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Abstract

Document length normalization is an important aspect of term weight assignment in an automatic
information retrieval system. In this study, we observe that a normalization scheme that retrieves
documents of all lengths with similar chances as their likelihood of relevance will outperform another
scheme which retrieves documents with chances very different from their likelihood of relevance. We
show that the retrieval probabilities for a particular normalization method deviate systematically from
the relevance probabilities across different collections. We present pivoted normalization, a technique that
can be used to reduce the gap between the relevance and the retrieval probabilities. Training pivoted
normalization on one collection, we can successfully use it on other (new) text collections, yielding a
robust, collection independent normalization technique. We use the idea of pivoting with the well known
cosine normalization scheme. We point out some shortcomings of the cosine normalization function
and present two new normalization functions — pivoted unique normalization and pivoted byte size
normalization.

1 Background

Term weighting is an important aspect of modern text retrieval systems. [3] Terms are words, phrases, or any
other indexing units used to identify the contents of a text. Since different terms have different importance
in a text, an importance indicator — the term weight — is associated with every term. [11] Three main
components that affect the importance of a term in a text are the term frequency factor (if), the inverse
document frequency factor (idf), and document length normalization. [12]

Term weight normalization is used to remove the advantage that the long documents have in retrieval
over the short documents. Two main reasons that necessitate the use of normalization in term weights are:

1. Higher term frequencies: Long documents usually use the same terms repeatedly. As a result,
the term frequency factors may be large for long documents, increasing the average contribution of its
terms towards the query—document similarity.

2. More terms: Long documents also have numerous different terms. This increases the number of
matches between a query and a long document, increasing the query—document similarity, and the
chances of retrieval of long documents in preference over shorter documents.

Normalization is a way of penalizing the term weights for a document in accordance with its length.
Various normalization techniques are used in information retrieval systems. Following is a review of some
commonly used normalization techniques:

¢ Cosine: Cosine normalization is the most commonly used normalization technique in the vector space
model. [13] The cosine normalization factor is computed as Vw12 + w2 + ... + w2, where w; is the
raw if Xidf weight for a term. [9, 11] Cosine normalization attacks both the reasons for normalization
(higher tfs and more terms) in one step. Higher individual term frequencies increase individual w;
values, increasing the penalty on the term weights. Also, if a document has more terms, the number of
individual weights in the cosine factor (¢ in the above formula) increases, yielding a higher normalization
factor.

*This study was supported in part by the National Science Foundation under grant IRI-9300124.



e Maximum tf: Another popular normalization technique is normalization of individual #f weights
for a document by the maximum #f in the document. The Smart system’s augmented #f factor
(0.5+0.5x =), and the #f weights used in the INQUERY system (0.4+0.6 x ;--7-) are examples
of such normalization. [11, 16] By restricting the #f factors to a maximum value of 1.0, this technique
only compensates for the first reason (higher tfs) for normalization. When used without any correction
for the second reason (more terms) this turns out to be a “weak” form of normalization and favors the

retrieval of long documents. [2]

¢ Byte Length: More recently, a length normalization scheme based on the byte size of documents has
been used in the Okapi system. [8] This normalization factor attacks both the reasons for normalization
in one shot.

This study shows that better retrieval effectiveness results when a retrieval strategy retrieves documents
with chances similar to their probability of relevance. We present a technique to analyze these probabilities.
Based on observations from this analysis, we present a novel normalization approach — pivoted normalization.
We show that pivoted normalization yields substantial improvements in retrieval effectiveness.

The rest of this study is organized as follows. Section two introduces pivoted normalization. Section
three shows how the cosine function can be pivoted to obtain significant improvements in retrieval effective-
ness. Section four further analyzes the cosine function. Section five introduces pivoted unique normalization,
another possible function for document length normalization. Section six introduces pivoted byte size nor-
malization for use in degraded text collections. Section seven concludes the study.

2 Approach

For a document collection and a set of queries, we analyze the likelihood of relevance/retrieval for documents
of all lengths, and plot these likelihoods against the document length to obtain a “relevance pattern” and
a “retrieval pattern”. In general, a scheme under which the probability of retrieval for the documents of a
given length is very close to the probability of finding a relevant document of that length should perform
better than another scheme which retrieves documents with very different chances from their relevance
probability. The aim is, then, to learn how the retrieval pattern deviates from the relevance pattern for a
given normalization function. Under the hypothesis that this deviation is systematic across different queries
and different document collections, we can propose collection independent techniques to reduce this deviation.

