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A defining feature of eukaryotic life is the presence of membrane-bound 

organelles. While the energetically most stable shape for a membrane is likely a 

sphere, many organelles possess much more complex shapes within cells which 

contributes to their proper function. There has been an explosion in the field of 

membrane bending proteins in recent years giving new insights into how a cell forms 

and maintains organelle structures. Two ER resident proteins have recently been 

implicated in the formation of the tubular network of the ER in both higher and lower 

eukaryotes. Both Rtn1p and Yop1p contain two long hydrophobic domains, ~40 

amino acids in length, which are thought to act as wedges within the outer leaflet of 

the ER membrane and drive membrane deformation.  

 Using a mutagenic approach I have determined that both of the hydrophobic 

domains of Yop1p are critical for its ability to generate the tubules of the peripheral 

ER. The overexpression of Yop1p produces long, unbranched tubules in cells. I have 

developed an initial strategy for the enrichment of these Yop1p formed tubules for 

further study outside the context of the cell. Biochemical analysis of these tubular 

structures has revealed they are composed of protein and lipid components. Electron 

microscopy of enriched tubules indicates they have a small diameter, ~15 nm, and are 



 

often bundled together into rope-like structures. This work underscores the importance 

of Yop1p in the generation of the tubular network of the peripheral ER and provides 

evidence deepening our understanding of the molecular mechanism of Yop1p action 

on membranes that generates membrane tubules.  
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CHAPTER 1 

 

INTRODUCTION 

Eukaryotic membrane trafficking 

One of the defining characteristics of eukaryotic cells is the presence of 

membrane bound organelles. The lipid bilayers of these structures serve as barriers 

between the cytoplasm and the contents of the organelle. Transfer of cellular material 

between organelles occurs through a complex process of budding vesicles/tubules 

from one organelle, transport through the cell and ultimately fusion with an acceptor 

membrane. During this process luminal and membrane components are transferred 

from one organelle to another. The transfer of organellular components is a highly 

regulated process where specific loading of cargo within the membrane bound 

vesicles/tubule aids in maintaining organelle identity and delivering specific cargo to 

designated locations [1]. Factors present on the budded membrane direct the cargo to 

designated acceptor membranes containing the necessary components for fusion [2-4].  

 A number of factors have been identified that direct the formation of 

membrane buds and select the cargo components for transfer to an accepter organelle 

(Figure 1.1). Clathrin forms coated pits on the cytoplasmic face of the plasma 

membrane during endocytosis, as well as from the trans Golgi network and endosomes 

[2, 3, 5]. Clathrin monomers aggregate at the bud site to begin bud formation. The 

adaptor proteins (AP1, AP2, AP3 and AP4) interact with clathrin and the selected 

cargo and effectively hold the cargo in place to be loaded into the forming vesicle [6-

10]. COPI coated vesicles traffic materials retrograde from the Golgi to the ER, as 

well as between the cisternae of the Golgi complex [11]. COPI is thought to function 

in formation of the membrane bud as well as in cargo selection during this process 

[12-14]. COPII coated vesicles traffic material from the ER to the Golgi [15, 16]. 
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Figure 1.1 Schematic representation of eukaryotic membrane trafficking. Also 
included are some of the major proteins responsible for steps in membrane trafficking. 
1. COPII, 2. COPI, 3. Clathrin. Abbreviations: ERES ER exit sites, EE early 
endosome, LE late endosome. 
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Activation of Sar1p by exchange of GDP with GTP exposes an NH2 terminal 

amphipathic helix, which is inserted into the membrane, recruiting the two protein 

complexes, Sec13p-Sec31p and Sec23p-Sec24p and together drives membrane 

deformation [17-32]. This complex interacts with the adaptor protein, p24, which 

binds to cargo and Sec24p, loading the appropriate cargo into the forming vesicle 

known as an ER exit site (ERES) [31, 33-43].  

Tethering proteins and SNAREs (soluble N-ethylmaleimide sensitive factor 

attachment receptors) present on the surface of the vesicles and acceptor membranes 

serve to facilitate binding of the vesicle to the correct acceptor membrane and are also 

thought to drive fusion of the two membranes [44]. Tethering complex on the acceptor 

membrane, along with its cognate Rab protein serves to identify the correct destination 

for the vesicle and acts to bring the vesicle physically close to the acceptor membrane 

[45-48]. A number of potential tethering complexes have been identified on various 

acceptor membranes, for example the exocyst complex on the plasma membrane [49], 

TRAPP and COG complexes on the Golgi [50-56], and the HOPS complex on the 

vacuole [57, 58]. Target SNAREs (t-SNAREs) and vesicle SNAREs (v-SNAREs) are 

present on the acceptor and vesicle membranes, respectively, and function in fusing 

the two membranes. SNARES are long coiled-coil proteins that interact specifically 

with another SNARE when two membranes are brought into close proximity to one 

another. It is thought that the SNAREs serve as a bridge between the two membranes 

and together with SM/Sec1p, function in fusing the two membranes through a yet 

undetermined mechanism [44, 59-63].  

 

Complex morphology of organelles 

The morphology of each organelle manifests as distinct membrane shapes that 

are evolutionarily conserved (Figure 1.1). For example, mitochondria contain two 
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distinct membranes, the inner and outer membranes. The outer membrane is relatively 

flat and serves as a barrier between the mitochondrial matrix and the cytoplasmic 

space. On the other hand, the inner membrane is highly convoluted into structures 

called cristae [64-66]. These membrane invaginations serve to increase the surface 

area of the inner membrane to increase the energy production of the mitochondria [67, 

68]. The membrane cristae have a very narrow diameter, ~10-15 nm, thought to slow 

the diffusion of proteins from the mitochondrial interior and regulate the energy state 

of the mitochondria [69]. Formation of the proton gradient that drives ATP production 

occurs across the inner membrane and it is thought that slowing the diffusion of 

factors to the peripheral ends of the cristae regulates the rate of energy production. 

When a cell needs a higher energy level the diameter of the mitochondrial cristae can 

widen to increase the diffusion rate and thus increase energy output [70, 71]. The 

morphology of these membrane invaginations has a direct effect on the function of the 

mitochondria.  

The nuclear envelope provides another example of how the morphology of a 

membrane can aid in the proper function of the organelle. The nuclear envelope is 

composed of two relatively flat, large membrane sheets attached together through 

nuclear pores that connect the aqueous environments of the nucleus and the cytoplasm 

[72]. Between the two membranes is the lumen of the ER. The presence of nuclear 

pores is required for the exchange of macromolecules between the nucleus and the 

cytoplasm and is also essential for cell division and differentiation [73-75]. Nuclear 

pores are large complex structures that have defined morphologies with a diameter of 

40-90 nm connecting the two membranes approximately 50-100 nm apart [76-78]. The 

specific structure of these pores controls the diffusion of macromolecules through 

them, providing another example of how the morphology of the nuclear envelope can 

dictate its proper function [79-83]. Nuclear pores consist of more than 30 individual 
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proteins bound very specifically between the membranes and is ~40 Mda in the 

budding yeast, S. cerevisiae [84]. In higher eukaryotes, the nuclear envelope is broken 

down during mitosis and must be reformed after [85]. This process also necessitates 

that nuclear pores must be broken down and reformed as well [86, 87]. In order for the 

inner and outer nuclear membranes to be connected through the formation of a pore 

the two membranes must be brought close together and a localized area of extremely 

high curvature must be generated between the two membranes where the pore is to 

form. Two ER resident proteins, Rtn1p and Yop1p, were recently identified as factors 

required for the formation of nuclear pores [88]. Although, Rtn1p and Yop1p localize 

mainly to peripheral ER structures where they are thought to function in generating 

membrane tubules, a small amount can be found on the nuclear envelope as well [89-

91]. It has been proposed that this small pool of Rtn1p and Yop1p are critical factors 

in generating the high level of curvature required for proper nuclear pore formation 

[88, 92].  

The Golgi complex is another organelle that is composed of a specific 

morphology that is critical for proper function. In mammalian cells the Golgi is 

composed of a series of cisternae, each a flat disc-like structure sandwiched together 

and connected by small membrane tubules [93-95]. Each of the cisternea of the Golgi 

contains distinct components that function in a different step during the post-

translational modification of proteins [96-99]. Protein glycosylation is a modification 

that can regulate the turnover of a protein, proper protein folding, the localization of a 

protein, or be necessary for the function of a protein [100-104]. Glycosylation occurs 

through a distinct series of enzymatic reactions that must occur in the correct order to 

result in the proper glycosylation pattern. Cells divide the machinery for glycosylation 

between the Golgi cisternae so that early acting processing enzymes are found in the 

cis-Golgi and later acting enzymes are found in the trans-Golgi. Thus as proteins 
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progress through each cisternae they receive the correct glycosylation in the correct 

order [105-107]. It is the structure of the Golgi complex that allows the separation of 

these reactions to achieve the proper modification of proteins, thus providing another 

example of how the morphology of an organelle can be critical for its function.  

 

The endoplasmic reticulum 

The endoplasmic reticulum (ER) is ubiquitously found in all eukaryotic 

organisms and provides the cell with many essential functions. The ER is the major 

site of lipid synthesis which serves as the source of lipids for the biogenesis of many 

organelles [111, 112]. ER membranes, in close apposition to other organelles, are 

believed to transfer lipids and/or proteins to the mitochondria, peroxisomes, 

endosomes and the plasma membrane directly as well [112]. The ER also acts as the 

entry portal into the secretory system. The ribosomes of the rough ER produce integral 

membrane proteins and luminal proteins that are distributed throughout the cell. The 

lumen of the ER contains many enzymes essential for protein glycosylation, 

detoxification of harmful compounds and quality control of proteins through the 

unfolded protein response [113, 114]. Additionally, the lumen of the ER acts as a 

Ca+2 storage and signaling repository for the cell, regulating many Ca+2 dependant 

processes [115]. Thus, the ER functions as a master organelle in the biosynthesis of 

other organelles, synthesis of macromolecules, storage of signaling molecules and 

protein quality control providing the cell with many other functions essential for 

eukaryotic life. 

 

Morphology of the Endoplasmic Reticulum 

In mammalian cells, the ER is a membrane-enclosed organelle composed of at 

least three morphologically distinct regions that contain a continuous luminal space 



 

 7 

[116]. The rough ER is found close to the nucleus and is composed of relatively flat 

membrane sheets studded with ribosomes while the smooth ER consists of a polygonal 

array of highly curved tubules which extend throughout the entire cytoplasm [116-

119]. ER exit sites (ERES) are specialized regions of the ER where COPII coated 

vesicles form and bud during membrane trafficking [120, 121]. These sites are spread 

throughout the ER and are composed of protein complexes that aid in the formation of 

COPII coated vesicles and the packaging of material destined to enter the secretory 

system [36]. Little is known about how all of these subdomains of the ER are formed 

and maintained as morphologically distinct structures, however conservation of this 

ER morphology is observed in other eukaryotes demonstrating the significance of 

these distinct ER subdomains. 

