eCommons

 

A Time-Shared Dual Optical Trap with Sub-Nanometer Image-Based Position Resolution for Hybrid Instruments

Other Titles

Abstract

Optical trapping is a powerful and sensitive technique that enables the direct measurement and manipulation of biological samples on the piconewton and nanometer scales. In examining the evolution and maturation of optical trapping instrumentation in the field of single-molecule biophysics, two main thrusts become apparent; a subset of instruments have aimed to push the limits of resolution, seeking to capture the finest details of biomechanical processes, while a second subset of instruments have explored the integration of optical trapping with other measurement techniques, with the goal of creating multidimensional, hybrid instruments. Unfortunately, many hybrid trapping instruments are forced to sacrifice measurement resolution, or relinquish their measurement capabilities entirely, when the combination of techniques cannot accommodate the stringent demands of traditional optical trapping detection methods. Thus, the full potential of hybrid optical trapping instruments has remained elusive. We have taken on this challenge by developing a highly-versatile optical tweezers instrument that can achieve sub-nanometer position resolution without the use of a second microscope objective, making high-resolution optical trapping measurements uniquely compatible with a broad array of bulky and/or opaque sample-side devices. Our instrument consists of a time-shared, dual optical trap implemented in an entirely custom-built, free-standing fluorescence microscope, with camera-based position detection. We have developed a robust and accurate set of tracking techniques that allow us to make the first direct measurements of relative bead displacement within an optical trap with sub-nanometer resolution using image tracking. These capabilities pave the way for the next generation of optical tweezer hybrids, which we envision as versatile tools that can integrate multiple measurement modalities and complex substrates without sacrificing resolution, to expand the breadth and clarity of our window into the microscopic and sub-microscopic biological worlds.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2017-01-30

Publisher

Keywords

Biophysics; Physics; Dual Trap; Image Tracking; Optical Trap; Optical Tweezers; Resolution; Single Molecule

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Wang, Michelle D

Committee Co-Chair

Committee Member

Arias, Tomas A.
Vengalattore, Mukund

Degree Discipline

Physics

Degree Name

Ph. D., Physics

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record