for argument extraction. This once again demonstrates the benefit of our

new formulation for the task as question answering.

To better understand how the dynamic threshold is affecting our framework’s
performance. We conduct an ablation study on this (Table 5.3) and find that
the threshold increases the precision and the general F1 substantially. The last
row in the table shows the test time ensemble performance of the predictions
from BERT_QA _Arg trained with template 2 question, and another BERT QA _Arg
trained with template 3 question (the two relatively better questioning strategies).

The ensemble system outperforms the non-ensemble system in both precision and
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recall, demonstrating benefits from both templates.

Evaluation on Unseen Argument Roles To verify how our formulation pro-
vides advantages for extracting arguments with unseen argument roles (similar to
the zero-shot relation extraction setting in Levy et al. [2017]), we conduct another
experiment, where we keep 80% of the argument roles (16 roles) seen at training
time, and 20% (6 roles) only seen at test time. Specifically, the unseen roles are
“Vehicle, Artifact, Target, Victim, Recipient, Buyer”. Notice that during training,
we use the subset of sentences from the training set, which are known to contain
arguments of seen roles as positive examples. At test time, we evaluate the models
on the subset of sentences from the test set, which contains arguments of unseen

roles.*

‘ Argument ID + Classification

| P R F1

Random NE 26.61 24.77 25.66
GAIL
[Zhang et al., 2019b] i i i
Our model

w/ Role name 73.83 53.21 61.85

w/ Type + Role Q 77.18  55.05 64.26

w/ Annot. Guideline Q | 78.52  59.63 67.79

Table 5.4: Evaluation on sentences containing unseen argument roles.

Table 5.4 presents the results. Random NE is our random baseline that selects
a named entity in the sentence, it has a reasonable performance of near 25%. Prior
models such as GAIL are not capable of handling the unseen roles. ZSTE [Huang
et al., 2018] is a framework for zero-shot transfer learning of event extraction with
AMR. It maps each parsed candidate span to a specific type in a target event

ontology. Its argument extraction results are affected by AMR performance and

4We omit the trigger detection phase in this evaluation.
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their reported F1 is around 20-30% in their evaluation setting.

Using our QA-based framework, as we leverage more semantic information and
naturalness into the question (from question template 1 to 2, to 3), both the

precision and recall increase substantially.

5.3 Further Analysis

5.3.1 Influence of Question Templates

To investigate how the question generation strategies affect the performance of
event extraction, we perform experiments on trigger and argument extractions

with different strategies, respectively.

‘ Trigger ID + Classification

| P R F1
leaving empty 67.15 73.20 70.04
“what is the trigger” | 70.15 69.98 70.06
“what happened” 70.53 69.48 70.00
“trigger” 69.73 71.46 70.59
“action” 72.25 T1.71 71.98
“verb” 71.12  73.70 72.39

Table 5.5: Effect of questioning on trigger detection.

In Table 5.5, we try different fixed questions for trigger detection. By “leaving
empty”’, we mean instantiating the question with empty string.® There’s no
substantial gap between different alternatives. By using “verb” as the question,

our BERT_QA Trigger model achieves best performance (measured by F1 score).

5In this case, the model degrades to a token classification model, which matches our BERT
FineTune baseline’s performance.
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The QA model also encodes the semantic interactions between the fixed question
(“verb”) and the sentence, this explains why BERT_QA _Trigger is better than

BERT FineTune in trigger detection.

‘ Predicted Triggers Gold Triggers

‘ Argument Identification Argument ID + C ‘ Argument Identification ~ Argument ID + C
R F1 P R F1 ‘ P R F1 P R F1
4750 51.22  49.29  44.85 48.78 46.74 ‘ 56.12  67.01 61.09  51.95 63.19 57.02

g

Question ‘

Role name

+ in jtrigger;, 53.86 51.91 52.87  51.63 50.17 50.89 | 69.00 64.76 66.81 64.70 61.28 62.94

Type + Role question ‘51.02 47.74 49.33 48.64 45.83 47.19 | 60.31 62.15 61.22 57.17 59.20 58.17

+ in jtriggery, 54.61 50.69 52.58 52.98 4896 50.89 | 70.38 62.85 66.40 67.55 60.59 63.88

51.17 51.22 51.19 48.99 49.83 49.40
58.02  50.69 54.11 56.87 49.83 53.12

60.03 68.40 63.94 57.08 65.97 61.21
71.17 65.45 68.19 67.88 63.02 65.36

Annot. guideline question
+ in jtrigger;

Table 5.6: Influence of question generation strategies on argument extraction.

The comparison between different question generation strategies for argument
extraction is even more interesting. In Table 5.6, we present the results in two
settings: event argument extraction with predicted triggers (the same setting as

in Table 5.3), and with gold triggers. In summary, we find that:

o Adding “in <trigger>" after the question consistently improves the perfor-
mance. It serves as an indicator for what/where the trigger is in the input
sentence. Without adding the “in <trigger>", for each template (1, 2 & 3),
the F1 of models’ predictions drop around 3 percent when given predicted

triggers, and more when given gold triggers.

o Qur template 3 questioning strategy which is most natural achieves the best
performance. As we mentioned earlier, template 3 questions are based on
descriptions for argument roles in the annotation guideline, thus encoding
more semantic information about the role name. And this corresponds to
the accuracy of models’ predictions — template 3 is more effective than tem-
plates 1&2 in both with “in <trigger>” and without “in <trigger>" settings.

What’s more, we observe that template 2 (adding a WH_word to form the
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questions) achieves better performance than the template 1 (directly using

argument role name).

5.3.2 Error Analysis

We further conduct error analysis and provide a number of representative examples.

Table 5.7 summarizes error statistics for trigger detection and argument extraction.

Missing ‘ Spurious ‘ Wrong Type
46.08% | 45.62% |  8.29%

same number
exact match ‘ not exact match

14.48% | 17.21% | 13.93% | 54.37%

more less

Table 5.7: Trigger errors (upper table) and argument errors (lower table).

For event triggers, the majority of the errors relate to missing or spurious pre-
dictions, and only 8.29% involve misclassified event types (e.g., an ELECT event
is mistaken for a START-POSITION event). For event arguments, on the sentences
that come with at least one event in gold data, our framework extracts more ar-
guments only around 14% of the cases. Most of the time (54.37%), our framework
extracts fewer arguments than it should; this corresponds to the results in Ta-
ble 5.3, where the precision of our models are higher. In around 30% of the cases,
our framework extracts the same number of arguments as in the gold data, almost

half of which match exactly the gold arguments.