2.1 Likelihood of Relevance/Retrieval

To design functions that attempt to match the likelihood of retrieval to the likelihood of relevance, we need
a way to estimate these likelihoods. We do this by ordering the documents in a collection by their lengths,
and dividing them into several equal sized “bins”. We can then compute the probability of a randomly
selected relevant/retrieved document belonging to a certain bin. For example, to do such an analysis for
fifty TREC [6] queries (151-200) and 741,856 TREC documents (from disks one and two), we sorted the
documentsin order of increasing byte-length. We divided this sorted list into bins of one thousand documents
each, yielding 742 different bins: the first 741 bins containing one thousand documents each, and the last
bin containing the longest 856 documents. We selected the median document length in each bin to represent
the bin on the graphs used in later analysis.

We took the 9,805 (query, relevant-document) pairs for the fifty queries, and counted how many pairs
had their document from the ith bin. We then computed the probability that a randomly selected relevant
document belongs to the ith bin — the ratio of the number of pairs that have their document from the ith
bin, and the total number of pairs (9,805). In terms of conditional probability, given a document D, this
ratio for the ith bin can be represented by P(D € Bin; | D is Relevant). Similarly, by retrieving the top
one thousand documents for each query (yielding 50,000 {query, retrieved-document) pairs), and repeating
the above analysis for a bin, we get the conditional probability of retrieval, P(D € Bin; | D is Retrieved),
for a particular normalization function.
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Figure 1: Probability that a relevant/retrieved document is from a bin, plotted against the median bin length. The analysis
for the relevant documents is shown in (a), (b) shows the analysis for documents retrieved using cosine normalization, and (c)
compares the smooth plots for (a) and (b).

Figures 1(a) and 1(b) show the plots of the probabilities obtained from the above analysis plotted against
the median document length in a bin. Smart’s inc.ltc retrieval, which is based upon cosine normalization,
was used to get the retrieval probabilities. [4] In Figure 1(c), the smoothed plots® for the relevance and
the retrieval probabilities are graphed together. This comparison reveals important information about the
length normalization properties of a term weighting strategy. For example, we can observe from the smoothed
plots that Inc.lic retrieval has a tendency to retrieve short documents with a higher probability than their
probability of relevance; it is less likely to retrieve longer documents as compared to the likelihood of their
relevance. This observation reinforces the long held belief that cosine normalization tends to favor short
documents in retrieval. When using Inc.lic retrieval, we would like to (somehow) promote the retrieval of
longer documents, and we would like to retrieve fewer short documents.

2.2 The “Pivoted” Normalization Scheme

The higher the value of the normalization factor for a document is, the lower are the chances of retrieval for
that document. In effect, the probability of retrieval of a document is inversely related to the normalization
factor used in the term weight estimation for that document. This relationship suggests that to boost the
chances of retrieval for documents of a certain length, we should lower the value of the normalization factor
for those documents, and vice-versa. The pivoted normalization scheme is based on this principle.

The basic idea of pivoted normalization is illustrated in Figure 2. Using a normalization function (like
cosine, or byte-size), a set of documents is initially retrieved. As shown in Figure 1(c), the retrieval and the
relevance curves are plotted. The point where these two curves cross each other is called the pivot. The
documents on one side of the pivot are generally retrieved with a higher probability than their relevance
probability, and the documents on the other side of the pivot are retrieved with a lower probability than
their probability of relevance. The normalization function can now be “pivoted” at the pivot and “tilted” to
increase the value of the normalization factor, as compared to the original normalization factor, on one side
of the pivot. This also decreases the value of the normalization factor on the other side of the pivot. The
amount of “tilting” needed becomes a parameter of the weighting scheme, and is called the slope. With such
pivoting and tilting, the pivoted normalization factor is represented by the equation for a line of gradient
slope that intersects the line of unit gradient at the point pivot.

pivoted normalization = (1.0 — slope) X pivot + slope x old normalization (1)

If this deviation of the retrieval pattern from the relevance pattern is systematic across collections for a

1We generated smooth plots for various figures by representing a sequence of 24 bins by a single point and connecting
these points by a curve. The 742 bins yielded 31 different points where the last point represented the longest 22 bins (742 =
30 X 2441 X 22). The representative point for a group of bins was obtained by taking the averages of both the median lengths,
and the probabilities of relevance/retrieval for the 24 consecutive bins.
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Figure 2: Pivoted Normalization. The normalization factor for documents for which P(retrieval) > P(relevance) is
increased, whereas the normalization factor for documents for which P(retrieval) < P(relevance) is decreased.

normalization function, the pivot and the slope values learned from one collection can be used effectively on
another collection. See [15] for a more detailed description of this technique.

