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Abstract

In this paper we use Bayes estimates of a multinomial probit model with fully flexi-

ble substitution patterns to forecast consumer response to ultra-low-emission vehicles.

In this empirical application of the probit Gibbs sampler, we use stated-preference

data on vehicle choice from a Germany-wide survey of potential light-duty-vehicle

buyers using computer-assisted personal interviewing. We show that Bayesian esti-

mation of a multinomial probit model with a full covariance matrix is feasible for

this medium-scale problem and provides results that are very similar to maximum

simulated likelihood estimates. Using the posterior distribution of the parameters of

the vehicle choice model as well as the GHK simulator we derive the choice proba-

bilities of the different alternatives. We first show that the Bayes point estimates of

the market shares reproduce the observed values. Then, we define a base scenario of

vehicle attributes that aims at representing an average of the current vehicle choice

situation in Germany. Consumer response to qualitative changes in the base scenario

is subsequently studied. In particular, we analyze the effect of increasing the network

of service stations for charging electric vehicles as well as for refueling hydrogen. The

result is the posterior distribution of the choice probabilities that represent adoption

of the energy-efficient technologies.

JEL classification: C25, D12, Q42.

Keywords: Discrete choice models; Bayesian econometrics; Low emission vehicles;

Charging infrastructure

∗School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853; Email:
daziano@cornell.edu
†Centre for European Economic Research (ZEW), L7,1, D-68161 Mannheim, Germany; Email:

achtnicht@zew.de



1 Introduction

Consumer shift to ultra-low-emission vehicles has been regarded as a way to pro-

mote sustainable personal transportation. Whereas new low-emission technologies –

including battery electric vehicles – have clear benefits such as efficiency gains and

emission reductions, there are several barriers preventing broad adoption. On the

one hand, electric vehicles are much more expensive than standard gas vehicles with

a similar build. On the other hand, consumers face reliability issues, namely limited

and variable driving range, and lack of refueling stations. Discrete choice models are

a powerful tool to understand how consumers evaluate these tradeoffs and decide

which vehicle to purchase (Bunch et al., 1993; Brownstone et al., 1996; Brownstone

and Train, 1999; Brownstone et al., 2000; Horne et al., 2005; Daziano and Bolduc,

2011; Hensher et al., 2011; Achtnicht et al., 2012). Additionally, since the automo-

tive market presents highly differentiated products with several qualitative attributes

that are hard to measure, it is desirable to work with flexible discrete choice models

that allow for both consumer and error heterogeneity. For instance, unobservable

qualitative attributes that may be shared – completely or partially – among differ-

entiated products, such as light duty vehicles, may create correlation patterns that

can be fairly complex (see Train, 2009).

The multinomial probit model (Thurstone, 1927) is a direct strategy for address-

ing heterogeneity of the error term in random utility maximization. In effect, to avoid

the econometric problems of biased and inconsistent parameters related to specifica-

tion error, there are two possible strategies for dealing with random heterogeneity.

First, the modeler can include additional additive error terms that create correlation

or heteroskedasticity. This is the modeling strategy of mixed logit models (McFadden

and Train, 2000). A second strategy is to introduce more general structures that are

derived directly from the covariance matrix. In the case of the multinomial probit

model, the general assumption is a direct generalization of the covariance structure

through error terms that have a multivariate normal distribution. Applications of the

multinomial probit model have included both constrained and unconstrained versions

of the covariance matrix of the multivariate normally distributed error term (see Da-

ganzo, 1979; Bolduc and Ben-Akiva, 1991; Munizaga and Daziano, 2005; Ziegler,
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2012).

To forecast consumer response to ultra-low-emission vehicles, in this paper we

adopt a multinomial probit model with a general covariance structure that offers

fully flexible substitution patterns among alternatives.

Fully flexible models do not need to assume a particular covariance structure;

instead, the substitution patterns are revealed from the data. Because the choice

probabilities of the probit model do not have a convenient closed form, simulation

is required to evaluate the multi-fold integral that represents the probit choice prob-

abilities. On the one hand, the GHK recursive probability simulator has been pro-

posed and successfully tested for deriving a frequentist estimator of the parameters

of the model (Geweke, 1991; Hajivassiliou and McFadden, 1998; Keane, 1994). How-

ever, the multinomial probit loglikelihood function is not globally concave. In fact,

the maximum simulated likelihood estimator using the GHK simulator is relatively

computationally expensive for high dimensions, may produce a poor approximation

of the asymptotic covariance matrix (Bhat, 2011), and may have convergence is-

sues for large-scale applications. Many empirical transportation modelers share the

perception that the use of the GHK simulator is somewhat prohibitive due to its

computational cost (cf. Connors et al., 2012), despite the encouraging results found

in some studies – including Geweke et al. (1997), who analyze a problem with 20

dimensions, and Ziegler (2012), where the most flexible model estimated involves

36-dimensional integrals. Convergence failure adds to this perception, which may be

explained by the problem of weak identification encountered in panel (multiperiod)

multinomial probit models (Ziegler and Eymann, 2001), or in a single-period probit

with individual covariates only (Keane, 1992). On the other hand, the Bayes probit

estimator is analytically straightforward (Albert and Chib, 1993) and has proven

to perform better in estimation than maximum simulated likelihood (Geweke et al.,

1994, 1997). The basic idea is that data augmentation allows for treating the model

as an ordinary regression. Even though several authors have analyzed the Bayes es-

timator of the multinomial probit model (McCulloch and Rossi, 1994, 2000; Bolduc

et al., 1997; McCulloch et al., 2000; Nobile, 2000), applications in transportation

are rather limited (Kim et al., 2003). In fact, Bayesian discrete choice, especially in

modeling travel behavior, lags well behind Bayesian developments in other fields.
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In this paper we contribute to the empirical literature of statistical inference in

discrete choice modeling by showing how the Bayes estimates of a multinomial probit

model can be combined with the GHK simulator to compute the posterior distribu-

tion of the probit choice probabilities, and how this posterior provides measures of

uncertainty regarding the true choice probabilities. Note that point estimates of the

choice probabilities are virtually never reported with confidence intervals in practice.

Finding confidence intervals for nonlinear transformations of the structural param-

eters – such as the choice probabilities – is a highly complex problem in frequentist

econometrics. Thus, in this paper we argue that finding credible intervals for the

market shares is the key benefit of the use of Bayes estimators in fully identified

models. Regarding perceived complexity and computational cost of the maximum

simulated likelihood estimator of a multinomial probit, we show that both the fre-

quentist and Bayes estimators produce results that are very similar for medium-scale

problems with static data. However, the Bayes estimator is superior to the maximum

likelihood estimator because it allows the researcher to directly analyze the posterior

distribution of functions of the structural parameters of the model, including choice

probabilities and market shares.

