eCommons

 

Optimizing Release from Reservoir Microcapsules

Other Titles

Abstract

Cytomegalovrius (CMV) retinitis is a common symptom of vision loss found in 20-30% of all acquired immunodeficiency syndrome (AIDS) sufferers. While there are no drugs that can cure permanent retinal damage by CMV, the drug ganciclovir has demonstrated efficacy against human cytomegalovirus infections and has been considered a first-line therapy in the treatment of sight-threatening cytomegalovirus infection in immune-compromised patients. The FDA-approved Vitrasert? implant, which is inserted at a localized region of the eye, is the current method of delivering ganciclovir intraocularly to patients with CMV. The Vitrasert? is a disc-like reservoir microcapsule that encapsulates ganciclovir in a polymer-based system. Maintaining a constant level of drug in the infected eye region is an important requirement in the design of this implant. The more constant the rate of drug release from the microcapsule, the more effective the drug will be. The objective of our model is to measure the diffusion of the ganciclovir release from the Vitrasert? into the surrounding tissue and to ensure toxic levels of the drug is not sustained. To accomplish this objective, the implant is simplified via axis-symmetry from a 3-D cylinder into a 2-D rectangle with homogeneous material properties, while the skin is reduced to a quarter-circle around our capsule. With our model, we are able to optimize the characteristics of the microcapsule to facilitate near constant drug release, which would be beneficial for many pharmaceuticals working with drug release from reservoir microcapsules.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2007-07-10T13:01:23Z

Publisher

Keywords

cytomegalovirus retinitis; ganciclovir; Vitrasert?; microcapsule; constant release rate

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

term paper

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record