Budding yeast contains a similarly structured ER, which enables examination 

of the conserved mechanisms cells use to generate these subdomains in a genetically 

amenable system. In yeast, the flat sheet-like ER surrounds the nucleus (the nuclear 

ER) and is connected to the peripheral ER by a few cytoplasmic tubules, making a 

continuous luminal space between these two ER subdomains (Figure 1.2 A). The 

peripheral ER is found at the extreme periphery of the cell in a network of tubules 

connected by junction points just beneath the plasma membrane [119, 122, 123] 

(Figure 1.2 B). In yeast, ERES are found mainly in the tubules of the peripheral ER, 

possibly suggesting the high curvature present in these tubules may aid in vesicle 

formation [119]. The conserved morphology of ER membranes in eukaryotic cells 

implies the existence of conserved mechanisms for generating and maintaining the 

membrane curvature of these differently structured domains.  
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Figure 1.2 Structure of the ER in S. cerevisiae. A. Cross sectional view through the 
center of a cell depicting ER membranes, colored grey. B. Cross sectional view of the 
periphery of a cell depicting the tubular network of the peripheral ER found just 
beneath the plasma membrane. 
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The ER is a dynamic structure 

During mammalian mitosis the nuclear envelope is disassembled, and with it 

the ER is also broken into vesicular structures distributed throughout the cell [122, 

124]. This large-scale alteration of ER membranes, and the subsequent reformation of 

the ER after mitosis, suggests that the mechanism driving the formation of these 

structures must be reversible. In yeast however, the nuclear ER is not broken down 

during mitosis, but instead remains intact. A tubule of the peripheral ER is inherited 

by the daughter cell early in bud formation. Actin cables direct the movement of a 

peripheral ER tubule into the newly forming daughter cell where it is anchored to the 

plasma membrane [125, 126]. Rtn1p has been shown to bind directly to Sec6p, a 

subunit of the exocyst complex [89]. The exocyst complex is an octameric complex 

that localizes to sites of secretion, such as the bud tip and septum, and functions to 

tether secretory vesicles to the plasma membrane [49, 127]. The delivery of a 

peripheral ER tubule to the bud tip of a growing daughter cell involves this tubule 

moving along an actin filament and attaching at the bud tip. The tubule is then 

anchored at the bud tip and subsequently spreads throughout the inner plasma 

membrane of the bud through an unknown mechanism. The initial movement of the 

peripheral ER tubule requires the action of Myo4p and She3p, however, no 

mechanism is known for attachment of the tubule to the daughter cell plasma 

membrane [125, 128]. It has been suggested that the binding of Rtn1p to the exocyst 

complex aids in the attachment of the peripheral ER tubule to the daughter cell plasma 

membrane, perhaps directly anchoring the peripheral ER at the bud tip where it can 

subsequently spread along the plasma membrane of the daughter cell [89]. However, 

considering rtn1∆ cells do not have defects in ER inheritance there must be some 

other redundant mechanism of tubule attachment [89].  
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Additionally, the tubular ER is a highly dynamic structure constantly 

undergoing rearrangements [124]. New tubules can branch from existing ones, grow, 

and then fuse with other tubules. Tubules can also slide along one another, changing 

the arrangement of the tubular network. In addition, tubules can be removed when a 

sliding tubule fuses with an adjacent one, a process called ring closure [122, 124, 129]. 

How this dynamic behavior is regulated is unclear, but actin filaments play a critical 

role in the dynamics of the ER in yeast, while microtubules appear to serve this 

function in the smooth ER of higher eukaryotes [122, 130, 131]. Actin 

depolymerization reduces the peripheral ER movements dramatically in yeast, though 

appears to have little effect on the structure of tubules, suggesting actin may regulate 

these tubule movements but is not responsible for forming the tubular structure [123]. 

 

Mechanisms of Membrane Bending 

While the most energetically stable form for a membrane bound compartment 

is likely to be roughly a sphere consisting of a single, relatively flat membrane sheet, 

many eukaryotic organelles maintain a distinct and highly specialized membrane 

morphology critical for their function. This conservation suggests the presence of 

evolutionarily conserved means to form/maintain the specific morphology of each 

organelle. Several conserved mechanisms for generating membrane curvature have 

been discovered (Figure 1.3) [132, 133]. For example, varying the lipid composition 

between leaflets of a lipid bilayer can induce spontaneous membrane curvature. The 

varied polar tail regions and charged head groups of lipids can alter their packing 

within the membrane, ultimately changing the membrane curvature (Figure 1.3 A). 

Alternatively, soluble protein coats can oligomerize on a membrane surface, imposing 

their intrinsic curvature on a localized region of the membrane (Figure 1.3 B). 

Furthermore, the insertion of a proteins hydrophobic domain part of the way through 
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the lipid bilayer can increase the surface area of one leaflet, forcing deformation of the 

membrane through a wedging mechanism (Figure 1.3 C). These mechanisms are not 

exclusive to one another and may act in concert to generate the curved membranes of 

many organelle structures within the cell.  

 

Lipid composition and membrane curvature 

A common mechanism of generating morphological alterations of membranes 

is through changes in lipid composition between the two leaflets of a bilayer [108, 

134, 135]. Lipids are composed of polar head groups and hydrophobic tails. The size 

and charge of the polar head group influences the amount of space occupied by the 

lipid on the membrane surface while the length of the hydrophobic tail and the number 

of double bonds present have effects on the packaging of the lipids within the interior 

of the membrane. These two factors govern the ability of the lipid composition to 

drive membrane deformation through the shape of the lipids that make up the 

membrane. In order for the lipid composition to drive membrane curvature the 

different lipid species must be asymmetrically distributed between the two leaflets of 

the bilayer, and this asymmetry must be maintained in order for the curvature 

generated to be maintained for long periods of time. There is an intrinsic low level of 

lipid flipping that occurs between the two leaflets of a membrane that would 

eventually redistribute the lipids between the two leaflets [136-142]. Perhaps once a 

small, localized area of curvature has been generated, the lipids with large head groups 

prefer to be on the leaflet with a larger surface area, with more space between the 

large, charged head groups. Flippases have the ability to flip lipids from one leaflet to 

another and may act to generate and/or maintain the lipid asymmetry that results in 

membrane deformation as well [143-145].  
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Figure 1.3 Three ways to generate membrane curvature. A. Altering the lipid 
composition of a normally flat membrane can curve the membrane. B. Coat proteins 
can bind to the surface of a flat membrane and impose their intrinsic curvature on the 
membrane. C. Hydrophobic “wedging” can increase the surface area of one leaflet, 
generating membrane curvature.  
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Furthermore, the enzymes that generate the different lipid species may form 

the asymmetric lipid distribution that results in generating membrane curvature. These 

enzymes chemically convert one lipid species into another, altering the lipid 

composition of the membrane and potentially the shape of that membrane. Trafficking 

in the Golgi occurs, in part, through the action of phospholipase A2, which increases 

the concentration of inverted, cone-shaped lysophospholipids in the membrane of the 

Golgi, TGN, and endosomes and results in the formation of tubular structures [109, 

146-148]. The increase in inverted cone shaped lipid species specifically localized 

within the cytoplasmic leaflet of these organelles results in the formation of 60-80 nm 

tubular structures and promotes trafficking between membranes [149-151]. This is one 

example of how altering the enzymatic action of a protein can alter the lipid 

composition of a membrane and thus change the morphology of an organelle. 

 

Coat proteins and membrane curvature 

Coat proteins are soluble proteins that have the capacity to bind to membrane 

surfaces, sensing and/or forming curved membranes. These proteins often contain 

intrinsic curvature on their positively charged membrane-binding surface and can 

force this intrinsic curvature on the membrane [32, 152]. BAR domain proteins 

function as banana shaped homodimers that bind membranes on their concave 

surfaces. The interaction between two or more of these complexes can induce large 

areas of curvature over great distances resulting in the formation of membrane tubules 

[153, 154]. Coat proteins often also contain amphipathic helices that are inserted into 

the surface of the membrane to stabilize the interaction between the coat protein and 

the membrane. These helices are also thought to act in generating membrane curvature 

through a wedging effect, expanding the outer leaflet of the bilayer and driving 

membrane curving [155, 156].  
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Clathrin is another coat protein that functions in generating membrane 

curvature. Clathrin drives the formation of clathrin-coated pits through its interaction 

with the plasma membrane and other accessory proteins. Clathrin polymerization at 

the surface of the membrane with epsin and AP-2 is thought to begin bud formation 

from the relatively flat plasma membrane [156]. Cargo selection is mediated through 

interactions between AP-2 and specifically selected cargo and it is believed that the 

accumulation of cargo may further drive bud formation. Epsin and other F-BAR 

proteins continue to accumulate at the bud site and function in forming the vesicle, as 

clathrin is not believed to be capable of polymerizing into a symmetrical vesicular 

structure [157, 158]. Scission of the clathrin-coated vesicle is thought to occur through 

the combined action of dynamin, amphiphysin, endophilin and SNX9 binding to the 

very narrow neck of the vesicle and pinching it off [159-162]. The combined action of 

all these factors results in the endocytosis of specific cargo from the extracellular 

environment into the cytoplasm through the regulated formation of a localized area of 

membrane curvature.  

 

Hydrophobic domains and membrane curvature 

The insertion of the hydrophobic regions of a protein part of the way into a 

membrane can result in the expansion of the surface area of one leaflet of the bilayer, 

driving membrane deformation. The amphipathic helices of many BAR domain 

proteins provide an example of how hydrophobic insertion can alter membrane 

structure through a wedging mechanism [155, 156].  

Another protein, caveolin, contains a single COOH terminal hydrophobic 

domain of ~40 amino acids believed to form a hydrophobic hairpin within one leaflet 

of the membrane [163]. Aggregation of caveolin within the membrane drives the 

formation of caveolae during endocytosis [164-169]. Caveolin is specifically attracted 



 

 15 

to plasma membrane subdomains enriched in cholesterol and sphingolipids and the 

presence of these molecules with the hydrophobic domain of caveolin are believed to 

increase the fluidity of this localized region of the membrane, aiding in membrane 

deformation [170-175]. It is thought that the hydrophobic domain provides the driving 

force in generating membrane curvature while the NH2 and COOH terminal 

hydrophilic domains aid in oligomerization of caveolin monomers. Modeling of the 

hydrophilic regions of caveolin suggests they may have the ability to form 

amphipathic helices and may further drive membrane deformation similar to the BAR 

domain protein’s helices [176]. An additional class of proteins, cavin proteins, also 

localize to caveolae and appear to aid in forming the typical morphology of these 

budding vesicular structures, though their contribution to this process is poorly 

understood [177-180]. 

Two ER resident proteins, Rtn1p and Yop1p, also each contain these long 

hydrophobic domains thought to drive membrane deformation. Although Rtn1p and 

Yop1p do not share sequence homology, they both have two long hydrophobic 

domains (~40 amino acids in length) predicted to be membrane embedded. Together 

they have been proposed play redundant roles in the formation and/or maintenance of 

the highly curved membranes of the ER [90, 181-183].  

 

Rtn1p and Yop1p Family Proteins 

Rtn1p belongs to the eukaryotic reticulon family of integral membrane 

proteins, characterized by a reticulon homology domain (RHD). This domain contains 

two long hydrophobic stretches (~40 amino acids) separated by a hydrophilic loop 

(~60 amino acids) (Figure 1.4 A) [89, 90]. Additionally, reticulons contain a variable 

NH2 terminal hydrophilic segment, suggesting divergent functions may exist for 

different family members. Although reticulon homologs exist in all sequenced 
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eukaryotic genomes, none are found in prokaryotic ones [184], implying an 

evolutionarily conserved function that arose after the development of membrane-

bound organelles.  

Mammalian cells contain 4 reticulon genes with many isoforms differentially 

expressed in different cell types [184]. Reticulon proteins studied to date localize 

primarily ER membranes, with enrichment on tubular ER structures [91, 181, 185-

188]. Mammalian reticulons are highly expressed in neuronal cells and have been 

implicated in a variety of diseases including Alzheimer’s and autism [189-193], 

indicating a role for these proteins in proper nerve cell function, although no 

mechanism has been identified [191, 194]. Furthermore, reticulons have predicted 

functions as neurite outgrowth inhibitors, regulators of apoptosis through interactions 

with Bcl-2, and as regulators of amyloid precursor protein processing which may 

represent some of the divergent functions of this protein family [195-200]. In addition, 

reticulons have been recently implicated in the formation and/or maintenance of the 

peripheral ER tubules in both lower and higher eukaryotes [90, 181].  