In addition, we add to the literature on consumer adoption of energy-intensive

durable goods by addressing uncertainty in the forecasts of the model via the pro-

vision of exact credible intervals of the choice probabilities and market shares. The

specific empirical case study in this paper is based on stated-preference data on

vehicle choice in Germany. Different analyses have been performed using the data

coming from this Germany-wide survey of potential light-duty-vehicle buyers us-

ing computer-assisted personal interviewing (Achtnicht, 2012; Achtnicht et al., 2012;

Ziegler, 2012). For example, Achtnicht et al. (2012) analyze the effect of fuel avail-

ability on demand for alternative-fuel vehicles using the same choice data, focusing

on marginal probability effects as well as on the determination of willingness to pay

for increased fuel availability as derived from a standard conditional logit model.1

However, the present study is the first to use this data for both deriving and ana-

lyzing market-share forecasts. Thus, we apply the combination of the Bayes probit

1Note that the conditional (multinomial) logit model imposes proportional substitution pat-
terns, a restriction that we withdraw in this paper.
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estimates and the recursive probability simulator for constructing a Markov chain

of market shares. We then find credible intervals of the market shares of differing

scenarios of service stations for the new energy-efficient vehicle technologies.

The rest of the paper is organized as follows. In section 2 we discuss more de-

tails about the frequentist and Bayes estimators of the multinomial probit model,

and introduce a method for combining the GHK simulator and the Bayesian Gibbs

sampler. The vehicle choice data is described in section 3. Results of the estimation

of the parameters of the multinomial probit model are displayed in section 4. In

section 5 we use the estimates to produce forecasts to analyze the effect of increasing

the network of service stations for charging electric vehicles as well as for refueling

hydrogen. Section 6 concludes.

2 Frequentist and Bayesian inference in the multi-

nomial probit model

2.1 Multinomial probit choice probabilities

Consider the following multinomial probit model of individual i choosing alternative

ji ∈ {1, ..., J}

Ui
(J×1)

= Xi
(J×K)

β
(K×1)

+ εi
(J×1)

(1)

yi
(1×1)

= ji iff Uiji = max
j
Uij, (2)

where choices are based on maximization of the random utility vector Ui; the deter-

ministic component of utility is assumed linear in the vector of unknown parameters

of the model β; Xi is a matrix of exogenous hedonic attributes with row j equal to

x′ij;
2 the error term has a multivariate normal distribution εi ∼ N (0,Σ), ∀i; and yi

is a choice indicator that reveals preferences.

Because of the discrete maximization that represents choice (see Train, 2009),

only parameters of the model in differences with respect to an arbitrary base alter-

2Such that the scalar utility of alternative j can be written as Uij = x′ijβ + εij .
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native can be identified. Consider the estimable model in differences with respect to

alternative j:

∆jUi
(J−1×1)

= ∆jXi
(J−1×K)

β
(K×1)

+ ∆jεi
(J−1×1)

,∆jεi ∼ N (0(J−1),∆jΣ∆′j) (3)

yi
(1×1)

= ji iff ∆jUiji = max
j

∆jUij, , (4)

where ∆j is a (J − 1× J) matrix difference operator with elements defined as

[∆j]lm =


−1 if m = j

1 if l = m and m 6= j

0 otherwise

. (5)

The choice probability Pij of individual i choosing (any) alternative j takes the

following form:

Pij =Pr(Uij ≥ Uij′ , ∀j′ 6= j) = Pr(εij′ − εij ≤ (xij′ − xij)
′β, ∀j′ 6= j)

=

∫ (xiJ−xij)′β

−∞
· · ·
∫ (xi1−xij)′β

−∞
f(∆jεi)d∆jεi,

(6)

where

f(∆jεi) =
1

(2π)
J−1
2 |∆jΣ∆′j|

1
2

exp

{
−1

2
ε′j∆

′
j∆jΣ∆′j∆jεj

}
. (7)

Note that the multinomial probit choice probability Pij is an integral of dimension

J − 1 that lacks a closed form. Numerical integration of the choice probabilities,

including Gaussian quadrature methods, is feasible only for low dimensions.3

2.2 Maximum simulated likelihood estimator

Large scale multinomial probit models can be estimated using simulation-based infer-

ence. Probit estimates can be found using the method of simulated moments (McFad-

den, 1989), the method of simulated scores (Hajivassiliou and McFadden, 1998), or

3In general, numerical integration is feasible for up to three dimensions, i.e. a model with four
alternatives.
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maximum simulated likelihood. A maximum simulated likelihood estimator (MSLE)

of the parameters of the model can be derived as (β̂, Σ̂)MSLE = arg max
∑

i ln P̃iji ,

where ji is the alternative actually chosen by individual i and P̃iji is a simulated

choice probability.4 An advantage of the MSLE is that only the choice probability of

the chosen alternative is considered.5 Any choice probability simulator can be used

to calculate the simulated likelihood function, but an importance sampler performs

better than a frequency simulator. Among the class of importance samplers, the

smooth-recursive-conditioning GHK simulator due to Geweke (1991); Hajivassiliou

and McFadden (1998) and Keane (1994) is the most popular choice in empirical

work. The GHK simulator is continuous and differentiable, which is an advantage

for finding the optimum. However, the loglikelihood of a multinomial probit model

is not globally concave, making more involved the search for the optimum. In addi-

tion, the simulator needs to be run at every iteration of the optimization process.

Additionally, consistency of the estimator requires not only a large sample, but also

a large number of replications. In fact, even though the GHK simulator is unbiased

for the choice probabilities, for a finite number of repetitions of the simulator the

MSLE is biased.

2.3 Combining multinomial probit Bayes estimates and the

GHK simulator for forecasting

Based on the work of Albert and Chib (1993), McCulloch and Rossi (1994) proposed

a multinomial probit Bayes estimator that is analytically straightforward and avoids

the problems of the MSLE. The Bayes estimator exploits the distribution of the

reduced form of the structural system defined by equations (3) and (4). In effect,

the choice indicator in equation (4) truncates the distribution of the random utility

of equation (3). Thus, conditional on the cone defined by yi, the indirect utility

has a truncated normal distribution. This conditional distribution is the core of the

Gibbs sampler of McCulloch and Rossi (1994): by augmenting the data, samples

4Note that optimization of the simulated loglikelihood requires differentiation of the simulated
choice probabilities.

5A simulator based on the method of simulated moments requires evaluation of the choice
probabilities for the whole choice set.

