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Extreme events such as hurricanes and earthquakes can strike a community 

with little or no warning and leave high levels of devastation behind. Emergency 

response providers require large quantities of resource in the aftermath of such events, 

but these may be limited because of lack of preparation. In order to provide immediate 

assistance to disaster victims, essential supplies must be strategically placed before the 

event so they can be accessible after. The main goal of this research is to develop a 

large-scale emergency response planning tool that determines the location and 

quantities of emergency supplies together with the location and capacities of their 

storing facilities. A two-stage stochastic mixed integer program (SMIP) is presented 

that designs such an emergency response pre-positioning strategy for hurricanes or 

other natural disaster threats. The SMIP is a robust model that considers variability in 

forecasted demand and network unreliability.  

Due to the computational complexity of the model formulation, a heuristic 

solution that considers the embedded network structures of the SMIP was devised by 

combining two methodologies: the L-shaped method and the Lagrangian relaxation. 

The L-shaped method consists of solving an approximation of a stochastic program by 

estimating the recourse function using an outer-linearization technique. The 

Lagrangian relaxation heuristic was added to decompose the first stage problem into a 

trivial facility location problem and a resource allocation linear program. To further 

improve the computational capabilities of the algorithm, the Lagrangian relaxation 



 

was also used to relax the integrality constraints of the facility location variables. The 

result was a heuristic method referred to as the Lagrangian L-shaped method (LLSM).  

Various numerical experiments were conducted to test the computational 

capabilities of the LLSM. These experiments showed the computational consistency of 

the method compared to a standard integer program solver (i.e. Lingo). Regardless of 

variations in the data set provided, the running times of the LLSM are 0.05% to 10.0% 

of the Lingo running times, while the objective values obtained by the LLSM are 

within 1% of optimum. Based on the experiments, we are confident that the LLSM 

can be used as a large-scale resource pre-positioning planning tool.  
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CHAPTER 1.  INTRODUCTION 

 

1.1. Context and Objectives 

 

Extreme events such as tornadoes, earthquakes, hurricanes, or terrorist attacks 

strike a community with little or no warning and can leave high levels of devastation 

behind. Large quantities of supplies are needed in the aftermath of such events, but 

these may be limited due to lack of adequate preparation. Emergency response efforts 

become ineffective when supplies are unavailable or insufficient. Supplies must then 

be acquired from other regions incurring high shipment costs and taking too long to 

reach the victims. Damages in the network can result from such disasters; roads and 

facilities may be obstructed, destroyed and unavailable.  

The main goal of emergency response is to provide assistance to disaster 

victims as soon as disasters strike, minimizing the number of casualties due to 

secondary effects such as aftershocks, building collapse or lack of proper medical 

assistance. In order to achieve this, essential supplies must be in place at strategic 

locations before the event so that they may be available immediately after. For similar 

reasons, risk mitigation and decrease in the response time, pre-positioning strategies 

are already in use by the military armed forces. These strategies permit a rapid and 

effective response to conflicts anywhere in the world. However, limited planning tools 

resulting from formal modeling techniques (optimization or simulation) have been 

developed, and the existent models fail to account for system unreliability.  

The motivation behind this project arose from the need for facility location and 

resource allocation models that provide emergency response organizations with supply 

mitigation strategies prior to devastating events and may provide the military with 

robust equipment preposition strategies. The objective of the model proposed is to 
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provide an emergency planning tool that determines the most accessible emergency 

supply locations and optimal quantities of resource that need to be acquired based on 

uncertain demand and unreliable network information. The unreliability of the 

network will include situations where the supply distribution facilities might be 

destroyed and connecting paths might be obstructed during a catastrophic event. The 

model is formulated as a mixed integer stochastic program.  

The remainder of this chapter contains the following. Sections 1.2 and 1.3 

include a general discussion of research on military pre-positioning models and 

emergency response, setting the stage for the model description. Section 1.4 presents 

the outline for the remainder of the dissertation. 

 

1.2. Military Pre-positioning Models 

 

The concept of pre-positioning of key resources is deeply embedded in military 

planning operations. This strategy permits speed of response, flexibility and safety 

against emerging threats regardless of geographical limitations. It has been stated by 

the Overseas Basing Commission (2005) that their operational capability depends on 

the location of their pre-positioned unit sets, ammunition stocks and other supporting 

items, what they are comprised of, how they are maintained, defended, and continually 

updated. Furthermore, their speed of entry, appropriate force packaging, flexibility and 

levels of combat power rely on having the right equipment and supplies in place. 

Pre-positioning strategies are used to determine the location of a wide range of 

military elements, from tents, food, kitchens, shelters, power equipment, to the 

location of actual military bases. Since they measure the success of pre-positioning by 

the degree of combat readiness, they include the element of reliability (e.g. reliable 

non-corroded and fully functional vehicles and equipment, Le Pera (2004)). The 
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success in applying pre-positioning strategies can be seen in the ability of Air Force 

Engineering and Services during Operation Desert Shield to move within days enough 

supplies to support 21,000 personnel (Lally, 1991). However, regardless of its 

importance to the armed forces, few modeling tools have been developed to tackle this 

problem. A recent effort is a model created by Johnstone, et al. (2004) for pre-

positioning and movement of munitions for the U. S. Air Force. This model was 

formulated as a mixed integer program and creates optimal plans for a given set of 

demands in a specific scenario. The model does not consider transport vulnerability, 

demand or network uncertainty.  

The Overseas Basing Commission (2005) expressed their need for a tool that 

determined the amounts and composition of the supplies and equipment to be pre-

positioned considering their budget, uncertainty of access to the supplies, and 

investment costs. They also indicated how pre-positioning planning should be 

performed keeping in mind flexibility and alternatives due to the constantly shifting 

geopolitical landscape.  

 

1.3. Emergency Response Models 

 

Previous research regarding emergency response topics have concentrated 

mostly on disaster management following natural disasters, terrorist attacks and 

hazardous materials accidents. Some of the concerns expressed have been prompt 

response and decision making strategies under crisis conditions. Their main goal has 

been to develop emergency response plans that integrate information pertaining to the 

location and capacities of resource providers, the spatial distribution of the victims, the 

environment and the economy (Parentela et al., 2000). Even though the location and 

capacities of the resource providers are key components in the disaster management 
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plan, little research has been conducted on the topic of a priori planning – i.e. what 

resources should be stockpiled in what location so that emergency response is most 

effective in the event that it is needed. 

Several geographical information systems (GIS) applications have been 

developed to assess the damage caused by a disaster, identify safe routes, and for 

resource mapping. The model developed by Al-qurashi (2004) combined GIS with an 

emergency response system (ERS) with the purpose of providing emergency 

responders such as firefighters or medical personnel with information on the status of 

the network. In this case, the event studied is a gas leak and GIS is used to show the 

gas contamination dispersion. Parentela et al. (2000) developed GIS applications for 

immediate response to emergency situations by redirecting response units based on 

their real time locations. Tsai et. al. (2002) developed a prototype Information 

Technology-based Real-time Emergency Response system framework that dispatches 

emergency vehicles to demand points based on their real-time location acquired with 

GIS/GPS techniques. An illustration of an a priori resource location approach is the 

work by Sathe and Miller-Hooks (2005), a robust mixed integer linear program that 

assigns and re-assigns the locations of first response units (e.g. military units, police 

forces) in order to maintain protection coverage to critical facilities considering 

changes in the state of the system. An attempt at determining the location of facilities 

that distribute medical supplies and assistance (e.g. pharmaceutical caches and staging 

areas) for a large scale emergency (e.g. anthrax virus in Los Angeles County) was 

tackled by Jia et al. (2007). They solved a set covering problem formulation with pre-

determined demand via various heuristic methods. An a priori facility location model 

was proposed by Saccomanno and Allen (1988) that determines, using a minimum 

coverage algorithm, the location of response-capable centroids (i.e. fire stations or 
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police stations) that could provide aid in case of spills of dangerous goods on a rural 

road network. 

Utility service providers play a critical role in the system recovery process. 

Since they need to resume service in the least amount of time possible they have 

devised strategies that take place before and after a disaster strikes. Power plants for 

example, prepare for the disaster in the planning stage by designing a more reliable 

network. Research for reliability planning has developed techniques for determining 

capacity and location of capacitor banks (Makram et al., 1995; Chin, 1995; Ng and 

Salama, 1995) and other electric utility distribution elements (El-Khattam et al. 2005). 

After the disaster, these companies optimize their maintenance force in order to 

minimize the recovery period in the operational stage. An algorithm designed for the 

operational stage is presented by Guha et al. (1999) in which they try to reconnect the 

customers to the network in the least amount of time possible by optimal workforce 

assignments. Their model is a budgeted maximum coverage problem that provides 

assistance based on customer importance. Priorities are given to hospitals or any other 

emergency service provider. Similarly, a mathematical model created by Weintraub et 

al. (1999) dispatches emergency vehicles in order to provide service in the least 

amount of time possible. Priorities are given to areas with higher number of expected 

failures.  

There is a need for a robust emergency response planning tool to determine the 

location and the capacity of the facilities where essential resources should be stored, 

and the quantities and types of those resources to be pre-positioned in each location. 

The model should consider both network and demand uncertainty. A stochastic mixed 

integer program is proposed and presented in Chapter 3 that meets these requirements 

by considering uncertain demand, disastrous events striking different areas in the 

network, the fixed costs associated with the addition of storage facilities of different 
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capacities, the resource purchase costs, shipping costs and/or travel times, and 

uncertain network capacity. This model provides a flexibility lacking in previous 

efforts.  

 

1.4. Outline of the Dissertation 

 

Chapter 2 includes a summary of related work in facility location and resource 

allocation problems. Chapter 3 contains the formulation of the mathematical 

Stochastic Mixed Integer Program (SMIP). Chapter 4 describes how the SMIP is 

decomposed into three less computationally expensive sub-problems based on its 

embedded structures (i.e. facility location, resource allocation and network flow 

problems). Chapter 4 includes the methodology used to solve the SMIP, an algorithm 

that combines Network Simplex, the L-Shaped Method and Lagrangian Relaxation 

approaches. In Chapter 5 an illustrative case study is presented. Chapter 6 includes the 

results of the experiments conducted. Chapter 7 provides the conclusions and the 

directions for continuing work. 
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CHAPTER 2.  LITERATURE REVIEW 

 

The model presented in Chapter 3 is a stochastic mixed integer program 

(SMIP) representing both capacitated facility location and resource allocation. The 

goal of this research is to determine the optimal number, location and capacity of 

emergency response facilities providing supplies and service to regions potentially 

affected by a natural disaster. The model also assigns to each facility an amount of 

each of several resources that would minimize the average transportation cost while 

maximizing the demand met. The model has elements found in emergency response, 

facility location and resource allocation problems. Relevant research in these areas is 

discussed briefly. 

 

2.1. Facility Location Models 

 

Facility location models are important topics in operations management and 

operations research since the location of distribution systems determine the quality of 

service. These models can determine the best location based on lowest operational 

costs, market competition or demand concentrations. The proposed model has 

embedded properties of fixed costs or fixed charge facility location (FCFL) models as 

defined by Bradley et al. (1977). These models select the location of the facilities and 

assign the customers (or demand) to the facilities minimizing fixed and transportation 

costs. A difference between the SMIP and the FCFL models is that for the second, the 

demand must be met while in the SMIP model unmet demand is penalized but not 

forbidden. Another difference between the models is that in the FCFL models there 

are typically no arc capacities and often no facility capacities.  



 

8 

The SMIP model can also be compared to p-median facility location models. 

They are similar in that both are concerned with total transportation costs for moving 

materials to the demand points. They are different in that no fixed number of facilities 

is imposed on the SMIP. Research conducted on related p-median topics include 

models developed by Berman et al. (2003) and Syam (1997). These authors modified 

p-median problems in order to incorporate reliability and facility capacity. Berman et 

al. (2003) added reliability of service with a nonlinear programming model that 

maximized the expected demand met with satisfactory service. Reliability and thus, 

the quality of service were measured by the distance traveled by the supply vehicles. 

Berman et al. (2003) did not limit the possible locations for the facilities but restricted 

their number. Their model is similar to the p-median problem in that it limits the 

number of facilities but contrary to the p-median problem the demand points do not 

necessarily receive service from the closest service facility. On the other hand, Syam 

(1997) extended the p-median problem by not only restricting the number of open 

facilities in a region but also their available capacity. The author also investigated the 

effects of additional managerial restrictions while always meeting the demand.  

Past efforts in emergency response planning have solved facility locations as 

set covering problems. Their goal has been to minimize the number of open facilities 

without sacrificing service quality. For example, a pre-set maximum permitted 

distance (cost or time) traveled by emergency vehicles can be specified (Toregas et al., 

1970). Neebe (1988) avoided finding the maximum limit a priori by developing a 

heuristic model that found the tradeoffs between distance and number of facilities 

needed to meet the demand. The SMIP lets the model determine this distance by 

incurring high penalty costs for unmet demand. Therefore, the number of facilities and 

how far they would be located from the demand points will be a decision of the model. 
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To include the effects of a natural disaster or a terrorist attack in the model, 

network reliability will be included in the scenarios set. Similar to the model by 

Snyder and Daskin (2003) the proposed model quantifies the effects of lack of 

reliability with additional transportation costs, but also with unmet demand penalty 

costs. Few facility location models have included facility performance reliability 

during its operation. The model by Snyder and Daskin (2005) minimized fixed costs 

for opening the facilities and also the expected transportation costs incurred due to 

facility failures. In the model presented by Hsieh and Chen (2005a, 2005b) network 

reliability was established with probability density functions assigned to the nodes and 

arcs in the network.  

 

2.2. Resource Allocation 

 

Hsieh and Chen (2005a, 2005b) developed resource allocation models for 

unreliable networks, using multi-source multi-sink flow networks that minimize the 

quantities of resources required at the source nodes in order to satisfy demand. Their 

objective was to maximize the reliability that the resources reach their destination. The 

model was solved using a modified enumerative method. In their models the arcs and 

the intermediate nodes in the network are unreliable and are modeled as statistically 

independent random variables. Contrary to the SMIP, their models restrict the overall 

transmission costs incurred, force all the resources located at the facilities to be 

shipped and the demand to be met. In addition, not only the intermediate nodes but all 

the nodes in the network are unreliable in the proposed model. 

Various models have been created for resource scheduling as risk management 

applications. Fiedrich et al. (2000) provided a dynamic optimization model that 

minimizes the number of expected fatalities resulting from an earthquake by assigning 
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search and rescue resources for the initial search-and-rescue period. The model seeks 

an optimal schedule that assigns emergency response resources in space and time to 

the areas affected by an earthquake considering the time limit, the quality and quantity 

of the resources. Their main concern was to decrease the number of fatalities that 

occur by secondary damages, delayed rescue, and lack of medical assistance. The 

resources that comprise the schedule include search and rescue teams, transportation 

of victims to hospitals, reconstruction and rehabilitation of certain facilities and path 

segments.  

A second attempt was presented by Sherali et al. (2004). Their model is a non-

convex emergency response resource allocation model solved as a tight linear 

programming relaxation with an embedded branch and bound framework. Their 

emergency response model allocates available resources based on system efficiency 

and equity considerations. The goal is to provide emergency managers with a tool that 

deploys the available resources so as to minimize the weighted mitigated risk in the 

system. Note that information on the level of damage caused by the disastrous event is 

needed and that each resource (e.g. police, firefighters, rescue parties, medical 

assistance) responds with a different level of mitigation depending on the disaster 

effect (e.g. building collapse, fire, flood, power loss). While the aforementioned 

models provide resource allocation schedules following an event, the proposed model 

allocates resource before the event.  