2.3 Removing One Parameter

Using pivoted normalization, the new weight of a document term can be written as:

tf - idf weight
(1.0 — slope) x pivot + slope X old normalization

If we multiply every document term weight by a constant, the relative ranking of the documents under
inner-product similarity measurement remains unchanged since individual document similarities are simply
scaled by the constant. Multiplying each weight by the constant (1.0 — slope) x pivot, we obtain the following
term weighting formula:

if - idf weight x (1.0 — slope) x pivot or if - idf weight
(1.0 — slope) x pivot + slope x old normalization 14 ——3lre __  o1d normalization

(1.0—slope) x pivot

We observe that the form of the pivoted normalization function is 1 + ¢ X old normalization, where the
constant c equals M’%. If the pivot value in an optimal constant ¢ is changed to pivot, the slope
value can be modified to slope’ to get back the optimal constant. If we fix the pivot value at some collection
specific value, like the average old normalization factor, it is still possible to obtain an optimal slope value
by training. Therefore, the number of parameters that we need to train for is reduced to just one instead of

two.

Selecting the average old normalization factor as the pivot has a nice interpretation. If instead of
multiplying every term weight by (1.0 — slope) x pivot in Equation 1, we multiply every weight by the
constant pivot (which has the value average old normalization), the final normalization factor reduces to:

old normalization

1.0 — slope) + slope x —
( Pe) P average old normalization

From this expression, similar to Robertson’s notion [7], we can say that an average length document is of
“appropriate length” and its weights should remain unchanged, i.e., it should get unit (or no) normalization.
Also, the slope can be interpreted as our “belief in length”.



Pivoted Cosine Normalization
Cosine Slope
0.60 0.65 0.70 0.75 0.80
6,526 6,342 | 6,458 | 6,574 6,629 6,671
0.2840 0.3024 | 0.3097 | 0.3144 0.3171 0.3162
Improvement | + 6.5% | + 9.0% | +10.7% | +11.7% | +11.3%

Table 1: Estimation of a good slope in pivoted cosine normalization. The pivot is set to the average cosine normalization
factor (13.36) for TREC disks one and two (741,856 documents). TREC queries 151-200 were used in these experiments. Each
entry shows the total number of relevant documents retrieved (out of 9,805) for all fifty queries, the non-interpolated average

precision, and the improvement in average precision over using cosine normalization.
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Figure 3: Pivoted cosine normalization: comparison of retrieval pattern relevance pattern (a), and same comparison for cosine

normalization (b).

3 Pivoted Cosine Normalization

Since cosine normalization is the most commonly used normalization technique, it is natural to test
pivoting with the cosine function first. In our studies with the TREC collection [6], a #f factor of 1+ log(if)
works well. Also, the idf factor is only used in the query term weights and not in the document term
weights. [4] Fixing the pivot value at the average cosine factor for 1+ log(¢f) weighted documents for TREC
disks one and two (average = 13.36), we retrospectively learn the value of a good slope for TREC queries
151-200 (see Table 1). Substantial improvements over cosine normalization — 9-12% improvement in average
precision — are obtained using pivoted cosine normalization.

Figure 3(a) compares the retrieval pattern for pivoted cosine normalization to the relevance pattern. For
comparison with cosine normalization, Figure 1(c) has been reproduced here as Figure 3(b). We observe
that the curve for the retrieval probability using pivoted cosine normalization is much closer to the curve
for the relevance probability, as opposed to the curve for retrieval using cosine normalization. This indicates
that pivoted cosine normalization retrieves documents of all lengths with chances much closer to their
likelihood of relevance. This observation along with the 11.7% improvement over cosine normalization
strongly supports our hypothesis that schemes that retrieve documents of different lengths with chances
similar to their likelihood of relevance will have a higher retrieval effectiveness. To test the robustness of
pivoted cosine normalization, we tested it on the other 150 TREC queries (1-150). The training for slope
for TREC queries 1-150 is shown in Table 2. Once again we see that pivoted cosine normalization yields
10-12% improvement over cosine normalization.

