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The past twenty years have witnessed the advent and extensive study of meta-

materials and, more recently, metasurfaces. These concepts have widely ex-

tended the range of available material properties and have enabled new or en-

hanced wave-propagation effects, from negative refraction and invisibility to

light trapping and antenna beam shaping. In this dissertation, we use, or take

inspiration from, metamaterials and metasurfaces to engineer the electromag-

netic scattering and the wavefront of propagating waves for various relevant

applications. We note that the “optical theorem” of scattering theory relates

the concepts of scattering engineering and wavefront manipulation and pro-

vides a general framework for many of the ideas discussed in this dissertation.

While this work is mostly theoretical and computational, considering the poten-

tial experimental demonstration of the proposed ideas, we focused on realistic

material platforms and structures that can be fabricated with state-of-the-art

technologies.

The first part of this dissertation is devoted to one of the most important

scattering-engineering problems, namely, scattering/reflection reduction and

invisibility. To demonstrate the practical potential of ideas borrowed from the

field of metamaterials, we apply the concept of scattering-cancellation cloak-

ing to design modified near-field probes that are effectively invisible and may

enable non-perturbative near-field measurements. We then tackle a major chal-



lenge of linear passive cloaking devices, namely, their narrow bandwidth, and

show that the “Bode-Fano limit” can be overcome through the design of ac-

tive scattering-cancellation cloaks. We show that active cloaks indeed exhibit

wider cloaking bandwidths; however, stability issues ultimately limit their per-

formance. We then study another relevant application of the Bode-Fano bound

in the context of broadband impedance matching of lossy films and solar cells,

and we calculate the maximum solar power absorption for ultrathin solar cells

made of different common materials and with arbitrary anti-reflection coatings.

The second part of this dissertation focuses on wavefront manipulation for

two relevant applications. We first propose a general platform, based on meta-

surfaces in waveguide networks, for analog optical computing. Based on this

idea, we design compact devices for fractional calculus, optical PID controllers,

and equation solvers. Finally, we design dielectric nonlocal metasurfaces that

implement the transfer function of free space over a much shorter length. Such

space-compression metasurfaces provide a solution to realize compact, fully

solid-state, planar structures for focusing, imaging, and magnification.

We believe the results of this dissertation may open many new opportunities

for different engineering applications in electromagnetics, optics, and photon-

ics.
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CHAPTER 1

INTRODUCTION

Section 1.1 defines the term ”meta-electromagnetics” and briefly reviews

the field of electromagnetic metamaterials. Section 1.2 explains the concepts

of ”scattering engineering” and ”wavefront manipulation” and elucidates the

relation between these two concepts through the optical theorem of scattering

theory. Section 1.3 discusses some relevant physical limitations that play an im-

portant role in our research work. Section 1.4 outlines the organization of this

dissertation.

1.1 What is meta-electromagnetics?

The term ”meta-electromagnetics” first appeared in Ref. [3], used by Prof.

Nader Engheta, one of the pioneers of the field of complex media and meta-

materials. In this dissertation, ”meta-electromagnetics” generally indicates the

sub-field of electromagnetics, where metamaterials or inspirations from the con-

cept of metamaterials are used for the analysis and design of electromagnetic

wave propagation phenomena for potential engineering applications.

The basic laws governing classical electromagnetic fields and wave propa-

gation are the Maxwell Equations. The standard macroscopic form of Maxwell

equations is [4, 1]

∇ ×H = J +
∂D
∂t
, (1.1)

∇ × E =
∂B
∂t
, (1.2)

∇ · B = 0, (1.3)

∇ · D = ρ, (1.4)

1



where H and E are the magnetic and the electric fields (sometimes called mag-

netic and electric field strengths); B and D are the magnetic and electric flux

densities; J and ρ are the electric current and charge densities. In free space, the

field flux densities B and D and the field strengths H and E are related by

B = µ0H, (1.5)

D = ε0E, (1.6)

where µ0 and ε0 are the magnetic permeability and the electric permittivity of

free space, respectively. In media, the field flux densities and the field strengths

are related by more general constituent relation, which in the most general

case can be written as B = f (E,H, r, t) and D = g(E,H, r, t), where f and g are

generic functions of the field strengths, the position vector r, and the time vari-

able t. Constituent relations are said to be linear if the functions f and g are

linear in the fields [5], passive if no electromagnetic energy is generated, causal

if a generic output cannot temporally precede a generic input, reciprocal if ex-

changing source and detector leads to the same output to input ratio [6], tempo-

ral/frequency dispersive if the temporal impulse response is not a delta function

in time [4, 1], spatially dispersive (nonlocal) if the spatial impulse response is not a

delta function in space [7], anisotropic if the functions f and g depend on the field

polarization [4, 1], chiral (bi-isotropic) if the functions f and g depend on both E

and H (magneto-electric coupling) [8], bi-anisotropic if the material is both chiral

and anisotropic, time-varying if the functions f and g themselves change with

time [9, 10], inhomogoeneous if the functions f and g themselves change in space,

etc.

Among this broad range of possible properties that electromagnetic mate-

rials can have, some of them can be readily found in nature (e.g., anisotropic
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crystals or chiral materials are common), while others are only accessible in

engineered materials, or metamaterials [11]. In artificial metamaterials with

complex properties, electromagnetic fields and waves exhibit a variety of ef-

fects not commonly found in nature, with great opportunities for scientific ex-

plorations and engineering applications. As some notable examples, in the past

two decades, electromagnetic metamaterials have been extensively studied to

realize super-resolution imaging [12, 13], invisibility cloaking [14, 14, 15, 16],

light trapping and bound states in continuum [17, 18, 19], and have led to the

development of entire sub-fields, including non-Hermitian photonics which lever-

age the peculiar wave physics near “exceptional points” [20], metasurfaces and

metalenses to control light with thin patterned membranes [21, 22, 23], topological

photonics, which translates relevant concepts of topological condensed-matter

physics to the photonics domain [24, 25, 26, 27], space-time metamaterials using

time as an additional degree of freedom to, among other things, break reci-

procity constraints [9, 10], etc.

Within this broad context, in this dissertation, we have studied the general

problems of scattering engineering and wavefront manipulations using suitable

structures composed of dielectric and plasmonic materials and, in some cases,

gain media, with various goals for different engineering applications. We focus

on materials that are readily found in nature, but we get physical insights, in-

tuitions and design inspirations from the field of metamaterials. The materials

considered in this dissertation are linear, passive / active, reciprocal, frequency

dispersive, local, isotropic, non-chiral, time-invariant, and non-magnetic. Un-

der these assumptions, it is convenient to study the electromagnetic problem in

the frequency domain. The relation between the frequency-domain electric flux

density D and the electric field strength E can be written as a simple product
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with the frequency domain permittivity:

D(ω) = ε(ω)E(ω), (1.7)

where ω is the radian frequency. The permittivity ε(ω) of a material (or meta-

material) can generally be expressed in the form of a multi-oscillator Lorentz

model [1]

ε(ω) = 1 +
∑

i

fiω
2
pi

ω2
0i − ω

2 + jωγi
, (1.8)

where ω0i and γi are the resonant frequency and the resonance linewidth, re-

spectively, for the i-th resonator (corresponding to some material resonance at

the mesoscopic, molecular, or atomic level); fi is the resonator strength, and

ω2
pi is the plasma frequency. When fi is positive (negative), the medium is pas-

sive (active). The frequency domain permittivity is generally a complex num-

ber whose real and imaginary part are associated with, among other things, the

stored electromagnetic energy (with some subtleties in the dispersive case) and

the absorbed/gained energy in the material, respectively. Moreover, real and

imaginary parts of ε(ω) are not independent functions due to the analytic prop-

erties of causal, bounded, transfer functions, as discussed in Section 1.3.1.

1.2 Scattering engineering and wavefront manipulation

When a material is uniform in the spatial domain, the allowed electromagnetic

modes are the eigensolutions of the wave equation in the homogeneous media,

i.e., propagating and evanescent plane waves. However, when there are inho-

mogeneities in the permittivity distribution, the electromagnetic wave will be

scattered by these inhomogeneities, which therefore act as scatterers, as shown

in Fig. 1.1.
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Figure 1.1: Schematic of a generic scattering problem [1].

Suppose the incident wave is a propagating plane wave (if not, we can ex-

pand the incident wave into a weighted sum of plane waves [28] and use the

superposition principle to find the total field). Without loss of generality, we

can write the electric field of the incident wave as

Einc = x̂E0e− jk·r, (1.9)

where E0 is the amplitude, k is the wave vector (spatial frequency or linear mo-

mentum of the wave), and r is the position vector. If the size of the scattering

object is finite, we can draw a spherical surface enclosing the scatterer. Then, the

electric field of the scattered wave, in the region outside the sphere (assumed ho-

mogeneous) can always be expressed as a superposition of weighted spherical

harmonics [29]

Es = E0

 ∞∑
n=1

cT M
n ∇ × ∇ ×

(
rψ1

n

)
− jωµ0

∞∑
n=1

cT E
n ∇ ×

(
rψ1

n

) , (1.10)

where ψm
n are the scalar spherical harmonics; cT M

n and cT E
n are the scattering co-

efficients of the TM (to r̂) modes and the TE (to r̂) modes, respectively. Ana-

5



lytical solutions exist for the scattering coefficients of canonical configurations

(e.g., spheres and cylinders), whereas for more general cases numerical methods

may be needed, such as the method of moments applied to a volume integral

equation formulation of the scattering problem [30].

Based on the scattering coefficients, cT E
n and cT M

n , we can then readily calcu-

late the total scattering cross section of the scattering object [29]

σscat =
λ2

0

2π

∞∑
n=1

(2n + 1)
(∣∣∣cT E

n

∣∣∣2 +
∣∣∣cT M

n

∣∣∣2), (1.11)

the forward scattering cross section [29]

σ f w =
λ2

0

4π

∣∣∣∣∣∣∣
∞∑

n=1

(2n + 1)
(
cT E

n + cT M
n

)∣∣∣∣∣∣∣
2

, (1.12)

the extinction cross section [29]

σext = −
λ2

0

2π

∞∑
n=1

(2n + 1) Re
[
cT E

n + cT M
n

]
, (1.13)

and the absorption cross section [29]

σabs = σext − σscat, (1.14)

where λ0 is the free-space wavelength. All this quantities are in units of m2 and

provide a measure of how strongly the scatterer perturbs the incident energy

flow. Due to the wave properties of light, all these cross section are not bounded

by the geometrical cross section of the scatterer itself: they can be much smaller

or much larger depending on the specific geometry and material composition

of the scatterer (an interesting example is the case of a single two-level atom,

which has a scattering cross section, near resonance, much larger than its actual

size [31].)

One of the most important result of scattering theory is the fact that the ex-

tinction cross section, σext, is related to the normalized scattering amplitude po-
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larized in parallel with the impinging field in the forward direction, which is

known as the optical theorem [4, 1, 32, 29]

σext = −
λ2

0

π
Im [sθ (0, 0)] , (1.15)

where sθ (0, 0) means the θ component of the normalized scattering amplitude

at θ = 0 and φ = 0. An intuitive explanation of this theorem is that the shadow

cast by an object (i.e., the forward scattering) must be proportional to the total

energy removed from the incident wave, either scattered in other directions or

absorbed (i.e., the extinction cross section).

This dissertation work is articulated around different projects, related to the

analysis and design of wave propagation in complex structures and (meta-) ma-

terials, which can be seen as different forms of “scattering engineering” in ex-

treme or anomalous ways. Through the optical theorem, these activities can

also be seen as forms of “wavefront manipulations” as they involve the design

of structures to engineer the forward scattering, and therefore the transmitted

wavefront. However, in a narrower sense, we use the term “scattering engi-

neering” specifically for the analysis and design of the scattering properties of a

3-D object, and “wavefront manipulations” for the engineered output of planar

metasurfaces.

We would also like to note that the optical theorem, relating the topics of

scattering engineering and wavefront manipulations in this dissertation, is very

general and widely applicable since it directly originates from the conservation

of energy, for classical wave scattering, or from the conservation of probability,

in the quantum-mechanical scattering case [33, 34]. Many of the ideas and de-

signs put forward in this dissertation can therefore be extended and translated

to different realms of classical and quantum wave physics.
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1.3 Physical limitations in scattering engineering and wave-

front manipulation

As mentioned in the previous sections, the vast range of properties that can be

implemented with electromagnetic (meta)materials enables us to control and

tailor the flow of electromagnetic waves in new and anomalous ways. Clearly,

however, there are certain physical bounds that ultimately limit what is pos-

sible and constrain the ability to realize arbitrary forms of scattering engi-

neering and wavefront manipulation. A major theme of this dissertation has

been the analysis of the relevant physical limitations in different areas of meta-

electromagnetics, as well as novel efforts to break, or bypass, these physical

limitations by relaxing their basic assumptions, with the general goal to enable

new possibilities. In this section, we outline two of the most important physical

limitations related to our works in the following chapters.

1.3.1 Causality: Kramers-Kronig relations

Consider the permittivity of a linear frequency-dispersive isotropic material,

ε (ω), which is a complex function of frequency. As a physically realizable func-

tion, ε (ω) must be the Fourier transform of a causal function. Indeed, in time do-

main the system’s output (material polarization or electric flux density) should

be zero before the input (electric field) is applied. As a result, the temporal

impulse response of the system must be a unilateral function, identically zero

along the negative time axis. This has important consequences for the analytic

properties of its Fourier transform. In particular, in frequency domain, the re-
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gion of convergence of ε (ω) should be the right-half plane to the right most

pole, in the complex plane of the Laplace variable s = σ + jω. If the system is

stable, the function is therefore analytic in the entire half-plane to the right of the

imaginary axis. Then, analyticity of ε (ω) and its bounded nature (in the sense of

square integrability) requires that its real and imaginary parts satisfy so-called

“Kramers-Kronig relations” (also known as Hilbert transforms or Plemelj for-

mulas) [4, 1]

Re [ε (ω)] = 1 −
2
π

PV
∫ ∞

0

Ω Im [ε (ω)]
Ω2 − ω2 dΩ, (1.16)

Im [ε (ω)] =
2
π

PV
∫ ∞

0

ωRe [ε (ω)] − 1
Ω2 − ω2 dΩ, (1.17)

where PV denotes the Cauchy principal value integral. Interestingly, similar

relations are also valid for the impedance function in circuit theory, a result that

is known as the Foster’s reactance theorem [35].

Kramers-Kronig relations have many crucial implications on the permittiv-

ity function in frequency domain, and related quantities, which further set lim-

itations on the ability to engineer the scattering properties of a given physical

object. First, the real and imaginary parts of the frequency-domain permittivity

function are not independent with each other. If we know the real (imaginary)

part over all frequencies, we readily know the imaginary (real) part (or an ap-

proximation if the integrals are truncated on a finite frequency range, as usually

done in practice). Typically, causal and linear permittivity functions follow a

multi-resonator Lorentz model, as shown in Eq. (1.8), which may include Drude

terms (Lorentz terms with resonant frequency set to zero) in the presence of free

electrons. Second, if the medium is passive, then in a low-loss frequency win-

dow, a suitable differentiation of the Kramers-Kronig relations shows that the
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following inequalities hold [7, 36]

∂ε (ω)
∂ω

≥ 0, and
∂ε (ω)
∂ω

≥
ε0 − ε

ω
, (1.18)

which imply that ε (ω) must have a positive non-zero slope in any low-loss win-

dow (normal dispersion) and, for any permittivity value below ε0, the slope

has a positive lower bound. This is one of the fundamental limits that hinder

broadband passive invisibility cloaking [16, 36], as we will discuss in Chapter 3

in details.

1.3.2 Bode-Fano limit of broadband impedance matching and

its validity for non-reciprocal matching

Another important theoretical limit that is relevant for this dissertation work is

the Bode-Fano limit for broadband impedance matching in circuit/microwave

theory [37, 38, 39]. With reference to the schematic in Fig. (1.2), for a physically

realizable load, described by an impedance function with a finite number of

zeros and poles in the complex Laplace plane, there is a limit on the reflection

coefficient Γ, for a generic linear, causal and reactive (i.e., lossless) matching

network, which can be expressed as an integral inequality∫ ∞

0
ln

1
|Γ|

dω ≤ constant. (1.19)

where the right-hand-side depends uniquely on the properties of the load and

is instead independent of the matching network. The Bode-Fano limit can then

be readily used to determine the maximum possible bandwidth over which a

specified level of reflection can be attained. We note that this limit can also

be applied in optics to determine the maximum bandwidth of, for example,
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Figure 1.2: Illustration of the problem of impedance matching between
a load and an input transmission line or source impedance
through a generic matching network. The Bode-Fano limit of
broadband impedance matching applies to problems of this
type if the matching network is linear, causal, and reactive
(matching through interference, not absorption).

anti-reflection coatings, or any other device that suppress the reflection through

an interference effect (not absorption, since the matching network in Fig. (1.2)

needs to be lossless).

While the Bode-Fano limit will be further discussed and used in Chapters

3 and 4 of this dissertation, here we take the opportunity to discuss in more

details the scope of applicability of this bound for different classes of matching

networks. We also believe this is relevant and instructive to understand better

the main assumptions of this important result. The derivation of the Bode-Fano

limit in Fano’s original paper [38] assumes a reciprocal lossless matching net-

work. However, in recent years, increasing attention has been devoted to wave

propagation in nonreciprocal systems [40, 9, 10, 25], including in the context of

invisibility cloaking [41]. Thus, one may wonder whether the Bode-Fano limit is

still valid when the matching network is nonreciprocal. To answer this relevant

question, here we prove the validity of this limit for any lossless nonreciprocal
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matching network, under the conditions of linearity, causality, passivity, and

time-invariance.

Our main idea is to show that the two key intermediate results in Fano’s

derivation [38] remain true when reciprocity is broken. Following Fano’s origi-

nal work, the impedance function of a physically realizable load is represented

(Darlington representation [42]) as a purely-reactive network N’, terminated in

a pure resistor, which can be taken as equal to unity. The load is driven by a

Thevenin source with 1 Ω impedance. To minimize reflection, a lossless match-

ing network N” is inserted between the Thevenin source and the load. Different

from Fano’s original derivation, here we allow N” to be non-reciprocal. As illus-

trated in Fig. 1.3, the cascade connection of networks N’ and N” form network

N, which is, therefore, lossless and nonreciprocal as well. The scattering param-

eters of the networks N, N’ and N” are expressed as

S =

Γ1 t12

t21 Γ2

 , (1.20)

S ′ =

Γ
′
1 t′

t′ Γ′2

 , (1.21)

S ′′ =

Γ
′′

1 t′′12

t′′21 Γ′′2

 , (1.22)

The Bode-Fano limit sets restrictions on the physical realizability of |γ2|, i.e., on

the amplitude of the reflection coefficient of the matched load.

Since the network N is lossless but not reciprocal, the scattering matrix of N

is unitary but not symmetric. An arbitrary unitary matrix can be expressed as a b

−e jϕb∗ e jϕa∗

 , |a|2 + |b|2 = 1, (1.23)
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Figure 1.3: Circuit topology for the derivation of the Bode-Fano limit, for
either a reciprocal or nonreciprocal lossless matching network.

which means that the amplitude of Γ2 is equal to that of Γ1, whereas there may be

a significant phase difference. This is the first important point of this derivation.