In the model presented by Sathe and Miller-Hooks (2005) the model allocates 

before the event the emergency response units but the quantity of the units is known, 

contrary to the SMIP where the number of resources is determined. Their main goal is 

to locate and re-locate a number of resources in order to cover (provide service) to all 

the facilities in the network maximizing the facilities with double coverage. Demand 

must be met since all the critical facilities must be covered by at least one unit. Their 
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model considers only one commodity, contrary to the SMIP that considers multiple 

commodities. The facility locations are fixed, where in the SMIP the facility locations 

are determined.   
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CHAPTER 3.  STOCHASTIC MIXED INTEGER PROGRAM 

 

3.1. Mathematical Formulation 

 

Let G = (N, A, U, C, F, Q) be an unreliable multi-source multi-sink flow 

network defined by a set N of nodes, a set A of directed arcs, a set U of maximum 

capacities of A that vary with scenario s S∈ , a set C of costs per unit of flow on A, a 

set F of fixed unit costs per open facility, and a set Q of unit resource purchase costs. 

The set N is composed of source, sink and transshipment nodes. Uncertainty in the 

model is achieved by the use of the set of scenarios. The scenarios include the 

variability in forecasted demand and the network reliability. The probability of 

occurrence of the scenario s is represented by the parameter Ps where:  
1s

s S
P

∈

=∑  

Some scenarios considered in the model are obstruction of path segments and 

destruction of facilities resulting from an extreme event. 

The unreliability of the nodes is achieved by dividing each node into two 

separate twin nodes as shown in Figure 3-1. One node contains the demand and is 

identified as n∈N while its twin is the supply node and is identified as n’∈N’⊂ N. 

Facilities can be located only on the nodes contained in set N’. As a default, the links 

connecting the twin nodes have an infinite capacity and a link cost of zero. In the case 

when the supply facility contained at node n’ is destroyed due to the natural disaster, 

the capacity of the link (n’, n),  '
ks
n nu  = 0. 

Two dummy nodes are connected to the network. These pertain to the excess 

supply (SE) and unmet demand (UD) as shown in Figure 3-1. These nodes help 

maintain equilibrium between the amount of demand and supply resources.  The 
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resource allocated at node UD would be equal to the total difference between the 

demand and the total allocated resources in the network for each of the commodities. 

It would thus contain the resource needed for unmet demand. The UD node is 

connected to the demand nodes N. The demand contained in node SE would equal the 

total unused allocated resource on all the nodes in the network for every commodity k 

and scenario s. The SE node is connected to the source nodes N’. 

Each arc (i,j)∈A is associated with a maximum capacity ks
iju ∈U and a cost 

ks
ijc ∈C. The unreliability of the network is included in the arc capacities that vary by 

scenario s. Arc costs depend on the nodes connected. The costs incurred for links of 

source, sinks or transshipment nodes are travel costs. The costs incurred for links 

leaving the dummy source node are unmet demand penalty costs k
ip  and for links 

reaching the dummy sink node are holding costs k
ih . The links connected to the 

dummy nodes have infinite capacity. Supply nodes i, incur fixed costs Fil 

corresponding to the opening of a new supply facility depending on its capacity Mil, 

where l is the index pertaining to the different types of facilities that can be chosen. In 

other words the model will decide if and where to open a facility and also its capacity. 

The cost incurred for opening a facility of type l of capacity (in terms of volume) Mil 

at node i is Fil. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-1: Network representation 
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Let yil be a binary decision variable equal to 1 if there is a supplier facility of 

capacity category l located at node i, 0 otherwise; and let k
ir  be the amount of resource 

of type k allocated at the supply node. Let ks
iv  indicate the level of demand for 

commodity k at the node i in scenario s. Let ks
ijx  be the amount of resource of type k 

shipped through link (i,j) in scenario s.  

The objective function minimizes the expected costs over all scenarios 

resulting from the selection of the supplier locations, the resource purchase and 

allocation at the supply facilities and the shipments of the supplies to the demand 

points including the flow in the arcs that represent unmet demand and excess resource.  

 

( , )
min k k ks ks

l il i i s ij ij
i N l L k K i N s S i j A k K

F y q r P c x
∈ ∈ ∈ ∈ ∈ ∈ ∈

+ +∑∑ ∑∑ ∑ ∑ ∑  

Subject to: 

(i) Flow conservation  
ks k ks ks
ji i ij i

j i N j i N
x r x v

≠ ∈ ≠ ∈

+ = +∑ ∑   Ss,Kk,Ni ∈∈∈∀  

(ii) Arc capacity 
ks ks
ij ijx u≤  ( , ) , ,i j A s S k K∀ ∈ ∈ ∈  

(iii) Open facilities and facility capacity 
k k
i i l il

k K l L
b r M y

∈ ∈

≤∑ ∑    i N∀ ∈  

(iv) Number of facilities per node 
1il

l L
y

∈

≤∑    i N∀ ∈  

(v) Non-negativity constraints 
( )0,1

0

0

il

k
i

ks
ij

y

r

x

∈

≥

≥

   

( )

',
,

, , ,

i N l L
i N k K
i j A k K s S

∀ ∈ ∈
∀ ∈ ∈

∀ ∈ ∈ ∈
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The first constraint represents the conservation of flow in the network. The 

second constraint ensures that the link flow does not surpass the arc capacity. In the 

above formulation maximum link capacity is established per commodity, but this 

constraint can be modified to restrict the link flow among all commodities traveling 

through that link. The added modification would cause the commodities to compete 

for the link capacity like in a multi-commodity flow problem. The third constraint 

makes certain that resources are assigned to open facilities and that the space taken by 

these resources ( k
ib ) does not surpass the facility capacity. The fourth constraint limits 

the number of open facilities at node i to one. Constraint (v) contains the non-

negativity constraints.  

 

3.2. Robustness 

 

Robust optimization (RO), as defined by Mulvey et al. (1995), is a model 

formulation approach that yield solutions that are less sensitive to variable and 

uncertain data. This approach combines goal programming with scenario based 

descriptions of the problem data. These models are composed of two types of 

decisions variables referred to as design and control variables. The optimal values of 

the design variables are not conditioned on the realization of the uncertain parameters, 

while the control variables are subjected to adjustments once the values of the 

uncertain parameters are known. The first stage and recourse variables of the proposed 

SMIP model behave in the same manner as design and control variables, respectively. 

First stage variables determine the structure of the system before the uncertain events 

occur, i.e. determine the location of source nodes and supplies contained. The recourse 
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variables adjust the shipments of the supplies in response to the disruptions in the 

network, i.e. changes in demand or costs, destruction of facility and supplies.  

In robust optimization, the optimal solution of a mathematical program is 

termed robust with respect to optimality if it remains “close” to optimal for any 

realization of a scenario s. On the other hand, if the solution remains “almost” feasible 

for any realization of s, then the model is referred to as robust. Since it is unlikely that 

a solution remains both optimal and feasible during all scenarios s, a model that 

measures the tradeoff between solution and model robustness is applied. In this case, 

to measure the lack of robustness, a penalty function was included that penalizes 

violations to the control constraints under some scenarios.  

Lack of model robustness and feasibility is associated with unmet demand.  

Penalties for unmet demand are incurred by assigning additional resource, as needed, 

to the UD dummy node and distributing these resources where requested. These costs 

and thus, the penalty function are included in the third term of the objective function. 

The level of unmet demand is equivalent to the total flow emanating from the UD 

dummy node to all the nodes in the network except to the SE dummy node. 

 

3.3. Two-Stage Problem 

 

The SMIP is a stochastic two-stage problem. During the first stage the model 

determines the location and capacity of the supply facilities ( ily ) and the resource 

quantity of each commodity ( k
ir ) to be allocated at each facility. During the second 

stage the model proceeds to route the resource from the supply facility nodes to the 

demand destination nodes ( ks
ijx ) considering scenario-specific arc capacities ( ks

iju ) and 

costs ( ks
ijc ). While the first stage decision variables seek to minimize the average costs 
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(including infeasibility penalties) incurred over all scenarios, the second stage 

decisions variables seek to minimize the costs incurred in every scenario and for every 

commodity independently, given the first stage decisions.  

 

3.4. Illustrative Example 

 

A network of four nodes and eight links illustrates the model formulation. The 

graphical representation of the network is presented in Figure 3-2. The link 

transportation costs and capacities are provided in Tables 3-1 and 3-3, respectively. 

The demand per commodity for each node at each scenario is given in Table 3-2. It 

was assumed that the link transportation costs were the same for all commodities for 

simplicity. The fixed costs and storage capacities associated with the storage and 

distribution facilities are provided in Table 3-4. The unit costs and volume space 

occupied by each unit of commodity is included in Table 3-5. Three types of resources 

(commodities) were included: water, food and medicine. Three scenarios were 

considered that indicate damages incurred by the network and demands for each 

commodity resulting from a disaster. The damages resulting from the disaster are 

reduction in link capacity or in facility capacity and respective resource quantity. A 

probability of occurrence is assigned to each scenario. As mentioned before in the 

model formulation, each node is separated into its supply node n’ and its demand node 

n as shown in Figure 3-2.  

Scenarios: 

(1) Default: P(1) = 0.3 

(2) The demand at node A is doubled for all commodities: P(2) = 0.3 
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(3) The supply facility located at A’ is destroyed ( 3
', 0,k

A Au k K= ∀ ∈ ) and the 

capacity on link (B,A) is reduced by 20% ( 3
, 40,k

B Au k K= ∀ ∈ ): P(3) = 0.4 

 

 

 

 

 

 

 

 

 

 

Figure 3-2: Example network 

 

Table 3-1: Link transportation costs, k
ijc  

FROM/TO A B C D A' B' C' D' SE VE 
A 999 10 15 999 0 999 999 999 999 999 
B 2 999 3 10 999 0 999 999 999 999 
C 999 8 999 5 999 999 0 999 999 999 
D 999 999 999 999 999 999 999 0 999 999 
A' 0 999 999 999 0 999 999 999 999 10 
B' 999 0 999 999 999 0 999 999 999 10 
C' 999 999 0 999 999 999 0 999 999 10 
D' 999 999 999 0 999 999 999 0 999 10 

UD 50 50 50 50 999 999 999 999 999 0 
SE 999 999 999 999 999 999 999 999 999 999 
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Table 3-2: Demand per commodity and scenario, ks
iv  

 s=1   s=2   s=3  Node 
Water Food Medicine Water Food Medicine Water Food Medicine

A 50 10 20 100 20 40 50 10 20 
B 50 50 50 50 50 50 50 50 50 
C 10 10 10 10 10 10 10 10 10 
D 20 20 20 20 20 20 20 20 20 

 

Table 3-3: Default link capacity for each commodity (s=1), ks
iju  

FROM/TO A B C D A' B' C' D' SE VE 
A 0 50 50 0 0 0 0 0 0 0 
B 50 0 50 50 0 0 0 0 0 0 
C 50 50 0 50 0 0 0 0 0 0 
D 0 0 0 0 0 0 0 0 0 0 
A' 999 0 0 0 0 0 0 0 0 999 
B' 0 999 0 0 0 0 0 0 0 999 
C' 0 0 999 0 0 0 0 0 0 999 
D' 0 0 0 999 0 0 0 0 0 999 

UD 999 999 999 999 0 0 0 0 0 999 
SE 0 0 0 0 0 0 0 0 0 0 

 

Table 3-4: Fixed costs incurred with the opening of a warehouse per size and 
capacities associated with each warehouse size. 

 Small Medium Large 
F 100 200 300 
M 100 500 1000 

 

Table 3-5: Purchase cost and volume space occupied per unit of commodity 

 Water Food Medicine 
Q ($/unit) 10 20 50 

B (volume/unit) 10 5 1 
 

This problem was small enough, with 24 first stage and 72 second stage 

variables, to be solved in extensive form using an integer program solver. However, 

the number of variables increases exponentially with respect to the number of 

scenarios, nodes, commodities and facility types making it impossible for a standard 
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integer program solver to tackle a large-scale version. For this reason, a heuristic 

method was developed and is presented in section 4.4. 

 

Solution 

Objective value: 23090.40 
  

Table 3-6: Facility location and size with its respected allocated resource 

  R   

Node Y(size) Water Food Medicine
Total Volume 

Stored 
A' Medium 60 10 20 670 
B' Large 63 60 70 1000 
C' Large 37 10 10 430 
D' Medium 20 20 20 320 

 

Table 3-6 presents the optimal solution found. One facility is opened in each 

node, two facilities of medium capacities and two of large capacities. The nodes with 

medium facilities are those than are not able to ship supplies because they consume 

the supplies (node A’) or because they do not have any emanating arcs (node D’). In 

terms of resources, the solution allocates enough medicine and food to satisfy the total 

demand of all the nodes in the network regardless of the holding costs. An example is 

shown in scenario 1 where nodes A’, B’ and C’ incur holding costs. Note that the 

penalties for unmet demand are five times the holding costs, so the model will be more 

conservative purchasing the supplies. In terms of meeting the demand for each node, 

the solution allocated enough water, food, and medicine to satisfy the needs of nodes 

B, C, and D in all the scenarios. The total amount of resources allocated in node B’ 

was limited by the maximum warehouse capacity.  

The situation at node A is different and should be discussed separately. Enough 

water was allocated at node A’ to satisfy its demand fully 70% of the time, not 
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meeting 20% of its demand 40% of the time. Only a fraction of the demand for water 

at node A could be satisfied when the supply facility at node A’ was destroyed, 

because of the following reasons: 

• Node B transported as much material as possible because it is its nearest neighbor. 

The amount of water resource sent from B’ was limited by the maximum 

allowable warehouse capacity. Priority for resource purchase was given to food 

and medicine which have lower volume and can therefore permit more demand to 

be met. 

 The amount of resource sent from node C’, on the other hand, was limited by the 

path capacity C-B-A, since the resource coming from C’ shared the link capacity 

with the resource coming from B’. No supplies could be shipped directly from C’ 

to A because the shipping costs are higher than the unmet demand penalty costs. 

Decision: In scenario 1 node A consumes all the resources allocated in node 

A’. In scenarios 2 and 3, nodes B and C send node A all excess resources they have 

available. However, in scenario 3 the amount of water sent to A is not enough to 

satisfy its demand completely. The detailed scheme of resource distribution per 

scenario is presented below. 

   

Resource distribution per scenario 

The quantities of demand and supply are presented in vector form as follows:  
Water
Food
Medicine

±⎡ ⎤
⎢ ⎥±⎢ ⎥
⎢ ⎥±⎣ ⎦

 

where the minus sign indicates demand and the plus sign indicates supply. The 

characters as defined previously, were located in front of the vectors to indicate their 

origin and correspondence. 
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Scenario = 1 

Node A: '

50 60 10
10 10 0
20 20 0

A Av r
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

Node B: '

50 63 13
50 60 10
50 70 20

B Bv r
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

Node C: '

10 37 27
10 10 0
10 10 0

C Cv r
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

Node D: '

20 20 0
20 20 0
20 20 0

D Dv r
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

In scenario 1, 50 units of water, 10 units of food and 20 units of medicine incur 

holding costs. 

Scenario = 2 

Node A: ' ,

100 60 40 0
20 10 10 0
40 20 20 0

A A B Av r x
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

Node B: ' , ,

50 63 40 27 0
50 60 10 0 0
50 70 20 0 0

B B B A C Bv r x x
− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + + − + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

Node C: ' ,

10 37 27 0
10 10 0 0
10 10 0 0

C C C Bv r x
− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

Node D: '

20 20 0
20 20 0
20 20 0

D Dv r
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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In scenario 2, no holding or unmet demand penalty costs were incurred. The 

demand at node A was met sending all the excess resource allocated at nodes B and C. 

