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The demographic and socio-economic trends have signaled an overwhelming 

need for improved assisted living facilities with non-intrusive technologies that address 

prominent user needs of wellness by continuous vital-sign sensing and safety and 

accessibility by occupant-detection.   This home-centric approach can greatly improve 

quality-of-life for the elderly suffering from diseases like sleep apnea and chronic 

obstructive pulmonary disorder (COPD) by long-term continuous monitoring. 

Moreover, with the ability to track occupant presence, location, and posture, the 

response time can be shorter in case of emergencies like fall-events.  

To solve the problem of wellness monitoring, this work focuses on using an 

over-clothing wearable radio-frequency (RF) sensor to accurately measure heartbeat 

and respiration. While ambient and wearable chest-motion monitoring sensors exist, 

they only measure the weak surface motion. This work uses near-field coherent sensing 

to strongly couple to internal dielectric boundary motion. As the choice of antenna 

placement and sensor setup has a significant impact on the user comfort level and signal 

quality, different sensor design variations are considered. Both thorax and abdominal 

respiratory patterns are measured independently to monitor paradoxical respiration 

during obstructive apnea. A calibration-based approach is used to estimate respiratory 

volume, a key parameter to estimate respiratory effort, and results are presented for 



 

different simulated breathing disorders. Finally, results are validated under posture and 

gender variations in a study conducted on 20 participants, showing a high correlation of 

presented sensing setup with the reference devices: heart rate (r = 0.95), respiratory rate 

(r = 0.93), and respiratory volume (r = 0.84), along with high accuracies of 96% and 

83% for simulated central and obstructive sleep apnea detection respectively. The work 

has been extended for attention vs relaxation state classification resulting in a 

satisfactory accuracy of 93% on the unseen test subjects. 

While vital sign monitoring is an active task,  which has strong advantages by a 

wearable or on-the-furniture sensor approach, safety and accessibility need to be 

embedded in the ambient, where it can monitor occupant presence to trigger responses 

even if the occupant is device-free. As ambient sensors need to have sufficient 

observation coverage in arbitrary room layout and furnishing, ambient passive radio 

frequency identification (RFID) tags are chosen to provide scalability cost-effectively 

and reliably. However, the indoor RF signal suffers from heavy multipath and unknown 

phase offsets due to cables and reader transceiver circuitry. In this work, a novel 

background calibration algorithm is presented that works well under significant 

background clutter. A linearized inverse model is used to generate an ‘RF image’ based 

on the occupant reflectivity and absorption, using novel sparsity approximation 

algorithms, from which occupant count and location can be extracted. As the number of 

occupants increases, the approximations fail and counting becomes challenging. In this 

scenario, a deep-learning-based solution is presented that can count with good accuracy 

of 82%, with learning transference to different rooms and setup variations, significantly 

reducing the cost overhead from training data collection. 
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CHAPTER 1  

INTRODUCTION 

 

With increased life expectancy, the population proportion of age 60 and above 

is increasing faster than other age groups worldwide [1] and is more vulnerable to 

chronic illnesses. Thus, many adults find themselves needing assistance with everyday 

tasks and care to varying levels. With limited at-home family care options and 

understaffed and costly nursing facilities, more seniors turn toward some form of 

residential facility based on consumer choice, requirements, and cost factors. These 

facilities, that promote independent living while taking care of personal daily needs and 

unscheduled assistance requirements, are termed as assisted living. With huge diversity 

in their conceptualization, the services vary depending on consumer affordability. This 

points to a clear need for technological solutions that can support senior assisted living 

with low-cost, high reliability, and least privacy invasion.  

In this dissertation, radio frequency (RF) sensors are proposed as non-invasive 

or ambient technology that can support the elderly population to receive quality care at 

a low-cost. This occupant-centric approach of living can be seamlessly integrated into 

the daily lives as well as existing housing for higher comfort. Particularly, we have 

focused on two important aspects, ambient monitoring providing safety and 

accessibility, by turning on/off the light and fall-detection, and vital sign sensing for 

wellness monitoring, both with high accuracy to generate an emergency response from 



 

2 

the caregiver or nursing facilities. An overview of possible implementation is shown in 

Fig. 1.1. 

 

1.1 Vital-sign sensing 

In addition to the effective treatment of diseases, healthcare has been extended 

towards an overall healthier living with improved day-to-day quality of life [2], [3] and 

integrated end-of-life care not restricted to clinical visits [4], [5]. This requires novel 

solutions for noninvasive vital-sign sensing without skin contact which can be 

integrated effectively into various lifestyles for the elderly, as well as for the younger 

population. Such a technique could potentially help patients with asthma, chronic 

obstructive pulmonary disease (COPD) [6] by continuous monitoring of physiological 

parameters including heartbeat and respiration. Furthermore, noninvasive long-term 

Figure 1.1 RF sensor setup for user wellness and ambient monitoring with RFID tags 
on the walls, furniture, and user clothes. Clothes tag can monitor vital signs and 
additionally, the system should be able to detect occupant count and locations, including 
untagged person, for safety monitoring.  
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sleep monitoring and sleep quality analysis is important for wellness and health 

monitoring, recovery, and improvement of quality of life. Cumulative effects of 

irregular sleep durations have been associated with increased risk for diseases like 

diabetes, obesity, heart attack, and stroke [7]. With the high prevalence of sleep-

breathing disorders such as central sleep apnea (CSA) and obstructive sleep apnea 

(OSA) in patients with symptomatic chronic heart failure (CHF) [8], continuous 

overnight monitoring becomes mandatory. Acute or chronic opioid use has also been 

linked to severe respiratory disorders, starting from respiratory pauses, delays in 

expiration and decreased RV that can lead to eventual respiratory arrest and death [9]. 

In addition to particular disease monitoring, even daily monitoring to track emotional 

and mental health is of high importance with increased risk of developing anxiety or 

neurological disorders. 

While there is no one-sensor fits-all solution for the patients suffering from 

various conditions, most diseases and their progression can be monitored as a function 

of the two important vital signs, heartbeat, and respiratory patterns.  Respiratory 

disorders can be observed in the respiratory waveform patterns, and through derived 

respiratory effort information, including both respiratory rate (RR) and respiratory 

volume (RV). Heartbeat motion and the heart rate (HR) estimation provides crucial 

information on health levels, including obesity. Further, with a clear heartbeat 

waveform, heart rate variability (HRV) can be derived, which gives insight into the 

autonomous nervous system (ANS) function with parasympathetic (PNS) and 

sympathetic nervous system (SNS) balance, that can be used to track mood, emotion, 

and anxiety [10]. 
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1.1.1 Conventional sensing technologies 

In clinical practices, pulmonary function tests are generally assessed by 

spirometry [11] and physical examinations [12]. The latter might not require any 

specialized instrument but is limited by the experience of the physician and is not 

quantitative. Spirometry provides detailed parameters characterizing lung function but 

requires attentive participation of the patient with forced breathing maneuvers, and is 

thus not feasible for continuous long-term measurements, or patients suffering from 

asthma. Whole-body plethysmography [13] is used to measure absolute air volume in 

the lungs and breathing resistances without extensive voluntary exercises but still 

requires some patient cooperation. This poses a challenge for respiratory disorder 

detection in patients that are unable to follow the instructions due to weakness, coma, 

or other cognitive failures. Other alternatives for respiratory monitoring that do not 

require active user participation, and are used as a part of polysomnogram (PSG) for 

sleep monitoring, include nasal probes [14] for airflow information, and strain or 

inductance belts at thorax and abdomen, which need to maintain reasonable tension in 

all breathing conditions to measure chest-wall motion. While the nasal flow can tell 

about the proportion of inhalation and exhalation volume exchange, it cannot provide 

respiratory volume (RV) information without calibration, similar to the chest belts. The 

nasal flow meter is typically used in addition to chest belts to identify different sleep 

apnea accurately. For example, CSA is marked by the cessation of airflow for at least 

10 s, lasting up to several minutes, without any muscle activity or cough reflex, as the 

autonomic nervous system stops giving signals for autonomous respiration [15]. Thus, 

no change is observed on the chest belts, as well as in the nasal airflow reading. On the 
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other hand, OSA is more common in the elderly due to respiratory muscle weakness. 

This apnea is characterized by the asynchronous movement of the thorax and abdomen 

that can be observed as a time lag of the thoracoabdominal motion or complete out-of-

phase motion of thorax and abdomen. In this case, the nasal flow meter shows little or 

no airflow, however chest belts at thorax and abdomen show thoracoabdominal 

asynchrony. Proper diagnosis and differentiation of the two apneas are important for 

correct treatment procedures. 

Gold-standard heartbeat monitoring uses an electrocardiogram (ECG) with 

multiple adhesive skin-contact electrodes to monitor the electrical activity of the cardiac 

muscle. Pulse oximetry, providing SpO2, blood oxygen saturation information, is a less 

invasive method of extracting the heartbeat requiring a stable probe in direct contact 

with the skin [16]–[18], and prone to motion artifacts.  

Particularly, for sleep apnea monitoring, overnight PSG is the gold standard 

requiring a plethora of sensors in addition to the ECG, pulse oximetry, nasal probes, and 

chest belts. These sensors measure brain activity by electroencephalography (EEG), eye 

movements by electrooculography (EOG), and muscle activity by electromyography 

(EMG) to classify different sleep stages and arousals to estimate accurate sleep quality.  

1.1.2 Existing non-invasive sensors and their challenges 

While conventional gold standard sensors are the norm, their accurate usage 

often requires specialized nursing staff to carry out the procedure. Also, the sensors are 

cumbersome to be used in daily life for long-term monitoring.  

Respiratory monitoring can be performed with local strain sensors [19] that are 

comfortable and can get accurate thorax and abdomen respiratory signals separately. A 
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limitation is direct tight skin contact to measure the chest wall motion. Airflow sensors 

that estimate the volume of air expired over time can get accurate information on RR 

[20], but require mouthpieces or facemasks to collect the air for RV, which is not only 

uncomfortable and conspicuous but may also interfere with the normal breathing 

process. The pulse oximetry can provide information about blood O2 content, but has a 

slow response to apnea-like conditions and suffers from motion artifact [21]. Heartbeat 

monitoring is typically done with ECG as the small heartbeat chest motion is often more 

difficult to detect with other noninvasive sensing techniques. While the ambulatory 

ECG is simple to put-on, it has poorer motion tolerance and thus signal processing can 

be challenging, while still requiring electrodes to be placed on the body. Thoracic 

surface and body vibrations due to heartbeat have been studied in detail using 

seismocardiography (SCG) [22]–[24] and ballistocardiography (BCG) [22], [25]–[27] 

respectively, for signatures under different abnormalities. Both sensors measure either 

displacement, velocity, or acceleration originated from the heartbeat but observed at the 

body surface. Film-based displacement sensors may be affected by artifacts from 

structural vibrations in a moving wheelchair [28] or ambulance. Integrated solutions 

like smart shirts [29] with ECG, chest belts, and accelerometers can provide detailed 

cardiopulmonary characteristics, but have a large device form-factor, and are unsuitable 

for bedridden and geriatric patients where snug-fit clothing and skin contact electrodes 

are impractical due to concerns of comfort and bedsores [30], [31]. Fabric electrodes 

are embedded in these smart-shirts without glued to the skin, however, the fabric must 

be damp to conduct the electrical signal from the skin which can be inconvenient for a 

wearable device. Ambient optical [32] and RF sensing [33] record surface motion from 
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breathing and heartbeat with a limited signal-to-noise ratio (SNR) [34], [35] and require 

the reader to be in the line of sight (LoS) to the torso [36], [37]. Far-field RF also has 

limitations on the maximum number of subjects that can be measured simultaneously 

[38]. RV is even more difficult to retrieve, as it is affected by body posture and 

orientation variation [37], [39] with respect to the antennas or cameras. While 

cardiopulmonary signals can be derived with limited SNR, movement of the person 

under test as well as any other motion in the surrounding can affect the collected data. 

Additionally, obstructed breathing monitoring is difficult, as this only measures the 

surface motion of either thorax or abdomen where the radar antenna is directed to. Some 

noticeable work has been done using RF in the near-field region [40], [41] that can 

couple to internal dielectric boundary change to clearly measure respiratory motion, but 

heartbeat can only be extracted during breath-hold. 

1.1.3 RF near-field coherent sensing (NCS) 

In this study, we employ a non-invasive method based on RF near-field coherent 

sensing (NCS) [42]–[44] that works by transmitting a low-power continuous wave 

(CW) RF signal into the body with over-clothing antennas. The near-field coupling to 

the internal dielectric boundary motion results in a direct measurement of the heart, 

lung, and diaphragm motion, in contrast to surface motion sensors. This requires a 

transmitter antenna (Tx) in the near-field of the motion source. The receiver antenna 

(Rx) can be realized in two different approaches – active [42] and passive [45] sensing. 

In passive sensing, Rx is in the far-field and the Tx can be a passive unit like an RFID 

tag placed in a pocket near the thorax or embroidered in the cloth [46]. The active setup 

is a wearable version with both Rx and Tx on the chest, close to each other. Both setup 
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designs have been considered and their pros and cons are discussed in this work. 

Overall, NCS is less sensitive to wearer and ambient motion and can be easily extended 

for multiple participants in the room, as well as multiple locations on the body. Detailed 

high-frequency heartbeat characteristics associated with the S1 and S2 sounds can also 

be potentially extracted from over-clothing placement [47]. However, a detailed 

comparison with echocardiogram can help clarify this observation, while a further 

improvement from possible sensor fusion with SCG and phonocardiogram (PCG) needs 

to be investigated in future studies. 

 

1.2 Occupant detection and counting 

The occupant-centered control (OCC) is an emerging concept of smart buildings 

[48], where real-time occupant monitoring enables various automation functions in 

assisted living [49] and energy control [50], [51]. In contrast to active observation units 

or occupant-marker approaches that assume all occupants to wear dedicated devices, 

ambient passive sensing is critical for applications where device-free occupants must be 

accounted for and most observation units are passive and maintenance-free. Key 

requirements for this passive sensing include low cost, low power, low computation, 

small training overhead, and high accuracy. Many indoor items will have radio-

frequency (RF) links in the realization of the Internet of Things (IoT), which can further 

facilitate the development of a smart environment allowing successful aging of seniors. 

 

1.2.1 Prior art and related work 
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In this work we have focused on ambient passive sensing approaches, instead of 

the active approaches, requiring a user to carry some device. Various technologies exist 

for the latter case, allowing user localization and tracking. In this thesis, we focus on 

two aspects of occupant monitoring: counting and localization. 

The existing WiFi network has been employed as either ambient or active 

sensing technology [52], [53], and multiple learning methods have been employed. 

Amplitude-based channel state information (CSI) was extracted from multiple routers 

in a room, and a classifier was trained to detect [54] and count the number of participants 

[55], [56].  In [57], randomly moving participants were trained in one room and tested 

in different rooms based on the features of the received signal strength indicator (RSSI). 

A probabilistic model of multipath and fading characteristics was developed in [58]. A 

phase-scattering model was proposed [59] to count people passing through a gate. 

However, all of these approaches are limited to counting moving occupants and may 

perform poorly in indoor office or home settings with limited occupant activity. Most 

Wi-Fi based localization systems do not require user devices to actively interact, but use 

RSSI information from user devices transmitted as a part of their routine scanning or 

connection periods [60], which makes it difficult to localize occupants not carrying 

phone or tablets. 

Custom RF sensors using RSSI information are mostly limited to one participant 

localization and tracking [61], [62]. A large number of an active receiver (Rx) and 

transmitter (Tx) units were used to count up to four moving participants [63] with only 

one-person fingerprinting, which however performed poorly when their trajectories 

were close.  Wireless sensor networks (WSN) were distributed in the entire monitoring 
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area to estimate crowd densities in [64] and classify as low, moderate, or high density 

of randomly moving occupants. Radio tomography imaging (RTI) based approaches 

have been used to generate RF images for occupant localization [65] with lots of active 

links and far away from walls and ceiling to reduce multipath. 

Extensive work has been established in the area of optical approaches for indoor 

occupancy estimate [68], [69], [206], including RGB camera and passive infra-red (PIR) 

sensors [207], [208]. Solutions have been presented to reduce problem complexity [209] 

and privacy concerns [210]. These systems can also be very helpful in human motion 

analysis [211], along with occupant counting and localization. However, camera-based 

monitoring suffers from occlusion and illumination deficiency [212], and large area 

coverage and complex layout result in a steep rise in system costs. The performance 

rapidly degrades with an increasing number of occupants [212], [213], who are either 

located very close to each other due to limited space or are outside the camera scope of 

view. Other approaches use data fusion of environmental sensors including temperature, 

humidity, light, sound, and CO2 [51], [66] but require a large amount of training data in 

different environmental conditions, to avoid the bias of varying factors, for example, 

day and night lighting conditions. A wall-based capacitive sensor was used in [67] but 

testing was limited to one participant.  

With the adoption of radio frequency identification (RFID) technology in 

commodity items, passive RFID tags are maintenance-free and highly cost-effective for 

various applications [70] including supply-chain logistics [71], libraries [72], and 

healthcare [73], [74]. For device-free object localization and tracking [75], passive ultra-

high-frequency (UHF) RFID tags offer the unique advantage of increasing the spatial 
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diversity of RF links without a significant cost. Previous works can be largely classified 

into static fingerprinting and mobile counting. RSSI fingerprinting requires a database 

of one participant standing at different cells in the capture volume to enable occupant 

localization [27 28]. Such systems require tags to be distributed around the region to 

reduce ambiguity. The other category can count moving participants with fewer tags but 

have difficulty in handling static occupants [29]. RTI has poor resolution and noisy 

performance with RFID tag links, demonstrated in [76] using floor tags to detect the 

location of one occupant, and in [77] showing tests with up to four occupants, but poor 

occupant detection accuracy for more than one target. 

 

1.2.2 RFID RSSI and carrier phase based ambient monitoring 

With the advantages of RFID technology, in this work, we have adopted the 

ambient passive UHF RFID tags for occupant counting and localization using both 

carrier phase and RSSI information. As the phase is a function of distance traveled by 

the EM wave, it has information about the occupants’ presence, along with multipath 

noise leading to constructive and destructive interferences, additional phase from 

cables, reader transceiver circuitry, and tag modulation. An improved calibration 

approach is presented to remove phase noise and use it for both occupant localization 

and counting. As the signal model becomes increasingly non-linear with more number 

of occupants in the room, we use two separate approaches for counting and localization. 

The counting of five occupants is shown to be performed with high accuracy using a 

deep-learning (DL) model. For localization, while a similar training method can be used, 

the training data increases, requiring fingerprinting at every location in the grid. Thus, 
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a linear approximation model for RF imaging is proposed, based on reflectivity 

estimation at each voxel in the room. A commercially available RFID reader has been 

used for demonstrating the results, which can further allow easier future production at 

lower costs. 

1.3 Thesis organization 

This dissertation presents two main contributions in the area of assisted living 

technologies focusing on vital sign and occupancy monitoring. We first focus on 

wellness monitoring by presenting details of the RF near-field sensing system, sensor 

configurations, signal model, and HR, RR and RV extraction algorithms in Chapter 2. 

Next in Chapter 3, respiratory pattern variation under different healthy and disorder 

conditions are shown along with motion and other interference analysis. The results of 

sensor design and algorithms are validated with a human study with 25 participants. 

Chapter 4 is an exploratory project where heartbeat and respiratory patterns derived 

from NCS are used for attention and relaxation monitoring. Chapters 5 and 6 focus on 

the occupant monitoring part, starting from the RF backscatter signal model and novel 

background calibration approach in Chapter 5. The RF imaging inverse problem and its 

sparsity-approximation solution are presented. It also compares the signal model with 

existing RTI model results. Finally, DL-based occupant counting results are presented 

in Chapter 6 with a detailed comparison of RSSI and phase information and learning 

transference over unseen setups. Chapter 7 concludes the dissertation with major 

contributions and future opportunities. 
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CHAPTER 2  

NEAR-FIELD VITAL SIGN SENSING 

2.1 Respiration and cardiac motion 

Respiratory function is driven by inspiratory muscles, with the diaphragm acting 

as the major muscle, separating the thoracic cavity from the abdominal cavity. During 

normal or tidal breathing, the diaphragm contracts and flattens, and thus moves 

downwards, and ribs are simultaneously being pulled upwards by the intercostal 

muscles. This results in the enlargement of the thoracic cavity’s both vertical and 

horizontal dimensions, causing the intrathoracic pressure to fall, and the pressure around 

and in the lungs to be negative relative to the atmosphere, leading to airflow into the 

lungs. As the diaphragm moves downwards, it pushes the abdominal organs downwards 

as well. As the pelvic floor prevents the movement in the vertical direction, it causes the 

abdomen to bulge outwards. This process is called inhalation. During exhalation, the 

diaphragm and intercostal muscles relax, returning the thoracic and abdominal cavities 

to their original position, with lungs containing their functional residual capacity of air, 

generally between 2.5-3.0 liters. The volume of air exchanged during one inhalation and 

exhalation cycle of normal breathing is termed as tidal volume. This volume change is 

linearly related to the thorax and abdomen movement [78]. During heavy breathing as 

seen in people with COPD, there are accessory muscles of inhalation, causing greater 

contraction of diaphragm than at rest, resulting in a larger increase of rib cage internal 

volume. The exhalation process also involves additional contraction of the abdomen 

muscles, causing the diaphragm to move upwards, causing less air in the lungs than the 

resting functional residual capacity. 



 

14 

Normally, the enlargement of the thorax and abdomen wall occur together in 

phase, and total respiratory volume can be considered as a sum of the rib cage and 

abdominal volume. Thus, signals measured as a function of the rib cage or thoracic and 

abdominal motions can be calibrated to determine overall respiratory volume. In another 

case, a paradoxical motion of the thorax and abdomen occurs if the diaphragm ceases 

to contract, or the accessory muscles lose tone and the upper part of the rib cage becomes 

unstable, or with partial or complete upper airway obstruction. The partial obstruction 

is mainly a problem for the infants, where the diaphragm contraction creates highly 

negative intrathoracic pressure, that could result in inward motion of the least stable 

portions of the rib cage during inspiration. The complete upper airway obstruction 

generally occurs during sleep and is termed obstructive sleep apnea (OSA), resulting in 

no movement of air into the lungs. As the volume change is zero, the volume change in 

the abdomen is equal and opposite in direction to the volume change of the rib cage.  

The heartbeat motion is a rhythmic motion performing the cardiac cycle, 

consisting of relaxation of heart muscles and filling with blood, followed by a period of 

contraction and pumping of blood. While the heartbeat motion consists of the motion of 

four chambers, four valves, and other accessory muscles, the largest motion is due to a 

change in the ventricular volume and can be seen in the RF signal as a periodic motion. 

 

2.2 Sensor configuration 
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 We have implemented the sensor prototype by commercial off-the-shelf 

(COTS) components. UHF monopole antennas are used at both Tx and Rx. The 

dielectric composition in the near-field region of an antenna will modulate its 

characteristics. For a single antenna, this change can be measured from the antenna 

reflection parameter 𝑆𝑆11. For an antenna pair, this can be derived from the cross-

coupling 𝑆𝑆21. As the Tx and Rx signal chains are better isolated in the 𝑆𝑆21 measurements 

with less self-interference and higher SNR, we opt to place an antenna pair as part of 

the NCS sensor to the region of interest, where the intended surface and internal 

boundary motion can be retrieved after baseband demodulation. Notice that UHF has 

reasonable penetration into dielectrics in the near-field, and thus the internal dielectric 

motion during breathing and heartbeat can be locally modulated onto the specific 
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Figure 2.1 (a) 𝑆𝑆11 characteristics in air and on the chest showing shift towards the left. 
(b) The monopole helical antenna selected for the experiment. (c) The average NCS 
amplitude trend with frequency, scaled to the value at 1.6 GHz. 
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antenna pair. As the Rx signal consists of both the modulated and unmodulated parts, 

the relative antenna position and the body placement are optimized for the clearest 

signal. 

 

2.2.1 Antenna characteristics and radio architecture 

Due to the higher permittivity of the human body, the antenna 𝑆𝑆11 characteristics 

shift towards the left when placed on the chest, compared to in-air, as shown in Fig. 2.1 

(a) for a monopole whip antenna shown in Fig. 2.1 (b). The corresponding NCS 

amplitude vs. frequency plot is shown in Fig. 2.1 (c) for a frequency range of 1.6 to 2.0 

GHz. Although 𝑆𝑆11 rises monotonically in the frequency range which implies less RF 

energy transmitting towards the body, the NCS amplitude shows oscillatory behavior 

possibly due to additional physical mechanisms including inner tissue impedance 

matching, level of harmonic self-interference, signal strength balance between the 

transmitting and re-emitting waves, and wavelength difference that causes different 

interference features. Nevertheless, in the entire frequency range tested, sufficient RF 

energy is coupled into the heartbeat motion and reasonable SNR can be maintained.  

Figure 2.2 Extracted NCS heartbeat waveform for 1.65 GHz and 2.0 GHz, shifted at 
their respective scaled mean amplitude shown in Fig. 2.1 (c) , with corresponding 
ECG waveforms. 
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Fig. 2.2 shows the extracted NCS heartbeat waveform, shifted at the scaled-

mean amplitude for two frequencies at 1.65 and 2.0 GHz at different incidences, with 

corresponding ECG waveforms, whose magnitude is normalized for plotting purposes 

and timing is synchronized for feature comparison.  

The RF front end is implemented by a National Instrument Ettus B210 software-

defined radio (SDR) [79], with LabVIEW for real-time data recording. The quadrature 

implementation is shown in Fig. 2.3. The carrier frequency is set between 1 – 1.9 GHz 

for different antenna selection and multiple antenna placements, with a baseband 

Figure 2.3 Ettus SDR architecture showing quadrature I-Q implementation. 

Figure 2.4 The RMS phase deviation vs baseband frequency 𝑓𝑓𝐵𝐵𝐵𝐵 plot for Ettus USRP 
B210. 



 

18 

between 5 - 80 kHz, having a typical value of around 20 kHz. The baseband frequency 

selection has a tradeoff between phase noise, inherent signal frequency content, and 

filtering requirements. The relation between root mean square (RMS) phase noise and 

corresponding intermediate baseband frequency measure for universal software radio 

peripheral (USRP) B210 SDR is shown in Fig. 2.4. The required Tx power is well below 

the safety limits [80], with −12.84 dBm and −10.42 dBm for the thorax and abdomen 

sensors used during the human study protocol. The use of baseband modulation allows 

multiple sensors to share the same radio by assigning different baseband tones at the 

same carrier frequency. SDR B210 supports a 2×2 multiple-input-multiple-output 

(MIMO) setup to implement two NCS sensors. Another Ettus SDR B200 mini [81] can 

be placed entirely on the chest and minimizes RF cable motion during measurement, 

similar to eventual on-chest sensor placement. Different setup variations are discussed 

in detail in the next section. The demodulated baseband is sampled at 1 – 2 M samples 

per second (Sps) by the built-in analog-to-digital converter (ADC). 

 

2.2.2 Setup variations 

As our sensing approach modulates the near-field motion onto the RF carrier, 

the demodulated waveform depends on the antenna chest placement. A major design 

consideration is passive and active sensing with Rx in far-field and near-field 

respectively, as discussed earlier. Other variations include antenna and frequency 

selection, and MIMO implementations.  
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The simplest wearable sensing setup is based on passive sensing with an RFID 

tag on the chest, as shown in Fig. 2.5. Further, the harmonic RFID approach has been 

used with the tag prototyped on a Wireless Identification and Sensing Platform (WISP) 

[82] for ease of antenna selection and air protocol modification. The harmonics are 

f 
2f 

RFID tag on fabric 

Vital Signs 

SDR 

Figure 2.6: Wearable passive NCS setup for breath, heartbeat and motion detection. A 
passive harmonic RFID tag is deployed in the chest area and backscatters second 
harmonic frequency to the reader antenna. 

Figure 2.5 (a) Raw NCS amplitude and phase signals showing respiration and 
heartbeat information. (b) Respiration extraction from phase. (c) Heartbeat extraction 
from amplitude. 

(a) 

(b) 

(c) 
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introduced by a nonlinear transmission line (NLTL) design [83]. A commercially 

available UHF monopole antenna with center frequencies at 1.0 and 1.8 GHz in free 

space was chosen. The work in [77] shows the separation of downlink and uplink on the 

harmonics improves received signal quality by improved self-jamming cancellation. 

Figure 2.7 Furniture integrated invisible NCS setup for sleep monitoring. (a) Monopole 
stripped coax cable antenna pasted on back of a chair for testing. (b) The setup showing 
SDR Tx-Rx chain with harmonic NLTL and 4 Tx antennas powered by a 4-way power 
splitter. (c) A box containing SDR, power splitter and Rx on the lid. (d) Sleep center bed 
with coax antennas under the mattress topper. (e) The Rx antenna and the box placed 
under the bed in a drawer.  

(a) 

(b) 

(c) 

(d) (e) 
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The setup has the further advantage of allowing a light-weight passive RFID tag to be 

placed on the body and even integrated into the fabric [46] with no user discomfort or 

circadian rhythm disruption from skin touch or motion constraints. The limitations of 

this setup include sensitivity to participant motion and ambient interference with Rx in 

the far-field. Thus, this setup is best suited for sleep monitoring, as shown in Fig. 2.5. 

The waveforms shown in Fig. 2.6 are derived from this setup. 

Another variant of this setup is the furniture integrated version, which can be 

placed on the chair back or on-the-bed. This work particularly focuses on the sleep 

apnea conditions, and thus a bed version was designed and placed at Cornell Weill 

Medical Sleep Center, NYC, NY, US. As the antennas need to be thin enough to be 

unnoticeable, a stripped half-wave monopole co-ax cable antenna was designed as 

shown in Fig. 2.7 (a). Also, as the antenna need to cover a large area on the bed allowing 

less sensitivity to user position, it was designed to be operated at 900 MHz and the 

length was experimentally selected to be 19.4 cm, compared to theoretical 𝜆𝜆 2⁄ =16.7 

cm to give optimal performance. Fig. 2.7 (b) shows the setup schematic showing USRP 

B210 connected to an NLTL on the Tx side to get the harmonic frequency of 900 MHz, 

transmitted to four antennas connected to a 4-way power splitter. The antennas were 

sewn under the mattress topper as shown in Fig. 2.7 (d), to provide position tolerance 

in both horizontal and vertical direction. The components: SDR, NLTL, and Rx were 

placed in a box, as shown in Fig. 2.7 (c) and placed under the bed as shown in Fig. 2.7 

(e), such that the Rx was below the Tx antennas. The respiration pattern can be observed 

in the NCS signal as shown in Fig. 2.8, which also shows comparing chest belts signal 

from the PSG and the extracted RR from both the devices. CSA can be extracted from 
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the NCS signal as shown in Fig. 2.9, where no motion is seen for extended durations in 

both amplitude and phase readings. However, OSA is difficult as this setup couples to 

both thorax and abdomen motion without distinguishing between the two. PSG apnea 

detection shows a slight lag due to poor time synchronization. Fig. 2.10 shows few 

occurrences of OSA, with some coupling variation between amplitude and phase that 

could likely be detected by machine learning (ML) and artificial intelligence (AI) based 

approaches. However, no clear paradoxical motion is visible, and thus difficult to be 

detected with some pattern matching approaches. A new setup with different thorax and 

Figure 2.8 Respiration waveform during sleep study on a patient. (a) Thorax (chest) 
and abdomen waveforms from chest belts in polysomnogram (PSG). (b) NCS 
amplitude and phase waveforms collected from setup which was shown in Fig. 2.7. 
(c) Estimated respiratory rate from PSG and NCS using a short-time Fourier transform 
(STFT). 

(a) 

(b) 

(c) 
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abdomen sensors is implemented [84], also using stripped co-ax cables, acting like 

notched transmission lines. 

A single active sensor can be more conveniently deployed, where the Tx – Rx 

antenna pair is placed below the xiphoid process to effectively capture the respiratory 

motion by diaphragm and abdomen, as shown in Fig. 2.11, with the only faint signal 

from the heartbeat.  The sensor can work over layers of clothing without skin contact 

and does not need to be held tightly against the chest, greatly improving wearer comfort. 

This setup can correctly capture RR and RV with high accuracy for most breathing 

patterns and showed low sensitivity to body placement. Tests with the sensor placed 5 

cm above and below the xiphoid process showed that respiration can be captured at all 

(a) 

(b) 

(c) 

(d) 
Time (24:00) 

Figure 2.9 NCS and PSG readings for a patient. (a) and (b) show NCS amplitude and 
phase respectively, with clear no breathing motion during CSA events indicated by 
arrows. (c) Detected sleep stage. (d) Detected apnea events. 
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three locations, requiring only different calibration coefficients. This active sensing 

setup is much more tolerant to ambient interferences and can be shielded against the 

motion of arms and legs as well. The detailed motion interference results are discussed 

(a) 

(b) 

(c) 

(d) 
Time (24:00) 

Figure 2.10 NCS and PSG readings similar to Fig. 2.9, showing cases of OSA. The 
amplitude (a) and phase (b) respiration waveforms are not identical and show complete 
(00:28:10) or little (00:29:20, 00:30:10) asynchronous motion.  

Figure 2.11 One active sensor implementation below xiphoid process. 
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in a later section and simulated respiratory disorder signals with this sensor are 

presented in detail in the next chapter.  

Finally, a two-sensor placement is considered, with one sensor placed high at 

the thorax, and the other at the abdomen. This allows our sensor to accurately monitor 

the scenario of out-of-phase abdomen and thorax motion in OSA with paradoxical 

breathing [85].  This sensor is best suited to get both clear heartbeat and respiratory 

signal and provides increased tolerance to motion and other noise interference with two-

point respiration measurement. An initial test setup is shown in Fig. 2.12, using one 

carrier frequency with two different intermediate baseband frequencies, 𝑓𝑓𝐵𝐵𝐵𝐵 with USRP 

B210. The setup is further refined and used for human studies in Chapter 4. 

2.3 Signal model 

The near-field motion is modulated onto the received data and can be retrieved 

by signal processing of the demodulated baseband data. The Tx quadrature baseband is 

presently a simple sinusoidal tone given by  

Thorax 
𝑓𝑓𝐵𝐵𝐵𝐵 = 20 𝑘𝑘𝑘𝑘𝑘𝑘 

Abdomen 
 𝑓𝑓𝐵𝐵𝐵𝐵 = 70 𝑘𝑘𝑘𝑘𝑘𝑘 

Figure 2.12 Two sensor implementation at thorax and abdomen. 
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   𝐼𝐼𝑃𝑃𝑚𝑚(𝑡𝑡) = 𝐴𝐴 cos (2𝜋𝜋𝑓𝑓𝐵𝐵𝐵𝐵𝑡𝑡)  

   𝑄𝑄𝑃𝑃𝑚𝑚(𝑡𝑡) = 𝐴𝐴 sin(2𝜋𝜋𝑓𝑓𝐵𝐵𝐵𝐵𝑡𝑡).              (2.1) 

Here 𝑓𝑓𝐵𝐵𝐵𝐵 is the baseband frequency and 𝐴𝐴 is the amplitude. Multiplexing is possible by 

setting different baseband frequencies or code divisions for different channels. B210 

supports two channels that can be operated simultaneously. This digital baseband passes 

through the digital-to-analog converter (DAC) and is then mixed with the carrier 

frequency, 𝑓𝑓𝑅𝑅𝑅𝑅. The Tx signal is modulated by the physical motion in the near-field 

region of the Tx antenna and the Rx signal is demodulated and sampled by the ADC to 

get the baseband quadrature, which needs to be bandpass-filtered around the channel 

tone 𝑓𝑓𝐵𝐵𝐵𝐵 to obtain data from different channels 

   𝐼𝐼𝑅𝑅𝑚𝑚(𝑡𝑡) = 𝐴𝐴(𝑡𝑡)cos (2𝜋𝜋𝑓𝑓𝐵𝐵𝐵𝐵𝑡𝑡 +  𝜃𝜃(𝑡𝑡))  

   𝑄𝑄𝑅𝑅𝑚𝑚(𝑡𝑡) = 𝐴𝐴(𝑡𝑡) sin�2𝜋𝜋𝑓𝑓𝐵𝐵𝐵𝐵𝑡𝑡 +  𝜃𝜃(𝑡𝑡)�.            (2.2) 

The intended motion is modulated on the 𝐼𝐼𝑄𝑄 amplitude 𝐴𝐴(𝑡𝑡) (𝑁𝑁𝐶𝐶𝑆𝑆𝐵𝐵𝑚𝑚𝑚𝑚) and 

phase 𝜃𝜃(𝑡𝑡) (𝑁𝑁𝐶𝐶𝑆𝑆𝑚𝑚ℎ), and can be extracted as, 

  𝑁𝑁𝐶𝐶𝑆𝑆𝐵𝐵𝑚𝑚𝑚𝑚(𝑡𝑡) = �𝐼𝐼𝑅𝑅𝑚𝑚(𝑡𝑡)2 + 𝑄𝑄𝑅𝑅𝑚𝑚(𝑡𝑡)2 ,              (2.3) 

 𝑁𝑁𝐶𝐶𝑆𝑆𝑚𝑚ℎ(𝑡𝑡) = 𝑢𝑢𝑎𝑎𝑢𝑢𝑟𝑟𝑎𝑎𝑝𝑝(tan−1 �𝑄𝑄𝑅𝑅𝑅𝑅(𝐵𝐵)
𝐼𝐼𝑅𝑅𝑅𝑅(𝐵𝐵)� − 2𝜋𝜋𝑓𝑓𝐵𝐵𝐵𝐵𝑡𝑡 + 𝜃𝜃0),            (2.4) 

where 𝜃𝜃0 is a constant phase offset including the initial phase and accumulation from 

the Tx-Rx path and cables. While both amplitude and phase contain the modulated 

motion, their coupling strength varies with the sensor placement, which provides further 

resistance to noises when both magnitude and phase are included for further analysis. 