Yop1p/DP1 family proteins represent a distinct family from reticulons, but 

interestingly also contain two long hydrophobic segments separated by a hydrophilic 

loop (Figure 1.4 B) [90]. Yop1p/DP1 family proteins have homologs in eukaryotic 

organisms but not in prokaryotic ones [195, 196]. The mammalian homolog of YOP1, 

the deleted in polyposis gene 1 (DP1), localizes to tubular ER membranes [90]. A 

recent study identified another mammalian YOP1 homolog called REEP3. Truncation 

in the promoter region of this gene abolishes its expression, which correlates with 

development of autism, indicating a potential role for this protein in proper nerve cell 

function [190]. Yop1p has also recently been implicated in the formation and/or 

maintenance of peripheral ER tubules in both higher and lower eukaryotes, perhaps 

even sharing redundant functions with Rtn1p [90, 181]. 
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Figure 1.4 Sequence alignment of Reticulon and Yop1p/DP1 family homologs. A. 
Sequence aligment of the reticulon homology domain of selected reticulon family 
members, bars indicate the predicted hydrophobic domains. B. Sequence alignment of 
Yop1p/DP1 family homologs, bars indicate predicted hydrophobic domains. S. 
cerevisiae (yeast), H. sapiens (human), M. musculus (mouse), S. pombe (pombe), D. 
melanogaster (fly), C. elegans (worm), A. thaliana (plant).  
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Rtn1p and Yop1p form oligomeric complexes with each other and Yip family 

proteins 

Tubules are specifically organized structures, characterized by highly curved 

membranes in cross section, but low curvature along the length of the tubule. This 

organization implies that the proteins responsible for generating this curvature may be 

assembled into highly ordered complexes [181].  

Rtn1p interacts with a number of proteins all implicated in the formation of 

peripheral ER tubules. The binding of Rtn1p to itself and Yop1p are required for the 

generation of peripheral ER tubules in vivo. Indeed, mutations of RTN1 have been 

identified that abolish its ability to function in tubule formation as well as its ability to 

oligomerize [181]. Rtn1p also binds to Yip3p, a protein related to the YIP family 

proteins which are believed to be involved in membrane trafficking [197]. Yop1p was 

originally identified as a Yip1p interacting protein (Yip One Partner) in a two-hybrid 

screen [198]. YIP family proteins are a class of proteins that bind Rabs in a 

prenylation-dependent manner [199-201], however the exact function of YIP family 

proteins is not understood. Recent work has linked YIP family proteins to the 

regulation COPII coated vesicle biogenesis [202]. Mutants of YIP1 result in both an 

inability for COPII vesicle biogenesis to occur (a severe secretion defect) and an 

accumulation of sheet-like ER membranes in place of the tubular peripheral ER [198, 

200, 201, 203]. Perhaps Yop1p, Rtn1p and YIP family proteins act in concert to 

regulate the formation and maintenance of ER tubules. The formation of oligomeric 

complexes between these proteins may be critical for their proper organization within 

the membrane, ultimately being responsible for generating the highly organized 

structure of a tubule.  
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Rtn1p and Yop1p Share a Unique Topology within the Membrane 

Both Rtn1p and Yop1p are predicted to contain two long hydrophobic 

segments, each ~40 amino acids in length, separated by a hydrophilic loop (Figure 1.4 

A, B). These two hydrophobic segments are considerably longer than a normal 

transmembrane domain which typically consists of 18-20 amino acids [204] . 

Examination of the topology of mammalian Rtn4a and DP1 suggests that the NH2 and 

COOH termini reside on the cytoplasmic face of the ER membrane. In addition, the 

hydrophilic internal loop region resides on the cytoplasmic face of the ER which 

might cause the long hydrophobic domains to fold into two hairpins, each dipping into 

the membrane without passing through the other side (Figure 1.4 C) [90]. The 

additional space taken up by each of the hydrophobic segments may result in 

expansion of the outer leaflet, forcing localized deformation of the membrane.  
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Figure 1.5 Model of the mechanism of Yop1p/Rtn1p in generating membrane 
curvature. A. MpeX hydrophobicity plot of the primary amino acid sequence of 
Rtn1p. Positive values represent hydrophobic residues, negative values represent 
hydrophilic residues. B. MpeX hydrophobicity plot of the primary amino acid 
sequence of Yop1p. Positive values represent hydrophobic residues, negative values 
represent hydrophilic residues. C. Model of the mechanism of hydrophobic “wedging” 
used by Rtn1p/Yop1p in the generation of membrane curvature.  
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Figure 1.5 Continued 
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OVERVIEW 

The purpose of this thesis is to investigate the mechanism of action of Yop1p 

and Rtn1p in their function in generating the highly curved tubules of the peripheral 

ER.  

In chapter 2, I investigate the mechanism of Yop1p action on membranes to 

generate the tubules of the peripheral ER. To accomplish this goal I utilized a 

mutational approach to dissect the domains of Yop1p that are critical for its ability to 

generate peripheral ER tubules. I have identified the two long hydrophobic domains of 

Yop1p to be necessary and sufficient to function in membrane tubule formation. 

Furthermore, my work suggests a minimal linker length requirement between the two 

hydrophobic domains of Yop1p for the generation of membrane tubules as well as a 

role for the length of the individual hydrophobic domains for this process. 

Additionally, I have identified two putative membrane-embedded residues, both 

highly charged, that appear to be critical for Yop1p function. The studies in chapter 2 

deepen our understanding of the model for Yop1p action on membranes.  

In chapter 3, I investigate the morphology of tubular structures formed by the 

overexpression of Yop1p. I determined that Rtn1p is not necessary for the formation 

of Yop1p tubules. Furthermore, I developed an enrichment process to isolate the 

tubules formed by Yop1p overexpression and analyzed the morphology of these 

tubular structures by electron microscopy. The tubular structures were found to have a 

very narrow diameter when compared to the diameter of the peripheral ER tubules. 

Analysis of the tubular structures formed by Yop1p overexpression deepens our 

understanding of the types of membrane alterations Yop1p is capable of forming in 

vivo and suggests a mechanism may exist to modulate the membrane-bending activity 

of Yop1p for the formation of the larger diameter tubules of the peripheral ER.  
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I investigate the ability of Rtn1p to function in the generation of peripheral ER 

tubules in chapter 4. Rtn1p is palmitoylated at 4 cysteine residues, all located in close 

proximity to the two hydrophobic domains of Rtn1p. I found that the palmitoylation of 

Rtn1p is not necessary for Rtn1p to form a tubular peripheral ER or for the formation 

of the junction points between these tubules. Furthermore, I have found that the 

palmitoylation of Rtn1p may play a role in the normal localization of this protein. 

Chapter 4 identifies a potential role for the palmitoylation of Rtn1p and provides 

evidence that this modification is not strictly required for the generation of membrane 

tubules by Rtn1p.  

Additionally, in the appendix chapter I investigate the function of a SARS-

CoV protein, ORF6, using yeast as a model. I found that ORF6 localizes to ER 

membranes and upon overexpression induces the formation of vesicular structures 

from the membranes of the ER. Through mutational analysis, I identified the single 

long hydrophobic domain of ORF6 to be sufficient for ER localization as well as for 

the formation of the vesicular structures. This chapter elucidates a potential role for 

ORF6 in the formation of viral replication sites, either directly or through recruitment 

of host factors, and provides a platform for further studies aimed at investigating the 

mechanism of ORF6 action on membranes to form the viral replication sites.   
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CHAPTER 2 

 

Mutational analysis of Yop1p reveals a minimal linker requirement for the 

generation of a tubular ER morphology  

 

ABSTRACT 

A role for Yop1p in the generation of the tubules of the peripheral ER has 

recently been proposed, though Yop1p likely functions redundantly with Rtn1p in this 

role. Deletion of Yop1p alone has no apparent phenotype, but rtn1Δyop1Δ cells 

contain sheet-like peripheral ER structures in place of the normally tubular network. A 

model has emerged for the action of Yop1p on membranes based on the presence of 

the two long hydrophobic regions of Yop1p, both predicted to be membrane 

embedded. It is thought that these hydrophobic domains are inserted into the 

membrane but do not penetrate the opposite face, giving Yop1p a “wedge-like” shape 

within the membrane that drives membrane deformation. Here I provide experimental 

evidence that Yop1p generates membrane curvature through a wedging mechanism 

and begin to elucidate the details that govern its ability to form the tubules of the 

peripheral ER.   
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INTRODUCTION 

A role for Yop1p in generating the tubules of the peripheral ER has been 

suggested by previous studies, in combination with a related protein, Rtn1p [1-4]. 

Rtn1p adopts a similar topology within the membrane, contains a similar domain 

organization and is thought to provide a redundant function in tubule formation 

through a similar mechanism of action as Yop1p [1]. Deletion of either YOP1 or RTN1 

alone in cells is known to have no effect on the morphology of the peripheral ER, 

however deletion of both results in a dramatic conversion of much of the normal 

tubular peripheral ER into largely sheet-like structures. Although the rtn1∆yop1∆ cells 

have large areas of membrane sheets in their peripheral ER, some area of membrane 

tubules can still be seen, suggesting there may be other factors that contribute to the 

formation of peripheral ER tubules besides Rtn1p and Yop1p. Yeast contain two 

reticulon homologs, Rtn1p and Rtn2p. Rtn1p is the predominantly expressed form, but 

Rtn2p expression can be induced under stressed conditions [5]. Rtn1∆rtn2∆yop1∆ 

cells contain a similar ER morphology defect as the rtn1∆yop1∆ cells with large 

peripheral ER sheets, but also some areas of tubules still present. The altered ER 

morphology in the rtn1∆rtn2∆yop1∆ cells can be reversed by the expression of 

genomic YOP1 as well as COOH terminally tagged YOP1-GFP [1, 2]. The mechanism 

used by Yop1p in generating the tubules of the peripheral ER has been suggested 

based on the presence of two unique hydrophobic domains, each ~40 amino acids in 

length [1]. The length of these hydrophobic domains is considerably longer than a 

typical transmembrane spanning domain [6, 7], suggesting perhaps a more complex 

structuring of these regions of Yop1p within the membrane.  

Further evidence that Yop1p is a player in the formation of the tubules of the 

peripheral ER comes from the fact that overexpression of Yop1p results in the 

formation of long, unbranched tubular structures within the cell (investigated further 
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in Chapter 3) [1, 4]. These tubules form from ER membranes and most likely contain a 

contiguous lumen, although luminal proteins appear to be excluded from the tubules 

due to their extremely small diameter [4, 8]. Additionally, studies have shown that 

purified Yop1p has the ability to generate small membrane tubules from lipids in vitro 

[4].  

Yop1p forms oligomeric complexes with many other proteins, for example 

Rtn1p, Yip1p, Sey1p and itself [1-3, 9]. Previous studies have implicated Yop1p 

homo-oligomerization to be critical for its ability to function in generating membrane 

tubules. Relatively immobile oligomeric complexes of 6-7 Yop1p monomers were 

identified through crosslinking experiments and the authors suggested that these small 

“arcs” of oligomerized Yop1p, distributed randomly along the tubule length, could 

maintain the tubule structure without further organization [2].  

Yop1p was identified as a Yip1p interacting partner (Yip One Partner) [9]. 

Yip1p is an integral membrane protein thought to function in COPII vesicle biogenesis 

[10-12]. It is possible that interactions between Yop1p and Yip1p are necessary for ER 

tubule formation. YIP family proteins also bind to Rab proteins [10, 12-15], perhaps 

providing a level of regulation for YIP family proteins and Yop1p in generating 

curved ER membranes. YIP family proteins contain extensive, conserved COOH 

terminal hydrophobic regions, and work in our lab has demonstrated that interactions 

between Rabs and YIP1 family members are critical for their ability to function [10, 

12, 14, 15]. Perhaps the binding of a Rab to a YIP1 protein transmits a signal to 

Yop1p, regulating the formation of tubular ER structures.  

Yop1p contains two long hydrophobic regions ~40 amino acids in length, 

separated by a 9 amino acid hydrophilic linker region (see Figure 1.4). Hydrophobicity 

prediction software identifies these two long regions as extremely hydrophobic and 

likely membrane embedded (MpeX Hydrophobicity Predictor, see Figure 1.5). 
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Previous results have determined that the NH2 and COOH termini of Yop1p are 

located on the cytoplasmic face of the ER membrane, as well as the linker region 

between the two hydrophobic domains [1]. These results suggest that the hydrophobic 

domains are inserted into the membrane part way and adopt a hairpin structure within 

the bilayer. The insertion of these hairpins only part way through the membrane is 

thought to result in an expansion of the outer leaflet of the bilayer, creating a localized 

area of membrane curvature. The aggregation of many Yop1p proteins together could 

drive the deformation of the membrane into membrane tubules [1, 2].  