After examining the example predictions, we find that reasons for errors can

be mainly divided into the following categories:
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e More complex sentence structures. In the following example, the input sen-
tence has multiple clauses, each with trigger and arguments (such as when
triggers are partial or elided). Our model is capable of also extracting “Tom”

as another ENTITY of the CONTACT.MEET event in the first example:
[She|gymry Visited the store and [Tom|gypry did too.

But in the second example, when there is a higher-order event expressed span-
ning events in nested clauses, our model did not extract the entire ViCTIM

correctly, which shows the difficulty of handling complex clause structures.

Canadian authorities arrested two Vancouver-area men on Friday
and charged them in the deaths of [329 passengers and crew mem-
bers of an Air-India Boeing 747 that blew up over the Irish Sea in

1985, en route from Canada to London]vicrn-

o Lack of reasoning with document-level context. In the sentence “MCI must
now seize additional assets owned by Ebbers, to secure the loan.” There
is a TRANSFER-MONEY event triggered by loan, with MCI as the GIVER
and Ebbers, the RECIPIENT. In the previous paragraph, it’s mentioned that
“Ebbers failed to make repayment of certain amount of money on the loan
from MCIL.” Without this context, it is hard to determine that Ebbers should

be the recipient of the loan.

e Lack of knowledge to obtain exact boundary of the argument span. For ex-
ample, in “Negotiations between Washington and Pyongyang on their nu-
clear dispute have been set for April 23 in Beijing ...”, for the ENTITY role,
two argument spans should be extracted (“Washington” and “Pyongyang”).

While our framework predicts the entire “Washington and Pyongyang” as
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the argument span. Although there’s an overlap between the prediction and

gold-data, the model gets no credit for it.

e Data and lexical sparsity. In the following two examples, our model fails
to detect the triggers of type END-POSITION. “Minister Tony Blair said
ousting Saddam Hussein now was key to solving similar crises.” “There’s
no indication if Erdogan would purge officials who opposed letting in the
troops.” It’s partially due to they not being seen during training as triggers.
“ousting” is a rare word and is not in the tokenizers’ vocabulary. Purely

inferring from the sentence context is hard to make the correct prediction.

5.4 Related Work

Event Extraction Most event extraction research has focused on the 2005
Automatic Content Extraction (ACE) sentence-level event task [Walker et al.,
2006]. In recent years, continuous representations from convolutional neural net-
works [Nguyen and Grishman, 2015; Chen et al., 2015] and recurrent neural net-
works [Nguyen et al., 2016] have been proved to help substantially for pipeline-
based classifiers by automatically extracting features. To mitigate the effect of
error propagation, joint models have been proposed for event extraction. Yang
and Mitchell [2016] consider structural dependencies between events and entities,
which requires heavy feature engineering to capture discriminative information.
Nguyen and Nguyen [2019] propose a multitask model that performs entity recog-
nition, trigger detection and argument role prediction by sharing BiGRU hidden
representations. Zhang et al. [2019a] utilize a neural transition-based extraction
framework [Zhang and Clark, 2011], which requires specially designed transition

actions. It still requires recognizing entities during decoding, though entity recog-

88



nition and argument role prediction are done jointly.

These methods generally perform trigger detection — entity recognition
— argument role assignment during decoding. Different from the works above,
our framework completely bypasses the entity recognition stage (thus no annota-
tion resources for NER needed), and directly tackles event argument extraction.
Also related to our work includes DYGIE++ [Wadden et al., 2019] — it models the
entity /argument spans (with start and end offset) instead of labeling with the BIO
scheme. Different from our work, its learned span representations are later used
to predict the entity /argument type. While our QA model directly extracts the
spans for certain argument role types. Contextualized representations produced
by pre-trained language models [Peters et al., 2018; Devlin et al., 2019] have been
shown to be helpful for event extraction [Zhang et al., 2019b; Wadden et al., 2019]
and question answering [Rajpurkar et al., 2016]. The attention mechanism helps
capture relationships between tokens in the question and input sequence tokens.

We use BERT in our framework for capturing these semantic relationships.

Machine Reading Comprehension (MRC) Span-based MRC tasks involve
extracting a span from a paragraph [Rajpurkar et al., 2016] or multiple para-
graphs [Joshi et al., 2017; Kwiatkowski et al., 2019]. Recently, there have been
explorations on formulating NLP tasks as a question answering problem. McCann
et al. [2018] proposes natural language decathlon challenge (decaNLP), which con-
sists of ten tasks (e.g., machine translation, summarization, question answering).
They cast all tasks as question answering over a context and propose a general
model for this. In the information extraction literature, Levy et al. [2017] propose
the zero-shot relation extraction task and reduce the task to answering crowd-

sourced reading comprehension questions. Li et al. [2019b] casts entity-relation
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extraction as a multi-turn question answering task. Their questions lack diver-
sity and naturalness. For example for the PART-WHOLE relation, the template
question is “find Y that belongs to X”, where X is instantiated with the pre-given
entity. The follow-up work for named entity recognition from Li et al. [2019a]
propose better query strategies incorporating synonyms and examples. Different
from the works above, we focus on the more complex event extraction task, which
involves both trigger detection and argument extraction. Our generated questions
for extracting event arguments are somewhat more natural (incorporating descrip-

tions from annotation guidelines) and leverage trigger information.

Question Generation To generate question templates 2 & 3 (Type + Role ques-
tion and annotation guideline based question) which are more natural, we draw
insights from the literature of automatic rule-based question generation [Heilman
and Smith, 2010]. Heilman [2011] propose to use linguistically motivated rules for
WH word (question phrase) selection. In their more general case of question gener-
ation from sentences, answer phrases can be noun phrases, prepositional phrases,
or subordinate clauses. Complicated rules are designed with help from the su-
perTagger [Ciaramita and Altun, 2006]. In our case, event arguments are mostly
noun phrases and the rules are simpler — “who” for person, “where” for place and
“what” for all other types of entities. We sample around 10 examples from the
development set to determine the entity type of each argument role. In the future,
it will be interesting to investigate how to utilize machine learning-based question
generation methods [Du et al., 2017]. They would be more beneficial for the setting
where the schema/ontology contains a large number of argument types, as well as

generating synthetic QA pairs for data augmentation.
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5.5 Chapter Summary

In this chapter, we introduce a new paradigm for event extraction based on ques-
tion answering. We investigate how the question generation strategies affect the
performance of our framework on both trigger detection and argument span ex-
traction, and find that more natural questions lead to better performance. Our
framework outperforms prior works on the ACE 2005 benchmark, and is capable

of extracting event arguments of roles not seen at training time.
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CHAPTER 6
GENERATING PARAGRAPH-LEVEL QA PAIRS

As we’ve shown in chapter 5, formulating information extraction (especially
the more complex event extraction) problems as question answering is beneficial
and help tackle the limited annotations challenge. Also demonstrated by Liu et al.
[2020], the QA formulation for IE has even larger advantage when additional QA
pairs are available to be leveraged during training. Motivated by this observation,
in this chapter, we discuss further how to generate/harvest context-sensitive syn-
thetic QA pairs with ML-based methods. Thus, the problem that we tackle in this

chapter is question generation, instead of information extraction.