6



of the utility function are drawn and then used as observations of the dependent

variable of equation (3); then, parameters of the model can be estimated using the

Gibbs sampler for an ordinary regression. In sum, at iteration (g) of the Gibbs

sampler, a truncated normal draw ∆jU
(g)
i is generated. This draw enters equation (3),

which becomes the following ordinary regression problem ∆jU
(g)
i = ∆jXiβ + ∆jεi,

where the dependent variable is no longer latent. Because the original Gibbs sampler

uses prior distributions on unidentified parameters (see Nobile, 2000), McCulloch et

al. (2000) updated their estimator taking into account the necessary normalization

constraints. In this paper we use the sampler proposed in Imai and van Dyk (2005),

which also considers priors on the identified parameters but with a better rate of

convergence than the method of McCulloch et al. (2000).

Although the estimation problem seems to be dominant in theoretical research,

the problem of prediction is as relevant for empirical research (see Connors et al.,

2012). Forecasting with discrete choice models involves analyzing the choice proba-

bilities after a qualitative change. Thus, once the posterior distributions of the taste

parameters β and the nuisance parameters Σ have been found, forecasting with the

model requires evaluation of the choice probabilities at different levels of the hedo-

nic attributes. In the case of the multinomial probit model, this evaluation can be

computed using the GHK recursive probability simulator. Note that use of the GHK

simulator for forecasting and estimation is different. Whereas for forecasting the pa-

rameters of the model are given by the estimates, for estimation the parameters are

unknown. For instance, it is the combination of the GHK simulator and the maxi-

mization of the loglikelihood function that produces simulation bias. However, the

GHK simulator remains an unbiased estimator of the choice probabilities when the

parameters of the model are given.

In this paper, to derive the posterior distribution of the probit choice probabilities

we propose to use the GHK simulator to postprocess the Gibbs sampling estimates

(cf. Edwards and Allenby, 2003). Specifically, we propose running the GHK simulator

for every sample of the posterior generated at every iteration of the sampler of Imai

and van Dyk (2005).

Consider the Markov chain Monte Carlo sample of both β(g) and ∆jΣ
(g)∆′j

generated by the Bayes estimator at iteration (g) of the multinomial probit sampler.
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Let C be the Cholesky root of (∆jΣ∆′j)
−1, with elements [C]

(g)
lm = c

(g)
lm for each

sample of the posterior of the nuisance parameters ∆jΣ
(g)∆′j. Suppose in addition

that a qualitative change in the attributes is captured by the matrix X
(1)
i .6 The

simulated element (g) of the posterior distribution of the choice probability Pij is

then

P̃
(g)
ij =

1

S
Φ

(
−

(x
(1)
i1 − x

(1)
ij )′β(g)

c
(g)
11

)
×

S∑
s=1

Φ

(
−

(x
(1)
i2 − x

(1)
ij )′β(g) + c

(g)
21 η

(s)
i1

c
(g)
22

)
· · ·Φ

−(x
(1)
iJ − x

(1)
ij )′β(g) + [vechC(g)]′η

(s)
i

c
(g)
J−1,J−1

 ,

(8)

where η is a vector of (J-1) iid standard normal terms such that Cηi = ∆iεi, Φ(·)
is the CDF of a standard normal, and η

(s)
i = {η(s)

i1 , . . . , η
(s)
i,J−1} denotes realization

(s) ∈ {1, . . . , S} of a vector of independent random draws of the elements in ηi.

Equation (8) is the GHK approximation of the recursive decomposition of choice

probability by means of its empirical expectation.

Thus, using the samples β(g) and C(g) of the Gibbs sampler, and repeating this

procedure for all g, it is possible to build a sequence of iterative random draws that

forms an irreducible and ergodic Markov chain converging at an exponential rate to

the posterior distribution of the choice probabilities (and market shares). The Bayes

point estimate of the choice probability Pij is P̂ij = (1/G)
∑G

g=1 P̃
(g)
ij , where G is the

total number of repetitions in the recursive sampler of Imai and van Dyk (2005).

In addition, the posterior distribution can be used to account for uncertainty in the

determination of the choice probabilities and market shares through the derivation of

high posterior density (HPD) credible intervals, which are the Bayesian counterpart

of confidence intervals.

Finally, note that the posterior choice probabilities that are derived using the

GHK simulator are not standard predictive posteriors, in the sense that the calcu-

lation does not directly take into account the choice indicators. Predictive poste-

6Row j of matrix X
(1)
i is given by x

(1)′

ij , such that the new deterministic utility of alternative j

experienced by individual i is x
(1)′

ij β.
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rior probabilities can be derived by Monte Carlo approximation of Pij(X
(1)
i , yi) =∫

Pij(X
(1)
i , yi,β, (CC′)−1)p(β, (CC′)−1|y)dθ, where p(β, (CC′)−1|y) is the posterior

distribution, and θ = (β′, [vechC]′)′.

3 Vehicle choice data

The stated preference data used in this paper comes from a Germany-wide survey of

potential car buyers that was administered between August 2007 and March 2008 as

a computer-assisted personal interview (CAPI). The survey was designed to garner

insights into consumer preferences for alternative-fuel vehicles (see Achtnicht, 2012;

Ziegler, 2012; Achtnicht et al., 2012). A total of approximately 600 interviews were

conducted at various car dealerships and branch offices of TÜV, the German agency

responsible for certifying vehicle roadworthiness. The respondents were picked ran-

domly, but had to be of legal age and possess a valid driver’s license. The sample

comprises individuals from different regions in Germany (eastern and western Ger-

many, urban and rural areas) and various demographic and socioeconomic groups (in

terms of age, gender, education, income, etc.). It thus provides a broad cross-section

of the target population, i.e. potential car buyers in Germany, although it is not en-

tirely representative. Compared with the official data available from KBA (2009) and

MiD (2010), it seems that more educated individuals are over-represented, whereas

women and individuals aged 40 to 49 years are under-represented in the sample; see

table 1 for more details.
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Table 1: Sample demographics.

Survey question Sample (N=598) Population

Gender

Male 74.6 69.0

Female 25.4 31.0

Age

29 or below 20.7 17.7

30–39 21.1 19.9

40–49 20.2 28.2

50–59 17.7 19.4

60 or above 20.2 14.8

Education

Secondary modern school degree 17.1 24.0

High school degree 31.1 33.2

University of applied sciences entrance qualification 8.0 9.5

Higher education entrance qualification, university or college degree 43.5 31.3

(Yet) without school degree or others 0.3 2.0

Household’s monthly net income

e1,000 or below 3.3

e1,000–2,000 18.4

e2,000–4,000 37.1

e4,000 or above 22.6

Not stated 18.6

Source: KBA (2009); MiD (2010); own calculations

Note: The population shares for gender and age are based on car owner data including all registrations of new and

used cars in Germany in 2008 (KBA, 2009). The population shares for education represent the distribution among

people with a car-driver’s license, based on a representative survey on mobility in Germany (MiD, 2010). To the

authors’ knowledge, there are no data on the income distribution of the target population (i.e. potential car buyers

from Germany) available.