Indeed, the Bode-Fano limit is expressed only on the amplitude of the reflection

coefficient, while the phase is unconstrained. The equality of the amplitudes of

Γ2 and Γ1 allows us to turn the network end to end and to regard the limit on

the amplitude of Γ1 as the limit on the amplitude of Γ2, just as done in Fano’s

paper. An arbitrary phase difference between these reflection coefficients is not

important.

Then, we write the expression of Γ1 in terms of the scattering parameters of

N’ and N”:

Γ1 = Γ′1 + Γ′′1
(t′)2

1 − Γ′2Γ′′1
, (1.24)

which remains the same independently of the reciprocal or non-reciprocal na-

ture of the matching network. This is the second important result of the deriva-

tion, which allows us to use the intrinsic properties of the load, N’, to derive

constraints on the overall network N. Specifically, as recognized by Fano, if t′

has a zero of multiplicity n, then Γ1 and its first 2n − 1 derivatives are equal,
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respectively, to Γ′1 and its corresponding derivatives; hence, these transmission

zeros can be used to derive realizability conditions on the reflection coefficient

independently of the matching network.

These two important results allow us to follow the rest of Fano’s derivation,

based on Cauchy’s integral relations, without any modification, and obtain the

same limits on the amplitude of Γ1. This derivation shows that, as a result of

energy conservation in lossless systems (unitarity of S matrix), the Bode-Fano

limit remains valid also for lossless nonreciprocal matching networks.

We should also stress that, if the nonreciprocal matching network was, in-

stead, lossy, as in the case of an electromagnetic isolator used for impedance

matching, the Bode-Fano limit would not apply, as it is invalid for any type of

absorbing matching strategy, reciprocal or not. Moreover, we also note that if

reciprocity was broken via temporal modulation, conventional Bode-Fano limit

would apply only if the system could still be modeled with a unitary scatter-

ing matrix (which is usually not possible since a time-varying system generates

different frequencies, corresponding to additional network ports and decaying

channels).

1.4 Organization of the dissertation

After the brief Introduction provided in this chapter, the next two chapters

are devoted to one of the most important scattering-engineering problems: the

problem of scattering reduction and invisibility. Chapter 2 presents our work

on applying ideas from metamaterial invisibility cloaks (scattering cancellation

cloaking) to the problem of making the probe of a near-field scanning optical
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microscope effectively invisible (without preventing its ability to measure) with

the goal of enabling non-perturbative near-field measurements. This invisibil-

ity effect is achieved by modifying an aperture probe by cutting slits on its alu-

minum shell. Specifically, by modulating the length of the slits, we managed to

control the electric dipole polarizability of the probe tip.

Chapter 3 covers the general problem of broadband scattering cancellation

cloaking, and discusses our efforts to use active media to break the Bode-Fano

bounds for passive cloaking. When the passivity assumption is relaxed, it

becomes crucial to assess whether the system remains stable (absence of un-

bounded oscillations). Interestingly, we found that, while the bandwidth may

be broadened with respect to the passive case, stability issues limit the maxi-

mum bandwidth of the cloaking effect, and we determined an approximate, yet

quantitative, limit of the cloaking bandwidth.

Chapter 4 presents another relevant application of the Bode-Fano bound in

a different context. We analyze the problem of broadband impedance match-

ing of lossy films, e.g., ultra-thin solar cells, covered by arbitrary anti-reflection

coatings. We calculated the maximum solar power absorption for ultrathin solar

cells made of different common materials.

The second part of this dissertation is devoted to our work on wavefront

manipulation with novel metasurfaces for two relevant applications. Chapter 5

proposes a compact analog optical computing platform based on metasurfaces

in waveguide networks. With the proposed platform, we show design examples

to perform fractional calculus of an arbitrary order, to calculate a weighted sum

of proportional-integral-derivative (PID) operations an input function, and to

solve fractional calculus equations.
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In Chapter 6, we discuss our design of dielectric nonlocal metasurfaces that

implement the transfer function of free space over a much shorter length. This

allows compressing arbitrarily long free-space volumes and miniaturize com-

plex optical systems. We derive a fundamental trade-off between the length of

compressed free space and the operating angular range, and we then propose

a solution to relax this trade-off inspired by coupled-resonator-based band-pass

microwave filters. Our space-compression metasurfaces provide a solution to

realize compact, fully solid-state, planar structures for focusing, imaging, and

magnification.

Chapter 7 concludes this dissertation and offers an outlook on the future of

this area of research.
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CHAPTER 2

MINIMALLY PERTURBATIVE NEAR-FIELD SENSORS BASED ON

SCATTERING-CANCELLATION CLOAKING

2.1 Introduction

In this section, we first briefly review the two most popular approaches to re-

duce the total scattering cross section of an object and achieve invisibility using

metamaterials, i.e., transformation-based cloaking and scattering-cancellation

cloaking. Then, by applying and adapting the scattering cancellation approach,

we propose a fabrication-compatible technique to cloak the probe of a near-field

scanning optical microscope (NSOM) with the goal of minimizing scattering-

induced perturbations and artifacts during measurements [43].

2.2 Two types of invisibility cloaks

The advent of metamaterials at the beginning of the century has enabled great

progress in the quest for electromagnetic invisibility, a topic that has attracted

huge attention and research efforts in the past two decades [11, 44, 14, 45, 46,

47, 15, 48, 49, 50, 51, 52, 43, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 16, 63, 64, 65]. By

covering an object with a suitably engineered invisibility cloak, the total scatter-

ing cross section (SCS) of the object can be drastically suppressed, making the

cloaked object invisible for any observer and illumination [44]. Based on the

mechanism of operation, the most popular cloaking strategies can be divided

into two main categories, i.e., transformation-based cloaking [14, 45, 46, 47] and
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scattering-cancellation cloaking [15, 48, 49, 50]. Transformation-based schemes

seek to redirecting an incident electromagnetic wave around a scatterer us-

ing suitably-designed inhomogeneous and anisotropic permittivity and per-

meability distributions [14, 45, 46, 47]. In principle, this strategy works per-

fectly at a single frequency, independently of the size of the scatterer. How-

ever, transformation-optics cloaks are very difficult to implement in practice.

In addition, typical cloaks of this type completely shield the scatterer from the

incident field, making it essentially “blind” to the external environment. In

contrast, scattering-cancellation cloaking techniques seek to suppress the dom-

inant scattering components in a multipolar expansion of the scattered field,

using either homogeneous isotropic plasmonic layers [15, 48] or thin frequency-

selective surfaces or metasurfaces [49, 50]. Therefore, drastic scattering suppres-

sion can be obtained, with much lower system complexity, for objects that are

smaller or comparable in size to the wavelength. Most importantly, because the

scatterer covered by the cloak is still polarized by the incident field, scattering-

cancellation cloaking can be employed to realize invisible sensors [51, 52, 43]

and low-scattering antennas [44, 53, 54, 55, 56]. In this chapter, we apply the

concept of scattering cancellation to design cloaked NSOM probes with mini-

mized scattering.
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2.3 Cloaked near-field probe design

2.3.1 Overview of near-field scanning optical microscopes

Subwavelength optical imaging at the nanoscale is widely needed in differ-

ent scientific scenarios, e.g., to detect structures on the surface of cells, and to

study nanophotonic devices. Different schemes have been developed in re-

cent decades to break Abbe’s diffraction limit of optical imaging, among which

two main strategies exist that only require linear media: (i) a perfect negative-

refraction lens [12] allows recovering (enhancing) the near-field information

(evanescent components) in the far field, whereas (ii) a near-field scanning op-

tical microscope (NSOM) [66] allows obtaining the near-field information di-

rectly by introducing a near-field probe that converts evanescent waves into

propagating waves. A lossless negative-index lens works perfectly in theory

(no resolution limits), but its performance degrades rapidly when considering

practical implementations with any level of losses or imperfections [67, 68].

The concept of near-field probes first appeared at the beginning of the 20th

century, when it was proposed by Synge based on suggestions from Einstein

[69]. Thanks to advances in nanotechnology, near-field probes are now a ma-

ture technology and NSOM systems have been used in many different scenarios

[70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81]. There are two main classes of probe

tips, i.e., aperture type and apertureless type. For an aperture-type probe, an

aperture at the end of the tip is used to collect the electromagnetic field of an illu-

minated sample (converting the evanescent near-field into guided modes prop-

agating in a tapered optical fiber) and/or to illuminate a surface under study.

In contrast, an apertureless tip is designed as a small-volume high-efficiency

19



scatterer to convert the evanescent near-field into propagating scattered waves

that are then collected in the far-field. Although an apertureless tip can usu-

ally provide higher spatial resolution for sub-diffractive imaging, aperture-type

tips require lower system complexity and have higher signal-to-noise ratio (the

signal is directly collected by the tapered optical fiber).

Despite decades of developments, aperture-type probes still suffer from ba-

sic limitations that strongly affect their performance: in collection mode, when

the probe tip is brought close to an illuminated structure under study, the field

distribution pattern is significantly disturbed by the tip itself [82, 83]. The per-

turbation originates directly from the electromagnetic scattering of the tip inter-

acting with the field distribution under study, changing the original field distri-

bution pattern. Since the size of probe tip is much smaller than the operating

wavelength, which results in subwavelength resolution, the electric dipole mo-

ment induced on the tip dominate the scattering effect [4]. Therefore, our goal is

to control and suppress the dipolar scattering of the tip to a large extent, while,

at the same time, preserving the ability of the tip to measure fields (namely,

the external sources should be allowed to polarize the tip and induce internal

fields).

A solution to this problem was proposed in [52, 84] for aperture-type probes

and in [85] for apertureless probes based on the concept of “cloaked sensors”

[51, 86]: by surrounding the tip with a plasmonic shell with suitable nega-

tive permittivity, the total dipole moment of the cloaked object is strongly sup-

pressed, while the internal fields are nonzero. As a result, the tip is able to mea-

sure a given field distribution with minimal perturbations. Unfortunately, how-

ever, low-loss plasmonic materials with the desired negative permittivity can-
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not be readily found in certain frequency ranges, such as at infrared frequencies

where most near-field probes are actually used. To overcome this problem, here

we present a novel and general method to make near-field probes invisible at

infrared frequencies, without using any plasmonic materials or metamaterials.

To obtain this effect, we control the electric dipole polarizability and impedance

of the probe by suitably carving slits on its aluminum shell, as detailed in the

following section. Interestingly, both resonant scattering enhancement and scat-

tering suppression are observed for different slit lengths. At the cloaking condi-

tion, the scattering of the probe tip is drastically suppressed, even if substantial

power is captured by the probe and delivered to the “load” (i.e., the detectors in

the far-field). This “cloaking”’ method is feasible with current nanofabrication

technology [76] and can readily be implemented to engineer the scattering of

optical nano-probes, and achieve advanced optical imaging at deeply subwave-

length scales [43].

2.3.2 Slitted tip to suppress scattering

In a typical aperture-type NSOM probe, the tip of a tapered optical fiber is cov-

ered by an aluminum shell, with a subwavelength aperture at the end that cap-

tures the fields as the tip is scanned above the illuminated sample. When the tip

is illuminated frontally, an electric dipole moment is induced on the aperture

p = αeEloc, (2.1)

where is the polarizability of the tip for the considered incident polarization,

and Eloc is the local electric field intensity. Since the electric polarization current

jωp (under an e jωt time-harmonic convention) is proportional to the local elec-

tric field intensity, we can regard the polarizability as an admittance relating the
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Figure 2.1: Schematic of the considered ‘slitted’ near-field probe tip and
heuristic explanation based on the Smith chart. The slits qual-
itatively act as shorted transmission lines for the incident elec-
tric field perpendicular to them. By controlling the slit length
(green arrow), the input reactance can be controlled and tai-
lored to compensate the capacitive aperture.

Figure 2.2: Schematic of cloaked NSOM tip based on scattering cancella-
tion cloaking
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Figure 2.3: Real (blue) and imaginary (red) parts of the electric dipolar po-
larizability of the tip, varying the slit length.

polarization current and local electric field. Thus, an object with positive (nega-

tive) real part of polarizability can be considered capacitive (inductive) with re-

spect to this field-current relation. For an aperture-type probe, the tip is usually

capacitive, which is essentially the capacitance of a metallic tube. Intuitively, if

we carve slits (four slits, each 90° apart from the neighboring ones, taking care

of both polarization directions) along the aluminum shell of the tip, as shown

in Figure 2.1 (a), and we illuminate the aperture frontally with electric field or-

thogonal to the slits, the two carved slits act as transmission lines terminated

with a short circuit (assuming the metal to be a good conductor). According to

transmission-line theory, we can then modify the input reactance of the slits by

changing the length of the transmission line (as sketched on the Smith chart in

Figure 2.1 (b)). Since the aperture has capacitive impedance, we aim at compen-
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Figure 2.4: Backward scattering cross section of the probing tip with re-
spect to the slit length (normalized by the geometrical cross
section of the smallest sphere enclosing the tip).

sating it with an inductive impedance contribution from the slits. From a differ-

ent, but equivalent, perspective, we aim at inducing dipole moments on the slits

that oscillate out-of-phase with the dipole moment induced on the aperture, so

that the total dipolar response of the tip is minimized, while the aperture is still

polarized by the incident field. This is similar to the mechanism at the basis of

scattering-cancellation cloaking, but without the need of introducing plasmonic

media or elaborated mantle cloaks (see Figure 2.2).

To confirm this heuristic explanation, we extract the polarizability of an

NSOM tip from numerical simulations using CST Microwave Studio, a time-

domain commercial solver. The shape of the tip is a circular truncated cone,
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Figure 2.5: Time-snapshots of the electric field distribution around an illu-
minated tip, for three different slit lengths, under a plane wave
excitation.

with a vertex angle of 20°. The aperture at the end of the tip is a circle with

diameter 0.2 um. The thickness of aluminum shell is 0.05 um. In the simula-

tion the aperture is frontally illuminated by a linearly polarized plane wave at

196 THz, with electric field perpendicular to the slits (since any polarization di-

rection can be decomposed into two orthogonal directions, the results do not

change with polarization directions, which is verified by simulation). Assum-

ing purely dipolar scattering, we can derive the polarizability of the probe tip

from the far-field results obtained in the simulation. We write the polarizability

as

αe =

(
α−1

stat + j
k3

0

6πε0
+ jγ

)−1

. (2.2)

The first term inside the parentheses is purely real, representing the quasi-static

polarizability of a dipolar scatterer (here the probe tip) from the far field re-

sults in the simulation. The second term is the well-known expression for the

radiation loss (“radiation correction”) for an arbitrary electric dipole radiator,

where k0 and ε0 are the wave number and permittivity in background medium
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Figure 2.6: Time-snapshots of the electric field distribution around an illu-
minated tip, for three different slit lengths, under a spherical
wave excitation.

(this terms only depends on the properties of the surrounding medium, i.e., free

space in the present case). The third term accounts for the powered delivered to

(absorbed by) the detector, modeling the fact that a sensor must absorb some en-

ergy to detect a signal. The power delivered to the detector load is ω
2 γ|αe|

2
|Eloc|

2.

The dipolar polarizability and corresponding backward scattering cross sec-

tion (SCS) is shown in Figures 2.3 and 2.4, as a function of the length of slits

carved on the aluminum shell. It is clear from the results that the polarizabil-

ity and thus the backward SCS is controlled to a large extent by the slit length,

consistent with the qualitative discussions above. Three relevant cases are high-

lighted by roman numerals in the Figures 2.3 and 2.4, and time-snapshots of

the electric field distribution around an illuminated tip are shown in Figure 2.5
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Figure 2.7: (a) Resonant field distribution (amplitude, at 196 THz) of an
optical cavity formed by a defect in a photonic-crystal waveg-
uide. (b) The field distribution is disrupted due to the pres-
ence of a conventional NSOM tip (schematic in the inset). The
tip changes the resonant frequency of the cavity. (c) The field
distribution is largely restored by using the proposed ‘slitted’
tip, with slit length as at point III. The fields inside the low-
scattering tip are actually enhanced.

and 2.6 for each cases, under plane wave and spherical wave excitations. On

Case (I), without slit, the tip is capacitive (positive real part of polarizability).

The scattering is significant, which strongly disturbs the field distribution pat-

tern. On Case (II), when the slit length is 0.135 um, the tip exhibits a resonance,

the real part of polarizability vanishing and the imaginary part of polarizability

reaching a peak. The electric dipole induced on the tip oscillates in quadra-

ture with the local incident field, and thus power is extracted from the incident

field in the form of scattering. The field distribution pattern is disturbed to

the maximum extent. When the slit length is even longer, the real part of the

polarizability is negative, i.e., the tip becomes inductive. When the slit length
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reaches 0.195 um on Case (III), both the real and imaginary part of the polariz-

ability vanishes, which means that the overall induced dipole moment is zero.

The capacitance induced on the metallic tube is compensated by the inductance

provided by the slits. From another point of view, the overall dipole moment is

suppressed (the induced dipole moment in the shell oscillates out of phase with

the dipole moment induced on the aperture), so the overall dipolar scattering

vanishes. This is exactly the desired cloaking condition. The field distribution

pattern is perturbed to the minimum extent, and meanwhile the induced field

inside the aperture is not zero, preserving the ability to detect and measure the

field distribution under study.

As an example of application, we show in Figure 2.7 the effect of placing

an NSOM tip near a resonant cavity formed by a defect in a photonic-crystal

waveguide, a typical example of system used in nano-electromagnetics. From

perturbation theory, when a dipolar scatterer is placed near a photonic-crystal

waveguide resonator, the resonant frequency and Q factor perturbation is

∆ω

ω
+

j
2

∆
1
Q
≈ −

αre|E0|
2 + jαim|E0|

2∫
v

[
µ|H0|

2 + ε|E0|
2
]

dv
. (2.3)

Clearly, the perturbation of real resonant frequency and reciprocal value of Q

factor of a resonant cavity is linearly determined by the real and imaginary part

of dipolar polarizability of the scatterer. It is clear that bringing the uncloaked

tip near the cavity (Figure 2.7 (b)) disrupts the resonant field distribution under

consideration. Instead, by using the designed ‘slitted’ tip (Figure 2.7 (c)), the

field is largely restored. More generally, as studied in the theory of perturba-

tions in microwave cavities [87], the shift in resonance frequency (and quality

factor) of a perturbed cavity directly depends on the polarizability of the per-

turbation. Therefore, we can use the proposed ‘slitted’ tip to tune the resonance

28



Figure 2.8: SEM pictures of a conventional probe (left) and a slitted nanos-
tructured probe (right).

of an optical cavity at will, as well as to modify its Q factor, increasing or de-

creasing the radiation loss, by simply changing the slit length [88].