This study aims to investigate the molecular mechanism Yop1p utilizes to form 

the tubules of the peripheral ER. I employ a mutational analysis of the different 

domains of YOP1 to dissect the contribution each part of Yop1p provides to the 

formation of membrane tubules and to identify the function of each domain. I identify 

the minimal functional domains of Yop1p to be its two hydrophobic domains, while 

the hydrophilic regions of the protein appear to be dispensable. I also show the two 

hydrophobic domains must be at least 5-6 amino acids apart for proper function, 

deepening our understanding of the mechanism of Yop1p that generates the tubules of 

the peripheral ER.  

 

MATERIALS AND METHODS 

Yeast strains and plasmids used in this study 

S. cerevisiae strains used in this study are listed in table 2.1. All manipulations 

of these yeast strains were conducted using standard biological methods. Cell density 

was determined using a Thermo Spectronic Genesys 10UV 

spectrophotometer (Rochester, NY) at 600 nm.  
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Table 2.1 S. cerevisiae strains used in this study 
RCY Strain Genotype Source 
RCY239 MATa ura3-52 leu2-3,112 This lab 
RCY4164 MATa, yop1ΔHIS5, ura3Δ0, leu2Δ0, his3Δ0 This study 
RCY4169 MATa, yop1ΔHIS5, ura3Δ0, leu2Δ0, his3Δ0 This study 
RCY4168 MATα , rtn1ΔKANR yop1ΔHIS5 ura3Δ0 

leu2Δ0 his3Δ0 lys2Δ0 
This study 

RCY4323 
  

MATa rtn1ΔKANR rtn2ΔKANR yop1ΔHIS5, 
ura3Δ0, leu2Δ0, his3Δ0, lys2Δ0, met15Δ0 

This lab 

 

Plasmids used in this study were created by standard biological methods and 

are listed in table 2.2. All mutant YOP1 constructs were created by overlap PCR 

recombination using overlap sites within the ORF as needed for each yop1 mutant.  

 

Table 2.2 Plasmids used in this study 
Plasmid 
number 

Construct Description Source Sequencing  
Number 

pRC504 pRS316 GFP-
YOP1 

 This lab N/A, 
previously 
made 

pRC2239 pRS316 
SEC13-RFP 

 This lab N/A 

pRC3484 pRS316 
SEC63-GFP 

 This lab N/A 

pRC3588 pRS315 RFP-
KDEL 

 This lab N/A 

pRC3589 pRS316 RFP-
KDEL 

 This lab N/A 

pRC3822 pRS315 RFP-
RTN1 

 This lab N/A 

pRC3825 pRS426 GFP-
YOP1 

 This 
study 

10113880 

pRC4436 pRS426 
YOP1-GFP 

 This 
study 

10156999 

pRC4444 pRS316 
YOP1-GFP 

 This 
study 

10158255 

pRC4523 pRS315 GFP-
YOP1ΔH1 

Δ39-79 This 
study 

10174565 
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Table 2.2 Continued 
pRC4524 pRS315 GFP-

YOP1ΔH2 
Δ90-130 This 

study 
10174565 

pRC4525 pRS315 GFP-
H1 

Amino acids 39-79 This 
study 

10174565 

pRC4526 pRS315 GFP-
H2 

Amino acids 90-130 This 
study 

10174565 

pRC4559 pRS315 GFP-
H1-H2 

Linker KTASAGSSA This 
study 

10178698 

pRC4560 pRS316 GFP-
H1 

Amino acids 39-79 This 
study 

10178698 

pRC4562 pRS316 
YOP1 

Genomic YOP1 This 
study 

10178698 

pRC4573 pRS316 GFP-
YOP1ΔH1 

Δ39-79 This 
study 

10183352 

pRC4674 pRS315 GFP-
H2-H1 

Linker KTASAGSSA This 
study 

10201684 

pRC4705 pRS315 GFP-
H1-H1 

Linker KTASAGSSA This 
study 10204713 

pRC4706 pRS315 GFP-
H2-H2 

Linker KTASAGSSA This 
study 10204713 

pRC4709 pRS315 H1-
H2-GFP 

Linker KTASAGSSA This 
study 

10205453 

pRC4710 pRS315 H2-
H1-GFP 

Linker KTASAGSSA This 
study 

10205453 

pRC4711 pRS315 GFP-
H1-7a-H2 

Linker KTSKTDE This 
study 

10205453 

pRC4712 pRS315 GFP-
H1-16-H2 

Linker 
KTASASSKTDEKTSSGSSA 

This 
study 

10205453 

pRC4713 pRS315 GFP-
H1-9-H2 

Linker KTSSKTDEK This 
study 

10205453 

pRC4714 pRS315 GFP-
H1-2-H2 

Linker KT This 
study 

10205453 

pRC4715 pRS315 GFP-
H1-KTG-H2 

Linker KTG This 
study 

10205453 

pRC4716 pRS315 GFP-
H1-KTD-H2 

Linker KTD This 
study 

10205453 

pRC4717 pRS315 GFP-
H1-8a-H2 

Linker KTSSKTDE This 
study 

10205453 

pRC4777 pRS315 
YOP1-Hs1-
GFP 

Shortened H1 (Δ55-67) This 
study 

10211866 
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Table 2.2 Continued 
pRC4778 pRS315 GFP-

Hs1-H2 
Amino acids 39-54, 68-79-
(linker KTASAGSSA) 90-
130 

This 
study 

10211866 

pRC4779 pRS315 
YOP1-Hs2-
GFP 

Shortened H2 (Δ99-111) 
This 
study 

10213773 

pRC4780 pRS315 GFP-
H1-Hs2 

Amino acids 39-79-(linker 
KTASAGSSA)-90-98, 112-
130 

This 
study 

10213773 

pRC4783 pRS315 GFP-
H1-6a-H2 

Linker KTASAG This 
study 

10211866 

pRC4784 pRS315 GFP-
H1-6b-H2 

Linker KTGSSA This 
study 

10211866 

pRC4786 pRS315 GFP-
H1-7b-H2 

Linker ASAGSSA This 
study 

10211866 

pRC4787 pRS315 GFP-
H1-H230 

Amino acids 39-79-(linker 
KTASAGSSA)-101-130 

This 
study 

10211866 

pRC4788 pRS315 H1-
GFP-H2 

Linker GFP This 
study 

10211866 

pRC4789 pRS315 GFP-
H1-8b-H2 

Linker KTASAGSS This 
study 

10211866 

pRC4790 pRS315 GFP-
H1-7c-H2 

Linker KTASAGS This 
study 

10211866 

pRC4791 pRS315 GFP-
YOP1 K121E 

 This 
study 

10211866 

pRC4792 pRS315 GFP-
YOP1 K108E 

 This 
study 

10211866 

pRC4793 pRS315 GFP-
YOP1 E104K 

 This 
study 

10211866 

pRC4794 pRS315 GFP-
YOP1 E61K 

 This 
study 

10211866 

pRC4795 pRS315 GFP-
YOP1 E61K 
K121E 

 This 
study 

10211866 

pRC4796 pRS315 GFP-
YOP1 E61K 
K108E 

 This 
study 

10211866 

pRC4797 pRS315 GFP-
H137-H2 

Linker KTASAGSSA This 
study 

10211866 

pRC4798 pRS315 GFP-
H1-H234 

Linker KTASAGSSA This 
study 

10211866 

pRC4799 pRS315 GFP-
H137- H234 

Linker KTASAGSSA This 
study 

10211866 
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Table 2.2 Continued 

pRC4816a pRS315 GFP-
H1-S7-H2 

Linker KTSSSSSSS This 
study 

10213773 

pRC4823 pRS315 GFP-
H1-S6-H2 

Linker KTSSSSSS This 
study 

10225045 

pRC4824 pRS315 GFP-
H1-S5-H2 

Linker KTSSSSS This 
study 

10225045 

pRC4825 pRS315 GFP-
H1-S4-H2 

Linker KTSSSS This 
study 

10225045 

pRC4826 pRS315 GFP-
H1-S3-H2 

Linker KTSSS This 
study 

10225045 

pRC4827 pRS315 GFP-
H1-S2-H2 

Linker KTSS This 
study 

10225045 

pRC4828 pRS315 GFP-
H1-S-H2 

Linker KTS This 
study 

10225045 

pRC4829  pRS315 
GFP-YOP1 
E104K K108E 

 This 
study 

10225045 

pRC4816b pRS315 GFP-
H1-KTS11-H2 

Linker KTSSSSSSSSSSS This 
study 

10213773 

 

Fluorescence Microscopy 

GFP fusions of each protein were created by fusing 238 amino acids of yeast 

enhanced green fluorescence protein (yEGFP) to either the NH2 or COOH terminus 

and separated by a unique linker sequence (GGPGG). Expression of each GFP fusion 

construct is driven by the endogenous promotor of that gene. NH2 terminal GFP 

fusions contain the endogenous terminator sequences from each ORF, ~500 bp 

downstream from the stop codon of that gene. For COOH terminal GFP fusions, 

termination is controlled by 573 bp of DNA downstream of the ADH1 ORF. All 

fusion constructs were created using overlap PCR recombination with ~20 bp 

overlapping sequences for all PCR fragments and recombined into the specified CEN 

plasmid at the multiple cloning site.  

RFP-tagged proteins were constructed as described above, using Discosoma 

red fluorescent protein (DsRed) T4 as a template [16]. RFP-KDEL was constructed 
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with DsRed fused to the NH2 terminus of the yeast ER retrieval signal HDEL 

separated by the linker ASAGGSAGGGSASAGGPGG. RFP fusion constructs are 

NH2 terminal fusions separated by a GGPGG linker sequence (RFP-RTN1).  

Cells were grown overnight in minimal media to mid-log phase. Fluorescence 

images were taken using a Nikon Eclipse E600 equipped with a 100X (1.4NA) 

objective and 1x optivar (typically RFP constructs were exposed for 150-300 msec, 

while GFP constructs were exposed for 350-450 msec). DIC images were collected 

from a single plane while fluorescence images were gathered as a series of 20-30 z 

steps of 0.2 µm. A CCD camera (Sensicam EM High Performance, The Cook 

Corporation) was used to collect images (software IP Lab version 3.6.5, Scanalytics).  

Blind deconvolution of each z-series was done using AutoQuant X2 program (Media 

Cybernetics) for 30 iterations. Single planes were identified from either the center or 

periphery of the cell. Typically between 3 and 20 images were collected for each. 

 

Analysis of peripheral ER morphology 

To perform the quantification of cells containing a normal tubular 

peripheral ER, either rtn1∆yop1∆ or rtn1∆rtn2∆yop1∆ cells were transformed 

with one of the GFP‐tagged constructs and RFP‐KDEL and analyzed by 

fluorescence microscopy. Using the TxRED filter and focusing on peripheral ER 

structures, cells were visually categorized as having either an all‐tubular 

peripheral ER (normal phenotype) or having some areas of peripheral ER sheet‐

like structures (mutant phenotype). Only cells expressing the GFP construct were 

included in this analysis. From a single microscope slide 100 cells were analyzed 

and this procedure was always performed in triplicate from a single liquid 

culture. Quantification numbers are all reported as average +/‐ standard 

deviation of cells with a normal peripheral ER morphology (level of rescue).  
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RESULTS 

Yop1p is involved in the formation of peripheral ER tubules 

 Previous studies have shown that both rtn1∆yop1∆ and rtn1∆rtn2∆yop1∆ cells 

contain sheet-like peripheral ER membranes in place of the normal peripheral ER 

tubular membranes, suggesting that both Yop1p and Rtn1p are involved in the 

formation of the tubules of the peripheral ER. Furthermore, the sheet-like peripheral 

ER morphology can be restored to a wild-type tubular morphology by the expression 

of genomic YOP1 [1]. These mutant cells can be used to analyze mutant YOP1 

constructs for their ability to restore a tubular morphology in the peripheral ER of 

these cells to elucidate the molecular mechanism utilized by Yop1p to generate these 

membrane tubules. To demonstrate that, in my hands, the rtn1∆rtn2∆yop1∆ cell’s 

mutant sheet-like phenotype can be restored to a tubular morphology, these cell lines 

were analyzed by fluorescence microscopy (using RFP-KDEL expression to visualize 

ER structures, see materials and methods section) and categorized as having either a 

sheet-like peripheral ER (mutant phenotype) or a tubular peripheral ER (normal 

phenotype). From a single, overnight liquid culture 100 cells were analyzed in this 

manner (performed in triplicate) and reported as an average +/- standard deviation. 