In the survey, respondents participated in a choice experiment involving various

alternative-fuel vehicles. In each choice set, respondents were presented with seven

hypothetical vehicles and asked to select the car they preferred most. The alterna-

tives were characterized by the following six attributes: purchase price; fuel costs per

100 km; engine power; CO2 emissions per km; fuel availability (given by the service

station network size); and fuel type.7 Respondents were asked to assume that the

7The 7×6 choice set design used in this survey was relatively demanding for respondents. How-
ever, based on the results of a pretest, the survey team at that time concluded that the experimental
design was appropriate and not overly challenging. For a more detailed discussion of the issue of
choice complexity, see Achtnicht (2012), which uses the same data set.
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presented hypothetical alternatives only differed with regard to these attributes, but

were otherwise identical (e.g., in terms of vehicle size and design). Table 2 gives de-

tails on the attribute levels. To examine potential alternative-specific effects related

to fuel type, each fuel was included once in each choice set (thus “labeling” the choice

experiment). The attributes “purchase price” and “engine power” were customized.

Respondents were asked beforehand to describe the vehicle they intended to buy, in-

dicating upper and lower bounds for price and horsepower, which were then averaged

and used as an individual reference or pivot. This pivot or customization approach is

common in the transportation literature and it increases the relevancy of attribute

levels and choice scenarios (e.g., Hensher, 2010; Hensher et al., 2005).

Table 2: Attributes and attribute levels for the vehicle choice experiment.

Attribute Levels

Fuel type Gasoline, Diesel, Hybrid, LPG/CNG, Biofuel, Hydrogen, Electric

Purchase price 75%, 100%, 125% of referencea (in e)

Engine power 75%, 100%, 125% of referencea (in hp)

Fuel costs per 100 km e5, e10, e20

CO2 emissions per km no emissionsb, 90 g, 130 g, 170 g, 250 g

Fuel availability 20%c, 60%, 100% of service station network

a average of the lower and upper bounds for the next car indicated by the respondent
b only applied to non-fossil fuel types (i.e. biofuel, hydrogen, and electric)
c not applied to conventional fuel types (i.e. gasoline and diesel)

In the choice experiment, the attribute levels varied independently between alter-

natives and choice sets. This ensured that each attribute’s impact on choice selection

could be isolated. However, in order to avoid the inclusion of unrealistic scenarios,

only positive emissions were allowed for fossil fuels (i.e. gasoline, diesel, CNG/LPG),

and the lowest fuel availability level (i.e. 20%) was excluded for conventional-fuel

alternatives.8 The final fractional factorial design of the choice experiment, which

8According to Moore and Holbrook (1990), the degree to which attribute-level combinations are
realistic is of less practical importance than is sometimes feared. Moore and Holbrook analyzed the
effect of unrealistic stimuli on consumer judgements in terms of perceived realism and predictive
power in three experiments in a car choice context. Their results provide evidence that the choice
likelihoods are not affected by differences in scenario realism.
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was generated using Sawtooth software, required respondents to evaluate six choice

sets.

4 Model specification and estimation

The result of Bayesian estimation of a discrete choice model is the posterior distri-

bution of the parameters. However, the Bayesian framework also offers an answer to

the point estimation problem. In table 3 we present the Bayes point estimates of the

multinomial probit model, which correspond to the mean of the posterior distribu-

tion. Since the Bayes estimator of a multinomial probit model is a Gibbs sampler,

the point estimates are the empirical mean of the draws of the Markov chain. We

also present the results of the maximum simulated loglikelihood estimator using the

GHK simulator (MSLE-GHK).

Table 3: Point estimates of the multinomial probit model of vehicle choice.

MSLE-GHK Gibbs sampler

Variable Estimate Standard error Estimate Standard error

Purchase price [e1000] −0.0141∗∗∗ 0.0019 −0.0131∗∗∗ 0.0018

Fuel costs [e/100 km] −0.0297∗∗∗ 0.0030 −0.0272∗∗∗ 0.0029

Fuel availability [%] 0.0050∗∗∗ 0.0005 0.0046∗∗∗ 0.0005

Engine power [HP] 0.0025∗∗∗ 0.0004 0.0023∗∗∗ 0.0003

CO2 emissions [g/km] −0.0015∗∗∗ 0.0002 −0.0014∗∗∗ 0.0002

LPG/CNG −0.2575∗∗∗ 0.0828 −0.2214∗∗∗ 0.0797

Hybrid −0.1197 0.0801 −0.0903 0.0704

Electric −0.2916∗∗∗ 0.0862 −0.2714∗∗∗ 0.0829

Biofuel −0.2576∗∗∗ 0.0853 −0.2351∗∗∗ 0.0848

Hydrogen −0.0895 0.0643 −0.1053 0.0659

Diesel −0.0760 0.0714 −0.0663 0.0661

Observed choices 3588

Individuals 598

Simulated loglikelihood -6117.9 -6113.7

Pseudo ρ2 0.125 0.125

CPU time [sec] 1384.7 1081.7

Note: Asterisks denote statistical significance at the *** p< 0.01, ** p< 0.05, * p< 0.1 level. CPU time in a personal

computer with a 2.93 GHz Quad-Core processor and 8 GB RAM.

For the Gibbs sampler we used a chain of 50,000 iterations which took roughly
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18 minutes. For MSLE-GHK, we used 250 repetitions for each evaluation of the

choice probabilities. Using the BHHH approximation of the Hessian, the MSLE-GHK

converged after 14 iterations of the search algorithm (taking about 23 minutes).

Lower standard errors in the Bayes estimates are found with respect to MSLE-

GHK for all vehicle attributes and almost all alternative specific constants. We note

that the frequentist estimator was sensitive to the selection of the base alternative.

Convergence problems – due to a singular BHHH estimate – were detected for specific

choices of the base.

Because we assumed a linear specification of the indirect utility, the parameters of

the model represent marginal utilities that can be described as fixed taste parameters.

