eCommons

 

Stationarity of Generalized Autoregressive Moving Average Models

Other Titles

Abstract

Time series models are often constructed by combining nonstationary effects such as trends with stochastic processes that are believed to be stationary. Although stationarity of the underlying process is typically crucial to ensure desirable properties or even validity of statistical estimators, there are numerous time series models for which this stationarity is not yet proven. A major barrier is that the most commonly-used methods assume phi-irreducibility, a condition that can be violated for the important class of discrete-valued observation-driven models. We show (strict) stationarity for the class of Generalized Autoregressive Moving Average (GARMA) models, which provides a flexible analogue of ARMA models for count, binary, or other discrete-valued data. We do this from two perspectives. First, we show stationarity and ergodicity of a perturbed version of the GARMA model, and show that the perturbed model yields parameter estimates that are arbitrarily close to those of the original model. This approach utilizes the fact that the perturbed model is phi-irreducible. Second, we show that the original GARMA model has a unique stationary distribution (so is strictly stationary when initialized in that distribution).

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2010-10-28

Publisher

eCommons@Cornell

Keywords

ergodicity; stationary

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record