Other than being helpful for IE, question generation (QG) frameworks can
also be utilized to provide additional data for other tasks in NLP (e.g., question
answering and machine reading comprehension). Recently, there has been a resur-
gence of work in NLP on reading comprehension [Hermann et al., 2015; Rajpurkar
et al., 2016; Joshi et al., 2017] with the goal of developing systems that can an-
swer questions about the content of a given passage or document. Large-scale QA
datasets are indispensable for training expressive statistical models for this task
and play a critical role in advancing the field. And there have been a number
of efforts in this direction. Miller et al. [2016], for example, develop a dataset for
open-domain question answering; Rajpurkar et al. [2016] and Joshi et al. [2017]
do so for reading comprehension (RC); and Hill et al. [2015] and Hermann et al.
[2015], for the related task of answering cloze questions [Winograd, 1972; Levesque
et al., 2011]. To create these datasets, either crowdsourcing or (semi-)synthetic
approaches are used. The (semi-)synthetic datasets (e.g., Hermann et al. [2015])

are large in size and cheap to obtain; however, they do not share the same char-

92



acteristics as explicit QA/RC questions [Rajpurkar et al., 2016]. In comparison,
high-quality crowdsourced datasets are much smaller in size, and the annotation
process is quite expensive because the labeled examples require expertise and care-

ful design [Chen et al., 2016].

Recently there have been investigations on methods that can automatically
generate high-quality question-answer pairs. Serban et al. [2016] propose the use
of recurrent neural networks to generate QA pairs from structured knowledge re-
sources such as Freebase. Their work relies on the existence of automatically ac-
quired KBs, which are known to have errors and suffer from incompleteness. They
are also non-trivial to obtain. In addition, the questions in the resulting dataset
are limited to queries regarding a single fact (i.e., tuple) in the KB. Motivated by
the need for large scale QA pairs and the limitations of recent work, we investigate
methods that can automatically “harvest” (generate) question-answer pairs from

raw text/unstructured documents, such as Wikipedia-type articles.

Other recent work along these lines [Du et al., 2017; Zhou et al., 2017] (see Sec-
tion 6.1) has proposed the use of attention-based recurrent neural models trained
on the crowdsourced SQuAD dataset [Rajpurkar et al., 2016] for question gener-
ation. While successful, the resulting QA pairs are based on information from a
single sentence. As described in Du et al. [2017], however, nearly 30% of the ques-
tions in the human-generated questions of SQuAD rely on information beyond a
single sentence. For example, in Figure 6.1, the second and third questions require
coreference information (i.e., recognizing that “His” in sentence 2 and “He” in

sentence 3 both corefer with “Tesla” in sentence 1) to answer them.

Thus, our research studies methods for incorporating coreference information

into the training of a question generation system. In particular, we propose gated
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Paragraph:
(1) Tesla was renowned for his achievements and showman-
ship, eventually earning him a reputation in popular culture
as an archetypal "mad scientist”. ?)His patents earned him
a considerable amount of money, much of which was used
to finance his own projects with varying degrees of suc-
cess. ®He lived most of his life in a series of New York
hotels, through his retirement. ) Tesla died on 7 January
1943. ...
Questions:
— What was Tesla’s reputation in popular culture?

mad scientist

— How did Tesla finance his work?

— Where did Tesla live for much of his life?
New York hotels

Figure 6.1: Example input from the fourth paragraph of a Wikipedia article
on Nikola Tesla, along with the natural questions and their answers from the
SQuAD [Rajpurkar et al., 2016] dataset. We show in italics the set of mentions
that refer to Nikola Tesla — Tesla, him, his, he, etc.

Coreference knowledge for Neural Question Generation (CorefNQG), a neural
sequence model with a novel gating mechanism that leverages continuous repre-
sentations of coreference clusters — the set of mentions used to refer to each entity

— to better encode linguistic knowledge introduced by coreference, for paragraph-

level question generation.

In an evaluation using the SQuAD dataset, we find that CorefNQG enables
better question generation. It outperforms significantly the baseline neural se-
quence models that encode information from a single sentence, and a model that
encodes all preceding context and the input sentence itself. When evaluated on
only the portion of SQUAD that requires coreference resolution, the gap between

our system and the baseline systems is even larger.
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By applying our approach to the 10,000 top-ranking Wikipedia articles, we
obtain a question answering/reading comprehension dataset with over one million

synthetic QA pairs; we provide a qualitative analysis in Section 6.5.

6.1 Related Work

6.1.1 QG for IE

One important step in formulation (event) extraction tasks as QA/MRC is to turn
the argument roles names into natural language questions. One mainstream is to
use human designed templates for extractive tasks: relation extraction [Levy et al.,
2017], semantic role labeling (QA-SRL) [FitzGerald et al., 2018], entity and relation
extraction [Li et al., 2019b,a], as well as our work presented in chapter 5 on event
extraction. However, Liu et al. [2020] argued that the template-based question
generation may not be expressive enough to instruct an MRC model to find an-
swers. They formulate it as an unsupervised translation task [Lample et al., 2018],
which transforms a descriptive statement into a question-style expression with no
parallel resources. When the descriptive sentences and questions are aligned, the
problem can be directly formulated as a learning-based question generation task in

a similar way, which we discuss in this chapter.

Apart from generating questions for each argument role, the generated synthetic
QA pairs can also be utilized as additional training data. As shown by Liu et al.

[2020], QA pairs from other domain can also help with performance of IE tasks.
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6.1.2 Question Generation

Since the work by Rus et al. [2010], question generation (QG) has attracted interest
from both the NLP and NLG communities. Most early work in QG employed
rule-based approaches to transform input text into questions, usually requiring
the application of a sequence of well-designed general rules or templates [Mitkov
and Ha, 2003; Labutov et al., 2015]. Heilman and Smith [2010] introduced an
overgenerate-and-rank approach: their system generates a set of questions and
then ranks them to select the top candidates. Apart from generating questions
from raw text, there has also been research on question generation from symbolic

representations [Yao et al., 2012; Olney et al., 2012].