2.4 Conclusion

We have proposed a novel method, inspired by impedance concepts and

transmission-line theory, to make a near-field probe invisible at infrared fre-

quencies, without the need for plasmonic materials or metamaterials. The pro-

posed structure can readily be fabricated with existing nanotechnology. Our

work opens new possibilities for cloaking technology to have real practical im-

pact in nano-electromagnetics and for optical imaging. We have collaborated

with Prof. L. (Kobus) Kuipers group on experimentally fabricating and testing

the proposed cloaked NSOM probes (Figure 2.8). Characterization and testing

are currently underway.
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CHAPTER 3

ACTIVE SCATTERING-CANCELLATION CLOAKING: BROADBAND

INVISIBILITY AND STABILITY CONSTRAINTS

3.1 Introduction

While great progress has been made in the theory and realization of invisibility

devices, this technology has been severely hindered by fundamental difficul-

ties in realizing broadband scattering suppression, especially when the object

to be concealed is electrically large, an issue that appears independent of the

cloaking techniques being considered [57, 58, 59, 60, 61, 62]. Indeed, physical

bounds have been recently reported, based on the Bode-Fano theory of broad-

band impedance matching, that set a hard upper limit on the operating band-

width of a generic cloaking system, assuming only linearity, causality, and pas-

sivity [16]. It should also be noted that, although the original derivation of the

Bode-Fano limit assumes reciprocity (symmetry of the scattering matrix), loss-

less nonreciprocal matching is still bounded by the same Bode-Fano limit. A

proof of this statement is provided in Section (1.3.2). Therefore, to realize a

broadband invisibility device, beyond these strict limits, the only option is to

break at least one of the three assumptions underpinning these physical bounds,

namely, causality, linearity, and passivity. (i) Causality is an intrinsic feature that

any physically realizable system must respect. While it may be possible to break

a relative definition of causality in scenarios with a background medium sup-

porting waves with velocity lower than the speed of light in vacuum (e.g., in a

high-index background), as suggested in [60], most cases of interest involve an

object to be concealed in free space, for which the speed of light in vacuum sets
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an insurmountable causality constraint. (ii) Breaking linearity means introduc-

ing frequency harmonics and distorting the incident signals, which is typically

undesired. (ii) Breaking passivity, therefore, appears to be the most promising

option to realize broadband invisibility. Indeed, some pioneering works have

already explored the potential of active cloaking [57, 63, 64, 65], without, how-

ever, quantifying the performance against the passivity bounds and without a

comprehensive investigation of the stability issues involved with active scat-

tering systems. These research activities are also part of broader efforts aimed

at increasing the bandwidth and robustness of metamaterial systems based on

active and non-Foster structures [89, 90, 91, 92, 93, 94, 95].

In this chapter, we fully investigate the broadband scattering performance

and the stability issues of active scattering-cancellation cloaking, using the sim-

plest possible, yet general, model system, namely, a single-layer homogenous

active cloak. We theoretically demonstrate active scattering-cancellation cloaks

in both 1-D and 3-D scenarios, and we compare their scattering performance

with the one of their passive plasmonic counterparts, and against the Bode-Fano

bound. In addition, stability issues are thoroughly analyzed in terms of geomet-

rical and material parameters. Owing to the simplicity of the considered cloak-

ing configuration, we are able to derive closed-form stability constraints and

offer qualitative guidelines on how to ensure stability. The proposed one-layer

active cloaks show the performance baseline of active scattering-cancellation

cloaking, which may then be improved with more complex designs [36].

The rest of the chapter is organized as follows: In Section 2 we demonstrate

the necessity of using active media to achieve broadband cloaking, and we dis-

cuss a general permittivity dispersion model for active media, i.e., the active
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Figure 3.1: (a) Sketch of a 3-D spherical scatterer (blue) covered by a spher-
ical concentric one-layer cloak (red) under plane-wave inci-
dence. The relative permittivity and radius of the core and shell
are ε1, ac, ε2 and as, respectively. (b) Sketch of a 1-D dielectric
planar slab (light blue) covered by a one-layer cloaking slab
(red) under normal plane-wave incidence. The relative permit-
tivity and thickness of the dielectric and cloaking slabs are ε1,
d1, ε2 and d2, respectively. The reflection coefficients seen from
the un-cloaked dielectric slab and from the cloaked slab are Γ1

and Γ2, respectively. (c) Corresponding lumped circuit model
for 1-D scattering. The values of R and C are indicated in the
figure, and the reflection coefficients seen from the un-matched
circuit and the matched circuit are Γ1c and Γ2c, respectively.
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Lorentz model. Then, in Sections 3 and 4, we report and discuss the broadband

scattering performance of optimized one-layer active cloaks in 1-D and 3-D, and

we analyze the stability constraints of these active systems. Finally, in Section

5, we offer some concluding remarks on active scattering-cancellation cloaking.

In the Appendix, we provide the geometrical and material parameters of all the

cloaking designs.

3.2 Can active media improve the cloaking bandwidth?

Let us first examine why a generic passive cloak cannot be arbitrarily broad-

band. Consider an electrically small dielectric spherical scatterer, whose dom-

inant scattering contribution is the electric dipolar component. If the scatterer

is covered by a cloak made of an isotropic, homogeneous, and non-magnetic

concentric shell, the condition to cancel the electric dipolar scattering, in the

quasi-static regime, is given by [15](
ac

ac + as

)3

=
(ε2 − ε0) (2ε2 + ε1)
(ε2 − ε1) (2ε2 + ε0)

, (3.1)

where ac and ac + as are the radii, and ε1 and ε2 are the relative permittivity of

the spherical scatterer and the concentric shell cloak, respectively (Fig. 3.1 (a)).

Considering a dielectric (ε1 > ε0) or a perfectly conducting (ε1 → −∞) core,

Eq. 3.1 predicts that, to obtain arbitrarily-broadband cloaking operation, the

cloak would need to have frequency-constant real permittivity, with value ε2 <

ε0. If dynamic effects (i.e., retardation) are non-negligible, negative permittivity

dispersion (negative slope of ε2 (ω)) in a lossless frequency window may even be

required. These requirements directly violate the constraints on the permittivity
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dispersion function imposed by energy-conservation in passive structures [7]:

∂ε (ω)
∂ω

≥
ε0 − ε

ω
, (3.2)

which implies that ε (ω) must have a positive non-zero slope for any permittivity

value below ε0. It is therefore necessary to break the assumption of passivity in

order to meet the requirements of Eq. 3.1 over any non-zero bandwidth. Indeed,

if the cloak is made of a suitable active (gain) medium, its permittivity function

can be flat, or even have negative slope, in the desired frequency window.

The permittivity dispersion of any, active or passive, material can be approx-

imately modeled using the generalized classical Lorentz model, which is a good

approximation to more rigorous quantum-mechanical methods (density-matrix

equations of motion for a weakly perturbed two-level system) [96, 5, 97, 98].

In the Lorentz model, each resonant process in the medium is modeled as a

classical harmonic oscillator (a classical model of a two-level atomic/molecular

system). Considering the contribution of all resonance processes, the relative

permittivity of a medium can be expressed as [32, 4]

ε = 1 +
∑

i

fiω
2
pi

ω2
0i − ω

2 + jωγi
, (3.3)

where ω is the radian frequency; ω0i and γi are the resonant frequency and the

resonance linewidth, respectively, for the ith resonator; fi is the so-called res-

onator strength, and ωpi is the plasma frequency defined as

ω2
pi =

Nie2

ε0m
, (3.4)

where Ni is the number density of resonating atoms / molecules, e is the electron

charge, m is the electron mass, and ε0 is the free space permittivity. Throughout

the chapter we assume and suppress a e+st time dependence, where we have de-

fined a Laplace complex variable, s = σ+ jω, to represent complex frequency. If
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the resonator is passive (active), fi is positive (negative) [97, 98, 99, 100]. A neg-

ative oscillator strength models the effect of population inversion in an active

material, namely, the fact that the atoms / molecules of the medium exist in an

excited energy state, rather than in the ground state (which clearly requires an

external energy pump) [97, 98, 99, 100]. Note that the effective permittivity dis-

persion of an active metamaterial comprised of resonant meta-atoms can also

be expressed by the same Lorentz model, with ωpi, ω0i and γi depending on the

polarizability of the meta-atoms and their density, following well-established

homogenization procedures [101]. The active Lorentz model has been success-

fully used in numerical calculations of wave propagation in active materials and

metamaterials [99, 100], and to study parity-time-symmetric photonic structures

[102, 103].

Other classical dispersion models can be obtained as limiting cases of the

Lorentz model. For instance, the Drude model for free-electron plasmas and

plasmonic media is obtained by setting the resonant frequency to zero [32, 4].

In the cloaking designs considered in the next two sections, the permittivity dis-

persion of the passive plasmonic cloak used as a benchmark follows a classical

Drude model

ε2 = 1 −
ω2

p

ω2 − jωγ
. (3.5)

Instead, in our active cloaking designs, we consider an active material with

a permittivity dispersion containing both a normal Lorentzian and an anti-

Lorentzian:

ε2 = 1 +
f1ω

2
p1

ω2
01 − ω

2 + jωγ1
+

f2ω
2
p2

ω2
02 − ω

2 + jωγ2
, (3.6)

where f1 > 0, f2 < 0 andω01<ω02 . In this active scenario, Kramers-Kronig relations

and energy conservation allow the presence of a locally flat and low-loss/gain

dispersion window between the two resonances, which may enable a broad-
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band cloaking effect, as discussed in the next two sections.

Before investigating active cloaking designs and their stability issues, it is

relevant to check the stability of the permittivity function itself, treated as a

system function relating the electric displacement field (output) to the electric

field (input). The position of the poles associated with the anti-Lorentzian in the

s-plane is given by

σ + jω =
−γ2 ± j

√
4ω2

02 − γ
2
2

2
, (3.7)

Since γ2, which represents the resonance linewidth, is positive by definition, the

real part of the position of the pole is always negative, indicating that the per-

mittivity function of the active medium is intrinsically stable, as it corresponds

to decaying oscillations in time (not in space) under a spatially-uniform tempo-

ral impulse response. However, as shown in the next sections, the stability of the

permittivity of the active medium does not guarantee that a system containing

such a medium would always be stable. This is because of the complex feed-

back mechanism introduced by any finite geometrical configuration. In fact, the

stability of the entire system depends on both its specific geometrical structure

and the anti-Lorentzian parameters, ωp2, ω02, and γ2.

3.3 One-dimensional active cloaking

In this section, we show that a simple one-layer active cloak can indeed over-

come the bandwidth limit of 1-D passive cloaks, and we assess its stability.
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Figure 3.2: Magnitude of the reflection coefficient of a dielectric slab in
free space (calculated with exact formulas and using a lumped-
element circuit model) and of the same slab cloaked by an ac-
tive layer and by a passive plasmonic layer, compared against
the Bode-Fano bound. All the geometrical and material param-
eters are given in the Appendix of this chapter.

3.3.1 Broadband scattering behavior

Consider a dielectric slab in free space with an electromagnetic wave impinging

on it normally, as illustrated in Fig. 3.1(b). Since this 1-D transversely invari-

ant scattering problem has only one scattering channel, namely, the specular

reflection, we use the reflection coefficient to describe its scattering behavior. In

front of the dielectric slab, we introduce a cloaking slab to suppress the overall

reflection. A 1-D wave-propagation problem of this type can be modeled and

analyzed, exactly, using transmission-line theory. Each slab is modeled by a seg-

ment of transmission line. The ABCD parameters of a cascade of transmission-
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Figure 3.3: Permittivity (real and imaginary part) of an active medium and
a passive plasmonic medium, corresponding to the materials
used for the 1-D cloaking design in Fig. 3.2. The horizontal gray
line indicates the required permittivity for arbitrarily broad-
band invisibility.

line segments is then given by [39]A B

C D

 =
∏

i

 cos kidi jZi sin kidi

jZ−1
i sin kidi cos kidi

, (3.8)

where ki is the complex propagation constant (wavenumber), di is the thickness,

and Zi is the wave impedance, respectively, of the ith slab. From the ABCD pa-

rameters, we can directly calculate the reflection coefficient as [39]

Γ =
A + B/η0 −Cη0 − D
A + B/η0 + Cη0 + D

, (3.9)

where η0 is the free-space wave impedance. The amplitude of the reflection

coefficient of an uncloaked dielectric slab is shown in Fig. 3.2 with a solid black

line, for a slab thickness d1 = λc/40 (at the central free-space wavelength λc), and

permittivity ε1 = 10.

While the transmission-line model above is exact, we can approximately
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model the slab, around the frequency of interest, as a lumped-element circuit,

which allows us to apply the analytical Bode-Fano theory of broadband match-

ing. In particular, if the slab thickness d is subwavelength, the circuit model of

a lossless dielectric slab is simply a shunt capacitor of value [101],

C = ε0 (ε − 1) d, (3.10)

connected with a resistor modeling the semi-infinite space behind the slab, as

illustrated in Fig. 3.1 (c). The amplitude of the reflection coefficient calculated

from this circuit model is shown in Fig. 3.2 with an orange dashed line. We see

that the calculations based on transmission lines and lumped elements are in

good agreement, which indicates that the lumped-element model captures the

local response accurately. Next, we calculate the Bode-Fano limit based on this

circuit model, which can be expressed as an integral inequality [39, 37, 38]∫ ∞

0
ln

1
|Γ2c|

dω ≤
π

RC
. (3.11)

The optimal tradeoff between reflection suppression and bandwidth is obtained

by solving the integral in Eq. 3.11 considering an ideal box-like frequency re-

sponse for |Γ2c| with constant reflection coefficient inside the working band-

width and unitary reflection outside (see [39]) since this response makes full

use of the available bandwidth. The resulting Bode-Fano bound is shown in

Fig. 3.2 (grey solid lines) in the form of an optimal trade-off between |Γ2c| and

the bandwidth over which this level of reflection can be sustained.

We then design and optimize a passive plasmonic cloak and an active cloak

for the slab based on materials with permittivity given by Eqs. 3.5 and 3.6,

respectively, at the same central frequency ωc. To show the potential of ac-

tive cloaking, we deliberately choose an extreme situation in which the re-

quired cloak permittivity, which can be approximately calculated as ε2 = ε0 −
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(ε1 − ε0) d1/d2 , is very negative: ε2 ≈ −170ε0 using the parameters given in Ap-

pendix B. For such a negative permittivity, the minimum slope of the dispersion

function for any passive material, given by Eq. 3.2, would be very large and pos-

itive, which suggests that, with passive designs, good cloaking performance can

be obtained only over a very narrow bandwidth around ωc.

The optimized permittivity dispersion functions for the passive and active

cloaks are shown in Fig. 3.3. We see that the passive plasmonic medium

is highly dispersive around the central frequency, with a monotonically in-

creasing permittivity, as expected. In contrast, the active medium supports

an approximately flat dispersion window, in a region with low loss or gain

(0.2 < ω/ωc < 1.8), which approximates much better the required permittiv-

ity for arbitrarily-broadband cloaking (horizontal gray line). The resulting re-

flection coefficients of the passively- and actively cloaked slab are reported in

Fig. 3.2. We see that the bandwidth of the plasmonic cloak is well within the

Bode-Fano bound, as expected, whereas the bandwidth of the active cloak is

significantly beyond the bound. This simple example shows the potential of

active cloaking to realize ultra-broadband invisibility.

3.3.2 Stability analysis

We investigate the stability of the active cloaking system by analyzing the poles

of the reflection coefficient in the s-plane (Fig. 3.4(a)). In the s-plane, a pole

on the left (right) half-plane is associated with decaying (growing) oscillations

in time, namely, with a stable (unstable) response. The case of a pole on the

imaginary axis in the s-plane corresponds to the lasing threshold, where gain
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Figure 3.4: Magnitude of the reflection coefficient, for the dielectric slab
with active cloak in Fig. 3.3, plotted in the s-plane, with two
poles highlighted. Pole 2, associated with the active Lorentzian
resonance of the cloak permittivity, governs the stability of this
active system.

fully compensates any loss channel. For a subwavelength slab (far from any

Fabry-Perot resonance), Pole 1 and Pole 2 in Fig. 3.4(a) are mainly associated,

respectively, with the normal Lorentzian resonance and the anti-Lorentzian res-

onance of the permittivity of the active cloaking layer [Eq. 3.6]. While Pole 1 is

usually stable, due to passivity, Pole 2 can be either stable or unstable.

The location of Pole 2 in the s-plane can be obtained, in closed-form, under

some reasonable simplifying assumptions. First, instead of using full dynamic

formulas, we can use the lumped-circuit model shown in Fig. 3.1(c), which cap-

tures the local response of the system in the long-wavelength regime. Second,
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Figure 3.5: σ of the location of Pole 2 in the s-plane as a function of ωp2 and
γ2.

the normal Lorentzian resonance and the anti-Lorentzian resonance of the active

medium can be assumed to be sufficiently well separated in frequency (which

is indeed required to achieve broadband cloaking as in Fig. 3.1). The resulting

expression is simple but lengthy, so we do not show it here for conciseness. In-

stead, we plot the position σ of Pole 2 as a function of ωp2 and γ2 in Fig. 3.5.

From the figure, we see that as ωp2 increases, we need larger and larger γ2 to

ensure a negative σ, i.e., stability. For a given ωp2, we can always find γ2 large

enough to ensure stability. Interestingly, as we will see in the following, this is

not the case in a 3-D scattering system.

For our design with ωp2 = 38.5ωc, σ of the location of Pole 2 in the s-plane
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is a monotonically decreasing function with respect to the resonance linewidth

γ2, as seen in Fig. 3.5: with γ2 = 0, the pole is in the right half of the s-plane and

the system is unstable; then, as γ2 is increased above a certain threshold 1.16 ωc,

Pole 2 moves across the imaginary axis into the stable half plane. The larger γ2

is, the farther the pole moves away from the imaginary axis, making the system

more robustly stable. This behavior is not surprising since an active resonance

with larger lifetime (i.e., smaller resonance linewidth γ2) is expected to be asso-

ciated with higher instabilities as the electromagnetic wave would spend more

time interacting with the gain medium. Increasing γ2 is, therefore, beneficial

in terms of stability, but is detrimental to the performance of the cloaking de-

vice since it increases the imaginary part of the permittivity within the cloaking

bandwidth, which leads to higher absorption/emission, rather than a reduction

of scattering.

3.4 Three-dimensional active cloaking

In this section, we apply active cloaking to realize broadband scattering sup-

pression in a 3-D scenario, and we assess the stability of this active scattering

system.

3.4.1 Broadband scattering behavior

Consider an electrically small spherical scatterer made of a homogeneous

isotropic material, surrounded by free space, illuminated by a plane electromag-

netic wave (equivalent to an infinite discrete sum of spherical harmonics). The
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Figure 3.6: Permittivity (real and imaginary part) of an active medium
and a passive plasmonic medium, corresponding to the ma-
terials used for the 3-D cloaking design in. The horizontal gray
line indicates the required permittivity, given by Eq. 3.1, for
arbitrarily-broadband invisibility.

induced conduction or polarization current, which can be expanded into mul-

tipolar contributions, re-radiates energy in the form of a scattered wave. If the

structure is rotationally invariant, each multipolar component acts as an inde-

pendent scattering source, responding to and scattering into only one spherical

harmonic, forming different orthogonal scattering channels. An induced elec-

tric dipole radiates a TM spherical wave of first order, a magnetic dipole a TE

spherical wave of the first order, etc. [104]. If the size of the spherical scat-

terer is subwavelength, the dominant scattering contribution is typically the

one originating from the induced electric dipole. Following the conventional

design process of scattering-cancellation cloaking, we cover the spherical scat-

terer with a concentric one-layer spherical shell, composed of a homogeneous,

isotropic and non-magnetic medium. The structure is shown in Fig. 3.1(a). The

shell should then be designed such that the overall polarizability of the cloaked
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Figure 3.7: Magnitude of the electric-dipolar scattering coefficient, cT M
1 , for

an electrically small spherical PEC scatterer in free space, and
for the same scatterer cloaked by an active shell and by a pas-
sive plasmonic shell. All the geometrical and material parame-
ters are given in the Appendix of this chapter.

object vanishes as the electric dipole moments induced on the shell and on the

core compensate each other. Based on this strategy, the overall scattering can be

suppressed drastically. While this heuristic explanation is valid for small objects

of different shapes, for a spherically-symmetric scattering problem of the type

considered here, the scattering cross section of the cloaked object can be calcu-

lated exactly using Mie theory [32, 105]. The scattering coefficients for TM and

TE spherical harmonics of nth order are given by [15]

cT M
n = −

UT M
n

UT M
n − jVT M

n
, cT E

n = −
UT E

n

UT E
n − jVT E

n
, (3.12)

where U and V are matrix determinants derived from the electromagnetic

boundary conditions at the spherical interfaces (their definition can be found
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Figure 3.8: Normalized scattering cross section (SCS) of the spherical PEC
scatterer in Fig.3.7, and of the same scatterer cloaked by an ac-
tive shell and by a passive plasmonic shell. SCS is normalized
by the geometrical cross-section. Solid curves: analytical calcu-
lations. Markers: numerical full-wave simulations.

in [15]). The total scattering cross section (SCS) is then calculated as

SCS =
λ2

0

2π

∞∑
n=1

(2n + 1)
(∣∣∣cT M

n

∣∣∣2 +
∣∣∣cT E

n

∣∣∣2), (3.13)

where λ0 is the free-space wavelength.