Scenario = 3 

Node A: ' ,

50 0 60 40 10 60
10 0 10 10 0 10
20 0 20 20 0 20

A A B Av r x
− + − +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + + + = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

Node B: ' , ,

50 63 40 27 0
50 60 10 0 0
50 70 20 0 0

B B B A C Bv r x x
− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + + − + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

Node C: ' ,

10 37 27 0
10 10 0 0
10 10 0 0

C C C Bv r x
− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

Node D: '

20 20 0
20 20 0
20 20 0

D Dv r
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

In scenario 3, due to the destruction of the storage facility located at node A’, 

which had 60 units of water, 10 units of food, and 20 units of medicine; resource 

purchase and loss costs, were incurred for the destroyed goods. Note that since the 

facility was destroyed, the resources were lost and 10 of units of water incurred 

penalty costs for unmet demand at node A. 

This example was devised in order to show the properties of the SMIP 

formulation described in this chapter. The example shows the model robustness by 

providing a solution that balances the level of unmet demand and of excess resource. 

Based on the magnitude of the penalty costs, the model decides to purchase supplies 

that cannot be shipped through the network (due to link capacity restraints) in some 

instances incurring holding costs, so as not to decrease the level of satisfied demand 

even further. This example also shows the information included in the scenarios such 
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as network reliability and changes in demand levels. Finally, it shows how by 

weighting all the information provided in the scenarios, the facility location and 

quantities of pre-positioned resources were determined. This last provides insight on 

how this example can be expanded in order to tackle a more detailed and realistic 

problem. 
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CHAPTER 4.  METHODOLOGY 

 

The main goal of the model presented in Chapter 3 is to provide a pre-

positioning strategy planning tool to determine the most advantageous a priori 

resource allocation scheme in order to assist disaster victims with minimum response 

time. An illustrative resource pre-positioning plan, resulting from solving the SMIP in 

extensive form, was presented in section 3.4. The plan showed how the model 

determined the best resource locations based on probable scenarios that include both 

damages in the network and demands arising as a result of the disaster. The past 

example with only four nodes and eight links had to find the values for 24 first stage 

and 72 second stage variables, where half of the first stage variables are binary. The 

number of variables of the SMIP formulation grows exponentially with the number of 

cities in the network, facility types, commodities and scenarios considered.  

The methodology explained in this chapter offers computationally attractive 

solutions for the NP-hard problem at hand, making it possible for large scale pre-

positioning plans to be devised. This methodology decomposes the SMIP into smaller, 

easier to solve sub-problems. This is done by combining two techniques: the L-shaped 

method and the Lagrangian relaxation method. The L-shaped method developed by 

Van Slyke and Wets (1969) and also contained in Birge and Louveaux (1997), offers 

an overall framework for the problem solution. Within this framework, the second 

stage problem is a set of minimum cost flow problems, one for each scenario-

commodity combination. Given the amount of resources allocated, the sources and the 

demand node locations, the algorithm finds the least cost paths to send the supply 

shipments without violating the link capacity constraints. This special structure 

contributes to an ability to solve the scenario-specific second stage sub-problems 
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rapidly and efficiently. An important aspect of the L-shaped method is that it takes 

advantage of the computational attractiveness of complete recourse problems.  

The Lagrangian relaxation method as described in section 4.3 is used to relax 

the complicating facility capacity constraint and as a result, decompose the first stage 

problem into a trivial integer problem and a resource allocation linear program. These 

are two sub-problems within the L-shaped method decomposition that are 

computationally inexpensive. An additional benefit of this strategy is that the 

integrality constraints of the binary variable (yil) are relaxed. This further improves the 

computational capabilities of the algorithm. Previous work, the Integer L-shaped 

method published by Laporte and Louveaux (1993), relaxed the integrality constraints 

by adding branch and cut techniques to the L-shaped method of Van Slyke and Wets 

(1969).  

The following sections describe how the SMIP formulation is decomposed and 

how these sub-problems solutions fit into the larger framework of the L-shaped 

method for the overall problem. First, section 4.1 includes an in-depth presentation of 

the overall framework and how the L-shaped method divides the SMIP into its first 

stage and second stage problems. Section 4.2 follows with the description of the 

second stage sub-problems, the network flow problems, whose computational ease is 

exploited by the L-shaped methodology. Section 4.3 explains how the Lagrangian 

relaxation was used to decompose the first stage problem into more computationally 

tractable problems. Finally, section 4.4 introduces the algorithm resulting from the 

combination of the L-shaped method and the Lagrangian relaxation techniques, 

referred to as the Lagrangian L-shaped method (LLSM). The flow chart of the LLSM 

is shown in Figure 4-4. 
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4.1. Master Problem: L-shaped Method 

 

The L-shaped method, developed by Van Slyke and Wets (1969), avoids the 

numerous function evaluations of second stage recourse linear programs by 

approximating the recourse function. The L-shaped method consists of solving an 

approximation of a stochastic program by using an outer linearization of H(y,r), the 

expected value of the second stage problem (Birge and Louveaux, 1997). Outer 

linearization is an approximation scheme used for nonlinear programs that 

approximates a function by using its slopes (Bradley et al., 1977) as shown in Figure 

4-1. The light dashed lines represent the constraints referred to as optimality cuts that 

will approximate H(y,r) by θ, represented in the bold dashed lines.   
 

 

 

 

 

 

 

Figure 4-1: Outer linearization for convex function 

 

During the operation of the L-shaped method, two types of constraints are 

added: feasibility cuts that assure the feasibility of the solution for the second stage 

problem and optimality cuts, which are linear approximations of H(y,r). However, 

since the problem to be solved here has complete recourse (i.e. there is always a 

feasible second stage solution), any feasible solution resulting from the first stage 

problem will be feasible for the second stage problem regardless of the scenario or the 

commodity. Thus, only optimality cuts need to be added.  
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At every stage of the algorithm, the following current problem (CP) is 

considered. The current problem is obtained from the stochastic mixed integer 

program by relaxing the exact definition of H(y,r). H(y,r) is relaxed in a polyhedral 

representation by θ and the constraints called optimality cuts (refer to Figure 4-1).  

 
(CP)  min k k

il il i i
i N l L i N k K

F y q r θ
∈ ∈ ∈ ∈

+ +∑∑ ∑∑  

Subject to: 

(i) Open facilities and facility capacity  
k k
i i il il

k K l L
b r M y

∈ ∈

≤∑ ∑    'i N∀ ∈  

(ii) At most one facility per node 
1il

l L
y

∈

≤∑    'i N∀ ∈  

(iii) Optimality cuts 
E r eχ χθ+ ≥     χ∀ ∈ Χ  

(iv) Non-negativity constraints 
0

0
il
k

i

y

r

≥

≥
   

',
',

i N l L
i N k K

∀ ∈ ∈
∀ ∈ ∈

                                                

  

Variables: 

Let z be the current objective value and z* be the estimated optimal objective value. 

Let δ be the current solution number. 

Let H(y,r) be the expected value of the second stage problem: 
( )

( ),
, ks ks

s ij ij
s S i j A k K

H y r P c x
∈ ∈ ∈

= ∑ ∑ ∑  

as given by the k network flow models. 

Let θ be the approximate value of H(y,r) where  r)H(y,≤θ .  

Let χ be the optimality cut number. Optimality cuts are supportive hyperplanes of 

H(y,r).  These are obtained from the following relationship: δ
χχθ k

irEe 11 ++ −≥   
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where ( )1
ks

s i
s S i N k K

E p w δ
χ +

∈ ∈ ∈

⎡ ⎤= ⎣ ⎦∑∑∑  and ( )1
ks ks

s i i
s S i N k K

e p w vδ
χ +

∈ ∈ ∈

⎡ ⎤= ⎣ ⎦∑∑∑ .                                                       

The optimality cuts are based on dual theory in linear programming. At every 

iteration δ, a minimum cost flow problem is solved to optimality for every scenario 

and every commodity yielding the simplex multiplier shadow prices associated with 

the flow conservation constraint ( )ks
iw δ . By weak duality at an arbitrary iteration δ for 

scenario s and commodity k, for a feasible solution the following relationship is true: 

( ) ( ) ( ), , ks ks k
i i iH y r s w v rδ δ≥ − .  

Taking the expected value, the following is obtained: 

( ) ( )( )
( )( )

( )( ) ( )( )

, ks ks k
i i i

ks ks k
s i i i

s S

ks ks ks k
s i i s i i

s S s S

H y r E w v r

P w v r

P w v P w r

δ δ

δ δ

δ δ δ

∈

∈ ∈

⎡ ⎤≥ −⎣ ⎦
⎡ ⎤= −⎣ ⎦

⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦

∑

∑ ∑

 

Note that to solve the SMIP is equivalent to solving: 

' '
min k k

il il i i
i N l L i N k K

F y q r θ
∈ ∈ ∈ ∈

+ +∑∑ ∑ ∑  

Subject to: 

(i) Open facilities and facility capacity 
k k
i i l il

k K l L
b r M y

∈ ∈

≤∑ ∑  i N∀ ∈  

(ii) Number of facilities per node 

∑
∈

≤
Ll

il 1y    i N∀ ∈  

(iii) Approximation gap 
( )

( ),
, ks ks

s ij ij
s S k K i j A

H y r P c x θ
∈ ∈ ∈

= ≥∑∑ ∑  

(iv) Non-negativity constraints 

( )1,0∈ily  LlNi ∈∈∀ ,'  

0≥k
ir   KkNi ∈∈∀ ,'  
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Since θ is unrestricted save for constraint (iii), then it follows that for a ( )θ,r  

solution pair to be feasible ( ),H y rθ ≥  and so, ( ) ( )ks ks k
i i iE w v r

δ δθ ≥ −  which is the 

third constraint of the CP. At optimality ( )ryH ,=θ  since θ is unrestricted save 

for ( )ryH ,≥θ . Thus, at each iteration either ( )ryH ,=θ  and an optimal solution has 

been obtained or ( )ryH ,<θ  and the optimality cuts that have been created previously 

have not been able to adequately define the relationship ( )ryH ,≥θ , and therefore a 

new optimality cut must be added. Following is the L-shaped method procedure. 

 

General procedure 

Step0. Set 0, *zχ δ= = = ∞ . Set −∞=θ  and ignore during the initial computation.  

 

Step1. Set 1+= δδ . Solve the current problem (CP). Set ( )δδδ θ,r,y  as the current 

optimal solution. 

 

Step2. Check the value of the current solution: if *T TF y q r zδ δ δθ+ + >  then fathom 

the current problem (fathom by bounds) and go to Step1. 

 

Step3. Compute ( )δδ r,yH  and ( )δδδδδ r,yHrqyFz TT ++= . If *z zδ <  then 

update *z zδ= . 

 

Step4. If ( )δδδθ r,yH≥  then fathom the current node (fathom by optimality cut) and 

end. Otherwise, impose one optimality cut, set 1+= χχ  and return to Step2.  

 

Example 

Following is an illustrative example that shows how the optimality cuts are 

generated. The problem is a pre-positioning strategy with only two cities and one 
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commodity (water). The resource purchase price and volume occupied for water are 

10$=water
iq per thousand gallons and 3200water

ib ft=  per thousand gallons, 

respectively. In this case, three facility types are included (e.g. small, medium and 

large). The operating costs for the these facilities are ( 100, =smalliF , 200, =mediumiF , 

and 300arg, =eliF ) and their maximum storage capacities are ( , 2000i smallM = , 

, 10000i mediumM = , and , arg 20000i l eM = ). City A has a demand of 38 units of 

commodity ( 38=ks
Av ) while city B has a demand of 23 units ( 23=ks

Bv ). The link costs 

are: 10, =BAc  and 2, =ABc . Link capacities between cities were set to 50 units 

( 50,, == ABBA uu ). The unmet demand unit penalty costs are equal to $50 and the unit 

holding costs are $10. The SMIP formulation presented in chapter 3 is used and the 

current problem formulation is as follows. 

 

', ' , , ', '

min k k
il il i i

i A B l s m l i A B k water

F y q r θ
= = = =

+ +∑ ∑ ∑ ∑  

Subject to: 

(i) Open facilities and facility capacity 
k k
i i l il

k K l L
b r M y

∈ ∈

≤∑ ∑    i N∀ ∈  

(ii) Number of facilities per node 
1il

l L
y

∈

≤∑    i N∀ ∈  

(iii) Non-negativity constraints 

0

)1,0(

≥

∈
k

i

il

r

y
    

KkNi
LlNi

∈∈∀
∈∈∀

,'
,'

 

    

Table 4-1 includes the results obtained at each iteration for the current problem 

objective (z), the recourse function (H(y,r)), the estimated second stage cost (θ), and 

the first stage variables ( ily and k
ir ).  
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Table 4-1: Values per iteration of the first and second stage problems 

iteration H(y,r) Theta Z Y(A) Y(B) R(A) R(B) 

0 3050 -99999 0 0 0 0 0 

1 230 0 361 Large 0 61 0 

2 76 0 361 0 Large 0 61 

3 104 56 415.88 Small Medium 10 49.88 

4 76 76 437 0 Large 0 61 
 

Figure 4-2 shows a graphical representation of how the recourse function is 

approximated with the addition of the optimality cuts during the outer-linearization 

process. An explanation of how these optimality cuts are generated is presented below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-2: Second stage function and optimality cuts 
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At iteration 0, all variables are initialized: −∞=θ , 0, =liy  LlNi ∈∈∀ , , 

0=k
ir  NiKk ∈∈∀ , , z = 0. Since there are no resources allocated in the system, the 

unmet demand of each city incurs penalty costs equaling a value of 3050 

(=50*(38+23)). The latter is the initial recourse function value. Since ),( ryH<θ  and 

θ is an outer-linearization of H(y,r), an optimality cut of the form 

( , ) ( , )

ks ks ks k
s ij i s ij i

s S i j A k K s S i j A k K

P w v P w rθ
∈ ∈ ∈ ∈ ∈ ∈

≥ −∑ ∑ ∑ ∑ ∑ ∑  

must be added as a constraint to the current problem. With the shadow prices equal to 

50 ( 50,50 == BA ww ), the resulting optimality cut is: 

BA rr *50*50)23(50)38(50 −−+≥θ  

After solving the resulting CP, H(y,r)=230 and ),(0 ryH<=θ  so a new 

optimality cut must be added to the current problem. The shadow prices in this case 

are 0 for node A and 10 for node B ( 10,0 == BA ww ). The optimality cut is equal to:  

Br*10)23(10 −≥θ  

This added constraint produces a value of 76 for the recourse function while 

the estimated value stays with a value of zero ( 76),(0 =<= ryHθ ). The shadow 

prices in this iteration are 2=Aw  and 0=Bw . The new optimality cut is: 

Ar*2)38(2 −≥θ  

Solving the current problem produces a value of 104 for the recourse function 

and a value of 56 for the estimated second stage cost. Since 104),(56 =<= ryHθ , a 

new optimality cut must be added. With the shadow prices of 50=Aw  and 48=Bw , 

the optimality cut becomes: 

BA rr *48*50)23(48)38(50 −−+≥θ  

The recourse function and the estimated recourse function values obtained 

after solving the current problem are 76 each. Since they are equal, we reached an 

optimal solution. As shown in Table 4-1, a large facility is opened in node B’ with 61 

stored units of commodity (e.g. water).  
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4.2. Sub-problem: Minimum Cost Flow Problem 

 

The second stage problems of the SMIP formulation are minimum cost flow 

problems. Minimum cost flow problems determine the least cost shipment of a 

commodity through a network in order to satisfy the demands at certain nodes from 

available supplies at other nodes while considering the arc capacities (Ahuja et al., 

1993).  In this case, once the facility locations have been determined and the resources 

have been allocated, the recourse problem ships each commodity through the network 

towards the demand points in each scenario. The reasoning behind this decomposition 

is defined next. 
The first term of the objective function of the SMIP as presented in section 3.1, 

( ),

ks ks
s ij ij

s s i j A k K
P c x

∈ ∈∈ ∈
∑ ∑ ∑  

can be represented as 

( )ks k
s

s S k K
P z r

∈ ∈

⎡ ⎤⎣ ⎦∑∑  

where ( )ks kz r  is the value of the objective function for the minimum cost flow 

problem for commodity k in scenario s. For any fixed value of the resource variables 
k

ir  the problem decomposes into k separate minimum cost flow sub-problems for each 

scenario.  