Additional studies are needed to clearly understand the coupling tradeoffs. For this 

work, when only one sensor is available, generally heart rate is extracted from amplitude 
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and respiration from the phase, as internal body coupling is usually better on amplitude. 

The two sensor setup is discussed in Chapter 4. 

2.4 Physiological signal processing 

The raw NCS signal needs to be correctly pre-processed to extract further 

information. This includes operations like filtering, peak detection, and signal artifact 

detection and correction. This section discusses both pre-processing and final HR, RR, 

and RV estimation algorithms in detail. 

2.4.1 Peak detection 

With the high SNR signal available, we can observe every heartbeat and 

respiratory cycle in the time-domain to support real-time analysis and variability in both 

the waveforms, without resorting to frequency-domain techniques. This work aims to 

use tuning-free or minimally tuned algorithms for both respiration and heartbeat peak 

detection. To that purpose, modified versions of two algorithms have been used that 

work with high accuracy without any tuning from person-to-person or varying 

respiratory patterns. 

A modified algorithm of automated multiscale-based peak detection (AMPD) 

[86] is used, due to its effectiveness against noisy quasi-periodic waveforms and its 

simplicity in terms of no free parameter selection. The limitations of AMPD include 1) 

long processing time and large memory requirement for a long signal segment, and 2) 

the highest frequency (𝑓𝑓𝑚𝑚𝐵𝐵𝑚𝑚) should not be larger than 4 times the lowest frequency 

(𝑓𝑓𝑚𝑚𝑖𝑖𝑚𝑚) in one signal segment. As respiration signal can have a large frequency range for 

slow breathing at 6 breaths per minute (BPM) to panting at 60 BPM (0.1 − 1 Hz), a 

windowing was introduced with 50% overlap, as sudden frequency jump is not expected 
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over a small segment. The algorithm performs maxima and minima detection over 

multiple scales and keeps the peaks that are maximum over all the scales, and discards 

the rest of the maxima, as shown in the flowchart in Fig. 2.13. This repeats over each 

window, where the window length is selected to include 1 cycle at the least frequency, 

which is taken as 6 BPM for the breath. It can be further updated by first taking a FT 

over the next 30s and then updating the window to include few cycles corresponding to 

the peak RR. For this small window, it will satisfy the frequency range limit of [fmin, 

4fmin] while allowing the signal to have a broad frequency range over time. The 

processing speed and memory requirements are also improved. As the heart rate does 

not show sudden variation, it does not have any such strong window size dependence 

Figure 2.13 Flowchart showing implementation of modified AMPD algorithm using 
local maxima scalogram (LMS) matrix. 
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for this algorithm. Fig. 2.14 shows the sharp minima peaks for the heart rate and both 

minima and maxima peaks from the respiration using this algorithm. 

While the above algorithm works well, it is prone to error at sudden peak jumps 

and very irregular breathing, which can occur in some of the respiratory disorders. 

Moreover, the computation requirements are huge, with a large local maxima scalogram 

(LMS) matrix M, shown in Fig. 2.13. An improved peak detection algorithm, called 

moving average-crossing algorithm [87] is implemented, which is effective for signals 

with varying amplitude and frequency characteristics, such as the respiration signal here 

with the RR in the range of 0 – 50 BPM, without any manual tuning. A moving average 

is estimated at every point using a given window length, resulting in a moving average 

curve (MAC). This window length is selected to have approximately one respiratory 
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Figure 2.14 NCS heartbeat (a) and respiration (b) waveforms showing peaks detected 
by AMPD algorithm. 
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cycle in each window and is constantly updated by taking a Fourier transform over a 

fixed period to estimate the RR. The points where MAC crosses the original signal are 

labeled as intercepts and are classified as up or down intercepts for positive and negative 

slopes, respectively. Finally, a maximum is marked as the maximal point between two 

up-down intercepts and a minimum is also marked similarly. This algorithm is used in 

the estimation of all three parameters: RV, RR, and HR. Fig. 2.15 shows the original 

respiration signal, its MAC, and the final extracted minima and maxima peaks.  

 

2.4.2 Signal conditioning 

The NCS waveform needs to be pre-processed to remove baseline drift. Further, 

the respiration and heartbeat signal needs to be filtered properly. The entire processing 
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Figure 2.15 Normalized NCS respiration waveform and peak detection. (a) The MAC 
curve (orange) showing positive-slope intercepts and negative-slope intercepts in black 
and red colors, respectively. (b) Maxima (black) and minima (red) points detection 
showing end of inhalation and end of exhalation, respectively.  
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is performed using MATLAB. The respiratory and heartbeat signals are highpass 

filtered with a zero-phase Butterworth digital filter of order = 3 and 3-dB cutoff 

frequency, 𝑓𝑓3𝑑𝑑𝑑𝑑 = 0.05 Hz and 0.7 Hz respectively. Both the signals are lowpass filtered 

with a Kaiser window filter with a passband ripple of 0.1 and stopband attenuation of 

10 dB, with passband and stopband frequencies [𝑓𝑓𝑃𝑃, 𝑓𝑓𝑠𝑠𝐵𝐵] of [0.8,1.2] Hz and [9,10] Hz 

for respiration and heartbeat respectively. 

Another observed phenomenon is the coupled signal’s polarity reversal, i.e., 

increasing volume during inspiration is shown as a decreasing signal, which is 

dependent on sensor placement. While this information is not required directly for 

respiration rate or volume estimate, it can be helpful to distinguish end-of-inspiration 

and end-of-expiration peaks. A method based on respiration physiology is proposed to 

correct the waveform polarity, assuming end-of-inspiration is expected to be a peak. 

The normal respiration is expected to have a lesser inspiratory interval, 𝑡𝑡𝐼𝐼𝐼𝐼 (time from 

end-of-expiration to end-of-inspiration) than expiratory interval, 𝑡𝑡𝐸𝐸𝐼𝐼 (time from end-of- 
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Figure 2.16 NCS waveform polarity correction. (a) and (b) Good case: Inspiration and 
expiration peaks are correctly detected in NCS leading to accurate sign correction, with 
NCS waveform in-phase with reference chest belt waveform. (c) and (d) Poor case: The 
NCS waveform respiration coupling has a flat characteristic during expiration, leading 
to poorer peak detection. Thus, waveform polarity correction fails. 

(c) 
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inspiration to end-of- expiration), i.e., 𝑡𝑡𝐸𝐸𝐼𝐼 𝑡𝑡𝐼𝐼𝐼𝐼⁄ > 1. Following are the steps for 

respiration polarity correction: 1) maxima and minima detection on the filtered 

respiratory signal, 2) estimate 𝑡𝑡𝐸𝐸𝐼𝐼 𝑡𝑡𝐼𝐼𝐼𝐼⁄ ; if <1, flip waveform by multiplying by -1, 

otherwise do nothing.  This method resulted in accurate waveform polarity correction 

for 71/75 recorded normal breathing data segments with an accuracy of 94.67%. Fig. 

2.16 shows a good and poor case using this approach.  

Other signal distortions occur particularly during deep breathing, likely due to 

saturation. This can be taken care of by automatic Rx gain adjustment during data 

recording if the normalized received signal amplitude exceeds 1/√2. Motion 

interference is another important consideration, that can occur due to sudden torso jerk 

or poor sensor stability on the body. Thus, another important step is signal quality 

detection to reject poor quality signal due to any of the above reasons. As the reference 

signals can also have motion interference, a signal with interference in either NCS or 

reference sensor is rejected. 

• Respiration Data Quality: As thorax and abdomen sensors are independently 

placed, motion artifacts may be present differently, leading to a poor correlation 

between the two measurements. Also, data from NCS and reference chest belts 

can show dissimilar artifacts, with both or only either one of them showing the 

artifact. Thus, correlations between thorax and abdomen chest belts, and NCS 

and chest belts for both thorax and abdomen are calculated with an epoch 
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duration of 5 s. Final data quality is taken as an absolute of the product of all 

these correlations, with higher values indicating better quality, as shown in Figs. 

2.17 (a) and (b). A fixed threshold is empirically selected, below which the RR 

and RV estimates are discarded.  

• Heartbeat Data Quality: As the NCS heartbeat waveform is only extracted 

from the thorax sensor, an outlier detection algorithm based on a one-class 

support vector machine (OCSVM) [88] is implemented to detect artifacts in the 

filtered heartbeat waveform. To speed up signal processing, the motion detection 

algorithm is implemented on a window of 4 s. The algorithm is trained on the 

entire routine and a window is marked as an outlier if the tanh() normalized 

score is less than 0. Figs. 2.17 (c) and (d) show the filtered heartbeat waveform 
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Threshold = 0.4 Threshold = 0 

Figure 2.17 Quality score for respiration and heartbeat waveforms with motion artifact 
instance between 60 – 80 s. A fixed, empirically selected threshold is used to reject 
poor data, given by a low quality score. (a) Normalized NCS thorax and abdomen 
respiration waveforms. (b) Respiration quality score in the range [0,1], showing poor 
quality with score less than the threshold (0.4). (c) Normalized filtered NCS heartbeat 
waveform modulated on the thorax sensor, with most of the artifact filtered out. (d) 
Quality score normalized by tanh() in the range [-1, +1]. A low threshold of 0 is 
selected, as the second harmonic method used for heart rate estimate provides even 
higher motion tolerance. 
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from the NCS thorax sensor and the corresponding score, respectively. Detailed 

algorithm and feature extraction are presented in the next chapter. For ECG 

waveforms, QRS complex peaks are less sensitive to noise, and thus no separate 

artifact detection is implemented. HR estimation is discarded if the window 

contained any poor-quality period. 

 

2.4.3 Heart rate estimation  

The heartbeat waveform is modulated strongly on the thorax sensor and can be 

separated from the respiration by proper filtering. However, during the fast breathing 

exercise, the RR can be around 40 BPM, close to the HR, resulting in some filtering 

ambiguity. In the time-domain waveform, beat-to-beat peak location may not be 

accurately detected due to smooth peaks with less sharp features.  Therefore, we have 

proposed using the second harmonic of the heartbeat waveform (Fig. 2.18) to estimate 

the peak-to-peak heartbeat interval with reduced interferences from respiration and 

motion. The FT is used to first estimate the approximate HR, which guides the filtering 

to retrieve the second harmonic with a bandwidth of 0.8 Hz. The same peak detection 

method is then used to find peaks of the second-harmonic waveform. Instantaneous HR 

is estimated as an inverse of each heartbeat interval, taken as the sum of two neighboring 

peak-to-peak periods, as shown in Fig. 2.18 (Right). This HR is averaged over a window 

(10 s) to suppress any outliers. The reference HR is estimated from the ECG waveform 

with bandpass filtering between 0.4 – 20 Hz, which removes any baseline drift and 

suppresses the low-frequency P and T waves. The sharp QRS complex peak is then 

detected with a simple slope-based peak detection algorithm.  
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𝑡𝑡1 𝑡𝑡2 

𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑡𝑡1 + 𝑡𝑡2 

Artifact 

(a) 

(b) 

Figure 2.18 NCS heartbeat waveform and HR extraction. Left: Band-pass filtered NCS 
heartbeat waveforms and heart rate extraction from 2nd harmonic, showing instances 
without motion artifact (a) and with motion artifact (b). (a) Top figure shows ECG and 
filtered NCS heartbeat. The middle figure shows 2nd harmonic of the NCS heartbeat with 
detected peaks. The bottom figure shows the instantaneous HR as inverse of each beat-to-
beat interval, 𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, from fundamental NCS (dotted blue), harmonic NCS (solid blue) and 
ECG (dash-dotted orange). (b) The same HR extraction, showing periods of artifact at 𝑡𝑡 =
6 s and 18 s, where the 2nd harmonic is more accurate. Right: Zoomed-in version of the 
left figures, showing 𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 calculation from NCS 2nd harmonic as the sum of adjacent beat-
to-beat intervals.  
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Figure 2.19 Examples of a 5-minute breathing protocol for one participant. The subject 
is in the supine posture while performing normal, deep, fast breathing and breath-hold. 
(a) Normalized reference strain chest-belt data at thorax and abdomen. During breath 
hold the thorax belt also shows a weak heartbeat motion. Different breathing periods are 
indicated here, with normal breathing in the unmarked sections. (b) Normalized NCS 
respiration data from thorax and abdomen sensors, as well as strong heartbeat on the 
thorax waveform. (c) RV during different breathing styles, based on the average volume 
exchanged in each inhalation and exhalation cycle over the past window containing at 
least two peaks, thus resulting in 0 estimates when the number of peaks is less than two 
(slow breathing). (d) RR estimation from NCS and chest belts clearly showing different 
breathing periods, with the normal RR around 20 BPM. (e) HR estimation from both 
sensors showing average resting HR in the range of 55 — 60 BPM. 
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Fig. 2.19 shows NCS and reference waveforms for a subject and the strong 

heartbeat modulated on the thorax NCS sensor while performing different breathing 

exercises, especially visible in the breath-hold periods (Fig. 2.19 (b)), with the 

corresponding average HR from NCS and reference ECG in Fig. 2.19 (e). 

 

2.4.4 Respiratory rate estimation 

The NCS signal is band-pass filtered with the cut-off frequencies of 0.05 Hz and 

0.8 Hz to derive the respiration waveforms from both the sensors. As the diaphragm and 

resulting abdomen motion are usually larger, the respiration waveform from the 

abdomen NCS sensor alone is used to estimate RR. This sensor also has a weaker 

heartbeat coupling, and thus filtering requirements are less stringent during fast 

breathing and breath-hold. Similarly, the abdomen chest belt is also used to estimate 

reference RR with the same algorithm. RR is calculated as the number of detected breath 

cycles over the maximum window of the past 15 s. For each window, the number of 

cycles is calculated as the number of inhalation peaks minus 1, and the total time is the 

interval between first and last inhalation peaks. If no complete cycle is detected during 

the entire window, the RR is marked as 0. Here inspiration peaks are selected instead of 

expiration, as they can be more accurately detected due to sharper peaks. Fig. 2.19 (d) 

shows calculated RR from NCS and reference chest belts over varying normal, deep, 

and fast breathing and breath-holds, in the range of 0 — 45 BPM. 

2.4.5 Respiratory volume estimation 

In addition to HR and RR, this work presents an algorithm to extract RV 

estimation to get complete respiratory effort estimation. Both are related to each other 
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through a term called minute ventilation, 𝑀𝑀𝑉𝑉 = 𝑅𝑅𝑅𝑅 ⋅ 𝑅𝑅𝑉𝑉, that is related to blood carbon 

dioxide levels. As the peak-to-peak height of the respiration waveform is related to the 

amount of air inhaled and exhaled, it can be calibrated using a reference sensor to extract 

the RV. As the characteristic of the reference sensor change, so does the calibration 

approach as discussed below. 

We first calibrated using pre-calibrated respiratory inductance plethysmography 

(RIP) chest belts, that showed slight waveform saturation for deep breathing. Thus, a 

quadratic model was proposed to calibrate NCS peak-to-peak height (ℎ),  

𝑎𝑎ℎ2 + 𝑏𝑏ℎ + 𝑐𝑐 = 𝑅𝑅𝑉𝑉𝑅𝑅𝐼𝐼𝑃𝑃              (2.5) 

with 𝑅𝑅𝑉𝑉𝑅𝑅𝐼𝐼𝑃𝑃 as the pre-calculated respiratory volume derived from RIP chest belts. 

Results from this estimate are presented in Chapter 3. 

To have a more accurate calibration, a pneumotachometer (PTM) was used for 

calibrating both strain chest belts and NCS. While PTM is a kind of spirometer, we have 

referred to it as such to state explicitly that the airflow is estimated from the pressure 

change. The facemask design includes a separator between nose and mouth and is tightly 

strapped on to minimize any air leakage from the mouth. Subjects are requested to inhale 

and exhale by mouth only, and they can feel rather uncomfortable during PTM 

measurements. Thus, PTM is removed from the participant except during the short 

initial calibration routine of 30 s, with 15 s of each normal and deep breathing. PTM 

measures the airflow rate waveform, from which the beginning of each inhalation and 

exhalation point is identified by a simple zero-cross detection algorithm, based on the 

change of sign before and after the zero-crossing points, and the slope at these points, 

shown in Fig. 2.20 (a). Integration is performed over each inhalation and exhalation 
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cycle to get the instantaneous air volume, 𝑉𝑉𝑉𝑉𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃, without aggregating a bias over time. 

Least-square fitting is performed for solving the following equation by a trust-region 

algorithm with bounded constraints of 𝑎𝑎, 𝑏𝑏 >  0 

𝑎𝑎 · 𝑅𝑅𝑒𝑒𝑠𝑠𝑝𝑝𝑃𝑃ℎ + 𝑏𝑏 · 𝑅𝑅𝑒𝑒𝑠𝑠𝑝𝑝𝐴𝐴𝑑𝑑𝑑𝑑 + 𝑐𝑐 = 𝑉𝑉𝑉𝑉𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃,             (2.6) 

where 𝑅𝑅𝑒𝑒𝑠𝑠𝑝𝑝𝑃𝑃ℎ and 𝑅𝑅𝑒𝑒𝑠𝑠𝑝𝑝𝐴𝐴𝑑𝑑𝑑𝑑 are thorax and abdomen respiratory waveforms, 

respectively. Fig. 2.21 (a) shows PTM airflow waveform during the calibration, with 

the corresponding 𝑉𝑉𝑉𝑉𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃 and calibrated NCS and chest-belt volumes in Fig. 2.21 (b). 

RV is defined as the volume of the air exchanged during each inhalation and exhalation 

Figure 2.20 PTM airflow waveform and volume estimate. (a) PTM airflow (blue line) 
in L/s and its lowpass filtered signal (orange line). The detected inspiration and 
expiration start points are also marked. (b) The volume of air exchanged calculated by 
integrating over each cycle (between two inspire start points). In some cases, the 
volume goes negative, indicating either incorrect baseline shift, forced exhalation, or 
use of nose in addition to mouth. The peak-to-peak height is also calculated. 

(a) 

(b) 
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and is calculated as the peak height of each calibrated breath cycle as shown in Fig. 2.20 

(b). Fig. 2.19 (c) showed the estimated RV from chest belts and NCS data over different 

breathing styles. Deep breathing clearly shows an increased volume of air exchange 

compared to normal breathing. RV is estimated as the average volume exchanged in 

each respiratory cycle over a window of 15 s, with at least two peaks in the window to 

get a robust estimate.  

Due to sensor motion over time, mostly resulting from a posture change, the 

estimated RV may deviate from its original calibration. An additional corrective step is 

performed if the estimated RV during the normal breathing section of the breathing 

exercise routine 𝑅𝑅𝑉𝑉(𝑁𝑁𝑉𝑉𝑟𝑟𝑚𝑚𝑎𝑎𝑙𝑙)𝑅𝑅𝑜𝑜𝑅𝑅𝐵𝐵𝑖𝑖𝑚𝑚𝐵𝐵, deviates more than ± 5% from the calibrated 

𝑅𝑅𝑉𝑉(𝑁𝑁𝑉𝑉𝑟𝑟𝑚𝑚𝑎𝑎𝑙𝑙)𝑁𝑁𝐵𝐵𝐶𝐶𝑖𝑖𝑑𝑑𝐶𝐶𝐵𝐵𝐵𝐵𝑖𝑖𝑜𝑜𝑚𝑚, derived from the first 15 s of calibration. The NCS and 

reference RV is multiplied with a corresponding scaling factor (SF) given as 

Figure 2.21 PTM airflow and calibrated chest belt and NCS respiration waveforms. (a) 
Baseline corrected PTM waveform. (b) Instantaneous volume of air exchanged 𝑉𝑉𝑉𝑉𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃 
(dotted green) from the airflow, and calibrated chest belts (blue) and NCS (dashed-
dotted red) respiration waveforms. 

(a) 

(b) 
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𝑅𝑅𝑉𝑉(𝑁𝑁𝑉𝑉𝑟𝑟𝑚𝑚𝑎𝑎𝑙𝑙)𝑁𝑁𝐵𝐵𝐶𝐶𝑖𝑖𝑑𝑑𝐶𝐶𝐵𝐵𝐵𝐵𝑖𝑖𝑜𝑜𝑚𝑚/𝑅𝑅𝑉𝑉(𝑁𝑁𝑉𝑉𝑟𝑟𝑚𝑚𝑎𝑎𝑙𝑙)𝑅𝑅𝑜𝑜𝑅𝑅𝐵𝐵𝑖𝑖𝑚𝑚𝐵𝐵, assuming the normal breathing routine 

has nearly constant RV for the same person over time.  

To validate this correction, an additional RV calibration consistency study was 

conducted on one subject over three consecutive days in the sitting posture. The subject 

performed the calibration, immediately followed by the voluntary breathing exercise 

routine. Table 2.1 shows the detailed results, with RV before scaling correction, and the 

required SF to improve the match when using day-1 calibration for all successive days. 

The 𝑅𝑅𝑉𝑉(𝑁𝑁𝑉𝑉𝑟𝑟𝑚𝑚𝑎𝑎𝑙𝑙)𝑁𝑁𝐵𝐵𝐶𝐶𝑖𝑖𝑑𝑑𝐶𝐶𝐵𝐵𝐵𝐵𝑖𝑖𝑜𝑜𝑚𝑚 lies within a narrow range of 0.37 – 0.43 L, showing 

consistency in normal breathing volume for a healthy individual over time. Little scaling 

is required to correct RV when calibrated immediately before the routine, resulting in 

scaling factors close to 1 on day-1. Variations in sensor placement and coupling strength 

result in scaling factors other than 1 to correct the RV for the next two days. Figs. 2.22 

(a) and 2.22 (b) show instantaneous volume and RV estimated on day-2 using day-1 

calibration, with NCS underestimating and reference chest belt overestimating the 

expected 𝑅𝑅𝑉𝑉(𝑁𝑁𝑉𝑉𝑟𝑟𝑚𝑚𝑎𝑎𝑙𝑙)𝑁𝑁𝐵𝐵𝐶𝐶𝑖𝑖𝑑𝑑𝐶𝐶𝐵𝐵𝐵𝐵𝑖𝑖𝑜𝑜𝑚𝑚 = 0.37 L, derived from day-1. The corrected scaled 

RV in Fig. 2.22 (c) shows improved agreement of NCS and reference to each other, as 

Table 2.1 RV calibration consistency test over 3 consecutive days 

1. Day 𝒊𝒊 2. RV(Normal)Calibration 3. RV(Normal)Routine 
(Calibration: Day 1) 

4. Scaling Factor, 𝑆𝑆𝑆𝑆 
(Calibration: Day 1) 

𝒊𝒊 = 𝟏𝟏 RV 𝑃𝑃𝑃𝑃𝑃𝑃 = 0.37 𝐿𝐿 RV𝑁𝑁𝑁𝑁𝑁𝑁 = 0.39 𝐿𝐿, RV𝐵𝐵𝐼𝐼𝐵𝐵𝑃𝑃𝐴𝐴𝑁𝑁 = 0.35 𝐿𝐿 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 = 0.95, 𝑆𝑆𝑆𝑆𝐵𝐵𝐼𝐼𝐵𝐵𝑃𝑃𝐴𝐴𝑁𝑁 = 1.06 

𝒊𝒊 = 𝟐𝟐 RV 𝑃𝑃𝑃𝑃𝑃𝑃 = 0.43 𝐿𝐿 RV𝑁𝑁𝑁𝑁𝑁𝑁 = 0.22 𝐿𝐿, RV𝐵𝐵𝐼𝐼𝐵𝐵𝑃𝑃𝐴𝐴𝑁𝑁 = 0.65 𝐿𝐿 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 = 1.68, 𝑆𝑆𝑆𝑆𝐵𝐵𝐼𝐼𝐵𝐵𝑃𝑃𝐴𝐴𝑁𝑁 = 0.57 

𝒊𝒊 = 𝟑𝟑 RV 𝑃𝑃𝑃𝑃𝑃𝑃 = 0.43 𝐿𝐿 RV𝑁𝑁𝑁𝑁𝑁𝑁 = 0.24 𝐿𝐿, RV𝐵𝐵𝐼𝐼𝐵𝐵𝑃𝑃𝐴𝐴𝑁𝑁 = 0.60 𝐿𝐿 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 = 1.54, 𝑆𝑆𝑆𝑆𝐵𝐵𝐼𝐼𝐵𝐵𝑃𝑃𝐴𝐴𝑁𝑁 = 0.62 

Table displaying the normal breathing RV calibration and scaling factor consistency over three days of testing on the same subject. Each day consisted of a calibration 
period immediately followed by a breathing routine, performed while sitting upright. 1. The day of the measurements. 2. The normal RV estimated from the PTM during 
the calibration routine. All three RV estimates are close to each other, within a range of 0.06 L. 3. The normal breathing RV for NCS and BIOPAC during the breathing 
exercise routine, derived using calibration from day 1 for all three days. 4. The calculated scaling factor to accurately map the routine’s normal RV to normal RV of day 
1 calibration. Little scaling is required to correct RV when calibrated immediately before the routine, resulting in scaling factors close to 1 on day-1. Variations in sensor 
placement and coupling strength result in scaling factors other than 1 to correct the normal RV on the next two days.  
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well as to the calibration value. As SF assumes accurate 𝑅𝑅𝑉𝑉(𝑁𝑁𝑉𝑉𝑟𝑟𝑚𝑚𝑎𝑎𝑙𝑙)𝑁𝑁𝐵𝐵𝐶𝐶𝑖𝑖𝑑𝑑𝐶𝐶𝐵𝐵𝐵𝐵𝑖𝑖𝑜𝑜𝑚𝑚, some 

error may be introduced from inconsistencies in the calibration and correction process, 

including variation due to small calibration duration, difference in resistance when 

breathing through the mouth, and change in 𝑅𝑅𝑉𝑉(𝑁𝑁𝑉𝑉𝑟𝑟𝑚𝑚𝑎𝑎𝑙𝑙) over time. The correction 

assumes knowledge of normal breathing period, that can be potentially identified based 

on the normal RR and HR range of an individual. 

 

2.5 Motion, coughing, and speaking interferences 

This section discusses how signal patterns from the body and ambient motion, 

cough, and speaking are observable in the respiratory and cardiac waveforms and their 

detection.  

2.5.1 Motion detection during sleep with passive setup 

Figure 2.22 Results of calibration consistency test. Using RV calibration from day-1 on 
day-2 data, both collected in sitting posture. Subject is performing voluntary breathing 
exercises in the routine. (a) Calibrated instantaneous volume from reference chest belts 
and NCS. (b) Estimated RV from the top plot with chest belts overestimating and NCS 
underestimating the expected RV(Normal)Calibration = 0.37 L. (c) Scaled RV 
estimation that corrects the error based on a normal breathing section. 

(a) 

(b) 

(c) 

Reference 

Reference 

Reference 
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Motion detection for sleep scoring with accurate heartbeat and respiration 

information cannot be directly achieved by simple filtering. Motion affects waveform 

features of both heartbeat and respiration. In this work, a beat-by-beat segmentation is 

performed to achieve finer time resolution of motion detection. Accurate peak detection 

is difficult in non-stationary heartbeat waveforms with multiple peaks depending on 

sensor placement, operating carrier frequency, and filtering range. As RR in sleep is 

limited, and not expected to be as high as panting, an approach based on multilevel 1-D 

wavelet decomposition using Daubechies db10 wavelet is used. Reconstructed 

waveforms by the detail coefficient at level 8 (NCS-d8), containing the main component 

of heartbeat waveforms are shown in Fig. 2.23. The wavelet coefficient level can be 

selected by adjusting the signal sampling rate, 𝑓𝑓𝑠𝑠 and selecting the level containing 50 – 

100 beats per minute (BPM) frequency, or simply by selecting the coefficient resulting 

in maximum correlation with the filtered heartbeat waveform. Peak detection can be 

performed at this stage to get individual heartbeats. This method is different than earlier 

HR estimation, as while that was designed to be motion tolerant, here the aim is two-

fold: 1) to be sensitive to even the smallest motion, like a slight jerk, of arms or even 

legs which can be indicative of periodic limb movement disorder (PLMD) [89], 

Figure 2.23 Heartbeat extraction from NCS using wavelet. (a) Raw NCS amplitude 
and phase waveforms, with heartbeat clearly indicated in amplitude. (b) Heartbeat 
detection from the wavelet d8 coefficient reconstruction. 

(a) (b) 
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observed only during sleep and is an indicator of sleep quality, and 2) to identify motion 

affected beats and reject them. 

A controlled data collection is performed imitating the following scenarios 

during sleep:  

1) Stationary state: Subject intentionally remaining still. 
2) Torso motion: Slight torso motion for 5 seconds. 
3) Body jerk: A fast, high-energy motion of torso and arms for 0.5-2 seconds. 
4) Turning: Subject turns to their left or right in 2-3 seconds. 
 

Figure 2.24 (a) NCS heartbeat waveforms with the training period shown in the initial 
two minutes. (b) Motion prediction for a section of NCS with false positive cases. (c) 
Motion corrected HR estimation. 

Training 

False Motion 

Motion 
Rest 

(b) 

(a) 

(c) 

(c) 

(a) 
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Data were collected for 3 hours with the NCS signal sampling rate of 500 Sps. Simulated 

movements are performed at intervals of 1 minute. 

Motion features are identified based on the difference between motion-affected 

waveforms and those obtained at rest. Also, features need to be robust to account for 

variation in RR, HR, and signal amplitude over time. Relative beat interval and relative 

beat root mean square (RMS) are features based on the assumption that beat interval 

and RMS are not expected to vary dramatically from beat to beat during rest and sleep. 

Statistical mean, variance, skewness, and kurtosis are calculated to capture major 

differences between waveforms at motion and rest, where a heuristic window of 5 beats 

is applied. Normalized spectral power in the range of 0.6-10 Hz over the same window 

is used as a feature to observe spectral changes resulting from motion. 

SVM with the radial basis function kernel has been adopted to detect motion 

using the above 7 features. Semi-supervised learning is used for training the model, i.e., 

training is performed with data collected only at rest with spontaneous breathing. 

Exclusion of motion data for training allows adaptability of the classifier to other 

movements indicative of restlessness while avoiding overfitting, as well as reduces the 

inconvenience and subjective variation to perform movement routines during training. 

Table 2.2 Motion Detection for Each Context 

Context 
Performance Metric 

Detected Missed 

Slight Torso Motion 32 3 

Body Jerk 48 1 
Turning 32 7 
Total 112 11 
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Fig. 2.24 shows NCS heartbeat and corresponding motion detection. The performance 

of the motion detection algorithm was evaluated by manually annotated labels for each 

beat. 

Table 2.2 shows the number of correctly detected and missed cases for each 

category of motion. This shows accurate motion detection in 91.06% of the cases. The 

finer, beat-by-beat motion classification results are arranged in a confusion matrix in 

Table 2.3. This shows the number of beats corresponding to each category and gives an 

accuracy of 97.58%, sensitivity of 88.28%, and specificity of 98.10% for the proposed 

algorithm. Fig. 2.24 (c) shows an example of the improved HR estimation after 

removing the motion artifact. The HR is estimated with a moving average of 30-beat 

window length, by discarding motion-affected beats. 

Body jerk motion can be detected with good accuracy, while slow-turning can 

be more often misclassified as rest. The accuracy will depend on the training data and 

related algorithms. We have trained with spontaneous breathing data at rest, including 

regular breathing with occasional deep breaths. Training with a regular breathing pattern 

increases the sensitivity to motion but also results in increased false positive (FP) motion 

Table 2.3 Beat-by-Beat Motion Detection  
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in case of irregular breathing. This also presents a further opportunity for respiratory 

disorder identification.  

2.5.2 Motion interference with a wearable setup 

Our wearable active NCS sensor setup has a high tolerance for ambient motion 

interference. As shown in Fig. 2.25, there is no interference from a nearby walking 

person on the NCS data, due to the strong near-field coupling. Additional tests are 

performed with the motion of different body parts during breath holds, as shown in Figs. 

Figure 2.25 The effect of ambient motion on reference (chest belts and ECG) and NCS 
signals. Subject is seated at rest with a person standing nearby at a distance of 0.5 m. 
At 𝑡𝑡 = 20 𝑠𝑠, the person starts walking forward and backward at a speed of 0.73 m/s as 
shown in (a). (b) Normalized chest belt waveforms showing clear respiratory signal 
with no motion interference. (c) Normalized NCS waveforms showing both respiration 
and clear heartbeat without any motion interference. (d) Clear heartbeat signal is 
observed from both ECG and NCS without any interference. 
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2.26 and 2.27. There is no effect of hand motion on the chest belts, nor the NCS sensors 

unless it is very close to the antenna pair. ECG becomes noisy with the hand motion, 

likely due to electromyogram (EMG) interference. During arm motion, both thorax and 

abdomen belts show signal anomalies, while only the thorax NCS is affected. Additional 

studies are required to examine internal muscle motion interference resulting from near-

field coupling and separate the external arm motion coupling, as abdomen NCS still 

shows a clear signal without any interference.  

While external motion causes limited interference, large spurious torso motion 

results in motion artifacts. Respiratory measurements from chest belts can be interfered 

with belt displacement due to body movement, and an entire signal segment can be 

missed if the participant performs heavy or forced exhalation that leads to loss of 

Figure 2.26 The effect of hand motion on reference (chest belts and ECG) and NCS 
signals. The subject is seated at rest with hands resting on thighs, performing normal 
breathing for the first 5 s. For the next 10 s, repeated instances of fist opening and 
closing are performed with the right hand, while holding breath. (a) Normalized chest-
belt waveforms showing clear respiratory signals with no motion artifact. (b) 
Normalized NCS waveforms showing respiratory motion, with minimal motion 
artifact. (c) Heartbeat motion can be correctly extracted from NCS after further 
processing. Some interference is observed in the ECG waveform during the hand 
motion, but the R peaks can still be clearly seen.  
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tension. NCS waveforms are prone to motion artifact due to the current antenna pair 

packaging, which is loosely placed over the clothes with semi-isotropic radiation 

patterns. Free antenna movement relative to the body surface may result in signal 

artifacts, making NCS well-suited for static and quasi-static conditions, for example, 

when a person is typing, driving, or sleeping. Further, our active setup has slightly better 

coupling, which may lead to signal saturation issues as discussed in Sec.  2.4.2, and 

requires signal quality detection for a larger bandwidth including both respiration and 

heartbeat signals. This improved coupling is a result of sensor design and placement 

selection, which has a tradeoff of the possible saturation with improved heartbeat SNR, 

as well as a tradeoff of comfortable back sensing with improved coupling from the front. 

Figure 2.27 The effect of arm motion on reference (chest belts and ECG) and NCS 
signals. The subject is seated at rest with horizontal forearms in front of the body and 
upper arms in the vertical position. A forward arm swing of up to 30° is performed with 
both arms, starting at 𝑡𝑡 = 14 𝑠𝑠, while holding breath and keeping forearms horizontal. 
(a) Normalized chest-belt waveforms showing clear respiratory signals and some 
motion interference during the breath hold period with arm motion. (b) Normalized NCS 
waveforms showing respiratory motion without any interference to the abdomen sensor, 
but arm motion is captured in the thorax sensor. (c) The heartbeat signal from NCS is 
interfered due to the arm swing and HR can only be possibly extracted from the 
harmonic. 
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2.5.3 Coughing and speaking 

As the NCS sensor can capture the near-field motion at a high sampling rate, we 

can easily capture signatures of other common breathing conditions such as coughing 

and sneezing. We performed some preliminary data collection to observe voluntary 

coughing patterns with one sensor below the xiphoid process. Fig. 2.28 (a) shows the 

low-frequency (LF) NCS signal where regular breathing is mixed with irregular 

coughing signatures. Cough instances can be more clearly detected from the filtered 

high-frequency (HF) component, as shown in Fig. 2.28 (b), where the NCS waveform 

is filtered between 15 – 50 Hz. A cough was predicted if the waveform energy increased 

above a certain threshold, empirically selected to be 100 times the energy of the HF 

component during regular breathing. Results of this cough indicator are shown in Fig. 