With the recent development of deep representation learning and large QA
datasets, there has been research on recurrent neural network based approaches
for question generation. Serban et al. [2016] used the encoder-decoder framework
to generate QA pairs from knowledge base triples; Reddy et al. [2017] generated
questions from a knowledge graph; Du et al. [2017] studied how to generate
questions from sentences using an attention-based sequence-to-sequence model and
investigated the effect of exploiting sentence- vs. paragraph-level information. Du
and Cardie [2017] proposed a hierarchical neural sentence-level sequence tagging
model for identifying question-worthy sentences in a text passage. Finally, Duan
et al. [2017a] investigated how to use question generation to help improve question

answering systems on the answer sentence selection subtask.

In comparison to the related methods from above that generate questions from
raw text, our method is different in its ability to take into account contextual

information beyond the sentence-level by introducing coreference knowledge.
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6.2 Task Definition

Our goal is to harvest high quality question-answer pairs from the paragraphs of an
article of interest. In our task formulation, this consists of two steps: candidate
answer extraction and answer-specific question generation. Given an input
paragraph, we first identify a set of question-worthy candidate answers ans =
(ansy,anss, ...,ans;), each is a span of text as denoted in color in Figure 6.1. For
each candidate answer ans;, we then aim to generate a question () — a sequence
of tokens yy,...,yn — based on the sentence S that contains candidate ans; such

that:

e () asks about an aspect of ans; that is of potential interest to a human;

e () might rely on information from sentences that precede S in the paragraph.

Mathematically then,
Q = argmax P (Q|S, C) (6.1)
Q
where P(Q|S,C) = [T\_, P (4uly<n, S, C), where C is the set of sentences that

precede S in the paragraph.

6.3 Methodology

In this section, we introduce our framework for harvesting the question-answer
pairs. As described above, it consists of the question generator CorefNQG (Fig-
ure 6.2) and a candidate answer extraction module. During test/generation time,
we (1) run the answer extraction module on the input text to obtain answers, and

then (2) run the question generation module to obtain the corresponding questions.
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6.3.1 Question Generation

Context Vector

. \
| Decoder LSTMs
Encoder ... d

What team did the Panthers defeat ... ?

p
word ¥ | Y
i Natural Question

answer feature £}

refined coref. position feature f¢

MLP 7 D C] D D D D D coref. position feature f¢
Y They the Panthers defeated the Arizona Cardinals ...

Y
coreference transformed sentence S’

~mention-pair score

coref. gate vector

Figure 6.2: The gated Coreference knowledge for Neural Question Generation
(CorefNQG) Model.

As shown in Figure 6.2, our generator prepares the feature-rich input embed-
ding — a concatenation of (a) a refined coreference position feature embedding,
(b) an answer feature embedding, and (c¢) a word embedding, each of which is de-
scribed below. It then encodes the textual input using an LSTM unit [Hochreiter
and Schmidhuber, 1997]. Finally, an attention-copy equipped decoder is used to

decode the question.

More specifically, given the input sentence S (containing an answer span) and
the preceding context C', we first run a coreference resolution system to get the
coref-clusters for S and C' and use them to create a coreference transformed input
sentence: for each pronoun, we append its most representative non-pronominal
coreferent mention. Specifically, we apply the simple feedforward network based
mention-ranking model of Clark and Manning [2016] to the concatenation of C' and

S to get the coref-clusters for all entities in C' and S. The C&M model produces
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a score/representation s for each mention pair (my, ms),
s(my,mg) = Wy hyy,(my, ma) + by, (6.2)

where W, is a 1 X d weight matrix and b is the bias. h,,(mq, ms) is representation

of the last hidden layer of the three layer feedforward neural network.

For each pronoun in .S, we then heuristically identify the most “representative”
antecedent from its coref-cluster (proper nouns are preferred.) We append the new
mention after the pronoun. For example, in Table 6.1, “the panthers” is the most
representative mention in the coref-cluster for “they”. The new sentence with the

. . . !
appended coreferent mention is our coreference transformed input sentence S° (see

Figure 6.2).
word they the panthers defeated the arizona cardinals 49 - 15
ans. fea. 0 0 0 0 B_ANS I_ANS I_ANS 0 0 O
coref. fea. | B_PRO B_ANT I_ANT 0 0 0 0 0 0 O

Table 6.1: Example input sentence with coreference and answer position features.
The corresponding gold question is “What team did the Panthers defeat in the
NFC championship game ?”

Coreference Position Feature Embedding For each token in S, we also
maintain one position feature f¢ = (¢4, ..., ¢,), to denote pronouns (e.g., “they”)
and antecedents (e.g., “the panthers”). We use the BIO tagging scheme to label
the associated spans in S'. “B_ANT” denotes the start of an antecedent span, tag
“I_ANT” continues the antecedent span and tag “0” marks tokens that do not form
part of a mention span. Similarly, tags “B_PR0” and “I_PRO” denote the pronoun

span. (See Table 6.1, “coref. feature”.)

Refined Coref. Position Feature Embedding Inspired by the success of
gating mechanisms for controlling information flow in neural networks [Hochre-

iter and Schmidhuber, 1997; Dauphin et al., 2017], we propose to use a gating
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network here to obtain a refined representation of the coreference position fea-
ture vectors f¢ = (¢y,...,¢,). The main idea is to utilize the mention-pair score
(see Equation 6.2) to help the neural network learn the importance of the coref-
erent phrases. We compute the refined (gated) coreference position feature vector

fd = (dy,...,d,) as follows,

gi = ReLU(W ,¢; + Wyscore; + b)
(6.3)

di=9i©¢
where ©® denotes an element-wise product between two vectors and ReLU is the
rectified linear activation function. score; denotes the mention-pair score for each
antecedent token (e.g., “the” and “panthers”) with the pronoun (e.g., “they”);
score; is obtained from the trained model (Equation 6.2) of the C&M. If token i is
not added later as an antecedent token, score; is set to zero. W,, W, are weight

matrices and b is the bias vector.

Answer Feature Embedding We also include an answer position feature em-
bedding to generate answer-specific questions; we denote the answer span with the
usual BIO tagging scheme (see, e.g., “the arizona cardinals” in Table 6.1). During
training and testing, the answer span feature (i.e., “B_ANS”, “I_ANS” or “0”) is

mapped to its feature embedding space: f2 = (ay, ..., a,).