( )ks kz r =
( ),

min ks ks
ij ij

i j A
c x

∈
∑  

Subject to: 

(i) Flow conservation  
ks k ks ks
ji i ij i

j i N j i N
x r x v

≠ ∈ ≠ ∈

+ = +∑ ∑    Ss,Kk,Ni ∈∈∈∀  

(ii) Arc capacity 
ks ks
ij ijx u≤    ( , ) , ,i j A k K s S∀ ∈ ∈ ∈  

(iii) Non-negativity 
0xks

ij ≥    ( ) Ss,Kk,Aj,i ∈∈∈∀  
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Then ( ) ( )ks k ks k
s

s S k K
P z r E z r

∈ ∈

⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦∑∑  is the expected value of the objective 

function over all commodities and all scenarios. The solution also produces ks
iw , the 

shadow prices obtained at optimality for the flow conservation constraints in the 

network flow problems (by commodity and by scenario). They represent the marginal 

costs associated with a unit change of resource k
ir . These dual variables play a direct 

role in the construction of the optimality cuts of the L-shaped method for the overall 

problem. 

There are many algorithms available designed to solve minimum cost flow 

problems. Some like the cycle-canceling algorithms, the successive shortest path 

algorithms, the primal-dual and the out-of-kilter algorithms; solve a sequence of 

shortest path problems with respect to maximum flow residual networks and 

augmenting paths. All these algorithms have pseudo-polynomial running times. An 

algorithm with better running times used to solve minimum cost flow problems is the 

network simplex algorithm, which is an adaptation of the well known simplex method 

for linear programs. In the case of the minimum cost flow problem, the linear 

programming basis is a spanning tree. At every iteration, the network simplex moves 

from one spanning tree solution to another until it finds a spanning tree that satisfies 

the network optimality conditions. The latter was chosen to solve the second stage 

minimum cost flow sub-problems. This operation is realized during the third step of 

the L-shaped method as described in the previous section. 

 

4.3. Sub-problem: Lagrangian Relaxation 

 

A Lagrangian relaxation approach was used to solve the CP of the L-shaped 

method as described in section 4.1. The Lagrangian relaxation procedure is based on 
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the observation that many difficult integer programs can be modeled as relatively easy 

core problems with a small number of relatively difficult constraints (Fisher, 1985). 

These constraints are relaxed and their absence from the feasible region is included in 

the objective function as a penalty term with associated Lagrange multipliers µ. In this 

case, the constraint to be relaxed is constraint (i) of the CP shown in section 4.1 

pertaining to the opening of new facilities and to the resource allocation based on the 

facility’s capacity. This constraint was chosen because without it, the problem (CP) 

decomposes into two separate sub-problems – one in the ily  variables and the other in 

the k
ir  variables. These sub-problems can be solved very easily. The resulting 

Lagrangian relaxation L(µ) of the original CP is as follows: 

( ) min k k k k
il il i i i i i il il

i N l L i N k K i N k K l L
L F y q r b r M yμ θ μ

∈ ∈ ∈ ∈ ∈ ∈ ∈

⎧ ⎫
= + + + −⎨ ⎬

⎩ ⎭
∑∑ ∑∑ ∑ ∑ ∑  

Subject to: 

(i) At most one facility per node 
1il

l L
y

∈

≤∑    'i N∀ ∈  

(ii) Optimality cuts 

E r eχ χθ+ ≥    χ∀ ∈ Χ  

(iii) Non-negativity constraints     

( )0,1ily ∈    ',i N l L∀ ∈ ∈  

 0k
ir ≥          ',i N k K∀ ∈ ∈  

 

As a result of the Lagrangian relaxation, for fixed values of iμ  the CP is 

decomposed into a trivial integer program (SP1) and a resource allocation linear 

program (SP2).  
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 (SP1) ( )min il i il il
i N l L

F M yμ
∈ ∈

−∑∑   

Subject to: 

(i) At most one facility per node 
1il

l L
y

∈

≤∑    'i N∀ ∈  

(ii) Non-negativity constraints 

( )0,1ily ∈    ',i N l L∀ ∈ ∈  

 
 (SP2) ( )min k k k

i i i i
i N k K

q b rμ θ
∈ ∈

+ +∑∑       

Subject to: 

(i) Optimality cuts 

E r eχ χθ+ ≥    χ∀ ∈ Χ  

(ii) Non-negativity constraints                           

0k
ir ≥    ',i N k K∀ ∈ ∈  

 

The greedy algorithm shown in Figure 4-3 will open facilities to location 

'i N∈  only where the yil coefficient ( )il i ilF Mμ−  has the most negative value among 

all facility sizes per node. Facilities of a specific magnitude will be opened only in the 

locations for which the shadow price on the facility capacity constraint is larger than 

the fixed cost of the facility.   

The second sub-problem (SP2) is a linear program that determines the optimal 

quantities of resource of different commodities based on their purchase price and on 

how much storage space they occupy or require, while considering their shipment 

costs and the penalties incurred when unavailable. The solution for SP2 is obtained 

with a commercial linear problem solver. 
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begin { 
   for each i∈N’  do { 
    min = 0; 
    minSize =  ∞; 
    for each l∈L do { 
     if ( )minil i ilF Mμ− <  then { 
      min = il i ilF Mμ− ; 
      minSize = l; 
     } end if 
    } end do  
   } end do 
   if ( )min 0<  then { 
    yi,,minSize= 1; 
    min = 0; 
    minSize = ∞; 
   } end if 
  }  end 

Figure 4-3: Greedy algorithm to determine the facility location and capacity 

 

By the Lagrangian Bounding Principle, for any value of the Lagrangian 

multiplier µ, the Lagrangian problem L(µ) constitutes a lower bound (in a 

minimization problem) on the optimal objective function value of the original problem 

(Ahuja et al., 1993). To obtain the lower bound value closest to the optimal solution, 

one must solve the Lagrangian multiplier problem L* = maxµ L(µ). Following is the 

general procedure to solve the Lagrangian problem.  

 

General Procedure 

Step0. Solve SP1 and SP2. Set ( ), ,k
il iy r θ as the current optimal values. Set the lower 

bound equal to the objective values of the optimal solutions of SP1 and SP2: 

( ) ( )1 2 ,k
SP il SP ilowerB z y z r θ= +  

 

Step1. Check for feasibility. If  
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, 'k k
i i l il

k K l L
b r M y i N

∈ ∈

≤ ∀ ∈∑ ∑  

then stop, the solution is optimal. In the event that facilities with enough capacity to 

store the resource quantities determined by SP2 are open in the appropriate locations 

as a result of SP1, then the solution pertaining to the lower bound of the Lagrangian 

relaxation is feasible. Since the lower bound is the best solution that can be achieved, 

the algorithm has reached optimality. In the case where the facility locations and 

magnitude do not coincide with the supply allocation scheme, one must find feasible 

values for yil based on the values of ri
k found in Step0. The objective value of this 

feasible solution added to the objective value of SP2 will be the upper bound. 

( ) ( )2, ,feasible k k
il i SP iupperB z y r z r θ= +  

 

Step2. Calculate error term: 

upperB
lowerBupperB −

=ε  

If ε is less than a predetermined threshold value, then stop due to algorithm 

convergence.  

 

Step3. Update Lagrangian multipliers using a sub-gradient method as described below. 

Then return to Step0. Subgradient optimization techniques are used to update the 

Lagrangian multipliers in the direction of change using a step size that ensures the 

algorithm convergence. If the subgradient is equal to 0 then the resource quantities use 

exactly the amount of storing space provided and the multipliers µ are kept at their 

current values. If the subgradient is negative then there is excess space to 

accommodate additional supplies and the Lagrangian multiplier µ, which is like a toll 

for the resource, decreases. Else, the subgradient is positive, the warehouse capacity 
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has been exceeded; less resource supplies must be purchased so the Lagrangian 

multipliers µ increase. 

 
− First determine the gradient direction: k k

i i i il il
k K l L

subgradient b r M y
∈ ∈

= −∑ ∑  

− Second determine the step size - how far to move in the gradient direction: 

 

 

− Finally update the multipliers: ( ) ( )iiterationsiterations tsubgradiensizestep *_1 +=+ μμ  

 

4.4. Lagrangian L-shaped Method Algorithm 

 

Figure 4-4 shows the structure of the resulting Lagrangian L-shaped method 

algorithm. The diagram shows how the L-shaped method is used as the master 

problem, the Lagrangian relaxation is used to solve the L-shaped method current 

problem and the network simplex algorithm solves the minimum cost flow problems 

finding the recourse function value. 

General procedure 

Step0. Set 0, * , , 0z upperB lowerBχ δ= = = ∞ = ∞ = . Set −∞=θ  and ignore during 

the initial computation. 

 

Step1. Calculate error term:
upperB

lowerBupperB −
=ε .  

If  ε is less than the predetermined threshold value then stop due to algorithm 

convergence and go to Step5, else go to Step2.  

 

 

iterations
sizestep 1_ =
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Figure 4-4: Lagrangian L-shaped method algorithm 

 
 

Step2. Set 1+= δδ . Solve SP1 and SP2. Set ( ), ,y rδ δ δθ as the current optimal 

solution. Set the lower bound equal to the objective values of the optimal solutions of 

SP1 and SP2:  

( ) ( )1 2 ,SP SPlowerB z y z rδ δ δθ= + . 
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Step3. Check for feasibility. Find values for yil which provide a feasible solution based 

on the values of ri
k obtained from SP2:  

, 'k k
i i l il

k K l L
b r M y i N

∈ ∈

≤ ∀ ∈∑ ∑ . 

The objective value of this feasible solution added to the objective value of SP2 will 

become the upper bound. ( ) ( )2, ,feasible k k
il i SP iupperB z y r z r θ= +  

 

Step4. Update Lagrangian multipliers using a sub-gradient method as described below. 

Then return to Step1. 
− Determine the gradient direction: k k

i i i il il
k K l L

subgradient b r M y
∈ ∈

= −∑ ∑  

− Determine the step: 
iterations

sizestep 1_ =  

− Finally update the multipliers: ( ) ( )iiterationsiterations tsubgradiensizestep *_1 +=+ μμ  

Note that “iterations” refer to the number of iterations of the Lagrangian relaxation 

solving the current problem.  

 

Step5. Check the value of the current solution: if ( ), , *lowerB y r zδ δ δθ >  then 

compute ( )δδ r,yH  and ( )δδδδδ r,yHrqyFz TT ++= . If *z zδ <  then 

update *z zδ= . 

 

Step7. If ( )δδδθ r,yH≥  then fathom the current node (fathom by optimality cut) and 

end. Otherwise, impose one optimality cut, set 1+= χχ  and ε= ∞. Return to Step1.  
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CHAPTER 5.  CASE STUDY 

 

5.1. Case Study Problem  

 

A case study serves to illustrate the Stochastic Mixed Integer Program (SMIP) 

and to verify the Lagrangian L-shaped Method algorithm. In order to verify the 

methodology, the case study had is small enough to be solved in extensive form with a 

commercial software package, but detailed enough to paint a realistic picture. The 

problem focuses on hurricane threats in the Gulf of Mexico states. This region was 

chosen because of its high incidence of hurricane threats. The Atlantic Oceanographic 

and Meteorological Laboratory (AOML), a National Oceanic and Atmospheric 

Administration (NOAA) research facility, estimates that an average of 5.9 hurricanes 

strike the Atlantic Basin (East and Gulf states) each year, with an average of 2.2 being 

major hurricanes. The network created for the study is composed of 30 nodes and 58 

links which include major cities of the Gulf coast states as shown in Figure 5-1 and 

Table 5-1.  

In order to test the model and the algorithm, two sets of scenarios were 

developed, one of 21 and another of 51 scenarios. The scenarios are based on 

historical records of fifteen hurricane storms, ten major (categories 3 through 5) and 

five minor (categories 1 and 2). The descriptions of these two sets are presented in 

sections 5.2 and 5.3. The scenarios include both single storms and combinations of 

storms. A probability of occurrence is assigned to each scenario. These probabilities 

are based on approximately matching aggregate historical characteristics of hurricanes 

in the region, but should be treated as simply illustrative values. 
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Table 5-1: Nodes included in the network 

Node Description Node Description 
1 Brownsville 16 Birmingham 
2 Corpus Christi 17 Nashville 
3 San Antonio 18 Atlanta 
4 Dallas Ft. Worth 19 Columbia 
5 Houston 20 Charlotte 
6 Little Rock 21 Wilmington 
7 Memphis 22 Charleston 
8 Jackson 23 Savannah 
9 Monroe 24 Tallahassee 
10 Lake Charles 25 Int. I10 & I75 
11 Baton Rouge 26 Jacksonville 
12 Int. I10 & I55 27 Orlando 
13 New Orleans 28 Tampa  
14 Biloxi 29 Miami  
15 Mobile 30 Key West 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-1: Case study network 
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5.2. Network costs and capacities  

 

The scenario definitions include damage to the transportation network, 

represented by reductions in the capacity of the nodes and the links in the network 

shown in Figure 5-1. The damage levels and locations are estimates, based on damage 

assessment reports (Beven, 2005; Post et al., 1990, 1993, 1994, 1999a, 1999b, 2000, 

2003, 2005; US Army Corps, 1970, 1996, 1998; US Department of Commerce, 1997a, 

1997b, 2006) provided by NOAA for the historical storms. Links can either be 

“damaged” (incurring a 50% reduction in capacity) or “destroyed” (complete loss of 

capacity). The default values for the link capacities are set at 2000 units. The links and 

nodes affected are those located within the hurricanes’ paths and the level of damage 

depended on the hurricane intensity at landfall. The facilities located at the hurricanes’ 

landfall points are considered to be destroyed for major hurricanes and have 

reductions of capacity of 50% for minor hurricanes. In addition, any supplies pre-

positioned at the nodes in the network where hurricanes landfall are partially lost in 

the case of minor hurricanes and completely lost for major hurricanes. Table 5-2 

summarizes the damage to the transportation infrastructure and potential storage 

facilities under the various storms included in the scenarios. 

The link costs are estimates based on distance between the cities as shown in 

Figure 5-2 and the shipping costs of the specific commodities (trans) as described in 

section 5.4. However, the costs specified in Figure 5-2 have been rescaled for use in 

the case study, and do not reflect specific monetary units. 
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Table 5-2: Roadway and facility damages resulting from hurricane passage 

Roadway (links) Facility (nodes) Hurricane 
Damaged Destroyed Damaged Destroyed 

Alicia -- (4,5)S -- 5 

Lili 

(9,11) 
(10,11) 
(11,12) 
(11,13) 
(12,13) 
(12,14) 

(8,12) 11 -- 

Camille -- 
(12,14) 
(14,15) 
(15,24) 

-- 14 

Bonnie -- -- 22 -- 
Floyd -- (17,20) 22 -- 

Andrew 
(29,27)N 
(27,26)N 
(26,23)N 

-- 11 29 

Opal 
(15,16) 
(15,24) 
(15,18) 

-- -- 15 

Isabel (20,21) 
(19,21) (21,22) 21 -- 

Katrina 
(8,14) 
(11,13) 
(12,14) 

(12,13) 29 13 

Bertha (19,21) 
(21,22) -- -- -- 

Fran  
(19,21) 
(22,23) 
(23,26) 

(21,22) -- 21 

Hugo -- -- 22 -- 
Emily -- -- -- -- 
Dennis (15,16) (15,24) -- -- 
Georges (29,30) -- 14 30 

*N= northbound, S = southbound 
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Figure 5-2: Link costs 

 

5.3. Demands 

 

Three emergency supplies are considered in the case study as shown in Figure 

5-3. These are water, food and medical kits. Costs estimates were based on water 

stored in 10000 gallon-tanks, ready to eat meals (MREs) sold by the dozens and 

medical kits designed for emergencies. For the volume occupied by each commodity 

in cubic feet, its unit purchase price and unit transportation cost please refer to Table 

5-6. 