As relevance judgments are not available in an adhoc querying environment, to observe the variability in
a good slope value across query sets, we also tested the optimal slope value obtained from a set of training



Pivoted Cosine Normalization

Cosine Slope
0.60 0.65 0.70 0.75 0.80
28,484 30,270 | 30,389 30,407 | 30,314 | 30,119
0.3063 0.3405 | 0.3427 | 0.3427 | 0.3411 | 0.3375
Improvement | +11.2% | +11.9% | +11.9% | +11.4% | +10.2%

Table 2: Estimation of a good slope in pivoted cosine normalization for TREC queries 1-150. Each entry shows the total
number of relevant documents retrieved (out of 46,555) for all 150 queries, the non-interpolated average precision, and the
improvement in average precision over cosine normalization.

queries (TREC queries 1-150) on a set of test queries (TREC queries 151-200). We observe from Table 2
that the best slope value for queries 1-150 is 0.70. If we use this slope value for queries 151-200, we would
still achieve “near best” performance — 10.7% improvement in place of 11.7% (see Table 1). This indicates
that it is possible to learn the slope value on one set of queries and successfully use it on another.

To test our hypothesis that the deviation of the retrieval pattern from the relevance pattern for a given
normalization function is systematic across different query sets and different document collections, we studied
these patterns for cosine normalization on six different sub-collections of the TREC collection. [6] Figure 4
shows the relevance patterns and the retrieval patterns (for queries that have any relevant document in a
collection) obtained using cosine normalization and pivoted cosine normalization for various collections. We
observe that, despite the widely varying relevance patterns for different collections, for cosine normalization,
the deviation of the retrieval pattern from the relevance pattern is indeed systematic. For all collections,
use of cosine normalization retrieves short documents with chances higher than their likelihood of relevance,
and retrieves long documents with chances lower than their likelihood of relevance. Using pivoted cosine
normalization reduces the gap between the retrieval and the relevance pattern for all the collections. More-
over, the slope value learned from one collection is near optimal — within 5% of the best slope value — for
all the collections. Using a slope of 0.70 across collections, important improvements (+4.3% to +21.7%) are
achieved on all the collections.

4 Analysis of the Cosine Function

On close observation of Figure 1(b) we notice that when cosine normalization is used for TREC queries 151
200, the probability of retrieval for the last few bins, containing “extremely” long documents, is substantially
higher than the rest of the collection. The last few bins contain documents that are longer than 20,000 bytes,
more than six times the average document size for the entire collection. This favoring of extremely long is
more prevalent when pivoted cosine normalization is used — the last few bins in Figure 3(a) have very high
retrieval probabilities.

This favoring is further examined in Figure 5 which shows a magnified view of the long end of the
document length spectrum, the last twenty bins. We notice that using cosine normalization, the retrieval
probabilities for extremely long documents are marginally greater than their probability of relevance, i.e.,
cosine normalization retrieves these documents with “mildly higher” chances than we would like. When we
use pivoted cosine normalization, which aims at favoring long documents, we end up “strongly favoring”
extremely long documents. This effect causes excessive retrieval of such (possibly non-relevant) documents,
hurting the retrieval effectiveness.

On deeper analysis of the cosine function, we observe that if all the terms appear just once in a document
(¢f = 1), the cosine normalization factor for the document is (individual term weights are 1 + log(#f) = 1
and we are not using the idf factor on documents):

V12412412 = V# of unique terms

In reality, some terms occur more than once in a document, and the cosine factor can be higher than
V# of unique terms. In practice, however, the cosine normalization factors for documents are very close to
the function /# of unique terms due to the following two facts:
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Figure 4: Comparison of cosine and pivoted cosine normalization for six different collections. Use of cosine normalization
invariably favors short documents in retrieval. This problem is reduced by the use of pivoted cosine normalization.
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Figure 5: Probabilities in the last twenty bins containing the longest 19,856 documents (last bin has only 856 documents)
from the collection. We notice that pivoted cosine normalization favors the retrieval of extremely long documents.

o It is well known that the majority of the terms in a document occur only once. So there are only a few
terms that have tf > 1.

e As we use 1+ log(tf) as the tf factor, for most of the terms with ¢ > 1, the #f factors are “not too
big”. Due to the “dampening effect” of the log function, most of the i¢f factors, in practice, are “near

one”.