Vector control wild-type cells almost all contain a tubular peripheral ER (99 +/- 1% 

cells with normal ER, Table 2.3, Figure 2.1), as do vector control rtn1∆ cells (93.6 +/- 

1.5% cells with normal ER, Table 2.3) and vector control yop1∆ cells (96 +/- 4% cells 

with normal ER, table 2.3). Almost all of the rtn1∆yop1∆ cells and rtn1∆rtn2∆yop1∆ 

cells contained sheet-like peripheral ER (9.3+/- 2.6% and 5 +/- 3.6 cells with normal 

ER, respectively). Expression of genomic YOP1 from a single copy plasmid was 

found to restore a tubular morphology to the peripheral ER in many rtn1∆rtn2∆yop1∆ 

cells (77.3 +/- 4.1% cells with normal ER, Table 2.3), demonstrating that I can use this 

mutant cell line to analyze the functionality of mutant YOP1 constructs. 
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Figure 2.1. Yop1p is involved in forming peripheral ER tubules. A.  
Wild-type (RCY239), yop1Δ (CY4169), rtn1Δ (RCY4164), rtn1Δyop1Δ (RCY4168) 
and rtn1Δrtn2Δyop1Δ (RCY4323) cells expressing RFP-KDEL to visualize ER 
structures. B. Quantification of number of each cell type containing a normal, tubular 
peripheral ER. Numbers are presented as average +/- standard deviation. 
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Figure 2.1 continued 
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Table 2.3 Quantification of cells with normal ER morphology, Yop1p generates the 
tubules of the peripheral ER 
RCY 
strain 

Plasmid(s) Slide 1 
100 
cells 
counted 

Slide 2 
100 
cells 
counted 

Slide 3 
100 
cells 
counted 

Average Standard 
Deviation 

Date 
analysis 
performed 

239 pRC3588 100 98 99 99 1 7/29/08 
4169 pRC3588 94 92 95 93.6 1.5 9/16/08 
4164 pRC3588 94 96 97 96 4 8/26/08 
4168 pRC3588 6 10 11 9.3 2.6 7/29/08 
4323 pRC3588 6 8 1 5 3.6 7/31/08 
4323 pRC3588, 

pRC4562 
82 76  74 77.3 4.1 1/27/09 

 

GFP-Yop1p is functional in restoring a tubular peripheral ER morphology 

Previous studies have demonstrated that a COOH terminal GFP tag does not 

interfere with Yop1p function [1]. However, the same studies suggest that tagging 

Yop1p on the NH2 terminus resulted in disruption of the ability for Yop1p to function 

in tubule formation. I created NH2 terminally tagged GFP-YOP1 with a linker 

separating GFP from Yop1p (GGPGG) and analyzed for function as previously 

described. My findings indicate that NH2 terminally tagged GFP-Yop1p is just as 

functional as Yop1p or Yop1p-GFP in restoring tubules in rtn1∆rtn2∆yop1∆ cells 

(68.3 +/- 14.1%, 77.3 +/- 4.1, and 57.6 +/- 3.5% cells with normal ER, respectively, 

Table 2.4, Figure 2.2), while expression of a vector control or a control protein (GFP-

Sec63p) were both unable to restore a tubular peripheral ER (8.0 +/- 3.6% and 0.6 +/- 

0.5% cells with normal ER, respectively) (Figure 2.2, Table 2.4). It is possible that the 

separation of GFP from Yop1p by the GGPGG linker may provide enough flexibility 

for the NH2 terminal GFP tag to not interfere with Yop1p function. Alternatively, 

differences in the genetic background of strains used in the Voeltz et al study [1] and 

our studies may account for the differences in the ability of GFP-Yop1p to function. 
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Figure 2.2. GFP-Yop1p expression restores tubules in rtn1Δrtn2Δyop1Δ  cells. A. 
Fluorescence images of rtn1Δrtn2Δyop1Δ (RCY4323) expressing genomic YOP1, 
SEC63-GFP, YOP1-GFP, and GFP-YOP1. RFP-KDEL allows visualization of ER 
structures. B. Quantification of number of each cell type with a tubular peripheral ER. 
Numbers presented are average+/- standard deviation. 
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   Figure 2.2 continued 
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Table 2.4 Quantification of cells with normal ER morphology, GFP-Yop1p is 
functional 
RCY 
strain 

Plasmid(s) Slide 1 
100 
cells 
counted 

Slide 2 
100 
cells 
counted 

Slide 3 
100 
cells 
counted 

Average St. 
Dev. 

Date 
Analysis 
Performed 

4323 pRS315 12 5 7 8 3.6 1/27/09 
4323 pRC3484 1 0 1 0.6 0.5 1/27/09 
4323 pRC4444 61 58 54 57.6 3.5 1/27/09 
4323 pRC504 52 76 77 68.3 14.1 1/27/09 
4323 pRS4562 82 76 74 77.3 4.1 1/27/09 

 

Yip1/Yif1p expression does not functionally complement rtn1∆yop1∆ cells 

Another family of proteins, the YIP1/YIF1 family, are known to bind to Yop1p 

and may aid in the formation of the peripheral ER tubules. In order to assess the ability 

of these proteins to restore a normal peripheral ER morphology in rtn1∆rtn2∆yop1∆ 

cells, multi-copy plasmids overexpressing genomic copies of the YIP1 family 

members Yip1p, Yif1p, or both were introduced into these cells and peripheral ER 

morphology was analyzed by fluorescence microscopy. This analysis (performed as 

previously described) revealed that neither Yip1p nor Yif1p overexpression was 

capable of restoring peripheral ER tubules more than vector alone (5.1 +/- 2.5%, 9.6 

+/- 1.5% and 5 +/- 2.3% cells with normal ER, respectively, Table 2.5, Figure 2.3). 

Additionally, expression of both Yip1p and Yif1p together was unable to restore a 

normal peripheral ER morphology in the rtn1∆rtn2∆yop1∆ cells (5.3 +/- 3.2% cells 

with normal ER, Figure 2.3, Table 2.5). These results suggest that the ability of 

Yip1p/Yif1p to generate curvature of ER membranes requires the presence of Yop1p 

and/or Rtn1p. 

To further analyze the interaction between Yip1p and Yop1p, as well as 

investigate whether Yop1p requires Yip1p for its function, yip1-40 cells expressing 

endogenous levels of Yop1p were analyzed for peripheral ER morphology. Yip1-40 
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cells contain normal peripheral ER tubules at the permissive temperature (30°C), but 

upon a shift to 37°C these tubules are rapidly converted to peripheral ER sheets [10]. 

Interestingly, yip1-40 cells at the restrictive temperature do not appear to contain any 

areas of peripheral ER tubules, a more severe mutant phenotype than the 

rtn1∆rtn2∆yop1∆ cells have, highlighting the importance of Yip1p in the formation of 

these structures. As expected, at the permissive temperature these cells have mainly a 

tubular peripheral ER (Figure 2.3 C) while upon shift to the restrictive temperature 

these tubules are converted into sheet-like structures, despite the expression of Yop1p 

(Figure 2.3 D). This result further suggests that Yop1p may act in concert with Yip1p 

to form and maintain the tubules of the peripheral ER in yeast, and that Yop1p 

requires Yip1p to accomplish this task.  

 

 

 
Table 2.5 Quantification of indicated cell type with normal ER morphology, 
YIP1/YIF1 expression cannot function without Rtn1p/Yop1p 
RCY 
strain 

Plasmid(s) Slide 1 
100 
cells 
counted 

Slide 2 
100 
cells 
counted 

Slide 3 
100 
cells 
counted 

Average St. 
Dev. 

Date 
Analysis 
Performed 

4323 pRS315 4 1 8 5 2.3 3/8/09 
4323 pRC1037 4 5 6 5.1 2.5 3/8/09 
4323 pRC3146 8 10 11 9.6 1.5 3/8/09 
4323 pRC1037 

pRC3146 
4 8 4 5.3 3.2 3/8/09 

4323 pRC504 62 59 49 58 17.7 3/8/09 
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Figure 2.3. YIP1 family proteins and Yop1p act together to form peripheral ER 
tubules.  A. Fluorescence images of rtn1∆rtn2∆yop1∆cells overexpressing genomic 
YIP1, YIF1 or both. RFP-KDEL was also expressed to visualize peripheral ER 
structures.  B. Quantification of number of each cell type containing a tubular 
peripheral ER. Numbers presented are average+/- standard deviation. C, D. yip1-40 
cells expressing GFP-Yop1p at permissive (C, 30°C) and restrictive (D, 37°C) 
temperatures. RFP-KDEL expression allows visualization of ER structures. 
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   Figure 2.3 continued 
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   Figure 2.3 continued 
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Membrane trafficking appears unaffected in rtn1∆rtn2∆yop1∆ cells 

There is evidence that a block in membrane trafficking from the ER to the 

Golgi can results in an accumulation of cisternal ER membranes and an expansion of 

the surface area of the ER [17]. In order to test the possibility that the presence of 

peripheral ER sheets in the rtn1∆rtn2∆yop1∆ cells is a consequence of a membrane 

trafficking block and an accumulation of ER membranes, the number of ER exit sites 

(ERES) in wild-type and rtn1∆rtn2∆yop1∆ cells was analyzed. A halt in ER to Golgi 

trafficking would lead to an accumulation of ERES present in the peripheral ER. To 

accomplish this analysis, SEC13-RFP was expressed to visualize ERES, which appear 

as puncta on the peripheral ER. Sec13p is a component of COPII vesicles and 

aggregates at ERES [18, 19]. GFP-KDEL expression allowed visualization of the ER 

structures and the number of ERES was quantified within each cell (6 cells analyzed). 

This analysis revealed there was no difference in the number of ERES between the 

wild-type (23.1 +/- 7.4 ERES/cell) and rtn1∆rtn2∆yop1∆ cells (22.3 +/- 8.4 

ERES/cell) (Figure 2.4, Table 2.6). The apparently normal number of ERES in the 

rtn1∆rtn2∆yop1∆ cells suggests that trafficking between the ER and Golgi is 

functioning despite the lack of Yop1p and Rtn1p in these cells. This result also 

suggests that the presence of membrane sheets in the peripheral ER of the 

rtn1∆rtn2∆yop1∆ cells is likely not due to an accumulation of ER membranes but is 

rather a specific morphological change due to the lack of Rtn1p and Yop1p.  

 

Table 2.6 Analysis of number of ERES in the indicated cell type 
RCY strain Cell 1 Cell 

2 
Cell 
3 

Cell 
4 

Cell 5 Cell 6 Average St. Dev. 