2.28 (b) as well. Multiple sensors and their positions can be optimized in the future to 

(a) 

(b) 

Cough Indicator 

Figure 2.28 NCS waveform showing coughing instances at t = 20, 45, 68 and 85 s. (a) 
NCS LF component between 0.02 – 10 Hz, showing breathing and coughing movement. 
(b) Only HF component is shown with frequencies between 15 – 50 Hz, along with 
cough indicator based on detecting high energy instances.  
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possibly recognize coughing signatures at different respiratory tracts of the pharynx, 

larynx, trachea, and bronchi. 

Speaking involves irregular controlled breathing patterns that can vary with 

culture, language, and individual gender and age differences [90], [91]. As it does not 

provide useful information in terms of RV, RR due to variation in patterns, speaking 

instances are detected as interference with poor signal quality indicator, and rejected for 

further analysis. Participants were asked to read the famous Gettysburg address. Fig. 

2.29 shows a one-minute waveform of a participant reading the following excerpt: 

𝑡𝑡𝑐𝑐𝑎𝑎𝑙𝑙𝑖𝑖𝑏𝑏𝑟𝑟𝑎𝑎𝑡𝑡𝑖𝑖𝑉𝑉𝑎𝑎 
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Figure 2.29 Waveform during speaking. (a) Reference RIP chest belt waveforms at 
thorax and abdomen, both normalized independently. (b) NCS amplitude and phase 
coupling, showing clear varying respiration patterns in phase. (c) The peak-to-peak RV 
estimated from both the reference chest belts and NCS showing varying patterns, and 
difficulty in accurate RV estimate for both the sensors. For example, reference misses 
the decreased RV around 67 s. 
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Four score and seven years ago our fathers brought forth on this continent, a new nation, 

conceived in Liberty, and dedicated to the proposition that all men are created equal. Now 

we are engaged in a great civil war, testing whether that nation, or any nation so 

conceived and so dedicated, can long endure. We are met on a great battle-field of that 

war. We have come to dedicate a portion of that field, as a final resting place for those 

who here gave their lives that that nation might live. It is altogether fitting and proper that 

we should do this. - But, in a larger sense, we cannot dedicate—we cannot consecrate—

we cannot hallow—this ground. 

 

2.6 Conclusion 

In this chapter, we presented the sensor hardware setup and placement 

considerations. As signal can have various interferences, signal processing techniques 

including filtering and signal quality detection are also presented. Signal polarity 

correction algorithm, specific to NCS respiration signal is also presented. The HR, RR, 

and RV estimation algorithms are presented, with a detailed focus on RV calibration 

and its consistency over time. These parameters are useful for long-term health 

monitoring for both healthy users as well as patients. Finally, interference patterns due 

to motion, coughing, and speaking are discussed, which shows increased motion 

tolerance with the active wearable setup, and an approach for utilizing passive setup to 

give an indicator of sleep quality by detecting different motion instances. Later chapters 

present detailed results in simulated disorders compared to reference sensors and 

validation studies on a larger set of participants. 
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CHAPTER 3  

VALIDATION OF NCS RESPIRATORY PATTERNS WITH HUMAN STUDIES 

 

3.1 Breathing pattern variation study 

Non-invasive respiration monitoring has received a lot of interest in recent years 

[92], which has led to many research works on a robust, accurate, comfortable, and 

affordable sensor that can provide the two key respiratory parameters of respiration rate 

and volume. As respiratory failure is often difficult to predict, such sensor can be even 

Figure 3.1 Setup for breathing pattern variation study. (a) Measured antenna 𝑆𝑆11 
with chest placement showing 𝑆𝑆11 = −15 dB at 1.8 GHz. (b) SDR architecture 
showing one of the Tx – Rx paths. Two Tx and two Rx share an LO. (c) Placement 
of Tx and Rx antennas below the xiphoid, together with the chest-belt Hexoskin 
for comparison. SDR and LabVIEW for signal demodulation and analysis are also 
illustrated. (d)  Setup showing two Tx – Rx antenna pairs to observe movement 
at thorax and abdomen. The person is wearing a Hexoskin smart shirt, and the 
sensors are placed close to the body belts at thorax and abdomen. 
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𝑓𝑓𝐵𝐵𝐵𝐵 = 20 𝑘𝑘𝑘𝑘𝑘𝑘 
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more useful for long-term continuous on-line measurements on patients pre-diagnosed 

with respiratory disorders, where the risk of mortality can be effectively reduced  [93]. 

While many mobile sensors for exercise and wellness monitoring aim to estimate RR 

only, additional information on RV provides richer information for respiratory health 

diagnostics. In this study, an active NCS sensor is deployed to monitor respiratory 

patterns and estimate RR and RV for various simulated and real disorders [43].  

3.1.1 Experiment setup and data collection 

The sensor setup is implemented with the COTS component as described in the 

previous chapter. An Ettus USRP B210 with UHF monopole antennas is used with real-

time visualization in NI LabVIEW. With both the antennas placed on the chest, the 

return loss, 𝑆𝑆11 of the Tx antenna is shown in Fig. 3.1 (a), with an operating frequency 

of 1.8 GHz, close to the minimum 𝑆𝑆11 point. Two baseband frequencies, 𝑓𝑓𝐵𝐵𝐵𝐵 of 20 kHz 

and 70 kHz are used for multiplexing signals from two sensing points. Fig. 3.1 (b) shows 

the SDR architecture with 𝑓𝑓𝐵𝐵𝐵𝐵 and 𝑓𝑓𝑅𝑅𝑅𝑅 selection. As a single sensor is more convenient, 

one active Tx-Rx pair is placed below the xiphoid process to monitor the respiratory 

patterns for most disorders. For OSA, a two-sensor placement is used to measure out-

of-phase thorax and abdomen motion. From the quadrature baseband, the NCS signal 

here is taken as the modulated amplitude, with a bandpass filtering to remove the DC 

level and any small heartbeat component. 

To calibrate our NCS measurements, we have used a Hexoskin smart shirt [29] 

that monitors respiration by RIP chest belts as a reference. Wires incorporated into 

fabric elastic tension bands are placed around the thorax and abdomen. The lungs 

expand and contract during respiration, which is observed as a change in the self-
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inductance of the coils used to sample the respiratory waveform at 128 Hz.   RR and 

RV are then estimated at 1 Hz. The NCS waveforms are sampled at 500 Hz, and RR 

and RV are also calculated at 1 Hz for easy comparison. Fig. 3.2 (a) shows an example 

of the NCS respiration waveform with the sensor placed below the xiphoid process, and 

the thorax and abdomen waveforms retrieved from reference (Ref) during normal 

spontaneous breathing.  The corresponding RR from NCS denoted as 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁, and from 

reference Hexoskin as 𝑅𝑅𝑅𝑅𝑅𝑅𝐵𝐵𝑅𝑅 is shown in Fig. 3.2 (b) in BPM. RV under this normal 

breathing condition is often denoted as the tidal volume (TV). 

We validated NCS respiration waveforms and parameters in simulated 

conditions of 1) normal, 2) deep, 3) slow-shallow and 4) fast-shallow breathing. 

Synchronous Hexoskin respiration data were collected. Additionally, we performed RR 

and RV analyses on several simulated abnormal patterns including, 1) CSA, 2) Cheyne-

Stokes, 3) Biot’s, and 4) ataxic breathing [94]. We also performed data collection with 

two NCS sensors, one at the abdomen and one at the thorax, for isovolumetric abdomen 

(a) 

(b) 

RR
 (B

PM
) 

Figure 3.2 Respiration during normal breathing. (a) Normalized respiratory 
waveforms from Hexoskin thorax (Hx Th) and abdomen (Hx Abd) body belts and 
NCS. (b) Nearly constant RR estimated from Hexoskin and NCS in the normal 
breathing range of 12 – 20 BPM. 
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movement. Repeated abdomen contraction and relaxation movements were executed 

with breath-holding, i.e., neither inhalation nor exhalation. As the total RV is conserved, 

this leads to the out-of-phase movement of the thorax and abdomen, similar to breathing 

efforts during airway collapse.  Finally, we explored the coughing recognition from 

extracted NCS waveforms. All of the procedures involving human subjects were 

approved by the Cornell Institutional Review Board (IRB).  

3.1.2 Normal, deep, and shallow respiration 

(a) (b) 

(c) (d) 

(f) (e) 
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Figure 3.3 The top row shows normalized NCS respiration waveforms in solid black 
lines with transitions from normal to different breathing conditions, indicated by vertical 
dashed red lines. Estimated RR from NCS is also shown in BPM, as dotted blue lines. 
RR obtained from Hexoskin is very close in this set of experiments, and is hence not 
shown. The bottom row shows the corresponding RV estimate from Hexoskin (dotted 
blue lines) and NCS (solid black lines). (a) and (b) show transition from normal to deep 
breathing at t = 45 s. (c) and (d) show normal to slow-shallow breathing transition at t = 
35 s, accompanied with decreased RV. (e) and (f) show transition to rapid shallow 
breathing at t = 32 s, marked with lower RV and higher RR. 
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We performed data collection showing transitions among normal, deep, and 

shallow breathing conditions. The normal RR for adults during rest is in the range of 

12−20 BPM. The normal breathing patterns extracted from NCS and reference are 

shown in Fig. 3.2 (a). All respiration waveforms are normalized. Fig. 3.3 (a) shows the 

transition between normal and deep breathing conditions. RR estimated from NCS is 

also shown, and is very close to that from reference, which is not shown for graphical 

clarity. The corresponding RV estimates are shown in Fig. 3.3 (b). Two shallow 

breathing conditions were also considered, one with normal or slow RR, and the other 

with high RR. Slow-shallow breathing leads to low RV estimates and is one of the 

possible indicators of respiratory depression induced by opioid abuse. Fig. 3.3 (c) shows 

a transition from normal to shallow breathing conditions with similar RR, marked by a 

sharp decrease in RV. On the other hand, the breathing pattern of rapid shallow 

breathing in Fig. 3.3 (e) is marked with increased RR and reduction of RV in comparison 

with the normal breathing conditions. This pattern can be triggered by multiple 

scenarios, including anxiety attacks, asthma, and COPD.  All transitions are marked 

with vertical dashed red lines.  

3.1.3 Simulated respiratory disorder patterns 

Central sleep apnea 

CSA is a sleep disorder, marked by the cessation of airflow without any muscle 

activity [15]. This breathing disorder is frequently observed among people suffering 

from chronic heart failure and brain diseases, among other reasons, as well as can be 

induced by opiate uses.  
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Fig. 3.4 (a) shows the respiratory pattern with sections of normal breathing with 

in-between voluntary breath-holding marked by the red arrows, lasting around 10 – 15s. 

Although the NCS waveform shows the instantaneous transition to a nearly constant 

value, RR drops to zero only after a delay, as it is calculated by counting the number of 

complete breath cycles in the last 8s window. The seemingly delayed drop in RR is an 
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Figure 3.4 Respiration waveforms in CSA (a)-(b) and Cheyne Stokes (c)-(d). (a) NCS 
respiration waveforms with CSA, showing normal breathing with pauses between 12 
– 28 s, 56 – 70 s and 102 – 112 s, indicated by the red arrows. Notice that although 
the NCS waveform indicates the breath pause timing instantaneously, RR drops to 
nearly zero only after a delay due the moving sampling window of 8 s.  (b) RV 
estimates by calibrated NCS and Hexoskin. (c) The NCS respiration waveform and 
RR for the Cheyne-Stokes breathing pattern, separated by breath pauses marked with 
the red arrows. (d) The corresponding RV by Hexoskin and NCS, where Hexoskin 
cannot correctly capture the rise and fall pattern in RV. 

(c) 

(d) 

R
V 

RR 

R
R

 



 

59 

artifact from the window size selection; a large window will have a larger delay 

appearance while a small window may miss a slow cycle and report zero RR.  NCS can 

output the accurate time registry for the endpoints of inhalation and exhalation and can 

thus be used for breathing cycle parameters other than RR. Nevertheless, the CSA 

pattern of interest here can still be derived from the present RR curve. The 

corresponding RV is shown in Fig. 3.4 (b), which is only updated when a breath motion 

is observed. As there is a complete cessation of breathing, RV is not updated until the 

next breath cycle is detected.  

Cheyne-Stokes respiration 

This is a variant of CSA, with the periodic shallow breathing pattern alternating 

with deep over-breathing and apnea, which leads to a crescendo-decrescendo waveform 

accompanied by the apnea state. Cheyne-Stokes breathing is found in the same patient 

group as those patients suffering from CSA induced by heart failure, kidney failure, and 

stroke. Fig. 3.4 (c) shows that we can capture the breath pauses, also indicated by the 

NCS waveform and RR. The shallow and deep over-breathing patterns can also be 

observed from the rise and fall of 𝑅𝑅𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁 in Fig. 3.4 (d). In contrast, 𝑅𝑅𝑉𝑉𝑅𝑅𝐵𝐵𝑅𝑅 captures the 

increase in RV by deep over-breathing, but not the decrease during the shallow 

breathing period. 

Biot’s respiration 

This breathing pattern is characterized by periods of apnea followed by fast respiration 

cycles with regular magnitudes. Different from Cheyne-Stokes, it lacks the crescendo-

decrescendo cycles and is irregular with varying periods of apnea. This breathing pattern 
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is a result of damages to the central pattern generator in the medulla, possibly due to 

stroke, trauma, or injury. It is also observable in the case of opioid intoxication, which 

may also result in CSA and Cheyne-Stokes. Fig. 3.5 (a) shows sections of fast breathing 

with breath pauses, marked by an initial increase and then decrease in RR. The 

corresponding RV variation is shown in Fig. 3.5 (b) where the constant RV period 

corresponds to apnea.  
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Figure 3.5 Respiration waveforms in Biot’s (a)-(b) and Ataxic (c)-(d). (a) The NCS 
respiration waveform showing Biot’s breathing with periods of apnea indicated by 
the red arrows, followed by rapid regular breathing. (b) RV estimates from Hexoskin 
and NCS. (c) The NCS waveform showing ataxic breathing with irregular rapid 
breaths followed by periods of apnea.  (d) The correlated RV estimates from NCS 
and Hexoskin. NCS shows decrease in RV during the rapid irregular breathing.  
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Ataxic respiration 

Ataxic breathing involves irregular breathing cycles, followed by irregular 

pauses and increasing apnea time.  This pattern is observed when Biot’s breathing 

deteriorates due to further damage to the brain center responsible for Biot’s breathing. 

As shown in Fig. 3.5 (c), during the irregular rapid breathing, complete exhalation is not 

performed, resulting in lower RV estimates. Fig. 3.5 (d) shows NCS capturing decrease 

of RV and then increase at the last irregular breathing due to complete exhalation. No 

change is observed during breath-hold. The reference chest belts missed the decrease in 

RV during rapid breathing. 

Obstructive sleep apnea  

One of the major sleep apneas is OSA, caused by respiratory muscle weakness 

or air duct blockage. This apnea is characterized by the asynchronous movement of the 

(a) 

(b) 

Isovolumetric Indicator 

Figure 3.6 (a) Hexoskin thorax and abdomen waveforms with normal breathing and instances of 
isovolumetric abdomen contraction, marked by the red arrows. The breathing transitions are marked by 
the vertical dashed blue line. (b) Respiration waveforms from two NCS sensors showing asynchronous 
motion of thorax and abdomen during isovolumetric movement, similar to Hexoskin waveforms. 
Isovolumetric indicators as gold squares show instances of out-of-phase thorax and abdomen 
waveforms, detected from negative product of their slopes 
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thorax and abdomen that can be observed as a time lag of the thoracoabdominal motion 

or complete out-of-phase motion of thorax and abdomen [95].  

We performed isovolumetric abdomen movement by successively contracting 

and relaxing the abdomen muscles, without inhalation and exhalation. This resulted in 

a pure paradoxical breathing motion where the thorax and abdomen are moving in the 

opposite direction. With only one sensor placed below the thorax, it gets coupled to 

diaphragm, lungs, and some abdomen motion, and gives accurate RV estimations only 

when both abdomen and thorax are in sync. However, when the abdomen and thorax 

are moving asynchronously, this setup becomes sensitive to the sensor placement on the 

chest, with ambiguous results based on dominating thorax or abdomen movement. To 

separately observe both thorax and abdomen motion, we used B210 in the 2×2 MIMO 

mode with one pair of Tx – Rx on the thorax, and the other pair on the abdomen, with 

different baseband modulation to separate coupling of both movements. 

Fig. 3.6 (a) shows the RIP chest belt data of regular breathing and intervals of 

the paradoxical abdomen and thorax movement. This strong voluntary movement is 

observable in the NCS data from thorax and abdomen sensors in Fig. 3.6 (b). Reference 

thorax belt does not clearly show opposite movement in all the cases, such as t = 55 s. 

A simple algorithm can detect time instances with isovolumetric breathing. As the slope 

of abdomen and thorax waveforms are opposite during isovolumetric inhalation and 

exhalation, we perform slope estimation at each sample point, using current and 

previous data points, and calculate the product of the two slope estimates at abdomen 

and thorax. The sign of product is negative during isovolumetric breathing, as indicated 

in Fig. 3.6 (b) by gold squares. The extracted NCS waveform from two sensors can 
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accurately capture the asynchronous thoracoabdominal movements when OSA is of 

high concern.  

Airway resistance variation 

We have also studied the influence of different simulated airway resistances on 

RV by introducing two resistances: 1) KN95 mask covering face and mouth while 

breathing normally through the nose, and 2) straw with a 4 mm inner diameter while 

only breathing through the mouth. The extracted instantaneous volume, RV, and RR 

from chest belts and NCS are shown in Fig. 3.7. RV calibration was performed before 

Figure 3.7 Studying the effect of simulated airway resistance variation. Subject is 
sitting upright while performing normal breathing. Two external resistances are 
introduced: 1) KN95 mask, while breathing normally through nose, and 2) straw with 
an inner diameter of 4 mm, only breathing through mouth. (a) & (b) plots show 
calibrated instantaneous volume and derived RV estimates respectively, (c)  shows 
corresponding RR. The response to mask is nearly not distinguishable from the normal 
breathing from both RV and RR estimates, slight dips around 𝑡𝑡 = 45 𝑠𝑠 and 70 𝑠𝑠 are 
due to the breath holds during transition periods. Breathing through straw shows 
decreased RV in the beginning, while maintaining same RR, the following increase in 
RV is associated with decreased RR, showing the increased respiratory effort required 
due to the resistance offered by the narrow straw. While both NCS and reference chest 
belts can capture these variations, NCS appears to be more sensitive to the RV changes.  

(b) 

(c) 

(a) 

Normal Breathing Normal Breathing Straw (ID = 4mm) 

Reference 

Reference 

Reference 

KN95 Mask 
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the entire routine. While breathing through a mask does not show any noticeable change 

in RV and RR estimates, breathing through straw shows decreased RV towards the 

beginning with constant RR, followed by an increase in RV with decreased RR. This 

opposite RV and RR behavior indicate the increased respiratory effort required due to 

the resistance offered by the narrow straw. The consistency of RV between the NCS 

and reference chest belts suggests that the respective calibration remains reasonable 

within the tested range of varying simulated airway resistance. 

3.1.4 Benchmarking results 

To benchmark the overall NCS results against reference Hexoskin, linear 

regression, and the correlation between RR and RV are estimated from Hexoskin and 

NCS waveforms. The data set includes two sessions of 10 mins each, including normal, 

deep, slow-shallow, and fast-shallow breathing. Pearson’s correlation coefficient (𝑟𝑟) is 

very high for RR, 𝑟𝑟�𝑅𝑅𝑅𝑅𝑅𝑅𝐵𝐵𝑅𝑅,𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁� = 0.99, and slightly lower for RV,  

𝑟𝑟�𝑅𝑅𝑉𝑉𝑅𝑅𝐵𝐵𝑅𝑅,𝑅𝑅𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁� = 0.86.  Notice that 𝑅𝑅𝑉𝑉𝑅𝑅𝐵𝐵𝑅𝑅 has shown serious problems when RR 

changes suddenly. Figs. 3.8 (a) and 3.8 (b) show the scatter plot of 𝑅𝑅𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁 vs 𝑅𝑅𝑉𝑉𝑅𝑅𝐵𝐵𝑅𝑅 and 

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁 vs 𝑅𝑅𝑅𝑅𝑅𝑅𝐵𝐵𝑅𝑅, respectively, together with the regression line. Instances of different 

breathing conditions are also marked, where the outlier cases are mainly at the transition 

point of two breathing conditions.  

For comparison, we have also shown NCS vs Hexoskin scatter plots under 

various respiratory disorders in Figs. 3.8 (c) and 3.8 (d). These scatter plots summarize 

earlier observations in Figs. 3.3 – 3.5, where NCS and Hexoskin RV estimates were 

poorly correlated as 𝑅𝑅𝑉𝑉𝑅𝑅𝐵𝐵𝑅𝑅 often missed sudden changes in breathing patterns. RR 
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estimates are more correlated, with some outliers on the axes, again possibly due to 

differences at the transition points to apnea or missed breath peaks. 

An additional subject was tested for normal, deep, fast shallow, and apnea 

breathing, which gave similar results. The root mean square deviation (RMSD) for both 

(a) (b) 𝑟𝑟 = 0.99 𝑟𝑟 = 0.86 

RV
 N

CS
 

RR
 N

CS
 

RV Ref RR Ref 

(c) (d) 

RV
 N

CS
 

RV Ref RR Ref 

RR
 N

CS
 

Figure 3.8 (a) Calibrated 𝑅𝑅𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁 vs 𝑅𝑅𝑉𝑉𝑅𝑅𝐵𝐵𝑅𝑅 for normal, deep, fast-shallow and slow-
shallow breathing conditions, showing the dotted least-squares fit line. Legend is 
shown at the top. (b) RR estimates, 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁 vs 𝑅𝑅𝑅𝑅𝑅𝑅𝐵𝐵𝑅𝑅 under the same breathing 
conditions. (c) and (d) show scatter plots, 𝑅𝑅𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁 vs 𝑅𝑅𝑉𝑉𝑅𝑅𝐵𝐵𝑅𝑅 and 𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁 vs 𝑅𝑅𝑅𝑅𝑅𝑅𝐵𝐵𝑅𝑅 
respectively under various respiratory disorder conditions, only to illustrate low 
correlation between computed estimates from NCS and Hexoskin. Legend is shown 
at the top. 
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subjects 1 and 2 are shown in Table 3.1. The larger difference in Subject 2 is likely due 

to the placement of the chest belts and NCS tags. 

3.2 Gender, age, posture variation study 

The previous section demonstrated preliminary NCS results where RV and RR 

can be estimated with high accuracy for one participant under various respiratory 

disorders. This section is an extension of the previous work with an over-clothing 

wearable RF NCS sensor study, conducted on 20 healthy participants with varying body 

mass index (BMI) and gender [42]. Two prototype sensors were placed on the 

participants, one close to the heart and the other below the xiphoid process to couple to 

the motion from heart, lungs, and diaphragm by the NCS principle and derive HR, RR, 

and RV parameters, as shown in Fig. 3.9 (a). Further, as RV is sensitive to body posture 

and breathing styles, we have presented analyses over various postures, as well as during 

conscious and spontaneous breathing exercises with a large breathing range of 0 — 45 

BPM and a resting HR in the range of 50 — 90 BPM. A short calibration period by a 

gold-standard pneumotachometer (PTM) was performed for each subject and posture 

once, and the corresponding model was used on NCS and chest belts for further 

voluntary breathing exercises. 

3.2.1 Experiment setup 

Table 3.1 RMSD of RV and RR for normal, deep and shallow respiration 

Subject RMSD(𝒙𝒙𝑵𝑵𝑪𝑪𝑹𝑹,𝒙𝒙𝑹𝑹𝑷𝑷𝑹𝑹) =  �
∑ �𝒙𝒙𝑵𝑵𝑪𝑪𝑹𝑹,𝒊𝒊−𝒙𝒙𝑹𝑹𝑷𝑷𝑹𝑹,𝒊𝒊�

𝟐𝟐𝑵𝑵
𝒊𝒊=𝟏𝟏

𝑵𝑵
 

x = RV (mL) x = RR (BPM) 

1 53.3 1.1 

2 114.5 5.8 
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The NCS sensor prototype is implemented by an Ettus USRP B200mini [81] 

SDR, with monopole helical antennas (Taoglas TG.19.0112), packaged in a 3D-printed 

case, as shown in Fig. 3.9 (c). The relative antenna placement is designed to adjust the 

Figure 3.9 The large-scale human study experimental system. (a) Schematics of NCS 
and BIOPAC sensors and data flow. (b) Experimental setup with the participant wearing 
NCS and BIOPAC sensors in the sitting posture. Photo taken and published with written 
informed consent of the subject.  (c) The NCS sensor consisting of SDR as well as the 
Tx and Rx antennas in a 3D-printed package. (d) Spectrogram of thorax and abdomen 
NCS sensors at their respective carrier frequencies of 1.82 GHz (-12.84 dBm) and 1.9 
GHz (-10.42 dBm). 
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direct Tx-Rx coupling and enhance the sensitivity to the reflected signal from internal 

organs. Two SDR units are multiplexed by frequency, with the carrier frequencies of 

1.82 GHz and 1.90 GHz. This setup is a variation of the previous multiple-input MIMO 

implementation to improve sensor stability and participant comfort with a smaller SDR. 

The baseband tone is set at 𝑓𝑓𝐵𝐵𝐵𝐵 = 51 kHz, sampled at 2 × 106 samples per second (Sps).  

The 𝑁𝑁𝐶𝐶𝑆𝑆𝐵𝐵𝑚𝑚𝑚𝑚 and 𝑁𝑁𝐶𝐶𝑆𝑆𝑚𝑚ℎ were derived in (2.3) and (2.4). For this work, we opted to use 

the best reference-correlated signal during the calibration phase for both thorax and 

abdomen sensors. For respiration, chest belt signals are taken as reference, and for the 

heartbeat, band-pass filtered (0.9 – 1.8 Hz) ECG signal is taken as the reference. The 

final demodulated data is sent to the control computer by a universal serial bus. The Tx 

powers are −12.84 dBm and −10.42 dBm for the thorax and abdomen, respectively, as 

shown in Fig. 2.9 (d), significantly below the allowable OSHA radiation exposure limit 

[80].  

Reference measurements are performed by BIOPAC sensors, including a 3-lead 

ECG SS2LB, two torso belts SS5LB and PTM SS11LB, placed as shown in Figs. 3.9 

(a) and (b). Unlike the previous smart-shirt, this unit is closer to hospital-grade 

instruments and allows using a more accurate RV measurement using PTM. The pre-

calibrated PTM measures the airflow rate in L/s from the mouth using a facemask and 

is only placed on the subject for short calibration periods. For the remaining breathing 

exercises, reference respiration is only recorded by two belts placed at the thorax and 

abdomen that measure the change in local tension. During the experiment, male 

participants wore the thorax belt at 2 – 3 cm below the armpits, while female participants 

wore the belt below the breasts, close to the xiphoid process and costal margin, 
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considered as the dividing line between the rib cage and abdomen. This placement is 

selected for belt stability and user comfort. All sensors are connected to a 4-channel data 

Figure 3.10 Examples of the sensor outputs and estimated RV, RR and HR. (a), (b) The 
normalized BIOPAC chest-belt signals and normalized unfiltered NCS signals, 
respectively, showing respiration waveforms during tidal (normal) breathing. The NCS 
thorax signal shows strong heartbeat motion as well. (c) – (e) The analysis of the data 
shown in (a) – (b); (c) and (d) show RV and RR respectively from NCS and BIOPAC 
chest belts; (e) shows the HR from NCS and BIOPAC ECG. 
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acquisition unit BIOPAC MP36R [96]. Fig. 3.10 shows example respiration waveforms 

from BIOPAC and NCS and estimated RV, RR, and HR. 

 

3.2.2 Participants and protocol 

The human study protocol was approved by the Cornell IRB, and participants 

provided written informed consent to take part in the study. Twenty-five healthy 

participants with no known history of cardiopulmonary diseases were recruited and 

instructed to follow breathing routines to the best of their abilities, without overexerting, 

in a sequence of three postures: supine left lateral recumbent and sitting upright in a 

chair. The instructions were provided to the participants in real-time using LabVIEW in 

both audio and visual formats. The data collection was carried out in a standard 

laboratory room with drywalls and supporting metal frames, without any radiation-

absorbent material. The environment consisted of standard furniture including a bed, 

desks, and chairs, along with computers and various units of laboratory equipment. The 

participant attire was not controlled, and the NCS sensors were placed over their daily 

clothing, including shirts and loosely fitted hoodies made of different fabric materials. 

Five participants’ data was rejected due to poor calibration data in any one of the three 

postures, which showed inconsistency due to either an inability to follow the mouth-

only breath instruction or from the loose placement of the facemask that caused air 

leakage. 

The 20 eligible participants included 14 females and 6 males with age from 18 

to 34 years old (𝜇𝜇 = 22.9,𝜎𝜎 = 3.3), weight from 49.8 to 79.5 kg (𝜇𝜇 = 62.2,𝜎𝜎 = 9.3) 

and height from 158 to 183 cm (𝜇𝜇 = 167,𝜎𝜎 = 6.8). The BMI of the participants fell 
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within the slightly underweight to slightly overweight range from 18.3 to 26.8 kg/m2 

(𝜇𝜇 = 22.2,𝜎𝜎 = 2.2).  

A fixed breathing protocol of approximately 6 minutes was executed in each 

posture after calibration, which included:  

- Normal breathing for 120 s. 
- Deep breathing for 60 s. 
- Fast breathing for 30 s. 
- Normal breathing for 30 s. 
- Breath-hold for maximum 20 s, followed by normal breathing for 20 s. 

Repeat once. 
 

During normal or tidal breathing, no inhalation or exhalation instructions were 

provided, but the participants were asked not to take any deep breaths or long pauses. 

During deep breathing, real-time audio and visual instructions were given to start 

inhaling and exhaling with fixed durations of 4 s and 6 s respectively, which gave a RR 

of 6 BPM. Similarly, instructions were given for fast breathing at a rate of 40 BPM, 

with equal time for inhalation and exhalation. These instructions were provided as a 

guideline, and participants were advised to perform normal breathing if they felt 

uncomfortable during any of the routines, resulting in some variations around the 

expected rates. The procedure was clearly explained to the participants, with short 

examples for practice, before recording the calibration and main routines. 

For observing separate thorax and abdomen motion, the participants were asked 

to perform the isovolumetric exercise with the following steps during breath-hold: 

contract the abdomen inwards, maintain the position for 3 s, then relax abdomen back 

to normal. Three such maneuvers were performed, separated by normal breathing 

intervals of 10 s to simulate paradoxical abdomen-thorax motion as observed in OSA. 
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As this motion is difficult to perform without extended practice, this exercise was only 

performed in the sitting posture, so that the participants could learn the motion, while 

looking at their real-time NCS/chest belt waveforms. 

With the participants continued to be seated in a chair, an additional series of 

exercises were performed to test the breathing patterns in the relaxation state and under 

the given attention-engaging task. The participants were asked to close their eyes and 

relax for 5 minutes. This relaxed period allowed free-breathing over time without any 

instructions, thus increasing the likelihood of non-voluntary tidal breathing. The next 

routine was designed using PsyToolkit [97], [98] to render the participants under an 

attentive and cognitive task, where they watched and reacted to anomalous jumps of an 

on-screen rotating clock hand by pressing the space bar. Instantaneous feedback was 

given by flashing an on-screen indicator light of the correct keypress, to ensure 

continuous attention. This routine was performed for 6.5 minutes and rendered non-

voluntary breathing patterns under fast temporal variations due to induced stress. Both 

routines utilized the RV calibration from the previous sitting posture. 

3.2.3 RV, RR, and HR results 

 Overall statistics 

With tests in multiple postures and under different breathing exercises, an 

analysis of 100 experiments, with over 590 minutes of total recorded data for 20 

participants has been performed. Fig. 3.11 shows the results across all three postures, 

with different breathing styles. A high correlation of NCS and BIOPAC reference for 

RV (r𝑅𝑅𝑅𝑅 = 0.84), RR (r𝑅𝑅𝑅𝑅 = 0.93) and HR (r𝐻𝐻𝑅𝑅 = 0.95) has been achieved, as shown 

in the scatter plots in Figs. 3.11 (a) – (c). The Bland-Altman (𝐵𝐵&𝐴𝐴) plot has been 
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employed to quantify the agreement between NCS and BIOPAC, both of which may 

have errors. This agreement is estimated by the mean (𝑚𝑚) and standard deviation (𝜎𝜎) 

of the measurement differences. 𝐵𝐵&𝐴𝐴 plots can also identify possible outliers visually 

by a 𝑋𝑋𝑋𝑋 scatter plot, with the 𝑋𝑋 axis as the pairwise difference, and the 𝑋𝑋 axis as the 

mean of the two measurements. The systematic bias is estimated as the mean difference 

𝑚𝑚, and limits of agreement (LoA) within which 95% of the differences are expected to 

lie, are estimated as LoA =  𝑚𝑚 ± 1.96 ∙ 𝜎𝜎, assuming a normal distribution. Figs. 3.11 

(d) – (f) show good agreement of both the sensors with low mean deviations (𝑚𝑚𝑅𝑅𝑅𝑅 =

9.6 mL, 𝑚𝑚𝑅𝑅𝑅𝑅 = 0.05 BPM, 𝑚𝑚𝐻𝐻𝑅𝑅 = −0.5 BPM) and narrow LoA, as denoted by the 

Figure 3.11 Correlation and agreement between NCS and BIOPAC estimate of RV, RR, 
and HR over the entire data. The label shows a marker for each breathing style, including 
conscious normal, deep, fast and breath-hold (BH), as well as spontaneous breathing in 
relaxation and attention states. (a) – (c): Scatter plots of NCS vs. BIOPAC RV, RR and 
HR, respectively, with denoted Pearson’s correlation coefficient, 𝑟𝑟, showing high 
correlation between the two sensors. (d) – (f): 𝐵𝐵&𝐴𝐴 plots of NCS and BIOPAC showing 
the bias 𝑚𝑚 at the center (solid line) and the corresponding LoA (dotted lines) given by 
𝑚𝑚 ± 1.96 ∙ 𝜎𝜎.   
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dashed lines around the mean value. The results for each participant individually are 

shown in Table 3.2.  
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Variation over breathing patterns 

As breathing is a hybrid voluntary-autonomous process, data has been collected 

during both conscious and spontaneous states. During conscious state, participants 

performed guided normal, deep, fast breathing, and breath-holds. For the spontaneous 

tests, no breathing instructions were provided, and instead, participants were first asked 

to relax and then execute an attention-engaging task. As performing the task required 

the participants to be seated, spontaneous breathing tests were performed only in the 

sitting posture. Fig. 3.11 showed the results over all the experiments with breathing 

styles denoted by different markers. As normal breathing is similar to spontaneous 

breathing, most of these points are overlapped. The fast breathing pattern is centered 

around the instructed 40 BPM in the RR plots. Deep breathing is indicated by low RR 

around 6 BPM, as well as high RV. These points are also spread out with a low 

correlation between NCS and chest belts, possibly due to data distortion from the large 

motion, resulting in nonlinear strain gauge response, as well as NCS sensor motion 

relative to the body. Breath-hold periods have low RR at the beginning of the hold 

Table 3.3 Correlation and B&A statistics with variation over breathing patterns 

Measurement 
Breathing Patterns 

Normal Deep Fast Hold Relaxation Attention 

RV 
(mL) 

𝑟𝑟 0.88 0.80 0.76 0.84 0.93 0.76 

𝑚𝑚 0 60 18 33 -10 11 

𝜎𝜎 89 186 144 138 65 97 

RR 
(BPM) 

𝑟𝑟 0.95 0.91 0.89 0.77 0.93 0.87 

𝑚𝑚 0.05 0.02 -0.49 -0.13 0.11 0.19 

𝜎𝜎 2.48 2.58 6.66 4.09 1.72 2.48 

HR 
(BPM) 

𝑟𝑟 0.95 0.93 0.90 0.96 0.98 0.95 

𝑚𝑚 -0.69 -0.98 -1.70 -0.80 -0.23 0.04 

𝜎𝜎 2.90 3.45 4.38 2.92 1.81 3.67 
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period and may also be accompanied with deep breaths after the long holding period, 

thus are seen closer to the deep-breathing points in both RV and RR plots. Zero RR is 

not marked, but these periods are treated separately during the breath-hold detection 

stage. Fig. 2.19 showed an example of one participant following the conscious breathing 

protocol in the supine posture, and the extracted RV, RR, and HR over time with 

consistent observations.  