When we studied the variation of the cosine factor for TREC documents in relation to the number of
unique terms in a document, we observed that the cosine factor actually does vary like the function

# of unique terms®®.

Further, with dampened #f factors, even with high raw #f values in individual documents, document
retrieval is not strongly affected by the term frequency factors. The retrieval of documents is generally
governed by the number of matches to the query. Assuming complete binary term independence, the prob-
ability of a match between the query and a document increases linearly in the number of different terms in
a document?. Therefore a good length normalization function should also vary linearly with the number of

unique terms in a document.

As documents grow longer, the cosine function, with its variation as # of unique termso‘ﬁ, becomes
substantially weaker than a linear function in # of wunique terms. For this reason, we observe that the use
of cosine function can favor extremely long documents in retrieval. This problem is aggravated with the
use of pivoted cosine normalization which further aids the retrieval of long documents. We propose that a
function linear in the number of unique terms in a document be used for normalization.

5 Pivoted Unique Normalization

Based on the above observations, we use the number of unique terms in a document as the normalization
function, and to match the likelihoods of relevance and retrieval, we use pivoting of this function to get the

pivoted unique normalization function:
pivoted unique normalization = (1.0 — slope) X pivot + slope X # of unique terms
Since the pivoted unique normalization factor only compensates for the second effect — more terms in

long documents — that necessitates (the presence of) normalization, we still need to compensate for the
first effect — higher ifs in long documents (see Section 1). Normalization of #f weights by maximum if

2Suppose the vocabulary size is T, and document D has k different terms. The probability that a randomly selected query

term belongs to document D is % This probability increases linearly in k.



Pivoted Unique Normalization
Cosine Slope
0.15 0.20 0.25 0.30
6,526 6,688 6,841 6,864 6,852
0.2840 0.3268 | 0.3355 0.3361 0.3318
Improvement +15.1% | +18.1% | +18.3% | +16.8%
Improvement
over best (0.3171) | + 3.1% | +5.8% | + 6.0% | + 4.6%
Pivoted Cosine

Table 3: Estimation of a good slope in pivoted unique normalization for TREC queries 151-200. Each entry shows the total
number of relevant documents retrieved (out of 9,805) for all fifty queries, and the non-interpolated average precision. The
improvements in average precision over cosine normalization and over pivoted cosine normalization are also shown. The pivot
value was set to 107.89, which is the average number of unique terms in a document for TREC disks one and two.

in a document can possibly be used to remove this effect, but we believe that maz_{f is not an optimal
normalization scheme to fix the higher tfs problem. For example, if a query term occurs five times in
document D; in which all other terms occur just once, then D; is possibly more interesting than another
document Ds in which the same query term occurs five times as well, but all other terms also occur five
times each. If maz_if is used for normalization, D; has no advantage over Dj since the query term will have
the same weight in both the documents.

We believe that average term frequency in a document is a better representative of the “verbosity” of a
document. Judging term importance by term frequencies, if all terms were equally important in a document,
each should occur the same number of times in that document with #f = average tf. For this reason, we
would like a term that has ¢f = average if to have unit importance in a document. We use the function:

1+ log(i#f)
1 + log(average if)

as the term frequency factor for a term in a document. In experiments comparing average term frequency
based normalization to mazimum term frequency based normalization® (in conjunction with pivoted unique
normalization with retrospectively trained slope value), we observed that average term frequency based
normalization performed 5.7% better for 200 TREC queries on the entire TREC collection.

Based on this #f factor (which we call the L factor in Smart’s term weight triple notation [11]) and pivoted
unique normalization (which we call the » normalization factor), we obtain the final weighting strategy of
the documents (called Lnu weighting in Smart):

1+1log(tf)
1+log(average tf)

(1.0 — slope) x pivot + slope X # of unique terms

Once again, we can use the average number of unique terms in a document (computed across the entire
collection) as the pivot, and train for a good slope value.

The results of switching to pivoted unique normalization from pivoted cosine normalization for TREC
queries 151-200 are listed in Table 3. We observe that the best pivoted unique normalization yields another
6% improvement over the best pivoted cosine normalization, resulting in an overall 18.3% improvement over
cosine normalization. A deeper analysis of retrieval using Lnu weighted documents (Figure 6(a)) reveals
that in comparison to pivoted cosine normalization (Figure 6(b)), the probability of retrieval using pivoted
unique normalization is, in fact, even closer to the probability of relevance for documents of all lengths. We
also notice in Figure 6(c) that the advantage that very long documents had by the use of pivoted cosine
normalization is removed by using pivoted unique normalization. The additional 6% improvement in Table 3
shows that as the retrieval probabilities come closer to the relevance probabilities, retrieval effectiveness
increases. The closer the two curves are, the higher is the retrieval effectiveness.