Buyers of new vehicles obtain less satisfaction when a car comes with an elevated

price tag. More expensive variable costs – which are related to fuel costs – also

reduce utility. An interesting result is the negative marginal utility of carbon dioxide

emissions. This result shows that prospective buyers care about the environmental

externalities of personal transportation, and they prefer vehicles that produce less

pollution. More power is a desired feature, as can be seen from the associated positive

marginal utility. Another appreciated attribute is availability of fuel. If the specific

fuel is readily available, then some of the reliability issues of low-emission vehicles are

resolved and consumers are more satisfied. In discrete choice modeling, these levels

of satisfaction or dissatisfaction translate into higher or lower choice probabilities.

For example, consumers are more likely to choose a car that is relatively cheap, with

inexpensive fuel or an energy-efficient engine that reduce operating costs, with a

dense station network, good horsepower, and reduced CO2 emissions.

If all of the considered attributes were the same among all of the alternatives, then

gasoline and diesel vehicles would be preferred. This is indicated by the alternative

specific constants. Electric vehicles turn out to be the least preferred. It is possible

that respondents associated electric vehicles with long charging times, short ranges,

or other disadvantages (cf. Achtnicht et al., 2012). Note that the alternative specific

constants capture the average effect of the omitted variables.

Table 4 presents the quantile estimates of each marginal utility. These quantiles

are a summary of the joint posterior distribution. Note that the values that concen-

trate 95% of the mass can be used to determine the credible intervals for each taste
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parameter, i.e. the 2.5% quantile represents the lower bound and the 97.5% quantile

the upper bound of the 95% credible interval. These values can be used directly for

hypothesis testing.

Table 4: Bayes posterior quantile estimates.

Quantile estimates (Gibbs sampler)

Variable 2.5% 5% 50% 95% 97.5%

Purchase price −0.0170 −0.0143 −0.0130 −0.0118 −0.0097

Fuel costs −0.0333 −0.0294 −0.0273 −0.0252 −0.0221

Fuel availability 0.0037 0.0042 0.0046 0.0049 0.0056

Engine power 0.0016 0.0020 0.0022 0.0025 0.0030

CO2 emissions −0.0018 −0.0015 −0.0014 −0.0013 −0.0011

LPG/CNG −0.3849 −0.2755 −0.2196 −0.1695 −0.0769

Hybrid −0.2354 −0.1284 −0.0788 −0.0323 0.0528

Electric −0.4834 −0.3370 −0.2751 −0.2220 −0.1265

Biofuel −0.4106 −0.2778 −0.2211 −0.1672 −0.0726

Hydrogen −0.2376 −0.1387 −0.0912 −0.0480 0.0238

Diesel −0.2064 −0.0991 −0.0514 −0.0081 0.0632

For a multinomial probit model, the parameter space is completed with the nui-

sance parameters associated with the elements of the covariance matrix of the model

in differences. (Table 5 contains point estimates and standard deviations of the ele-

ments of the matrix (CC′)−1.) We allowed flexible substitution patterns through a

fully flexible covariance structure, and from the point estimates it is possible to see

the presence of heteroskedasticity and different correlation levels.
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Table 5: Bayes point estimates of the covariance matrix (CC′)−1.

Variable LPG/CNGgas Hybridgas Electricgas Biofuelsgas Hydrogengas Dieselgas

LPG/CNGgas 1.00

-

Hybridgas 0.45∗∗∗ 0.69∗∗∗

(0.11) (0.19)

Electricgas 0.41∗∗∗ 0.44∗∗∗ 0.78∗∗∗

(0.12) (0.15) (0.22)

Biofuelsgas 0.29∗∗ 0.31∗∗∗ 0.50∗∗∗ 0.65∗∗∗

(0.14) (0.12) (0.15) (0.18)

Hydrogengas 0.43∗∗∗ 0.38∗∗∗ 0.43∗∗∗ 0.30∗∗∗ 0.69∗∗∗

(0.10) (0.13) (0.0.15) (0.12) (0.19)

Dieselgas 0.41∗∗∗ 0.14 0.35∗∗∗ 0.25∗∗ 0.31∗∗∗ 0.77∗∗∗

(0.12) (0.12) (0.14) (0.12) (0.12) (0.20)

Note: Model in difference with respect to gasoline. (The cell (Hybridgas,Dieselgas) represents element

[∆gasΣ∆′gas]hybrid,diesel.) Standard errors (posterior standard deviations) in parentheses. Asterisks denote sta-

tistical significance at the *** p< 0.01, ** p< 0.05, * p< 0.1 level.

5 Forecasting

5.1 Experimental market shares

It is well known that parameters of a simple conditional (multinomial) logit model

are such that the observed and predicted attribute average are the same. Thus, in

a conditional logit model with alternative-specific constants the predicted market

shares reproduce by construction the observed market shares. Because this property

of the conditional logit model does not extend to the multinomial probit model, we

are interested in determining whether the multinomial probit is able to reproduce the

market shares. In table 6 the observed and predicted market shares are displayed.

Note that in the case of the stated-preference data, the observed or experimental

market shares are the percentages that are directly derived from the stated choices.
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Table 6: Experimental and predicted market shares [%]

Observed MSLE-GHK Bayes-GHK Bayes-GHK quantile estimates Predictive

Vehicle type shares point est. point est. 2.5% 25% 50% 75% 97.5% probs.

Gasoline 19.5 19.7 19.5 18.2 19.1 19.5 19.9 20.8 19.7

LPG/CNG 12.2 12.3 12.2 11.2 11.9 12.2 12.6 13.3 12.2

Hybrid 12.7 12.7 12.7 11.6 12.3 12.7 13.0 13.7 12.7

Electric 8.7 8.7 8.6 7.8 8.3 8.6 8.9 9.5 8.6

Biofuels 11.0 10.9 10.9 9.9 10.6 10.9 11.2 11.9 10.9

Hydrogen 15.1 15.1 15.1 14.0 14.7 15.1 15.5 16.2 15.0

Diesel 20.9 20.8 21.0 19.7 20.5 21.0 21.5 22.5 20.8

As discussed in section 2, a clear advantage of the Bayes estimator is that the

sample of the posterior distribution, simulated via Markov chain Monte Carlo meth-

ods, can be used to generate the posterior distribution of any function of the original

parameters of the model. Since the choice probabilities are a function of the marginal

utilities, to derive the Bayes-GHK estimates we determined first the posterior distri-

bution of the choice probabilities and then the posterior distribution of the aggregate

choices in the form of market shares. More specifically, for every observation in the

sample and for every MCMC draw of the Bayes estimator, we ran 250 repetitions of

the GHK simulator. (The computational cost of the GHK simulator in forecasting

is very low; evaluation of the 7 choice probabilities for a single individual took 0.006

seconds.) Not only are the experimental market shares within the 95% credible inter-

val, but the point estimates also replicate the observed values almost perfectly. Note

that credible intervals for the market shares are tight, although the coefficient of

variation of the credible intervals of some of the alternative-specific constants is rel-

atively high. We complete table 6 with the point estimates of both MSLE-GHK and

the predictive posterior probabilities. Computational efficiency of the MSLE-GHK

is the same than for the Bayes-GHK point estimates (both use the GHK simulator).