Table 3.3 compares the correlation and 𝐵𝐵&𝐴𝐴 statistics for different breathing 

patterns. The relaxation state with spontaneous breathing shows the highest correlation 

Table 3.4 Average RV, RR and HR over 3 postures: supine, left lateral recumbent 
and sitting 

 

Posture RV (mL) RR (BPM) HR (BPM) 

Supine 329 ± 200 17.3 ± 8.5 65.3 ± 9.9 

Left Lateral 
Recumbent 263 ± 210 19.5 ± 9.5 63.8± 9.7 

Sitting 317± 179 19± 9.7 67.6 ± 9.3 

Table showing mean (𝑚𝑚) and standard deviation (𝜎𝜎) of the RV, RR and HR statistics over different postures. The 
data is collected over all 20 participants following the same voluntary breathing exercise routine of normal, deep, 
and fast breathing, as well as breath holds. Average RV is observed to be highest in the supine posture, followed 
by sitting and lateral recumbent, while RR has the opposite trend. HR is highest in the sitting posture, followed by 
supine and lateral recumbent postures. The standard deviation likely demonstrates variation introduced from 
different breathing exercises. 

 
Table 3.5 Correlation and B&A statistics with variation over postures 

Measurement 
Postures 

Supine Lateral Recumbent Sitting 

RV 
(mL) 

𝑟𝑟 0.81 0.89 0.81 

𝑚𝑚 2 18 27 

𝜎𝜎 121 115 132 

RR 
(BPM) 

𝑟𝑟 0.94 0.93 0.93 

𝑚𝑚 -0.06 0.06 -0.08 

𝜎𝜎 2.84 3.60 3.52 

HR 
(BPM) 

𝑟𝑟 0.96 0.93 0.94 

𝑚𝑚 -0.70 -0.62 -1.22 

𝜎𝜎 2.72 3.54 3.20 
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of NCS and BIOPAC sensors for RV and HR estimates, close to conscious normal 

breathing results. This could be due to the regular breathing pattern with few motion 

artifacts. In comparison, participants tended to move in response to stress during the 

attention test, leading to motion artifacts.  

Variation over postures 

Adjusting body postures can lead to RV variations, as respiratory mechanisms 

are affected by different resistance or compliance of the lung and chest wall 

components. Thus, tests were performed with the guided breathing protocol in three 

postures: laying on a bed in supine and left lateral recumbent postures and sitting in a 

chair. The average reference RV, calculated over all 20 participants during the identical 

protocol of voluntary breathing exercises, is observed to be highest at 329 mL in the 

supine posture, followed by sitting and lateral recumbent at 317 and 263 mL, 

respectively. The RR has the opposite trend with an average RR of 17.3, 19, and 19.5 

BPM in supine, sitting, and lateral recumbent postures, respectively. The average HR is 

highest during sitting at 67.6 BPM, compared to 65.3 and 63.8 in supine and lateral 

recumbent postures, respectively. These results are summarized in Table 3.4. The 

detailed statistics for each posture are shown in Table 3.5. Good correlation is observed 

across all the postures, with supine showing the least bias (𝑚𝑚) for RV and RR estimates 

with narrow LoA (small 𝜎𝜎), possibly due to the stable posture. No other clear trend is 

observed, indicating that the estimates are more sensitive to breathing types and patterns 

than to posture. Fig. 3.12 shows the correlation and 𝐵𝐵&𝐴𝐴 plots for different postures, 

both with and without the simulated breathing exercises. 
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Breath-hold detection  

Each participant was instructed to perform two breath holds in both supine and 

lateral recumbent postures for a maximum duration of 20 s, simulating central sleep 

apnea (CSA), which is indicated by breath cessation for at least 10 s [15]. A simple 

detection algorithm was implemented based on the inspiration peak-to-peak interval. 

Overall, both NCS and BIOPAC performed well for breath-hold detection, as shown in 

Figure 3.12 Comparison of NCS and BIOPAC data. Scatter (I – III) and 𝐵𝐵&𝐴𝐴 plots (IV 
– VI) between NCS and BIOPAC showing correlation coefficients (r), bias (𝑚𝑚) and 
limits of agreement (LoA: 𝑚𝑚 ± 1.96 ∙ 𝜎𝜎) for the RV, RR and HR across all routines. (a) 
– (c) The results across supine, lateral recumbent and sitting postures while following 
the breathing protocol of normal, deep, fast breathing and intermittent breath-hold. 
Different breathing protocol periods are indicated with a specific marker. (d), (e) The 
spontaneous breathing protocol results during the relaxation and attention states with 
the participant sitting upright. 
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Table 3.6, which shows both sensors detected 74 cases out of 80 annotated cases, with 

each missing 3 non-overlapping instances. The errors possibly originate from the 

participant's noncompliance with the breath-hold protocol. Small torso motion is 

coupled differently to the two sensors, leading to incorrect peak detection during breath-

hold. Fig. 3.13 shows the NCS and BIOPAC respiratory waveforms with detected peaks 

during breath-holds for representative good and poor cases.  

Figure 3.13 Breath-hold detection for two participants on instances of good and poor 
cases. Green shaded sections show manually annotated simulated apnea durations. The 
top and bottom figures show normalized BIOPAC and NCS abdomen respiration 
waveforms with detected peaks. The participant can perform the breath hold without 
any motion in (a), leading to accurate detection. In (b), wrong peaks are detected in both 
NCS and BIOPAC waveforms as shown, due to artifacts and peak detection limitations, 
as the participant is not able to maintain the breath hold without any motion. The motion 
coupling is different for the two sensors, as seen around 𝑡𝑡 = 68 s, where BIOPAC shows 
some abdomen motion leading to wrong peak detection, but not NCS. 
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Paradoxical abdomen-thorax motion detection 

To test the separate thorax and abdomen motion, the participants were asked to 

perform an isovolumetric abdomen exercise while holding their breath. With no airflow, 

the inward abdomen contraction results in outward motion of the thorax, as the total 

lung volume is conserved [78], simulating paradoxical abdomen-thorax motion similar 

to OSA with completer closure of the airway. We used the slope-product of thorax and 

abdomen respiration waveforms to detect paradoxical motion in BIOPAC and NCS 

waveforms, as shown in Fig. 3.14, where three instances of isovolumetric maneuver are 

successfully detected by both the sensors.  

Figure 3.14 An example of normalized thorax and abdomen respiration waveforms 
during the isovolumetric maneuver by one participant. (a) Normalized BIOPAC chest 
belt waveforms, and (b) Filtered NCS respiration waveforms. The intended paradoxical 
motion windows are marked by green-shaded areas and detected instances are shown 
by positive value of the dotted green lines. Timing of abdomen contraction, hold and 
relaxation is denoted during the second cycle of the NCS waveform. Both BIOPAC and 
NCS can detect all three instances of paradoxical abdomen-thorax motion. 

 

(b) 

Begin abdomen 
contraction 

Begin abdomen 
relaxation 

Hold 

(a) 
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While some participants were able to successfully perform breath-hold and 

abdomen contraction, anomalous instances when paradoxical behavior was not 

observed can be attributed to the following possible reasons. 1) Placement sensitivity of 

sensors: the BIOPAC thorax belt placed near the xiphoid process may be coupled to the 

Figure 3.15 Two representative cases for paradoxical abdomen-thorax motion detection. 
Normalized respiratory waveforms from BIOPAC chest belts and filtered NCS are 
plotted in top and bottom figures, respectively. Intended instances are manually 
annotated by the green shaded areas. The detected periods are shown by positive value 
of the dotted green lines. True detection is marked if the annotated window overlaps 
with the observed instances.  (a) The BIOPAC waveforms show clear paradoxical 
motion visually, as well as by the algorithm.  NCS thorax and abdomen sensors do not 
show a complete paradoxical motion visually, but there are periods of opposite slope 
leading to detection of the second and third instances. Better abdomen sensor placement 
is required. (b) NCS waveforms show clear paradoxical motion visually, as well as by 
the algorithm. BIOPAC thorax belt do not show clear paradoxical motion in all three 
instances and requires better placement. 
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abdomen motion, and similarly the NCS sensor can be coupled to the accessory muscles. 

Cross-coupling between the two motions will reduce the paradoxical motion 

detectability. 2) Participants were unable to perform the isovolumetric exercise correctly 

during the intended period while following the breath-hold constraint. 3) The signal is 

lost due to sensor instability during the large chest circumference change resulting from 

the abdomen contraction. Overall, the algorithm was designed to be able to detect even 

slight paradoxical motion, resulting in the similar performance of both sensors as shown 

in Table 3.6. Both NCS and BIOPAC can detect 42 out of 58 instances, with fewer 

missed cases for BIOPAC (6) than for NCS (9). Figs. 3.15 (a) and (b) show two 

examples of poor detection for NCS and BIOPAC, respectively. While the algorithm 

performs well, as seen in these figures, it is more sensitive to baseline drift and other 

motion artifacts. Thus, sensor placement needs to be further investigated for robust 

paradoxical motion recognition.  

 

3.3 Conclusion 

Table 3.6 Detection of breath hold (BH) and paradoxical abdomen-thorax (PAT) 
motion 

BH (𝑎𝑎 = 80) 
NCS 

Detected Missed 

BIOPAC 
Detected 74 3 

Missed 3 0 

PAT (𝑎𝑎 = 58) 
NCS 

Detected Missed 

BIOPAC 
Detected 42 9 

Missed 6 1 
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This chapter first validated the one-sensor approach for monitoring various 

simulated respiratory disorder patterns and the associated RR and RV estimation 

compared to a reference sensor. The second part of the chapter validated these results 

over a broader population to test sensor performance with gender and BMI variation.  

Overall, this RF NCS sensor and presented algorithm can achieve high accuracy 

under variation of user physical characteristics as well as their posture and breathing 

pattern variations. Thus, it promotes the applicability in real-life conditions for 

continuous monitoring of healthy subjects. A brief comparison with other noninvasive 

techniques focused on respiration is presented in Table 3.7. Different statistics are 

reported, including percentage accuracy and root mean square error (RMSE), apart from 

the ones used in this chapter, r, 𝑚𝑚, and 𝜎𝜎. The proposed method provides a good 

Table 3.7 Comparison with other noninvasive methods 

 
Paper Sensor 

Statistics  Experimental 
Conditions Respiratory Rate Respiratory Volume Heart Rate 

Massagram 

[39] 

Far-field 
Doppler RF; 1 
m LoS 

− 

Sitting: r = 0.77; 𝑚𝑚 = 39 mL; σ = 
107 mL 

Supine: r = 0.72; 𝑚𝑚 = 24 mL; σ = 
129 mL 

− 
8 healthy  
spirometer 

Nguyen [37]  
Directional 
far-field CW 
RF 

− 
Bed accuracy: 95.4% (Error 58 

mL) − 
6 healthy 
spirometer 

Adib [38]  
Far-field 
FMCW RF; 1 – 
8 m LoS 

Accuracy: 99.3% 
(Error 0.09 BPM) − 

Accuracy: 98.5% 
(Error 0.95 BPM) 

14 healthy 
chest belt/oximeter  

Reyes [32]  Smartphone 
camera 

r = 1.0; RMSE = 0.4 
BPM; 𝑚𝑚 = −0.02 BPM;  𝜎𝜎 =

0.42 BPM 

r = 0.98; RMSE = 182 mL;  σ = 
185 mL − 

15 healthy  
spirometer  

Brüllmann 
[99] 

RIP chest 
belts − 

Healthy: 𝑚𝑚 = 0 mL; σ = 55 mL 
Patients: 𝑚𝑚 = 20 mL; σ = 100 mL − 

5 healthy, 12 patients  
flow meter 

Chu [19]  On-skin 
strain sensor  − r = 0.96; 𝑚𝑚 = −77 mL; σ = 152 mL − 

7 healthy 
spirometer 

NCS [42]  Wearable RF 𝐫𝐫 = 0.93; 𝒎𝒎 = 0.05 BPM; 
σ = 2.93 BPM 

𝐫𝐫 = 0.84; 𝒎𝒎 = 10 mL; σ = 109 
mL 

𝐫𝐫 = 0.95; 𝒎𝒎 = −0.5 BPM; 
σ = 3.32 BPM 

20 healthy  
PTM 

A comparison of the proposed NCS method (across all positions and breathing styles) with existing technologies, focused on respiration. Gold-
standard spirometer respiratory volume accuracy tolerance is ±3% [11].  
Different performance metrics are used across papers including percentage accuracy, root mean square error (RMSE), correlation coefficient (r), 
mean (𝑚𝑚) and standard deviation (𝜎𝜎) of the differences of measured and reference data (𝐵𝐵&𝐴𝐴 statistics). Experimental conditions show number 
of participants and the reference measurement device for each work. 
LoS line of sight, FMCW frequency modulated continuous wave, RIP respiratory inductance plethysmography. 
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estimation of both heart and respiratory motion characteristics with increased user 

comfort. The accuracy tolerance for a well-calibrated gold-standard spirometer is ± 3% 

[11]. For example, a quiet breath of 0.4 L will be measured as 0.4±0.012 L, and a deep 

breath of 2 L will be measured as 2.0±0.060 L. Table 3.3 showed the σ for different 

breathing patterns, with low values in spontaneous normal breathing 

conditions, 𝜎𝜎𝑅𝑅𝐵𝐵𝐶𝐶𝐵𝐵𝑚𝑚 = 0.065 L, 𝜎𝜎𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝑚𝑚𝐵𝐵𝑖𝑖𝑜𝑜𝑚𝑚 = 0.097 L and 𝜎𝜎𝑁𝑁𝑜𝑜𝐶𝐶𝑚𝑚𝐵𝐵𝐶𝐶 = 0.089 L during the 

breathing protocol. While these values are higher than acceptable clinical values, they 

can be utilized for preliminary analysis where quantitative evaluation of respiratory 

efforts including both RR and RV along with HR is helpful, especially for geriatric 

patients with low cognitive function, where dyspnea information can only be currently 

determined from self-reporting or a caregiver’s visual observation [100], [101].  

The limitations of the current setup include data distortion due to antenna motion 

relative to the body, sensor placement sensitivity, and arduous calibration requirements. 

The former issue of antenna motion can be possibly resolved by improved antenna 

packaging and garment integration of the antenna. While sensor placement requirements 

are less stringent for most routines, it becomes more important for accurate paradoxical 

abdomen-thorax motion monitoring, as NCS sensor coupling to diaphragm and lungs is 

observed to be position sensitive and needs to be carefully deployed. The calibration 

protocol requires participants to breathe only through the mouth while wearing a 

facemask for a brief duration. This calibration is mainly to give an absolute scale in RV 

and can be omitted if the percentage volume change is sufficient. 

Additionally, the NCS sensor with its small form-factor and simple transceiver 

architecture can be incorporated inconspicuously into the fabric with an improved 
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wireless design and can be worn over multiple layers of clothing without requiring any 

direct skin contact. We have used frequency division for multiplexing two sensors, 

which can be easily extended to place more sensors at different locations on the body, 

as well as on multiple people simultaneously. The Tx signal can be further modulated 

with a unique pseudo-noise code known to the corresponding Rx. These design options 

in NCS provide higher signal isolation against ambient interferences and inter-sensor 

collision than implementations based on the direct far-field RF and optical sensors. The 

detailed respiratory and heartbeat characteristics also open other areas of applications 

including cough monitoring, stress detection, and overall ambulatory healthcare 

monitoring. 
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CHAPTER 4  

ATTENTION MONITORING USING NON-INVASIVE VITAL SIGN FEATURES 

 

4.1 Introduction 

The provision of individually tailored sensory response systems has been of 

increasing importance in recent years. Apart from sensing the surrounding context, it 

involves understanding the physical and physiological responses of the people.  Using 

emotion recognition has been an important part of the human-machine interaction 

system by teaching a robot to give appropriate facial and speech responses. Smart 

buildings can be enabled to adjust lighting according to the emotional state and keep 

track of mental health, including depression and anxiety monitoring and alert family 

when required. With increasing work-from-home jobs, forced by the COVID-19 

pandemic, such systems are even more important to monitor work fatigue. Keeping 

track of fatigue or the opposite, attention, is even more important for people working in 

critical conditions like soldiers in action, heavy machine operators, air traffic 

controllers, and drivers. With accurate knowledge of the attention state, actions in form 

of visual or sound stimuli can be provided if a person is slipping into drowsiness or a 

less attentive state. 

The capability of an intelligent machine response requires an understanding of 

human emotional and cognitive reactions. There has been a debate starting from the 

early philosophers if reason and emotion are two opposite or related concepts, with 

recent research demonstrating a high level of interdependence [102]. When people 

perceive a vast amount of information, a subset processing is prioritized and extraneous 
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irrelevant information filtered out, to access the conscious awareness, which can be 

termed as attention [103]. Thus, attention is a basic function that controls focus, 

vigilance, and response simultaneously [104]. It can be classified as two types: 

exogenous attention is sensory-driven, involuntary response, while endogenous 

attention is a voluntary process with the conscious expectation of events [105]. There is 

another state called emotional attention, which is involuntary similar to exogenous 

attention but has been suggested to rely on special neural circuitry involving the 

amygdala [106]. Presently, psychological and neuroscientific research has extensively 

modeled emotion and its impact on attention and decision making. Brain studies to 

differentiate the amygdala response to emotion and attention have suggested a faster 

response to emotion over attention [107], [108], however, the overall results remain 

inconclusive [109]. In summary, emotional and attention states are highly intertwined, 

and the attention study can benefit from the vast research in the emotion monitoring 

domain to understand various physiological reactions. 

In this work, we have focused primarily on attention versus relaxation 

classification. The attention under this study is endogenous, in response to certain events 

that the user interacts with during a specific task. The relaxation has been loosely 

defined as a state similar to drowsiness or fatigue but covers a broader aspect of user 

inattentiveness including the meditative state. This is an important factor, as the user 

needs to be attentive even though no harmful activity has been perceived for a long 

period, such as in driving or guarding. A study on 25 healthy participants sitting on the 

chair was performed while wearing NCS RF sensors on the thorax and abdomen with 

routines involving neutral, relaxation, and attention states while sitting in a chair. 
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Chapter 3 included data from these routines, which validated the sensor performance 

for respiratory effort and heart rate monitoring. The next section presents related works 

in the area of attention detection and emotion monitoring. The experiment setup and 

detailed data collection routine during attention are presented in Sec. 4.3. Sec. 4.4 

presents the classification algorithm, including feature selection. Sec. 4.5 presents 

detailed results using NCS and reference sensors. Finally, discussion, including 

conclusion and future work are presented. 

 

4.2 Background and related work 

Long-term attentive tasks may result in mental fatigue [110] and require constant 

attention monitoring. Developing a safety attention monitoring setup ideally requires 

complete occupant centric knowledge, i.e.: 

1) Sensing the surroundings. 

2) Sensing the user’s actions. 

3) Sensing user’s physiological responses like brain activity, heart and 

respiratory patterns, and motor expression including face, voice, and body. 

The detailed sensing of the user environment is very difficult and also not suitable in 

most real-life applications. Autonomous or assisted driving fall in this category, but 

require a lot of research efforts that are difficult in all possible attention-demanding 

scenarios. Even with this sensing, increased drowsiness can result in the user's inability 

to take immediate action. Also, user action or response monitoring [111], [112] to record 

attention periodically can get very tiring and distracting by its action. Thus, monitoring 
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of physiological responses and motor expressions are the most suitable techniques for a 

generalized case.  

Existing attention monitoring techniques mostly detect fatigue as an alternative. 

While fatigue can be both physical and mental, only the latter has been included here. 

This technique only focuses on cases arising out of tiredness or boredom leading to 

sleepiness. Cases, where the user is relaxed and not expecting any events to occur are 

not counted, which can be extremely dangerous, for example, in sudden combat attacks. 

Thus, a broader comparison of attention versus relaxation needs to be performed. This 

can be enabled by the interlink of attention and emotion. Emotions can be classified in 

different ways, where each feeling is an independent emotion of joy, anger, sadness, 

etc. [113] or they can be clustered in a smaller multidimensional space [114], [115], 

usually spanned by valence and arousal in addition to others. Valence is classified as 

Figure 4.1 A two-dimensional arousal and valence model. 
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positive or happy emotions versus negative or sad emotions. Arousal refers to the 

activation level and ranges from low to high and is easier to differentiate than valence 

[115]. Fig. 4.1 shows the 2D arousal and valence model. Since the relaxed state is near 

the neutral valence and arousal states in the 2D model and attention may be 

accompanied with high agitation (high arousal – neutral valence) and distress (neutral 

arousal – negative valence), they are separable with this 2D model. In the following 

literature review, we will present the two areas of fatigue monitoring and emotion 

monitoring, due to connection of attention detection to both areas. 

Fatigue monitoring: Previous research on attentiveness and fatigue detection 

comprises mainly of motor expression monitoring, including eye and mouth. The focus 

is mainly on fatigue detection, i.e., sleepiness which is characterized by change (increase 

or decrease) in blink rate and yawn, which may be an indicator of the arousal level [116]. 

As this approach requires facial expression monitoring, sensors in ambient are required. 

Thus, the system is often tailored to a specific setup like driving. PERCLOS (percentage 

of eye closure) has been widely used as an alertness measure but eye-only fatigue 

detection performance is inferior to EEG [117]. Computer-vision based eye detection 

systems and algorithms have been proposed [118]–[120], which may suffer from 

illumination conditions. Ji et al [121], [122] performed real-time driver fatigue 

prediction using near infra-red (IR) video cameras for eyelid, gaze, head movement, and 

facial expression tracking with a probabilistic model. The best accuracy can be achieved 

with physiological parameter sensing which may be inconvenient for driving with 

wearable sensors [121], [122]. Other alternatives include piezoelectric sensors placed 
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on the skin of eyelid for fatigue monitoring [123]. Electrooculogram (EOG) sensors 

have been used [124] to detect driver drowsiness. 

 Fatigue detection has also been performed by physiological measurements like 

changes in heart rate, brain activity, and thermoregulation, the last of which gives the 

best performance for monitoring physical fatigue in construction workers [125]. EEG 

has been extensively used for mental fatigue detection [126]–[130] with response time 

in 10s of seconds [130]. Skin conductance has also been used for mental workload [131].  

Emotion monitoring: There has been a vast amount of research done in the area of 

emotion recognition from physiological signals [132]–[134]. The accuracy varies based 

on the recorded signals, sensing technology, emotion model, and classification 

algorithms. The real-life implementation heavily depends on the required comfort level 

of the sensor and accuracy tradeoff, for example, pulse oximetry (SpO2) sensing from 

the wristwatch may achieve limited accuracy with high comfort.  

 The facial expression, speech, and other motor features have been extensively 

used for emotion recognition with improved results for multimodal approaches [135], 

[136]. A bimodal system used facial and acoustic information [135] to classify four 

emotions using k-nearest neighbor (kNN). A hidden Markov model (HMM) with 

maximum likelihood classifier was used for automatic segmentation and recognition 

from a continuous video into a sequence of emotions in [137], with a very low 

recognition rate for an unseen participant as the display of emotions varies with ethnicity 

and gender. Deep-learning based approaches have also been used in recent years [138], 

[139], including transfer learning [140] for emotion detection. The performance of these 
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methods relies on the expressiveness of the user, accurate baseline estimates, or large 

training data across different races, illumination, and background audio noises. 

  Galvanic skin response (GSR) or skin conductance (SC), blood volume pulse 

(BVP) and skin temperature (ST) from hands, and pupil diameter (PD) with an eye gaze 

tracking instrument were employed to monitor stress [141]. SVM classifier resulted in 

high cross-validation (CV) accuracy with PD as the most important feature. The existing 

literature has difficulty in detecting the intensity of emotion with only GSR and 

electromyography (EMG) [142], even with a relaxation baseline.  Arousal versus 

valence classification has been performed using GSR and photoplethysmogram (PPG) 

[143] with leave-one-out subject accuracy of 70%, compared to 87% for a single-user 

model. While these parameters are important, they are associated with specific 

emotions. GSR and PD have been associated with arousal [144], [145]. EMG 

measurement of neck muscles could be an indicator of stress, and it is a single-

dimensional valence measure [132]. Stress or anxiety may result in colder ST at the 

fingers. Thus, multiple sensors with different placements are required, all with direct 

skin contact, and are thus uncomfortable. 

  Another important category of work focuses particularly on heartbeat signals to 

measure heart rate variability (HRV) [146], [147]. Electrocardiogram (ECG) has been 

widely used for heartbeat based emotion recognition  [148], [149]. A model based on 

empirical mode decomposition (EMD) with Hilbert-Huang transform (HHT) was used 

to derive features based on instantaneous frequency for arousal/valence study in [148]. 

As ECG requires skin contact, PPG has been seen as a desirable alternative, particularly 

with watch and fitness tracker integration [150], [151]. However, baseline drift, motion 
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artifacts, and signal quality need to be taken into account. As ECG has been established 

as a biometric tool [152], showing varying features across users, it should be used 

carefully for consistent emotion recognition across different subjects. Additionally, the 

emotional state has also been linked to the correlation of respiration and heartbeat in 

[115], indicating a correlation between different physiological channels. Only the 

respiration signal has been used with high accuracy in [153], [154] by a deep learning 

approach. 

 Noninvasive wireless RF sensing has also been used for emotion detection 

[155]–[157]. The traditional far-field sensing mostly measures respiratory signals only, 

which can be 10 times stronger than the heartbeat [155]. The heartbeat features were 

stated to be indirectly extracted from respiration in [155], achieving a high average 

leave-one-subject CV accuracy of 94.4% for stress detection. Raw RF data was used in 

[156] to train a convolutional neural network (CNN) followed by a long short-term 

memory (LSTM) deep learning architecture. This achieved 67 – 87% accuracies to 

classify 4 different emotions with user-independent learning. HRV was extracted with 

signal processing tools [157] with an FMCW radar, resulting in a 70 – 75% accuracy 

for a person-independent 4-emotion classification, using the valence/arousal model. 

This work required a baseline neutral state corresponding to the specific day and person 

for feature calibration. These wireless sensing techniques are restricted to indoor setups, 

supporting only a limited number of users in the room.  

 This work uses robust NCS wireless sensing, that can be placed over-the-clothes 

to record heartbeat and respiratory sensing. This allows us to monitor multiple people 

simultaneously without any interference from ambient motion, unlike existing 
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approaches. With near-field coupling, we can get a noticeably clear heartbeat signal, in 

addition to the respiration for feature extraction. We have established a relationship 

between emotion and attention and adopted similar tools as emotion recognition for a 

broader attention/relaxation classification, allowing adaptability to different 

applications. Further, with passive and active setups, NCS has high comfort levels in 

comparison with other approaches requiring direct skin contact.  

 

4.3 Experimental setup  

This experimental study was conducted as part of the previous study discussed 

in Sec. 3.2, approved by Cornell IRB, and performed with participants' informed written 

consent. The data collection was performed on 25 healthy subjects including 15 female 

subjects. The age range is 18 – 34 yrs., with BMI in the range 17.6 – 27 kg/m2.  

4.3.1 Vital-sign sensors 

Figure 4.2 Setup for attention monitoring. 
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Two NCS sensors were placed at thorax and abdomen along with reference 

BIOPAC chest belts and ECG as shown in Fig. 3.9. No facemask calibration was 

required, and an additional finger PPG was placed as shown in Fig. 4.2. In this chapter, 

three routines in the sitting posture are considered: 

R1 Breathing exercise routine (Initial 120 s only): Perform normal breathing 

without any deep breaths or breath holds. 

R2 Relaxation routine (5 minutes): Close eyes, relax, and spontaneous breathing 

with no additional instructions.  

R3 Attention routine (6.5 minutes): Play a vigilance-testing game with spontaneous 

breathing. 

The attention monitoring setup uses heartbeat and respiration signals from NCS 

and compares them with the reference devices (ECG, chest belts). The information 

contained in these signals is discussed below. 

 

Heartbeat: The gold standard sensor for heartbeat monitoring is ECG. The main 

features are heart rate, interbeat interval (IBI), and heart rate variability (HRV) [158] 

which can be measured in several different ways. HRV is the variation in IBI or RR 

interval (interval between two RR peaks in ECG) and reflects the effect of many 

physiological factors modulating normal heart rhythm.  

 Anatomically, the medulla located in the brainstem contains cell bodies for two 

main divisions of the autonomic nervous system (ANS), termed as sympathetic (SNS) 

and parasympathetic (PNS). Autonomic outflow from the medulla is divided into 

sympathetic and parasympathetic (vagal) branches, that modulate the activity of the 
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heart and blood vessels. These modulations are reflected on the HRV and are thus used 

extensively to monitor ANS functions. As the ANS, together with the hypothalamus 

gives response to emotional cues, the HRV is related to emotional responses  [158].  

The two branches, SNS and PNS, exhibit distinct functions. The fibers of SNS 

are present throughout the atria, particularly concentrated in the sino-atrial (SA) node 

and ventricles, and when stimulate the cardiac muscles to increase the heart rate (HR) 

when activated. This stimulation occurs in response to stress and emotional intensity 

and prepares the body for vigorous activity. PNS decreases the cardiac workload, 

primarily resulting from trauma and allergic reactions. The separate contributions from 

sympathetic and parasympathetic autonomic activity modulate the RR intervals of the 

QRS complex. The sympathetic activity exhibits a slow course of action, with effects 

observed 5 s after stimulation, returning to baseline after 20 – 30 s, and is thus associated 

with low frequency (LF) in the range 0.04 – 0.15 Hz of modulation frequencies of HR.  

Parasympathetic activity response appears rapidly with a response time of 400 ms and 

returns to baseline after 1s, associated with high frequency (HF) in the range 0.15 – 0.4 

Hz of modulation frequencies of HR [147].  

The HRV feature-based emotion detection has been explored in great detail in 

recent years, with time-domain (e.g. SDNN, RMSSD), frequency domain (LF, HF, 2D 

LF-HF), and non-linear (entropy and Poincare plot features) [158]–[160] analysis.  

However, care must be taken in signal processing, as even slight inaccuracy in IBI 

estimation can result in a huge variation. Thus, various standardized data processing 

tools have been established for the ECG data. As PPG data does not have a sharp peak 

and may have a small peak immediately following the main peak (dicrotic notch), 
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rigorous signal processing needs to be performed. For NCS heartbeat signal, 2nd 

harmonic based peak detection has been shown to perform better in previous chapters. 

 

Respiration: Respiration is in general an unconscious, automatic, and involuntary 

process, controlled by the medulla and pons. Conscious factors can override the 

autonomous process for a limited period, for example, while speaking, smelling, or 

breath-hold. With the complexity of the respiration system, and in general favorability 

of heartbeat monitoring, the observations such as respiratory sinus arrhythmia [161] and 

rate variation relationship lack complete understanding [162].  In general, respiration is 

modulated by various emotional reactions including stress, anger, and relaxation. For 

instance, a decrease in respiratory rate (RR) is observed in a relaxed state. Tension, 

sudden fear, or happy surprise may result in a breath-hold, resulting in decreased RR, 

with increased variability. Deep and fast breathing can be anger or happiness. Further, 

while respiration is affected by emotions, voluntary respiration breathing techniques 

have been suggested to influence emotions and heartbeat [163]. Dyspnea or difficulty 

in breathing has been related to excitement or fatigue.  

 

4.3.2 Attention routine 

A vigilance based game, based on the Mackworth clock test [164] was 

developed to engage the participant’s attention. This routine was designed in PsyToolkit 

[97], [98], where a graphical interface displayed rotating clock hand as shown in Fig. 

4.3. Intermittently, the clock hand jumped more than normal, and the participant was 

expected to press the spacebar. The speed, normal rotation angle, and jump step were 
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adjusted to keep the level easy. If the participant pressed the spacebar correctly, the 

middle bulb glowed green. If a jump was missed, or the spacebar was wrongly pressed, 

it would glow red. These two instances are shown in Figs 4.3 (b) and (c), respectively. 

The attention routine of 6.5 min includes: 

1. 30 s instructions as shown in Fig. 4.4,  

2. 30 s trial round, 

3. 10 s wait, 

4. 5 min test round. 

Figure 4.3 Attention test showing a clock hand. (a) Normal clock rotation. (b) 
Correctly detected jump. (c) Incorrect spacebar press or missed jump. 

(a) (b) (c) 

Figure 4.4 Instructions displayed at the beginning of the attention routine. 
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The normal clock hand rotation is 3.6°, and the abnormal jump is 5.4°. On each turn, a 

random number between 1 to 10 is generated, and an abnormal jump occurs if the 

number is 10. Thus, the jump probability with a uniform number generator is 0.1. A 

maximum reaction time of 1000 ms is allowed. Following the test, information about 

the game is returned, including 1) time in ms from experiment start corresponding to 

each rotation, 2) reaction time, 3) status (if a key was pressed),  4) the current position 

of the clock hand in the tenth of degrees, 5) generated random number, 6) value ‘1’ if 

jump occurred and correctly detected 7) value ‘1’ for the incorrect press, 8) value ‘1’ if 

jump occurred and missed, and 9) ‘trial’ or ‘test’. Fig. 4.5 shows the data arranged in 

Correct detection 

Missed jump 

Incorrect press 

1 2 3 4 5 6  7  8 9 

Figure 4.5 The test generated dataset giving timing and reaction information, with 
column numbers shown on the top. 
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columns, with three star-marked instances showing correctly detected jump, incorrect 

press, and missed jump cases.  

4.4 Algorithm 

A feature-based machine learning (ML) classification algorithm has been used 

for attention and relaxation classification. The entire signal processing has been 

implemented in MATLAB. 

4.4.1 Feature extraction and selection 

The analysis is done at two different time scales.  One uses the entire window of 

data collection for the routine, ranging from (2 min – 6.5 min) and another is an ultra-

short window of 90 s with a 10s slide. Features are generated as various statistical 

measures estimated on the parameters extracted from waveforms: 

1. Heartbeat: IBI 

2. Respiration: Inter-respiratory interval (IRI), uncalibrated tidal volume (TV) 

or peak height, inspiratory interval (𝑡𝑡𝐼𝐼𝐼𝐼), expiratory interval (𝑡𝑡𝐸𝐸𝐼𝐼), 𝑡𝑡𝐸𝐸𝐼𝐼/𝑡𝑡𝐼𝐼𝐼𝐼.  

Statistical analysis: mean, variance, approximate entropy (ApEn), 

successive differences at first-order (SD1), and second-order (SD2).  

Frequency domain: LF, HF 

A subsection of these features is used for classification, to reduce noise and 

improve the classification. The features are ranked using minimum redundancy 

maximum relevance (MRMR) algorithm [165], using ground truth information of 

corresponding classes (𝑦𝑦 = {1:𝑁𝑁𝑉𝑉𝑟𝑟𝑚𝑚𝑎𝑎𝑙𝑙, 2: 𝑅𝑅𝑒𝑒𝑙𝑙𝑎𝑎𝑥𝑥𝑒𝑒𝑑𝑑, 3: 𝐴𝐴𝑡𝑡𝑡𝑡𝑒𝑒𝑎𝑎𝑡𝑡𝑖𝑖𝐴𝐴𝑒𝑒}). If a feature 𝑖𝑖, is 

differential for different classes, it should have large mutual information, 𝐼𝐼(𝑦𝑦, 𝑖𝑖). The 

mutual information is related to the joint probabilistic distribution of two variables 
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(features) 𝑖𝑖 & 𝑗𝑗, given as 𝐼𝐼(𝑖𝑖, 𝑗𝑗), and gives the level of similarity between the variables. 

The idea of minimum redundancy is to select the variables that are mutually maximally 

dissimilar. The two mutual information-based criteria need to be simultaneously 

optimized to generate results. The first feature is the one with the highest 𝐼𝐼(𝑦𝑦, 𝑖𝑖), then 

rest are determined incrementally by optimization using a heuristic algorithm. 

4.4.2 Classification algorithm 

Different classification algorithms have been implemented including support 

vector machines (SVM), kNN, trees, and their ensembles. The reported results are 

Figure 4.6 Approximate entropy (ApEn) feature values across different classes on the 
entire dataset for both NCS and BIOPAC. Large window sizes have been used. 

NCS BIOPAC 
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considered with the best accuracy. For longer window features, ensemble subspace 

discriminant achieves the best results. For ultra-short feature analysis, kNN works best. 

5-fold cross-validation (CV) has been implemented for model training, and performance 

analysis has been done on an unseen holdout set. The results show high accuracy for 

both subject-dependent and independent results.  

4.5 Results 

4.5.1 Feature comparison and subject-dependent results 

To find out information within respiration, we first restrict the analysis to the 

respiratory features. With a larger window size, only a subset (11) of all the features are 

used, with the approximate entry being the maximally contributing feature. The 

approximate entropy estimated on 𝑡𝑡𝐸𝐸𝐼𝐼 , 𝑡𝑡𝐼𝐼𝐼𝐼 , and 𝐼𝐼𝑅𝑅𝐼𝐼 are shown in Fig. 4.6, derived from 

both NCS respiratory waveforms and BIOPAC chest belt waveform at the abdomen. 