Word Embedding To obtain the word embedding for the tokens themselves,

we just map the tokens to the word embedding space: x = (x1, ..., z,,).

Final Encoder Input As noted above, the final input to the LSTM-based
encoder is a concatenation of (1) the refined coreference position feature embedding

(light blue units in Figure 6.2), (2) the answer position feature embedding (red
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units), and (3) the word embedding for the token (green units),

€; = CODC&t(di, Q;, .TZ) (64)

Encoder As for the encoder itself, we use bidirectional LSTMs to read the input
e = (e1,...,e,) in both the forward and backward directions. After encoding,
we obtain two sequences of hidden vectors, namely, ﬁ = (h_1>, ,h_>n) and % =
(E, e E) The final output state of the encoder is the concatenation of E) and
(H where

h; = Concat(ﬁz, E) (6.5)

Question Decoder with Attention & Copy On top of the feature-rich en-
coder, we use LSTMs with attention [Bahdanau et al., 2015] as the decoder for
generating the question yi, ..., ¥, one token at a time. To deal with rare/unknown
words, the decoder also allows directly copying words from the source sentence via

pointing [Vinyals et al., 2015].

At each time step t, the decoder LSTM reads the previous word embedding

wy_1 and previous hidden state s;_; to compute the new hidden state,
St — LSTM(wt,l, Stfl) (66)
Then we calculate the attention distribution oy as in Bahdanau et al. [2015],

¥ hiTWCSt—l (6 7)

oy = softmax(e;)
where W, is a weight matrix and attention distribution «; is a probability distri-
bution over the source sentence words. With «;, we can obtain the context vector
h,
n
hi =Y aih; (6.8)
i=1
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Then, using the context vector h; and hidden state s;, the probability distribution

over the target (question) side vocabulary is calculated as,
Pocap = softmax(W zconcat(h;, s;)) (6.9)

Instead of directly using P,y for training/generating with the fixed target side vo-
cabulary, we also consider copying from the source sentence. The copy probability

is based on the context vector h; and hidden state s,
NP =0 (Wehi + Wpsy) (6.10)

and the probability distribution over the source sentence words is the sum of the

attention scores of the corresponding words,

Propy(w) = Zai * L{w == w;} (6.11)

Finally, we obtain the probability distribution over the dynamic vocabulary (i.e.,
union of original target side and source sentence vocabulary) by summing over

Pcopy and oncaba
P(w) = MNP Peopy(w) + (1 — AN) Pyocan(w) (6.12)

where o is the sigmoid function, and Wy, W., W/ are weight matrices.

6.3.2 Answer Span Identification

We frame the problem of identifying candidate answer spans from a paragraph as
a sequence labeling task and base our model on the BiLSTM-CRF approach for
named entity recognition [Huang et al., 2015]. Given a paragraph of n tokens,
instead of directly feeding the sequence of word vectors x = (z,...,x,) to the

LSTM units, we first construct the feature-rich embedding x" for each token, which
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is the concatenation of the word embedding, an NER feature embedding, and
a character-level representation of the word [Lample et al., 2016]. We use the

concatenated vector as the “final” embedding x  for the token,
x; = concat(z;, CharRep,, NER;) (6.13)

where CharRep; is the concatenation of the last hidden states of a character-based
biLSTM. The intuition behind the use of NER features is that SQuAD answer

spans contain a large number of named entities, numeric phrases, etc.

Then a multi-layer Bi-directional LSTM is applied to (z}, ..., 7,) and we obtain
the output state z; for time step ¢ by concatenation of the hidden states (forward
and backward) at time step ¢ from the last layer of the BILSTM. We apply the
softmax to (zi,...,2,) to get the normalized score representation for each token,

which is of size n x k, where k is the number of tags.

Instead of using a softmax training objective that minimizes the cross-entropy
loss for each individual word, the model is trained with a CRF [Lafferty et al.,
2001] objective, which minimizes the negative log-likelihood for the entire correct

sequence: — log(py ),
exp(¢(x’,y))
2yey' exp(a(x,y"))

by = (6.14)

where ¢(x,y) = 30, Py + 3000 Ayoyesss Piy, is the score of assigning tag y; to

the t'* token, and A is the transition score from tag y; to y;,1, the scoring

Yt,Yt41

matrix A is to be learned. Y’ represents all the possible tagging sequences.
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6.4 Experiments

6.4.1 Dataset

We use the SQuAD dataset [Rajpurkar et al., 2016] to train our models. It is
one of the largest general purpose QA datasets derived from Wikipedia with over
100k questions posed by crowdworkers on a set of Wikipedia articles. The an-
swer to each question is a segment of text from the corresponding Wiki passage.
The crowdworkers were users of Amazon’s Mechanical Turk located in the US or
Canada. To obtain high-quality articles, the authors sampled 500 articles from
the top 10,000 articles obtained by Nayuki’s Wikipedia’s internal PageRanks. The
question-answer pairs were generated by annotators from a paragraph; and al-
though the dataset is typically used to evaluate reading comprehension, it has also
been used in an open domain QA setting [Chen et al., 2017; Wang et al., 2018]. For
training/testing answer extraction systems, we pair each paragraph in the dataset
with the gold answer spans that it contains. For the question generation system,
we pair each sentence that contains an answer span with the corresponding gold

question as in Du et al. [2017].

To quantify the effect of using predicted (rather than gold standard) answer
spans on question generation (e.g., predicted answer span boundaries can be in-
accurate), we also train the models on an augmented “Training set w/ noisy ex-
amples” (see Table 6.2). This training set contains all of the original training
examples plus new examples for predicted answer spans (from the top-performing
answer extraction model, bottom row of Table 6.4) that overlap with a gold answer
span. We pair the new training sentence (w/ predicted answer span) with the gold

question. The added examples comprise 42.21% of the noisy example training set.
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For generation of our one million QA pair corpus, we apply our systems to the

10,000 top-ranking articles of Wikipedia.

6.4.2 Evaluation Metrics

For question generation evaluation, we use BLEU [Papineni et al., 2002] and ME-
TEOR [Denkowski and Lavie, 2014].) BLEU measures average n-gram precision
vs. a set of reference questions and penalizes for overly short sentences. METEOR
is a recall-oriented metric that takes into account synonyms, stemming, and para-

phrases.