239 18 24 29 11 31 26 23.1 7.4 
4168 28 10 34 19 18 25 22.3 8.4 
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Figure 2.4. ERES appear unaffected in rtn1Δyop1Δ  cells. A. Fluorescence images 
of wild-type (RCY239) and rtn1Δyop1Δ (RCY4168) cells expressing SEC13-RFP to 
visualize ERES and GFP-KDEL to visualize ER structures. Peripheral view of ER is 
shown. B. Quantification of number of ERES from both cells types, six individual 
cells were analyzed from each type. Numbers presented are average+/- standard 
deviation. 
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Both hydrophobic domains of Yop1p are required for function 

The current model for the mechanism of Yop1p in generating membrane 

curvature suggests that the presence of the two hydrophobic hairpins within the lipid 

bilayer expands the surface area of one leaflet, forming a localized area of curvature 

[1]. To test the accuracy of this model the role of each hydrophobic hairpin was 

analyzed individually for its contribution to tubule formation. Mutant YOP1 constructs 

were generated lacking either the first or second hydrophobic domain (yop1∆H1 and 

yop1∆H2, respectively). These mutants were tagged with GFP on their NH2 terminus, 

expressed in rtn1∆rtn2∆yop1∆ cells and peripheral ER morphology was analyzed by 

fluorescence microscopy as previously described. Each of these mutants allowed me 

to test the individual contribution of the hydrophobic domains to the ability of Yop1p 

to function in tubule formation. This analysis revealed that neither GFP-Yop1∆H1 or 

GFP-Yop1∆H2 were able to function in peripheral ER tubule formation (17.5 +/- 

8.5% and 18.5 +/- 11.1% cells with normal ER, respectively, Table 2.7, Figure 2.5), 

indicating a critical role for each of these hydrophobic domains for Yop1p function. 

Furthermore, these studies indicate an absolute requirement for both hydrophobic 

domains for Yop1p to function normally, providing further evidence that Yop1p 

functions in tubule formation through the presence both hydrophobic domains. 

Interestingly, both GFP-Yop1∆H1 and GFP-Yop1∆H2 localized not only to the 

peripheral ER tubules, but to the nuclear ER as well (Figure 2.5). This is an 

unexpected localization, considering Yop1p is enriched on the peripheral ER 

structures with very little found on the nuclear ER [1]. It is possible that the ability of 

Yop1p to function in tubule formation is connected to its proper localization 

exclusively to the peripheral ER and when that localization is disrupted Yop1p loses 

its ability to function.  
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Figure 2.5. The two hydrophobic domains of Yop1p are necessary to form 
peripheral ER tubules. A. ER structure was monitored in rtn1∆rtn2∆yop1∆ cells 
expressing GFP-YOP1, GFP-yop1ΔH1, GFP-yop1ΔH2, and both GFP-yop1ΔH1 and 
GFP-yop1ΔH2 by fluorescence microscopy. B. Quantification of number of each cell 
type with a tubular peripheral ER. Numbers presented are average+/- standard 
deviation.  C. Sequence alignment of above constructs.   
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   Figure 2.5 continued 
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Table 2.7 Quantification of indicated cell type with normal ER morphology, both 
hydrophobic domains of Yop1p are required for peripheral ER tubule formation 
RCY 
strain 

Plasmid(s) Slide 1 
100 
cells 
counted 

Slide 2 
100 
cells 
counted 

Slide 3 
100 
cells 
counted 

Average St. Dev. Date 
Analysis 
Performed 

4323 pRS315 4 6 12 7.3 4.1 4/7/09 
4323 pRC4523 25 14 9 17.5 8.7 4/7/09 
4323 pRC4524 28 19 14 18.5 11.1 4/7/09 
4323 pRC4523 

pRS4524 
16 6 7 9.6 5.5 4/7/09 

4323 pRC504 60 56 70 62 7.2 4/7/09 
 

Removal of either hydrophobic domain results in non-functional Yop1p, 

however it is possible that by expressing both GFP-Yop1∆H1 and GFP-Yop1∆H2 

together in rtn1∆rtn2∆yop1∆ cells may provide the cell with both hydrophobic 

domains on separate polypeptides, perhaps complementing the cell with all of the 

functional domains of Yop1p that are needed to form membrane tubules. I assessed 

this possibility by expressing both GFP-Yop1∆H1 and GFP-Yop1∆H2 together in 

rtn1∆rtn2∆yop1∆ cells and analyzing peripheral ER morphology by fluorescence 

microscopy as previously described. I found that expression of both of these constructs 

within the rtn1∆rtn2∆yop1∆ cells did not functionally complement the lack of 

reticulons/Yop1p, with most cells still containing peripheral ER sheets (9.6 +/- 5.5% 

cells with normal ER, Table 2.7, Figure 2.5). This result further confirms that each 

hydrophobic hairpin is critical for Yop1p function and suggests that both hydrophobic 

hairpins must be physically linked on the same polypeptide to generate membrane 

tubules (as in Yop1p). Despite the fact that Yop1p forms homo-oligomeric complexes 

[2, 4], expression of both of the hydrophobic deletion mutants together was unable to 

restore peripheral ER tubules. This result could be due to an inability of the two 

mutant proteins to interact inter-molecularly and form the oligomeric complexes, 
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suggesting that higher order complex formation may be mediated through interactions 

of the hydrophobic domains. Alternatively, this result may suggest some specific 

intra-molecular interaction between the hydrophobic domains of Yop1p occurs. The 

interaction between these domains may give Yop1p a conformation/shape within the 

membrane that is necessary for the generation of membrane tubules (ie. “wedge”).  

A previous study found that the factors that generate ER tubules in vitro (later 

identified as Rtn1p and Yop1p) have the ability to maintain the tubular structures after 

random proteolysis of the hydrophilic regions of the proteins, suggesting that tubule 

structure may be maintained by the hydrophobic regions of Rtn1p/Yop1p alone [1, 4, 

20]. To further investigate the role that the hydrophobic domains of Yop1p play in 

generating membrane tubules, GFP fusions to each of the individual hydrophobic 

domains were created which lack all of the surrounding hydrophilic regions (GFP-H1 

and GFP-H2). When these constructs were expressed in cells they localized to ER 

membranes (Figure 2.6), indicating that the ER localization of Yop1p is directed by 

information present in either of the hydrophobic domains. Interestingly, I found these 

mutants were no longer restricted to the peripheral ER tubules, perhaps suggesting that 

the restriction of Yop1p to the tubular peripheral ER is controlled by information in 

the hydrophilic domains. It is possible that the hydrophilic regions of Yop1p mediate 

interactions with other proteins that direct its localization to the peripheral ER.  

Each individual mutant was then tested for its ability to restore peripheral ER 

tubules in the rtn1∆rtn2∆yop1∆ cells as previously described. Neither GFP-H1 nor 

GFP-H2 was found to function in restoring a tubular ER morphology in these cells (12 

+/- 4.9% and 12 +/- 3.2% cells with normal ER, respectively, Table 2.8) (Figure 2.6). 

Even when expressed at the same time in rtn1∆rtn2∆yop1∆ cells the peripheral ER 

was composed mainly of membrane sheets (7.3 +/- 4.6% cells with normal ER, Table 

2.8) (Figure 2.6). These results further confirm that both of the hydrophobic domains 
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are necessary for Yop1p function and that these domains together, on two separate 

polypeptides, are not sufficient to restore normal Yop1p function.  

To test the hypothesis that the hydrophobic domains of Yop1p must interact 

specifically to give Yop1p the proper shape within the membrane necessary for 

function a minimal YOP1 hydrophobic domain mutant was created containing both 

hydrophobic domains separated by a unique linker (KTASAGSSA, mimicking the 

length of this region in wild-type Yop1p) and fused NH2 terminally to GFP (GFP-H1-

H2). This construct localized to ER membranes, including the nuclear ER (Figure 2.6). 

Upon testing for function in restoring peripheral ER tubules in the rtn1∆rtn2∆yop1∆ 

cells as previously described I discovered that this protein functioned to a similar level 

as GFP-Yop1p in restoring a tubular peripheral ER (57.6 +/- 7.7% and 59.3 +/- 3.5% 

cells with normal ER, respectively, Table 2.8) (Figure 2.6). This result confirms that 

both of the hydrophobic domains of Yop1p are necessary for generating membrane 

tubules and sufficient to function in this task in place of Yop1p, as long as they are 

present on a single protein. Furthermore, all of the hydrophilic domains of Yop1p 

appear to be dispensable for normal function suggesting their contribution to the 

generation of membrane tubules by Yop1p is minimal. Interestingly, the GFP-H1-H2 

construct localized to the entire ER membrane, including the relatively flat nuclear 

ER, but was still able to function in tubule formation (Figure 2.6). This fact indicates 

that the ability of Yop1p to function in tubule formation is distinct from its exclusive 

localization to the peripheral ER tubules, suggesting a more complex mechanism of 

regulating the activity of Yop1p than its localization alone. These results further 

strengthen our understanding of the mechanism of Yop1p action, suggesting specific 

interaction between the two hydrophobic domains is necessary to give Yop1p a 

conformation required to function in forming the tubules of the peripheral ER. 

Considering the model that Yop1p is shaped like a wedge within the membrane, the 
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spacing between these domains may also be an important feature of Yop1p in 

maintaining a functional conformation by holding the two domains apart at the 

membrane surface (investigated later in this chapter).  
 
 
 
 
Table 2.8 Quantification of indicated cell type with normal ER morphology, the two 
hydrophobic domains of Yop1p are sufficient to form peripheral ER tubules 
RCY 
strain 

Plasmid(s) Slide 1 
100 
cells 
counted 

Slide 2 
100 
cells 
counted 

Slide 3 
100 
cells 
counted 

Average St. 
Dev. 

Date 
Analysis 
Performed 

4323 pRS315 6 4 12 7.3 4.1 4/7/09 
4323 pRC4525 21 13 8 12 4.9 4/7/09 
4323 pRC4526 13 9 10 12 3.2 4/7/09 
4323 pRC4525 

pRC4526 
13 9 2 7.3 4.6 4/7/09 

4323 pRC504 56 63 59 59.3 3.5 4/7/09 
4323 pRC4559 70 63 44 57.6 7.7 4/7/09 
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Figure 2.6. The two hydrophobic domains of Yop1p are sufficient to form 
peripheral ER tubules. A. rtn1Δrtn2Δyop1Δ cells expressing GFP-H1, GFP-H2, 
both GFP-H1 and GFP-H2, GFP-YOP1, and GFP-H1-H2 were monitored for ER 
structure using RFP-KDEL expression. B. Quantification of number of each cell type 
with a tubular peripheral ER. Numbers presented are average+/- standard deviation. C. 
Sequence alignment of the above constructs.  
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Figure 2.6 Continued 

    
C.  
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Interaction between H1 and H2 is specific 

There is evidence that some integral membrane proteins may interact through 

specific attractions of their hydrophobic domains embedded within the membrane 

[21]. To further test the specificity of the interaction between the hydrophobic 

domains of Yop1p and whether this interaction is a specific one rather than a general 

property of long hydrophobic domains, a series of yop1 constructs were generated 

using different combinations of the hydrophobic domains (separated by an 

KTASAGSSA linker). GFP was fused to the NH2 terminus of H1-H1, H2-H2, and H2-

H1. Altering the identity and location of the hydrophobic domains allowed me to 

analyze the specificity of the interaction between H1 and H2. Each of these constructs 

was analyzed for its ability to restore a tubular peripheral ER in the rtn1∆rtn2∆yop1∆ 

cells as previously described. In all three cases expression of the yop1 mutant resulted 

in cells with peripheral ER sheets, indicating that the interaction between H1 and H2 is 

specific and likely not a result of non-specific hydrophobic attractions (H1-H1 7.3 +/- 

4.5%, H2-H2 5.3 +/- 2%, H2-H1 3.6 +/- 2% cells with normal ER, respectively, Table 

2.9) (Figure 2.7). Interestingly, I found the GFP-H2-H1 construct to be non-functional 

despite the fact that both H1 and H2 are present on the same polypeptide. This is an 

unexpected result because both hydrophobic domains are present, however the 

orientation of these domains is reversed when compared to GFP-H1-H2. To further 

analyze this result, H2-H1-GFP was constructed to mimic the GFP-H1-H2 with an 

opposite orientation by moving the GFP tag to the COOH terminus. When tested for 

functionality in the rtn1∆rtn2∆yop1∆ cells I found that this construct was also unable 

to restore a tubular peripheral ER (21 +/- 6.5% cells with normal ER, Table 2.9) 

(Figure 2.7). This unexpected result may indicate that the conformation of Yop1p is 

asymmetrical and that the interaction between the two hydrophobic domains can only 

occur if H1 is upstream of H2. It is also possible that reversing the orientation of the 
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hydrophobic domains decreases the stability of Yop1p or alters the folding and/or 

membrane insertion, thus decreasing the ability of these mutants (GFP-H2-H1 and H2-

H1-GFP) to function in forming the tubules of the peripheral ER. 

