SCHOOL OF OPERATIONS RESEARCH
AND INDUSTRIAL ENGINEERING
COLLEGE OF ENGINEERING
CORNELL UNIVERSITY
ITHACA, NEW YORK 14853

TECHNICAL REPORT NO. 784

April 1988

FREQUENCY DOMAIN SIMULATION EXPERIMENTS:
THE FALSE NEGATIVES PROBLEM

by

Douglas Morrice
Lee W. Schruben



Abstract

Frequency domain simulation experiments were introduced by Schruben and
Cogliano (1987) as an.efficient method for detecting relationships between the
input processes and an output process of a simulation model. One objective for
conducting such experiments is to identify those input factors that
significantly influence the output and screen out the unimportant input
factors. Further experimentation with the model can then be focused on the
important factors.

In factor scfeening experiments two types of errors can occur: false
negative errors and false positive errors. Under certain circumstances, the
experiment may indicate a relationship exists when it does not (a false
positive result) or it may fail to identify an important relationship that does
exist (a false negative result). In this article we are concerned with the
potentially more serious problem of false negatives. We show that for a
general class of simulation experiments the hypothesis test proposed by
Schruben and Cogliano will consistently identify any significant input factors;
the asymptotic power of the test is equal to one. This implies that the
probability of a false negati;e error in a frequency domain factor screening

simulation experiment goes to zero as the simulation run duration is

increased.

1. Background and Notation:

For analysis it is convenient to describe a simulation model in terms of
relationships between its input processes §x(t)§ and an output process sy(t)g.
Here we will assume that the simulation model acts as a general linear filter

with additive randomness §&£(t)} (Brillinger (1981), Chapter 6). Such a filter



can be represented as

fo2]
y(t) = £ g(wx(t-u) + &(t) (1)
u=-o

where

$y(t)? is a real-valued stochastic series,

$x(t)? is a real-valued deterministic series,

$g(u)? is an impulse response (memory weighting) function,
and

$e(t)} is a stationary stochastic series with mean zero.
If $x(t)} satisfies the quasi-stationary assumptions given in Ljung

(1987) on page 27, then (1) can be expressed in the frequency domain as

_ 2
£, = [F@3 @) + 1, @)
where
fc(w) is the power spectrum of §e(t)3
fy(w) is the power spectrum of §y(t)}
fx(w) is the power spectrum of $x(t)3
and
o »
rMw) = g(uwe 1o
u=-o

Note that even though the model given in (1) has a very simple form, it is
sufficient for our purposes. Schruben and Cogliano (1987) consider a
multivariate linear model for which the results in this article are still valid
since all of the spectral estimators considered here are asymptotically
independent at different values of w. They also point out that polynomial
functions of the input variables are equivalent in the frequency domain as sets
of linear inputs; they refer to these terms as pseudo-linear inputs.

Serious simulation models typically involve a great many input variables.

Efficient identification of those variables that have a truly significant



influence on the output is the motivation for running frequency domain
simulation experiments. In a straightforward frequency domain simulation
experiment, input factors and parameters of the simulation model are oscillated
at distinct frequencies during a run. The selection of these input driving
frequencies must done carefully (see Jacobson, Buss, and Schruben (1986)). The
sample power spectrum of the output process, $y(t)?%, is examined for the
presence of sinusodal components at input driving frequencies. The strength of
such signals are used to infer the relative importance of each of the input
factors in the simulation model. Only two runs of the simulation (discussed
below) are typically required in a frequency domain experiment to screen a large
number of input factors. This is in contrast with conventional simulation
experiments where factors are constant for each run and additional runs are
required to test the influence of each factor. See Sanchez and Schruben (1987)
for a detailed example of a frequency domain simulation factor screening
experiment. See, in addition, Schruben (1986) for extensions of the method
where estimation and optimization are the experimental objectives.

If we assume the model given in (1) and oscillate §x(t)} according to

x(t) = acos(mot + ¢)

where
o« is the amplitude
9, is the angular frequency ( radians per unit time )
p is a phase shift
Then
£ () = (x /D380 - 0) + 86 + @)
where



5( ) is the Dirac & - function (see Chatfield (1984), Appendix R )

From (2), the power spectrum of 3y(t)$ is

fy(w) = [F(m)[z(a /4)2(6(w - wo) + 8(w + wo)) + fs(w) (3)
Hence, if the input series is related to the output series by (1), then the
output power spectrum should illustrate the presence of periodicities at jwo in

the output time series.
2. The Asymptotic Power of the Test:

Certain complications arise in frequency domain experiments. Expression
(3) illustrates that the presence of periodicities at frequency imo may be
masked by memory, |F(w)|2, and random noise, fs(w). If IF(QO)IZ = 0 then the
periodicity at ) in the output spectrum is eliminated. Since §£(t)§ is a
random noise process, hence a realization of fs(w) may mask the presence of a
periodicity at ©,- The result would be a false negative error; the experimenter
would wrongly conclude that an important input factor was not significant.
Clearly in a factor screening experiment we would like to insure that this
serious error will not occur. We demonstrate in this section if the experiment
is run long enough the probability of this type of error goes to zero.