The difference is that the MSLE-GHK is evaluated just once at the MSLE point

estimates, whereas the Bayes estimates are evaluated at every draw of the posterior

distribution of the marginal utilities. (The latter evaluation provides information for

deriving the credible intervals and quantile estimates.) In the case of the posterior

predictive probabilities, a single evaluation for one individual took 0.117 seconds.
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5.2 Adoption scenarios

A problem with experimental market shares of stated-preference studies, as opposed

to observed shares in real markets of revealed-preference data, is that stated choices

are a response to the experimental attribute variation. Thus, little can be said about

the competitiveness of the different alternatives. Because of these limitations, we

decided to examine the behavior of a representative individual faced with a scenario

of vehicle attributes intended to represent an average of the current vehicle choice

situation in Germany. This base scenario is summarized in table 7. Both sources and

assumptions are discussed below.

Table 7: Base scenario: average vehicle choice in Germany

Attributes

Vehicle type Purchase price Fuel costs Fuel availability Engine power CO2 emissions

[e] [e/100km] [%] [HP] [g/km]

Gasoline 19558 7.86 100 100 143

LPG/CNG 21240 4.69 42 100 116

Hybrid 22739 5.90 100 100 107

Electric 34897 4.00 3.5 100 0

Biofuels 19895 7.34 2.3 100 20

Hydrogen 27474 5.00 0.1 100 0

Diesel 20735 6.38 100 100 146

Assumed values for purchase price and in-use CO2 emissions9 are taken from

the 2015 scenario of the research project “Trends in Energy Markets until 2030 –

Energy Forecast 2009”.10 Fuel consumption data, also taken from this project, was

used to derive average fuel costs. Here we assume a gasoline price of e1.31 per

liter, a diesel price of e1.16 per liter, and that one liter of LPG costs about half

as much, and biofuel about two thirds as much as gasoline, as is currently the case

in Germany. Because the vehicle-choice survey was conducted mainly in 2007, all

monetary values of table 7 are adjusted to 2007 euros using the German consumer

price index provided by the German Federal Statistical Office. Note further that

9Emissions occurring during fuel production were not taken into account here.
10This project aimed to establish a consistent set of realistic scenarios for the long-term evolution

of energy-resource supply and demand in Germany, using the TIMES PanEU energy system model.
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our assumptions regarding biofuel are based on E85, which consists of 85% ethanol

and 15% gasoline. The assumed fuel costs for hydrogen and electric cars are based

on results from the “GermanHy” study (BMVBS, 2009), financed by the German

Federal Ministry of Transport, and a recent McKinsey study (McKinsey, 2010). The

fuel availability data reflects the German status quo. Today, there are approximately

15,000 service stations (including freeway service stations) in Germany. Based on an

online search, we found that LPG/CNG can be refueled at 6,280/892 service stations,

biofuel (E85) at 345, hydrogen at 8, while for electric cars there are 512 charging

stations available. However, we could not find any reliable average data for current or

expected engine power. Therefore, we decided to ignore possible differences in engine

power and use 100 HP for each fuel type. Of course, all assumed figures are tentative

and should be treated with caution.

Consumer adoption of ultra-low emission vehicles depends on adequate provision

of refueling or recharging infrastructure.11 Thus, combining both the base scenario

of table 7 and the multinomial probit Bayes point estimates of tables 3 and 5 we

produce forecasts to analyze the effect of increasing the density of the service station

network. In particular, we study the effects on market shares of increases in the

density of service stations required for charging electric vehicles as well as of those

for refueling hydrogen-powered vehicles.12

Table 8 summarizes the posterior distribution of the aggregate choice probabil-

ities of the different vehicle types. We start with the base scenario, i.e. we produce

market shares that represent choices of representative consumers when faced to the

attribute levels of table 7. Given the results of the previous subsection, the reported

results correspond to the Bayes estimates using the GHK simulator (Bayes-GHK).

11It has been argued that the lack of an appropriate service station infrastructure is a major
barrier for the adoption of ultra-low emission vehicles (Bunch et al., 1993; Daziano and Bolduc,
2011; Achtnicht et al., 2012; Daziano and Chiew, 2012). Understanding how consumers react to
qualitative improvements in the service station network is necessary for planning the corresponding
infrastructure investments.

12When analyzing differing scenarios of fuel availability, Achtnicht et al. (2012) focus on marginal
probability effects rather than on forecasting market shares, and thus use the same price, fuel costs,
engine power, and CO2 emissions for all vehicles in their scenarios. Additionally, whereas we assume
flexible substitution patterns via a multinomial probit model, the marginal probability effects in
Achtnicht et al. (2012) are based on a conditional logit model.
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Therefore, to obtain the market shares for each MCMC draw of the joint posterior of

the probit parameters and given the average attribute levels we calculate the choice

probabilities of each alternative. For this, 200 repetitions of the GHK simulator are

performed. Once this procedure has been repeated for every sample, we obtain the

joint posterior distribution of the market shares. In the table the posterior distribu-

tion is summarized presenting its mean, which is equivalent to the point estimate,

and its standard deviation, which can be used as an analog to frequentist standard

error.

As a second step, we vary the density of the charging network for electric vehicles.

In table 8 results for densities equal to 10%, 30%, 50%, 70%, and 100% are reported,

holding everything else constant (and equal to the base scenario). For example, the

market shares of the upper 10%-column are given by the choice probabilities of a

representative consumer facing the same attribute levels as in the base scenario,

except that the density of electric charging infrastructure has gone up from 3.5% to

10%. The joint posterior of the market shares for this situation is obtained following

the same procedure used for the base scenario. Then, we perform the same exercise

for the density of the hydrogen fueling network. In Appendix B the information of

table 8 is supplemented with a summary of the posterior distribution of the market

shares of more extensive scenarios varying service station density for both electric

and hydrogen vehicles.
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Table 8: Forecasted market shares (Bayes-GHK estimates)

Base shares [%] Density of the Electric Vehicle charging network

Vehicle type 10% 30% 50% 70% 100%

Gasoline 21.98 21.94 21.79 21.57 21.29 20.75

(1.22) (1.22) (1.22) (1.19) (1.18) (1.15)

LPG/CNG 11.43 11.41 11.40 11.33 11.16 10.71

(0.97) (0.97) (0.93) (0.91) (0.89) (0.88)