 
 
 
Table 2.9 Quantification of indicated cell type with normal ER morphology, the 
interaction between H1 and H2 is specific 
RCY 
strain 

Plasmid(s) Slide 1 
100 
cells 
counted 

Slide 2 
100 
cells 
counted 

Slide 3 
100 
cells 
counted 

Average St. 
Dev. 

Date 
analysis 
performed 

4323 pRS315 6 3 9 5.3 2 10/28/09 
4323 pRC4559 70 59 52 63.6 5.6 9/4/09 
4323 pRC4674 6 3 2 3.6 2 9/4/09 
4323 pRC4710 27 14 22 21 6.5 10/28/09 
4323 pRC4705 3 12 7 7.3 4.5 10/28/09 
4323 pRC4706 9 12 8 5.3 2 10/28/09 
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Figure 2.7. Peripheral ER tubule formation requires a specific interaction 
between H1 and H2. A. Fluorescence microscopy was used to monitor peripheral ER 
morphology in rtn1Δrtn2Δyop1Δ cells using RFP-KDEL expression. Cells expressing 
GFP-H1-H2, GFP-H2-H1, H2-H1-GFP, GFP-H1-H1 and GFP-H2-H2 are shown. B. 
Quantification of number of each cell type with a tubular peripheral ER. Numbers 
presented are average+/- standard deviation. 
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   Figure 2.7 continued 
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The length of the linker region between H1 and H2 is critical for Yop1p function 

Having determined that the interaction between the two hydrophobic domains 

is likely necessary for Yop1p to adopt a conformation that generates the tubules of the 

peripheral ER, I sought to investigate if the spacing between these two domains also 

contributes to the ability of Yop1p to alter membrane architecture. I reasoned that in 

order for the hydrophobic domains of Yop1p to adopt a wedge-like shape within the 

membrane the cytosol-exposed ends would need to be held apart, while the membrane 

embedded ends would need to be held together (see Figure 1.5). Both Yop1p and 

GFP-H1-H2 contain hydrophilic linker regions between H1 and H2 that are ~9 amino 

acids in length. To determine if the linker region between the hydrophobic domains 

functions in spacing these domains and if this spacing is critical for Yop1p function, a 

series of YOP1 mutants were made with successively longer or shorter linker regions.  

First, mutants were constructed where the linker region was lengthened to 13 

(GFP-H1-KTS11-H2) or 19 (GFP-H1-19-H2) amino acids and tested for their ability 

to restore a tubular peripheral ER in the rtn1∆rtn2∆yop1∆ cells as described 

previously. Both of these long linker mutants were found to function as well as GFP-

H1-H2 in restoring the peripheral ER tubules in the rtn1∆rtn2∆yop1∆ cells. However, 

when the linker was lengthened using GFP (238 amino acids with a GGPGG linker 

NH2 terminally and ASAGSSA linker COOH terminally for flexibility, H1-GFP-H2) 

the protein lost its ability to function normally, suggesting that the hydrophobic 

domains have a requirement to be in relatively close proximity to each other, but this 

spacing can be lengthened up to 19 amino acids and still function. These results 

suggest the spacing between the hydrophobic domains may play a role in giving 

Yop1p a conformation conducive to deforming membranes.  Alternatively, the 

presence of GFP between the two hydrophobic domains may interfere with the 

orientation of these domains or their ability to be inserted into the membrane properly.  
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Although my results suggest that the linker region of Yop1p can be lengthened 

to 19 amino acids and still function normally, I next wanted to investigate if the 

spacing could be shortened, restricting the distance between the two hydrophobic 

domains. Considering the model for Yop1p function, where the protein adopts a 

wedge-like shape within the membrane, by shortening the linker region between the 

two hydrophobic domains I may alter the shape of this “wedge” and affect the ability 

of Yop1p to alter membrane curvature. To test this possibility GFP-H1-H2 constructs 

were made where the linker region was shortened successively (from 9 amino acids 

down to 2 amino acids) and tested for their ability to restore a tubular morphology in 

the peripheral ER in the rtn1∆rtn2∆yop1∆ cells. I found that when the linker region 

was 9 (GFP-H1-H2 61.6 +/- 3.2%, GFP-H1-9-H2 62 +/- 7% cells with normal ER), 8 

(GFP-H1-8a-H2 69.3 +/- 8.7%, GFP-H1-8b-H2 68 +/- 6.5% cells with normal ER) or 

7 (GFP-H1-7a-H2 59.6 +/- 7.5%, GFP-H1-7b-H2 82 +/- 8.2%, GFP-H1-7c-H2 68.3 

+/- 10.1% cells with normal ER) amino acids in length the GFP-H1-H2 construct was 

functional in restoring a tubular peripheral ER in the rtn1∆rtn2∆yop1∆ cells (Figure 

2.8, Table 2.10). Shortening the linker region to 6 (GFP-H1-6a-H2 32.3 +/- 3.5%, 

GFP-H1-6b-H2 34.6 +/- 4.9% cells with normal ER) amino acids resulted in a 

significantly decreased ability of the GFP-H1-H2 construct to function in tubule 

formation, though these constructs appeared to function better than the vector control  

(4.3 +/- 3.2% cells with normal ER, Figure 2.8, Table 2.10). Shortening the linker to 3 

(GFP-H1-KTD-H2 14.6 +/- 7.6%, GFP-H1-KTG-H2 16.3 +/- 5.5% cells with normal 

ER) or 2 (GFP-H1-2-H2 17.6 +/- 4.0% cells with normal ER) amino acids abolished 

the ability of the GFP-H1-H2 construct to function in the generation of a tubular 

peripheral ER in the rtn1∆rtn2∆yop1∆ cells (Figure 2.8, Table 2.10). In summary, I 

found that the linker could be shortened down to 7 amino acids and still maintain 

function and that a 6 amino acid linker resulted in a partially functional protein. 



 

 90 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.8. Mutational analysis of the length of the linker between H1 and H2. A. 
Fluorescence microscopy was used to monitor peripheral ER morphology in 
rtn1∆rtn2∆yop1∆ cells using RFP-KDEL expression. Cells expressing H1-GFP-H2, 
GFP-H1-19-H2, GFP-H1-KTS11-H2, GFP-H1-H2, GFP-H1-9-H2, GFP-H1-8a-H2, 
GFP-H1-8b-H2, GFP-H1-7a-H2, GFP-H1-7b-H2, GFP-H1-7c-H2, GFP-H1-6a-H2, 
GFP-H1-6b-H2, GFP-H1-KTG-H2, GFP-H1-KTD-H2, GFP-H1-KT-H2, GFP-H1-
KTS7-H2, GFP-H1-KTS6-H2, GFP-H1-KTS5-H2, GFP-H1-KTS4-H2, GFP-H1-
KTS3-H2, GFP-H1-KTS2-H2 and GFP-H1-KTS-H2 are shown. B. Quantification of 
number of each cell type from A with a tubular peripheral ER. Numbers presented are 
presented as average+/- standard deviation. C. Sequence alignment of the above 
constructs.  
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   Figure 2.8 A continued 
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   Figure 2.8 A continued 
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   Figure 2.8 continued 
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Figure 2.8 Continued 
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Table 2.10 Quantification of the indicated cell type with a normal peripheral ER 
morphology, linker manipulated Yop1p mutants 
RCY 
strain 

Plasmid(s) Slide 1 
100 
cells 
counted 

Slide 2 
100 
cells 
counted 

Slide 3 
100 
cells 
counted 

Average St. 
Dev. 

Date 
analysis 
performed 

4323 pRS315 3 2 8 4.3 3.2 12/21/09 
4323 pRC4788 14 23 6 14.3 8.5 12/21/09 
4323 pRC4712 59 55 69 61 7.2 10/29/09 
4323 pRC4816b 67 62 60 59.3 3.1 2/12/10 
4323 pRC4559 63 64 58 61.6 3.2 12/21/09 
4323 pRC4713 57 59 70 62 7 10/29/09 
4323 pRC4776 67 79 62 69.3 8.7 12/21/09 
4323 pRC4789 74 69 61 68 6.5 12/21/09 
4323 pRC4711 51 65 63 59.6 7.5 10/29/09 
4323 pRC4786 89 73 84 82 8.1 12/21/09 
4323 pRC4790 69 78 58 68.3 10 12/21/09 
4323 pRC4783 36 32 29 32.3 3.5 12/21/09 
4323 pRC4784 37 29 38 34.6 4.9 12/21/09 
4323 pRC4715 8 13 23 14.6 7.6 10/29/09 
4323 pRC4716 16 13 20 16.3 5.5 10/29/09 
4323 pRC4714 17 22 14 17.6 4 10/29/09 
4323 pRC4816 67 70 54 63.6 8.5 2/12/10 
4323 pRC4823 69 55 54 59.3 8.4 7/20/10 
4323 pRC4824 61 74 62 65.6 7.2 7/20/10 
4323 pRC4825 51 60 46 52.3 7.1 7/20/10 
4323 pRC4826 58 46 41 48.3 8.7 7/20/10 
4323 pRC4827 40 28 37 35 6.2 7/20/10 
4323 pRC4828 18 9 11 12.7 4.7 7/20/10 

 
Table 2.11 Quantification of the indicated cell type with a normal peripheral ER 
morphology, linker manipulated Yop1p A7/K7 mutants 
RCY 
strain 

Plasmid(s) Slide 1 
100 
cells 
counted 

Slide 2 
100 
cells 
counted 

Slide 3 
100 
cells 
counted 

Average St. 
Dev. 

Date 
analysis 
performed 

4323 4785 1 0 0 0.3 0.6 12/21/09 
4323 4817 63 59 61 59 8.9 2/12/10 
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Figure 2.9 Mutational analysis of all alanine (A7) and all histidine (H7) linkers. 
A. Fluorescence microscopy was used to monitor peripheral ER morphology in 
rtn1∆rtn2∆yop1∆ cells using RFP-KDEL expression. Images of GFP-H1-A7-H2 and 
GFP-H1-H7-H2 are shown. B. Quantification of number of each cell type from A with 
a tubular peripheral ER. Numbers presented are presented as average+/- standard 
deviation. 
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Shortening the linker to 3 amino acids or shorter resulted in non-functional proteins 

suggesting the linker region acts as a spacer holding the two hydrophobic domains 

apart at the surface of the membrane and this spacing is critical for Yop1p to function 

in tubule formation. There appears to be some allowance for a slightly longer and a 

slightly shorter linker region between the two hydrophobic domains for Yop1p to 

function normally, but shortening this linker to less than 6 amino acids decreases 

function. Taken with the fact that the interaction between H1 and H2 may be holding 

the membrane embedded domains together, these results support the model that 

Yop1p adopts a wedge-like conformation within the membrane and that this shape is 

critical for Yop1p to function in generating the tubules of the peripheral ER.  

The above studies were done using a unique linker with the sequence 

KTASAGSSA or other variations of this sequence. It is possible that the GFP-H1-H2 

construct was functional due to the particular linker sequence chosen for these studies. 