We then design and optimize a passive plasmonic cloak and an active cloak

for an electrically small PEC sphere (ac = λc/15). The optimized permittivity

dispersions for both cases are shown in Fig. 3.6, compared to the ideal permittiv-

ity required to have arbitrarily-broadband invisibility 0.14, according to Eq.3.1.

As for the planar case, we consider a permittivity dispersion for the active

medium containing a normal Lorentzian (resonant process with loss) and an

anti-Lorentzian (resonant process with gain), located at about 0.3ωc and 1.4ωc,

respectively. Between the two resonances, the permittivity dispersion around
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the central frequency is relatively flat, and the loss or gain is very low. As for

the 1-D case in Section 3.3, this permittivity dispersion is suitable for broadband

cloaking, since it matches the required permittivity profile predicted by Eq.3.1

much more closely. In contrast, the dispersion of the passive plasmonic medium

has large positive slope around the central frequency.

The dominant scattering coefficient cT M
1 for the passive and active cloaked

object is reported in Fig. 3.7. These results clearly show that the optimized ac-

tive cloak, despite its simplicity, already exhibits a significantly broader band-

width compared to the passive plasmonic cloak. Yet, unlike the 1D case, we

find that the scattering performance of this active cloak are still well within the

approximate Bode-Fano limit for this 3-D case [16], which predicts, for example,

a maximum achievable bandwidth of 1.4ωc for
∣∣∣cT M

1

∣∣∣ = −50 dB (beyond the fre-

quency range considered in Fig. 3.7). Our investigations suggest that increasing

the bandwidth to values near the bound, while also keeping stability (additional

details below), appears to be impossible with this single-layer active cloak. Fur-

ther investigations, beyond the scope of this work, are needed to verify whether

multi-layered active cloaks may allow approaching and surpassing the physical

bound. We also note that, outside the working bandwidth, the scattering coef-

ficient of the cloaked sphere is generally larger than the one of the uncloaked

spheres. At some frequencies, for example at 1.24ωc, the magnitude of the scat-

tering coefficient of the object with active cloak is even larger than unity, due

to the fact that active media can pump energy from an external source into the

electromagnetic field, amplifying the field intensity outside the cloaking band-

width.

In Fig. 3.8, we also show the total scattering cross section (SCS) of the spher-
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Figure 3.9: Magnitude of the scattering coefficient, cT M
1 , for the spherical

PEC scatterer with active cloak.

ical scatterer with and without cloaks. Even when all scattering contributions

are included, our active cloaking design shows significant scattering suppres-

sion over a much broader bandwidth compared to a typical passive plasmonic

cloak, which means that higher-order scattering contributions are not enhanced

by the presence of the active cloak. We also validate the performance of the de-

signed active cloak with full-wave numerical simulations using a commercial

software based on the finite-element method (COMSOL Multiphysics [106]). As

seen in Fig. 3.8, perfect agreement is obtained.

3.4.2 Stability analysis

Compared with its 1-D counterpart, the stability of a 3-D active cloak is more

difficult to analyze and enforce. Besides the linewidth γ2, there are extra restric-
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Figure 3.10: σ of the location of Pole 2 in the s-plane as a function of ωp2

and γ2.

tions on ωp2 with respect to ω0, as discussed below.

Fig. 3.9 show the lowest-frequency poles of cT M
1 in the s-plane . Poles 1 and

2 are mainly associated with the Lorentzian and anti-Lorentzian resonances in

Eq. 3.6, respectively, whereas Pole 3 represents the first dynamic resonance of

the core-shell structure [18]. All the scattering poles of our optimized cloaking

design are stable, as shown in the figure. It is, however, relevant to investigate

the stability condition more generally, with the goal of obtaining qualitative in-

sight into what parameters govern the stability of the system and about whether

the cloaking bandwidth may be further increased.

Similar to the 1-D case, for electrically small scatterers, the stability is mostly

governed by the pole associated with the anti-Lorentzian resonance (Pole 2),

which is the closest to the real frequency axis as seen in Fig. 3.9. We calculate
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Figure 3.11: Schematic of the passive/active and stable/unstable behav-
ior of the scattering system with respect to the parameter
f2ω

2
p2/ω

2
02 .

the imaginary part of the position of Pole 2 analytically, under some approxima-

tions. First, considering that the size of the core-shell structure is much smaller

than the operating wavelength, it is safe to use small-argument approximations

for the spherical Bessel functions that appear in the expression of the scatter-

ing coefficients [28]. This approximation is similar to the lumped circuit model

in 1-D. Second, as is done in 1-D, the contribution of the normal Lorentzian is

considered small enough to be ignored (see Fig. 3.6). Third, we neglect radia-

tive losses in the calculation of the scattering coefficients, which corresponds to

defining the coefficients as [107, 52]

cT M
1 = − jUT M

1 /VT M
1 , (3.14)

instead of using the exact form in Eq. 3.12. This approximation, which makes

the scattering coefficient purely imaginary in the lossless case (and the electric-

dipole polarizability purely real), is equivalent to the Rayleigh approximation

of scattering theory [24]. This is also equivalent to removing the so-called Sipe-

Kranendonk radiation correction to the expression of the quasi-static electric-

dipole polarizability [107, 52, 108].

Under these reasonable approximations, we can calculate the position of

Pole 2 in the s-plane by equating the denominator of the scattering coefficient to

50



zero. We obtain a closed-form expression for the pole in the s-plane as

σ + jω = −
γ2

2
±

√
γ2

2

4
− ω2

02 −
1
3

(
1 +

2
x3

)
f2ω

2
p2, (3.15)

where x is the geometrical aspect ratio (ac + as)/ac. The position σ of Pole 2 is

plotted as a function of ωp2 and γ2 in Fig. 3.10. We see that, different from the 1-

D case, here, when ωp2 is larger than a threshold, σ is always positive, no matter

how large γ2 is, meaning the system is always unstable. From the figure, we

see that the threshold is not dependent on γ2, so we assume that the term γ2
2/4

under the square root is negligibly small for simplicity. If the argument of the

square root is positive, there will be two poles on the real axis, symmetrically

located around −γ2/2, with one pole likely to fall into the right (unstable) half

plane. Instead, if the square root argument is negative, the two poles will have

the same real part equal to −γ2/2, which is negative, and opposite imaginary

parts, which implies that the two poles are stable. As a result, we can write an

approximate stability condition:

−ω2
02 −

1
3

(
1 +

2
x3

)
f2ω

2
p2 < 0, (3.16)

which can also be written, in more compact form, as

f2ω
2
p2

ω2
02

> −
3

1 + 2/x3 = S , (3.17)

where we have defined the parameter S as the stability threshold. Since the

aspect ratio x ∈ [1,+∞), we can also write a stricter stability condition as

f2ω
2
p2/ω

2
02 > −1. We also would like to note that, despite having used similar

approximations, we managed to write a simple closed-form stability constraint

for the 3-D case, whereas the corresponding 1-D condition is a much more com-

plicated and length expression, which may appear counterintuitive. The main

reason for this difference is the fact that, in 3-D, we have considered a PEC scat-
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terer: the absence of internal fields in the object to be concealed greatly simpli-

fies the calculations. This observation also shows how difficult it is, in general,

to define analytical stability criteria for generic scattering problems.

Eq. (3.17) is schematically represented in Fig. 3.11, indicating how the pas-

sive/active and stable/unstable nature of the system depends on the parameter

f2ω
2
p2/ω

2
02. Clearly, if f2 is positive, which means that the second Lorentzian res-

onance is passive, the overall system is always passive and stable. Instead, in

the case of an active resonance, i.e., f2 < 0, if S < f2ω
2
p2/ω

2
02 < 0, the system is

active and stable; conversely, if f2ω
2
p2/ω

2
02 < S , the system is active and unstable.

The relative permittivity of the active medium, given by Eq. 3.6, can be

approximated at the center of the flat region between the two resonances as

ε f lat/ε0 ≈ 1 − 4ω2
p2/ω

2
02 , assuming the resonances are well separated and

ωp1 ≈ ωp2 to have a symmetric dispersion. As discussed above, ε f lat needs to

match the permittivity ε2 derived from Eq. (3.1) in order to achieve a cloaking

effect. However, since the ratio of ωp2 to ω02 cannot be large according to the

stability condition Eq. 3.17), ε f lat cannot be � ε0. This means that it is rela-

tively easy to cloak a PEC scatterer using a stable active shell, as the required ε2

is between zero and unity. Conversely, for a dielectric sphere, especially when

its permittivity is large and positive, the required ε2 needs to be very negative,

which makes it difficult to realize stable broadband active cloaking for a dielec-

tric scatterer. Moreover, if one attempts to broaden the cloaking bandwidth by

further separating the two resonances in Eq 3.6 around the central frequency, it

is always necessary to increase the ratio ω2
p2/ω

2
02 to keep ε f lat matched to the re-

quired value, which is likely to push the system to the unstable phase according

to Eq. 3.17).
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Finally, we also note that Eq. (3.17), derived from quasi-static calculations,

typically underestimates σ of Pole 2 with respect to exact dynamic calculations.

As a result, Eq. (3.17) is a necessary but not sufficient condition to ensure stable

operation. Stability also requires γ2 to be larger than a small positive value,

which should be determined case by case. Similar to the 1-D case, increasing

γ2 is typically beneficial in terms of stability, as it moves Pole 2 toward the left

(stable) half plane, but it is detrimental to the cloaking performance since it

increases Im [ε2].

3.5 Conclusion

In this work, we have explored the potential of active scattering-cancellation

cloaks to realize broadband invisibility, based on the anomalous permittivity

dispersion enabled by suitable active (gain) media. We have found, for the first

time, that active planar cloaks can overcome the bandwidth limits (Bode-Fano

limit) that hinder the performance of any passive cloak. This has been achieved

with the simplest possible one-layer active cloak, which suggests that there may

be significant room for improvement. We have then applied this strategy to a

three-dimensional scattering problem, demonstrating significant scattering re-

duction for a spherical PEC scatterer over a much broader bandwidth than the

one achievable with passive scattering-cancellation cloaks. Moreover, we have

investigated the issue of stability for both 1-D and 3-D active cloaks. We have

found that, in both cases, the active resonance linewidth is required to be larger

than a system-dependent threshold to maintain system stability. In the 3-D

scenario, we have also found a closed-form expression for an additional sta-

bility constraint on the plasma frequency with respect to the active resonance
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frequency. Our findings confirm that stability is the main issue that prevents

further broadening the bandwidth of active cloaks, but additional research is

needed to quantify the ultimate limit imposed by stability in all cases of inter-

est.

We also would like to note that the practical realization of active cloaks may

be feasible with current technology. Active materials can be implemented at

optical frequencies with gain media (for example dyes, or any material that

can sustain population inversion, and therefore an active Lorentzian response)

[36]–[39], or, at microwave frequencies, using so-called non-Foster circuit ele-

ments [28]–[34], able to implement negative resistances, capacitance, and in-

ductance (which can be obtained using negative impedance converters). We

refer the interested readers to [32], [28],[47], for some examples of experimen-

tally implemented active metamaterials. We believe that our results represent

important steps in the quest for ultrabroadband invisibility and, more generally,

for the realization of active scattering systems with superior performance com-

pared to their passive counterparts. In the context of antenna technology, in par-

ticular, active broadband cloaking may enable the realization of low-scattering

antenna systems without incurring in the unavoidable bandwidth restrictions

imposed by passive cloaks.

We also would like to mention that this work is part of an ongoing debate

in the literature, triggered by a recent paper [109], on whether active cloak-

ing based on fast-light propagation can be made ultra-broadband. We have

published a separate Matters Arising article on Nature Communications [110],

arguing that the cloaking designs in [109] are either non-causal or non-stable

and, more broadly, invisibility cloaks made of fast-light media (i.e., materials
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supporting superluminal phase and group velocity) cannot achieve arbitrarily

broadband operation.

3.6 Appendix

The geometrical and material parameters are all given relative to the central

frequency fc, the central angular frequency ωc, and the free-space wavelength at

the central frequency λc. Parameters for 1-D cloaking: d1 = λc/40, d2 = d1/19.2,

ε1 = 10, f1 = 1, ωp1 = 1.72ωc, ω01 = 0.133ωc, γ1 = 0.0398ωc, f2 = −1, ωp2 =

38.5ωc, ω02 = 3.09ωc, γ2 = 1.18ωc, ωp = 13.8ωc, γ = 0.0398ωc. Parameters for

3-D cloaking: ac = λc/15, as = ac/10, f1 = 1, ωp1 = 0.63ωc, ω01 = 0.283ωc, γ1 =

0.0281ωc, f2 = −1, ωp2 = 0.675ωc, ω02 = 1.41ωc, γ2 = 0.0281ωc, ωp = 0.948ωc,

γ = 0.0281ωc.
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CHAPTER 4

BROADBAND ABSORPTION LIMITS FOR ULTRA-THIN SOLAR CELLS

Solar cells with very small thicknesses are advantageous for decreasing ma-

terials use and, thus, the total cost per area, but their performance unavoid-

ably deteriorates as the thickness is reduced. Light-trapping techniques have

been extensively used to enhance the power absorbed by thin-film solar cells,

and their fundamental limits have been investigated in several works. Con-

versely, less attention has been devoted to the seemingly simpler problem of es-

tablishing physical bounds on absorption enhancement based on conventional

anti-reflection coatings. In this chapter, we study such bounds on solar power

absorption, over the whole solar spectrum, for ultrathin solar cells made of dif-

ferent materials and with antireflection coatings of arbitrary complexity. To this

aim, we model the light reflection and absorption problem using impedance

concepts and equivalent circuits, and then use the well-established Bode-Fano

limits for broadband impedance matching to find the maximum possible ab-

sorption. Our results provide relevant insight on the maximum attainable ab-

sorption in ultra-thin solar cells without light-trapping, as well as on the perfor-

mance of different absorbing materials in this context.

4.1 Introduction

Solar energy is one of the most important clean energy technologies available

today, and is expected to play a bigger and bigger role in the future. To un-

derstand the impact of solar energy for many applications, it is relevant to es-

tablish limits and physical bounds on solar energy absorption. Indeed, many

different limits have been derived, from different viewpoints, since the inven-
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tion of the solar cell, most notably the Shockley–Queisser limit [111] and the

Yablonovitch Limit [112]. The Shockley–Queisser limit gives the upper bound

on solar energy conversion efficiency of a solar cell made of a single p-n junc-

tion [111] (and it can be extended to multiple p-n junctions [113]), while the

Yablonovitch limit establishes a bound on light trapping in thick-film solar cells

with randomized surfaces. The most crucial step in Yablonovitch’s derivation

is the ergodicity assumption, according to which an arbitrary incident field will

couple equally to all the modes of the solar panel. This equal distribution of en-

ergy can be obtained with a randomly roughened surface. Under these assump-

tions, Yablonovitch derived the maximum absorption enhancement by combin-

ing statistical-mechanical methods and ray optics [112].

In recent decades, solar panels have been designed with increasingly thin

absorbing layers to decrease materials use and, thereby, lower the cost per aera.

When the thickness of the solar panels is decreased to be comparable with the

wavelength, or if the light-trapping effect is based on periodic structures with

period comparable to the wavelength (nanophotonic regime), a ray optics anal-

ysis is no longer valid. To address this problem, Yu et al. derived a more general

light trapping limit, valid also in the nanophotonic regime, using coupled-mode

theory [114]. In addition, when the solar cell is even thinner, on the same order

of the surface roughness, modes are not even well defined, in which case nu-

merical methods are necessary to optimize light trapping design, as done by

Ganapati et al. [115]. Note that the absorption enhancement limits mentioned

above [112, 114, 115] are in the ergodic regime [112]. Instead, less attention

has been devoted to the problem of establishing physical bounds on solar ab-

sorption enhancement based on conventional anti-reflection coatings, which are

transversely invariant and, therefore, not ergodic [112]. In this case, it is im-
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Figure 4.1: Schematic of an ultrathin solar panel under solar light irradi-
ance. Circuit model to capture the local resonance of the solar
power absorption.

portant to stress that the antireflection coating cannot be arbitrarily broadband,

regardless of its complexity and thickness, as suggested by the Bode-Fano the-

ory of broadband impedance matching [37, 38]. To understand this better, we

model the problem of wave reflection from a grounded lossy thin slab with a cir-

cuit model that captures the local resonances of the structure. Then, by applying

the Bode-Fano theory, we calculate a physical bound on reflection reduction and

maximum power absorption over the whole solar spectrum.

4.2 Bode-Fano limits for ultrathin solar cells

As shown in Fig. 4.1, we study solar power absorption in an ultrathin (sub-

wavelength) solar cell. We also assume that solar light is incident from the sur-

face normal for simplicity and that the solar panel is backed by an ideal ground

plane (perfect electric conductor) to enhance absorption. In our study, we con-

sider eight typical materials used for solar panels: silicon, GaAs, GaInP, InP,

CdTe, methyl ammonium lead iodide (MAPI), organic and copper indium gal-
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Figure 4.2: Maximum solar power absorption for ultrathin solar panels
made of different materials as a function of the thickness of
solar panels.

lium selenium (CIGSe). Because of wave impedance mismatch between free

space and the absorbing layer, a significant amount of solar energy is reflected

at the front face of the solar cell. Since the system has no transmission due to

the ground plane, the energy that is not reflected is necessarily absorbed by the

solar cell. The total solar power absorption over the whole solar spectrum can

be calculated as

P =

∫ λ2

λ1

(
1 − |Γ (λ)|2

)
S (λ) dλ, (4.1)

where Γ is the reflection coefficient, S is standard solar irradiance AM 1.5 [116],

λ is the wavelength in free space, and λ1 and λ2 are the shortest and longest

wavelength between which the solar panel works. Usually, λ1 and λ2 are ap-

proximately determined by the solar irradiance spectrum and the bandgap of

the material.
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As mentioned above, to increase solar power absorption, an engineered an-

tireflection coating can be introduced in front of the solar cell, which acts as an

impedance matching network between the free-space propagation channel and

a load impedance (the grounded lossy slab). Simple anti-reflection-coating de-

signs can easily suppress reflections and greatly enhance absorption at single

frequencies or over narrow bandwidths. The situation, however, is much more

complicated when trying to optimize solar power absorption over the whole

solar spectrum, which spans the entire visible range and beyond. Indeed, the

performance of antireflection coatings is bounded by fundamental limits, which

can be quantified using the well-established Bode-Fano theory for broadband

impedance matching, as typically done in microwave engineering. Considering

that the thickness of the solar panel is subwavelength, a simple lumped RLC cir-

cuit model of the input impedance is sufficient to capture the local response of

the structure. The circuit model is shown in Fig. 4.1, where the RLC load repre-

sents the solar cell (i.e., its input impedance), while a semi-infinite transmission

line with free-space wave impedance η0 represents the free-space propagation

channel. For broadband impedance matching problems, Bode-Fano limits sug-

gest a tradeoff between reflection suppression and bandwidth, independent of

the properties of the matching network, which is just required to be lossless and

linear. These limits can be expressed as integral inequalities:∫ λ2

λ1

ln
1
|Γ (λ)|

·
2πc
λ2 dλ ≤

π

RC
, (4.2)∫ λ2

λ1

ln
1
|Γ (λ)|

·
1

2πc
dλ ≤

πL
R
, (4.3)

where c is the light speed in free space. When calculating the limits for broad-

band impedance matching based on these inequalities, one typically assumes a

constant reflection coefficient within the frequency band of interest, and total re-

flection outside this band, to make full use of the integrals in Eqs. (4.2) and (4.3)
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[37, 38]. However, in the case under consideration, a flat frequency response for

the reflection coefficient is not necessarily optimal, as our goal is to maximize

the total power absorbed over the whole solar spectrum taking into account the

fact that the solar irradiance is not constant with frequency (it approximately

follows a black-body curve). Thus, to maximally absorb the incident solar en-

ergy, the optimized reflection should be as low as possible for frequencies at

which solar power is high, whereas the requirements on reflection reduction

can be more relaxed for frequencies where solar power is low. Accordingly, we

have suitably weighted the reflection function in the integrand.