Figure 4.7 5-fold CV performance on the entire dataset using long-window respiratory 
features, for (a) NCS and (b) BIOPAC. The three classes are R1, R2 and R3. 

 

(a) NCS (b) BIOPAC 
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Fig. 4.7 shows the confusion matrix of average 5-fold CV performance on the entire 

NCS data, showing 86.7% accuracy for R1, R2, and R3 classification. The 

corresponding BIOPAC accuracy is 74.7%. For the ultra-short window, all 46 features 

are derived as shown in Table 4.1, and good results are seen when only the top 10 

features selected from the MRMR algorithm are used. Fig. 4.8 shows the feature 

importance versus the rank plot with the top 6 features being: mean(𝑆𝑆𝑆𝑆1𝐼𝐼𝐼𝐼), 

 mean �𝐵𝐵𝐸𝐸𝐸𝐸
𝐵𝐵𝐸𝐸𝐸𝐸
�, mean(𝑆𝑆𝑆𝑆2𝐼𝐼𝑅𝑅𝐼𝐼) std(𝐼𝐼𝑅𝑅𝐼𝐼)⁄ , mean(𝑇𝑇𝑉𝑉), mean(𝑆𝑆𝑆𝑆2𝑃𝑃𝑅𝑅) std(𝑇𝑇𝑉𝑉)⁄ , 

𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎(𝑡𝑡𝐸𝐸𝐼𝐼 ).  Here, 𝑆𝑆𝑆𝑆1𝐵𝐵𝐸𝐸𝐸𝐸  is written as 𝑆𝑆𝑆𝑆1𝐼𝐼𝐼𝐼 for simplification.  

Table 4.1 Features derived from respiration 

mean(𝑡𝑡𝐼𝐼𝐼𝐼) mean(𝑡𝑡𝐸𝐸𝐼𝐼) mean(𝐼𝐼𝑅𝑅𝐼𝐼) mean(𝐵𝐵𝑅𝑅) 

mean(𝑇𝑇𝑉𝑉) mean(𝑡𝑡𝐸𝐸𝐼𝐼/𝑡𝑡𝐼𝐼𝐼𝐼) mean(𝑆𝑆𝑆𝑆1𝐼𝐼𝐼𝐼) mean(𝑆𝑆𝑆𝑆1𝐸𝐸𝐼𝐼) 

mean(𝑆𝑆𝑆𝑆1𝐼𝐼𝑅𝑅𝐼𝐼) mean(𝑆𝑆𝑆𝑆1𝑃𝑃𝑅𝑅) mean(𝑆𝑆𝑆𝑆2𝐼𝐼𝐼𝐼) mean(𝑆𝑆𝑆𝑆2𝐸𝐸𝐼𝐼) 

mean(𝑆𝑆𝑆𝑆2𝐼𝐼𝑅𝑅𝐼𝐼) mean(𝑆𝑆𝑆𝑆2𝑃𝑃𝑅𝑅) std(𝑡𝑡𝐼𝐼𝐼𝐼) std(𝑡𝑡𝐸𝐸𝐼𝐼) 

std(𝐼𝐼𝑅𝑅𝐼𝐼) std(𝐵𝐵𝑅𝑅) std(𝑇𝑇𝑉𝑉) std(𝑡𝑡𝐸𝐸𝐼𝐼/𝑡𝑡𝐼𝐼𝐼𝐼) 

std(𝑆𝑆𝑆𝑆1𝐼𝐼𝐼𝐼) std(𝑆𝑆𝑆𝑆1𝐸𝐸𝐼𝐼) std(𝑆𝑆𝑆𝑆1𝐼𝐼𝑅𝑅𝐼𝐼) std(𝑆𝑆𝑆𝑆1𝑃𝑃𝑅𝑅) 

std(𝑆𝑆𝑆𝑆2𝐼𝐼𝐼𝐼) std(𝑆𝑆𝑆𝑆2𝐸𝐸𝐼𝐼) std(𝑆𝑆𝑆𝑆2𝐼𝐼𝑅𝑅𝐼𝐼) std(𝑆𝑆𝑆𝑆2𝑃𝑃𝑅𝑅) 

mean(𝑆𝑆𝑆𝑆1𝐼𝐼𝐼𝐼)
std(𝑡𝑡𝐼𝐼𝐼𝐼)

 
mean(𝑆𝑆𝑆𝑆1𝐸𝐸𝐼𝐼)

std(𝑡𝑡𝐸𝐸𝐼𝐼)
 

mean(𝑆𝑆𝑆𝑆1𝐼𝐼𝑅𝑅𝐼𝐼)
std(𝐼𝐼𝑅𝑅𝐼𝐼)

 
mean(𝑆𝑆𝑆𝑆1𝑃𝑃𝑅𝑅)

std(𝑡𝑡𝑃𝑃𝑅𝑅)  

mean(𝑆𝑆𝑆𝑆2𝐼𝐼𝐼𝐼)
std(𝑡𝑡𝐼𝐼𝐼𝐼)

 
mean(𝑆𝑆𝑆𝑆2𝐸𝐸𝐼𝐼)

std(𝑡𝑡𝐸𝐸𝐼𝐼)
 

mean(𝑆𝑆𝑆𝑆2𝐼𝐼𝑅𝑅𝐼𝐼)
std(𝐼𝐼𝑅𝑅𝐼𝐼)

 
mean(𝑆𝑆𝑆𝑆2𝑃𝑃𝑅𝑅)

std(𝑡𝑡𝑃𝑃𝑅𝑅)  

𝐴𝐴𝑝𝑝𝑎𝑎𝑎𝑎(𝑡𝑡𝐼𝐼𝐼𝐼) 𝐴𝐴𝑝𝑝𝑎𝑎𝑎𝑎(𝑡𝑡𝐸𝐸𝐼𝐼) 𝐴𝐴𝑝𝑝𝑎𝑎𝑎𝑎(𝐼𝐼𝑅𝑅𝐼𝐼) 𝐴𝐴𝑝𝑝𝑎𝑎𝑎𝑎(𝑇𝑇𝑉𝑉) 

𝐿𝐿𝑆𝑆(𝑡𝑡𝐼𝐼𝐼𝐼) 𝐿𝐿𝑆𝑆(𝑡𝑡𝐸𝐸𝐼𝐼) 𝐿𝐿𝑆𝑆(𝐼𝐼𝑅𝑅𝐼𝐼) 𝑘𝑘𝑆𝑆(𝑡𝑡𝐼𝐼𝐼𝐼) 

𝑘𝑘𝑆𝑆(𝑡𝑡𝐸𝐸𝐼𝐼) 𝑘𝑘𝑆𝑆(𝐼𝐼𝑅𝑅𝐼𝐼)   
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Fig. 4.9 shows the 5-fold CV accuracy performance with NCS and BIOPAC 

data using ultra-short windows, resulting in an accuracy of 98.6% and 97%, 

respectively. Fig. 4.10 shows the NCS performance with only the top 10 features on 

training data and 25% randomly selected holdout data for the same window size.  

 

Figure 4.8 MRMR feature ranking results for ultra-short length features. Only top 6 
~ 10 have a high importance. 

Figure 4.9 5-fold CV performance on the entire dataset using ultra-short respiratory 
features, for (a) NCS (accuracy: 98.6%) and (b) BIOPAC (accuracy: 97%).  

(a) NCS (b) BIOPAC 
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In the next step, HRV features are also estimated considering only two classes 

R2 and R3. This provided similar training performance, but slightly poorer performance 

on the holdout set than the respiration features, as shown in Fig. 4.11.  

Figure 4.10 Using top-10 features for training (a) and testing (b) on the NCS derived 
respiration features on ultra-short window.  

(a) NCS 5-fold CV (b) NCS 25% holdout data 

Figure 4.11 25% Holdout test dataset performance for R2 and R3 (relaxation and 
attention) classification using ultra-short features from (a) NCS HRV and (b) NCS 
respiration data.  

(a) NCS HRV (b) NCS Respiration 
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4.5.2 Subject-independent results 

Subject independent tests were performed with both the feature lengths. 20 

participants were used for training and the remaining for testing. In this case, results are 

still good for longer feature lengths as shown in Fig. 4.12. However, for ultra-short 

Figure 4.13 Subject-independent train-test results on the NCS data with ultra-short 
feature windows.  

(a) NCS CV training performance (b) Testing on unseen participants 

Figure 4.12 Subject-independent train-test results on the NCS data with longer feature 
windows, showing very high accuracy. 

(a) NCS CV training performance (b) Testing on unseen participants 
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features, performance degrades to 50% test accuracy which is better than by chance 

(33%) but still poor as shown in Fig. 4.13. This performance needs to be further 

investigated. 

4.5.3 Effect of controlled respiratory pattern  

 While R1 is not part of the relaxation/attention test, the participants are asked 

to perform normal breathing (with no deep breaths or breath holds) for 2 min. Further 

normal breathing does not require excess voluntary attention and is not stress-inducing. 

This controlled breathing pattern is similar to a relaxation state and tests are performed 

to verify this intuition. Fig. 4.14 (a) shows the CV accuracy of 80% when only R2 and 

R3 data from 20 participants are used for training the classifier. Then, R1 of all the 

participants and the remaining 5 subjects is used as the holdout test set.  Fig. 4.14 (b) 

shows the results, when all 25 cases, for seen and unseen participants are classified as 

R2, thus validating the hypothesis.  

4.6 Discussion 

Figure 4.14 Validating normal breathing routine (R1) classification as relaxation 
routine (R2) when only two classes are considered.  

(a) NCS CV training performance (b) Testing on unseen participants 
and R1 data 
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The ability to recognize attention and relaxation states is a major part of emotion 

detection, which can enhance safety measures in place for critical conditions and help 

reduce the overall stress level. This thesis has presented a general discussion of what is 

“attention” and its psychological perspective, as well as neuroscientific research linking 

emotion and attention. This has allowed us to generalize attention or vigilance, and 

relaxation and study them using a two-dimensional model, without limiting to stress or 

fatigue detection that are mostly treated as one-dimensional.   

Further, the novel NCS sensor technology has been used to monitor both 

respiratory and heartbeat patterns. NCS presents a unique advantage that the sensor can 

operate in a passive mode with only a Tx antenna on the chest [45], thereby making the 

setup more comfortable for certain environments like driving, while still giving strong 

heartbeat and respiratory signals. Other furniture integrated versions can also be adopted 

with some tradeoff in relative sensor position and heartbeat sensing accuracy. Our 

results show significant accuracy with only respiration signals as well. While the 

presented HRV estimation algorithm performs well for some cases, with sensor 

placement variation, performance can degrade for some cases, resulting in lower 

accuracy than expected. The addition of noninvasive pulse oximetry can also be done 

in the future to possibly improve the overall estimate.  

The feature window length and system response time to identify attention needs 

to be considered. The limitation of using respiratory features include1) learning slow or 

fast breathing requires a larger time window compared to HRV change, and 2) sudden 

inhalation or exhalation is a one-time event on a very small time scale. The feature 

identification on the respiration data can be further improved to incorporate these 
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variations. Traditionally, HRV features have been widely investigated for long-term (24 

h) and short-term (> 5 min), and the reliability of ultra-short HRV (< 5 min) is not 

completely validated [166], but have been increasingly used for faster responses [167], 

[168]. The statistical features are also impacted by the window length and maybe highly 

biased with shorter lengths. ApEn has shown to be unreliable for excerpts of <3 min 

[169]. These could be the possible reasons for poorer performance on the shorter interval 

of 90 s compared to the entire window lengths. Another possible reason is mislabeling 

and misclassification of transition periods. When estimated on the larger window, it 

results in averaging out the transition period information. However, shorter windows 

might be incorrectly labeled at the transition period from relaxation to attention, leading 

to poor learning, as well as poor test results in these instances. This needs to be further 

studied and routines can be made longer for future studies to drop such transition 

periods. 

The results presented in this work have been collected on 22 subjects and 

extensive validation has been performed on unseen test data, unseen routines, as well as 

entirely unseen participants. With smaller window sizes, this works well if baseline 

information is collected for each subject. Picard et al [170] considered this phenomenon 

in detail, with one subject selecting their own images to induce different emotions daily 

over multiple weeks. This showed more variation in day-to-day versus each emotion on 

the same day, showing huge baseline variation. Thus, future studies are required to 

consider daily variation in attention and relaxation classification.  

The above baseline phenomenon needs to be compared with human perception 

during the experimental data collection. This can only be estimated by the user’s self-
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report. In this work, participants were asked to fill a survey indicating their relaxation 

and stress levels on a scale, as well as giving brief descriptions. The term stress was 

used instead of attention, as attention is more abstract for users. During the relaxation 

routine, most people responded to feeling relaxed or sleepy. Mixed responses were 

derived during the attention routine. Some subjects got increasingly frustrated as they 

received negative feedbacks, while some were calmer as they were good at the exercise. 

The game level was easy so that participants could quickly learn it, however, for future 

studies, games should become adaptively complex to demand continuous attention of 

skilled players and reduce mislabeling. For the presented results, as the survey feedback 

is not explicit, user data was not included to update labels. Another way to indicate real 

attention levels could be the response time from the game which is shown to be related 

to attention and fatigue [102]. Li et al [171] used another concept of group-based 

individual response specificity (IRS) for user-independent emotion recognition. In 

psychophysiology, the idea of IRS is of a consistent response of an individual for 

different stimuli, thereby introducing difficulties in subject-independent emotion 

detection. Thus, for every new user, IRS levels are estimated and associated with the 

closest cluster of people, before emotion labeling. The best performance is achieved 

when the population is classified into 10 clusters, however, testing is only done with 30 

subjects [171]. Thus, more subjects are needed to study the expected number of clusters 

and corresponding performance improvement. 

Overall, we have presented a novel sensor setup for user-independent attention 

– relaxation classification using respiratory and heartbeat features, resulting in a good 

accuracy for real-life implementation. While there has been a lot of research in the area 
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of emotion recognition, results must always be looked at carefully to understand the 

consideration of participant and baseline variations in the study. Our approach shows 

good results for unseen participants with sufficient window sizes. With the unique 

advantage of choices between passive and active NCS setups, the presented monitoring 

setup is suitable for a wide range of applications, from soldiers, to drivers and pilots, 

and even hospitals to detect accurate attention, vigilance, or stress versus relaxation 

states. 

 

 

 

  



 

112 

CHAPTER 5  

INDOOR PASSIVE UHF RF-IMAGING 

 

Recent years have seen a rapid increase in innovation focusing on smart 

buildings – from audio recording based smart interactive devices to camera-based 

security. Passive occupant monitoring is an important aspect of smart buildings that can 

be used to respond to user needs by learning accurate behavioral features, respond to 

emergencies, as well as save energy by smart HVAC control. This chapter focuses on 

using a UHF RF system for imaging indoor occupants. However, unlike the traditional 

outdoor radar applications, this setup suffers from nonideal near-field signal artifacts, 

strong multipath reflections and is even restricted in terms of bandwidth and spatial 

diversity of antennas – to limit the overall system costs.   

This chapter discusses the traditional RSSI absorption/attenuation based signal 

model and both phase and RSSI comprising reflection-based model. The latter does not 

required occupant to be in LoS of a link, and allows higher resolution, but is also more 

prone to phase noises; thus, an improved calibration algorithm is proposed. Work has 

been done in combining both the models to get an improved result in high-noise 

environments. The experimental and simulation results are compared, and the real-life 

scenario and noises are studied in detail. The final image is generated by solving the 

linear inverse problem using proposed sparsity-approximation algorithms [205], which 

leverages the emptiness of the room to solve a highly underdetermined equation. Results 

show a performance comparison of traditional vs proposed solutions for both 

experimental and simulation cases.  
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5.1 Indoor RF propagation 

 In an indoor environment, the emitted electromagnetic (EM) waves have a 

complicated signal model from the transmitter (Tx) to the receiver (Rx), with reflection 

from surrounding walls and furniture resulting in multipath fading, and shadowing from 

obstacles resulting in attenuation or complete LoS blockage.  Fig. 5.1a depicts a 2D 

Figure 5.1 Illustration of RFID tags, reader antennas and backscattered signals from 
tags to reader antennas. (a) The unoccupied room with LoS from tag to reader and 
inherent multipath from wall and furniture (clutter). (b) Signal paths with an occupant, 
showing multipath: occupant reflection (light-green dotted), multi-reflection (black 
dash-dotted), and occupant shadowing (green dashed). (c) Effect of shadowing and 
multipath noise on the received power as a function of distance between Tx – Rx. Path 
loss is shows with a dashed green line. The effect of shadowing is shown with a dotted 
blue line, and with addition of multipath it gets even more noisy (yellow line). 
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diagram showing the backscattered uplink from tag to reader Rx antenna, including the 

LoS and multipath from walls and furnishing. The LoS path observes path loss with 

amplitude attenuation (𝛼𝛼) given by Friis free-space transmission formula: 

𝛼𝛼𝐵𝐵𝐶𝐶  ∝ �
𝜆𝜆

4𝜋𝜋𝑑𝑑𝐵𝐵𝐶𝐶
�. (5.1) 

where 𝜆𝜆 is the wavelength and  𝑑𝑑𝐵𝐵𝐶𝐶 is the distance between the tag Tx and reader Rx 

antennas. The phase 𝜙𝜙𝐵𝐵𝐶𝐶 accumulated on this path is: 

     𝜙𝜙𝐵𝐵𝐶𝐶 = 2𝜋𝜋𝑑𝑑𝑡𝑡𝑡𝑡
𝜆𝜆

  (5.2) 

The multipath results in additional signals at Rx, often weaker than LoS, which 

can increase or decrease the overall RSSI, depending on the phase difference resulting 

from the additional distance traveled. This is often described by the conventional Rician 

fading channel [58], [172].  Occupant presence in the room can cause further RSSI 

variation or even complete blockage of the LoS paths and additional multipath, as shown 

in Fig. 5.1 (b). The indoor signal now follows more closely to the Rayleigh fading 

channel that assumes no dominant path, thus with multiple occupants, neither Rician 

nor Rayleigh model fits. Fig. 5.1 (c) plots the log of received power /transmit power 

(𝑃𝑃𝐶𝐶/𝑃𝑃𝐵𝐵) as a function of increasing distance 𝑑𝑑 between Tx – Rx, which shows linear 

path loss, and received signal in presence of shadowing and multipath  [173]. This shows 

serious RSSI deviation in the presence of shadowing and noise in the case of multipath. 

5.2 Occupant imaging setup design 

As shown in Fig. 5.1 above, we have selected a multistatic and multi-frequency 

system deployment using commercial RFID tags for occupant monitoring in the ISM 

frequency band of 902 – 928 MHz. As passive tags are low-cost sensing points, the 
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number of tags, 𝐿𝐿 ≫ 𝑀𝑀, the number of reader antennas. The previous work in our group 

[77] showed a 1𝑚𝑚 × 1𝑚𝑚 2D imaging setup for small less-reflective objects, using wired 

harmonic Tx-Rx setup and point-sized scatterers. Fig. 5.2 shows the generalized setup 

considered by that work, with LoS path from 𝑙𝑙𝐵𝐵ℎ Tx to 𝑚𝑚𝐵𝐵ℎ Rx, with 𝑙𝑙 and 𝑚𝑚 in the 

range [1, 𝐿𝐿] and [1,𝑀𝑀], respectively. The 𝑃𝑃 scatterers in the bounding box backscattered 

the RF signal transmitted at the frequency 𝑓𝑓𝑚𝑚 with 𝑎𝑎 ∈ [1,𝑁𝑁]. The locations of Tx and 

Rx antennas and scatterers were defined with respect to the origin 𝑂𝑂 with the vector 𝑟𝑟.  

The model ignored the attenuation with the point-sized scatterers, and the backscattered 

signal 𝑦𝑦�𝑟𝑟𝐶𝐶, 𝑟𝑟𝑚𝑚, 𝑟𝑟𝑚𝑚,𝑘𝑘𝑚𝑚� was written as a function of location vectors (𝑟𝑟𝐶𝐶, 𝑟𝑟𝑚𝑚, 𝑟𝑟𝑚𝑚) and the 

wavenumber 𝑘𝑘𝑚𝑚 = (2𝜋𝜋𝑓𝑓𝑚𝑚)/𝑐𝑐 as 

     𝑦𝑦�𝑟𝑟𝐶𝐶 , 𝑟𝑟𝑚𝑚 , 𝑟𝑟𝑚𝑚 , 𝑘𝑘𝑚𝑚� =  ∭ 𝜌𝜌(p) 𝑒𝑒−𝑗𝑗𝑘𝑘𝑛𝑛𝒓𝒓(𝐶𝐶,𝑚𝑚,𝑚𝑚)𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦𝑑𝑑𝑘𝑘|𝒓𝒓𝑙𝑙|<|𝒓𝒓𝑚𝑚𝑚𝑚𝑅𝑅| . (5.3) 

Figure 5.2 Generalized imaging system schematics showing the direct line-of-sight path 
from 𝑙𝑙𝐵𝐵ℎ Tx antenna to 𝑚𝑚𝐵𝐵ℎ Rx antenna, and the path reflected from 𝑝𝑝𝐵𝐵ℎ point scatterer. 
𝑟𝑟𝑚𝑚𝐵𝐵𝑚𝑚 is the radius of the imaging capture volume.  
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The integration was computed over the imaging volume, where (𝑥𝑥,𝑦𝑦, 𝑘𝑘) were bounded 

such that objects with reflectivity 𝜌𝜌(𝑝𝑝) were within a sphere of radius |𝑟𝑟𝑚𝑚𝐵𝐵𝑚𝑚|. 𝒓𝒓(𝑙𝑙,𝑚𝑚,𝑝𝑝) 

described the signal path from 𝑙𝑙𝐵𝐵ℎ Tx to 𝑝𝑝𝐵𝐵ℎscatterer and then backscattered to 𝑚𝑚𝐵𝐵ℎ Rx.  

 However, the problem of occupant imaging is more complicated with large non-

point scatterers as shown in Fig. 5.1. In this paper, the RF imaging setup is augmented 

to a wireless 3D imaging setup with commercial RFID tags, using improved noise-

canceling calibration, considering cases of LoS attenuation and blockage, and sparsity-

leveraging imaging algorithm. The prototype and feasibility studies are done 

extensively using a simulation environment in CST Microwave Studio to study the 

effects of large occupant (or any other object to be imaged) sizes. Two setup sizes are 

considered in both simulation and experiments – a 1 6𝐵𝐵ℎ⁄  scaled model, and a true room-

scale model. While the former model is for demonstration, it can also be used for 

imaging high dielectric objects in closed containers, faults or crack detection, and 

gaming for hand-gesture recognition.  

5.2.1 Simulation design 

CST Microwave Studio is a 3D EM wave analysis software that uses methods 

such as the finite element method (FEM) for high-frequency problems with time or 

frequency domain solvers. In this work, a time-domain solver is used that performs 

broadband calculation of S-parameters from one single calculation run by applying DFT 

to time pulses.  

The computation effort and the total calculation time in the time-domain solver 

is related to the total number of timesteps to be calculated and is defined by two factors: 

1) The minimum timestep width Δ𝑡𝑡 and 2) The ending time 𝑡𝑡𝐵𝐵𝑚𝑚𝑑𝑑. The former, Δ𝑡𝑡 is 
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proportional to the smallest spatial mesh step and can be improved by avoiding 

unnecessarily small steps. However, to simulate complex antenna structures, such as the 

ones above with exceedingly small size along any one dimension, or different dielectric 

layers, the mesh size cannot be made arbitrarily large. The mesh size is also related to 

the smallest wavelength considered; thus, simulation upper frequency should be strictly 

limited to frequencies of interest. The 𝑡𝑡𝐵𝐵𝑚𝑚𝑑𝑑 is related to excitation signal duration, which 

is smaller for a larger bandwidth. However, this setting does not seem to affect the 

overall time in test cases and is not tuned. Other stopping criteria include accuracy (the 

solver stops when the remaining energy decreases by this amount compared to the 

(a) 

(c) 

(b) 

Figure 5.3 Printed meandering antenna. (a) Antenna design and specifications. (b) 
Antenna 𝑆𝑆11 characteristics with minimum 𝑆𝑆11 of -8 dB at 915 MHz. (c) Omnidirectional 
far-field radiation pattern at 915 MHz showing the antenna gain. 
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maximum energy), which is selected to be -40 dB to get reasonably low “truncation 

error.”  

Discrete ports are used as signal sources to estimate the S-parameters between 

different antenna pairs. These are modeled by a lumped element consisting of a current 

source with an inner impedance in parallel that absorbs power. A Gaussian pulse is used 

as an input signal for the time-domain simulation, that allows: 1) limited bandwidth, 2) 

Substrate relative permittivity 
= 2, conductivity = 0. 

(a) 

(b) 

(c) 

Figure 5.4 Patch antenna simulation. (a) Antenna design imported from Antenna 
Magus. (b) The 𝑆𝑆11 characteristics showing center frequency of 915 MHz. (c) Radiation 
pattern showing antenna directivity and gain of 8 dBi. 
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transformation to frequency domain maintaining Gaussian shape. As discussed earlier, 

bandwidth selection influences the simulation time – narrow bandwidth requires a 

longer signal.  

To simulate the experimental system, the first step is antenna design. Fig. 5.3 (a) 

shows a printed meandering antenna structure from the Antenna Magus simulation tool, 

tuned to the desired frequency band. The corresponding 𝑆𝑆11 characteristics and radiation 

patterns are shown in Figs. 5.3 (b) and (c). This antenna is paper-thin, similar to RFID 

tags with a monopole radiation pattern. The reader antenna is a patch antenna of gain 

around 8 dBi, shown in Fig. 5.4.  

Both antennas are very close to the ones used in the experimental system, 

however, the numerical efforts required to simulate setup with multiple of these 

antennas distributed in a room need to be considered carefully. Fig. 5.5 shows the 

smallest mesh sizes in red color for the rectangular patch antenna in Fig. 5.4, which is 

very small. To keep simulation time reasonably small to the order of a few hours for a 

Figure 5.5 Smallest mesh size in CST simulation is directly related to the structure 
design, material and wavelength. The inset shows zoomed in view of the smallest mesh 
cell in red boundary, with dx, dy, dz showing its length along different dimensions in 
cm. 



 

120 

real-room simulation, the above antenna designs were replaced by loaded dipole 

antennas. Fig. 5.6 shows a loaded dipole antenna design made of a perfect electric 

conductor (PEC), with infinite electrical conductivity, and its 𝑆𝑆11 characteristics in a 

standalone setup. The antenna radiation pattern is similar to that of a printed meandering 

Figure 5.6 Dipole antenna design. (a) Antenna with all the dimension specifications. (b) 𝑆𝑆11 
characteristics with center frequency at 915 MHz, designed to have a wide bandwidth, 𝑆𝑆11 <
−10 dB between [0.86, 0.99] GHz. (c) Omnidirectional antenna radiation pattern, similar to 
printed meandering antenna. 

(a) 

(b) 

(c) 
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antenna, so the substitution does not result in a drastic change. For the reader antenna, 

while the correct antenna behavior is not replicated, the overall general algorithm 

performance can be reasonably estimated.  

Fig. 5.7 (a) shows a 1/6 scaled room setup surrounded by a dipole antenna, and 

Fig. 5.7 (b) shows a real-scale setup. The red cones indicate discrete antenna simulation 

Reader 

0.7 m 

1.0 m 

(a) 

(c) 

3.6 m 

3.6 m 

0.5 m 

2 m 

(b) 

Figure 5.7 Simulation setups with dipole antenna. (a) 1/6th scale room setup showing 
the area of size 1𝑚𝑚 × 0.7𝑚𝑚 × 0.5𝑚𝑚 with four reader antennas on the two opposite 
walls. Rest simulate RFID tags. (b) Real room of size 3.6𝑚𝑚 × 3.6𝑚𝑚 × 2𝑚𝑚, with reader 
antenna on the ceiling. Occupant’s torso is simulated with a PEC cylinder of height 
0.5 m. (c) The 𝑆𝑆𝑖𝑖𝑖𝑖 parameters with 𝑖𝑖 ∈ [1,4] for the four reader antenna corresponding 
to setup (b), with no PEC object. 
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ports, associated with each antenna, with reader antennas numbered 1 – 4. In the 

simulation, only a one-way path is simulated from Tx (tags) to four Rx (reader) antenna. 

As a human model is very complex, both in outline and material complexity, simple 

PEC cylindrical or ellipsoidal models are used in the simulation, that represent the 

reflective nature of the human body, without the attenuation. Keeping antennas close to 

each other and this PEC object might shift the antenna characteristics as shown in Fig. 

5.7 (c) which shows 𝑆𝑆𝑖𝑖𝑖𝑖 parameters for the four reader antennas in a real room setup. 

Thus, interpretation of setup design from simulation to experiment needs to be carefully 

considered. Additionally, initial scaled setup tests were also done at the harmonic 

frequency band of 1.7-1.9 GHz, with dipole antenna modified accordingly, that 

Figure 5.8 The commercial RFID system. (a) Passive RFID tag. (b) A small patch 
antenna with metal ground. This small gain antenna was used for scaled room setup. 
(c) Impinj RFID reader. 

(a) (b) 

(c) 
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demonstrates the validity of the proposed algorithm and approaches at different UHF 

frequency bands. 

5.2.2 Experimental setups  

The experimental setups were designed after validating the simulation 

performance in both the scaled and real-size domain. A commercial RFID system has 

been used, with tag and reader as shown in Fig. 5.8. we employed ambient passive RFID 

tags, without requiring any markers or devices on occupants. The test setup included an 

Impinj Speedway R420 RFID reader that can be connected to four reader antennas as 

Figure 5.9 Experimental setups for occupancy monitoring with COTS RFID system. 
(a) A 1/6th scaled model of a conference room setup with four small patch reader 
antennas on the four walls and RFID tags under the wallpaper. (b) The room scale setup 
with RFID tags on the cardboard and reader antennas on the ceiling, also shown in the 
zoomed insets. 

(a) 

(b) 

Reader 
Antenna 

RFID Tag 
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shown in Fig. 5.8 (c), following time-division multiplexing. The reader acts as a 

transceiver and periodically emits RF signals in the 902 – 928 MHz range with 50 

frequencies separated by 0.5 MHz. This EM energy is harvested by the tags to activate 

and backscatter the ID-modulated signal. The passive tags cost less than 10 cents each 

with a reading range of ~10 m, and thus, can increase the spatial RF link coverage 

without adding much to the overall cost in deployment and maintenance. The number 

of tags is only limited by the computation requirements and reader distance. Multiple 

readers can work collaboratively for larger spaces [174]. The reader collects tag IDs and 

the corresponding RSSI and phase values for each link, which is composed of a tag and 

a reader Rx antenna at a given frequency.  

Fig. 5.9 (a) shows the 1/6th scaled set up with a conference room design using 

wooden tables and chairs in a cardboard box of size 1𝑚𝑚 × 0.7𝑚𝑚 × 0.5𝑚𝑚. The human 

dolls had silicone exterior with metal joints and skeleton with high reflectivity. The 

position of the four reader antennas are indicated, tags were placed under the wallpaper, 

with one tag shown for reference. The real-sized lab test setup is shown in Fig. 5.9 (b) 

with 80 RFID tags arranged on cardboard. Except at the corners, tags are placed at a 

height of 1.24 m, with a minimum distance of 10 cm between the neighboring tags. The 

16 corner tags are placed at a height of 1 m. Four reader antennas are placed on the 

ceiling. The next section discusses the signal model and calibration for this wireless 

passive setup. 

 

5.3 Signal model and background calibration  
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While occupancy information is embedded in the phase and RSSI, additional 

signal components from the background furniture and walls remain, as well as the 

effects of cables and transceivers that can have frequency dependence. Also, the tag 

insertion loss and phase offset can vary with the incident power. As the phase has more 

serious uncertainties, it has been commonly ignored in most techniques. The traditional 

approach uses RSSI attenuation and is termed as radio tomography imaging (RTI), and 

suffers from poor RSSI resolution, and requires the object to be in LoS of the Tx – Rx 

path, that requires a dense network of antennas as shown in [65]. As humans also 

strongly reflect the RF signals, where the additional distance traveled is incorporated 

into the phase information, a reflection-based model can also be considered, such as for 

small-object imaging, without LoS blocking in a low-multipath environment [77]. This 

work has compared these two models and proposed improved calibration for the 

backscatter reflection model. Finally, preliminary work in the direction of combining 

both the models is also considered that gives superior results in high multipath cases. 

5.3.1 RSSI attenuation based 

Significant work in the area of RTI has been done in the past few decades [65], 

[76], [175], which shows RTI can work well for imaging objects of large sizes. To have 

sufficient LoS paths passing through the object of interest, a dense network is required 

Figure 5.10 RSSI attenuation model in RTI. 
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which may be difficult without all active transponders such as RFID system with passive 

tags. This is demonstrated in [76], which shows increased imaging noise with RFID 

system for only one person.   

The imaging problem is translated into a linear inverse problem. A simple 

measure of attenuation is the difference of RSSI (in dB) with and without the occupants’ 

presence in the room, as shown below 

where 𝑘𝑘𝐵𝐵,𝐶𝐶 is the RSSI reading in dB for a tag – reader antenna pair, and the superscripts 

𝑂𝑂𝑐𝑐𝑐𝑐 and 𝑁𝑁𝑉𝑉𝑂𝑂𝑐𝑐𝑐𝑐 indicate the presence and absence of the occupants, respectively. And 

the attenuation or shadowing for each Tx – Rx pair is measured as the sum of attenuation 

in each voxel along the considered path. The weighting of each voxel is based on the 

linear ellipsoidal model in [65], as shown in Fig. 5.10, with 𝑑𝑑 as the distance and 𝑥𝑥 as 

the unknown attenuation at 𝑗𝑗𝐵𝐵ℎ voxel: 

∑ 𝑢𝑢𝐵𝐵,𝐶𝐶,𝑗𝑗𝑥𝑥𝑗𝑗
𝑁𝑁𝑣𝑣𝑣𝑣𝑅𝑅𝑣𝑣𝑙𝑙
𝑗𝑗=1 , 𝑢𝑢𝐵𝐵,𝐶𝐶,𝑗𝑗 = 1

�𝑑𝑑𝑡𝑡,𝑡𝑡
�1         𝑑𝑑𝐵𝐵,𝑗𝑗 + 𝑑𝑑𝐶𝐶,𝑗𝑗 < 𝑑𝑑𝐵𝐵,𝐶𝐶 + 𝜆𝜆
0               𝑉𝑉𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑢𝑢𝑖𝑖𝑠𝑠𝑒𝑒             

 (5.5) 

where 𝑡𝑡, 𝑟𝑟 correspond to tag and reader antennas. Thus, from (5.4) and (5.5), the model 

can be simplified as: 

where 𝑘𝑘𝑅𝑅𝑃𝑃𝐼𝐼 is a column vector of RSSI (dB) difference corresponding to each tag-reader 

antenna link of length 𝐿𝐿 ⋅ 𝑀𝑀, keeping earlier notations of the maximum number of tags 

and reader antennas corresponding to 𝐿𝐿 and 𝑀𝑀 respectively. 𝑥𝑥 is also a column vector 

corresponding to an unknown attenuation value in each voxel in the area of interest, 

with length equal to the number of voxels, 𝑁𝑁𝑣𝑣𝑜𝑜𝑚𝑚𝐵𝐵𝐶𝐶. 𝑊𝑊 is a rectangular matrix of 

𝑘𝑘𝐵𝐵,𝐶𝐶
𝑅𝑅𝑃𝑃𝐼𝐼 =  𝑘𝑘𝐵𝐵,𝐶𝐶

𝐵𝐵𝑂𝑂𝑂𝑂 − 𝑘𝑘𝐵𝐵,𝐶𝐶
𝑁𝑁𝑜𝑜𝐵𝐵𝑂𝑂𝑂𝑂 = 𝑆𝑆ℎ𝑎𝑎𝑑𝑑𝑉𝑉𝑢𝑢𝑖𝑖𝑎𝑎𝑒𝑒𝐵𝐵,𝐶𝐶 + 𝜂𝜂𝐵𝐵,𝐶𝐶 (5.4) 

𝑘𝑘𝑅𝑅𝑃𝑃𝐼𝐼 = 𝑊𝑊𝑥𝑥 + 𝜂𝜂 (5.6) 
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dimensions 𝐿𝐿 ⋅ 𝑀𝑀 × 𝑁𝑁𝑣𝑣𝑜𝑜𝑚𝑚𝐵𝐵𝐶𝐶 with columns corresponding to the weight of 𝑗𝑗𝐵𝐵ℎ voxel, 𝑗𝑗 ∈

[1,𝑁𝑁𝑣𝑣𝑜𝑜𝑚𝑚𝐵𝐵𝐶𝐶] and rows corresponding to each (𝑡𝑡, 𝑟𝑟) link, calculated according to (5.5).  