The demands for these commodities for each scenario are computed based on 

the number of evacuees and the total number of people seeking shelters in each of the 

hurricanes as recorded on the hurricane assessment reports. To estimate the emergency 

supplies demands shown in Table 5-3, the following assumptions were made: 
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Figure 5-3: Commodities considered - water tanks, meals-ready-to-eat (MREs) 
and medical kits 

 

• The expected demand for medical kits was calculated based on the number of 

people sheltered. Since the medical kit considered could provide service to four 

people, the estimated demand for medical kits = number of people sheltered / 4.  

• An average person consumes three meals and two snacks per day. Similar to the 

expected number of medical kits, the demand for food was estimated based on the 

needs of the people staying in shelters. It was assumed that the average length of 

stay of people in a shelter would be 3 days for a minor hurricane and 7 days for a 

major hurricane. Thus the amount of food required during minor hurricanes = 

5*sheltered*3 and during major hurricanes = 5*sheltered*7. 

• The water demand varies according to the number of evacuees. It was assumed 

that utilities take 3 days to recover from damages incurred during minor hurricanes 

and 10 days to recover from major hurricanes. Considering that the average person 

needs a gallon of water per day for food preparation and drinking according to the 

Department of Defense and the Office of Civil Defense (National Terror Alert 

Response Center website), the estimated water demand for minor hurricanes = 

1*evacuees*3 and the water demand for major hurricanes = 1*evacuees*10.  
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Table 5-3: Emergency supply demands generated by hurricane threat 

Hurricane Category Sheltered Evacuees
Water 

(1000 gallons)
Food 

(1000 units) 
Medicine 

(units) 
Alicia 3 25000 35000 350 525 500 

Camille 5 44152 56000 560 927 883 
Bonnie 2 20087 287000 861 181 402 
Floyd 2 188000 3000000 9000 1692 3760 

Andrew 4 84340 750000 7500 1771 1687 
Opal 3 87534 100000 1000 1838 1751 
Isabel 2 36000 200000* 600 324 720 
Lili 1 18000 500000 1500 162 360 

Katrina 5 3800000 1040000 10400 133000 950000 
Bertha 2 75000 750000* 2250 1125 18750 
Fran 3 50000 500000* 5000 1750 12500 

Dennis 3 18000 1800000** 18000 630 4500 
Emily 3 2282 281750 2818 80 571 

Georges 4 42204 223900 2239 1477 10551 
Hugo 4 112027 440000 4400 3921 28007 

* estimated: Number of sheltered is close to 10% number of evacuees 
**estimated: Number of sheltered is close to 1% number of evacuees on tourist area 
 

The demands per city per scenario were estimated based on their population 

densities and the intensity of the hurricane when reaching each city. The total demand 

calculated previously was distributed among the affected cities by calculating a 

fraction that compared these cities in terms of how much of its population might 

become victims of the storm. The estimate was done for each commodity and each 

city with the following equation: 

 

, mod mod

*
*

hurricane
cityhurricane hurricane

city com ity com ity hurricane
city

cities

Intensity Population
demand demand

Intensity Population

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠
∑
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Table 5-4: Demand generated by the hurricanes used to construct the scenarios 
by commodity and city 

Hurricane Node City 
Water 

(1000 gals) 
Food 

(1000 units) Medical Kits
Alicia 5 Houston 201 302 287 

 4 Dallas 40 60 57 
 3 San Antonio 80 121 115 
 2 Corpus Christi 19 28 27 
 1 Brownsville 5 7 7 
 10 Lake Charles 5 7 7 

Camille 14 Biloxi 12 19 18 
 13 New Orleans 296 491 467 
 15 Mobile 44 73 69 
 8 Jackson 1 1 1 
 7 Memphis 52 86 82 
 17 Nashville 43 70 67 
 16 Birmingham 113 187 178 

Lili 10 Lake Charles 56 6 13 
 11 Baton Rouge 177 19 43 
 13 New Orleans 1014 110 243 
 9 Monroe 28 3 7 
 6 Little Rock 48 5 11 
 7 Memphis 177 19 43 

Bonnie 21 Wilmington 59 12 28 
 22 Charleston 314 66 146 
 20 Charlotte 309 65 144 
 19 Columbia 179 38 84 

Floyd 21 Wilmington 493 93 206 
 22 Charleston 2614 491 1092 
 20 Charlotte 2571 483 1074 
 19 Columbia 2986 561 1248 
 23 Savannah 335 63 140 

Andrew 29 Miami 3841 907 864 
 28 Tampa 1997 472 449 
 30 Key West 19 5 4 
 27 Orlando 819 194 184 
 13 New Orleans 666 157 150 
 11 Baton Rouge 116 27 26 
 10 Lake Charles 37 9 8 

 14, 8,9 
Biloxi, Jackson, 

Monroe 1 0 0 
Opal 15 Mobile 121 222 212 

 14 Biloxi 21 39 37 
 24 Tallahassee 107 197 187 
 16 Birmingham 207 381 363 
 13 New Orleans 543 999 951 
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Table 5-4 (Continued) 
Bertha 21 Wilmington 111 56 928 

 22 Charleston 885 442 7373 
 20 Charlotte 580 290 4834 
 19 Columbia 674 337 5615 

Isabel 21 Wilmington 50 27 61 
 22 Charleston 134 72 160 
 20 Charlotte 263 142 316 
 19 Columbia 153 82 183 

Katrina 29 Miami 2945 37661 269009 
 28 Tampa 1531 19584 139885 
 30 Key West 15 188 1345 
 27 Orlando 942 12052 86083 
 13 New Orleans 3828 48960 349711 
 11 Baton Rouge 535 6839 48852 
 10 Lake Charles 127 1627 11621 
 14 Biloxi 15 193 1381 
 8 Jackson 3 41 292 
 9 Monroe 3 40 287 
 15 Mobile 455 5815 41535 

Fran 21 Wilmington 274 96 685 
 22 Charleston 1452 508 3631 
 20 Charlotte 1428 500 3571 
 19 Columbia 1659 581 4148 
 23 Savannah 186 65 466 

Hugo 22 Charleston 1732 1544 11027 
 21 Wilmington 109 97 694 
 19 Columbia 1484 1323 9448 
 20 Charlotte 852 759 5422 
 23 Savannah 222 198 1415 

Emily 21 Wilmington 2818 80 571 
Dennis 15 Mobile 9378 328 2344 

 24 Tallahassee 8293 290 2073 
 14 Biloxi 83 3 21 
 8 Jackson 44 2 11 
 30 Key West 202 7 51 

Georges 29 Miami 1513 998 7128 
 30 Key West 15 10 71 
 13 New Orleans 590 389 2780 
 14 Biloxi 5 3 22 
 15 Mobile 117 77 550 
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Table 5-4 summarizes units of the various commodities required in specific 

cities for each of the fifteen historical storms. The units have been scaled for 

convenient representation (water demand is in thousands of gallons, for example). 

Demands for scenarios that include combinations of storms are the sum of individual 

storm demands. 

 

5.4. Resource and facilities unit costs and dimensions   

 

Table 5-5 contains the unit costs of opening a new facility (F) depending on its 

capacity. Table 5-6 contains the unit purchase prices (Q) of the resources by 

commodities, the unit shipments costs per unit of distance traveled (trans) and the 

volume (B) that each resource unit occupies. 
 

Table 5-5: Costs of opening a facility depending on its storage capacity 

 
 
 

 
 

Table 5-6: Unit purchase price, transportation costs and volume occupied by 
commodity 

Commodity Q ($) B (ft3) trans ($) 
Water (per 1000 gals) 647.7 144.6 0.3 
Food (per 1000 units) 5420 83.33 0.04 

Medicine 140 1.16 5.80E-04 
 

The unmet demand penalty costs are estimated as five times the resource 

purchase price, and the holding costs are estimated as one fourth the purchase price. 

Purchase prices for the three commodities are listed in Table 5-6.  

 

Size Area (ft2) F ($) M (ft3) 
Small 2800 19600 36400 

Medium 31400 188400 408200 
Large 60000 300000 780000 
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5.5. Probability distribution 

 

The computation of the probabilities of the scenarios was divided into two 

stages. First determine the probability of occurrence of each hurricane and then 

calculate the probabilities of being hit by more than one hurricane within a small 

period of time. For the first stage a series of statements were developed based on 

historical records that established relationships between the probabilities of the 

hurricane threats. These are:  

• Forty percent of all hurricanes that hit the U.S. hit the state of Florida. 

• Based on the ratio of the average number of major (2.2) and minor (3.73) 

hurricanes that have hit the Atlantic Basin per year between the years 1965 and 

2004 as shown in Appendix 1, it was assumed that a minor hurricane would have a 

higher likelihood of occurrence compared to a minor hurricane. The probability of 

a major hurricane would be (2.2/3.73 = 0.6) the probability of a minor hurricane.  

• It was assumed that the sum of the probabilities of all scenarios would be equal to 

1. 

• It was assumed that hurricanes of the same intensity that shared similar trajectories 

would have the same probability of occurrence and if their intensities were 

different, then the minor hurricane would have a larger likelihood of occurrence. 

A more detailed description of the probability calculations are included in sections 5.2 

and 5.3 for the creation of the 21 and the 51 scenario test problems.  
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5.6. Twenty-one scenarios 

 

A subset of eight out of the fifteen hurricanes was included in the creation of 

the 21 scenarios. The storms included were major hurricanes Camille, Alicia, Andrew 

and Opal; and minor hurricanes Lili, Isabel, Floyd and Bonnie. The demands and the 

damages inflicted on the network due to these storms were as stated in Tables 5-2 and 

5-4. Following are the statements used to determine the probability of each scenario. 

 

First stage  

It was assumed that the probability of being hit by one hurricane was more 

likely than being attacked by two or non at all, so it was established that there should 

be a 75% chance of being hit by one hurricane and 25% of being hit by two or not 

being hit at all in a year. The sum of the probabilities of the eight single hurricanes 

threats would equal 0.75.   

Eq1: Bonnie + Floyd + Camille + Opal + Andrew + Isabel + Lili + Alicia = 0. 75 

 

Since forty percent of all hurricanes that attack the United States hit Florida, it 

was established that the sum of the probabilities of the hurricanes that could affect 

Florida would be equal to 0.4.  Eq2: Bonnie + Floyd + Andrew + Opal = 0.4*(0.75) 

 

Since hurricanes Alicia, Camille and Opal are major hurricanes with 

trajectories that affect the same region (i.e. the Gulf Coast); it was assumed that their 

probabilities would be the same. Eq3: Camille = Alicia = Opal 

 

Similarly, the probabilities of minor Cape Verde hurricanes Bonnie, Floyd and 

Isabel were assumed to be equal. Eq4: Bonnie = Floyd = Isabel 
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Because hurricanes Alicia and Lili shared a similar trajectory, it was assumed 

that the probability of hurricane Alicia was 0.6 times the probability of hurricane Lili 

using the major/minor hurricane ratio. Eq5: Alicia = 0.6 Lili 

 

Using the major to minor hurricane ratio and assuming that the relationship 

will remain constant over all hurricane instances, the following statement was 

developed where the sum of the probabilities of all major hurricanes was equaled to 

the product of the sum of the probabilities of all minor hurricanes times the 

major/minor hurricane ratio: 

Eq6:  Alicia + Andrew + Opal + Camille = 0.6 (Bonnie + Floyd + Isabel + Lili) 

 

Table 5-7 shows the results obtained after solving the six equations. Since the 

probability of occurrence of hurricane Andrew was negative, the value of each of the 

other hurricanes was truncated and the difference was used to increase the probability 

of hurricane Andrew resulting in the following values.  
 

Table 5-7: Probability of occurrence of each hurricane 

Hurricanes Alicia Camille Isabel Andrew Lili Floyd Bonnie Opal 
Probability = 0.0944 0.0944 0.1037 -0.0020 0.1573 0.1038 0.1038 0.09448

total

Probabilities 
rounded = 0.09 0.09 0.0975 0.0375 0.15 0.0975 0.0975 0.09 0.75

 

Second stage 

The hurricane threat combinations were selected depending on the hurricane 

intensity and trajectory. The goal was to create a series of scenarios that contained as 

many different hurricane damage combinations as possible, while keeping a smaller 

number of instances where both natural disasters affected the same region and a larger 
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number of instances where the storms had different intensities. The resulting scenarios 

are shown in Table 5-8.  
 

Table 5-8: Scenarios 9 through 21 

Combinations  Regions affected  Scenarios 
Major Minor Same Different 

Alicia + Camille √√   √   
Alicia + Floyd √ √   √ 
Opal + Bonnie √ √     
Opal + Andrew √√   √   
Lili + Andrew √ √     
Lili + Isabel   √√   √ 

Alicia + Isabel √ √   √ 
Opal + Isabel √ √   √ 

Floyd + Camille √ √   √ 
Camille + Andrew √√   √   

Camille + Opal √√   √   
Lili + Bonnie   √√   √ 

 

It was assumed that each hurricane threat was an independent event. Therefore, 

the probability of two of these hurricanes developing within a small time frame would 

be the product of their probabilities. From the frequency distribution created with the 

number of hurricanes that have hit the Atlantic Basin between 1851 and 2004, it was 

determined that the probability of not having a hurricane threat in any given year was 

approximately 0.013 as shown in Table 5-9. The computations for the hurricane threat 

combinations and the resulting probability values are shown in Table 5-10.  
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Table 5-9: Histogram of all hurricanes between 1851 and 2004 

Bin Frequency P = Frequency/Total 
0 2 0.012987 
1 3 0.019481 
2 7 0.045455 
3 31 0.201299 
4 28 0.181818 
5 20 0.12987 
6 22 0.142857 
7 17 0.11039 
8 7 0.045455 
9 6 0.038961 

More 11 0.071429 
Total = 154 1 

 

Table 5-10: Probabilities assigned to scenarios 9 through 21 

Scenarios P1 P2 P1*P2 (P1*P2)+err/s Rounded
Alicia + Camille 0.09 0.09 0.0081 0.018629 0.018 
Alicia + Floyd 0.09 0.0975 0.008775 0.019304 0.019 
Opal + Bonnie 0.09 0.0975 0.008775 0.019304 0.019 
Opal + Andrew 0.09 0.0375 0.003375 0.013904 0.014 
Lili + Andrew 0.15 0.0375 0.005625 0.016154 0.016 
Lili + Isabel 0.15 0.0975 0.014625 0.025154 0.025 

Alicia + Isabel 0.09 0.0975 0.008775 0.019304 0.019 
Opal + Isabel 0.09 0.0975 0.008775 0.019304 0.019 

Floyd + Camille 0.0975 0.09 0.008775 0.019304 0.019 
Camille + Andrew 0.09 0.0375 0.003375 0.013904 0.014 

Camille + Opal 0.09 0.09 0.0081 0.018629 0.019 
Lili + Bonnie 0.15 0.0975 0.014625 0.025154 0.025 

No hurricane threat   0.013 0.023529 0.024 
  total = 0.1147  0.25 
  0.25-total = 0.1353   
  error / s = 0.010408   
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5.7. Fifty-one scenarios 

 

To test the performance of the SMIP, 51 scenarios were developed following 

the same logic as the one used to create the first 21 scenarios. In this instance the 

historical records of all 15 hurricanes (10 major, 5 minor) were included in the data 

set.  

 

First stage 

The relationships used in the first stage are as follows.  

Since it was assumed that there was a higher probability of being threatened by 

one hurricane in any given year compared to being threatened by two or by none at all, 

for the first stage the probabilities of all single hurricane attacks were equaled to 0.75.   

Eq1: Bonnie + Floyd + Camille + Opal + Andrew + Isabel + Lili + Alicia = 0.75  

 

Forty percent of all hurricanes that threaten the United States hit Florida. 