For answer candidate extraction evaluation, we use precision, recall and F-
measure and compare with the gold standard SQuAD answers. Since answer
boundaries are sometimes ambiguous, we compute Binary Overlap and Propor-
tional Overlap metrics in addition to Fxact Match. Binary Overlap counts every
predicted answer that overlaps with a gold answer span as correct, and Propor-
tional Overlap give partial credit proportional to the amount of overlap [Johansson

and Moschitti, 2010; Irsoy and Cardie, 2014].

6.4.3 Baselines and Ablation Tests

For question generation, we compare to the state-of-the-art baselines and con-
duct ablation tests as follows: Du et al. [2017]’s model is an attention-
based RNN sequence-to-sequence neural network (without using the answer lo-

cation information feature). Seq2seq 4+ COPYw/ answer is the attention-based

'We use the evaluation scripts of Du et al. [2017].
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sequence-to-sequence model augmented with a copy mechanism, with answer fea-
tures concatenated with the word embeddings during encoding. Seq2seq +
COPYw/ full context + answer 15 the same model as the previous one, but we allow
access to the full context (i.e., all the preceding sentences and the input sentence
itself). We denote it as ContextNQG henceforth for simplicity. CorefNQG
is the coreference-based model that we propose in this paper. CorefNQG w/o
gating is an ablation test, the gating network is removed and the coreference po-
sition embedding is not refined. CorefNQG w/o mention-pair score is also an

ablation test where all mention-pair score; are set to zero.

For answer span extraction, we conduct experiments to compare the perfor-

mance of an off-the-shelf NER system and BiLSTM based systems.

6.5 Results and Analysis

6.5.1 Automatic Evaluation

Models ‘ Training set ‘ Training set w/ noisy examples
‘ BLEU-3 BLEU-4 METEOR ‘ BLEU-3 BLEU-4 METEOR
Baseline [Du et al., 2017] (w/o answer) | 17.50 12.28 16.62 15.81 10.78 15.31
Seq2seq + copy (w/ answer) 20.01 14.31 18.50 19.61 13.96 18.19
ContextNQG: Seq2seq + copy 2031 14.58 18.84 1957 14.05 18.19
(w/ full context + answer)
CorefNQG 20.90 15.16 19.12 20.19 14.52 18.59
w/o gating 20.68 14.84 18.98 20.08 14.40 18.64
w/0 mention-pair score 20.56 14.75 18.85 19.73 14.13 18.38

Table 6.2: Evaluation results for question generation.

Table 6.2 shows the BLEU-{3,4} and METEOR scores of different models. Our
CorefNQG outperforms the seq2seq baseline of Du et al. [2017] by a large margin.

This shows that the copy mechanism, answer features and coreference resolution all
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aid question generation. In addition, CorefNQG outperforms both Seq2seq+Copy
models significantly, whether or not they have access to the full context. This
demonstrates that the coreference knowledge encoded with the gating network
explicitly helps with the training and generation: it is more difficult for the neural
sequence model to learn the coreference knowledge in a latent way (See input 1
in Figure 6.3 for an example.) Building end-to-end models that take into account
coreference knowledge in a latent way is an interesting direction to explore. In
the ablation tests, the performance drop of CorefNQG w/o gating shows that the
gating network is playing an important role for getting refined coreference position
feature embedding, which helps the model learn the importance of an antecedent.
The performance drop of CorefNQG w/o mention-pair score shows the mention-
pair score introduced from the external system [Clark and Manning, 2016] helps

the neural network better encode coreference knowledge.

| BLEU-3 BLEU-4 METEOR

Seq2seq + copy 17.81 12.30 17.11
(w/ ans.)

ContextNQG 18.05 12.53 17.33
CorefNQG 18.46 12.96 17.58

Table 6.3: Evaluation results for question generation on the portion that requires
coreference knowledge (36.42% examples of the original test set).

To better understand the effect of coreference resolution, we also evaluate our
model and the baseline models on just that portion of the test set that requires
pronoun resolution (36.42% of the examples) and show the results in Table 6.3. The
gaps of performance between our model and the baseline models are still significant.
Besides, we see that all three systems’ performance drop on this partial test set,
which demonstrates the hardness of generating questions for the cases that require

pronoun resolution (passage context).
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Input 1: The elizabethan navigator, sir francis drake was born in the nearby town
of tavistock and was the mayor of plymouth. ... . he died of dysentery in 1596 off
the coast of puerto rico.

Human: In what year did Sir Francis Drake die ?

ContextNQG: When did he die ?

CorefNQG: When did sir francis drake die ?

Input 2: american idol is an american singing competition ... . it began airing on

fox on june 11, 2002, as an addition to the idols format based on the british series

op idol and has since become one of the most successful shows in the history of

Human: When did american idol first air on tv ?
ContextNQG: When did fox begin airing ?
CorefNQG: When did american idol begin airing ?

Input 3: ... the a38 dual-carriageway runs from east to west across the north of the

city . within the city it is designated as ‘ the parkway ’ and represents the boundar

between the urban parts of the city and the generally more recent suburban areas .
Human: What is the a38 called inside the city 7

ContextNQG: What is another name for the city ?
CorefNQG: What is the city designated as ?

Figure 6.3: Example questions (with answers highlighted) generated by human
annotators (ground truth questions), by our system CorefNQG, and by the
Seq2seq+Copy model trained with full context (i.e., ContextNQG).

We also show in Table 6.2 the results of the QG models trained on the train-
ing set augmented with noisy examples with predicted answer spans. There is a
consistent but acceptable drop for each model on this new training set, given the
inaccuracy of predicted answer spans. We see that CorefNQG still outperforms

the baseline models across all metrics.

Figure 6.3 provides sample output for input sentences that require contextual
coreference knowledge. We see that ContextNQG fails in all cases; our model
misses only the third example due to an error introduced by coreference resolution
— the “city” and “it” are considered coreferent. We can also see that human-

generated questions are more natural and varied in form with better paraphrasing.
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Models ‘ Precision ‘ Recall ‘ F-measure

‘ Prop. Bin. Exact ‘ Prop. Bin. Exact ‘ Prop. Bin. Exact

NER 24.54 2594 12.77 | 58.20 67.66 38.52 | 34.52 37.50 19.19
BiLSTM 43.54 45.08 2297 | 2843 3599 18.87 | 34.40 40.03 20.71
BiLSTM w/ NER 44.35 46.02 2533 | 33.30 40.81 23.32 | 38.04 4326 24.29
BiLSTM-CRF w/ char 49.35 51.92 38.58 | 30.53 32.75 24.04 | 37.72 40.16 29.62

BiLSTM-CRF w/ char w/ NER | 45.96 51.61 33.90 | 41.05 43.98 28.37 | 43.37 47.49 30.89

Table 6.4: Evaluation results of answer extraction systems.