Hybrid 23.97 23.86 23.42 22.96 22.39 21.23

(1.46) (1.45) (1.36) (1.32) (1.28) (1.26)

Electric 2.78 3.12 4.40 6.00 8.00 11.97

(0.55) (0.58) (0.66) (0.77) (0.89) (1.19)

Biofuels 6.01 5.95 5.62 5.37 5.08 4.55

(0.74) (0.72) (0.68) (0.65) (0.63) (0.64)

Hydrogen 7.28 7.24 7.17 7.00 6.79 6.37

(0.88) (0.87) (0.82) (0.80) (0.78) (0.77)

Diesel 26.55 26.48 26.15 25.77 25.29 24.42

(1.65) (1.63) (1.63) (1.60) (1.59) (1.60)

Base shares [%] Density of the Hydrogen refueling network

Vehicle type 10% 30% 50% 70% 100%

Gasoline 21.98 21.79 21.29 20.70 20.00 18.77

(1.22) (1.22) (1.18) (1.15) (1.13) (1.14)

LPG/CNG 11.43 11.46 11.18 10.85 10.47 9.78

(0.97) (0.93) (0.90) (0.86) (0.85) (0.86)

Hybrid 23.97 23.57 22.85 22.01 21.03 19.37

(1.46) (1.37) (1.32) (1.28) (1.25) (1.23)

Electric 2.78 2.76 2.64 2.50 2.35 2.10

(0.55) (0.53) (0.50) (0.48) (0.46) (0.44)

Biofuels 6.01 5.81 5.65 5.46 5.25 4.86

(0.74) (0.70) (0.68) (0.67) (0.65) (0.65)

Hydrogen 7.28 8.35 10.70 13.50 16.74 22.44

(0.88) (0.89) (0.94) (1.00) (1.10) (1.33)

Diesel 26.55 26.26 25.70 24.99 24.16 22.68

(1.65) (1.64) (1.64) (1.62) (1.67) (1.74)

Note: Standard errors in parentheses. All estimates statistically significant at the p< 0.01 level.

As expected, a more dense service station network clearly increases consumer

adoption of the low-emission technologies. For instance, a charging infrastructure

that matches the density of standard gasoline stations produces a remarkable 331%

increase in the market share of electric vehicles as compared with the base scenario.13

In this ideal situation, and for the hypothesized adoption scenario, the market share

13The base situation assumes a density of 3.5%.
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of electric vehicles is forecasted to reach almost 12% of the market, with the upper

bound of the 95% credible interval at 14.38% and the lower bound at 9.75%. Due to

an expected lower purchase price for hydrogen vehicles as well as to the difference in

alternative-specific constants, the base market share is larger for hydrogen vehicles

than for electric vehicles. From a base level of 7.28%, even with an extremely low

fuel availability density of 0.1%, the market share of hydrogen vehicles goes up to

22.44% with a fully competitive refueling network, with upper and lower bounds of

the 95% credible interval of the market shares at 19.88% and 25.13%, respectively.

As a general characteristic of discrete choice models, the elasticity of demand

with respect to changes in fuel availability is not constant.14 This can be seen in the

curves shown in figure 1, which depict the point estimate and 95% credible interval

of the market shares under increased fuel availability.15
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Figure 1: Point estimates and 95% credible interval bounds of the market shares of electric (left)
and hydrogen (right) vehicles.

The average elasticity of the market share of electric vehicles is 0.07 in the 0-

10% density interval, 0.65 in the 40-50% interval, and 1.30 in the 90-100% interval.

In the case of hydrogen vehicles, the average elasticity is 0.07 in the 0-10% density

14In fact, using a linear specification, initial infrastructure investments have a low impact on the
penetration of the energy efficient vehicles.

15Note that in discrete choice models point estimates of the market shares are usually reported
without confidence intervals, whereas our suggested method for postprocessing the Bayes estimators
has proven to facilitate the derivation of credible intervals.
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interval, 0.48 in the 40-50% interval, and 0.89 in the 90-100% interval. These measures

are relevant for planning both public and private investments in the infrastructure

necessary to promote and ensure adequate consumer adoption of energy-efficient

vehicle technologies.

Another relevant outcome of the modeling strategy adopted in this paper is the

different degree of competition among vehicle types, which is a result of our assump-

tion of a multinomial probit model with full covariance matrix. For example, the

increase of the market share of electric vehicles from the base 2.78% with a charging

network density of 3.5% to 6.00% when the density achieves 50% is explained by

a decrease of 1.87% in the market share of gasoline vehicles, 0.90% of LPG/CNG,

4.21% of hybrids, 10.58% of biofuels, 3.79% of hydrogen, and 2.95% of diesel. If we

repeat the same exercise for hydrogen vehicles, the deeper penetration of hydrogen

when the refueling density achieves 50% is accompanied by a decrease of 5.85% in

the market share of gasoline vehicles, 5.12% of LPG/CNG, 8.17% of hybrids, 10.07%

of electric, 9.19% of biofuels, and 5.86% of diesel. It is noteworthy that when electric

vehicles become more competitive, the largest relative changes occur in the consumer

switch from hybrids and biofuel to electricity propelled vehicles.16

Although our results suggest a potentially large penetration of hydrogen vehicles,

in practice hydrogen vehicles are not yet commercially available and the required

infrastructure investments are larger than those needed for charging electric vehicles.

Not only will new, dedicated fueling stations be needed for fuel-cell vehicles, but also

substantial investments in production, distribution, and storage of hydrogen fuel.

At the other extreme, however, electric batteries can, if necessary, be charged using

regular outlets.17

6 Summary and conclusion

In this paper we have shown how Bayesian econometrics allows modelers to revisit

estimation of the multinomial probit model, not only for the point estimation prob-

16Hybrid vehicles exhibit the largest absolute decrease.
17However, the provision of fast charging stations is necessary for ensuring reasonable charging

times.
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lem but also for forecasting. Although the frequentist probit maximum simulated

likelihood estimator with the GHK simulator is feasible for static discrete choice

problems,18 there are clear advantages of using a Bayes estimator instead of the

maximum simulated likelihood estimator. Not only is the Bayes estimator gradient-

and hessian-free, but it is also free of simulation bias.19 In addition, we have shown

that the full flexibility of the multinomial probit model can be exploited in practice

through the Bayes estimator, and that once the model has been estimated the GHK

simulator can be used for evaluating the choice probabilities. Because the result of

the Bayesian estimation process is not merely a point but rather the whole posterior

distribution of the parameters, we show that a key feature of the Bayes estimates is

the derivation of the posterior distribution of the choice probabilities. In the proce-

dure proposed here the GHK recursive probability simulator is run for every draw of

the posterior distribution of both the parameters of interest and the nuisance param-

eters of the multinomial probit model, i.e. to construct a Markov chain of samples

of the posterior of the choice probabilities we propose to postprocess the parame-

ter posterior via Monte Carlo simulation. The resulting posterior distribution of the

multinomial probit choice probabilities and market shares can then be used to obtain

credible intervals that account for uncertainty regarding the true value of the random

data generating process. Having better tools to address uncertainty is particularly

relevant in the context of modeling consumer response to emerging energy-efficient

technologies.