3We used the function 0.4+ 0.6 X %%, a function similar to the well tested and effective function of the INQUERY

system. [2]
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Figure 6: Pivoted unique normalization compared to pivoted cosine normalization.

To verify the general applicability of pivoted unique normalization schemes, we also tested it on various
sub-collections of TREC. Substantial improvements over cosine normalization are obtained for all the col-
lections. Also, the slope value is very stable, i.e., the changes in retrieval effectiveness with minor deviations
in slope (from the optimal slope value) are very small for all the collections. A constant slope value of 0.20
was effective across collections. These observations are reassuring in terms of the general applicability of the

pivoted normalization schemes.

6 Degraded Text Collections

When large text collections are constructed by electronically scanning the documents and using optical
character recognition (OCR), the resulting text is usually degraded because of faulty recognition by the
OCR process. Term weighting strategies that are effective for correct text collections might not be effective
for degraded text collections. For example, if we use pivoted unique normalization in a degraded text
collection, the normalization factor for documents will be affected by the poor quality of the input text
(usually the number of unique terms in a document will be artificially high because different occurrences of
a term can yield different unique terms in the degraded text).

Term weighting strategies that are not affected by the errors in the input text are needed for degraded
text collections. [14] For correct collections, we have used the cosine factor and the number of unique
terms to represent a document’s length. In a degraded text collection, length measures that undergo little
distortion in the OCR process should be used for document length normalization. Since longer documents
have more words and thus a greater number of bytes, functions of the number of bytes in a document could
possibly be used for normalization. The Okapi system successfully uses the document size (in bytes) for
length normalization of (correct) documents. [7] In OCR environments, the byte sizes of the documents are
less distorted, and this distortion is much more uniform across documents. For this reason, byte sizes of
documents should provide a more stable normalization function. [14]

We use byte size of a document to denote the document’s length in the pivoted normalization function.
Using the average byte size as the pivot, we obtain the following normalization function:

pivoted byte size normalization = (1 — slope) X average byte size + slope x byte size

Using this normalization function, which we denote by the letter b in Smart’s notation, and 1 + log(if)
weighted term frequency factors, we tested various slope values on the correct TREC disks one and two,
using TREC queries 151-200. The results of using Inb weighted documents and Itb weighted queries are
shown in Table 4.

Table 4 shows that pivoted byte size normalization also yields important improvements over cosine
normalization. It is mildly worse than using the best pivoted unique normalization on the correct text.
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Pivoted Byte Size Normalization
Cosine Slope
0.25 0.30 0.35 0.40
6,526 6,634 6,678 6,689 6,570
0.2840 0.3258 0.3277 | 0.3261 | 0.3088
Improvement +14.7% | +15.4% | +14.8% | +8.7%
Improvement
over best (0.3361) | - 3.1% - 2.5% -3.0% | -8.1%
Pivoted Unique

Table 4: Estimation of a good slope in pivoted byte size normalization for TREC queries 151-200. Each entry shows the total
number of relevant documents retrieved (out of 9,805) for all fifty queries, and the non-interpolated average precision. The
improvements in average precision over cosine normalization and over pivoted unique normalization are also shown. The pivot
value was set to 2,730, which is the average number of indexable bytes in a document for TREC disks one and two.

When we compare the probability of retrieval using the pivoted byte size normalization to the probability of
relevance for documents, we observe that pivoted byte size normalization retrieves very long documents with
lower chances than their chances of relevance. This can be fixed by using a milder normalization function
(like bytesize®®" or bytesize®®%) with a stronger (higher) slope. Very small improvements (less than one
percent) were obtained using these milder normalization functions. Overall, pivoted byte size normalization
is an effective way to normalize, and it will be especially useful in degraded text collections.

7 Conclusions

This study shows that if documents of all lengths are retrieved with similar chances as their likelihood of
relevance, retrieval effectiveness improves. Pivoted normalization is a powerful technique to make any normal-
ization function weaker or stronger, thereby reducing the systematic deviation in the retrieval probabilities
of documents (retrieved using the normalization scheme) from their likelihood of relevance. Substantial
improvements are achieved by pivoting the cosine normalization function. This study also observes the
weakness of the cosine function for very long documents and proposes a fix — pivoted unique normalization.
The byte size of documents can also be pivoted to obtain another effective document length normalization
function.
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