Finally, we plot in Fig. 4.2 the obtained upper bound for the maximum ab-

sorbed power as a function of the thickness of the solar cell slab, for the eight

materials considered in this study. Several relevant observations should be

made: (i) For solar cells made of a specific material, maximum power absorp-

tion tends to increase as the thickness of the solar cell increases, up to a material-

specific maximum, after which the absorbed power starts to decrease (this peak

occurs when the first Fabry-Perot-like resonance of the slab and the material ab-

sorption resonance approach each other and overlap with the highest part of the

solar spectrum). The value of thickness at which this maximum occurs is the op-

timal thickness for ultrathin solar cells made of the considered material. Using a

larger thickness not only uses more material, but also decreases the performance

limit of the solar panel (the maximum absorbed power is then expected to grow

again for much larger thicknesses as more modes/resonances become accessi-

ble in the slab). (ii) Solar panels made of different materials reach the absorption

peak for different thicknesses. We consider two commonly used semiconductor

materials as an example. Solar cells made of silicon – an indirect-gap semicon-

ductor exhibiting very weak absorption in the upper half of the visible range
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and in the infrared – reach maximum solar power absorption when the thick-

ness is 48 nm, while solar cells made of GaAs – a direct-gap semiconductor – can

already reach, in theory, 300 W/m2 when the thickness is only 26 nm. As shown

in Fig. 4.2, other materials exhibit even better performance.

4.3 Conclusion

We have established broadband absorption limits for ultrathin solar panels

made of various materials, where absorption is enhanced by arbitrary anti-

reflection coatings, without any light-trapping strategy. The limits have been

derived by applying the well-established Bode-Fano theory of broadband

impedance matching. This work provides important information and insight

for the design of optimal absorption for ultra-thin solar cells. The next step of

this work would be to calculate the actual efficiency limit of the solar cell device,

based on a Shockley-Queisser analysis for single [111] or multiple p-n-junctions

[113], for the maximum optical absorptance allowed by the Bode-Fano limit.
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CHAPTER 5

TOWARDS COMPACT ANALOG OPTICAL COMPUTING PLATFORMS

BASED ON METASURFACES AND METAMATERIAL-WAVEGUIDE

NETWORKS

5.1 Introduction

The invention and development of digital electronic computers is one of the

most ground-breaking scientific and technological breakthroughs in human his-

tory. While digital electronic computers can perform information processing for

general purposes, the ever-increasing demands for processing extraordinarily

large amounts of data are testing the limits of digital electronic computing, espe-

cially in terms of bandwidth and energy consumption. To alleviate these prob-

lems, digital optics was proposed as a possible candidate for the next generation

of logical elements [117]; however, at this stage, no optical switch can compete,

qualitatively or quantitatively, with electronic transistors [118]. A much more

promising direction is the design of analog optical information processors, which

have been recently proposed for special computing purposes (image processing,

vector-matrix multiplications, inference, etc.), potentially serving as hardware

accelerators for current digital architectures [119, 120].

The past two decades have witnessed the advent and rapid progress of op-

tical metamaterials and nanophotonic structures, which enable tailoring the

flow of light with unprecedented flexibility over small footprints. Modulating

the amplitude, phase and/or polarization of electromagnetic waves has been

achieved successfully by different mechanisms, e.g., optical-resonator-based

metasurfaces [121, 122], meta-transit-arrays [123], metamaterial Huygens sur-
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faces [124], etc. This unprecedented degree of control has allowed designing

metamaterials and nanophotonic structures that perform basic analog opera-

tions and image processing [2, 125, 126, 127, 128, 129, 130, 131, 132, 133]. Re-

cently, compact optical designs have also been proposed to solve equations

based on Fourier optics configurations [134, 135] or inverse designed meta-

structures [136].

The topic of wavefront manipulation, which is one of the main themes of this

dissertation, is clearly very relevant within the context of optical analog comput-

ing. In this chapter, we discuss how to engineer the wavefront of propagating

waves using a modular platform that implements more general analog com-

puting operations. This platform is based on the framework of metamaterial-

waveguide-networks [137], which include combinations of optical waveguides,

graded-index (GRIN) lenses, mirrors, beam splitters, and, most importantly,

metasurfaces. We propose and computationally demonstrate several represen-

tative design examples to perform fractional calculus of an arbitrary order, to

calculate a weighted sum of proportional-integral-derivative (PID) operations

on an input function, and to solve fractional calculus equations. The pro-

posed designs mostly follow the conceptual blueprint of Fourier optics, with

GRIN lenses to perform spatial Fourier transforms and metasurfaces as spatial-

frequency filters, however all designs have a small footprint of only a few wave-

lengths, orders of magnitude smaller than conventional Fourier optics systems.

It should also be noted that the word “computing” is used here (as well as

in most of the literature on analog optical computing) in a loose sense, encom-

passing also passive analog devices performing specific operations. Indeed, one

of the main challenges of optical computing systems remains the inclusion of
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strong nonlinearities and reprogrammabable elements; however, in recent years

there have been some promising advances, such as hybrid electronic-photonic

platforms that can be used as accelerators for inference tasks [138]. While the

structures discussed in this chapter are still passive, we note that their modular

designs may enable future extensions that include nonlinear, active, and repro-

grammable elements.

5.2 Compact wave-based analog computing platform and de-

vice designs

For the present discussion, we assume monochromatic operation with a fre-

quency of 100 THz (an exp(−iωt) time-harmonic convention is assumed for all

field quantities). For simplicity, all our designs are analyzed in two dimensions

in the x-O-y plane and we have assumed a transverse electric (TE) field, i.e.,

the electric field has only a non-zero z component. First, we show a design

for the basic computational element for fractional calculus operations [139, 140]

(including fractional integral and derivative) of an input signal, based on the

proposed platform. This basic computational element serves as the central com-

ponent in the following analog computing designs. There are many equivalent

approaches to define fractional calculus based on different mathematical con-

siderations. Here, we exploit the Fourier transform properties of fractional cal-

culus, which are compatible with our compact Fourier optical implementation.

Given an input field profile with zero spatial average (its spatial spectrum is

zero for zero spatial frequency), its ath-order fractional integration (derivative
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also included) can be written as

−∞Dα
y f (y) = F−1

{(
iky

)−α
(F { f (y)})

(
iky

)}
, (5.1)

where α is the order of fractional integration (an extra term should be added

if the input field contains zero-spatial-frequency components). When α is pos-

itive, Eq. (5.1) represents a fractional order integration; when α is negative, it

represents a fractional derivative; when α is 0, it gives the original function; −∞

is the lower limit of the integration; F and F−1 represent Fourier and inverse

Fourier transforms in spatial domain.

For the optical implementation of generic fractional calculus operations, we

use a compact solid-state version of a Fourier optics setup, with two quadratic

GRIN lenses [141] to perform Fourier transforms and a metasurface [123] sand-

wiched between the lenses acting as a spatial frequency filter [2]. The relative

permeability of the GRIN lens is 1 and the relative permittivity follows [141]

ε (y) = εc

[
1 −

(
π/2Lg

)2
y2

]
, (5.2)

where εc is the relative permittivity at the center axis (y = 0) and Lg is the focal

length of the GRIN lens. When a beam of light, whose transverse (y-direction)

profile carries the input signal, is fed into the GRIN lens, the signal in real spa-

tial domain converts into the spatial-frequency domain (momentum domain)

after a propagation length equal to the focal length of the GRIN lens. After spa-

tial frequency filtering by the metasurface, the signal is transformed back into

the real spatial domain by another GRIN lens. For derivative and integral op-

erations, the filters need to implement a low-pass and high-pass response with

logarithm profiles, respectively. For simplicity, we use an idealized metasurface

in the simulations, as in [2]. For the differentiator design, the relative perme-

ability and relative permittivity of the idealized metasurface filter has a spatial
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transverse profile along the y direction

ε (y)
√
εc

= µ (y) ·
√
εc =

iαλ0

2π∆
ln

(
−

iW
2y

)
, (5.3)

where ∆ is the thickness of the metasurface filter in the longitudinal direction

x, and W is the width of the system, respectively. Similarly, for integrators, we

have

ε (y)
√
εc

= µ (y) ·
√
εc =

{ iαλ0

2π∆
ln

(
−

iy
d

)
, |y| > d; −

λ0

4∆
sign

( y
d

)
, |y| < d

}
, (5.4)

where d is the distance from the center of the filter along ±y direction at which

the imaginary part of the relative permittivity is truncated to be 0 to maintain

passivity of the system (therefore avoiding the need for gain media) [2].

An example of fractional calculus operational element is shown in Fig. 5.1.

The real and imaginary parts of the relative permittivity of the metasurface are

shown in Fig. 5.1 (a) and (b). The permeability parameters are equal to the

permittivity parameters for impedance matching in this idealized scenario. We

see that both the real and imaginary part of the relative permittivity change

gradually as α increases from -1 to 1. As discussed above, we avoid using active

(gain) materials in the system, so the imaginary part of the relative permittivity

of the metasurface is always positive. Specifically, for the differentiator design,

where the metasurface filter has a high pass response, we require that the loss

is zero at the edges (y = ±W/2) of the filter. Therefore, the metasurface filter

is passive and energy loss is minimized when signal travels through the filter,

ensuring a relatively high amplitude of the output signal. For integrators, it is

not possible to realize perfect spatial filters while maintaining the passivity of

the system. This is because the ideal spatial frequency response for an integrator

is a low-pass filtering behavior with a logarithm profile; therefore, in the near-

zero spatial frequency region (|y| < d), the spatial-frequency components should
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be amplified. As is done in reference [2], we instead force the imaginary part

of the relative permittivity in this region to be zero, as shown in Fig. 5.1(b).

If the value of d is properly optimized, we get a relatively large output signal

with negligible distortion. Figs. 5.1 (c) and (d) give the real and imaginary parts

of the output of the fractional-order integration/differentiation, when the input

signal is the first-order derivative of a Gaussian function. We see that the real

part of the wave profiles matches the analytical results (purely real) very well,

and the imaginary part of the wave profiles is correctly suppressed to very small

values.

Next, we demonstrate manipulation of wave propagation in a metamaterial

waveguide network designed to act as an analog wave-based PID (Proportional

Integral Derivative) controller of arbitrary weights. The design schematics of

the PID controller is shown in Fig. 5.2 (a). The input signal in real spatial do-

main is first transformed into spatial-frequency domain by a GRIN lens. Then,

in the Fourier-domain region, there are three channels, individually perform-

ing proportional, integral and derivative operations. Finally, the signals from

all three channels merge, and are transformed back into real spatial domain

by another GRIN lens. The weight of each operational element is controlled

by adjusting the losses of the metasurface filters. It should also be noted that

phase adjustment is necessary to ensure the signals from all three channels add

up constructively at the output. Fig. 5.2 (b)–(d) shows the input signal, the

output signals through the three individual PID channels, and the output sig-

nal through the entire PID network, compared against analytical results. Good

agreement is observed in all cases.

In the spatial-frequency domain, which is denoted in green in Fig. 5.2 (a),
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Figure 5.1: Real (a) and imaginary (b) parts of the relative-permittivity
profiles of the metasurface filters for αth-order fractional-
calculus operations. Real (c) and imaginary (d) parts of the
output of the wave-based operational elements against the an-
alytical results, which are purely real. In all the figures in this
chapter, solid lines represent analytical results, while markers
represent simulation results from the RF module of COMSOL
Multiphysics. The dimensions of the operational elements and
the material parameters of the GRIN lens are the same as those
in Ref. [2]. The input signal is the first-order derivative of a
Gaussian function with expectation µ = 0 µm and standard de-
viation σ = 2.2 µm.

waves propagate in a homogeneous medium, not a graded-index lens, and

therefore suffer from diffraction and beam broadening. Beam broadening in

spatial-frequency domain causes beam shrinking in real spatial domain, which

explains the distortion of the output signals against the analytical results. To

avoid waveform distortion from diffraction and simplify the structure at the

same time, we could combine the functionality of the three metasurface filters

into one, so that no dielectric waveguide would be needed. However, perform-
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Figure 5.2: (a) Schematic of the compact wave-based PID controller. Direc-
tions of propagation are indicated with arrows. The width of
the GRIN lens is 60 µm. (b) Input signal of the PID controller is
the first-order derivative of a Gaussian function with standard
deviation σ = 4.5 µm. (c) Output of the individual PID blocks.
(d) Output of the entire PID controller.

ing proportional, integral and derivative operations separately makes it easier

to adjust their specific weights without redesigning the filter.

Finally, we further demonstrate the power of this wave-based computational

paradigm by designing fractional calculus equation solvers. A linear constant-

coefficient ordinary fractional calculus equation can be expressed as

2O − HDO = I, (5.5)

where I is the input signal (driving function); O is the output signal; D is a

fractional calculus operator; and H is a constant coefficient. The block diagram
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Figure 5.3: (a) Block diagram representation of the feedback system cor-
responding to Eq. (5.5). (b) Block diagram representation of
the equivalent direct system. (c) Results of the first-order dif-
ferential equation solver. (d) Results of the half-order integral
equation solver. The excitation signal for both cases is the first-
order derivative of a Gaussian function with standard devia-
tion σ = 1.5 µm.

representation of this equation is given in Fig. 5.3 (a), which is a feedback loop.

To implement such an optical feedback network, the output of the fractional

calculus operation should be routed back into the input. However, realizing

this configuration with minimal wave diffraction and distortion would require

four GRIN lenses to perform Fourier and inverse-Fourier transforms and relay

the signal back to the input without diffraction, which would make the optical

structure long and bulky. However, after a closer inspection of the system di-

agram, it is clear that the system can be designed in a more direct fashion by

implementing the entire transfer function with a suitable spatial frequency fil-

ter, as shown in Fig. 5.3 (b) (the downside of this design solution is that it would

be more difficult to vary the individual terms of the equation without redesign-
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Figure 5.4: (a) Block diagram representation of the feedback system cor-
responding to Eq. (5.6). (b) Schematics of the cavity-based
fractional-calculus equation solver. Dimensions of the optical
structure are shown in the figure, where W, L and ∆ are 12 µm,
14.45 µm and 0.5 µm, respectively. (c) Results of the first-order
differential equation solver. (d) Results of the half-order inte-
gral equation solver. The excitation signal for both cases is the
first-order derivative of a Gaussian function with standard de-
viation σ = 1.5 µm.

ing the filter). The results for a first-order differential equation and a half-order

integral equation are shown in Figs. 5.3 (c) and (d).

Not all feedback systems corresponding to fractional calculus equations can

be converted to a direct system as above. A simple example is when there is an

argument inversion after the fractional calculus operation. Argument inversion

R of a function f (t) is defined as R
[
f
]

: t → f (−t). Consider an equation

2O − HRDO = I. (5.6)
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For such a problem, we resort to the optical feedback network in Fig. 5.4 (a).

Instead of using a traditional optical feedback loop, which is bulky and may

suffer from field distortions, we implement a feedback mechanism through a

Fabry–Pérot interferometric cavity, essentially using the same GRIN lens twice.

Our proposed structure shown in Fig. 5.4(b) – the topology of which can be

shown to be equivalent to that of Fig. 5.4(a) – is drastically more compact and

distortion-free because waves travel mainly inside the GRIN medium.

Let us analyze the optical path in the cavity structure. When the input

beam hits the half mirror, half of the signal intensity enters the GRIN lens and

is transformed into the spatial-frequency domain at the right side of the lens.

It then enters the metasurface filter of half of the designed thickness, is re-

flected by the perfect (PEC) mirror, and travels another half of the metasurface

thickness, thereby completing the required spatial-frequency-domain process-

ing. The backward propagating wave travels through the GRIN lens for the

second time to be transformed back into real spatial domain. At the half mirror,

half of the signal bounces back into the GRIN medium as feedback, and half

propagates through and reaches the observation plane together with half of the

input signal. In Fig. 5.4 (c) and (d), in Figs. 3 (c)-(d), we give two examples

of using this system to solve a first-order differential equation and a half-order

integral equation. We observe very good agreement between simulated results

for our wave-based equation solver and the analytical results.

In principle, there is no lower limit to the longitudinal size of the structure

in Fig. 5.4, since diffraction is suppressed in the GRIN medium. However, in

practice, the more compact the structure is, the more extreme the required per-

mittivity profile of the GRIN lens becomes. In such a case, the wave impedances
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at the center (y = 0) and the edge (y = ±W/2) of the GRIN lens will have a signif-

icant contrast, leading to difficulties in impedance-matching the GRIN medium

with the rest of the structure. In our design, the size of the system is chosen to

be approximately 4λ0 × 4λ0, where λ0 is the free-space wavelength.

5.3 Conclusion

In this chapter, we have discussed the design of basic fractional-calculus opera-

tional elements based on ultra-compact Fourier-optics configurations involving

GRIN lenses and metasurfaces. Then, we have shown that these basic elements

can be combined in a metamaterial waveguide network to act, for example, as

an analog wave-based PID controller. Finally, we have presented and compu-

tationally demonstrated compact optical structures that solve linear constant-

coefficient ordinary fractional calculus equations. The footprint of the wave-

based solver is as small as approximately 4λ0×4λ0, orders of magnitude smaller

than conventional Fourier-optics systems. We are currently planning the exper-

imental demonstration of some of these designs. Moreover, further work may

be done to extend the proposed analog computing platforms to solve nonlinear,

variable-coefficient, partial differential equations.

5.4 Appendix: Analysis of wave propagation in a GRIN lens

In this section, we provide a detailed theoretical analysis of waves on 1-D GRIN

lenses, and their ability to produce the spatial Fourier transform of an input

function. A schematic of wave propagation in a GRIN lens is shown in Fig. 5.5.
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Figure 5.5: Gaussian beam propagation in a GRIN lens. In the figure, Lg is
the focal length of the GRIN lens.

