eCommons

 

Surface Modification Of Microporous Polypropylene Membrane By Uv-Initiated Grafting With Poly(Ethylene Glycol) Diacrylate

Other Titles

Author(s)

Abstract

In this study, poly(ethylene glycol) diacrylate (PEGDA) was surface grafted, through UV-initiated grafting, on to a microporous polypropylene (PP) membrane in order to develop and control a moisture-sensitive porous structure. Based on the concentration of the PEGDA grafting solution, as well as other variables, the pores of the membrane were filled to varying degrees with cross-linked PEGDA hydrogel, decreasing the pore sizes. This decrease in pore size was highly dependent on the grafting degree, or weight add-on of the grafted polymer. The grafting degree can be controlled by altering various grafting conditions. The surface grafted PEGDA is expected to swell significantly when exposed to moisture, through change in relative humidity or a liquid-borne pathogen, causing the pore sizes to decrease even further. This provides a microporous polypropylene membrane with improved hydrophilicity and moisture-responsive pores. The membranes will have varying levels of breathability based on the amount of moisture exposure. This will allow for a functional membrane that limits the transport of liquid-borne pathogens while providing transport of moisture vapor away from the body.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2012-08-20

Publisher

Keywords

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Obendorf, Sharon Kay

Committee Co-Chair

Committee Member

Netravali, Anil Narayan

Degree Discipline

Fiber Science

Degree Name

M.S., Fiber Science

Degree Level

Master of Science

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record