Eq. (5.6) is a highly underdetermined problem and can be solved by various 

inverse problem solutions given in the next section.  It should be noted that 𝑊𝑊 matrix 

does not depend on the frequency, and thus matrix will have degeneracy if 𝑘𝑘𝑅𝑅𝑃𝑃𝐼𝐼 include 

readings at multiple frequencies for the same tag – reader link, and may not help reduce 

ambiguity. Instead, 𝑘𝑘𝑅𝑅𝑃𝑃𝐼𝐼 can be estimated as the mean across different frequencies to 

reduce some uncorrelated multipath noise. Further, RSSI readings from the reader are 

quantized and result in poor image resolution. Other practical concerns include relative 

tag – reader antenna placement constraints due to antenna beamwidth patterns and 

distance from the ground. With the reader antenna placed on the ceiling as shown in 

Fig. 5.9 (b), there are very few links with an occupant on the LoS, and mostly above 

height ~1.5 m, resulting in a highly sparse 𝑊𝑊 matrix as shown in Fig. 5.11. This will 

result in a nearly 2D image.  

5.3.2 Reflection based 

Figure 5.11 The W matrix for setup in Fig. 5.9 (b), with 𝐿𝐿 = 80,𝑀𝑀 = 4, resulting in 320 
(𝑡𝑡, 𝑟𝑟) links. For voxel index < 3000 (x-axis in plot), or ℎ𝑒𝑒𝑖𝑖𝑒𝑒ℎ𝑡𝑡 < 1.5 𝑚𝑚, there are only a 
few links crossing the voxel, so image will be mostly 0s below that. 
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This work focuses on reducing noise in the phase readings present in the 

considered experimental system due to 1) heavy multipath, 2) cable phase offsets, and 

3) reader and tag circuitry phase. Here a background subtraction algorithm is proposed 

with additional corrections for these phase offsets from cables and reader circuitry 

lumped as 𝜙𝜙𝐶𝐶, and tag circuitry, 𝜙𝜙𝐵𝐵, in a heavy multipath environment. As LoS blockage 

and shadowing attenuation have a higher impact on RSSI, this calibration focuses on 

extracting the weaker signal reflected by the occupant with reflectivity 𝛾𝛾, when LoS is 

not completely blocked. The LoS blocking can be detected when the signals at all 

frequencies experience attenuation in presence of the occupants. This derives from the 

fact that multipath fading can increase or decrease RSSI differently for uncorrelated 

frequency channels, but for LoS blockage most frequencies experience the attenuation 

or blockage. With significant LoS blockage and high multipath noise, the calibration 

proposed in [77] fails to work well. 

In an unoccupied room, we first collect the complex signal 𝑦𝑦𝑁𝑁𝑜𝑜𝐵𝐵𝑂𝑂𝑂𝑂 backscattered 

from 𝐿𝐿 tags and received at 𝑀𝑀 reader Rx antennas at 𝑁𝑁 frequencies. Then, we collect 

the signal with occupants in the room, 𝑦𝑦𝐵𝐵𝑂𝑂𝑂𝑂 , and perform background subtraction (𝐵𝐵𝑆𝑆) 

by: 

This gives us the occupant-reflected signal if there is no LoS blockage. The dotted light-

green line in Fig. 5.1b shows the backscattered component involving: the reader (𝑟𝑟𝑚𝑚), 

occupant (𝑉𝑉𝑘𝑘), and tag (𝑡𝑡𝐶𝐶), with 𝑚𝑚 and 𝑙𝑙 in the range [1,𝑀𝑀] and [1, 𝐿𝐿], respectively. 

With 𝑠𝑠(𝑡𝑡) as the signal transmitted by 𝑟𝑟𝑚𝑚,  the free space attenuation and phase 

accumulation (𝛼𝛼,𝜙𝜙) at individual paths are indicated in the order of traversal as 

𝑦𝑦𝐵𝐵𝑁𝑁 = 𝑦𝑦𝐵𝐵𝑂𝑂𝑂𝑂 − 𝑦𝑦𝑁𝑁𝑜𝑜𝐵𝐵𝑂𝑂𝑂𝑂 (5.7) 



 

129 

(𝛼𝛼𝑜𝑜𝐶𝐶 ,𝜙𝜙𝑜𝑜𝐶𝐶): 𝑟𝑟 → 𝑉𝑉; (𝛼𝛼𝑜𝑜𝐵𝐵,𝜙𝜙𝑜𝑜𝐵𝐵): 𝑉𝑉 → 𝑡𝑡; (𝛼𝛼𝑜𝑜𝐵𝐵,𝜙𝜙𝑜𝑜𝐵𝐵): 𝑡𝑡 → 𝑉𝑉;  (𝛼𝛼𝑜𝑜𝐶𝐶,𝜙𝜙𝑜𝑜𝐶𝐶):𝑉𝑉 → 𝑟𝑟 . The round-

trip received signal can be expressed as: 

𝑦𝑦𝐵𝐵𝑁𝑁 = 𝛽𝛽𝐵𝐵2 ⋅ 𝛾𝛾2 ⋅ 𝛼𝛼𝑜𝑜𝐶𝐶2 ⋅ 𝛼𝛼𝑜𝑜𝐵𝐵2 ⋅ exp �
−2𝑗𝑗(𝜙𝜙𝑜𝑜𝐵𝐵 + 𝜙𝜙𝑜𝑜𝐶𝐶 +

𝜙𝜙𝐵𝐵 + 𝜙𝜙𝐶𝐶) � 𝑠𝑠(𝑡𝑡) (5.8) 

Here 𝛽𝛽𝐵𝐵 is the amplitude attenuation after tag modulation. We omitted the subscripts of 

𝑘𝑘, 𝑙𝑙, and 𝑚𝑚 for convenience. The above equation shows unknown phase values 𝜙𝜙𝐶𝐶 and 

𝜙𝜙𝐵𝐵, estimated at the next steps using only 𝑦𝑦𝑁𝑁𝑜𝑜𝐵𝐵𝑂𝑂𝑂𝑂.   

The round-trip LoS signal collected at the Rx of various reader antennas from 

the 𝑙𝑙𝐵𝐵ℎ tag, with multipath phase 𝛿𝛿𝑚𝑚𝐶𝐶, is given as: 

𝑦𝑦𝐶𝐶1𝐵𝐵𝑙𝑙
𝑁𝑁𝑜𝑜𝐵𝐵𝑂𝑂𝑂𝑂 = 𝛽𝛽𝐶𝐶2𝛼𝛼𝐵𝐵𝑙𝑙𝐶𝐶1

2 ⋅ exp �−2𝑗𝑗�𝜙𝜙𝐶𝐶1𝐵𝐵𝑙𝑙 + 𝜙𝜙𝐶𝐶1 + 𝜙𝜙𝐵𝐵𝑙𝑙 + 𝛿𝛿1𝐶𝐶�� 

(5.9) 
𝑦𝑦𝐶𝐶2𝐵𝐵𝑙𝑙
𝑁𝑁𝑜𝑜𝐵𝐵𝑂𝑂𝑂𝑂 = 𝛽𝛽𝐶𝐶2𝛼𝛼𝐵𝐵𝑙𝑙𝐶𝐶2

2 ⋅ exp �−2𝑗𝑗�𝜙𝜙𝐶𝐶2𝐵𝐵𝑙𝑙 + 𝜙𝜙𝐶𝐶2 + 𝜙𝜙𝐵𝐵𝑙𝑙 + 𝛿𝛿2𝐶𝐶�� 

⋮ 

𝑦𝑦𝐶𝐶𝑀𝑀𝐵𝐵𝑙𝑙
𝑁𝑁𝑜𝑜𝐵𝐵𝑂𝑂𝑂𝑂 = 𝛽𝛽𝐶𝐶2𝛼𝛼𝐵𝐵𝑙𝑙𝐶𝐶𝑀𝑀

2 ⋅ exp �−2𝑗𝑗�𝜙𝜙𝐶𝐶𝑀𝑀𝐵𝐵𝑙𝑙 + 𝜙𝜙𝐶𝐶𝑀𝑀 + 𝜙𝜙𝐵𝐵𝑙𝑙 + 𝛿𝛿𝑃𝑃𝐶𝐶�� . 

In the above equations, 𝑠𝑠(𝑡𝑡) is common, and not mentioned explicitly. The phase 𝜙𝜙𝐵𝐵𝑙𝑙 is 

common across the receivers, and can be eliminated by taking 𝑚𝑚 = 1 as the reference 

receiver to get the approximate estimate of the relative 𝜙𝜙𝑚𝑚: 

𝜂𝜂𝐶𝐶𝑚𝑚1𝐵𝐵𝑙𝑙 = �𝑦𝑦𝐶𝐶𝑚𝑚𝐵𝐵𝑙𝑙
𝑁𝑁𝑜𝑜𝐵𝐵𝑂𝑂𝑂𝑂 ⋅ exp�2𝑗𝑗𝜙𝜙𝐶𝐶𝑚𝑚𝐵𝐵𝑙𝑙�� ⋅  �𝑦𝑦𝐶𝐶1𝐵𝐵𝑙𝑙

𝑁𝑁𝑜𝑜𝐵𝐵𝑂𝑂𝑂𝑂 ⋅ exp�2𝑗𝑗𝜙𝜙𝐶𝐶1𝐵𝐵𝑙𝑙��
∗
 (5.10) 

where (𝑞𝑞)∗ is the conjugate of 𝑞𝑞. For 𝑚𝑚 > 1, 𝜂𝜂𝐶𝐶𝑚𝑚1𝐵𝐵𝑙𝑙 ≈ 𝑐𝑐1 ⋅ exp �−2𝑗𝑗 �𝜙𝜙𝐶𝐶𝑚𝑚 − 𝜙𝜙𝐶𝐶1 +

(𝛿𝛿𝑚𝑚𝐶𝐶 − 𝛿𝛿1𝐶𝐶)��, with 𝑐𝑐1 as a constant. If the multipath signal is weak, the term (𝛿𝛿𝑚𝑚𝐶𝐶 −

𝛿𝛿1𝐶𝐶) is expected to be randomly distributed and can be reduced by averaging over tags 

to give a better estimate. However, in our analysis, significant variation is observed over 
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some tags, invalidating the averaging process, and instead, 𝜂𝜂 stays as a function of both 

𝜙𝜙𝐶𝐶𝑚𝑚  and the multipath factor  (𝛿𝛿𝑚𝑚𝐶𝐶 − 𝛿𝛿1𝐶𝐶). The inclusion of this correction is one of the 

key factors in evaluating the final weak occupant-reflected signal and makes it different 

from the traditional calibration. 

Next, to estimate 𝜙𝜙𝐵𝐵, the unknown phase introduced by the tag circuitry, we 

substitute exp �−2𝑗𝑗�𝜙𝜙𝐶𝐶𝑚𝑚��in Eq. (5.9) by 𝜂𝜂𝐶𝐶𝑚𝑚1𝐵𝐵𝑙𝑙  and average over all the reader Rx for 

each tag: 

𝜌𝜌𝐶𝐶 =  � 𝑦𝑦𝐶𝐶𝑚𝑚𝐵𝐵𝑙𝑙
𝑁𝑁𝑜𝑜𝐵𝐵𝑂𝑂𝑂𝑂 ⋅ exp�2𝑗𝑗 𝜙𝜙𝐶𝐶𝑚𝑚𝐵𝐵𝑙𝑙� ⋅ 𝜂𝜂𝐶𝐶𝑚𝑚1𝐵𝐵𝑙𝑙

∗
𝑃𝑃

𝑚𝑚=1

 (5.11) 

As the multipath variation is observed to be smaller over Rx, it is averaged out to get 

𝜌𝜌𝐶𝐶 ≈ 𝑐𝑐2 ⋅ exp (−2𝑗𝑗𝜙𝜙𝐵𝐵𝑙𝑙 + 𝜙𝜙𝐶𝐶1 + 𝛿𝛿1𝐶𝐶 + 𝜃𝜃), with the averaged multipath effect lumped 

into 𝜃𝜃.  

In the final step, the calibrated signal 𝑦𝑦𝑁𝑁𝐵𝐵𝐶𝐶 is derived as: 

𝑦𝑦𝐶𝐶𝑚𝑚𝐵𝐵𝑙𝑙
𝑁𝑁𝐵𝐵𝐶𝐶 = 𝑦𝑦𝐵𝐵𝑁𝑁 ⋅

𝜂𝜂𝐶𝐶𝑚𝑚1𝐵𝐵𝑙𝑙
∗

𝜌𝜌𝐶𝐶
. (5.12) 

In the above model, we consider the signal at different frequencies to be independent 

with different initial phases and do not express explicitly the frequency subscript 𝑎𝑎 ∈

[1,𝑁𝑁]. Thus, the above steps are performed at each frequency for all the tag–Rx links. 
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 Once the reflected signal is extracted, the linear signal model can be established 

as a function of the additional signal path traveled. Again only one-way tag to reader 

Rx path can be considered, considering the symmetricity to give the following phase 

accumulation on a path from 𝑙𝑙 tag to 𝑚𝑚 Rx, reflected from 𝑗𝑗𝐵𝐵ℎ voxel with a complex 

reflectivity of 𝑥𝑥𝑗𝑗 at frequency 𝑓𝑓𝑚𝑚, 

where 𝑑𝑑𝑚𝑚𝑗𝑗 and 𝑑𝑑𝐶𝐶𝑗𝑗 are the additional distances traveled. Only the phase variation is 

considered as the additional attenuation will be very small and limited by the RSSI 

resolution. The above equation can also be simplified to a linear matrix model, 

with 𝑦𝑦𝑁𝑁𝐵𝐵𝐶𝐶 as a column vector of length 𝐿𝐿 ⋅ 𝑀𝑀 ⋅ 𝑁𝑁~1𝑎𝑎4, and 𝑥𝑥 of length 𝑁𝑁𝑣𝑣𝑜𝑜𝑚𝑚𝐵𝐵𝐶𝐶~1𝑎𝑎6. 𝐴𝐴  

is a complex rectangular matrix of size (𝐿𝐿 ⋅ 𝑀𝑀 ⋅ 𝑁𝑁) × 𝑁𝑁𝑣𝑣𝑜𝑜𝑚𝑚𝐵𝐵𝐶𝐶 and 𝜂𝜂 is the noise. This is 

also an underdetermined equation, but with more sensing points due to frequency 

diversity in the problem model. As 𝑥𝑥 is a collection of reflectivity at each voxel, with 

only a limited part of the room being occupied, it is highly sparse. This thesis includes 

this additional information to propose a solution of (5.14) in the next section.  

 

5.3.3 Combined reflection-attenuation model 

While the reflection model gives a higher resolution 3D image compared to the 

RSSI attenuation model, it suffers strongly from the multipath noise, which is more 

prominent in the real-room setup with strong reflection from walls and ceiling, and also 

from people walking nearby. As the above two models measure two different 

𝑦𝑦𝐶𝐶𝑚𝑚𝐵𝐵𝑙𝑙𝑅𝑅𝑛𝑛
𝑁𝑁𝐵𝐵𝐶𝐶 = � 𝑒𝑒

𝑗𝑗2𝜋𝜋𝑅𝑅𝑛𝑛
𝑂𝑂 (𝑑𝑑𝑚𝑚𝑚𝑚+𝑑𝑑𝑙𝑙𝑚𝑚) ⋅ 𝑥𝑥𝑗𝑗

𝑁𝑁𝑣𝑣𝑣𝑣𝑅𝑅𝑣𝑣𝑙𝑙

𝑗𝑗=1

, (5.13) 

𝑦𝑦𝑁𝑁𝐵𝐵𝐶𝐶 = 𝐴𝐴𝑥𝑥 + 𝜂𝜂, (5.14) 
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phenomena in occupants’ presence, namely, reflection and attenuation, their 

combination is the next step to get improved results, especially with more than one 

occupant in the room, and high multipath noise. In such cases, if the noises are not 

completely correlated, some improvement is expected by the combined model, where 𝑥𝑥 

can be lumped as the same unknown variable, with low absolute value if a voxel does 

not attenuate or reflect, and high values otherwise.  

The Eqs. (5.6) and (5.14) can be combined in two different ways, taking 𝑢𝑢1 =

𝑦𝑦𝑁𝑁𝐵𝐵𝐶𝐶 and 𝑢𝑢2 = 𝑘𝑘𝑅𝑅𝑃𝑃𝐼𝐼, 

While the vector augmentation does not require 𝑢𝑢1 and 𝑢𝑢2 to be of the same lengths, 

addition requires the same length, thus, 𝑢𝑢2 should be the vector at all frequencies. 

 Currently, 𝜆𝜆 is selected empirically – as the RSSI attenuation model has a higher 

tolerance to noise with poor resolution and lesser information content, it can be weighted 

higher in high noise conditions. An improved selection scheme is left for future works. 

 

5.3.4 Spatial and frequency diversity  

The spatial and frequency diversities help improve image reconstruction. This 

is expected as increased sensing points help reduce the underdetermined state of the 

problem and can help reach the unique solution without ambiguous solutions or aliasing. 

However, there is a limit on frequency range and the number of tags and reader antennas 

from a practical perspective. Thus, the problem comes down to selecting tag and reader 

Rx placement, and frequency selection with the given constraints. This thesis helps 

Weighted Vector Augmentation: [(1 − 𝜆𝜆)𝑢𝑢1; 𝜆𝜆𝑢𝑢2] = [𝐴𝐴;𝑊𝑊] ⋅ 𝑥𝑥 + 𝜂𝜂 (5.15) 

Weighted Addition: (1 − 𝜆𝜆)𝑢𝑢1 + 𝜆𝜆𝑢𝑢2 = [(1 − 𝜆𝜆)𝐴𝐴 + 𝜆𝜆𝑊𝑊] ⋅ 𝑥𝑥 + 𝜂𝜂. (5.16) 
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provide the groundwork for this problem.  The work in [77] introduced the relation of 

the inverse problem model in (5.14) to its Fourier transformed K-space domain, and 

thus solving the inverse problem can be considered as taking the inverse Fourier 

transform (FT) with non-uniformly sampled data points. From the knowledge of FT and 

the K-space domain, uniform coverage in the K-space domain is expected to give an 

improved performance. Thus, the following objective function is defined, that aims to 

minimize inverse of the distance between any two K-space sample points, 𝐾𝐾𝑖𝑖 and 𝐾𝐾𝑗𝑗, 

and thus, reduce compactness and increase uniformity: 

The global optimization is difficult to achieve, so a Simulated Annealing algorithm 

based on the Metropolis criterion is used. The initial temperature is set high (~1e10) to 

get closer to some local minima, starting from a random point. When some local 

minimum is reached, it is used as the starting point for a new search with a lower 

temperature (~1e6) and reannealing interval of ~45, to find the true minimum point. 

 Simulation validation is done by using this algorithm to select only 5 frequencies 

in the large bandwidth of [0.9, 3] GHz and compared with 100 equally distributed 

frequencies in the entire bandwidth. The number of tags and receivers are 16 and 4, 

respectively, and kept constant for both the cases and used to image a 2D ellipse shape 

as shown in Fig. 5.12 (a). Thus, increased K-space sampling points are observed in the 

second case, with 100 frequency points, as shown in Fig. 5.12 (b), resulting in image 

reconstruction shown in Fig. 5.12 (c), with one clear peak at the correct location. The z-

dimension in the image shows the normalized reflectivity value at each pixel, and it can 

𝑓𝑓(𝑟𝑟𝑚𝑚, 𝑡𝑡𝐶𝐶 ,𝑓𝑓𝑚𝑚): min�
1

��𝐾𝐾𝑖𝑖 − 𝐾𝐾𝑗𝑗��
2

𝐿𝐿⋅𝑀𝑀⋅𝑁𝑁

1,𝑖𝑖≠𝑗𝑗

. (5.17) 
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be thresholded to give the object location and approximate shape. Simulated annealing 

was run to give the frequency set of: [1.7, 2.025, 2.35. 2.675, 3.0] GHz, and the results 

are shown in Figs. 5.12 (d), (e), giving a very similar performance as the previous case. 

Fig. 5.12 (f) shows an image generated by using 5 uniformly spaced frequencies in the 

entire bandwidth, resulting in many noisy side lobes. Thus, this approach led to better 

performance with limited bandwidth and a limited number of frequencies.  

For our experiment setup, with practical concerns, reader Rx antennas are only 

placed on the ceiling and the corresponding RFID tags need to be placed in the reader’s 

main beamwidth to be read, and thus can have limited spatial diversity. So, this problem 

Figure 5.12 Optimal frequency selection using K-space optimization. (a) Simulated 
2D imaging setup with 16 tags, 4 reader antennas and an elliptical object. (b) K-space 
samples with 100 uniformly selected frequencies in bandwidth [0.9,3] GHz. (c) 
Reconstructed image with 100 frequencies. (d) and (e) K-space coverage and image 
generated with 5 frequencies selected with proposed algorithm. (f) Image generated 
with 5 uniformly selected frequencies in range [0.9,3] GHz. 

(a) (b) (c) 

(d) (e) (f) 

𝑥𝑥 

𝑦𝑦 𝑘𝑘𝑦𝑦 

𝑘𝑘𝑚𝑚 

𝑘𝑘𝑦𝑦 

𝑘𝑘𝑚𝑚 

𝑥𝑥 𝑦𝑦 

𝑥𝑥 𝑦𝑦 𝑥𝑥 𝑦𝑦 
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was only applied for frequency selection. However, the increased noise level in the 

experiment setup results in a high number of unread frequencies, and thus validation of 

improvement becomes difficult.  Overall, this problem formulation can be very helpful 

in frequency and spatial diversity design with better hardware support.  

 

5.4 Proposed inverse problem solution  

The image is reconstructed by estimating the real or complex 𝑥𝑥 in the inverse 

problems (5.6), (5.14) – (5.16) of the format  

with known 𝑟𝑟 and 𝑆𝑆 parameters. With a length of 𝑙𝑙𝑒𝑒𝑎𝑎(𝑟𝑟)~1𝑎𝑎4 ≪ 𝑙𝑙𝑒𝑒𝑎𝑎(𝑡𝑡)~1𝑎𝑎6, this is 

an underdetermined set of equations with no unique solution. But with additional 

constraints or assumptions, some solution can be derived, that is validated against the 

ground truth of occupant location and size.  This section presents the traditional 

approach, its variation, and proposed sparsity-based solutions and discusses their pros 

and cons.  

 As 𝑡𝑡 usually denotes the occupant presence at each voxel in the room, with a 

non-zero real or complex value, the image is plotted as the magnitude square, |𝑡𝑡|2, and 

needs to be segmented to detect the number and location of the occupants. Traditional 

algorithms generate non-zero values at empty voxels and ghost images due to poor 

constraints and a high number of unknowns. Thus, the image first needs to be 

thresholded before object detection. All voxels below the threshold are taken as 0 and 

the image vector is converted to a 3D matrix corresponding to voxel arrangement in the 

room. A connected component clustering algorithm [176] is applied, that works by 

𝑟𝑟 = 𝑆𝑆𝑡𝑡 + 𝜂𝜂,  (5.18) 
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scanning the thresholded image voxel-by-voxel (from top to bottom and left to right) 

and identifies the connected regions having all non-zero values. A voxel 𝑉𝑉(𝑖𝑖, 𝑗𝑗,𝑘𝑘) is 

connected to 𝑉𝑉(𝑖𝑖 − 1, 𝑗𝑗,𝑘𝑘),𝑉𝑉(𝑖𝑖 + 1, 𝑗𝑗,𝑘𝑘),𝑉𝑉(𝑖𝑖, 𝑗𝑗 − 1, 𝑘𝑘),𝑉𝑉(𝑖𝑖, 𝑗𝑗 + 1,𝑘𝑘),𝑉𝑉(𝑖𝑖, 𝑗𝑗,𝑘𝑘 −

1),𝑉𝑉(𝑖𝑖, 𝑗𝑗,𝑘𝑘 + 1), and so most pixels have 6 neighbors. All independent connect regions 

are taken as number of objects and their centroid as the object location. 

5.4.1 Matched filtering 

Matched-Filtering (MF) is the simplest traditional solution of (5.18), that gives 

an estimate of 𝑡𝑡 as, 

where 𝑆𝑆𝑃𝑃 is the complex conjugate transpose or Hermitian transpose of 𝑆𝑆. MF 

minimizes the error component related to the noise power and maximizes the signal-to-

noise ratio. Computing 𝑡𝑡𝑃𝑃𝑅𝑅�  involves the simple computation of 𝑆𝑆𝑃𝑃 and is the fastest 

solution. However, without additional constraints, this does not reduce the entropy of 

the problem and is prone to artifacts and not well-resolved.  

5.4.2 Conjugate gradient least squares  

For underdetermined or rank-deficient case, the least-squares (LS) problem 

�|𝑟𝑟 − 𝑆𝑆𝑡𝑡|�
2
 has an infinite number of minimizers. MF, for instance, is a special case of 

LS estimation. The set of all minimizers is convex and has a unique element having a 

minimum length. Thus, the LS problem is set up to get the minimum norm solution of 

𝑟𝑟 = 𝑆𝑆𝑡𝑡, i.e., with the constraint minimum ||�̂�𝑡||. This can be written as follows using the 

Lagrangian, 

𝑡𝑡𝑃𝑃𝑅𝑅� = 𝑆𝑆𝑃𝑃𝑟𝑟 (5.19) 

𝑡𝑡𝐿𝐿𝑁𝑁� = min
𝐵𝐵
�|𝑡𝑡|�

2
 𝑠𝑠. 𝑡𝑡.  𝑟𝑟 ∈ arg min

𝑚𝑚
||𝑆𝑆𝑥𝑥 − 𝑟𝑟|| (5.20) 
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where 𝑆𝑆𝑃𝑃(𝑆𝑆𝑆𝑆𝑃𝑃)−1 is called a pseudo inverse. An extension to this is the weighted LS, 

corresponding to minimizing ��𝑊𝑊1⁄2𝑡𝑡��
2

2
 where 𝑊𝑊 is the diagonal matrix with 𝑢𝑢𝑖𝑖𝑖𝑖 

weights, resulting in the solution 𝑡𝑡𝑊𝑊𝐿𝐿𝑁𝑁� = 𝑊𝑊−1𝑆𝑆𝑃𝑃(𝑆𝑆𝑊𝑊−1𝑆𝑆𝑃𝑃)−1𝑟𝑟. This solution is less 

expensive than other direct approaches including singular value decomposition (SVD) 

and orthogonal factorization of 𝑆𝑆, but it is also less accurate, particularly for ill-

conditioned problems. 

 Instead of the direct method such as given above, the damped LS problem  

can be solved iteratively with a more stable conjugate gradient (CG) for minimizing. 

The above form is equivalent to Tikhonov regularization. The advantage of the iterative 

method is that solution can be controlled by the number of iterations, which provides 

additional regularization. At each step the residual 𝑟𝑟𝑒𝑒𝑠𝑠𝑖𝑖 = 𝑟𝑟 − 𝑆𝑆𝑡𝑡𝑖𝑖 is computed, and 

while residual may not decrease at each step in the direction of the correct solution, 0 

residual is expected for the final result. The convergence rate of the CG-method is 

affected by the condition number of 𝑆𝑆𝑃𝑃𝑆𝑆, and it remains unpredictable in our case, as 

the problem is not well-conditioned. In such cases, additional preconditioning can be 

applied to improve convergence [177]. This is less prone to artifacts than MF, however, 

the resolution is not much improved. 

5.4.3 𝓵𝓵𝟏𝟏 and 𝓵𝓵𝟎𝟎 sparsity approximations 

ℒ(𝑡𝑡, 𝜇𝜇) = �|𝑡𝑡|�
2
2

+ 𝜇𝜇𝑃𝑃(𝑟𝑟 − 𝑆𝑆𝑡𝑡) 

𝑡𝑡𝐿𝐿𝑁𝑁� = 𝑆𝑆𝑃𝑃(𝑆𝑆𝑆𝑆𝑃𝑃)−1𝑟𝑟 

min ��  � 𝑆𝑆𝜆𝜆𝐼𝐼� 𝑡𝑡 − �𝑟𝑟0�  ��
2
 (5.21) 
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The previous LS solution considered 𝓵𝓵2 norm regularization, which minimizes 

the norm of estimated �̂�𝑡, but does not utilize inherent sparsity in the image due to a large 

number of empty voxels in a room. In penalized form, the use of ℓ0, ℓ1 norms give rise 

to the problems: 

where �|𝑡𝑡|�
0
 gives the number of nonzero elements in vector 𝑡𝑡 and �|𝑡𝑡|�

1
= ∑ |𝑡𝑡𝑖𝑖|

𝑁𝑁𝑣𝑣𝑣𝑣𝑅𝑅𝑣𝑣𝑙𝑙
𝑖𝑖=1 . 

This section proposes image-reconstruction based on sparsity assumptions of ℓ1 norm, 

and approximate solution of (5.22). Overall, sparse algorithms have two major 

advantages: 1) introduce a known sparsity constraint to make the problem more solvable 

and reducing the solution domain, and 2) remove thresholding dependence on the 

generated image for occupant counting and locating, which is an inherent requirement 

of both of the above algorithms.  

FISTA: The fast iterative shrinkage thresholding algorithm (FISTA) [178] is a 

method to solve the non-differentiable convex optimization problem with high 

computational efficiency. This method utilizes proximal algorithms that are used for 

non-smooth constrained problems. The Eq. (5.23) is considered in the form 

min
𝐵𝐵
�|𝑟𝑟 − 𝑆𝑆𝑡𝑡|�

2
2

  𝑠𝑠𝑢𝑢𝑏𝑏𝑗𝑗𝑒𝑒𝑐𝑐𝑡𝑡 𝑡𝑡𝑉𝑉 �|𝑡𝑡|�
0
≤ 𝑘𝑘1 (Best subset selection) (5.22) 

min
𝐵𝐵
�|𝑟𝑟 − 𝑆𝑆𝑡𝑡|�

2
2

 𝑠𝑠𝑢𝑢𝑏𝑏𝑗𝑗𝑒𝑒𝑐𝑐𝑡𝑡 𝑡𝑡𝑉𝑉 �|𝑡𝑡|�
1
≤ 𝑘𝑘2  (Lasso regression) (5.23) 

min
𝐵𝐵

1
2
�|𝑆𝑆𝑡𝑡 − 𝑟𝑟|�

2
+  𝛾𝛾�|𝑡𝑡|�

1
,  (5.24) 

min
𝐵𝐵
𝑓𝑓(𝑡𝑡) + 𝑒𝑒(𝑡𝑡).  (5.25) 
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Here, 𝑓𝑓(𝑡𝑡) = 1 2⁄ �|𝑆𝑆𝑡𝑡 − 𝑟𝑟|�
2
 is a smooth continuously differentiable function, and 

𝑒𝑒(𝑡𝑡) =   𝛾𝛾�|𝑡𝑡|�
1
is a non-smooth continuous convex function. As (5.25) is a complex 

problem, the solution 𝑡𝑡∗ verifies: 

Here, left is the backward Euler, which is the proximal step and right is the general 

forward Euler, i.e., gradient descent step. Multiplying by (𝐼𝐼 + 𝜆𝜆𝜆𝜆𝑒𝑒)−1 on both sides 

results in the following: 

 

Thus, 𝑘𝑘 + 1𝐵𝐵ℎstep in one FISTA iteration involves the gradient-based step with a 

shrinkage operator: 

The step size 𝜆𝜆𝑘𝑘 is in the range (0,1/𝐿𝐿𝑂𝑂), where 𝐿𝐿𝑂𝑂 is the Lipschitz constant of 𝛻𝛻𝑓𝑓(𝑡𝑡). 

The proximal operator for the ℓ1 norm of a real-valued vector is the shrinkage operator, 

which is the simple element-wise operator called soft-thresholding. With 𝑒𝑒(𝑡𝑡) as the ℓ1 

norm of a complex vector 𝑡𝑡, we derive the proximal operator of 𝑒𝑒 in the next steps. The 

proximal operator seen in (5.28) can also be defined as   

0 ∈ 𝜆𝜆∇𝑓𝑓(𝑡𝑡∗) + 𝜆𝜆𝜆𝜆𝑒𝑒(𝑡𝑡∗) 

0 ∈ 𝜆𝜆∇𝑓𝑓(𝑡𝑡∗) − 𝑡𝑡∗ + 𝑡𝑡∗ + 𝜆𝜆𝜆𝜆𝑒𝑒(𝑡𝑡∗) 

(𝐼𝐼 + 𝜆𝜆𝜆𝜆𝑒𝑒)(𝑡𝑡∗) ∈ (𝐼𝐼 − 𝜆𝜆∇𝑓𝑓)(𝑡𝑡∗) 

(5.26) 

𝑡𝑡∗ = (𝐼𝐼 + 𝜆𝜆𝜆𝜆𝑒𝑒)−1(𝐼𝐼 − 𝜆𝜆𝑓𝑓)(𝑡𝑡∗) (5.27) 

𝑡𝑡𝑘𝑘+1 = prox𝜆𝜆𝑘𝑘𝑔𝑔�𝑡𝑡𝑘𝑘 −  𝜆𝜆𝑘𝑘𝛻𝛻𝑓𝑓(𝑡𝑡𝑘𝑘)�. (5.28) 

prox𝜆𝜆𝑔𝑔(𝐴𝐴) = arg min
𝐵𝐵
𝑒𝑒(𝑡𝑡) +

1
2𝜆𝜆

�|𝑡𝑡 − 𝐴𝐴|�
2
2
 (5.29) 
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Taking the derivative with respect to the real and imaginary part gives  

Now substituting these values in 𝑡𝑡𝑖𝑖𝐼𝐼2 + 𝑡𝑡𝑖𝑖𝑅𝑅2 = |𝑡𝑡𝑖𝑖|2, 

The proximal operator with phase-preservation is derived as 

where  𝜃𝜃𝑣𝑣𝑖𝑖 is the angle of the complex 𝜈𝜈𝑖𝑖.   

The initial 𝑡𝑡0 is selected as an all-zero vector. A prior estimate of 𝑡𝑡0 can improve 

convergence and computational cost. The regularization parameter 𝛾𝛾 and the tolerance 

limit 𝛿𝛿 are empirically selected and remain constant for a given imaging setup and 

signal-to-noise ratio (SNR). The step size 𝜆𝜆 is further fine-tuned by the backtracking 

FISTA implementation [178]. The stopping criteria are defined with the tolerance limit 

on the norm of ∆𝑡𝑡 during two consecutive iterations. 

For the gradient method on (5.24), the rate of convergence is no worse than 

𝑂𝑂(1 𝑘𝑘⁄ ), where 𝑘𝑘 is the iteration counter. FISTA has an improved complexity result of 

𝑂𝑂(1 𝑘𝑘2⁄ ), thus achieving faster convergence.   

⇒ � arg min
𝐵𝐵

|𝑡𝑡𝑖𝑖| +
1

2𝜆𝜆
|𝑡𝑡𝑖𝑖 − 𝐴𝐴𝑖𝑖|2

𝑁𝑁𝑣𝑣𝑣𝑣𝑅𝑅𝑣𝑣𝑙𝑙

𝑖𝑖=1

 

𝜆𝜆𝑡𝑡𝑖𝑖𝑅𝑅 + 𝑡𝑡𝑖𝑖𝑅𝑅|𝑡𝑡𝑖𝑖| − 𝐴𝐴𝑖𝑖𝑅𝑅|𝑡𝑡𝑖𝑖| = 0, 𝜆𝜆𝑡𝑡𝑖𝑖𝐼𝐼 + 𝑡𝑡𝑖𝑖𝐼𝐼|𝑡𝑡𝑖𝑖| − 𝐴𝐴𝑖𝑖𝐼𝐼|𝑡𝑡𝑖𝑖| = 0. 

⇒ 𝑡𝑡𝑖𝑖𝑅𝑅 =
𝐴𝐴𝑖𝑖𝑅𝑅|𝑡𝑡𝑖𝑖|
𝜆𝜆 + |𝑡𝑡𝑖𝑖|

, 𝑡𝑡𝑖𝑖𝐼𝐼 =
𝐴𝐴𝑖𝑖𝐼𝐼|𝑡𝑡𝑖𝑖|
𝜆𝜆 + |𝑡𝑡𝑖𝑖|

 
(5.30) 

|𝐴𝐴𝑖𝑖|2 = (𝜆𝜆 + |𝑡𝑡𝑖𝑖|)2 ⟹ |𝐴𝐴𝑖𝑖| = 𝜆𝜆 + |𝑡𝑡𝑖𝑖| 

⟹ |𝑡𝑡𝑖𝑖| = |𝐴𝐴𝑖𝑖| − 𝜆𝜆 ≥ 0. 
 