Grammaticality Making Sense Answerability Avg. rank

ContextNQG 3.793 3.836 3.892 1.768
CorefNQG 3.804" 3.847" 3.895" 1.762
Human 3.807 3.850 3.902 1.758

Table 6.5: Human evaluation results for question generation. “Grammaticality”,
“Making Sense” and “Answerability” are rated on a 1-5 scale (5 for the best, see the
supplementary materials for a detailed rating scheme), “Average rank” is rated on a 1-3
scale (1 for the most preferred, ties are allowed.)

In Table 6.4, we show the evaluation results for different answer extraction
models. First we see that all variants of BILSTM models outperform the off-the-
shelf NER system (that proposes all NEs as answer spans), though the NER system
has a higher recall. The BiLSTM-CRF that encodes the character-level and NER

features for each token performs best in terms of F-measure.

6.5.2 Human Study

We hired four native speakers of English to rate the systems’ outputs. Detailed
guidelines for the raters are listed in the supplementary materials. The evaluation
can also be seen as a measure of the quality of the generated dataset (Section 6.5.3).
We randomly sampled 11 passages/paragraphs from the test set; there are in total

around 70 question-answer pairs for evaluation.

We consider three metrics — “grammaticality”, “making sense” and “answer-
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ability”. The evaluators are asked to first rate the grammatical correctness of the
generated question (before being shown the associated input sentence or any other
textual context). Next, we ask them to rate the degree to which the question
“makes sense” given the input sentence (i.e., without considering the correctness
of the answer span). Finally, evaluators rate the “answerability” of the question

given the full context.

Table 6.5 shows the results of the human evaluation.? Bold indicates top scores.
We see that the original human questions are preferred over the two NQG systems’
outputs, which is understandable given the examples in Figure 6.3. The human-
generated questions make more sense and correspond better with the provided an-
swers, particularly when they require information in the preceding context. How
exactly to capture the preceding context so as to ask better and more diverse
questions is an interesting future direction for research. In terms of grammati-
cality, however, the neural models do quite well, achieving very close to human
performance. In addition, we see that our method (CorefNQG) performs statis-
tically significantly better across all metrics in comparison to the baseline model

(ContextNQG), which has access to the entire preceding context in the passage.

6.5.3 The Generated Corpus

Our system generates in total 1,259,691 question-answer pairs, nearly 126 questions
per article. Figure 6.4 shows the distribution of different types of questions in our
dataset vs. the SQuAD training set. We see that the distribution for “In what”,

“When”, “How long”, “Who”, “Where”, “What does” and “What do” questions

2Two-tailed t-test results are shown for our method compared to ContextNQG (statistical
significance is indicated with *(p < 0.05), **(p < 0.01).)
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what is
who

what was
when

how many
where

in what
what are
which
what did
what does
what percentage
what type
how much
why

what do
what were
what year
how long
what can E
how did
what has
in which

SQuUAD
B Our corpus

0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0

Figure 6.4: Distribution of question types of our corpus and SQuAD training set.
The categories are the ones used in Wang et al. [2016], we add one more category:
“what percentage”.

in the two datasets is similar. Our system generates more “What is”, “What was”
and “What percentage” questions, while the proportions of “What did”, “Why”
and “Which” questions in SQuAD are larger than ours. One possible reason is
that the “Why”, “What did” questions are more complicated to ask (sometimes
involving world knowledge) and the answer spans are longer phrases of various
types that are harder to identify. “What is” and “What was” questions, on the

other hand, are often safer for the neural networks systems to ask.
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The United States of America (USA), commonly referred to as the United States
(U.S.) or America, is a federal republic composed of states, a federal district, five
major self-governing territories, and various possessions. ... . The territories are
scattered about the Pacific Ocean and the Caribbean Sea. Nine time zones are
covered. The geography, climate and wildlife of the country are extremely diverse.
Q1: What is another name for the united states of america ?

Q2: How many major territories are in the united states?

Q3: What are the territories scattered about ?

Figure 6.5: Example question-answer pairs from our generated corpus.

‘ Exact Match F-1
‘ Dev Test Dev Test
DocReader [Chen et al., 2017] | 82.33 81.65 88.20 87.79

Table 6.6: Performance of the neural machine reading comprehension model (no
initialization with pretrained embeddings) on our generated corpus.

In Figure 6.5, we show some examples of the generated question-answer pairs.
The answer extractor identifies the answer span boundary well and all three ques-

tions correspond to their answers. Q2 is valid but not entirely accurate.

Table 6.6 shows the performance of a top-performing system for the SQuAD
dataset (Document Reader [Chen et al., 2017]) when applied to the development
and test set portions of our generated dataset. The system was trained on the
training set portion of our dataset. We use the SQuUAD evaluation scripts, which
calculate exact match (EM) and F-1 scores.® Performance of the neural machine
reading model is reasonable. We also train the DocReader on our training set
and test the models’ performance on the original dev set of SQuAD; for this, the
performance is around 45.2% on EM and 56.7% on F-1 metric. DocReader trained
on the original SQuAD training set achieves 69.5% EM, 78.8% F-1 indicating that

our dataset is more difficult and/or less natural than the crowd-sourced QA pairs

3F-1 measures the average overlap between the predicted answer span and ground truth
answer [Rajpurkar et al., 2016].
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of SQuAD.

6.6 Chapter Summary

To summarize this chapter, we introduce a new neural network model for better en-
coding coreference knowledge for paragraph-level generation of synthetic question-
answer pairs. Evaluations with different metrics on the SQuAD machine reading
dataset show that our model outperforms state-of-the-art baselines. The ablation
study shows the effectiveness of different components in our model. Finally, we
apply our question generation framework to produce a corpus of 1.26 million QA

pairs, which we hope will benefit the QA research community.
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CHAPTER 7
CONCLUSIONS AND FUTURE WORK

In this dissertation, we propose deep learning based models and frameworks
for document-level information extraction. To better capture the document-level
context and structure for understanding the document and conducting more coher-
ent extractions, we propose two neural network based approaches (i.e., sequence
labeling-based and neural generation-based models). The pre-trained language
model representations enable to model to have a basic understanding of words
(in the context of other words) and basic linguistic knowledge. To better access
knowledge encoded in the pre-trained models, we formulate the event extraction
problem as a question answering task and propose more semantically meaningful

question generation strategies for the framework.