The wave equation in a 1-D GRIN lens is [142, 143]

∇2Ez + k2
0n2Ez = 0, (5.7)

where

n2 = εc

[
1 −

(
π/2Lg

)2
y2

]
, (5.8)

Note that this equation is not exact, as it ignores the derivative of the material

parameters [144, 145]. After proper approximations, this equation is of the same

type as that of a quantum harmonic oscillators [146]. The solution of this differ-

ential equation is a weighted sum of transverse (y-direction) Hermite-Gaussian

functions with a propagation factor in the longitudinal x-direction [142, 143]

Ez (x, y) =
∑

n

AnE(n)
z (x, y) =

∑
n

AnΨn (y) exp (iβnx), (5.9)

where

Ψn (y) = Hn

 √2y
Ω

 exp
(
−

y2

Ω2

)
, (5.10)

with

ω = 2
(

Lg

πk

)1/2

, (5.11)

and

βn = k
[
1 −

π

kLg
(n + 1)

]1/2

' k −
π

2Lg
(n + 1) . (5.12)
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Here k is the wave number on the axis (y = 0) of the GRIN lens. As is shown in

Refs. [142, 143], the Fourier transform of the nth Hermite-Gaussian function is

Ẽ(n)
z

(
0, ky

)
=

∫ +∞

−∞

Ψn (y) exp
(
−i2πkyy

)
dy = sΨn

(
kys2

)
exp (−inπ/2 ) , (5.13)

where

s = ω
√
π, (5.14)

and Ψn (y) and Ψ̃n

(
ky

)
are input signals in real spatial domain and spatial-

frequency domain, respectively. If the nth mode propagates a distance of Lg,

the focal length of the GRIN lens, we obtain

E(n)
z

(
Lg, y′

)
= exp

(
ikL − i

π

2

)
Ψn

(
y′
)

exp
(
−in

π

2

)
, (5.15)

where we have used y′ to represent the transverse position at x = Lg. If we take

this quantity to represent a scaled version of the transverse wavenumber:

y′ = kys2, (5.16)

then we have

E(n)
z

(
Lg, y′

)
= −

i exp
(
ikLg

)
s

Ẽ(n)
z

(
0, ky

)
= −

i exp
(
ikLg

)
s

Ẽ(n)
z

(
0, y′/s2

)
. (5.17)

This shows that, for any mode n, the GRIN lens produces its spatial Fourier

transform at x = Lg, with only a uniform amplitude and phase difference com-

pared to the exact solution. Considering the completeness and orthogonal-

ity of Hermite-Gaussian functions, which can therefore be used to represent

a generic field distribution, the GRIN lens produces the spatial Fourier trans-

form, at x = Lg, for any input functions. However, while for each eigenmode of

order n the width of the field profile does not change when propagating in the

GRIN lens, for generic input functions we observe beam broadening or shrink-

ing, since different modes have different wavenumbers and, therefore, they su-

perpose constructively and destructively as they propagate.
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Next, we show that a wave profile in the real spatial domain returns to the

real spatial domain, but mirrored along the y axis, after propagating in a GRIN

lens for a distance of 2Lg, with no amplitude scaling but with a phase factor.

This can be seen in two different ways. First, when an input signal propagates

for a distance of 2Lg

E(n)
z

(
2Lg, y′′

)
= E(n)

z (0, y) exp
(
iβn2Lg

)
= (−1)n+1 exp

(
ik2Lg

)
Ψn

(
y′′

)
. (5.18)

where we have represented the transverse position at 2Lg with y′′. According

to the properties of Hermite functions, when n is odd, Ψn (y) is odd; when n is

even, Ψn (y) is even, so

E(n)
z

(
2Lg, y′′

)
= − exp

(
ik2Lg

)
Ψn

(
−y′′

)
, (5.19)

which proves that the output is the same as the input, but mirrored along the y

direction and with an additional phase factor.

We can also prove this directly from the Fourier transform properties of the

GRIN lens. We have shown above that at x = Lg,

E(n)
z

(
Lg, y′

)
= −

i exp
(
ikLg

)
s

Ẽ(n)
z

(
0, y′/s2

)
(5.20)

= −
i exp

(
ikLg

)
s

∫ +∞

−∞

Ψn (y) exp
(
−i2πyy′/s2

)
dy, (5.21)

so, at x = 2Lg,

E(n)
z

(
2Lg, y′′

)
= −

i exp
(
ikLg

)
s

Ẽ(n)
z

(
Lg, y′′/s2

)
(5.22)

= −
exp

(
i2kLg

)
s2

∫ +∞

−∞

∫ +∞

−∞

Ψn (y) exp
(
−i2πyy′/s2

)
dy exp

(
−i2πy′y′′/s2

)
dy′ (5.23)

= −
exp

(
i2kLg

)
s2

∫ +∞

−∞

∫ +∞

−∞

Ψn (y) exp
(
−i2πyky

)
dy exp

(
−i2πy′y′′/s2

)
d
(
s2ky

)
(5.24)

= − exp
(
i2kLg

) ∫ +∞

−∞

[∫ +∞

−∞

Ψn (y) exp
(
−i2πyky

)
dy

]
exp

[
i2πky

(
−y′′

)]
dky (5.25)

= − exp
(
i2kLg

)
Ψn

(
−y′′

)
, (5.26)
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which is the same as Eq. (5.19).
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CHAPTER 6

NONLOCAL METASURFACES FOR SPACE COMPRESSION

6.1 Introduction

Optical systems aim to control the flow of light for different applications, such as

imaging, spectroscopy, sensing, light concentration, etc. Lenses, which are the

essential component of most optical systems, control light by locally molding

the phase of a propagating wave through its interaction with a transversely in-

homogeneous structure. Alternatives to conventional curved lenses have been

investigated for centuries to miniaturize optical systems and/or achieve bet-

ter optical performance (a notable example is the Fresnel lens) [144]. However,

drastic progress in lens miniaturization has only been achieved recently with the

advent of the field of flat optics and the introduction of increasingly advanced

metasurfaces and metalenses [147, 121, 122, 148, 123, 124, 149, 150, 151, 152, 153,

154, 22, 155, 156, 21, 23]. Regardless of the specific design, the local phase profile

that a metalens needs to implement to realize focusing is

ϕ (r) = −k0

(√
F2 + r2 − F

)
+ g, (6.1)

where k0 is the wavenumber in the surrounding medium at the operating fre-

quency ω0, r is the radial coordinate in the transverse direction, F is the focal

length of the metalens and g is a reference phase, independent of position but

possibly dependent on frequency. Throughout this work we assume a e−iωt time-

harmonic convention for all field quantities.

While the field of metasurfaces holds promise to revolutionize optics by

replacing bulky conventional lenses with compact planarized devices, simply
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Figure 6.1: (a) Illustration of a ultra-thin, fully solid-state, flat-optics imag-
ing system, in which nonlocal metasurfaces replace and com-
press the entire free-space volume between a flat metalens
and the detector on the observation plane, hence miniaturiz-
ing the entire optical system without affecting the imaging per-
formance. (b) Planar dielectric structure supporting a guided-
mode resonance, as an example of the simplest possible de-
sign that can implement the nonlocal response in Eq. (6.2).
The two dielectric plates (orange) have moderately high rela-
tive permittivity ε1 and are separated by a material with rel-
ative permittivity close to unity (grey). Relevant dimensions
are shown in the figures, where λr is the free-space wavelength
at the resonant frequency, ωr, of the first even Fabry-Pérot-like
resonance of the structure. (c) n-layer structure acting as a non-
local metasurface, in which individual resonators are separated
by quarter-wavelength spacers to obtain approximately uni-
form transmission amplitude and linear phase with respect to
frequency, as discussed in the text.
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making lenses flat and thin is not sufficient to miniaturize the vast majority of

real-world optical systems. In fact, a significant percentage of the volume of

an optical system (for example, a microscope, a telescope, or a Fourier optical

processor) is composed of free space. Empty space between lenses is needed to

allow light to propagate, acquire an angle-dependent phase delay, and achieve

focusing at a desired point. However, only very recently attention has started to

be given towards the problem of systematically miniaturizing this empty space

between solid-state optical components, e.g., lenses and detectors [157, 158].

To better understand how to approach this problem, let us consider the trans-

fer function for plane waves propagating through a free-space volume of length

L. While the transmission amplitude is unity for propagating waves in free

space, the transmission phase is a function of the transverse wavenumber (mo-

mentum) kt as

ϕ (kt) = L
√

k2
0 − k2

t ≈ k0L −
L

2k0
k2

t , (6.2)

where the expression on the right is a Taylor expansion of the transmission

phase for small kt. Thus, in order to replace a free-space segment of length L

with a planar device of thickness T << L, the designed structure should have

the same optical response. Then, a “squeezing ratio” can be defined as R = L/T .

Most importantly, it is clear from Eq. (6.2) that the required transmission phase

response of such a “space-squeezing device” depends directly on the transverse

momentum kt, and not on the spatial location r, indicating that the response of

the desired device should be “nonlocal” [7].

To clarify the terminology further, conventional metasurfaces and metal-

enses are “local” in the sense that they control the wave transmission/reflection

as a function of position (locally and pointwise) as in Eq. (6.1), based on an
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engineered transversely inhomogeneous structure, to achieve for example beam

focusing or deflection. In this regard, while huge research efforts have been de-

voted to metasurfaces in recent years, their operation is not fundamentally dif-

ferent from other transversely inhomogeneous optical devices, such as conven-

tional lenses and gratings. In drastic contrast with such local devices, a nonlocal

metasurface is a planar device designed to control the transmission as a func-

tion of the transverse wavenumber kt, based on a transversely homogeneous but

longitudinally inhomogeneous (e.g., layered) structure. In other words, since the

kt-dependent transmission function corresponds to the angular transfer func-

tion of the device, nonlocal flat optics aims to provide a novel approach to sys-

tematically control the angular transmission response. While three-dimensional

nonlocal metamaterials, with wavevector-dependent constitutive parameters,

have been studied extensively in the past, the field of nonlocal flat optics –

which was pioneered in the context of wave-based analog optical computing

[2, 103, 133, 159] – is still in its infancy.

The idea of applying nonlocal flat structures to the problem of compressing

empty space in optical systems was originally proposed, very recently, in Refs.

[157] and [158]. Specifically, Ref. [157] demonstrated a space-squeezing effect

using low-index isotropic and anisotropic slabs in a high-index background, as

well as using optimized multilayered structures, whereas Ref. [158] considered

a modified photonic-crystal slab achieving the same effect. However, these early

designs suffer from fundamental and practical problems, which hinder their

practical potential and applicability. The structures proposed in [157] operate

over a moderately large range of transverse wavenumbers (angular range), but

can only replace a limited length of free space (in addition, the only reported

experimental demonstration was based on a high-index background, making it
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impractical for most applications). Conversely, the photonic-crystal device in

[158] can replace a much longer free-space volume, but the angular range of the

device is very limited.

Within this context, the goal of this work is three-fold: (i) We first discuss

why some of these limitations are fundamental for a broad class of nonlocal

metasurfaces based on a single guided-mode resonance. Specifically, we derive

a quantitative trade-off between the length of replaced free space L and the oper-

ating range of transverse momentum kt, which explains the limited performance

achieved in previous works. (ii) We then propose a solution to relax this trade-

off, based on a stack of suitably coupled dielectric resonators, realizing a non-

local metasurface device that can replace free-space regions of arbitrary length

over a wide angular range. (iii) Finally, we theoretically and computationally

demonstrate, for the first time, the potential of combining local and nonlocal

metasurfaces to realize fully solid-state structures for focusing and imaging, as

illustrated in Fig. 6.1(a), in which the actual distance where focusing is achieved

is fundamentally decoupled from the focal length of the lens (and hence its mag-

nifying power).
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6.2 Fundamental Trade-offs and Nonlocal Metasurface

Design

6.2.1 Nonlocal structures based on a single guided-mode reso-

nance – Operational principle and trade-offs

In order to better understand the physics and design trade-offs of nonlocal

space-squeezing devices, we first consider one of the simplest possible planar

structures that can implement the nonlocal phase function in Eq. (6.2), by rely-

ing on a guided-mode resonance, as in Ref. [158]. Fig. 6.1(b) shows the struc-

ture under consideration, which is essentially a simple dielectric resonator com-

prised of two quarter-wavelength-thick dielectric plates (acting as mirrors with

relatively large, real, reflection coefficient), spaced by half a wavelength at the

resonant frequency, ωr, of the first even Fabry-Pérot-like resonance at normal

incidence. The spacer layer is assumed to be made of a material with relative

permittivity equal to unity (but any transparent material that provides enough

contrast with the dielectric plates would also work, as further discussed below).

Under oblique plane-wave incidence with transverse wavenumber kt = k0 sin θ,

at a frequency near ωr the transmission coefficient can be described locally by a

single-resonance model (see Eq. (6.17))

t (ω, kt) =
γ0

γ0 − i (ω − ω (kt))
, (6.3)

where γ0 is the resonance linewidth, which is assumed to be invariant with kt,

and ω (kt) is the dispersion relation of the resonant mode, namely, the disper-

sion relation of the guided leaky mode responsible for the Fabry-Pérot-like res-

onance. The transmission phase at frequencies near the eigenfrequency ω (kt) of
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the guided mode is

arg (t) = arctan
ω − ω (kt)

γ0
≈
ω − ω (kt)

γ0
. (6.4)

from which we see that the near-resonance transmission phase is approximately

a linear function with respect to ω or ω (kt). Considering the exact expression in

Eq. (6.4), we also note that the phase varies around the resonance (varying either

ω or kt) in a limited range from −π/2 to π/2, as expected. This already indicates

the inherent limitation of using a single guided-mode resonance to implement

the phase function in Eq. (6.2), which generally requires an available phase

range much wider than π to replace a free-space volume of large length over a

wide range of kt.

As detailed in the Appendix, it can be shown that the dispersion relation

of the considered resonance of the structure in Figure 6.1(b) is approximately a

quadratic function for relatively small values of kt (small incidence angles) (see

Eq. (6.26)):

ω (kt) ≈ ωr + αk2
t . (6.5)

An approximate expression for the coefficient α of the second-order term for the

structure under consideration is given in the Appendix, Eq. (6.27). Combining

Eqs. (6.4) and (6.5), we get

arg (t) ≈
ω − ωr

γ0
−
α

γ0
k2

t . (6.6)

Thus, the transmission phase of the considered structure, acting as a nonlocal

kt-dependent metasurface, has the same form as that of free space, given by

Eq. (6.2). We also note that, similar to Eq. (6.2), Eq. (6.6) only has even-order

terms, which is expected since both free space and the considered structure are

transversely mirror-symmetric, hence the transmission response is the same for

plane waves with opposite transverse wavenumbers, kt and −kt.
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As noted in [157] and [158], a global kt-independent transmission-phase dif-

ference between the space-squeezing device and free space is irrelevant. Thus,

we neglect the zero-order terms and, comparing the coefficients of the quadratic

terms in Eqs. (6.2) and (6.6), we find that a near-resonance structure of this type

can replace a portion of free space of length

L =
2αk0

γ0
. (6.7)

A space-squeezing effect is then obtained if the length L is greater than the ac-

tual thickness T of the nonlocal structure. Most importantly, we can determine

a fundamental limit to this effect by noting again that the transmission phase,

arg(t), in Eq. (6.4) is limited in the range [−π/2, π/2] due to its single-resonance

nature. If we then set the constant term in Eq. (6.6) to (ω − ωr) /γ0 = π/2, which

corresponds to operating slightly off-resonance, the quadratic term is bounded

in the range −π < −αk2
t /γ0 < 0, provided that all higher-order terms are zero.

Hence, if k2
t is outside the range [0, πγ0/α], there must be higher-order terms

in Eq. (6.6) to guarantee that the left-hand-side remains limited in the range

[−π/2, π/2]; therefore, in this case, arg(t) can no longer be considered quadratic

with respect to kt. Thus, the maximum allowed value, kt,max, for which the phase

function can be assumed quadratic within the range kt ∈ [0, kt,max] is given by

k2
t,max = πγ0/α. Finally, using Eq. (6.7), we obtain a quantitative trade-off be-

tween the replaced length L/λ0 and the maximum operating range of transverse

momentum kt,max/k0 = sin θmax (maximum angular range):

L
λ0
·

(
kt,max

k0

)2

≤ 1. (6.8)

which indicates that a larger L can only be obtained at the expense of a smaller

angular range. The trade-off is written as an inequality since the assumptions

leading to it may not be satisfied by a generic guided-mode resonance. In ad-

dition, it can be verified from the above derivation that different choices for the

86



constant term in Eq. (6.6) (different from (ω − ωr) /γ0 = π/2), which corresponds

to operating at slightly different frequencies, always lead to a narrower angular

range.

Although the structure considered here is different from the photonic-crystal

slab in [158], the trade-off still holds, because both structures rely on essentially

the same mechanism, namely, a single guided-mode resonance with an approxi-

mately quadratic dispersion relation. This trade-off explains why, in the designs

proposed in Ref. [158], the squeezing ratio R is very high, whereas the angular

range is very limited. We also note that the results in Ref. [158] are far from the

limit defined by Eq. (6.8) because, while this design similarly uses a single-mode

resonance, the resonance corresponds to a minimum of transmission, instead of

a maximum, and therefore the structure needs to be operated at a frequency

far from this minimum, where the available transmission-phase variation (as a

function of wavenumber) is much more limited than around resonance. This

leads to a poor utilization (only a few percents) of the total available phase

range provided by the resonance. Moreover, while the nonlocal metamaterial

in Ref. [157] is based on optimization and not enough information is available

about its guided-mode distribution, the published results suggest it also follows

a qualitatively similar trade-off. In light of the theoretical results of this section,

we argue that more sophisticated nonlocal space-squeezing structures, perhaps

based on optimization or inverse design, would not offer any major advantage

compared to the very simple structure in Fig. 6.1(b) if they are still based on a

single resonance, as they would still be constrained by the same performance

trade-off.
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Figure 6.2: Density plots of the transmission amplitude (left column) and
phase (right column) for the proposed n-layer structure acting
as a nonlocal metasurface (details in the text), for TE polariza-
tion, as a function of frequency ω and transverse momentum
kt. (a) and (b) n = 1; (c) and (d) n = 5; (e) and (f) n = 10.
Since the guided modes responsible for this resonance are well-
confined and with low radiation loss (the eigenfrequency has
small imaginary part), the bright band in the transmission am-
plitude plots is a good approximation of the modal dispersion
relation. The horizontal dashed lines indicate the operational
frequency ω0, which is chosen to be slightly off-resonance at
normal incidence, i.e., ω0 = 1.02ωr, in order to utilize the widest
possible angular range over which the transmission phase is a
quadratic function of kt.
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Figure 6.3: Transmission amplitude (left column) and phase (right col-
umn) of the proposed n-layer structure acting as a nonlocal
metasurface (details in the text), for TE polarization, plotted
as a function of frequency ω for three different values of trans-
verse wavenumber kt/k0 = 0, 0.25 and 0.5.
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6.2.2 Nonlocal structures inspired by coupled-resonator-based

band-pass filters

Despite being an approximate and loose bound (due to the assumptions dis-

cussed above), the trade-off in Eq. (6.8) is already quite stringent: as an exam-

ple, a space-compression effect with L = 5λ0 could be achieved only over a ±25

degrees angular range, even in the best possible scenario. In order to attain sig-

nificantly better performance, which would make nonlocal flat-optics systems

of this type more appealing in practical scenarios, we seek to relax this trade-off

between the length of replaced free space and the operating range of transverse

momentum. To this aim, we need an arbitrarily large transmission phase range

(not limited to π) that is linear with ω or ω (kt) and, therefore, quadratic with

respect to kt over a much broader range [0, kt,max] (indeed, kt,max depends on the

available phase range as discussed above). Hence, the single-resonance trans-

mission response in Eqs. (6.3), (6.4) is clearly inadequate.