(5.31) 

prox𝜆𝜆𝑔𝑔(𝜈𝜈) =  �(|𝜈𝜈𝑖𝑖| −  𝜆𝜆𝛾𝛾)𝑒𝑒𝑗𝑗𝜃𝜃𝑣𝑣𝑖𝑖 ,   |𝜈𝜈𝑖𝑖| >  𝜆𝜆𝛾𝛾
0,                               |𝜈𝜈𝑖𝑖| ≤  𝜆𝜆𝛾𝛾

 , (5.32) 
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Orthogonal matching pursuit: The ℓ0 “norm” is not a norm in a strict mathematical 

sense as it does not satisfy homogeneity, i.e., for 𝑝𝑝-norm, it should satisfy �|𝛼𝛼𝑡𝑡|�
𝑚𝑚

=

𝛼𝛼�|𝑡𝑡|�
𝑚𝑚

,𝛼𝛼 ≥ 0.   The �|𝑡𝑡|�
0
 is the ℓ0 pseudo-norm which gives the number of nonzero 

elements of 𝑡𝑡. Thus, it is directly related to the sparsity, and solving the sparsity problem 

(5.22) exactly is NP-hard. Matching pursuit (MP) is an approximate 

1) a greedy algorithm that solves problem optimally at each stage, and 

2) an iterative algorithm that finds the elements of 𝑥𝑥 in a step by step manner, 

proposed by Mallat and Zhang [179]. Starting from an initial approximation of 𝑡𝑡0 = 0,   

and residual estimate, it iteratively generates a sorted list of atoms (columns of over-

sampled dictionary 𝑆𝑆) and weighting scalars (corresponding non-zero elements in 𝑡𝑡), 

which form the sub-optimal solution to the sparse problem. Orthogonal matching 

pursuit (OMP) is an extension of this approach, where at each step all extracted weights 

or coefficients are updated by computing the orthogonal projection of signal on the 

subspace spanned by the set of selected atoms. 

 To find the voxel reflectivity, the dictionary is just taken as 𝑆𝑆, but it can be 

anything. For a noiseless real-domain problem, the recovery of 𝑡𝑡 can be proved based 

on the properties of 𝑆𝑆 as follows: 

Definition: For 𝑡𝑡 ∈ ℝ𝑚𝑚, 𝑡𝑡 is 𝑘𝑘-sparse if the number of non-zero elements in 𝑡𝑡 is 𝑘𝑘, i.e., 

�|𝑡𝑡|�
0

= 𝑘𝑘. 
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Definition: Given 𝑟𝑟 ∈ ℝ𝑚𝑚, dictionary 𝑆𝑆 ∈ ℝ𝑚𝑚×𝑚𝑚, 𝑎𝑎 ≫ 𝑚𝑚. The mutual coherence, 𝜇𝜇 of 

the 𝑖𝑖𝐵𝐵ℎ, 𝑗𝑗𝐵𝐵ℎ column vectors of 𝑆𝑆, denoted as 𝑠𝑠𝑖𝑖 and 𝑠𝑠𝑗𝑗, is given as  

and 𝑡𝑡 can be recovered by OMP if the following inequality is satisfied: 

Existing literature has considered cases of the complex domain [180] and in noisy 

conditions with additional constraints. In our setup, the convergence is more difficult to 

be estimated because of no assumptions of Gaussian noise, and the non-randomness of 

𝑆𝑆. However, it can be safely assumed that the sparser 𝑡𝑡 is, the fewer coherence 

constraints are required on 𝑆𝑆. Thus, the solution will work well if a few people are 

𝜇𝜇 =  max
𝑖𝑖≠𝑗𝑗

�𝑠𝑠𝑖𝑖′𝑠𝑠𝑗𝑗�

�|𝑠𝑠𝑖𝑖|�2  ��𝑠𝑠𝑗𝑗��
2

 (5.33) 

𝜇𝜇 <
1

2𝑘𝑘 − 1
 (5.34) 

1. Initialize residual 𝐫𝐫𝐫𝐫𝐫𝐫(𝟎𝟎) = r. 
Support estimate 𝒯𝒯0 = 𝜙𝜙,  iteration counter, 𝑘𝑘 = 1. 

2. Find column most correlated with the current residual 𝐫𝐫𝐫𝐫𝐫𝐫(𝐤𝐤−𝟏𝟏), ie, 
𝑐𝑐𝑘𝑘 = argmax |𝑆𝑆𝑃𝑃𝐫𝐫𝐫𝐫𝐫𝐫(𝐤𝐤−𝟏𝟏)|, 𝑐𝑐 ∈ {1, … ,𝑎𝑎}. 
Check if that column has not been previously selected. Otherwise 
repeat 2. 

3. Update support estimate 𝒯𝒯𝑘𝑘 = 𝒯𝒯𝑘𝑘−1 ∪ 𝑐𝑐𝑘𝑘. 
4. Estimate 𝑡𝑡 using current support �̂�𝑡 = 𝑆𝑆𝒯𝒯𝑘𝑘

† 𝑟𝑟. 
5. Update residual 𝐫𝐫𝐫𝐫𝐫𝐫(𝐤𝐤) = 𝑟𝑟 − 𝑆𝑆�̂�𝑡 = �𝐈𝐈𝑚𝑚 − 𝐏𝐏𝒯𝒯𝑘𝑘�𝑟𝑟. 
6. Increment 𝑘𝑘 = 𝑘𝑘 + 1. 
7. Repeat 2 − 6, until Stopping Criteria (SC) is met. 

 
Output: 𝒯𝒯𝑘𝑘 and �̂�𝑡. 
Notations:  

Support 𝒯𝒯(𝑡𝑡) = {𝑖𝑖: 𝑡𝑡𝑖𝑖 ≠ 0} 
𝑆𝑆† = (𝑆𝑆𝑃𝑃𝑆𝑆)−1𝑆𝑆𝑃𝑃 ,  Moore-Penrose pseudo inverse. 
𝐏𝐏𝑁𝑁 = 𝑆𝑆𝑆𝑆†.  𝐏𝐏𝑁𝑁𝒯𝒯  is denoted by 𝐏𝐏𝒯𝒯 . 

Figure 5.13 OMP iterative algorithm to solve (5.22). 
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present in a small room, considering the dictionary size is related to the number of 

voxels. The stopping condition can be an estimate of sparsity or condition on the 

residual. In this work, sparsity corresponding to the number of filled voxels for nearly 

two occupants is selected. This works well for both one and two occupant cases and 

only changes the size of the estimated clusters, which is acceptable for the application. 

The performance of this is superior to that of MF in most cases and will be discussed in 

the results section. 

 As OMP mainly selects the best dictionary columns (atoms), the same algorithm 

can be used with a different problem setup. If columns of 𝑆𝑆 are collected data, i.e., 𝑟𝑟 

vectors corresponding to people at different grid points in the room, then the problem 

becomes equivalent to selecting the best possible location(s) out of the collected data. 

In this case, for 𝑆𝑆 ∈ ℝ𝑚𝑚×𝑚𝑚, the dimension 𝑎𝑎 corresponds to the number of data collected. 

This is termed as OMP2 for convenience. Here, the advantage is that the occupant 

location and number can be derived without going through image generation and 

segmentation steps. Thus, sparsity is directly related to the number of occupants, and 

stopping criteria cannot be an approximate number as earlier. An automated tuning free 

OMP approach [181], [182] is adopted that observes the residual ratio (RR) at each 

iteration. For the 𝑘𝑘𝐵𝐵ℎ iteration, 𝑅𝑅𝑅𝑅(𝑘𝑘) = �|res𝑘𝑘|�
2
�|res𝑘𝑘−1|�

2
� , & 0 < 𝑅𝑅𝑅𝑅(𝑘𝑘) < 1. The 

residual at 𝑘𝑘𝐵𝐵ℎ iteration is as shown in Fig. 5.13 (line 5). As our observations are non-

linear, the noise model is non-Gaussian. Further, the sparse recovery mutual coherence 

criterion in (5.34) is not satisfied for 𝑘𝑘 > 2. Thus, while this problem setup is 

advantageous, it may not work well consistently. Other limitations include prior data 

collection, and performance deterioration with the high noise level in real-world 



 

144 

experiments, that needs to be further studied. The preliminary results using automatic 

stopping conditions are presented in the next section.  

 Both the above problems can be solved by the same OMP algorithm, with 

different stopping conditions and dictionary 𝑆𝑆. The algorithm is presented in Fig. 5.13 

for a generalized stopping criterion (SC). 

  

5.5 Results  

This section presents the results across simulation and experiment datasets for 

both scaled and true-size setups. The focus is on comparison and validation of the 

proposed 1) model, 2) calibration, and 3) algorithm approaches under these varying 

noise conditions. More importantly, these proposed approaches are aimed to improve 

image-generation at the true-scale setup. With very different multipath noise conditions 

and object sizes, the different setups need only one or more of the above approaches. 

Thus, the presented results are primarily grouped based on setup designs. The model 

used is the reflection model, unless mentioned otherwise. 

For occupant or object counting and localization, further processing is required 

on the generated 3D image, including segmentation and clustering. As OMP and FISTA 

are sparse reconstruction algorithms, in most cases no thresholding is required, the 

image is already 0 where no occupants are detected. For FISTA, however, there are 

various tunable parameters, that may result in a noisy background, and some threshold 

is required, but a fixed threshold works well with a given set of parameters. MF always 

requires a threshold. As the image intensity changes with room size, the number of 
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occupants, and their locations, it is very difficult to come up with threshold selection 

strategies for MF and CGLS algorithms that do not generate sparse images.  

5.5.1 1/6th scaled setup 

Simulation setup: For the simulation setup shown in Fig. 5.7 (a), one cylindrical PEC 

object of radius 25 mm and height 270 mm was placed at 30 various locations in the 

bottom-left quadrant. As the simulation is noise-free, in this symmetrical room, all four 

quadrants are identical. Further, around 10 simulations were performed with 2 objects 

in the same quadrant. Fig. 5.14 shows the simulation setup and different object 

locations.  

Fig. 5.15 shows images with objects at a few distinct locations with satisfactory 

results for all three algorithms. As it is a noise-free case and small PEC object, the 

reflection model is used with proposed calibration (denoted by “4.2”). The voxel's size 

is sufficiently small to not give a pixelated appearance. Six uniformly distributed 

frequencies in the range 900 – 925 MHz are used for reconstruction. The time 

𝑥𝑥 − 𝑎𝑎𝑥𝑥𝑖𝑖𝑠𝑠 

𝑦𝑦
−
𝑎𝑎𝑥𝑥
𝑖𝑖𝑠𝑠

 

𝑎𝑎 𝑏𝑏 𝑐𝑐 
𝑓𝑓 𝑒𝑒 
𝑘𝑘 
𝑝𝑝 
𝑢𝑢 
𝑘𝑘 𝑘𝑘𝑎𝑎 𝑘𝑘𝑏𝑏 𝑘𝑘𝑐𝑐 𝑘𝑘𝑑𝑑 

𝑑𝑑 𝑒𝑒 

0 1.0 𝑚𝑚 

0.
7 
𝑚𝑚

 

0.1 𝑚𝑚 

0.05 𝑚𝑚 

(a) (b) 

Figure 5.14 Scaled simulation setup with dipole antennas around the room. (a) Setup 
with cylindrical PEC object at the center and four reader antennas as highlighted. (b) 
Different object locations in the bottom-left quadrant. 
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complexities of the algorithms are different, with MF being the fastest, only taking a 

few ms, compared to about 4 s for OMP and 6.5 s for FISTA. The calibration 

performance is similar for most locations, with exceptions such as corner-most 

Figure 5.15 Generated images for scaled simulation with object at four different 
locations. Rows indicate object locations and columns correspond to different 
algorithms used. In all cases, correct location is estimated. OMP requires no threshold 
(Th) and gives accurate estimate. With one strong object, MF and FISTA thresholds are 
constant and empirically selected. 
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placement as shown in Fig. 5.16, where proposed calibration works better than earlier 

approach [77] (denoted by “1”).  

_The two object cases are more difficult as one object may shadow another. Few 

good cases using proposed calibration are shown in Fig. 5.17 while comparing different 

Figure 5.16 Comparing calibration for scaled simulation. Top row shows calibration 1 
and bottom shows proposed 4.2, with constant thresholds.  
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Figure 5.17 Scaled simulation results for two objects. OMP is consistently better 
performing without any threshold requirements. 
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algorithms. OMP can detect correct occupant count as well as locations for all the cases, 

with fixed stopping criteria. FISTA and MF can detect one object’s location correctly. 

FISTA’s performance is slightly poorer than MF, mostly because of non-linearities in 

the model with large object size. Fig. 5.18 compares the case of a smaller object at an 

angle, where FISTA is better at giving sparse reconstruction of an object showing the 

correct angle.  

For some cases, like objects at 𝑎𝑎&𝑒𝑒, 𝑏𝑏&𝑒𝑒, the 𝑒𝑒 location is difficult to be 

detected. With the symmetricity of the setup and 𝑎𝑎&𝑒𝑒 being on the same perpendicular 

line from the reader antenna plain, some shadowing effect may have taken place. 

However, with different frequency ranges, the less strong object can also be recovered, 

𝑥𝑥
𝑘𝑘

𝑥𝑥 (𝑚𝑚)

𝑘𝑘 
(𝑚𝑚

)

𝑥𝑥 (𝑚𝑚)

𝑘𝑘 
(𝑚𝑚

)

Figure 5.18 Improved FISTA performance for small objects. (a) Scaled simulation 
setup. (b) MF grayscale image with red rectangle showing true object. (c) FISTA image 
showing pixelated cluster giving accurate object size and angle.   

(a) (b) (c) 

Figure 5.19 Poor cases with two objects. (a) Two objects at 𝑎𝑎&𝑑𝑑, with very small 
indication of 𝑑𝑑. (b) Two objects at 𝑎𝑎&𝑒𝑒 where only 𝑎𝑎 is detected. 

(a) (b) 
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which will be presented in the next section. Fig. 5.19 shows the OMP reconstructed 

images for objects at 𝑎𝑎&𝑑𝑑,𝑎𝑎&𝑒𝑒, where a very weak reconstruction is seen for the former 

case, and the latter shows no existence of the second object.   

  To test the performance of OMP2: OMP with dictionary made of collected data 

𝑟𝑟, another setup was considered with eight reader antennas on the side walls (central 

columns are reader antennas, remaining all are tags) as shown in Fig. 5.20 (a) and an 

ellipsoidal object at different locations. The dictionary is composed of data collected 

with only one object placed at different grid points in the room. Test cases include data 

collected with one or two objects at these pre-selected grid points.  

Corresponding 𝑅𝑅𝑅𝑅(𝑘𝑘) vs 𝑘𝑘 plots for one and two object cases are shown in Figs. 

5.20 (b) and (c), where it can correctly get the knee point index to equal to (1 +

#𝑉𝑉𝑏𝑏𝑗𝑗𝑒𝑒𝑐𝑐𝑡𝑡𝑠𝑠). For greater than 2 objects, this setup gives the wrong estimate more 

frequently. Thus, with improved spatial diversity, and low noise conditions, this method 

Tx TxRx

𝑘𝑘 = 2 

𝑘𝑘 

𝑅𝑅𝑅𝑅
(𝑘𝑘

) 

𝑘𝑘 = 3 

Figure 5.20 OMP2 results. (a) Simulation setup corresponding to dictionary 
generation. (b) & (c) 𝑅𝑅𝑅𝑅(𝑘𝑘) vs 𝑘𝑘 plots, with 𝑘𝑘 = #𝑖𝑖𝑡𝑡𝑒𝑒𝑟𝑟𝑎𝑎𝑡𝑡𝑖𝑖𝑉𝑉𝑎𝑎𝑠𝑠 for one and two objects, 
respectively. Correct stopping criteria is predicted, equal to #objects + 1. 

(a) 

(b) 

(c) 
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has the potential to detect correct occupant counting. Further, after the stopping 

condition is selected, the selected column of the dictionary also gives information about 

the object's location. More analysis needs to be done for cases when objects are 

randomly placed. 

Experiment setup: Fig. 5.21 shows the images generated on the computer screen 

corresponding to different experiment setups using the MF algorithm. It has been further 

tested with different objects with higher reflectivity (cans) and lower reflectivity (a 

plastic object with metallic paint) as shown in Fig. 5.22. The corresponding results show 

that two high reflection objects placed closely together can be detected using the OMP 

Figure 5.21 The scaled experiment setups with different object count, locations and 
postures, and corresponding generated images on the monitor, marked by orange 
circles. 
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algorithm (zero threshold), but smaller reflection objects are not that clear. Similar 

conclusions are observed with MF and FISTA.  

   

5.5.2  True-scale setup 

Simulation setup: The true scale simulation is as shown in Fig. 5.7 (b). The algorithm 

and calibration comparisons are similar to that in the scaled model. However, as the 

object size increases, the linearly approximated models have slightly poorer 

performance than earlier. This can be taken care of by putting additional tags on 

furniture and room dividers as shown in Fig. 5.23. Both one and two objects can be 

detected with additional center tags. As human muscle material requires a lot more 

Figure 5.22 Scaled experiment results with proposed calibration and different 
objects. (a) & (b) Metal cans placed close by and OMP reconstructed image. (c) & 
(d) Two 3d printed plastic scaled human dolls with metal paint. Corresponding 
image is noisy. 

(a) (b) 

(c) (d) 
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meshing with huge computation, only PEC materials can be simulated. Thus, the 

experimental setup provides real validation. 

Experiment setup: The real-scale room size has more impact on the data quality 

compared to scaled setup due to 1) stronger multipath from walls and ceiling 

reflection, and people walking outside the room, that results in phase noise in tag 

readings over time, 2) human body material is not entirely reflective as considered in 

scaled model and simulation, 3) large occupant size resulting in loss of tag readings, 

and 4) low tag read rate likely as tags are not in the main beamwidth of the reader 

antenna. 

Fig. 5.24 (a) shows image reconstruction result without any corrections, with 

one occupant standing at (0.6,3.0) m in a room of size 3.6𝑚𝑚 × 3.6𝑚𝑚 as shown in Fig. 

Rx 

Figure 5.23 Tags on the furniture in center. (a) & (b) Simulation setup with four readers 
on the corner and 40 tags on the wall and middle dividers. MF results shows accurate 
location. (c) & (d) Same simulation setup with 2 objects. MF can detect both objects, with 
slightly different thresholds, that can take values between 0 to 255. 

(a) (b) 

(c) (d) 
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5.9 (b). Multiple ghost clusters are detected in this image. Fig. 5.24 (b) shows the 

reconstructed results by rejecting tag – reader Rx links with phase standard deviation 

over multiple readings to be greater than 12°. This substantially improves the results, 

showing only one occupant close to the true location. The calibration improvements can 

be clearly observed for the experiment setup as shown in Fig. 5.25. The left figure shows 

multiple clusters, while the right figure shows one clear occupant at the correct location. 

The data collection was performed with one or two occupants standing or sitting 

at different grid points in the room. Fig. 5.26 shows the results of occupancy detection 

Figure 5.24 RFID tag phase error correction results with occupant standing at (0.6,3.0) 
m. (a) No correction, 24% missed tag-readings, multiple objects detected. (b) Rejecting 
tag-Rx pairs with phase standard deviation above 12°, 35% links not considered. One 
occupant detected at (0.8,1.8) m. 

(a) (b) 

Figure 5.25 Calibration comparison. One occupant at (0.6,1.2) m, image reconstruction 
using OMP. (a) Earlier calibration. (b) Proposed calibration detecting one occupant. 

(a) (b) 
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for one occupant in the room using MF with no calibration and phase corrections. Only 

occupants at the center can be correctly counted. Fig. 5.27 shows the grid results using 

OMP with proposed calibration and phase correction. Correct occupant detection is 

performed at all locations, with low localization error in most cases, except 2 points. 

Few cases with two occupants are shown in Fig. 5.28 with the same algorithm, however, 

Figure 5.27 OMP grid results for occupant counting and locating using proposed 
calibration. (a) Detected number of occupants, green circles indicate correct count. (b) 
Location error at each grid point, zero at center, and very high for (x,y) = (0.6,2.4)m, 
which may be attributed to very high multipath noise. 

(a) (b) 

Figure 5.26 MF grid results for occupant counting and locating using earlier calibration 
and no phase correction. (a) Detected number of occupants indicated by circle color. 
Center locations are accurate. (b) Localization error in meters. For multiple occupant 
count, their center location is taken for result estimation. 

(a) (b) 
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the performance is poor with only one occupant detection in most cases. Setup as shown 

in Fig. 5.23 is expected to perform better by improving tag readability with reduced 

phase noise if room tags are possible. For more than one occupant case, lower accuracy 

is also related to nearby standing or sitting occupants, which can be lumped as one. 

The other improvement that is considered at this point is using the RSSI 

attenuation model, as occupants absorb the microwave radiation and attenuate the 

signal. With phase noise correction, this model generates better images for some cases, 

however with poor resolution and only in 2d. Fig. 5.29 shows the results of the reflection 

and RSSI attenuation model for two cases, with correct occupant counting using the 

latter approach for the second case. To reconstruct high-resolution 3d images, section 

5.3 presented a weighted combination or ensemble of both as shown in (5.15) and (5.16). 

Fig. 5.30 shows the comparison of occupant counting using all four models: refection, 

RSSI attenuation, and weighted vector augmentation (WVA), and weighted addition 

Figure 5.28 OMP grid results for two occupants showing true and detected locations. 
With two occupants, reflection model alone is very noisy. 
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(WA) of both. The results are derived over the entire dataset where ≥ 2 occupants are 

taken as two. An empirical threshold derived from collected data is used for zero against 

all classification, resulting in most detections to be accurate. More details on this are 

presented in the next chapter.  The weighted average (WA) model gives the best 

performance with an accuracy of 72.3%. 

 

5.6 Discussion   

This chapter discussed in detail RF imaging models, reconstruction algorithms, 

and real-life challenges with the noisy experimental data. In addition to this, other 

factors are affecting the overall results, that can be integrated to improve the results if 
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Figure 5.29 Model Comparison with two different occupants at different locations. (a) 
& (b) Show reflection model results where (b) result is noisy and results in multiple 
occupant detection. (c) & (d) Show results of RSSI attenuation model with one 2D 
cluster at nearly correct locations. 
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supported by the hardware. Section 5.3.4 discussed such an approach based on uniform 

K-space sampling. Additionally, even limited bandwidth at a low-frequency range can 

be used to improve the results as shown in Fig. 5.31. The results show accurate image 

reconstruction with two objects in limited bandwidth of 860 – 890 MHz, which failed 

to reconstruct accurately in 900 – 925 MHz. This behavior is assumed to be attributed 

to a shift in antenna characteristics when placed close to each other and in presence of 

nearby PEC objects. However, this needs to be further studied. 

 The real-scale setup has increased noise, which needs to be studied carefully. 

Even after the removal of tag – Rx links with high phase deviation, the reconstructed 

results are noisier than the scaled model. One possible reason is an error in location and 

Figure 5.30 Confusion matrix showing predicted vs true occupant count for different 
models. Algorithm used is OMP, and proposed calibration is used for reflection model. 
The model ensemble approaches use 𝜆𝜆 = 0.8. (a) Reflection model. (b) RSSI 
attenuation model. (c) Weighted average of both models. (d) Weighted vector 
augmentation of both models. 

(a) (b) 

(d) (c) 

WA (Acc: 72.3%) WVA (Acc: 65.5%) 

Reflection (Acc: 62.6%) Attenuation (Acc: 59.7%) 
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phase center estimates of tags and reader antennas. This is validated by adding noise of 

up to 5 cm to the  𝑥𝑥,𝑦𝑦, 𝑘𝑘 coordinates of the tag and reader antenna locations in the 

simulation dataset. Fig. 5.32 shows the effect of this error, which shows correct object 

count and locations when no error, and wrong location of one object in presence of error. 

The ensemble is a technique to do a weighted combination of different “weak” 

estimators to generate a “strong” estimator. Additionally, a weighted combination of 

various “weak” estimated solutions with uncorrelated noise results in lower overall 

noise. Our problem setup proposes improved solutions at all the various stages of the 

problem: model, calibration, and algorithm. Thus, an ensemble of different models, 

calibrations, and algorithms intelligently can result in an overall improvement. 

Ensemble performance on the scaled setup data showed improvement over using one or 

the other method. However, the true scale image generation can be very noisy at times, 

and thus requires one-out-of-all selection instead of the ensemble.  

 

5.7 Conclusion  

Figure 5.31 Frequency considerations: results of scaled simulation setup with objects 
at 𝑎𝑎&𝑒𝑒 locations, poorly detected in 900 – 925 MHz band, as shown in Fig.  5.20 (b). 
(a) 6 frequencies in range 850 – 900 MHz. (b) 3 frequencies in range 860 – 890 MHz. 
In both cases, two objects can be clearly detected at correct locations. 
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In this work, a lot of effort has been put towards indoor RF imaging algorithm 

and signal processing, including problem model, algorithmic solution, and practical 

noise concerns in an indoor heavy multipath environment. This is a difficult problem, 

particularly with RFID system, with both inherent and added phase noise. But with 

increased RFID utilization and low-cost, this setup is of particular interest, and special 

attention has been paid to understand the noise characteristics of the collected dataset. 

All the presented methods are well applicable to any new hardware that performs 

multistatic, multifrequency imaging. The proposed sparsity-based OMP solution will 

further improve with a low-noise dataset. Also, this work has studied and compared two 

Obj1 

Obj2 

Reader Rx 
(a) 

(b) (c) 

Figure 5.32 Phase and tag location noise tolerance. (a) True scale simulation setup with 
randomly placed tags and four reader antennas on the ceiling. (b) MF image results 
with accurate two object counting and location estimate. (c) MF image with 
introduction of random error between 0 to 5 cm in tags and receiver antennas. 
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different models: reflection and attenuation based. While the reflection model generates 

high-resolution 3d images, performance degrades in presence of high phase noise. The 

attenuation model requires many active reader units to generate a 3D image with 

uniform link density over the entire imaging volume. But the resolution is poorer. Thus, 

combination approaches have been proposed that show improved performance than any 

single method.  Overall, the entire approach results in improved detection of one 

occupant, and their location without any fingerprinting, in near-real-time. This approach 

is ideal for an assisted living setup where one or at most two people are expected to live 

together and their approximate locations can help keep track of activity level without 

any privacy concerns.  
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CHAPTER 6  

INDOOR OCCUPANT COUNTING USING DEEP-LEARNING 

6.1 Introduction 

With the ubiquity of the RFID tags, in the previous chapter, we have explored 

them for indoor occupant counting and location estimate of up to two occupants. The 

update is made in near real-time with data collection taking the majority of the time. 

With faster sampling, tracking algorithms can be included to improve the accuracy of 

the location estimate. This can be very helpful for assisted living applications. This 

chapter adds more capabilities to the RFID system, by using the same setup for accurate 

counting for a greater number of closely located occupants. This adds another 

functionality to the occupant-centered control (OCC) [183] where occupant monitoring 

can enable various automation functions like HVAC (heating, ventilation, and air-

conditioning control) energy saving [184], security, and behavior analysis. Among these 

energy saving is a major topic and requires accurate counting of the occupants in a 

passive device-free manner. Key requirements for this passive sensing include low cost, 

low power, low computation, small training overhead, and high accuracy. Many indoor 

items will have RF links in the realization of the IoT, which can further facilitate the 

development of a smart environment. 

In this work, occupant counting is performed using carrier phase and RSSI 

information as inputs to a convolutional neural network (CNN) based deep-learning 

(DL) model [204], without requiring detailed feature extraction. The proposed method 

can achieve high accuracy even with limited training data. The approach is verified by 

setting a testbed in a 150-ft2 room with drywall and metal beams in the ceiling, without 
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any control on human traffic in the outside hallway or the nearby classroom. Data were 

collected with 0 – 5 participants either sitting or standing at different locations in the 

room, representing a typical home or office scenario. Further, we have proposed a 

calibration approach to nullify the effect of furniture, walls, and unknown transceiver 

and cable phase offsets to extract weaker occupant-reflected signals in presence of 

strong multipath, which was presented in the previous chapter. The calibrated RSSI and 

carrier phase information gives improved counting accuracy. In contrast to the 

traditional fingerprinting approach, we trained the CNN model with participants at a 

few locations and tested at unseen locations. The participants in training and testing 

cases were stationary, not moving randomly, which reduced the required data-collection 

time by allowing average over a smaller period. We have also explored tuning the same 

CNN model to perform accurate counting in different home settings with a single 

occupant, without requiring extensive new training data collection. High counting 

accuracy can still be maintained under placement variations of tags, receivers, and 

furnishing. The occupancy detection accuracy is further tolerant to the participant in the 

quasi-stationary or walking state, demonstrated in the home setting.  The major 

contributions of this thesis include: 

• A 2D CNN-based DL method that can learn features embedded in ambient RSSI 

and phase.  

• A signal calibration model for RSSI and phase correction by estimating only the 

multipath from occupant-reflection. 

• Use of passive UHF RFID tags to increase sensing points with training only at 

a limited number of occupant-locations without extensive fingerprinting. 
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• Transferrable training from the test room to home setting with different 

furnishing and small validation data. 

• Detection of the moving participant with training only from the stationary data. 

Fig. 6.1 shows the setup summary and the entire processing pipeline. The next 

section presents the details of CNN architecture. Sections 3 and 4 show the experimental 

setup, data collection, and results.  

6.2 Convolutional neural network (CNN) architecture 

The learning process of CNN has been effectively demonstrated in the visual 

domain [185], [186]. For object recognition, the layers act as nonlinear filter banks with 

increasing complexity and details as the depth increases [187]. The shallow layers 

contain generalized information such as edge-detection filters, and the deeper layers 

learn the detailed object characteristics.  

We have implemented an AlexNet-inspired [188] CNN model as shown in Fig. 

6.2 (a). The model is implemented in Python with the open-source library PyTorch to 

learn information in the collected RSSI and phase. The data for each tag-Rx link is 

Figure 6.1 The occupancy counting setup using ambient passive RFID tags. 
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arranged in a 3-D format with RSSI and phase as the channels, 𝐶𝐶. We have explored 

using up to four channels: RSSI and phase collected in presence of occupants 

(𝑦𝑦𝑅𝑅𝑁𝑁𝑁𝑁𝐼𝐼𝐵𝐵𝑂𝑂𝑂𝑂 ,𝑦𝑦𝑃𝑃ℎ𝐵𝐵𝑠𝑠𝐵𝐵𝐵𝐵𝑂𝑂𝑂𝑂 ) and the corresponding calibrated signal (𝑦𝑦𝑅𝑅𝑁𝑁𝑁𝑁𝐼𝐼𝑁𝑁𝐵𝐵𝐶𝐶 ,𝑦𝑦𝑃𝑃ℎ𝐵𝐵𝑠𝑠𝐵𝐵𝑁𝑁𝐵𝐵𝐶𝐶 ). The rows contain 

reading from each tag, arranged over all the frequencies for each successive reader 

antenna in the columns. Thus, the data shape (𝑑𝑑𝑒𝑒𝑝𝑝𝑡𝑡ℎ × ℎ𝑒𝑒𝑖𝑖𝑒𝑒ℎ𝑡𝑡 × 𝑙𝑙𝑒𝑒𝑎𝑎𝑒𝑒𝑡𝑡ℎ) is given as 

𝐶𝐶 × 𝐿𝐿 × (𝑀𝑀 ∙ 𝑁𝑁), where 𝐿𝐿,𝑀𝑀 & 𝑁𝑁 are the number of tags, reader antennas and 

frequencies respectively. With 80 tags, 4 reader antennas, 50 frequencies, and all 4 

channels, the data are arranged as 4 × 80 × (4 ∙ 50), shown in Fig. 6.2 (b). This 

arrangement is designed to extract correlated information across the neighboring tags 

and frequencies and can learn effectively with increased spatial diversity of tags and Rx 

antennas, and the spectral diversity of frequencies. We started with a baseline 

Figure 6.2 CNN architecture. (a) Network arrangement with three convolution layers, 
followed by a fully connected dense layer. The kernel sizes are shown in the boxes. 
Layer legend is shown at the top. (b) The arrangement of input dataset shown in 3D 
with 𝐿𝐿 = 80, 𝑀𝑀 ⋅ 𝑁𝑁 = 200, and  𝐶𝐶 = 4. (c) ReLU function 𝑅𝑅(𝑥𝑥) = max(0, 𝑥𝑥).  

(a) 

(b) (c) 
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architecture consisting of three convolution layers and a fully-connected dense layer, 

and then progressively optimized the hyper-parameters to achieve the final model.  

The convolution layers are defined by the kernel shape, i.e., the filter shape that 

performs convolution operation over the input data, stride, which indicates the filter 

sliding interval, and padding, the layer of zeros added to the data boundary that increases 

the data size over which convolution is performed.  The kernel sizes for three layers are 

5 × 10, 6 × 6, and 2 × 2 respectively, with large 𝑠𝑠𝑡𝑡𝑟𝑟𝑖𝑖𝑑𝑑𝑒𝑒𝑠𝑠 of [3,10], [5,5], and [1,1], 

respectively. For the first layer, as the nearby tags show a higher correlation, a small 

window size of 5 is selected in comparison with a window size of 10 across frequencies, 

which are more closely distributed in the spectral domain. The number of filters in the 

first layer was varied between 40 – 120, and we observed the performance initially 

improved and then dropped beyond 60. Thus, the first layer is selected to have 60 filters, 

then 30 in the next, and finally reduced to 12 in the last convolution layer. 

A nonlinear activation function by the rectified linear unit (ReLU) [189] 

max (0, 𝑥𝑥), as shown in Fig. 6.2 (c), is applied at the output of the convolution layers. 

As network depth increases, ReLU allows more gradients to back-propagate through 

the model during training, updating each weight without the vanishing gradients 

problem commonly observed in other functions. In order to introduce regularization and 

avoid overfitting, we use the dropout layers [190] at the output of three convolution 

layers with probabilities of 0.4, 0.2, and 0.2, respectively. Dropout leads to sparse 

representations, even when no sparsity-based regularization is present, thus it prevents 

overfitting and acts as a regularization. At the output of the final convolution layer, we 

use an average-pool layer [191] that performs down-sampling by taking an average 
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across a 4 × 4 window, where the feature map decreases by 1/4th along height and length 

dimensions and introduces the model’s invariance to local transitions. Reduction in 

dimensionality in turn lowers the computation requirement with fewer parameters. 

While max-pool generally performs better for images, here average-pool performs 

better by smoothing the features. The flattened output of the pooling layer is provided 

as input to a fully connected layer of size 24 × 6, where 6 corresponds to the number of 

output classes for 0 – 5 occupants. The final output occupancy count is the node with 

the maximum value. We optimize a cross-entropy loss function that calculates a score 

summarizing the average difference between the actual and predicted probability 

distributions for all classes in the problem. If the probability of the correct class is low, 

the loss is high. If the correct class is predicted, a perfect zero loss is observed. An 

adaptive gradient algorithm, Adam, with decoupled weight decay regularization [192] 

of 0.2 and a learning rate of 0.001, is adopted for training. 

Evaluation of different model hyper-parameters such as the number of layers, 

kernel size, etc., carries a risk of overfitting on the training dataset. Using test data for 

hyperparameter tuning introduces a bias, and the model may not be generalized as 

parameters can be tweaked to get maximum test accuracy. To solve this issue, we use 

𝐾𝐾-fold cross-validation (CV) with 𝐾𝐾 = 5. In this approach, training data are divided 

into 𝐾𝐾 folds and 𝐾𝐾 iterations are performed over the dataset. In each round, one part is 

used for validation, and the remaining 𝐾𝐾 − 1 parts are merged into a training subset for 

learning. The CV accuracy is computed as the mean accuracy achieved over the 𝐾𝐾 

validation sets. As our data distribution across classes is biased, stratified CV is applied 

to maintain the same class distribution in each fold. The data are divided into non-
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overlapping train and test sets. This holdout test set is not seen at all and CV is 

performed using the training data. The hyper-parameters are tuned to achieve the best 

CV accuracy. This model is then trained with the entire training data and gives good 

performance on the test set, as shown in later sections. 

 

6.3 Experimental setup 

Number of occupants
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Figure 6.3 The lab test setup. (a) 80 RFID tags arranged on cardboard, with inset 
showing a magnified view of the passive paper tag. Except at the corners, tags are placed 
at a height of 1.24 m with a minimum distance of 10 cm between neighboring tags. The 
16 corner tags are placed at a height of 1 m. Four reader antennas are placed on the 
ceiling. (b) The 2D top view and relative tag and reader antenna placement. The possible 
occupant locations are indicated by the cross symbol (×). (c) The histogram plot 
showing pairwise inter-person distance. (d) The box plot of the distribution of the norm 
��𝒚𝒚𝑶𝑶𝑶𝑶𝑶𝑶 − 𝒚𝒚𝑵𝑵𝑵𝑵𝑶𝑶𝑶𝑶𝑶𝑶��

𝟐𝟐
 as a function of number of occupants, with a clear increasing trend. 