7.1 Summary of Contributions

In Chapter 3, we investigate how end-to-end neural sequence models (with pre-
trained language model representations) perform on document-level role filler ex-
traction, as well as how the length of context captured affects the models’ perfor-
mance. Then we propose a novel multi-granularity reader to dynamically aggregate
information captured by neural representations learned at different levels of gran-
ularity (e.g., the sentence- and paragraph-level). In evaluations, we show that our
best system performs substantially better than prior work which reads through the

document sentence by sentence.

Chapter 4 introduces a generative transformer-based encoder-decoder frame-

work (GRIT) and its extension GTT that are designed to model context at the
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document level, for the classic problem of template filling. More specifically, GRIT
tackles the sub-task called role-filler entity extraction (REE) and GTT is capable
of handling the full task. They can make extraction decisions across sentence
boundaries and has the capacity to respect cross-role dependencies in the template
structure. Plus, GTT is better at capturing the dependencies across multiple
events. We demonstrate that our models perform substantially better than prior
works which are mostly sequence labeling based and conduct the extraction for

each template independently.

To mitigate the problem of error propagation in event extraction (i.e., from
entity recognition to argument type assignment) and better exploit the relatedness
between different argument role names, Chapter 5 introduces a new paradigm for
event extraction by formulating it as a question answering (QA) task that extracts
the event arguments in an end-to-end manner. Empirical results demonstrate that
our framework outperforms prior methods substantially; in addition, it is capable
of extracting event arguments for roles not seen at training time (i.e., in a zero-shot

learning setting).

Motivated by the advantage of using QA formulation for IE, in Chapter 6 we
propose a framework for generating additional synthetic QA pairs from Wikipedia
articles. We propose a neural network approach that incorporates coreference
knowledge via a novel gating mechanism. Compared to models that only take into
account sentence-level information [Heilman and Smith, 2010; Du et al., 2017], we
find that the linguistic knowledge introduced by the coreference representation aids
question generation significantly, producing models that outperform the current
state-of-the-art. We apply our system (composed of an answer span extraction

system and the passage-level QG system) to the 10,000 top-ranking Wikipedia
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articles and create a corpus of over one million question0O-answer pairs.

7.2 Future Horizons

I've summarized my contributions in this dissertation on making sense of long and
unstructured documents. Next, I will explain my future plans on (1) increasing
the reasoning capability and reducing the cost of building/applying the document
machine reader; (2) how techniques that I introduce can achieve broader impact

outside NLP (i.e., via interdisciplinary research).

Reasoning Capabilities for Machine Reader When reading documents and
making decisions, humans rely on different forms of knowledge (such as linguistic,
analogical, procedural and commonsense). But current end-to-end learning models
rarely capture them. In my investigation on procedural passage understanding [Du
et al., 2019] in collaboration with researchers from Allen Institute for Al, we found
that end-to-end neural models often make inconsistent predictions across differ-
ent passages about the same procedure. For example in photosynthesis, water is
moved&evaporated and oxygen is created. While the specific descriptions for this
process change, the neural passage reader is unable to make globally consistent
predictions that include the three effects. I proposed to leverage consistency bias
into the model during training, which proves to help improve performance and

consistency.

I believe leveraging symbolic representations for language (e.g., building a con-
sistency bias into the model for the example above) is key to building more robust

and accurate document readers. On the reverse side, acquiring knowledge from
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text, e.g., commonsense knowledge regarding object size/weight and temporal fre-

quency /duration is also worth investigating.

Efficient Modeling Requiring Lower Cost Designing resource-efficient al-
gorithms is essential to make technologies more accessible to people who want
to build customized machine readers for various domains. Plus, resource-efficient
algorithms also help to achieve a balance between obtaining strong results and

energy cost [Schwartz et al., 2019].

As input text/documents become longer, the computation time and memory
usage of end-to-end models (e.g., transformer-based) grow exponentially. I plan to
draw insights from cognitive science research on global reading strategies [Mokhtari
and Reichard, 2002] and working memory [Gathercole and Baddeley, 2014] for the
designing of efficient document reading algorithms. In real life, when reading very
long documents (e.g., a chapter in a book), people don’t tend to focus on all the
words or remember all the details at the same time; instead, reading paragraph by
paragraph and only referring to the previous context that is related is easier. Based
on this observation, from the methodology’s perspective, I plan to also learn from
the information retrieval community, to design a more efficient, interpretable, and
accurate machine reader that retrieves relevant context from the long document

when needed.

Also, for the task of automatic question generation, humans ask richer, more
informative, and creative questions in a much more efficient way, than current
end-to-end systems [Rothe et al., 2017], which rely on a huge number of sentence-
question examples for training. I believe drawing insights from how and when

human asks questions (e.g., ask to learn and seek information) is essential for
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machines to ask more informative and novel questions with fewer examples.

Apart from drawing insights from cognitive science, from the hardware’s per-
spective, how to design specialized efficient document readers for different hardware

platforms is also interesting to investigate.

Broader Impact of NLP in Interdisciplinary Research With tons of arti-
cles written (online and offline) in various domains (e.g., news articles, scientific
papers, proprietary documents), efficient text understanding and processing are
becoming more and more important, for bridging the gap between fast-growing
text data and people’s limited information processing capability. To achieve a
broader impact outside NLP and ML — by applying my research in domain spe-
cific contexts, I believe advanced applications that tackle customized needs from

different types of audiences can be created. To name a few representative areas:

— Understanding Scientific Literature.

Designing NLP techniques for processing textual information in scientific litera-
ture is a challenging but meaningful task. They can help to efficiently understand
research contributions and methodology in the research work. I'm interested in
investigating how to build document extraction tools for extracting structured in-
formation from scientific papers. For example, to understand the methodology
proposed in one paper, extracting entities and their relations is a preliminary step;
to understand relationships between different papers, cross-document extraction

for citation analysis would be important.

However, language usage varies significantly across research communities, and

the specific researcher will have different needs for the structured outputs. Thus,
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my goal is to design accurate domain-specific document readers, that can take into

consideration user-specific needs and user feedback.

— Understanding Proprietary Documents.

Privacy policies and similar proprietary documents are long and complex doc-
uments that are difficult for users to read. But they have a legal influence on many
aspects of user interests (e.g., user data). Applications like extracting salient items
from legal documents and answering user-specific questions are of general interest.
Challenges such as the high cost for obtaining expert-level annotations further
motivate NLP research in data collection methodology, as well as data-efficient

algorithms.

Overall from another perspective, problems met when conducting domain-
specific research and building applications can also help evoke methodology in-

novations in my research on NLP.
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