Eq2: Andrew + Opal + Katrina + Dennis + Georges = 0.4*(0.75) 

 

Eq3 through Eq6 state the similarities between hurricanes based on their 

trajectories and strengths. 

Eq3: Opal = Dennis 

Eq4: Katrina = Andrew 

Eq5: Fran = Hugo = Georges 

Eq6: Bonnie = Floyd = Isabel 

 

By the major to minor hurricane ratio, hurricanes that share the same 

trajectories but not their categories are included in the following relationships. 
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Eq7: Camille = 0.6*Lili 

Eq8: Hugo = 0.6* Bonnie 

 

Assuming that the major to minor hurricane ratio still holds and assuming that 

the relationship remains constant over all hurricane instances, 

Eq9:  Alicia + Andrew + Opal + Camille + Fran + Dennis + Emily + Georges + Hugo 

+ Katrina = 0.6 (Bonnie + Floyd + Isabel + Lili + Bertha). 

 

These nine equations provide the hurricane probabilities included in Table 5-

11. Since the probability of hurricane Alicia was negative, a constant fraction was 

transferred from each hurricane to Alicia. The latter is included in the adjusted 

probability column.  
 

Table 5-11: Probability of occurrence of each of the 15 hurricanes 

Scenario Hurricane Category Probability Adjusted 
probability Rounded 

0 Alicia 3 -0.3 0.023077 0.02308 
1 Lili 1 0.05388 0.030803 0.0308 
2 Camille 5 0.032328 0.009251 0.00925 
3 Bonnie 2 0.076705 0.053628 0.05363 
4 Floyd 2 0.076705 0.053628 0.05363 
5 Andrew 4 0.073082 0.050005 0.05 
6 Opal 3 0.053906 0.030829 0.03083 
7 Isabel 2 0.076705 0.053628 0.05363 
20 Katrina 5 0.073082 0.050005 0.05 
21 Bertha 2 0.184754 0.161677 0.16167 
22 Fran 3 0.046023 0.022946 0.02295 
23 Hugo 4 0.046023 0.022946 0.02295 
24 Emily 3 0.156876 0.133799 0.1338 
25 Dennis 3 0.053906 0.030829 0.03083 
26 Georges 4 0.046023 0.022946 0.02295 

Total = 0.75 0.75 0.75 
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Table 5-12: Probability computations for the hurricane paired scenarios 

 

 

Scenario Hurricane1 Hurricane2 P1 P2 P1*P2 ( ) 0.251* 2
36

totalP P −
+  Rounded P

9 Alicia Camille 0.02308 0.00925 0.000213 0.004671 0.0046 
10 Alicia Floyd 0.02308 0.05363 0.001238 0.005695 0.0057 
11 Opal Bonnie 0.03083 0.05363 0.001653 0.006111 0.0061 
12 Opal Andrew 0.03083 0.05 0.001542 0.005999 0.006 
13 Lili Andrew 0.0308 0.05 0.00154 0.005997 0.006 
14 Lili Isabel 0.0308 0.05363 0.001652 0.006109 0.0061 
15 Alicia Isabel 0.02308 0.05363 0.001238 0.005695 0.0057 
16 Opal Isabel 0.03083 0.05363 0.001653 0.006111 0.0061 
17 Floyd Camille 0.05363 0.00925 0.000496 0.004953 0.005 
18 Camille Andrew 0.00925 0.05 0.000463 0.00492 0.005 
19 Camille Opal 0.00925 0.03083 0.000285 0.004742 0.0047 
20 Lili Bonnie 0.0308 0.05363 0.001652 0.006109 0.0061 
28 Katrina Alicia 0.05 0.02308 0.001154 0.005611 0.0056 
29 Bertha Camille 0.16167 0.00925 0.001495 0.005953 0.006 
30 Fran Isabel 0.02295 0.05363 0.001231 0.005688 0.0057 
31 Hugo Andrew 0.02295 0.05 0.001148 0.005605 0.0056 
32 Emily Lili 0.1338 0.0308 0.004121 0.008578 0.0086 
33 Dennis Floyd 0.03083 0.05363 0.001653 0.006111 0.0061 
34 Georges Bonnie 0.02295 0.05363 0.001231 0.005688 0.0057 
35 Georges Opal 0.02295 0.03083 0.000708 0.005165 0.0052 
36 Dennis Alicia 0.03083 0.02308 0.000712 0.005169 0.0052 
37 Emily Camille 0.1338 0.00925 0.001238 0.005695 0.0057 
38 Hugo Isabel 0.02295 0.05363 0.001231 0.005688 0.0057 
39 Fran Andrew 0.02295 0.05 0.001148 0.005605 0.0056 
40 Bertha Lili 0.16167 0.0308 0.004979 0.009437 0.0094 
41 Dennis Camille 0.03083 0.00925 0.000285 0.004742 0.0047 
42 Dennis Bonnie 0.03083 0.05363 0.001653 0.006111 0.0061 
43 Dennis Georges 0.03083 0.02295 0.000708 0.005165 0.0052 
44 Bertha Emily 0.16167 0.1338 0.021631 0.026089 0.0261 
45 Bertha Katrina 0.16167 0.05 0.008084 0.012541 0.0125 
46 Hugo Georges 0.02295 0.02295 0.000527 0.004984 0.005 
47 Hugo Emily 0.02295 0.1338 0.003071 0.007528 0.0075 
48 Katrina Georges 0.05 0.02295 0.001148 0.005605 0.0056 
49 Fran Emily 0.02295 0.1338 0.003071 0.007528 0.0075 
50 Fran Dennis 0.02295 0.03083 0.000708 0.005165 0.0052 
51 no hurricane  0.012987 1 0.017444 0.0174 

    total = 0.089544 0.25 0.25 
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Second stage  

Table 5-12 contains the probabilities of all the scenarios with combined 

hurricane threats. Similar to the formation of the 21 scenarios, it was assumed that the 

probability of two hurricanes threatening the United States within a small time period 

was the product of their probabilities, where the combined probabilities were equaled 

to 0.25 as shown in Table 5-12.  

 

5.8. Experiment Variations 

 

In order to test the computational efficiency of the algorithm, several variations 

of the case study problem were solved. These experiments were labeled as 

“bottleneck”, “planes”, and “variable demand”. The bottleneck case restricts the 

feasibility region by limiting the amount of supplies that can be shipped through 

specific regions of the network. For the bottleneck, stronger link capacity restrictions 

were imposed on all arcs emanating from Atlanta; which is a centrally located highly 

populated city that can provide service to all the coastline states. Therefore, it is a 

perfect location for storing and distributing emergency response supplies. The link 

capacity for these arcs was decreased from 2000 units to 250 units.  

In the case of the planes, these experiments include expensive but reliable 

alternatives of limited capacity of shipping resources from distant destinations 

regardless of the condition of the road segments. These alternatives are useful when 

there is extensive flooding and damages to the roadway network, like in the case of 

hurricane Katrina which isolated the victims of New Orleans from the neighboring 

towns; or when resources need to travel long distances in a small period of time. For 

the planes experiments the link capacity restrictions in the regions mostly affected by 
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hurricane threats (i.e. Wilmington, Charleston, New Orleans, Baton Rouge, Biloxi, 

and Miami) were softened by the addition of the helicopter links as shown in Figure 5-

4. These links had a capacity of 250 units and a cost of 50, which is much higher 

compared to the other links but comparable to the unmet demand penalty costs as 

shown in Figure 5-2. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-4: Plane links added to the network 

 

The third experiment conducted was of varying the demand for the most 

damaged city of the worst case scenario. The latter is the city of New Orleans during 

hurricane Katrina. Due to the high level of damage and its population density, it 

generated one of the largest demand levels over all scenarios and cities. Due to the 

need of large quantities of resource, the algorithm would be forced to allocate supplies 

near New Orleans. However, if these high demand levels were relaxed, the feasible 
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solution region would become less convex and more degenerate. This would increase 

the time needed to find an optimal solution and test the computational efficiency of the 

method. The results obtained from these experiments and the solution plan developed 

for the twenty-one and fifty-one scenarios case study are presented in Chapter 6. 
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CHAPTER 6.  RESULTS 

 

This chapter contains the results obtained from solving the experiments 

described in section 5.8. These experiments are based on the stochastic mixed integer 

linear program formulation (presented in chapter 3) solved following the methodology 

of the Lagrangian L-shaped method as described in chapter 4. The solution includes 

the location and capacity of the supplier facilities together with the quantities of 

various commodities stored in these facilities. For benchmarking, these experiments 

were also solved in extensive form using an integer linear program solver (i.e. Lingo). 

The results obtained from both sources are compared in the following sections. The 

results pertaining to the 21-scenario case study are included in section 6.1 while the 

results pertaining to the 51-scenario case study are included in section 6.2. Section 6.3 

includes the analysis of the tolerance threshold selected for the Lagrangian L-shaped 

method (LLSM) and the Lagrangian Relaxation. Section 6.4 includes some concluding 

remarks. 

 

6.1. Twenty-one scenario solutions 

 

Table 6-1 shows the overall results obtained for the 21-scenario case (with 

unmet demand penalty costs equal to ten times the purchase price of the commodity) 

using the Lagrangian L-shaped method (LLSM) and the commercial software package 

Lingo. Table 6-1 includes information on the computational running times, the number 

of iterations and the optimal objective function values (z) achieved for the four 

experiments as discussed in section 5.8.  
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For all the experiments shown in Table 6-1, the running times of the LLSM 

were a small fraction of the time required for Lingo. The LLSM running times ranged 

from 0.13% (13/10302) to 6.5% (16/247) of the Lingo running times. The objective 

values obtained from the LLSM heuristic are within approximately 1% of optimality 

(the exact solution obtained by Lingo).  
 

Table 6-1: Results for 21-scenarios provided by the LLSM and Lingo 

summary Lagrangian L-shaped Method Lingo 
case planes bottleneck z time (s) iterations time (s) z 

1   2.45236E+07 23 33 401 2.41933E+07
2 √ √ 2.45909E+07 16 26 247 2.42273E+07
3  √ 2.47882E+07 13 23 10302 2.44633E+07
4 √  2.46273E+07 18 27 454 2.41933E+07

 

Table 6-2 contains the total number of facilities of each capacity and the total 

amount of pre-positioned resources allocated to the network for each case listed in 

Table 6-1, using the Lagrangian L-shaped method. As can be observed in Table 6-2 a 

total of four facilities were opened for cases 1 (no helicopter or bottleneck) and 2 

(planes and bottleneck). Five facilities were opened for cases 3 (bottleneck), and 4 

(planes). Table 6-2 also includes the first stage costs (i.e. the costs incurred by opening 

the facilities and purchasing the supplies). As can be observed in Table 6-2, the case 

with the lowest first stage cost and the highest overall objective value is case 3 

(bottleneck). Case 3 is the most restricted due to the decrease in capacity of links 

emanating from Atlanta. This limited the amount of resource that could be shipped 

through certain links in the network, increasing the number of possible shipping paths 

and number of supplier facilities. On the other hand, the case with the most flexibility 

in transporting resources through the network is case 4 (with the added helicopter 

links). This permits the storing of more resources. Compared to case 1 which has the 
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same demands and link capacity, case 4 was able to increase the amount of supplies in 

the network with smaller facilities, thus increasing the amount of met demand. 
 

Table 6-2: First stage solutions obtained with the Lagrangian L-shaped method  

No. of facilities Resource purchased 
case 

small medium large water  
(103 gal) 

food  
(103)  medicine 

Facility and 
supply costs ($) 

1 1 1 2 8401 1905 2817 1.69714E+07 
2 0 3 1 8866 1903 3420 1.73989E+07 
3 2 2 1 8558 1880 3307 1.69087E+07 
4 1 3 1 8699 2131 3181 1.85168E+07 

 

Table 6-3: First stage solutions obtained with Lingo 

No. of facilities Resource purchased 
case 

small medium large water  
(103 gal) 

food  
(103)  medicine 

Facility and 
supply costs ($) 

1 0 0 2 8998 2019 3435 1.78519E+07 
2 0 0 2 8888 2019 3435 1.77805E+07 
3 4 1 1 8000 2019 3435 1.71723E+07 
4 0 0 2 8998 2019 3435 1.78519E+07 

 

Table 6-3 contains the first stage solutions for the four cases as provided by 

integer solver Lingo. Compared to the results obtained with the LLSM shown in Table 

6-2, the number of facilities is different but the total facility and supply costs are very 

similar. Table 6-3 shows the effects of the variations in the experiments in the 

quantities of water units purchased and for the case of the bottleneck (case 3), in the 

number of facilities available. The most restricted experiment is case 3 (bottleneck), 

where the links emanating from Atlanta had a decrease in capacity from 2000 units of 

each commodity to 250 units of each commodity. This decreased the total amount of 

water that could be transported, so the total amount of water purchased decreased from 

8998 (thousand gallons of water for case 1) to 8000 (thousand gallons of water). The 

bottleneck effect also affected the number and location of the facilities. For cases 1, 2, 
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and 4 two large facilities were opened (one in Columbia and another in Orlando). For 

case 3, six facilities were opened; four small (in New Orleans, Charlotte, Tallahassee, 

northern Florida), one medium facility in Orlando and one large in Columbia. Its 

inability to ship large quantities of supplies through the central links connecting 

Tennessee, Alabama, Georgia, North and South Carolina, caused the supplies to be 

divided among six facilities. The effect of the bottleneck was relaxed with the addition 

of helicopter links (case 2). In that case, the number of open facilities returned to two 

and there was a decrease of 110 thousand of gallons of water compared to the control 

case. Finally, no further improvements in the solution were reported for case 4 (planes 

only) indicating that the amount of supplies purchased in case 1 was not limited by the 

link capacities in the network.  
 

Table 6-4: Maximum unmet demand level per experiment of the 21-scenario case 
study 

LLSM Lingo case 
water food medicine water food medicine 

1 1159 1704 1826 562 1590 1208 
2 694 1707 1223 672 1590 1208 
3 1002 1730 1336 1560 1590 1208 
4 861 1478 1462 562 1590 1208 

 

Table 6-4 contains the maximum level of unmet demand over all 21 scenarios 

for each of the experiments for the solutions obtained from LLSM and Lingo. The 

highest level of unmet demand for water and medicine occurs in case 1 (no planes and 

no bottleneck) and for food occurs in case 3 (bottleneck).  

Table 6-5 contains the values for each term of the objective function for the 

solutions provided by both solvers in each of the four cases. For all but the last case, 

case 4 with additional plane links, the solutions given by LLSM had lower first stage 

and shipping costs incurring higher unmet demand penalty costs. For case 4 however, 
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more water and food supplies were purchased in the LLSM solution, as shown in 

Table 6-4, thus incurring less unmet demand penalty costs. 

 

Table 6-5: Objective value composition for the LLSM and the Lingo solutions 

LLSM solution values by objective term  Lingo solution values by objective term 

case 
First stage 

costs 
Shipment  

costs 
Unmet demand
penalty costs z 

First stage 
costs 

Shipment 
costs 

Unmet demand 
penalty costs z 

1 1.697E+07 2.302E+06 5.250E+06 2.452E+07 1.785E+07 2.536E+06 3.805E+06 2.419E+07
2 1.740E+07 2.385E+06 4.761E+06 2.455E+07 1.778E+07 2.543E+06 3.904E+06 2.423E+07
3 1.691E+07 2.317E+06 5.562E+06 2.479E+07 1.717E+07 2.402E+06 4.889E+06 2.446E+07
4 1.852E+07 2.630E+06 3.481E+06 2.463E+07 1.785E+07 2.536E+06 3.805E+06 2.419E+07

 

Figures 6-1 through 6-4 provide the pre-positioning strategies provided by the 

LLSM. In terms of the location of the facilities and the allocation of the supplies in the 

network, the resource pre-positioning strategies for the first three cases are very 

similar.  Variations in the solutions are seen in case 4 due to the effects of the addition 

of the helicopter links, and in case 3 due to the decrease in link capacity for the arcs 

emanating from the Atlanta node. However, they all have one common property: since 

the shipment costs are low compared to the unmet demand penalty costs, for each of 

the scenarios the model will try to satisfy the demand regardless of the distance 

separating the supplier from the demand location. One can see for each of the 

following figures that the resources were stored in bundles. In other words, 

commodities are assigned to the facility, but these commodities are not divided among 

all the facilities. These bundles were generally located close to hurricane landfalls, 

areas prone to high demand levels. One must keep in mind that regardless of their 

initial location, these supplies are transferred to any demand location in the network 

whose total shipment cost is less than the unmet demand penalty cost.  