The function ' is typically unknown. We assume that I belongs to a family
of functions such that the roots of I are isolated and hence countable. A
class of such functions includes analytic functions; this is discussed further
in Section 3. If it is further assumed that the roots of M(w) are distributed
according to a continuous probability measure, then the probability of
generating a root which coincides with at most one of the term indicator

frequencies is zero since the set of driving frequencies is finite. If we



assume that M(w) belongs to such a family of functions, then for any fixed w, 9,
say, then F(wo)¢0 w.p. 1 (see Section 3 for more details ).

In order to overcome the potential problem of masking due to possible
dependencies in the random noise (i.e., non-constant fa(u)), the experiment is
run twice. The first run (called a control run) is a conventional simulation
run where the values of all the input factors are held fixed throughout the
run; no sinusodal components are added. The output power spectrum for the

control run (denoted as fcy(w)) from (3) is given by

£(0) = £.() (4)
In the second run (called the spectral run), the input process is oscillated
sinusodally and the resulting output power spectrum (denoted as fsy(w)) is
given by (3). Corresponding superscripts will denote the cross-spectra and
input spectra for the signal and the control run. Spectral estimators will be
denoted with a ~; the class of estimatators and their properties is presented in

Brillinger, section 6.5. VWe can now set up the following hypothesis:

Ho: f;(w) = fa(w)

. ¢S _ R P _
H,: fy(w) = |r(w) | (e« /4)7(3(w mo) + &(w + uo)) + fe(w).
HO says that oscillation of the the input factor, 3x(t)}, has no effect on

3y(t)d. Ha says that $x(t)? has an effect on $y(t)$§ and that this is apparent

by the presence of a periodicities at frequencies iwo. Assuming that HO is

true, the test statistic proposed by Schruben and Cogliano (1987) is

£3(w)
1, ®)
f;(m) |

( Q ' means 'approximately equal in distribution’).

Here Fvv has a F-distribution with v and v degrees of freedom. The degrees of
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freedom depend on the spectral window used in the estimation of fcy(w) and
1 (). |

If HO is false then the numerator of (5) is not estimating fa(w) but
something larger, hence the objective is to reject H0 if the observed value of
(5) is '""too large''. In order to determine what is ''too large'', an F-table may
be used since the statistic in (5) has an approximate F-distribution. It is
desirable to examine the asymptotic properties of (5) and determime the power
of the test as the sample size goes to infinity.

Under HO, both fcy(w) and fsy(w) are COnsistent‘and asymptotically unbiased
estimators of fe(w) (this follows from the window used in the construction of
the estimates — see Brillinger (1981), page 149). Define M as the truncation
point of the spectral window and N as the sample size. If M+ @ as N + @ in

such a way that M/N » 0, then (Brillinger (1981), page 149),

lin E]Ee(w) -1 (@]% =0 (6)

FaN N FaY
“C 3
where f (&) = f (w) = f (w).
( (@) = £5(0) = 13(2)
Since convergence in mean square implies convergence in probability then
from (6), we get
£ () B or (v

(where ‘B’ means 'goes in probability to').
Hence, '
S
fo(w)
:X___ B 1 under Ho’
£2(0)
Under Ha’ (6) implies that
~c
£(w) Bt (o).
Also,

1 EIT3) - T B /03 (a(ouy) + s(era)) + 1,117 = 0. (D)



Sections 6.5 and 6.6 in Brillinger (1981) show that an asymptotically unbiased

and consistent estimator for M(w) is

F = 12 @S ®)

where f;x(w) is a cross-spectrum estimator for f;X(w).
Also, an asymptotically unbiased and consistent estimator of fe(w) is,

F@) = 130 - 12 @ EN) T @ (9)
where

oS . . °s
fxy(w) is the complex conjugate of fyx(w).

It then follows from (8) and (9) that
fy(w) = |r(w)| fx(w) + fs(w)
is an asymptotically unbiased and consistent estimator for f;(w) under Ha’

which justifies the result given in (7). Again using the result that

convergence in mean square implies convergence in probability, we have

B B r@ P /9% (sma) + sere)) + 1 ().