A seemingly simple solution to break the trade-off is to stack n resonant

structures of the type in Fig. 6.1(b), exploiting the larger total phase range of

a n-resonator system. Indeed, Ref. [158] suggests considering nonlocal space-

squeezing metasurfaces in cascade. However, it is crucial to note that a generic

coupling between resonators would typically hinder the performance of the

nonlocal structure because, while the total transmission-phase range of n cou-

pled resonators is nπ, the phase function would generally not remain linear with

frequency as a result of coupling-induced resonant-frequency splitting [160] (for

example, for the case of two resonators of the type in Fig. 6.1(b) cascaded back-

to-back with no separation, it is easy to verify that the resonant frequency of

the individual resonators does no longer correspond to a transmission maxi-
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mum of the two-resonator system, and the phase is no longer linear around

this frequency). Hence, arranging n space-squeezing devices in cascade may

be used to increase the length of replaced free space, but usually at the ex-

pense of further decreasing the operating angular range, since a strongly non-

linear transmission-phase response with respect to frequency would result in a

strongly non-quadratic phase response with respect to kt, except perhaps in a

very small range. In other words, Eq. (6.6) would be valid only over a very

small range of kt since the linear approximation in Eq. (6.4) would be valid only

over a very small range of frequencies.

To overcome this problem, we took inspiration from conventional mi-

crowave band-pass filters, which are typically designed by suitably coupling

multiple resonators in cascade [161, 162, 39]. In particular, if several resonators

(the structures in Fig. 6.1(b)) are separated by quarter-wavelength spacers, as

illustrated in Fig. 6.1(c), the resulting coupling produces new resonance peaks

that are suitably distributed over a certain frequency window, providing a rel-

atively uniform in-band transmission amplitude. To elaborate on this point,

the rationale for using quarter-wavelength spacers comes directly from linear

circuit theory and transmission-line/waveguide theory. At low frequencies,

where lumped-element circuit theory is a valid approximation, a band-pass

maximally-flat filter can be realized by using resonant branches (lumped LC

resonators) connected alternately in series and in parallel [39]. A configura-

tion more suitable for high-frequency systems (e.g., microwave waveguides)

is obtained by stacking parallel resonant cavities spaced a quarter wavelength

apart. This design strategy makes use of the impedance-inverting property of a

quarter-wave segment, which converts series-connected elements into parallel-

connected elements, thereby avoiding the necessity of using both series and
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parallel branches [161, 162, 39] (series elements are more difficult to imple-

ment at high frequencies). This design can then be directly translated for op-

tical frequency operation, in the form of resonant layers separated by quarter-

wavelength spacers, as in Fig. 6.1(c), to obtain the desired uniform transmis-

sion window. An approximately uniform transmission amplitude then trans-

lates into an approximately linear transmission phase within the pass-band (es-

pecially toward the center), consistent with Kramers-Kronig-like relations be-

tween amplitude and phase of the transmission coefficient of causal passive

linear systems [163]. With this strategy, therefore, one can obtain a transmis-

sion phase that covers a range of nπ and varies linearly around the resonant

frequency ωr of the individual resonators. From a simple analysis, it can be

shown that the transmission phase of the multilayered structure around reso-

nance (ω ≈ ω(kt)) can be approximated as

arg (t) ≈ n ·
ω − ω (kt)

γ0
. (6.9)

In addition, while the coupling between resonators generates different reso-

nance peaks covering a certain pass-band, as discussed above, the original

transmission peak is still present since, exactly at resonance, each resonator

looks transparent to the other resonators, and this resonance peak evolves with

kt as in the single-resonator case, following the same dispersion relation (this

can be seen in the examples in Figs. 6.2 and 6.3 discussed in the following).

Thus, the transmission phase of the n-layer structure can be approximated as,

arg (t) ≈ n ·
ω − ωr

γ0
− n ·

α

γ0
k2

t , (6.10)

and, by comparing again the quadratic terms in Eqs. (6.2) and (6.10), we find

that the length of replaced free space by this n-layer nonlocal structure is

L = n ·
2αk0

γ0
. (6.11)
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Finally, following the same reasoning as before, the trade-off limit in Eq. (6.8)

becomes
L
λ0
·

(
kt,max

k0

)2

≤ n, (6.12)

which shows that, as we increase the number n of suitably coupled elements,

the product of replaced length and angular range can become arbitrarily large.

To demonstrate the potential and simplicity of this strategy to implement the

optical response of free space over a much smaller length, and a wide angular

range, we designed a multilayered structure acting as a nonlocal metasurface

using simple dielectric plates with relative permittivity ε1 = 15, separated by

layers with relative permittivity equal to unity, as in Fig. 6.1(c). We stress that

this high value for the permittivity ε1 is not a requirement for the operation of

the space-compression device and is considered here just as an example; mate-

rials with lower refractive index would also work, with some advantages and

disadvantages. Indeed, a moderately high contrast between the dielectric layers

contributes to a relatively high Q factor and a small linewidth γ0 for the Fabry-

Pérot-like resonance, which determines an increase in the replaced length ac-

cording to Eq. (6.11), but a decrease in the operating angular range due to the

trade-off in Eq. (6.8).

The calculated transmission coefficient around the first even Fabry-Pérot-

like resonances of this n-layer nonlocal structure is plotted, for different num-

bers of layers/resonators, as a function of both transverse momentum kt and

frequency ω in Fig. 6.2, and as a function of ω for different values of kt in Fig.

6.3. We first consider transverse-electric (TE) polarization as an example, while

transverse-magnetic (TM) can be similarly analyzed and will be discussed in

the following. From these plots, we see that the total phase range of the n-
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Figure 6.4: Transmission amplitude (left column) and phase (right col-
umn) of the proposed n-layer structure acting as a nonlocal
metasurface, for both TE and TM polarizations, compared with
the transmission response of the replaced free-space volume of
length: 3.6λ0 (first row), 21.8λ0 (second row) and 44.9λ0 (third
row). The transmission coefficient is plotted as a function of
transverse wavenumber kt, at a fixed near-resonance frequency
ω0 = 1.02ωr. All transmission phases are adjusted to start from
0 at kt = 0 since a global phase difference with respect to free
space is irrelevant.
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layer structure is nπ, as expected. Importantly, near resonance the transmission

phase as a function of frequency can be well approximated by a linear function,

whose slope linearly increases with n, as seen in Fig. 6.3. The transmission am-

plitude becomes sharper and more “box-like” as n increases, characterized by

a frequency window within which the amplitude is large and increasingly uni-

form, corresponding to the frequency range where the phase is approximately

linear. This behavior for the transmission amplitude and phase of the proposed

n-layer nonlocal structure near resonance is indeed analogous to that of stan-

dard band-pass filters [161, 39, 162]. We also observe that the dispersion rela-

tion of the guided modes of the n-layer structure (corresponding to the bright

band in Figs. 6.2(a,c,d)) has an approximate quadratic shape with respect to kt,

consistent with Eq. (6.5). Note that this dispersion relation remains essentially

identical as the number of layers n increases since, as mentioned above, exactly

at resonance each resonator looks transparent to the other resonators (its input

impedance is identical to the wave impedance of the host medium) and, there-

fore, the original transmission peak evolves with kt as in the single-resonator

case.

Since the transmission phase is quadratic with kt at frequencies both slightly

above and below resonance (where the phase is linear with respect to frequency

before saturating), we operate slightly off-resonance, setting the operating fre-

quency to ω0 = 1.02ωr, so that we can utilize a wider range of kt over which

the phase is quadratic, consistent with our discussion around Eq. (6.8) (this

can also be understood by tracking the phase along the horizontal dashed lines

in Fig. 6.2). The downside of this choice is that the transmission amplitude is

no longer unity for kt = 0, as seen in Fig. 6.2; however, if we are not too far

away from resonance, the amplitude remains high, especially if multiple lay-
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ers are employed. This is further demonstrated in Fig. 6.4, which shows the

transmission amplitude and phase of the n-layer nonlocal structure as a func-

tion of transverse momentum kt, at the operating frequency ω0. The analytical

results are calculated using the standard transfer-matrix method. We observe

that the kt-dependent transmission phase of these nonlocal structures matches

that of free space, with high accuracy, over a moderately wide angular range

−0.33 < kt/k0 < 0.33. This means that, with for example n = 10 layers, corre-

sponding to a thickness T ≈ 9λ0, we can replace a length of free space L ≈ 45λ0

over a reasonably large angular range. These numbers correspond to approxi-

mately 50% of the limit in Eq. (6.12), indicating good utilization of the available

phase range. Furthermore, within this operating angular range, the transmis-

sion amplitude remains large, with a minimum of 0.8 for the single-resonator

metasurface in Fig. 6.4(a) (this is much higher than the transmission amplitude

of the nonlocal metamaterial in Ref. [157]). We also note that the transmission

response does not change much with polarization within the operating range of

kt. This is because (i) the transmission coefficients for TE and TM polarizations

converge at normal incidence, and (ii) for moderately small incidence angles,

the TE and TM transmission peaks are almost identical since the Fabry-Pérot-

like resonances only depend on the phase delay inside the resonators, which

is polarization independent, and on the reflection coefficients of the dielectric

plates, which in our case remain approximately real for moderately small kt.

Most importantly, the total transmission phase range provided by the n-

layer nonlocal structure keeps increasing linearly with n (see the different phase

ranges in Fig. 6.4(b,d,f)), with no observable increase of relative phase error and

with clear improvements in terms of transmission amplitude. Since these mul-

tilayered nonlocal structures are able to mimic the response of free space for an
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arbitrary range of transmission phases, they can be used to replace free-space

volumes of arbitrary length, as further demonstrated in the context of focusing

and imaging in the next section.

We also note that, because the replaced length of free space increases linearly

with n, but the thickness of the n-layer nonlocal structure does not, due to the

extra quarter-wavelength space between resonators, the squeezing ratio R is not

constant. For our one-layer nonlocal metasurface, the squeezing ratio is R = 5.6,

while it slightly decreases to R = 5.15 when n is large. This compression ratio

and angular range are better than the ones reported in Ref. [157] (R = 4.9 and

kt,max/k0 = 0.27), even without optimization, and with a much simpler, regular,

and scalable design with higher transmission amplitude. In addition, if we tar-

get a much smaller angular range, for example kt,max/k0 = 0.01, using a 40-layer

structure, as in one of the designs in Ref. [158], the total length of replaced

free space L/λ0 allowed by the trade-off in Eq. (6.12) would be more than fifty

times larger than what was obtained in Ref. [158], due to the fact that these

earlier designs only utilize a few percents of the available phase range around

a transmission resonance (compared to 50% for our structures). We stress again

that our results are obtained with only dielectric materials and no optimiza-

tion, which suggests that there is very large room for improvement in terms

of compression ratio (for a fixed L and kt,max) if the resonators are miniaturized

using optimization and inverse design, and perhaps by employing high-index

dielectrics combined with plasmonic materials.
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Figure 6.5: Normalized distribution of the electric field amplitude for the
focusing of a TE-polarized plane wave by (a) a local idealized
metalens, and (b,c) the same metalens followed by nonlocal
metasurfaces with 5 layers (panel b) and 10 layers (panel c).
The dielectric nonlocal structure moves the focal plane closer
and closer to the metalens, with minimal distortions and with-
out changing the focal length of the metalens (which is a prop-
erty of the local metalens itself). The insets on the right show
the field amplitude distribution on the focal plane. In panel
(c), all space between the lens and the focal plane has been re-
placed and compressed by the nonlocal structure, realizing a
compact solid-state flat-optics focusing system.
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Figure 6.6: Imaging and magnification with dielectric nonlocal metasur-
faces inserted between a metalens and the observation plane
(as illustrated in Fig. 6.1 (a)). (a) Object to be imaged: a uni-
formly illuminated aperture with the shape of the letter “C”
from Cornell University’s logo. (b) Magnified image intensity,
at the observation plane, formed by a metalens without nonlo-
cal metasurfaces. (c)-(f) Magnified images formed by the same
metalens followed by multilayered structures acting as nonlo-
cal space-squeezing metasurfaces, as in Fig. 6.5, for different
numbers of layers n. The same magnification is obtained in all
panels since the focal length of the metalens remains the same,
whereas the image forms at closer distances, thereby overcom-
ing the trade-off between propagation length and magnifica-
tion, as discussed in the text. The distance between lens and
observation plane in panels (b) to (f) is, respectively, 230.6λ0,
226.6λ0, 193.4λ0, 119λ0 and 44.6λ0. The focal length of the met-
alens is 100λ0. The considered lateral size of the object, flat-
optics device, and observation plane is 96λ0 × 96λ0. All of the
transverse planes are discretized into 120 × 120 pixels, hence
the size of each pixel is 0.8λ0 × 0.8λ0. In panel (f), all space be-
tween the lens and the observation plane has been replaced by
the designed dielectric nonlocal device.
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6.3 Nonlocal Flat-Optics for Focusing, Imaging, and Magnifi-

cation

In this section, we theoretically demonstrate, for the first time, the potential of

combining local metalenses and nonlocal space-squeezing metasurfaces for fo-

cusing and imaging. First, we apply these ideas to the problem of focusing a

TE-polarized plane wave within a much more compact volume. The results

are shown in Fig. 6.5 (obtained via full-wave numerical simulations [106]). Be-

cause local metalenses have been studied extensively in the literature and the

design of a specific metalens is not the topic of this chapter, we use an ideal-

ized metasurface that implements the local transmission-phase response in Eq.

(6.1) (an idealized planar thin slab with a suitable distribution of constitutive

parameters); however, this may be replaced by any of the realistic metalenses

demonstrated in the recent literature. We have also verified that, if the local

metalens is not ideally impedance-matched to the surrounding medium, the re-

sulting reflections and interactions between metalens and nonlocal metasurface

reduce the overall transmission efficiency but, even in the presence of moder-

ately high reflections, the functionality of the system is not affected too nega-

tively (see supplementary information). This is mainly because the designed

nonlocal structure exhibits very low reflection within its operating bandwidth

and angular range (see, e.g., Fig. 6.4(e)), therefore minimizing any unwanted

interaction with a mismatched metalens.

As shown in Fig. 6.5(a), when the space beyond the metalens is occupied

by free space, the transmitted plane wave is focused on a focal plane at a dis-

tance equal to the focal length F of the local metalens, as for any conventional
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thin lens. On the focal plane, the field profile largely follows a sinc function,

as expected for this two-dimensional focusing setup, with a nearly diffraction-

limited focal spot of width 1.67λ0, for a numerical aperture NA = 0.3. Then, we

insert a 5-layer and a 10-layer structure acting as nonlocal space-compression

metasurfaces as in Fig. 6.1, between the lens and the focal plane. The results

shown in Fig. 6.5(b,c) clearly demonstrate that the entire field distribution be-

hind the lens is shifted towards the lens by a distance L−T , and with low distor-

tions, leading to a drastic reduction of the focal plane distance from the metal-

ens. Particularly striking is the case with the 10-layer nonlocal device, in which

light is focused on the back face of the stack of local and nonlocal structures.

This means that all free space between the lens and the focal plane has been

replaced and compressed, realizing a compact, planar, solid-state, focusing de-

vice. Furthermore, comparing the field distributions at the focal plane for these

three cases in Fig. 6.5, we note that the width of the main lobe and the position of

the first zeros are nearly identical, suggesting good focusing performance with

small monochromatic aberrations. This is obtained thanks to the good angu-

lar transmission response of the nonlocal structure (see Fig. 6.4), which closely

mimics the response of a free-space volume both in amplitude and phase.

Most importantly, we stress that, while focusing is obtained at a much

shorter distance, as seen in Fig. 6.5(b,c), the focal length of the lens is the same

(since the nonlocal structure is transversely homogeneous it cannot change the

focal length of the metalens). Thus, the nonlocal device fundamentally decou-

ples the actual distance at which focusing is achieved from the focal length of

the lens, and hence its magnifying power. Indeed, this hybrid system combining

local and nonlocal metasurfaces may realize magnification of an object without

the need for a large propagation length. Fig. 6.6 shows an example demonstrat-
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ing this exciting opportunity for imaging and magnification. The object to be

imaged is an illuminated aperture with the shape of the letter “C” in Cornell

University’s logo. We calculated the resulting image, produced by a composite

flat-optics device as in Fig. 6.5(b,c), using the well-established scalar diffrac-

tion theory [145]. We assume the electric field is uniform in the y direction on

the aperture in Fig. 6.6(a) and zero outside (note that this assumption is not

physical as it violates the continuity of tangential electric field, but the results

under this assumption are in good agreement with experimental measurements

for sufficiently large objects [145]; for separation of TE and TM polarizations,

we refer to Ref. [159] (Supplemental material)). The imaging system is set up to

obtain a magnified image, with a magnification factor of 1.3 (but larger values

can be easily obtained by playing with the object distance and the focal length

of the metalens). The image produced by the metalens alone, without nonlocal

metasurfaces, is shown in Fig. 6.6(b) at a distance (230.6λ0) dictated by the focal

length of the lens and the desired magnification factor. Then, as in Fig. 6.5, we

insert the designed nonlocal structure, with increasing number of layers, right

after the metalens. The resulting images, shown in Fig. 6.6(c-f), form on planes

that are closer and closer to the metalens. When the inserted number of layers

reaches 50, all free space is replaced by the much thinner nonlocal device, and

the image forms on the back face of the structure. The distance between lens and

observation plane has been decreased from 230.6λ0 to 44.6λ0; however, since the

focal length of the metalens is unaltered, the same magnification is obtained as

in the original case.

In the results reported in Fig. 6.6, we observe larger distortions when n is

large because, although the relative phase error (with respect to the maximum

transmission phase for a certain n) remains approximately constant, the abso-
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lute error increases with n. Then, when the absolute error is comparable with an

odd-multiple of π, maximum distortion occur on the observation plane. How-

ever, the image is still clearly visible and, thanks to the high transmission ampli-

tude of the proposed nonlocal structure, the image intensity remains high even

for a cascade of 50 layers. We also note that the functionalities discussed in this

section, in particular the fully solid-state focusing and imaging systems in Figs.

6.5(c) and 6.6(f), would not be realizable with earlier nonlocal designs as they

either exhibit an angular range that is too narrow [158] or they are not scalable

to many layers without further optimization, or drastic design changes, to ob-

tain a high transmission amplitude [157]. Despite its simplicity, our proposed

design is the first to enable a much wider operating angular range and to of-

fer the possibility to replace, in a scalable manner, an arbitrarily long free-space

volume with high transmission amplitude. Thanks to these advances, we have

theoretically demonstrated, for the first time, the potential of suitably combin-

ing local and nonlocal flat optics for focusing and imaging beyond some of the

trade-offs of conventional optics.