Figure 6-1 shows the solution for the default case with no helicopter links or 

bottleneck (decrease in capacity for links emanating from Atlanta). The solution 
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obtained by the LLSM for case 1 is to open two large facilities, one in Wilmington and 

another in Key West, one medium facility in Charlotte and a small in Tampa. 

Wilmington and Key West are strategically located near the landfall of many Cape 

Verde hurricanes so it is beneficial to open large facilities there. The large facilities are 

in charge of distributing the food supplies to the network, while the smallest facility 

distributes the commodity with the least volume (medical supplies). Water is supplied 

by the Charlotte facility in the northeast and the Key West facility in the southeast. All 

the facilities are located along the coastline which is a high hurricane incidence region.  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6-1: LLSM pre-positioning strategy case 1 (no planes, no bottleneck) 

 

For the second case (planes and bottleneck) shown in Figure 6-2, one large and 

three medium facilities are opened. The effects caused by the bottleneck links 

emanating from Atlanta are shown in the new resource pre-positioning arrangement 

(compared to case 1 in Figure 6-1). The same locations were selected as in the 
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previous case, however the sizes of the facilities in Florida changed. Instead of one 

small and one large facility in Florida, there are two medium facilities. This resulted 

from an exchange in commodity locations, in this case Charlotte will store medical 

kits and Tampa will store water.  
 

 
Figure 6-2: LLSM pre-positioning strategy case 2 (planes and bottleneck) 

 

For the third case (bottleneck) shown in Figure 6-3, a total of five facilities 

(two small, two medium and one large) were opened. The largest facility was located 

in Wilmington as for the previous cases. The solution for the third case is similar to 

the previous two in terms of facility locations, with the exception of an added small 

facility located in Savannah. The latter is the result of the added link capacity restraint 

in the network of the links emanating from Atlanta. This small facility contains only 
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enough water to satisfy local demands. As in case 2, Charlotte distributes the medical 

supplies and Key West the meals. The facilities located in Wilmington, Savannah, 

Tampa, and Key West; distribute the water to the demand points.  
 
 

 
Figure 6-3: LLSM pre-positioning strategy for case 3 (bottleneck) 

 

For case 4 (planes) shown in Figure 6-4, five facilities were opened (one small, 

three medium and one large). One of the five facilities is located in an airport node 

(Wilmington). The largest facility, located in Little Rock can provide service as easily 

to Gulf coast states as to the states affected by Cape Verde hurricanes while staying 

protected from storm damages. All the medical supplies were pre-positioned in 

Tampa, while the food supplies were divided amongst Wilmington and Key West. 

Four of the fives facilities are water distributors.  
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Figure 6-4: LLSM pre-positioning strategy for case 4 (planes) 

 

These experiments were also solved with a reduction of unmet demand penalty 

costs of 50%. Table 6-6 shows the first stage, second stage and total objective function 

values for each of the experiments. The experiment results show a transfer of cost 

between the first and the second stage, as the unmet demand penalty costs decrease. 

Even though the total objective values for the experiments with high unmet demand 

penalty costs were higher than the reduced cost versions, the second stage costs were 

lower. This result indicates that as the unmet demand penalty costs increase, more 

resources are allocated in order to satisfy the demand, as expected.   

As shown in Table 6-6 the bottleneck, case 3, has the highest objective values 

and the highest first stage costs. The reason is that it is forced to open more facilities 

in order to meet the demand, due to the decrease in link capacities in the network. 

While only one facility is opened for the first two cases and two facilities are opened 
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for the fourth case, three facilities are opened for case 3. Note that with the resource 

allocation suggested by the third solution, open one small facility in Brownsville 

(2903 medial kits), one medium facility in Dallas (1865 thousand meals), and one 

medium facility in Charlotte (2141 thousand gallons of water); the lowest second stage 

costs are achieved.  
  

Table 6-6: Objective values per stage per experiment of the 21-scenario case 
study 

 

6.2. Fifty-one scenario solutions 

 

Following are the results obtained for the case study including 51 scenarios, as 

described in section 5.7. The first stage results obtained for the 51-scenario case study 

using the Lagrangian L-shaped method (LLSM) and the commercial software package 

Lingo are shown in Table 6-7. Table 6-7 also includes information on the 

computational running times, the number of iterations and the optimal objective 

function values (z) achieved for the four experiments as discussed in section 5.8.  

For all the experiments shown in Table 6-7, the running times of the LLSM 

were significantly lower than Lingo. The LLSM running times ranged from 0.22% 

(43/19955) to 10.0% (58/579) of the Lingo running times. Each of the eight cases was 

solved in less than one minute using the LLSM, and the objective values obtained by 

the heuristic are within 0.05% of the optimal values. It is of some interest to note that 

50% unmet demand penalty costs 100% unmet demand penalty costscase 
total z 1st stage 2nd stage total z 1st stage 2nd stage 

1 2.066E+07 1.120E+07 9.457E+06 2.452E+07 1.697E+07 7.552E+06
2 2.065E+07 1.134E+07 9.304E+06 2.455E+07 1.740E+07 7.146E+06
3 2.083E+07 1.230E+07 8.532E+06 2.479E+07 1.691E+07 7.879E+06
4 2.065E+07 1.170E+07 8.943E+06 2.463E+07 1.852E+07 6.111E+06
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in the most constrained case (case 3) for both 21 and 51 scenarios, Lingo requires a 

very long time (2.8 to 5.5 hours) to obtain a solution. However, this case creates no 

significant difficulty for the LLSM algorithm.   

 

Table 6-7: Results for 51-scenarios provided by the LLSM and Lingo 

Summary Lagrangian L-shaped Method Lingo 
case planes bottleneck z time (s) iterations time (s) z 

1   6.57516E+08 59 54 926 6.57246E+08
2 √ √ 6.58268E+08 47 45 758 6.58401E+08
3  √ 6.59315E+08 43 42 19955 6.59192E+08
4 √  6.57252E+08 58 53 579 6.56955E+08

 

Table 6-8 contains the total number of facilities of each capacity and the total 

amount of pre-positioned resources allocated to the network for each experiment of 

unmet demand penalty costs of ten times the purchase price as given by the 

Lagrangian L-shaped method. As can be observed in Table 6-8 a total of eight 

facilities were opened for case 1, with no helicopter or bottleneck links. Six facilities 

were opened in case 2 (planes and bottleneck), 3 (bottleneck), and 4 (planes). Table 6-

8 also includes the first stage costs (i.e. the costs incurred by opening the facilities and 

purchasing the supplies). As can be observed in Tables 6-7 and 6-8, the case with the 

lowest overall objective value and lowest first stage costs is case 4 (the experiment 

that includes the additional helicopter links). For case 4, even though the number of 

facilities opened are fewer that the ones opened in case 1, more supplies were 

distributed throughout the network thanks to the increase in link capacity. Even though 

these added links had a limited capacity of only 250 units compared to the 2000 units 

of the default network links, and a higher link cost; using these links still decreased the 

total shipment costs incurred due to a decrease in unmet demand penalty costs.  

 

  



 

75 

Table 6-8: First stage solutions obtained with the Lagrangian L-shaped method 

No. of facilities Resource purchased 
case 

Small Medium Large Water (103 gal) Food (103) Medicine 

Facility and 
Supply 

costs ($) 
1 4 3 1 8301 3643 21167 2.903E+07
2 1 3 2 7853 3541 21739 2.855E+07
3 2 3 1 7553 3668 23470 2.896E+07
4 2 3 1 8551 3327 19390 2.719E+07

 

The solutions obtained with Lingo, presented in Table 6-9, have certain 

similarities to those obtained in Table 6-8. The supply quantities for food and water 

and the total first stage costs are within 10%. Generally (with the exception of case 3), 

the solutions obtained using Lingo have fewer open facilities. Once a facility is open, 

Lingo tends to allocate as much supply as possible, many times reaching the facility 

storage capacity. The LLSM creates the solutions a little differently. First it 

determines the amount of resource needed and the most strategic location for these 

supplies. It follows by determining the size of the facility that can store the allocated 

supplies. This method provides solutions that instead of filling open facilities to 

capacity; it will purchase only the supplies that are needed. This may result in 

solutions with open facilities with unused space. A solution with a closer proportion of 

available storage space to total occupied resource volume at each location can be 

achieved by providing the LLSM with a wider array of facility types (with varying 

respective capacities). 
 

Table 6-9: First stage solutions obtained with Lingo 

No. of facilities Resource purchased 
case 

small medium large Water (103 gal) Food (103) medicine 

Facility and 
Supply costs 

($) 
1 2 0 2 8999 3609 17258 2.844E+07 
2 1 2 1 8303 3609 15615 2.782E+07 
3 6 1 1 7526 3609 15115 2.716E+07 
4 2 0 2 8999 3609 17508 2.848E+07 



 

76 

The solution for the 51-scenario case study differs from the 21-scenario case 

study. There is an increase in the values of first stage and the recourse objective terms 

as seen in Tables 6-7, 6-8 and 6-9. The latter is due to the high damage and demand 

levels included in the storms introduced in the sample of the 51-scenarios study. One 

of these is major hurricane Katrina which caused total devastation in New Orleans and 

the highest demand levels. In addition, the proportion of major to minor hurricanes 

increased from 1 to 1 for the 21-scenario case study to 2 to 1 for the 51-scenario case 

study. Therefore, there is an increase in the expected demand and the damage levels in 

the network. 

Table 6-10 contains the maximum level of unmet demand over all 51 scenarios 

for each of the experiments for the solutions obtained from LLSM and Lingo. 

Compared to the results presented in Table 6-5 for the 21-scenario case, the maximum 

level of unmet demand for any scenario increased by one, two and three orders of 

magnitude for water, food and medicine, respectively. This difference is the result of 

high demand levels occurring in certain scenarios that have low incidence 

probabilities. These scenarios include hurricane threats from rare and devastating 

storms such as Dennis, Katrina, and Emily. Because of their low probability of 

occurrence, the solution will allocate less resource than the one needed for such 

extreme instances. One can see from Table 6-9 that both solvers reached solutions that 

left approximately the same maximum levels of unmet demand.  
 

Table 6-10: Maximum unmet demand level per experiment of the 51-scenarios 
case study 

LLSM Lingo case 
water food medicine water food medicine

1 18699 130834 947583 18001 130868 951492 
2 19147 130936 959591 18697 130868 953135 
3 19447 130809 945280 19474 130868 953635 
4 18449 131150 949360 18001 130868 951242 
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Tables 6-11 through 6-14 show the results for the experiments as described in 

section 5.8 of the data set for the 51-scenario case study. The first, Table 6-11 shows 

the solution for the default case with no bottlenecks or helicopter links. The model 

allocated all the food in a medium facility in Texas, location that is not affected by any 

hurricane trajectory. Most of the water is stored in the large facility in Charlotte, 

location that is close to regions with high hurricane threats. Three facilities were 

located in Florida, two in South Carolina and one in North Carolina, which are areas 

of high hurricane activity. However, only two facilities, the one in Charleston and the 

one in Miami, suffer damages in a few scenarios.  
 

Table 6-11: Solution for case 1 (no planes, no bottleneck) 

City Facility size Water 
(thousand gals)

Food  
(thousand meals) 

Medical kits

Brownsville, TX Medium 0 3643 0 
Mobile, AL Small 0 0 4351 

Columbia, SC Small 109 0 4792 
Charlotte, NC Large 5362 0 3983 
Charleston, SC Small 0 0 6688 
Tallahassee, FL Medium 1489 0 0 

Tampa, FL Medium 1341 0 0 
Miami, FL Small 0 0 1353 

Total = 8301 3643 21167 
 

Table 6-12 contains the solution for case 2 which includes planes and 

bottleneck links. Two of the chosen locations have helicopter airports: Columbia and 

Orlando. The largest facilities are located in Tallahassee and Columbia. Most of the 

water was distributed among these two large facilities. The remaining water was 

stored in Orlando. The food supplies were divided among the facility in Nashville and 

the one in Tampa, while the medical supplies are in Brownsville and Columbia. The 

bottleneck effect is seen in the selection of Columbia, one of the nearest neighbors of 

Atlanta, as a major supplier instead of the aforementioned. Fewer supplies were 
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allocated for case 2 than for case 1.  Note that even though case has added link 

capacity of the helicopter links, the decrease in capacity caused by the bottleneck 

decreased the amount of supplies.  
 

Table 6-12: Solution for case 2 (planes and bottleneck) 

City Facility size Water 
(thousand gals)

Food  
(thousand meals) 

Medical kits

Brownsville, TX Small 0 0 3573 
Nashville, TN Medium 0 2427 0 
Columbia, SC Large 3523 0 5586 

Tallahassee, FL Large 2941 0 0 
Orlando, FL Medium 1389 0 0 
Tampa, FL Medium 0 1114 0 

Total = 7853 3541 9159 
 

The solution for case 3, bottleneck only, is presented in Table 6-13. Similar to 

case 2, a large facility was opened in Columbia. In this case, three facilities were 

opened around Atlanta (e.g. Columbia, Charleston, and Tallahassee) and most of the 

water and medical supplies for the system were distributed among them. In this case, 

the resources were located mostly along the east coastline, which has higher hurricane 

incidence. Two facilities were opened in Louisiana with part of the food and medical 

kits, while all the water was stored in the eastern states.  
 

Table 6-13: Solution for case 3 (bottleneck) 

City Facility size Water 
(thousand gals)

Food  
(thousand meals) 

Medical kits

Lake Charles, LA Small 0 0 5619 
N. New Orleans, LA Medium 0 2106 0 

Columbia, SC Large 5327 0 8379 
Charleston, SC Small 162 0 9473 
Tallahassee, FL Medium 576 1562 0 

Tampa, FL Medium 1488 0 0 
Total = 7553 3668 23470 
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Table 6-14 has the solution for case 4, which includes the additional helicopter 

links. Three of the facilities are located in airport nodes (e.g. Charleston, Orlando and 

Miami).  Two of these facilities (Charleston and Miami) suffer reductions in capacity 

and thus in resource quantities for certain scenarios. These reductions in capacity and 

in resource quantities, forces the model to purchase larger quantities of supplies than 

can be used in certain cases. In this case, both facilities contain medical supplies. The 

model would rather incur the costs for loss of supplies than for unmet demand. Similar 

to the second case (Table 6-12), three facilities are opened in Florida and one in Texas. 

The largest facility is located in Charlotte, a location that can send supplies to all 

hurricane landfall points on record. The solution for case 4 is very similar to the 

solution for case 2 (planes and bottleneck) in terms of facility locations, but the latter 

has a higher number of facilities due to the effects of the bottleneck links.  
 