The occupants are standing or sitting at different locations in the room. For 0 occupants, 
it is non-zero due to variations outside the test region. 
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In this work, we employed ambient passive RFID tags, without requiring any 

markers or devices on occupants. The test setup is the same real-scale room in the 

previous chapter, including an Impinj Speedway R420 RFID reader that can be 

connected to four reader antennas placed on the ceiling panels. 80 passive tags were 

uniformly distributed in a 3.6 𝑚𝑚 × 3.6 𝑚𝑚 lab room as shown in Fig. 6.3 (a). The reader 

antennas were placed at four corners of an approximate square with an edge baseline of 

0.6 𝑚𝑚, as shown in Fig. 6.3 (b). The tag height of 1.24 𝑚𝑚 was guided by antenna 

radiation pattern, as a tradeoff between area coverage and tag readability.  

The reader acts as a transceiver and periodically emits RF signals in the 902 – 

928 MHz range with 50 frequencies separated by 0.5 MHz. This EM energy is harvested 

by the tags to activate and backscatter the ID-modulated signal. The passive tags cost 

less than 10 cents each and can increase the RF link coverage without adding much to 

the overall cost in deployment and maintenance. The number of tags is only limited by 

the computation requirements and reader distance. The COTS UHF reader has a typical 

operating range of around 10 m, which is enough for a medium-sized room. Multiple 

readers can work collaboratively for larger spaces [174]. The reader collects tag IDs and 

the corresponding RSSI and phase values for each link, which is composed of a tag and 

a reader Rx antenna at a given frequency. 

Our system works in three phases, data collection under different experimental 

conditions, pre-processing including calibration and data imputation of missed tag 

readings, and final counting by the DL model.  

6.3.1 Data collection  
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The RFID reader follows EPCglobal C1G2 [193] [GS1] standards for tag 

inventory. A slotted ALOHA mechanism is used, under which each tag randomly selects 

a time slot for reporting. The reader employs a frequency hopping spread spectrum 

(FHSS) [194] across 50 carrier frequencies in the given bandwidth.  Thus, RF links are 

read in a random order for different tags and frequencies for each reader Rx antenna, 

which is activated in a time-division manner. The impinged power on tags varies, 

depending on Rx-tag distance and ambient factors. Thus, our one-round sampling time 

is selected to accommodate FHSS, reader antenna time-division, and sufficient read 

rates for low-visibility tags. We implemented a two-minute data collection for an 

unoccupied room and took the average across the multiple readings for each link. With 

participants in the room, a one-minute data collection was performed. As a large number 

of closely distributed frequencies are not required, the sampling time can be 

significantly reduced with a custom reader. 

Our initial test was in a lab-environment with people walking outside the 

hallway and high-occupancy neighboring classrooms. We performed experiments at 

different times of the day, on five days, distributed over three months. The room also 

had automated HVAC with fans on the ceiling. While the room had chairs, computers, 

and laboratory equipment, all the furniture in the active capture volume was removed 

during standing experiments, and chairs were provided for sitting participants.  

The data collection protocol was approved by the Cornell institutional review 

board (IRB). The room was divided into 25 uniformly distributed grid points and 4 

additional corner points as shown in Fig. 6.3 (b). We collected data on 9 participants 

with varying physical characteristics, with up to 5 occupants at a time in this mid-sized 
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room. The participants were instructed to stand or sit at different points. For 1 occupant, 

data were collected at the 25 uniform grid points. For ≥ 2 occupants, some location and 

posture combinations were selected based on the probability of occupancy in different 

parts of a room, with higher probability at the center, and the additional 4 corner points 

were selected as edge cases. The 0-occupant 𝑦𝑦𝐵𝐵𝑂𝑂𝑂𝑂 data were essentially the data 

collected without any occupants in the room, taken at a different time than 𝑦𝑦𝑁𝑁𝑜𝑜𝐵𝐵𝑂𝑂𝑂𝑂.  

The data collection included extreme cases – with all or selected occupants 

sitting or standing close at the same location, as well as when all were maximally 

separated. Fig. 6.3 (c) shows the histogram plot for pairwise inter-person distance when 

≥2 occupants were present in the room. Table 6.1 shows the number of data points for 

each case and the percentage of sitting and standing occupants. A total of 𝑁𝑁𝐷𝐷𝐵𝐵𝐵𝐵𝐵𝐵 = 206 

data points were collected, with more cases for ≤ 2 occupants. Fig. 6.3 (d) shows the 2-

norm distance between complex signal vectors with and without occupants, 

�|𝑦𝑦𝐵𝐵𝑂𝑂𝑂𝑂 − 𝑦𝑦𝑁𝑁𝑜𝑜𝐵𝐵𝑂𝑂𝑂𝑂|�
2
, which has an increasing trend for the number of occupants, caused 

by increasing multipath and body absorption. The norm with 0 occupants is lower than 

others but non-zero, showing a significant impact of surrounding changes on the 

multipath at different data collection instances. 

Table 6.1 Total data distribution in lab room test 

#Occupants 
(Class) # Data 

Posture 
Sit  Stand 

0 59 - - 
1 83 37% 63% 
2 37 43% 57% 
3 8 42% 58% 
4 9 56% 44% 
5 10 40% 60% 
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6.3.2 Calibration and data imputation 

Before occupant detection, we extract the calibrated RSSI and phase as 

discussed in the previous section. No-occupant data, 𝑦𝑦𝑁𝑁𝑜𝑜𝐵𝐵𝑂𝑂𝑂𝑂 were collected before each 

experiment with chairs for sitting participants.  As the background subtraction 

introduces error for complete LoS blockage, we estimate the RSSI drop from 𝑦𝑦𝑁𝑁𝑜𝑜𝐵𝐵𝑂𝑂𝑂𝑂 to 

𝑦𝑦𝐵𝐵𝑂𝑂𝑂𝑂 across all the frequencies. If more than 70% RSSI drop is observed across all the 

frequencies for a tag-Rx link, this link is considered blocked and thus exempted from 

the calibration process by assigning a zero reading.  

In a room of moderate size, one reader can activate most of the tags in the empty 

room. However, with the multipath, angle-dependent antenna gain, and LoS blockage, 

a small number of tags may be unreadable. Also, when the frequency separation is more 

than the indoor coherence bandwidth, the multipath behavior is not correlated [195] and 

the same tag – Rx pair may not be read successfully at some of the frequencies. To take 

care of the missing information in 𝑦𝑦𝐵𝐵𝑂𝑂𝑂𝑂, average at other frequencies and neighboring 

tags are used for both RSSI and phase. Similarly, in the calibrated data 𝑦𝑦𝑁𝑁𝐵𝐵𝐶𝐶, non-

overlapping unread instances of 𝑦𝑦𝐵𝐵𝑂𝑂𝑂𝑂 and 𝑦𝑦𝑁𝑁𝑜𝑜𝐵𝐵𝑂𝑂𝑂𝑂 may increase missing information. 

Furthermore, as stated previously, strong LoS blockage for some links might result in 

zero-readings, all of which are imputed using the following rules: 

• If at least 1/3𝐶𝐶𝑑𝑑  of the frequencies are read, missed frequency readings for the same 

link are replaced by their average, as in the current setup the reader antennas were 

closely placed on the ceiling, observing similar multipath behavior. 

• Otherwise, an average across the nearest 4 tags is taken where the phase variation 

is limited to 25° and the distance is limited to 0.25 𝑚𝑚.  
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Both imputation rules are only approximations over the noisy measurements 

suffering heavy multipath and high channel loss due to poor visibility of the reader 

antenna. The phase and RSSI are further normalized as: 

𝑦𝑦𝑃𝑃ℎ𝐵𝐵𝑠𝑠𝐵𝐵 = |𝑦𝑦′𝑃𝑃ℎ𝐵𝐵𝑠𝑠𝐵𝐵|/𝜋𝜋 

(6.1) 𝑦𝑦𝑅𝑅𝑁𝑁𝑁𝑁𝐼𝐼 = 𝑦𝑦′𝑅𝑅𝑁𝑁𝑁𝑁𝐼𝐼 (0.05 ⋅ max𝑦𝑦′𝑅𝑅𝑁𝑁𝑁𝑁𝐼𝐼)⁄ − mean(𝑦𝑦′𝑅𝑅𝑁𝑁𝑁𝑁𝐼𝐼 (0.05 ⋅ max𝑦𝑦′𝑅𝑅𝑁𝑁𝑁𝑁𝐼𝐼)⁄ ). 

In the above equations, the un-normalized data is indicated as 𝑦𝑦′, and mean and 

max operations are taken across the entire dataset. As the RFID reader has a 𝜋𝜋 phase 

ambiguity, the range is converted from [−𝜋𝜋,𝜋𝜋] to [0,𝜋𝜋] before normalization, which 

also shows better algorithm convergence. The RSSI readings are mostly distributed in 

the range 0.02 – 10 nW (−77 to −50 dBm), with few readings close to the maximum 

value of 112 nW.  Hence a factor of 0.05 is included so that most of the readings are 

normalized to the range [−0.5,0.5]. The distributions of normalized RSSI and phase 

data before and after imputation are shown in Fig. 6.4, where the y-axes denote the 

number of instances.  

 

6.4 Results from deep learning 

In this section, we demonstrate effective occupant-count learning at untrained 

locations. We then investigate the effectiveness of calibration and data imputation.  We 

also use a partial selection of tags to show that the number of tags can be significantly 
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reduced for occupant counting. Finally, we demonstrate learning transference to 

different setups in the case of single occupancy.  

𝑦𝑦𝑅𝑅𝑁𝑁𝑁𝑁𝐼𝐼𝐵𝐵𝑂𝑂𝑂𝑂  𝑦𝑦𝑅𝑅𝑁𝑁𝑁𝑁𝐼𝐼𝑁𝑁𝐵𝐵𝐶𝐶  

𝑦𝑦𝑃𝑃ℎ𝐵𝐵𝑠𝑠𝐵𝐵𝐵𝐵𝑂𝑂𝑂𝑂  𝑦𝑦𝑃𝑃ℎ𝐵𝐵𝑠𝑠𝐵𝐵𝑁𝑁𝐵𝐵𝐶𝐶  
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𝑦𝑦𝑅𝑅𝑁𝑁𝑁𝑁𝐼𝐼𝐵𝐵𝑂𝑂𝑂𝑂  𝑦𝑦𝑅𝑅𝑁𝑁𝑁𝑁𝐼𝐼𝑁𝑁𝐵𝐵𝐶𝐶  

𝑦𝑦𝑃𝑃ℎ𝐵𝐵𝑠𝑠𝐵𝐵𝐵𝐵𝑂𝑂𝑂𝑂  𝑦𝑦𝑃𝑃ℎ𝐵𝐵𝑠𝑠𝐵𝐵𝑁𝑁𝐵𝐵𝐶𝐶  

Figure 6.4 Data distribution without any imputation (a) – (d), and with imputation (e) 
– (h), showing RSSI and phase with occupants, and after calibration. While most zero-
data are removed in 𝑦𝑦𝐵𝐵𝑂𝑂𝑂𝑂, some zero-readings remain in 𝑦𝑦𝑅𝑅𝑁𝑁𝑁𝑁𝐼𝐼𝑁𝑁𝐵𝐵𝐶𝐶  and 𝑦𝑦𝑃𝑃ℎ𝐵𝐵𝑠𝑠𝐵𝐵𝑁𝑁𝐵𝐵𝐶𝐶 , when near-
by tags also contain zero which may occur in case of large LoS blockage across all 
frequencies for a tag – Rx link.  



 

174 

The algorithm is implemented in Python using the PyTorch library for the CNN 

model on an Intel i7-8700 CPU with 16 Gb RAM and NVIDIA GeForce GTX 1050 Ti 

GPU.  

6.4.1 Location-independent learning 

In this paper, we have emphasized counting quasi-static and static occupants because 

moving participants have other ready solutions and might induce ambiguous 
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Figure 6.5 Selected-location training results, showing generalized location-independent 
learning with non-overlapping occupant locations in train and test data. (a) Top view 
with all possible occupant locations indicated by a cross (×). Selected training locations 
are shown with green dots. (b) CV, train, and test accuracies of the trained model, 
compared to when the entire data are used for training and CV. (c) The confusion matrix 
on the entire dataset with the location independent learning, showing high probability 
of the predicted number of occupants to be within ±1 of the true number, 𝑃𝑃(𝑑𝑑 ≤ 1) =
1. 
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interpretations in our initial trials. For one occupant, fingerprinting-based methods can 

be reasonably effective [196], but the increasing number of participants can readily 

overburden the training cost. The occupancy probability at different room locations is 

not homogeneous due to furnishing, lighting, and access to doors, which further 

complicates the selection of training cases. In our method, as the empty-room calibration 

is effective, we hence hypothesize that learning based only on selected grid points can 

be applied to detecting occupants at other locations not seen during the training. Fig. 6.5 

(a) shows the grid locations selected for the training with green dots. For one occupant, 

there is no overlap of the training and testing locations. For ≥ 2 occupants, the training 

set included data with at least ⌈#𝑜𝑜𝑂𝑂𝑂𝑂𝑅𝑅𝑚𝑚𝐵𝐵𝑚𝑚𝐵𝐵𝑠𝑠
2

⌉ at the selected locations. Table 6.2 shows the 

number of train and test data points corresponding to each class based on this criterion. 

With the data separated into training and location-holdout test sets, the CNN model is 

established using 5-fold CV for hyper-parameter tuning, without any bias of the holdout 

data. We compared the accuracy of this model with 5-fold CV training on the entire 

dataset, as shown in Fig. 6.5 (b). Similar CV accuracy is observed in both cases, with a 

higher accuracy of 87% in the case of selected-location training, also resulting in a high 

Table 6.2 Train – test set distribution with selected – location training 

#Occupants 
(Class) 

Train set Test set 
Sit Stand #Data  Sit Stand #Data 

0 - - 29 - - 30 
1 13% 39% 43 24% 24% 40 

2 30% 24% 20 14% 32% 17 
3 42% 33% 6 0% 25% 2 
4 28% 28% 5 28% 16% 4 
5 36% 4% 4 4% 56% 6 
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location-holdout test set accuracy of 81.8%. We define accuracy as the fraction of cases 

with a correct prediction of the number of occupants, i.e., the difference (𝑑𝑑) between 

the ground truth and prediction is 0, denoted by the probability 𝑃𝑃(𝑑𝑑 = 0) = 0.818. Our 

model learns well, with all predictions within ±1 of the true value, 𝑃𝑃(𝑑𝑑 ≤ 1) = 1. Fig. 

6.5 (c) shows the confusion matrix on the entire dataset, including both train and test 

sets, for location-independent learning. For all the following comparisons, we will use 

this training setup as the baseline. The computation cost is low with only 2.7 s for 

training. 

 

6.4.2 Impact of data imputation and calibration 

Fig. 6.6 (a) shows the comparison of training on imputed and non-imputed data, 

using all four channels. Imputed data shows slightly higher CV and location-holdout 

test accuracy of 87% and 82%, compared to 83% and 77%, respectively. Table 6.3 

shows the values 𝑃𝑃(𝑑𝑑 ≤ 𝑖𝑖) for 𝑖𝑖 = 0,1, and 2. The improvement from imputation is 

limited, as while we removed random reading defects, embedded information of 

Table 6.3 Probability 𝑃𝑃(𝑑𝑑 ≤ 𝑖𝑖 ) estimation under data imputation and channel 
variation 

Data 
Test Results 

𝑃𝑃(𝑑𝑑 = 0) 𝑃𝑃(𝑑𝑑 ≤ 1) 𝑃𝑃(𝑑𝑑 ≤ 2) 
Non-Imputed 0.77 0.98 1 

Imputed (𝐶𝐶 = 4) 0.82 1 1 

𝑦𝑦𝐵𝐵𝑂𝑂𝑂𝑂  (𝐶𝐶 = 2) 0.77 0.95 1 
𝑦𝑦𝑁𝑁𝐵𝐵𝐶𝐶(𝐶𝐶 = 2) 0.78 0.94 0.98 
𝑦𝑦𝑅𝑅𝑁𝑁𝑁𝑁𝐼𝐼  (𝐶𝐶 = 2) 0.79 0.97 1 
𝑦𝑦𝑃𝑃ℎ𝐵𝐵𝑠𝑠𝐵𝐵(𝐶𝐶 = 2) 0.66 0.90 0.94 
𝑦𝑦𝑅𝑅𝑁𝑁𝑁𝑁𝐼𝐼𝐵𝐵𝑂𝑂𝑂𝑂 (𝐶𝐶 = 1) 0.77 0.92 0.95 
𝑦𝑦𝑅𝑅𝑁𝑁𝑁𝑁𝐼𝐼𝑁𝑁𝐵𝐵𝐶𝐶 (𝐶𝐶 = 1) 0.77 0.95 0.98 
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occupant shadowing may be partially lost. For all subsequent comparisons, imputed data 

are used. 

We tested the use of different numbers of channels, 𝐶𝐶 = 1, 2, or 4 in the model 

to quantify the contribution of both calibrated and un-calibrated RSSI and phase. Fig. 

6.6 (a) shows the accuracies with different channels, and detailed probability values are 

Figure 6.6 CV, train, and test accuracies with different variations of model and data. 
(a) First two points show comparison of  non-imputed and imputed data with all four 
channels (𝐶𝐶), 𝑦𝑦𝑅𝑅𝑁𝑁𝑁𝑁𝐼𝐼𝐵𝐵𝑂𝑂𝑂𝑂 ,𝑦𝑦𝑃𝑃ℎ𝐵𝐵𝑠𝑠𝐵𝐵𝐵𝐵𝑂𝑂𝑂𝑂 ,𝑦𝑦𝑅𝑅𝑁𝑁𝑁𝑁𝐼𝐼𝑁𝑁𝐵𝐵𝐶𝐶 , and 𝑦𝑦𝑃𝑃ℎ𝐵𝐵𝑠𝑠𝐵𝐵𝑁𝑁𝐵𝐵𝐶𝐶 . Fewer channels are tested, showing clear 
improvement with calibration. (b) Comparing results with fewer tags. Solid lines show 
average accuracy with different tag selections and the bands show minimum and 
maximum accuracies around the average. High accuracy is observed even with limited 
number of tags, but with higher probability of data loss. 
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summarized in Table 6.3.  Using two calibrated channels with 𝑦𝑦𝑅𝑅𝑁𝑁𝑁𝑁𝐼𝐼𝑁𝑁𝐵𝐵𝐶𝐶  and 𝑦𝑦𝑃𝑃ℎ𝐵𝐵𝑠𝑠𝐵𝐵𝑁𝑁𝐵𝐵𝐶𝐶 , denoted 

as 𝑦𝑦𝑁𝑁𝐵𝐵𝐶𝐶(𝐶𝐶 = 2), shows the highest CV accuracy next to using all 4 channels. As the 

calibration algorithm ignores multi-occupant RF reflection, scattering, and shadowing, 

the model performs best for the number of occupants ≤ 2. With only RSSI data,𝑦𝑦𝑅𝑅𝑁𝑁𝑁𝑁𝐼𝐼 

consisting of 𝑦𝑦𝑅𝑅𝑁𝑁𝑁𝑁𝐼𝐼𝑁𝑁𝐵𝐵𝐶𝐶  and 𝑦𝑦𝑅𝑅𝑁𝑁𝑁𝑁𝐼𝐼𝐵𝐵𝑂𝑂𝑂𝑂 , higher accuracy is achieved compared to only-phase based 

learning, suggesting RSSI has less ambiguous information. Comparison of using only 

RSSI data shows that 𝑦𝑦𝑅𝑅𝑁𝑁𝑁𝑁𝐼𝐼𝑁𝑁𝐵𝐵𝐶𝐶  performs better than 𝑦𝑦𝑅𝑅𝑁𝑁𝑁𝑁𝐼𝐼𝐵𝐵𝑂𝑂𝑂𝑂 , but poorer than both 𝑦𝑦𝑅𝑅𝑁𝑁𝑁𝑁𝐼𝐼𝑁𝑁𝐵𝐵𝐶𝐶  and 

𝑦𝑦𝑅𝑅𝑁𝑁𝑁𝑁𝐼𝐼𝐵𝐵𝑂𝑂𝑂𝑂 . Overall, the best performance is achieved with all four channels.  

6.4.3 Impact of tag density and placement 

In our present lab room test setup, we distributed tags uniformly across the room. 

However, in real-life implementations, it is important to consider the use of fewer tags 

with random placement. Out of the 80 tags, we successively decreased the number of 

tags to 40, 20, 10, and 5 with random selection. We considered 25 different 

combinations of tags and averaged over all combinations to get the final CV, train, and 

test accuracies shown in Fig. 6.6 (b). The accuracy range is shown with colored bands 

around the solid line. When all 80 tags are considered, 81.8% test accuracy is achieved. 

However, with one of the randomly placed arrangements of 20 tags, results surpassed 

that of 80 tags, with 84.8% test accuracy. The average test accuracy with 20 tags is also 

the next best with 77.4%. Even the case of 10 tags shows good learning capabilities with 

>75% average test accuracy. However, with fewer tags, LoS blockage and tag 

distribution need to be carefully studied in the future. 

6.4.4 Learning transference to the home setting 
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Our test design includes multi-occupant counting in a general mid-size office or 

home setup. As the train data collection is a significant overhead for every new setup, 

we used a home living room with a single occupant to investigate learning transference, 

as shown in Fig. 6.7 (a) (Home-I). The setup was constrained by the social-distance rule 

Figure 6.7 Alternate home setups for occupancy detection and motion experiments. Four 
reader antennas (orange box) and 64 tags are placed in all the setup variations. (a) Home-
I is nearly an upside-down version of the lab setup, with 16 tags on each wall, without 
the corner tags. Tags are placed at different heights on opposite wall pairs. A sofa was 
put in the middle. (b) A human-sized balloon of height 1.4 m pasted with aluminum foils 
to better mimic scattering from human body. This is used with setups (a) and (c) in 
standing and lying down poses. (c) Alternate Home-II, where the lower-height tags on 
two walls are rotated 45o as shown. (d) Home-III setup with arrangement of both reader 
antennas and tags different from the lab setup. A participant performs different motion 
routines in the monitored area of approximately 1.8 m × 1.8 m. 
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during the COVID-19 pandemic and had the reader antennas on the floor in a larger 

rectangular arrangement of sides 0.75 𝑚𝑚 and 1.3 𝑚𝑚. A sofa was placed at the center of 

the room, and the room layout had an open kitchen, generating different multipath. The 

64 tags were placed similarly, with different heights on the opposite wall pairs, without 

the 16 tags at the room corners. The room’s occupancy was tested with a plastic phantom 

balloon of height 1.4 m, as shown in Fig. 6.7 (b), pasted with aluminum foils to increase 

RF reflectivity. The balloon was suspended in standing and lying-down positions at 

different grid points to collect 21 occupied and 20 unoccupied data points. The second 

home setup (Home-II) was created by rotating tag-holding boards on two walls by 45° 

as shown in Fig. 6.7 (c). In the final setup variation (Home-III), reader antennas were 

placed at the four corners with tags brought closer together in a two-tier arrangement in 

the z-direction, without any furniture, as shown in Fig. 6.7 (d). One participant 

performed various motions including arm movements, squats, and slow walking inside 

the area at a rate of approximately 0.7 m/s. The data pre-processing and normalization 

were performed as previously with a slightly faster data collection of about 48 s per data 

point. 

Table 6.4 Probability 𝑃𝑃(𝑑𝑑 ≤ 𝑖𝑖 ) estimation to show learning transference 

Setup Selected Channels (𝐶𝐶) 
Test Results 

𝑃𝑃(𝑑𝑑 = 0) 𝑃𝑃(𝑑𝑑 ≤ 1) 
Lab 𝐶𝐶 = 4 0.82 1 

Home-I 𝐶𝐶 = 4 1 1 
Home-II 𝐶𝐶 = 2:𝑦𝑦𝑅𝑅𝑁𝑁𝑁𝑁𝐼𝐼 0.85 1 
Home-III 𝐶𝐶 = 2:𝑦𝑦𝑅𝑅𝑁𝑁𝑁𝑁𝐼𝐼 1 1 
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For the above setup variations with single occupancy, we use the entire data with 

0 – 5 occupancy from the first lab set up to train and 1/4th of the new data for validation. 

An average of four different validation data sets is taken and reported as validation 

accuracy. Here, this is not denoted as CV, because the validation data is not part of the 

training data, with the main purpose of hyper-parameter tuning instead of training. The 

training is performed using 64 wall tags from the lab room setup. As the tag and reader 

positions varied a considerable amount from the lab setup to Home-II and Home-III, 

phase-based channels performed poorly during the validation and were not used for 

model learning. The results are shown in Fig. 6.8 and probabilities are summarized in 

Table 6.4. Good accuracies are reported for the balloon in different postures, as well as 

for the moving participant. It is to be noted that the output possible classes are still 0 – 

5, and correct 0/1 detection is performed with no over-counting, and with 100% 

accuracies in Home-I and Home-III setups. Home-II setup shows a slightly poorer 

accuracy of 85%, with only up to ±1 variation in the occupant count. 

6.5 Simulation to experiment transfer learning 

Figure 6.8 Validation, train, and test accuracy comparison of various setups with the 
balloon in Home-I and Home-II, and people motion in Home-III. 
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This section explores the possibility of entirely removing the training data 

collection process and perform real-scale simulations to generate training data. While 

the idea is attractive, performing real-scale simulation replicating the experiment scene 

is not possible with the limited available computation and memory power. Thus, some 

approximations need to be made, while understanding the repercussions of each 

assumption. Following approximations need to be performed: 

1) Antenna: Fig. 5.3 showed that the tag antenna has a monopole pattern and 

can be easily substituted by the dipole antenna. Reader antenna, however, 

needs to be a patch antenna to correctly simulate antenna beamwidth. Thus, 

the antenna shown in Fig. 5.4 is selected. 

2) Boundary conditions: Simulating concrete walls is computationally 

intractable for a large room, thus ‘open add space’ with maximum reflection 

level of 0.01 is selected. 

Figure 6.9 CST microwave setup replication the experiment setup. 
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3) Object material and size: Human muscle or even water results in a lot of 

meshing, but PEC is very reflective. Thus, a cylindrical torso of height 0.5 

m, radius 0.15 m and material with relative permittivity, 𝜖𝜖 = 55, and 

electrical conductivity of 𝜎𝜎 = 0.948 𝑆𝑆/𝑚𝑚 is selected, with no material based 

mesh refinement or tangent loss. 

𝑠𝑠𝑅𝑅𝑁𝑁𝑁𝑁𝐼𝐼
𝐵𝐵𝑑𝑑𝑗𝑗   

𝑠𝑠𝑅𝑅𝑁𝑁𝑁𝑁𝐼𝐼𝑁𝑁𝐵𝐵𝐶𝐶   

𝑠𝑠𝑃𝑃ℎ𝐵𝐵𝑠𝑠𝐵𝐵
𝐵𝐵𝑑𝑑𝑗𝑗  

𝑠𝑠𝑃𝑃ℎ𝐵𝐵𝑠𝑠𝐵𝐵𝑁𝑁𝐵𝐵𝐶𝐶   
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(b) (c) 
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Figure 6.10 Simulation data characteristics. (a) Norm of data with and without object. 
(b) – (e) Histogram of RSSI and phase of the simulation data, similar to Fig. 6.4. 
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4) Amplitude and phase noise: These are added to have similar �|𝑦𝑦𝐵𝐵𝑂𝑂𝑂𝑂 −

𝑦𝑦𝑁𝑁𝑜𝑜𝐵𝐵𝑂𝑂𝑂𝑂|�
2
 as seen with experiment data. With 𝑠𝑠 as the simulated complex 

signal at the four reader antennas, 

a. |𝑠𝑠𝑚𝑚𝑜𝑜𝑖𝑖𝑠𝑠𝑦𝑦| = |𝑠𝑠| + (|𝑠𝑠| ∗ 𝛼𝛼 ∗ 𝑁𝑁(0,1)), with 𝛼𝛼 = 0.005 as amplitude 

noise factor. 

b. ∠𝑠𝑠𝑚𝑚𝑜𝑜𝑖𝑖𝑠𝑠𝑦𝑦 = ∠𝑠𝑠 + 𝑁𝑁(0,1) ∗ 𝜋𝜋/180. 

Fig 6.9 shows the simulation setup with the object, and it takes about 9 – 10 hrs 

per simulation. Data is collected with no object (1 case), one object (6 non-symmetric 

locations), and two objects (4 data). Using the above amplitude and phase noise 

strategies, data can be augmented. Fig. 6.10 (a) shows the norm of simulated data, with 

36 cases each of 0, 1, and 2 objects. Fig. 6.10 (b) – (e) show the corresponding RSSI 

and phase histograms with the object and calibrated. As the tag antenna transmitted 

signals are Gaussian pulses, the phase at different frequencies cannot be matched similar 

to the experiment, and hence only RSSI based features are transferable.  

Fig. 6.11 (a) shows the confusion matrix of the test simulation data performance 

when the same CNN model is trained with the experiment data and testing done on the 

augmented simulation data using the two RSSI based features. It shows very good 

learning across 0 vs all object prediction, as well as for one object. 50% of the two object 

cases are predicted as one object, which needs further improvement. Fig. 6.11 (b) shows 

the confusion matrix for the testing experiment data when augmented simulation data is 

used for training. In this case, there is correct detection for ≥ 2 occupants as 2, with 

only 5 two-occupant cases predicted as 1. The 0 vs all prediction is also very accurate. 

The detection of one occupant however is confused with the two occupants, which needs 
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to be further improved. In both cases, learning was stopped when training accuracy 

either stayed 100% for some iterations or when the growth was very small with each 

iteration. Validation with some of the test data can further help tune the 

hyperparameters. Overall, even with a very limited simulation dataset, it is possible to 

achieve satisfactory results. This simulation transfer learning is a great way to reduce 

the time and effort required in training data collection for future application purposes. 

  

6.6 Conclusion 

In this paper, we presented an indoor occupancy counting algorithm using a 

CNN-based DL architecture, which can learn features from RSSI and phase data. To the 

best of our knowledge, this is the first non-fingerprinting-based method to count ≤

5 stationary occupants in an indoor environment. Further, comparable performance has 

been observed in camera-based systems under the same number of occupants in the 

Test accuracy: 83% 

Predicted Count Predicted Count 

Tr
ue

 C
ou

nt
 

(a) (b) 

Test accuracy: 61% 

Figure 6.11 Simulation-experiment transfer learning confusion matrices. (a) Testing on 
simulation data. (b) Testing on experiment data. 
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room [212], [213]. We have presented realistic test setups with comparisons of different 

channel selections, showing clear learning improvement with the calibration process. 

Also, good accuracy can be achieved with fewer tags, as small as 10.  

Another major contribution of this work is the demonstration of occupancy 

learning transference to another similarly sized room, tolerating small variations in the 

placement of Rx and tag antennas. As multipath behavior can change significantly with 

the room layout and people outside the monitored region, the learning transference 

indicates generalized learning of the CNN model. Good performance is observed even 

with the participant in motion. Further tests need to be conducted with a larger number 

of occupants to identify learning transfer for more than one participant.  

In continuation of learning transference, we have successfully demonstrated an 

alternative to experimental training data, by using only simulation data. Even with 

approximate simulations, similar data distribution can be achieved by normalization and 

appropriately added noise.   

Future challenges and possible solutions include: 

• Calibration: The present method requires calibration to nullify the effect of objects 

and furniture with high reflectivity. Thus, any change in large metallic furniture 

needs to be re-calibrated, which can be performed by frequent comparison of known 

no-occupancy data to updates. Also, as the RF channels are less affected by wood, 

cloth, and plastic, data are tolerant of furniture with small metallic content, as seen 

in the home setting.  

• Biased dataset: Our dataset has a small number of samples for ≥ 3 occupants, 

introducing a bias in the learning model. As it is labor-intensive to collect data with 
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a large number of occupants across the grid, solutions like generative adversarial 

networks (GANs) [197] can be explored to formulate synthetic data mimicking the 

collected experimental data. 

• Imputation: Our proposed imputation model is not effective in retaining shadowing 

or fading information; hence the approach needs to be further improved. Imputation 

is helpful with any defective tags over time, e.g., by a nail on the tag. 

• Person size variation: Our CNN model learns RF perturbation features without 

identification of person size. Thus, a very large person may be counted as two, or 

some large pets may also be counted, as they can introduce sufficient phase 

fluctuation and RSSI attenuation. As one of the major applications is HVAC control, 

it is important to account for the overall heat load instead of the exact count. 

• Noise characteristics: For simulation transfer learning, empirically defined 

amplitude and phase noises are added. This process should be further improved as 

this has drastic effects on learning performance. 

Low-cost passive RFID tags have found increased usage towards keeping track 

of everyday objects such as pill-box and keys [70], [198]–[200]. Our presented approach 

can be readily augmented to benefit from the additional sensing points. Various methods 

have been proposed in the literature for tag locating [201]–[203] that can be used to 

locate these tags before the signal processing for occupant counting. Thus, our occupant 

counting system can be augmented to an existing IoT environment, enabling new 

functions in the applications of energy savings and assisted living. 
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CHAPTER 7  

CONCLUSION 

 

This thesis demonstrates the capabilities of RF sensors for two main assisted 

living necessities: wellness by respiratory and heartbeat monitoring, and safety and 

accessibility by occupant monitoring.  

 

7.1 Contributions to respiratory monitoring 

For respiratory monitoring, efforts have been put into sensor setup, design 

improvements, as well as understanding physiology, data collection, and processing. 

The summary of major contributions is as follows: 

1. Proposed a two-point sensor measurement setup for obstructive sleep apnea 

monitoring by understanding the interplay of physiology and near-field RF 

sensing. Most noninvasive sensors do not focus on detecting apnea, due to 

complex paradoxical abdomen-thorax motion. 

2. Developed an improved respiratory effort measuring sensor including not 

only the respiratory rate but also respiratory volume by a robust simple 

calibration scheme. Table 3.7 summarized the satisfactory performance of 

this sensor against other state-of-the-art noninvasive sensors including chest 

belts, strain sensor, camera, and far-field RF, for respiratory monitoring, 

along with good performance for heart rate estimation.  
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3. Validated accurate respiratory effort monitoring by a human study with 25 

participants. This included protocol design, data collection, and developing 

robust signal processing tools for  

a. accurate peak estimation,  

b. signal quality detection,  

c. heart rate estimation, and  

d. motion detection.  

4. Designed an on-the-bed sleep monitoring setup and installed it at the Cornell 

Weill sleep center, NYC, that performed reliable respiratory pattern 

monitoring under normal breathing and central sleep apnea. This remotely 

monitored setup provided a great understanding of one-sensor apnea 

measurement and its limitations.  

5. Extended the respiratory effort monitoring setup to monitor the user’s 

attention and relaxation states by understanding the relationship between 

attention and emotion recognition. Performed reliable feature extraction 

from respiration that is simpler than accurate HRV detection and subject 

independent. 

 

7.2 Contributions to occupant monitoring  

This thesis shows extensive work in the area of indoor RF occupant imaging and 

counting, focused on understanding the noisy signal model. For validation, CST 

simulations have been performed along with the analysis of the experimental data. 

Following are the major contributions: 
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1. Summarized and compared existing problem models for RF imaging and 

categorized them as attenuation and reflection models.  

2. Proposed background calibration algorithm, with improved performance in the 

noisy multipath scenario. 

3. Applied sparsity-based linear inverse problem solutions using ℓ0 and ℓ1 norm 

regularizations, with OMP giving superior performance. The knowledge of 

sparsity in the room is used to generate naturally sparse images without requiring 

threshold selection, which is difficult without knowing the true occupant count. 

4. Developed a frequency selection algorithm based on uniform K-space sampling, 

that can help limit the required bandwidth, without degrading the image quality. 

5. Proposed a novel CNN based deep-learning model for occupant counting, which 

is more tolerant to setup changes, allowing learning transference across different 

setups. This is further augmented by simulation learning, which can have huge 

potential by minimizing experimental requirements. 

 

7.3 Future works 

Both projects can have great real-life implications. Respiratory effort monitoring 

is not only useful for everyday health monitoring and sleep apnea diagnosis, but 

especially for geriatric patients with low cognitive function, where dyspnea information 

can only be currently determined from self-reporting or a caregiver’s visual observation. 

With information about the respiratory pattern and comfortably placed on-the-bed 

sensor setup, NCS can be used to learn features associated with dyspnea-discomfort 

[100], [101]. A real-time sleep apnea detection algorithm would also be an important 
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work using the two-sensor approach. A deeper, theoretical understanding of RF 

interaction in the near-field is also critical. 

The performance of the occupant monitoring setup is limited by the noise from 

the hardware setup. For occupant counting purposes, fewer tags are sufficient and thus, 

Bluetooth beacons can be used instead. For other purposes, custom hardware will 

greatly improve performance. With reduced noise, proposed sparsity algorithms will 

have much improved performances as well. A natural extension of this work is RFID 

tag integration in every object, with an improved tag localization algorithm. This will 

help identify when any furniture has been moved for calibration purposes, as well as 

learn user behavioral traits that can be helpful in smart occupancy-centered control.  
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