6.4 Conclusion

In summary, we have proposed a solution to realize fully solid-state ultra-thin

optical systems in which all conventional lenses are replaced by flat local met-

alenses and all free-space volumes between lenses and detectors are replaced

by the proposed dielectric structures acting as nonlocal metasurfaces. From

an analysis of the response of generic single-resonance-based nonlocal meta-

surfaces, we have derived a quantitative trade-off between the total length of

replaced free space and the operating range of transverse momentum (angu-
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lar range). This trade-off explains some of the inherent limitations and con-

straints of previous works [157, 158]. To relax this trade-off and realize nonlo-

cal space-compression optics with performance more suitable for practical ap-

plications, we have designed and theoretically/computationally demonstrated

a nonlocal flat-optics structure composed of n resonant layers separated by

quarter-wavelength spacers, inspired by coupled-resonator-based microwave

band-pass filters. This design strategy guarantees high transmission amplitude

and highly linear transmission phase vs. frequency, without compromising the

operating range of transverse momentum, hence enabling the possibility of re-

placing free-space volumes of arbitrary length. With our proposed design, we

have demonstrated, theoretically and computationally, that nonlocal flat optics

may allow realizing planar ultra-thin structures for light focusing and imaging

that overcome some of the limits and trade-offs of conventional imaging sys-

tems, with intriguing implications for photography, augmented/virtual reality,

microscopy, et cetera.

The proposed nonlocal metasurfaces are based on a simple stack of homo-

geneous dielectric slabs, in which the high-permittivity layers could be made of

silicon, separated by layers made of a transparent material with lower permit-

tivity (for example silica). However, different materials could be considered as

long as a moderately high refractive-index contrast between layers is obtained

(the contrast would affect the linewidth of the resonances, and hence the re-

placed length of free space). We stress that since the Q factor of the resonant

layers is modest (Q = 15 in the considered example), the operating bandwidth

of the nonlocal device is not too narrow (fractional bandwidth of few percent)

and the device is expected to be moderately robust to losses, fabrication toler-

ances, and resonator detuning. These properties make our design particularly
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suitable for fabrication and integration between a metalens and an imaging sen-

sor. Indeed, the fabrication of multi-layer dielectric optical coatings is a mature

technology [164] that can be leveraged for the future realization of these devices.

We also would like to reiterate that the proposed structures have been obtained

without any optimization, and hence we are confident there is still very large

room for improvement, especially in terms of miniaturization of the coupled

resonators composing the nonlocal device.

Besides optical applications, our proposed nonlocal metasurfaces may also

be used at RF and microwave frequencies, e.g., for antenna miniaturization,

and an experimental proof-of-concept in this area is currently under way. More

broadly, we strongly believe that the vast opportunities offered by combining

local and nonlocal metasurfaces may have far-reaching applications in different

areas of wave physics and engineering.

6.5 Appendix: approximate analytical models for nonlocal

metasurfaces and the impact of impedance mismatch

6.5.1 Lumped circuit models for frequency response

To calculate the transmission response of the layered structures acting as nonlo-

cal metasurfaces, we resort to transmission-line theory [39], which provides an

exact and simple formulation of the problem since the metasurface structures

are transversely invariant. Each layer of the metasurfaces (dielectric plates and

space in between) is modeled as a segment of transmission-line, where the prop-
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Figure 6.7: Circuit models for the considered layered structures acting as
nonlocal metasurfaces. The local frequency response of the res-
onant element in (a) near the first even Fabry-Pérot-like reso-
nance is modeled with a parallel LC resonator in (b). The local
frequency response of n quarter-wavelength-spaced resonant
elements in (c) is modeled by n LC resonators with quarter-
wavelength-spaced transmission lines in between (d).

agation constant and the characteristic impedance, for transverse electric (TE)

polarization, are

kz,T E = k

√
1 −

k2
t

k2 ,

ZT E = η/

√
1 −

k2
t

k2 ,

(6.13)

and for transverse magnetic (TM) polarization, are

kz,T M = k

√
1 −

k2
t

k2 ,

ZT M = η

√
1 −

k2
t

k2 ,

(6.14)

where k and η are the wave number and wave impedance in the corresponding

homogeneous media and kt is the transverse wave number (transverse momen-

tum). Then the transmission response of the layered metasurfaces is calculated

through transmission-line network analysis [39].
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Figure 6.8: Transmission amplitude and phase of the multilayered struc-
tures composed of different numbers of resonators, obtained
from the exact transmission-line model, the equivalent LC cir-
cuit model, and the linear approximation near resonance, using
the parameters in the main text. The bounds of the phase range
around resonance are indicated in the panels with dashed lines.
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The results from full-wave transmission-line theory are exact. However, the

final expressions are lengthy and opaque to intuition. To get more concise and

revealing closed-form expressions for the transmission response of these non-

local structures, we use approximate analytical models for the resonant ele-

ments. Specifically, near the frequency of the first even Fabry-Pérot-like reso-

nance, we model the resonant elements of the nonlocal structures in Fig. 6.7 as

parallel LC resonant circuits, and the quarter-wavelength spacers as quarter-

wavelength transmission lines, as shown in Fig. 6.7. These spacers provide a

π/2 phase shift, and we have assumed that this π/2 phase shift is approximately

frequency-independent in a narrow band around resonance. The values of the

LC elements can be obtained by comparing the resonant frequency and the Tay-

lor expansion coefficients of the frequency-domain transmission (or reflection)

coefficient of the actual resonant structure and of the circuit model (see Supple-

mentary material of [16]). With this approach, we obtain

L =
2ε1η0

πωr (ε1 − 1)
(
1 +
√
ε1 + ε1

) ,
C =

π (ε1 − 1)
(
1 +
√
ε1 + ε1

)
2ε1η0ωr

.

(6.15)

The transmission coefficient of the parallel LC resonator is

t =
−2iωL

−2iωL + η0 − LCη0ω2 . (6.16)

Then, considering ω ≈ ωr, we can write the transmission coefficient as

t ≈
γ0

γ0 − i (ω − ωr)
, (6.17)

where

ωr =
1
√

LC
, (6.18)

and (assuming γ0 is invariant with frequency)

γ0 =
ω2

r L
η0

=
1

Cη0
=
ωr

2Q
=

2ε1ωr

π (ε1 − 1)
(
1 +
√
ε1 + ε1

) , (6.19)
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where Q is the quality factor of the resonator. Thus, the transmission phase of a

single LC resonator is

arg (t) = arctan
(
ω − ωr

γ0

)
=
ω − ωr

γ0
+ O

[
ω − ωr

γ0

]3

. (6.20)

For a chain of n quarter-wavelength-spaced resonators, the resonators can

be assumed to be approximately decoupled if ω ≈ ωr since, at resonance, each

resonator looks transparent to the others (its input impedance is identical to

the free-space wave impedance). Hence, the transmission coefficient, assuming

ω ≈ ωr, is

t =
2y(γ0ωr)n

(iy − γ0ωr)
[
ωr (ωr − ω) − y

]n
+ (iy + γ0ωr)

[
ωr (ωr − ω) + y

]n , (6.21)

where

y = ωr

√
(ω − ωr)2

− γ2
0. (6.22)

This expression is still cumbersome, so we expand it in Taylor series to obtain

t = (i)n−1
[
1 + in

(
ω − ωr

γ0

)
+ O (ω − ωr)2

]
, (6.23)

where (i)n−1 accounts for the π/2 phase contributions of the quarter-wavelength

spacers, while the rest of the expression represents the response of the n cas-

caded resonators, which contribute to a total phase variation of nπ. We ig-

nore the phase factor introduced by the quarter-wavelength transmission lines,

which, under our approximations, is a global phase independent of frequency

(in reality, this phase depends on frequency, but more weakly than the reso-

nant contribution). Then, the transmission phase of the n-resonator structure is

approximately given by

arg (t) ≈ arctan
(
n ·

ω − ωr

γ0

)
= n ·

ω − ωr

γ0
+ O

[
n ·

ω − ωr

γ0

]3

. (6.24)
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We note that, near resonance, the slope of the linear coefficient is proportional

to n. In Fig. 6.8, we plot the transmission amplitude and phase of the multilay-

ered structures composed of different numbers of resonators, obtained from the

exact transmission-line model, the equivalent circuit model, and the linear ap-

proximation near resonance, using the parameters in the main text. We clearly

see that the transmission coefficients from full-wave calculations, lumped cir-

cuit model, and linear approximation match very well near resonance. In addi-

tion, we observe that the total phase variation of n Fabry-Pérot-like resonances

is indeed bounded by nπ.

We also would like to stress that the linearity of the transmission phase near

resonance improves with the number of layers because the transmission ampli-

tude becomes more and more uniform within a certain pass-band, consistent

with the implications of Kramers-Kronig-like relations between amplitude and

phase of the transmission coefficient of causal passive linear systems, as men-

tioned in the main text.

The circuit models and expressions above have been derived under the as-

sumption of normal incidence, i.e., when the transverse momentum kt = 0.

However, for oblique incidence, the profile of the transmission spectrum re-

mains nearly unchanged near resonance, except for a change of resonance fre-

quency with kt, namely, ω (kt) (with ω (kt = 0) = ωr), which corresponds to the

dispersion relation of the guided mode responsible for the transmission reso-

nances (the guided mode is assumed well confined, so that its eigenfrequency

is almost real and is approximately equal to the resonance frequency).
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Figure 6.9: Transmission amplitude and phase for a one-layer nonlocal
metasurface as a function of transverse momentum kt and fre-
quency ω, compared with the approximate dispersion relation
(red lines) given by Eq. (6.26).

6.5.2 Approximate expressions for the dispersion relation and

the length of replaced free space

At normal incidence, kt = 0, the input impedance of the quarter-wavelength-

thick dielectric plates is real, because of the quarter-wavelength impedance-

transformation effect [39], and thus their partial reflection coefficients are also

real. At oblique incidence, this is not strictly true, however we can still use this

fact to make some useful approximations. Specifically, because the resonant

frequency ω (kt) does not change significantly with kt when kt is small, and the

permittivity of the dielectric plates is much larger than that of free space, we

assume that the field profiles within the dielectric elements do not change with

kt, and their partial reflection coefficient remain approximately real. Thus, the

resonant frequency is solely determined by the length of space between two di-

electric plates, and the dispersion relation can be calculated based on the optical
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path length between them to have constructive interference√
ω2 (kt) µ0ε0 − k2

t ·
λr

2
= π. (6.25)

Hence, we obtain

ω (kt) = c
√
ω2

r/c2 + k2
t = ωr + αk2

t + O[k4
t ], (6.26)

where

α =
c2

2ωr
. (6.27)

Although this approximation is rough, the result is reasonable, as shown in

Fig. 6.9, with just a slight overestimation of the quadratic coefficient α. As dis-

cussed in the main text, this dispersion relation remains essentially identical

as the number of layers n increases since, as mentioned above, exactly at reso-

nance each resonator looks transparent to the other resonators, and, therefore,

the original transmission peak evolves with kt as in the single-resonator case.

Finally, with the approximate expression of α above, we can write the full ex-

pression for the length of free space replaced by a n-layer nonlocal metasurface

device

L = n ·
2αk0

γ0
≈ n ·

c
γ0

= n ·
λr (ε1 − 1)

(
1 +
√
ε1 + ε1

)
4ε1

, (6.28)

where k0 is the free space wave number at the operating frequency ω0. With this

formula, the calculated length of replaced free space is slightly overestimated,

because of the aforementioned overestimation of α. However, this formula pro-

vides a good approximation, as well as qualitative intuition for the design of

our nonlocal metasurface devices.

6.5.3 Impact of impedance mismatch and reflections
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Figure 6.10: Normalized distribution of the electric field amplitude for
the focusing of a TE-polarized plane wave by (a) a largely
impedance-mismatched metalens with wave impedance 5η0,
and (b) the same metalens followed by a nonlocal metasur-
face structure with 5 layers. By comparing this figure with
Fig. 5(a,b) of the main text, we see that moderately high
impedance mismatch and reflections reduce the overall trans-
mission efficiency but the functionality of the system (in this
case, focusing) is not affected too negatively.
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CHAPTER 7

CONCLUSION AND OUTLOOK

In this dissertation, we studied meta-electromagnetics, the sub-field of elec-

tromagnetics focused on metamaterials or metamaterials-inspired designs, for

scattering engineering and wavefront manipulation. As discussed in the In-

troduction, these concepts are intimately related through the optical theorem of

scattering theory. We started with a brief review of the topic of invisibility cloak-

ing, which was among the first applications of metamaterials. We compared

transformation-based cloaking and scattering-cancellation cloaking, which are

the most popular approaches to realize scattering suppression and invisibility.

We stressed that for scattering-cancellation cloaking, the scatterer is still polar-

ized, while the total scattering is suppressed. This property enables the design

of “cloaked sensors” [51], preserving the ability to sense the local field profile

under study while minimizing the scattering-induced perturbation. In this dis-

sertation, we proposed a solution for cloaking a NSOM tip, minimizing its scat-

tering cross section by carving properly engineered slits on the aluminum shell

of an aperture-type probe, so that the probe tip is able to capture the near-field

information under study with minimized artifacts [43]. Experimental work by

our collaborators has shown the effectiveness of our design idea.

We then tackled the fundamental problem of the narrow bandwidth of linear

passive cloaks for scattering suppression, which stems from physical bounds

related to the Bode-Fano limit of broadband impedance matching [16]. We also

theoretically demonstrated that, even if the cloak is nonreciprocal, Bode-Fano

limits are still valid. To find possible approaches to achieve broadband invisi-

bility, we have to break at least one of the assumptions of the Bode-Fano limit

114



(linearity, passivity, and causality), among which breaking passivity is the most

promising. We extensively studied the broadband scattering-cancellation prop-

erties of active cloaks and the associated stability issues. We concluded that

active cloaking can indeed broaden the operating bandwidth over which scat-

tering is reduced to a specified level, with the potential of breaking Bode-Fano

limits. However, stability, namely, the absence of unbounded oscillations, im-

poses another limit on the bandwidth. Thus, even if we break passivity, it is

still fundamentally difficult to design broadband active scattering-cancellation

cloaks [36]. This work is part of an ongoing debate in the literature, triggered

by a recent paper [109], on whether active cloaking based on fast-light propa-

gation can be made ultra-broadband. We argue that superluminal group and

phase velocity do not enable arbitrarily broadband invisibility, and that the ac-

tive cloaking designs in [109] are either not causal or not stable [110].

We then applied Bode-Fano limits to the problem of broadband reflection

reduction in lossy thin-films and, specifically, to ultra-thin solar cells to deter-

mine their maximum solar power absorption. Solar panels tend to be designed

thinner and thinner to decrease materials usage and thus the cost per area. In

the ultra-thin regime, when the thickness of the absorption region reaches a

few tens of nm, antireflection coatings are usually employed to enhance solar

power absorption instead of more complicated light-trapping strategies. We

studied the maximum solar power absorption limit, over the entire solar spec-

trum, for ultrathin solar cells made of different materials with arbitrary antire-

flection coatings. To this aim, we modeled the light reflection and absorption

problem with equivalent lumped circuits, and then used Bode-Fano limits to

find the maximum solar power absorption. Two main results have been ob-

tained: (i) For solar cells made of a specific material, the maximum solar power
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absorption increases as the thickness of the solar panel increases. However,

when the thickness reaches a certain threshold, the maximum absorbed power

starts to decrease. This threshold is the optimal thickness for ultrathin solar cells

made of a given material, and it corresponds to optimal tuning with respect to

the given material response (the maximum absorbed power is then expected to

grow again for much larger thicknesses as more modes/resonances become ac-

cessible in the slab). (ii) In the ultrathin single-mode regime, solar panels made

of different materials reach their respective maximum absorption peak for dif-

ferent thicknesses, for example, silicon at a thickness of 48 nm, and GaAs at a

thickness of 26 nm. Thus, when the thickness of the lossy layer is extremely

small, GaAs performs better, whereas silicon exhibits one of the worst perfor-

mance in terms of absorption, as shown in Chapter 4, as expected due to its

indirect bandgap and lower losses within the solar spectrum [165].

In the second part of the dissertation, we focused on wavefront manipu-

lations based on engineered metasurfaces for analog optical computing and

miniaturization of complex optical systems. Analog optical computing units

are expected to serve as hardware accelerators for existing digital electronic

computers to alleviate their emerging problems in terms of heat generation

and bandwidth limits for specific applications. Within this context, we pro-

posed a compact analog optical computing platform based on the framework

of metamaterial-waveguide networks. A metamaterial-waveguide network

contains optical waveguides, graded-index (GRIN) lenses, metasurfaces and

other compatible elements, enabling beam splitting, merging, Fourier trans-

forms, filtering, feedback etc., with compact structures. Based on this plat-

form, we computationally demonstrated representative design examples to per-

form fractional calculus of an arbitrary order, to calculate a weighted sum of
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proportional-integral-derivative (PID) operations on an input function, and to

solve fractional calculus equations. The proposed designs have a very small

footprint of only a few wavelengths, which is promising for their potential in-

tegration with existing micro-electronic systems. This work may pave the way

toward new metamaterials-inspired designs for analog optical computing and

hardware acceleration.

Finally, we studied nonlocal metasurfaces for space compression and optics

miniaturization. Most optical systems involve a combination of lenses sepa-

rated by free-space regions where light acquires the required angle-dependent

phase delay for a certain functionality. We first derived a fundamental trade-

off between the length of compressed free space and the operating angular

range, which explained some of the limitations of earlier designs, and we then

proposed a solution to break this trade-off using nonlocal metasurface struc-

tures composed of suitably coupled resonant layers. This strategy, inspired by

coupled-resonator-based pass-band filters, allows replacing free-space volumes

of arbitrary length over wide angular ranges, and with high transmittance. Fi-

nally, we theoretically demonstrated, for the first time, the potential of combin-

ing local and nonlocal metasurfaces to realize compact, fully solid-state, planar

structures for focusing, imaging, and magnification, in which the focal length of

the lens (and hence its magnifying power) does not dictate the actual distance

at which focusing is achieved. Our findings are expected to extend the reach of

the field of metasurfaces and open new unexplored opportunities [166].

We predict two promising directions for future research in the area of meta-

electromagnetics in general, and scattering engineering and wavefront manipu-

lation in particular. On the one hand, academic researchers will keep extending
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the complexity of constitutive relations of engineered materials, to incorporate

novel properties and explore new exotic phenomena of wave propagation. One

example is the emerging field of space-time metamaterials [9, 10, 167, 168]. With

the new degrees of freedom offered by temporal or spatio-temporal modula-

tions, some of the constraints and limitations of scattering engineering could

in principle be relaxed, realizing for example nonreciprocal metasurfaces, or

scattering engineering in the spectral domain [168], or ultra-broadband devices

for impedance matching and absorption. On the other hand, many of the re-

cent research advances in the field of meta-electromagnetics are still in the stage

of purely theoretical research or experimental proof-of-concept. Thus, another

promising direction is represented by efforts to turn these research achieve-

ments into devices and industrial products. These efforts are currently ongoing,

especially for metasurfaces and metalenses (e.g., Lumotive [169], Metalenz [170]

and Oblate Optics [171]) and analog optical computing for hardware accelera-

tion (e.g., Lightmatter [172]), and we expect more commercialization efforts are

on the horizon. To conclude, we believe the future of this broad area of research

is bright, both for its basic scientific interest and for its technological implica-

tions.
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Less? Phys. Rev. X, 3(4):41005, oct 2013.

[63] M Selvanayagam and G V Eleftheriades. An Active Electromagnetic
Cloak Using the Equivalence Principle. IEEE Antennas and Wireless Propa-
gation Letters, 11:1226–1229, 2012.

[64] Michael Selvanayagam and George V Eleftheriades. Experimental
Demonstration of Active Electromagnetic Cloaking. Phys. Rev. X,
3(4):41011, nov 2013.

[65] Pai-Yen Chen, Christos Argyropoulos, and Andrea Alù. Broadening
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