In our case study of consumer adoption of ultra-low-emission vehicles in Germany,

we first showed that the Bayes point estimates of the market shares reproduce the

shares given by the stated choices. Then, we produced forecasts for a representative

individual based on a scenario of vehicle attributes that aims at representing an

average of the current vehicle choice situation in Germany. Because limited fuel

availability is a major obstacle to consumer adoption of low-emission vehicles, we have

also analyzed the effect of increasing the density of the network of service stations

18We actually show that the frequentist estimates are a very good approximation of the Bayesian
results for medium-scale problems. Computational cost for both estimators is of the same order.

19The probit Bayes estimator has also the potential to overcome the MSLE-GHK convergence
problems in panel versions of the probit model due to weak identification. We leave for further re-
search the application of Bayes estimators of a multiperiod multinomial probit model in forecasting.
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for charging electric vehicles as well as for refueling hydrogen-fueled vehicles. The

result is the posterior distribution of the choice probabilities that represent adoption

of energy-efficient technologies in the context of a more competitive infrastructure.

For example, our results indicate that if availability of charging is increased to its

maximum, electric vehicles would experience a greater than three-fold increase in

market penetration.

However, the mere adoption of ultra-low-emission vehicles is not sufficient to make

personal transport more sustainable. The electricity needed to power electric cars

and to produce hydrogen through electrolysis has to be generated somehow. Many of

the climate-damaging emissions would then be shifted from the transport sector to

the energy sector. Given the current electricity mix in Germany, with roughly 20%

renewables, about 550g of CO2 are emitted per generated kWh.20 The production

of biofuels is also emission-intensive, especially if rainforests are cut down to gain

cropland, and has a negative impact on food prices and security. Hence, the road to

greener transport is rocky and it will not be paved by simply expanding the fueling

station infrastructure.
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A Details of the probit Gibbs sampler (adapted

from Imai and van Dyk, 2005)

• Start at any given point ∆jU
(0)
i , β(0), and (∆jΣ∆′j)

(0) in the parameter space, and

set α(0) = 1.

• Consider the prior distributions p(β) ∼ N (β̌, V̌β) and

p(∆jΣ∆′j) ∝ |∆jΣ∆′j |−(ν+J)/2[trace(S(∆jΣ∆′j)
−1)]−ν(J−1)/2,

where S is the prior scale of ∆jΣ∆′j and ν is the prior for the degrees of freedom of
the covariance.

• Compute the Cholesky root C(0) of (∆jΣ∆′j)
−1

• For g ∈ {1, ...G}

1. For all i, if yi = j, draw ∆jU
(g)
i from the truncated normal distribution

N
(
∆jXiβ

(g−1), (C(g−1)C(g−1)′)(−1)
)

1(∆jUij′ < 0, ∀j′ 6= j),

otherwise draw ∆jUi from the truncated normal distribution

N
(
∆jXiβ, (C

(g−1)C(g−1)′)−1
)

1(∆jUij′ > max{0,∆jUi,−j},∀j′ 6= j).

2. Update the scale parameter α(g)2
using the distribution

α2
0 trace(SC(g−1)C(g−1)′)/χ2

ν(J−1).

3. Compute the Cholesky root C(g) of W/w11, where w11 is the first element
in the diagonal of the matrix W, which in turn is a draw from the Wishart
distribution

Wishart

(
ν +N,α2

0S + α(g)2
N∑
i=1

(∆jU
(g)
i −∆jXiβ

(g−1))(∆jU
(g)
i −∆jXiβ

(g−1))′

)
.

4. Draw β(g) from the normal distribution

N
(

(V̌ −1
β β̌ + (C(g)′X)′C(g)′X)−1(V̌ −1

β + X′C(g)C(g)′∆jU
(g)) ,

(V̌ −1
β + C(g)′X′(C(g)′X))−1

)
.
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5. Step 4 completes the sampler for estimation. For forecasting, update the GHK

approximation P̃
(g)
ij , ∀j using equation (8).

6. Update g = g + 1 and go back to step 1.

Note that this sampler is for a static discrete choice model. Analysis of a sampler that

accounts for correlations due to taste persistence or memory effects across the choice sets

is left for further research.

31



B Forecasts

Table 9: Summary of the posterior distribution of the Electric Vehicle share

Mean [%] Bayes quantile estimates of the market shares [%]

Charging network density 2.5% 25% 50% 75% 97.5%

3.5% 2.78 1.80 2.40 2.75 3.13 3.95
10% 3.12 2.07 2.72 3.09 3.49 4.36
20% 3.73 2.64 3.30 3.70 4.13 5.04
30% 4.40 3.19 3.94 4.36 4.82 5.79
40% 5.16 3.86 4.66 5.12 5.61 6.66
50% 6.00 4.57 5.47 5.97 6.50 7.57
60% 6.95 5.40 6.38 6.91 7.49 8.64
70% 8.00 6.32 7.38 7.97 8.58 9.82
80% 9.18 7.37 8.52 9.15 9.83 11.16
90% 10.46 8.46 9.72 10.44 11.15 12.65
100% 11.97 9.75 11.15 11.94 12.76 14.38

Table 10: Summary of the posterior distribution of the Hydrogen Vehicle share

Mean [%] Bayes quantile estimates of the market shares [%]

Refueling network density 2.5% 25% 50% 75% 97.5%

0.1% 7.28 5.64 6.67 7.25 7.85 9.05
5% 7.82 6.20 7.21 7.79 8.39 9.57
10% 8.35 6.68 7.73 8.32 8.94 10.17
20% 9.47 7.77 8.84 9.45 10.07 11.30
30% 10.70 8.95 10.05 10.67 11.32 12.60
40% 12.05 10.23 11.38 12.02 12.69 14.02
50% 13.50 11.59 12.81 13.47 14.17 15.47
60% 15.06 13.09 14.35 15.01 15.75 17.12
70% 16.74 14.65 15.98 16.72 17.47 18.93
80% 18.53 16.34 17.74 18.50 19.30 20.83
90% 20.43 18.03 19.60 20.42 21.25 22.91
100% 22.44 19.88 21.53 22.42 23.32 25.13
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