Table 6-14: Solution for case 4 (planes) 

City Facility size Water 
(thousand gals)

Food 
(thousand meals) 

Medical kits

Brownsville, TX Medium 0 3327 0 
Charlotte, NC  Large 4282 0 9987 

Tallahassee, FL Medium 2278 0 0 
Orlando, FL Medium 1991 0 0 
Miami, FL Small 0 0 4489 

Charleston, SC Small 0 0 4914 
Total = 8551 3327 19390 

 

The highest demand levels recorded among the storms included in the 51-

scenario case study were caused by hurricane Katrina. Among the cities affected, the 

most damage and the highest demand levels were produced in the city of New 

Orleans. Conducting the following experiments, we found that changes in the data 

affect the shape of the objective function, increasing the difficulty of finding the 

optimal solution. With certain data modifications such as decreasing the demand in 
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New Orleans for hurricane Katrina in the 51-scenario case study or decreasing the 

unmet demand penalty costs by 50%, the shape of the objective function becomes 

somewhat flatter. This causes many solutions to become near optimal, (i.e. to have 

objective function values similar to the optimal solution). This increases the difficulty 

of finding the optimal solution, since only small changes in the objective function may 

result from large changes in the decision variables. 

 The following table lists the results obtained by running the experiments 

described in section 5.8 with a data set that either excludes the demand at New 

Orleans produced by hurricane Katrina, has reduced unmet demand penalty costs (by 

50%), or a combination of the two.   

 

Table 6-15: Results for 51-scenarios with variations in demand for hurricane 
Katrina in New Orleans and unmet demand penalty costs obtained with LLSM 

and Lingo 

Lagrangian L-shaped Method Lingo 
case Demand  

reduction  

Unmet 
demand  

penalty cost 
reduction 

z time 
(s) iterations time  

(s) z 

1 √  4.24243E+08 49 48 1327 4.24202E+08
2 √  4.25071E+08 50 48 942 4.25189E+08
3 √  4.26007E+08 63 55 1390 4.26073E+08
4 √  4.24183E+08 77 63 1505 4.23933E+08
1  √ 3.40758E+08 30 33 1303 3.40050E+08
2  √ 3.41032E+08 26 30 763 3.40402E+08
3  √ 3.41274E+08 29 32 1066 3.40579E+08
4  √ 3.40263E+08 32 34 7498 3.39955E+08
1 √ √ 2.24337E+08 28 31 >86400 2.234560+08
2 √ √ 2.24326E+08 28 31 9788 2.23709E+08
3 √ √ 2.24269E+08 24 28 609 2.23846E+08
4 √ √ 2.23975E+08 34 36 >86400 2.23392E+08

 

Compared to Table 6-7, there is a large reduction in the objective values of the 

four cases with the demand reduction in New Orleans for hurricane Katrina (of 
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approximately 2.3E+08). The objective value for the cases with the 50% reduction in 

the unmet demand penalty costs were reduced by approximately 3.0E+08. The cases 

that included both alterations (the 50% reduction of unmet demand penalty costs and 

the elimination of the demand in New Orleans due to hurricane Katrina) had objective 

values that decreased by approximately 4.2E+08. These reductions in objective values 

show the influence in the solution caused by the particular data value changes.  

One can notice from Table 6-15 that the running times of the experiments were 

consistent for the Lagrangian L-shaped method. For the commercial solver, on the 

other hand, the computational times increased as the surface of the feasible region 

became more “flat”. The Lingo running times increased with the 50% reduction of the 

unmet demand penalty costs and even more so, with the complete reduction of the 

demand created by hurricane Katrina in New Orleans. The latter combination 

generated such a difficult mixed integer problem to solve, that it did not terminate in 

over 24 hours for case 1 (no planes, no bottleneck) and case 4 (planes). Even though 

the objective values of the solutions obtained with the LLSM are within 1% of the 

objective values obtained with the commercial solver, the LLSM running times 

remained a fraction of the Lingo running times. The maximum LLSM running time 

was of 77 seconds, but was less than a minute in most cases.  

 

6.3. Tolerance 

 

This section includes the experiments conducted to determine the acceptable 

error threshold for the Lagrangian Relaxation and the Lagrangian L-shaped method. 

The example chosen for analysis was the 51-scenario case number 2 which includes 

the added helicopter links and the bottleneck in the links surrounding Atlanta, with 
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unmet demand penalty costs equal to ten times the commodity purchase price. Table 

6-16 shows the changes in objective value, number of iterations, computational time 

and error, as the tolerance changes on the outer linearization term (θ) approximating 

the second stage objective value (H(y,r)) for termination of the L-shaped method.   

Figure 6-5 summarizes the major behavior graphically. From Table 6-16 and 

Figure 6-5 one can see that the error in the solution increases dramatically when the 

tolerance is larger than 0.001. A tolerance level of 0.0001 seems a safe value to keep 

the error very small.   

 

Table 6-16: Solution errors related to the tolerance on second-stage 
approximation 

tolerance error z Percent error iterations time (sec)
0.1 7.32901E+08 6.65724E+08 110 2 1 

0.01 6.65724E+08 7.32901E+08 91 2 1 
0.001 6.50976E+06 6.60515E+08 1 26 23 

0.0001 1.26573E+06 6.58268E+08 0 45 47 
0.00001 1.26573E+06 6.58268E+08 0 45 47 

 

 

 

 

 

 

 

 

 

 

Figure 6-5: Graphical representation of the effect of tolerance 
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Table 6-17: Tolerance error of the Lagrangian Relaxation 

tolerance error z Percent error iterations time (sec)
0.1 5.40993E+07 6.71912E+08 8 13 10 

0.01 6.92979E+06 6.60767E+08 1 26 22 
0.001 1.26573E+06 6.58268E+08 0 45 47 

0.0001 1.26573E+06 6.58268E+08 0 46 49 
0.00001 1.26573E+06 6.58268E+08 0 46 49 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-6: Graphical representation of the effect of tolerance in the Lagrangian 
relaxation 

 

Table 6-17 shows similar data for changes in the tolerance level for the 

solution of the Lagrangian relaxation sub-problem. Figure 6-6 and Table 6-17 show 

the effect in the error term of relaxing the stopping criterion error threshold of the 

Lagrangian relaxation. The Lagrangian relaxation in this case, relaxes the facility 

capacity constraint (i.e. how much resource can be allocated to a facility based on its 

capacity).  The error threshold chosen for the Lagrangian Relaxation was 0.001 since 

the magnitude of the error term remains constant for values smaller or equal to 0.001. 

Figure 6-6 shows that for tolerance values greater than the one chosen, the error rate of 
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the LLSM is strictly positive with a steeper slope shown for tolerance errors between 

0.001 and 0.01. 

 

6.4. Analysis of Results 

 

The experiments described in this chapter have highlighted five major findings 

with respect to the LLSM algorithm for solving the pre-positioning problem.  

1) Although the algorithm is a heuristic, it consistently achieves solutions whose 

objective values are within 1% of optimum.  

2) The solution times for the LLSM algorithm are at least an order of magnitude 

smaller than direct solution of the extensive form of the problem by Lingo, and are 

often two to three orders of magnitude smaller. 

3) The extensive form direct solution time is very sensitive to constraints of link 

flows in the network, but the LLSM does not appear to be. 

4) In the test cases analyzed here, there are multiple solutions that have nearly the 

same total cost. The solutions found by the LLSM and Lingo are often somewhat 

different (in number of facilities and acquisition of resources), but they have very 

similar objective values.  

5) Tolerance parameters for both the Lagrangian relaxation and the L-shaped method 

are important to obtaining good solutions, but there are clear indications regarding 

how large those tolerances can be. 

 

Based on these experimental findings, we conclude that the LLSM is a very 

effective way of solving pre-positioning problems.   
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CHAPTER 7.  CONCLUSIONS 

 

7.1. Closing remarks 

 

There is a need for facility location and resource allocation models that provide 

emergency response organizations with mitigation strategies for disaster threats to 

decrease the response time. For this purpose a mathematical formulation that provides 

a pre-positioning strategy for determining facility locations and resource allocation 

strategies was created. The primary goal of this model is to serve as a planning tool for 

disaster response. Even though the model can be solved in extensive form using a 

standard integer program solver when the data used is a small-scale case study, it was 

shown in section 6.2 that the computational capabilities of the latter can not tackle a 

large-scale version. For this reason, a heuristic solution that considers the embedded 

network structures of the stochastic mixed integer problem (SMIP) was devised by 

combining two methodologies: the L-shaped method and the Lagrangian relaxation.  

The L-shaped method developed by Van Slyke and Wets (1969), consists of 

solving an approximation of a stochastic program by estimating the recourse function 

using an outer-linearization technique. Because the L-shaped method solves the SMIP 

using the estimated value of the recourse problem, the number of evaluations of the 

second stage problem decreases. The outer-linearization is performed by adding 

feasibility and optimality cuts to the relaxed mixed integer program version. Since the 

SMIP has complete recourse, only optimality cuts are needed.  

The Lagrangian relaxation heuristic was added to decompose the first stage 

problem into a trivial facility location problem and a resource allocation linear 

program. To further improve the computational capabilities of the algorithm, the 
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Lagrangian relaxation was used to relax the integrality constraints of the location 

variables. The result was a heuristic method referred to as the Lagrangian L-shaped 

method (LLSM). 

Chapter 6 included the discussion of the results obtained for all the 

experiments. Analyses were performed using 21-scenario and 51-scenario case 

studies.  Various experiments were performed to test the computational capabilities of 

the LLSM by changing the demand levels, by changing the number of scenarios, by 

adding helicopter links in the most damaged regions in the network, and by creating 

bottlenecks (i.e. decrease in capacity) on emanating links of a major city. These 

experiments showed the computational consistency of the method compared to a 

standard integer problem solver (i.e. Lingo). The running times for the LLSM 

remained between 0.05% and 10.0% of the Lingo running times. The difference in 

computational times between solvers did not compromise the quality of the solution. 

The solutions of the experimental cases solved using the LLSM were all within 1% of 

the commercial solver objective values. The biggest differences observed were on the 

facility locations, but the total quantities of allocated supplies were similar.  

It was observed that for this particular problem, the shape of the objective 

function changed with small fluctuations in the data set. When the shape of the 

objective function became flatter, the computational complexity of the problem 

increased because small changes in the objective value may have resulted from large 

changes in the decision variables. Two constants were altered to test the behavior of 

the solvers, the unmet demand penalty costs and the demand levels in the city of New 

Orleans during hurricane Katrina. While the computational times of the Lingo solver 

increased dramatically for certain 51-scenario case studies, the LLSM solved all the 

experiments in less than two minutes. 
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The principal goal of this research was to provide an emergency response 

planning tool that developed large-scale resource allocation pre-positioning strategies 

for disaster threats. Based on the conducted experiments and its shown computational 

capabilities, we are confident that the LLSM is such a tool. Further experiments may 

be conducted to further test its capacity and limitations. The following section includes 

research proposed to test the full potential of the LLSM, steps toward a large-scale 

solution, and proposed modifications to improve its computational abilities.  

 

7.2. Next steps 

     

The immediate next step proposed is the creation of a large-scale problem to 

test the LLSM. This large-scale problem will include a larger level of detail in the 

network, with more cities (e.g. 100) and road segments. Instead of considering only 

trucks and helicopter links, railroad tracks will also be considered. Even though the 

latter has less flexibility (in terms of paths and travel time), it provides a large-capacity 

shipping mode. To determine a more accurate hurricane threat probability distribution, 

a more extensive hurricane history is required. Hurricane (or other alternative natural 

disaster) historical records will increase in number of events and in level of damage 

details.  

It was seen that the solution of the LLSM improves with a larger array of 

facility types. So, the large-scale problem would include approximately 10 facility 

types of different dimensions. To provide a more complete resource pre-positioning 

plan, the solution should include more commodity types (e.g. 10 or more). These 

could include beds, blankets, lighting equipment, electricity generators, emergency 

vehicles, evacuation buses, etc. 
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In the future, the model can be used for other emergency response problems. 

Not only can the LLSM be used for resource allocation for hurricane threats, but it 

could be used for preparations for natural disasters of another type or other planning 

problems altogether. One problem that could be studied is the preparation of shelters. 

The LLSM can determine the best location for shelters and the commodities needed 

for its operation. This type of planning is a little different than the case study solved, it 

may be performed with less anticipation or have less flexibility on the facility 

locations and capacities, but the LLSM can be modified to tackle this new problem. 

Other problems that could be solved with the LLSM are the planning of major 

suppliers that distribute merchandise nationwide, like a corporation distributing 

electric generators among its stores or a gas company supplying its vendors during 

hurricane season.  

Another type of research that could be conducted is to modify elements of the 

LLSM. One could be to change the second stage minimum cost flow problems for 

multi-commodity flow problems, where the commodities would compete for the link 

capacities. Furthermore, in the case one needed to improve the computational 

efficiency of the algorithm, a parallel version can be considered. One can run the 

second stage problem evaluations in parallel time, since the network flow problems 

are independent per commodity and scenario. In the case of the multi-commodity flow 

problems, one can separate their evaluations by scenario only. Once all the evaluations 

are finished, the average value is calculated and the result is returned to obtain the 

objective function value for the current problem.  
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APPENDIX  

 
Appendix 1. Hurricane historical records from 1965 to 2004 provided by NOAA 

Year Named storms Hurricanes Minor Hurricanes Major hurricanes ACE
1965 6 4 3 1 84 
1966 11 7 4 3 145 
1967 8 6 5 1 122 
1968 8 4 4 0 35 
1969 18 12 7 5 158 
1970 10 5 3 2 34 
1971 13 6 5 1 97 
1972 7 3 3 0 28 
1973 8 4 3 1 43 
1974 11 4 2 2 61 
1975 9 6 3 3 73 
1976 10 6 4 2 81 
1977 6 5 4 1 25 
1978 12 5 3 2 62 
1979 9 5 3 2 91 
1980 11 9 7 2 147 
1981 12 7 4 3 93 
1982 6 2 1 1 29 
1983 4 3 2 1 17 
1984 13 5 4 1 71 
1985 11 7 4 3 88 
1986 6 4 4 0 36 
1987 7 3 2 1 34 
1988 12 5 2 3 103 
1989 11 7 5 2 135 
1990 14 8 7 1 91 
1991 8 4 2 2 34 
1992 7 4 3 1 75 
1993 8 4 3 1 39 
1994 7 3 3 0 32 
1995 19 11 6 5 227 
1996 13 9 3 6 166 
1997 8 3 2 1 40 
1998 14 10 7 3 182 
1999 12 8 3 5 177 
2000 15 8 5 3 116 
2001 15 9 5 4 106 
2002 12 4 2 2 66 
2003 16 7 4 3 175 
2004 15 9 3 6 224 

Average 10.6 5.9 3.73 2.2 91 
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Appendix 2. Hurricane incidence by region and category provided by NOAA 

CATEGORY AREA 1 2 3 4 5 ALL
Major 

Hurricanes 
U.S. Coastline 

(Texas to Maine) 113 74 76 18 3 284 97 

Texas 23 18 12 7 0 60 19 
 (North) 12 7 3 4 0 26 7 
 (Central) 7 5 2 2 0 16 4 
 (South) 9 5 7 1 0 22 8 

Louisiana 18 14 15 4 1 52 20 
Mississippi 2 5 8 0 1 16 9 
Alabama 12 5 6 0 0 23 6 
Florida 44 33 29 6 2 114 37 

 (Northwest) 27 16 12 0 0 55 12 
 (Northeast) 13 8 1 0 0 22 1 
 (Southwest) 16 8 7 4 1 36 12 
 (Southeast) 13 13 11 3 1 41 15 

Georgia 12 5 2 1 0 20 3 
South Carolina 19 6 4 2 0 31 6 
North Carolina 22 13 11 1 0 46 13 

Virginia 9 2 1 0 0 12 1 
Maryland 1 1 0 0 0 2 0 
Delaware 2 0 0 0 0 2 0 

New Jersey 2 0 0 0 0 2 0 
Pennsylvania 1 0 0 0 0 1 0 

New York 6 1 5 0 0 12 5 
Connecticut 4 3 3 0 0 10 3 
Rhode Island 3 2 4 0 0 9 4 
Massachusetts 5 2 3 0 0 10 3 

New Hampshire 1 1 0 0 0 2 0 
Maine 5 1 0 0 0 6 0 
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