eCommons

 

BULK-PIEZOELECTRIC TRANSDUCTION OF MICROSYSTEMS WITH APPLICATIONS TO BATCH-ASSEMBLY OF MICROMIRRORS, CAPACITIVE SENSING, AND SOLAR ENERGY CONCENTRATION

Other Titles

Abstract

Electromechanical modeling, actuation, sensing and fabrication aspects of bulkpiezoelectric ceramic integration for microsystems are investigated in this thesis. A small-signal model that describes the energy exchange between surface micromachined beams and bulk-lead zirconium titanate (PZT) actuators attached to the silicon substrate is presented. The model includes detection of acoustic waves launched from electrostatically actuated structures on the surface of the die, as well as their actuation by bulk waves generated by piezoelectric ceramics. The interaction is modeled via an empirical equivalent circuit, which is substantiated by experiments designed to extract the model parameters. As a die level application of bulk-PZT, an Ultrasound Enhanced Electrostatic Batch Assembly (U2EBA) method for realization of 3-D microsystems is demonstrated. U2EBA involves placing the die in an external DC electric field perpendicular to the substrate and actuating the die with an off-chip, bulk-piezoelectric ceramic. Yield rates reaching up to 100% are reported from 8×8 arrays of hinged mirrors with dimensions of 180 × 100 micrometre-squared. U2EBA is later improved to provide temporary latching at intermediate angles between fully horizontal and vertical states, by using novel latching structures. It is shown that the micromirrors can be trapped and freed from different rotation angles such that zero static power is needed to maintain an angular position. The zero-idle-power positioning of large arrays of small mirrors is later investigated for energy redirection and focusing. All-angle LAtchable Reflector (ALAR) concept is introduced, and its application to Concentrated Solar Power (CSP) systems is discussed. The main premise of ALAR technology is to replace bulky and large arrays of mirrors conventionally used in CSP technologies with zeroidle- power, semi-permanently latched, low-profile, high-fill factor, micrometer to centimeter scale mirror arrays. A wirelessly controlled prototype that can move a 2-D array of mirrors, each having a side length of less than 5 cm, in two degrees of freedom to track the brightest spot in the ambient is demonstrated. Capacitive sensing using bulk-piezoelectric crystals is investigated, and a Time- Multiplexed Crystal based Capacitive Sensing (TM-XCS) method is proposed to provide nonlinearity compensation and self-temperature sensing for oscillator based capacitive sensors. The analytical derivation of the algorithm and experimental evidence regarding the validity of some of the relations used in the derivation are presented. This thesis also presents results on microfluidic particle transport as another application of bulk-PZT in microsystems. Experiments and work regarding actuation of micro-scale, fluorescent beads on silicon nitride membranes are described.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2010-05

Publisher

Keywords

Bulk-PZT actuation; Microassembly; Micromirrors; Concentrating solar power; Solar energy; Capacitive readout; Crystal oscillator; Electrostatic Actuation

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

bibid: 8313112

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record