Also, since f;(w) J fs(w), then

A

S 2 2
W) F) [“(a /4)7(5(ww ) + 8(wtw ))
<L B | | 2 g . 41
c
£5() £, (o)
Define the hypothesis test outcome indicator function as,
A £2()
I, . ,=11if —L— > F and 0 otherwise. (10)
[sig] “c VL
fo(w
S
As N » o, then v » @, which in turn implies Fvv.a - 1. If Ho is false,

then



2 P R
i;&oz 2 Ir(@) | (e /4)°(8(em0 ) + s(wta)) L
£2(w) £ (0)
Hence from (10)
1 1. (11)

sig]

By defintion, the power of the test = E[I[sig]]‘ From (10) and (11), we
get .
E[I . 4] » 1 as N =+ o,
[sig]

i.e., the power of the test goes to 1 as N =+ o.

3. The Effect of Aliasing:

The results of Section 2 are based on the assumption that the tranfer
function is non-zero almost everywhere. When the output is discrete the
effects of aliasing (Priestley (1981), page 224) ) must be considered. We will
now show that the class of functions which satisfy our requirements include
analytic functions. The set of analytic functions include, for example,
polynomials, rational functions and exponential functions. Furthermore, we
show that aliasing does not change our conclusions concerning the asymptotic

power of the test studied in this article.

Theorem 3.1 (Kaplin (1966), page 53)
The zeros of an analytic function are isolated, unless the function is
identically zero, ie, if f(z) is analytic’on its domain, then for each zero z,

of f(z) there exists a deleted neighborhood of z, in which f(z) # 0.

Proposition 3.2

The zeros of an analytic function are countable in the domain of the function,



which is a subset of ® (where R = Real numbers).

Proof:

Since the zeros are isolated in the domain, there exists a deleted neighborhood
of each zero that does not contain any zeros of f. Furthermore the deleted
neighborhood of each zero can be chosen small enough so that they are all
disjoint (by shrinking the deleted neighborhood to eliminate overlap, no roots
are lost since, by definition, the deleted neighborhoods do not contain any
roots). Since the deleted neighborhoods are disjoint, we may pick a unique
rational number from each one (which is possible by the density of the
rationals). Since the rationals are countable, then so are the deleted

neighborhoods and hence the roots of the function are countable.

The motivation for the next theorem comes from the fact that in discrete
sampling, aliasing occurs. In a real-valued process, all frequencies (here
is measured in units of cycles per observation) are mapped back to the interval
[0,0.5]. Therefore, the zeros of the transfer function ' are mapped from the
interval (-o,0) to the interval [0,0.5]. Theorem 3.3 shows that the resulting
transfer function on the interval [0,0.5] is non-zero almost everywhere if I is

non-zero almost everywhere on R.

Theorem 3.3

If the transfer function I for a continuous real valued process is analytic on
(-o,®), then the alias of I', resulting from discrete sampling and defined on
[0,0.5], is non-zero almost everywhere.

Proof:

Consider subdividing R into the following intervals,



...[—2,-1.5][—1.5,—1][—1,—0.5][—0.5,0][0,0.5][0.5,1][1,1.5]...

The alias mapping is defined as A:R = [0,0.5] to be

A(w) = |u] if 0<|w|<0.5

1 - |o| if 0.5<|w|<1

lo - [0]] if |e| > 1

Hence A is a many to one mapping of R to [0,0.5], but A is a one-to-one mapping
of any one of the defined intervals onto [0,0.5].

Consider an arbitrary interval Iq, then A:Ia -+ [0,0.5] is one-to-one and
onto. Let Km be the set of zeros of I contained in Iq and define LOC such that
‘A<Ka)=La’ Ka is countable. ¥e next show thgt La is countable.

Since Ka is countable there exists a one-to-one, onto mapping B:2 = Ka
(where @ = Rational numbers), hence the composition A o B:2 - Loc has the

following properties:
1)one-to-one since
A o B(r)) = A o B(ry),
B(rl) = B(rz) (since A is one-to-one), and

(since B is one-to-one).
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2)onto since

1 =A(k) for 1 ¢ La and

for some k ¢ K, (since A is onto),
k = B(r) for some r £ 2 (since B is onto), and
1 =40 B(r).

Since A o B is one-to-one and onto, therefore La is countable.

By construction R :n§~m1n’ For each In’ the set Ln is the range of the
alias mapping of zeros contained in In' Henceng,gn is the range of the alias
mapping of the zeros in R. This is a countable union of countable of
countable sets, which is countable. Hence the zeros of the alias of T,
defined on the set [0,0.5], are countable and therefore belong to a null set in
[0,0.5].

4. Summary:

In this article we have shown that tﬁe probability of a false negative
error occuring in a frequency domain simulation factor screening experiment
goes to zero as the run length is increased. In factor screening experiments a
false negative error (missing something significant) is of primary importance.
False positives (a much less serious error) can and do occur although some

effort must be expended to construct such situations.
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