To confirm the accuracy of the previous results I created a series of GFP-H1-H2 

constructs, each with serine-only linkers, from KTS7 (9 amino acids) to KTS (3 amino 

acids), and tested these mutants for their ability to restore tubules in the 

rtn1∆rtn2∆yop1∆ cells as previously described. I found that the H1-H2 construct was 

able to function only when the serine linker was longer than 5 amino acids, but shorter 

linker regions resulted in decreased function (GFP-H1-KTS7-H2 63.6 +/- 8.5%, GFP-

H1-KTS6-H2 59.3 +/- 8.4%, GFP-H1-KTS5-H2 65.6 +/- 7.2%, GFP-H1-KTS4-H2 

52.3 +/- 7.1%, GFP-H1-KTS3-H2 48.3 +/- 8.7%, GFP-H1-KTS2-H2 35 +/- 6.2%, 

GFP-H1-KTS-H2 12.7 +/- 4.7% cells with normal ER, Table 2.10, Figure 2.8). These 

results are similar to my previous findings that indicate the linker likely needs to be 

about 6 amino acids in length for function. I found that shorter linkers (KTS4 to KTS) 
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were found to not restore peripheral ER tubules in these cells, similar to the results I 

obtained previously. The fact that these serine linker mutants support our previous 

results shows that the function seen with GFP-H1-H2 previously was not due to the 

sequence of the linker tested, but is in fact likely a result of the spacing of the 

hydrophobic domains.  

 

Deletion of hydrophobic residues impairs Yop1p function 

The current model of the mechanism of Yop1p acting on membranes suggests 

that each of the two hydrophobic domains spans the lipid bilayer only part of the way, 

without penetrating the opposite face of the membrane. This model also suggests that 

the hydrophobic domains are the driving force in generating membrane curvature [1]. I 

decided to investigate what role the length of each hydrophobic domain, and therefore 

how far they extend through the lipid bilayer, plays in the ability of Yop1p to generate 

membrane tubules. Both hydrophobic domains of wild-type Yop1p are ~40 amino 

acids in length, thus, mutants were constructed where each hydrophobic domain was 

shortened in length. These shortened hydrophobic domain mutants were constructed in 

both the full length GFP-Yop1p (GFP-YOP1-Hs128, GFP-YOP1-Hs229) and in the 

functional GFP-H1-H2 construct (GFP-Hs128-H2, GFP-H1-Hs229, GFP-H1-H230, GFP-

H137-H2, GFP-H1-H234, GFP-H137-H234). All of these shortened hydrophobic domain 

mutants were found to localize to ER membranes (Figure 2.10) and were tested for 

their ability to restore a tubular peripheral ER in the rtn1∆rtn2∆yop1∆ cells.  

Shortening the first hydrophobic domain to 28 or 30 amino acids resulted in non-

functional proteins, with a majority of these cells containing peripheral ER sheets (4 

+/- 4.3%, 22 +/- 6% cells with normal ER, respectively, Table 2.12) (Figure 2.10). 

However, shortening the first hydrophobic domain to 37 amino acids did not abolish 

the function of this protein, restoring a tubular morphology to the peripheral ER of the 
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rtn1∆rtn2∆yop1∆ cells (60 +/- 6.5% cells with normal ER, Table 2.12) (Figure 2.10). 

The inability of the 28 or 30 amino acid H1 mutants to restore peripheral ER tubules 

in the rtn1∆rtn2∆yop1∆ cells shows a strict requirement that the length of the first 

hydrophobic domain of Yop1p be greater than 30 amino acids, suggesting that this 

domain is, in part, the driving force in generating membrane curvature. 

Shortening the second hydrophobic domain to 29 or 30 amino acids abolished 

the ability of these constructs to form a tubular peripheral ER in the rtn1∆rtn2∆yop1∆ 

cells (20.3 +/- 6.5%, 12.6 +/- 4.0% cells with normal ER, respectively, Table 2.12) 

(Figure 2.10), while shortening this domain to 34 amino acids did not affect its 

function (59.3 +/- 8.7% cells with normal ER, Table 2.12) (Figure 2.10). This result 

confirms that the second hydrophobic domain also contributes to the function of 

Yop1p and must be greater than 34 amino acids in length. Taken with the shortened 

H1 results, these results indicate that Yop1p deforms membranes through the presence 

of its long hydrophobic domains, and these domains must be at least 37 and 34 amino 

acids in length, for H1 and H2 respectively, in order to generate membrane tubules.  
 
 
Table 2.12 Quantification of the indicated cell type with a normal peripheral ER, the 
length of the hydrophobic domain is critical for Yop1p function 
RCY 
strain 

Plasmid(s) Slide 1 
100 
cells 
counted 

Slide 2 
100 
cells 
counted 

Slide 3 
100 
cells 
counted 

Average St. 
Dev. 

Date 
analysis 
performed 

4323 pRS315 6 3 7 5.33 2.08 1/12/10 
4323 pRC4559 70 69 62 63.67 5.68 1/12/10 
4323 pRC4797 61 66 53 60 6.55 1/12/10 
4323 pRC4798 57 69 52 59.33 8.73 1/12/10 
4323 pRC4799 48 67 59 58 9.53 1/12/10 
4323 pRC4778 2 1 9 4 4.35 12/21/09 
4323 pRC4780 17 9 12 12.67 4.04 2/12/10 
4323 pRC4787 24 8 11 14.33 8.50 12/21/09 
4323 pRC4777 16 22 28 22 6 12/21/09 
4323 pRC4779 14 27 20 20.33 6.50 2/12/10 
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Figure 2.10. The length of the hydrophobic domain of Yop1p is critical for 
function. A. Fluorescence microscopy was used to monitor peripheral ER morphology 
in rtn1∆rtn2∆yop1∆ cells using RFP-KDEL expression. Cells expressing GFP-H1-
H2, GFP-Hs128-H2, GFP-H1-Hs229, GFP-H1-H230, GFP-H137-H2, GFP-H1-H234, 
GFP-H137-H234, GFP-YOP1-Hs128 and GFP-YOP1-Hs229 are shown. B. 
Quantification of number of each cell type from A with a tubular peripheral ER. 
Numbers presented are presented as average+/- standard deviation. C. Sequence 
alignment of above constructs.  
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Figure 2.10 Continued 
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   Figure 2.10 continued 
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Putative membrane-embedded charged residues are critical for Yop1p function 

Upon closer inspection of the primary amino acid sequence of the hydrophobic 

domains of YOP1, I noticed a few interesting, conserved residues, all highly charged 

and predicted to be buried within the membrane. These highly charged residues (E61, 

E104, K108 and K121) are all found within the putative hydrophobic domains and it is 

unlikely that these amino acids would be membrane embedded without their charge 

being neutralized (Figure 2.11). E and K are often found in salt bridges that neutralize 

their charges [22]. Considering the specificity of the interaction between H1 and H2 it 

is possible these residues interact to hold the two hydrophobic domains together 

within the membrane, giving Yop1p a wedge shape within the membrane or some 

other more complex structure. I constructed GFP-yop1 point mutants where each E 

was replaced with a K, and visa versa (GFP-yop1 E61K, GFP-yop1 E104K, GFP-yop1 

K108E, GFP-yop1 K121E). If any of these residues are critical for Yop1p function and 

are involved in salt bridge formation I would expect the single mutant to be non-

functional. Creating the complementary double mutant (E to K and K to E) should 

restore the ability to form the salt bridge and thus restore Yop1p function. GFP-yop1 

E61K and GFP-yop1 K108E were both found to function in restoring a tubular 

peripheral ER in the rtn1∆rtn2∆yop1∆ cells (60.3 +/- 8.5%, 58.7 +/- 6.1% cells with 

normal ER, respectively, Table 2.13) (Figure 2.12), suggesting these two residues are 

not critical for Yop1p function, or that the substitutions do not disrupt the structure of 

Yop1p enough to abolish activity. GFP-yop1 E104K and GFP-yop1 K121E were both 

found to be unable to restore a tubular morphology to the peripheral ER of the 

rtn1∆rtn2∆yop1∆ cells (28.3 +/- 3.2%, 28.6 +/- 6.6% cells with normal ER, 

respectively, Table 2.13) (Figure 2.12). These results confirm that the identities of 

these residues are critical for Yop1p to restore tubules in the peripheral ER, suggesting 

that both of these residues (E104 and K121) play a role in Yop1p function. However, I 
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Figure 2.11. Yop1p hydrophobicity plot indicating the positions of the four 
putative membrane-embedded charged residues. Note their locations within the 
long hydrophobic domains of Yop1p.  
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cannot rule out the possibility that these mutations may decrease the stability of 

Yop1p, thereby affecting the ability to function in membrane tubulation.  It is also 

possible that these residues contribute to the formation of membrane curvature through 

their charged state, which would repel the hydrophobic tails of lipids within the 

membrane. By replacing these residues with hydrophobic amino acids I could test this 

possibility more directly.  

 
 
Table 2.13 Quantification of cells with a normal peripheral ER morphology, putative 
charge embedded residues critical for Yop1p function 
RCY 
strain 

Plasmid(s) Slide 1 
100 
cells 
counted 

Slide 2 
100 
cells 
counted 

Slide 3 
100 
cells 
counted 

Average St. 
Dev. 

Date 
Analysis 
Performed 

4323 pRS315 3 2 8 4.3 3.2 1/12/10 
4323 pRC504 54 62 68 63.6 8.3 1/12/10 
4323 pRC4794 70 54 57 60.3 8.5 1/12/10 
4323 pRC4793 32 26 27 28.3 3.2 1/12/10 
4323 pRC4792 52 64 60 58.6 6.1 1/12/10 
4323 pRC4791 23 36 27 28.6 6.5 1/12/10 
4323 pRC4795 29 18 26 24.3 5.6 1/12/10 
4323 pRC4796 66 51 62 60 6.5 1/12/10 
4323 pRC4819 28 34 17 26.3 8.2 1/12/10 
4323 pRC4829 6 11 6 7.7 2.9 7/20/10 
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Figure 2.12 Membrane embedded residues critical for Yop1p function. A. 
Fluorescence microscopy was used to monitor peripheral ER morphology in 
rtn1∆rtn2∆yop1∆ cells using RFP-KDEL expression. Cells expressing GFP-yop1 
E61K, GFP-yop1 E104K, GFP-yop1 K108E, GFP-yop1 K121E, GFP-yop1 E61K 
K108E, GFP-yop1 E104K K108E, GFP-yop1 E61K K121E and GFP-yop1 E104K 
K121E are shown. B. Quantification of number of each cell type from A with a tubular 
peripheral ER. Numbers presented are presented as average+/- standard deviation.  
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Figure 2.12 continued 

B. 
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I then created each combination of double mutant (GFP-yop1 E61K K108E, 

GFP-yop1 E104K K108E, GFP-yop1 E61K K121E and GFP-yop1 E104K K121E) to 

account for the possibility that E61 or E104 could be bridging with K108 or K121 to 

give the hydrophobic domains of Yop1p the necessary conformation to function in 

tubule formation. I found that only the GFP-yop1 E61K K108E mutant was functional 

in restoring a tubular peripheral ER in the rtn1∆rtn2∆yop1∆ cells (60 +/- 6.5% cells 

with normal ER, Table 2.12) (Figure 2.11). All the other double mutants were found to 

be non-functional (GFP-yop1 E104K K108E 7.7 +/- 2.9%, GFP-yop1 E61K K121E 

24.3 +/- 5.7%, GFP-yop1 E104K K121E 26.3 +/- 8.3% cells with normal ER, Table 

2.12) (Figure 2.11). It is likely that the E61K K108E mutant was functional because 

neither of these residues were found to be critical for Yop1p function in the single 

point mutants. Also, all of the other double mutants contain either the E104K mutation 

or the K121E mutation and are likely non-functional due to the presence of one of 

these point mutations (found to be non-functional in the single point mutants) and not 

because of the secondary mutation (either E61K or K108E). Considering the single 

mutants E104K and K121E were both non-functional, it was possible that these two 

residues may be involved in the formation of a salt-bridge. However, I found that the 

double mutant (E104K K121E) was unable to restore a tubular peripheral ER, thus it is 

unlikely that these residues are neutralized through a salt bridge. This result suggests 

that these residues (E104 and K121) are important for Yop1p to function but assert 

their affect through some as yet undetermined means. How these residues contribute to 

the function of Yop1p is unclear but considering the length of the hydrophobic 

domains, ~40 amino acids, each hydrophobic domain could theoretically span the lipid 

bilayer and penetrate the opposite leaflet or have some more complex and less defined 

structure within the membrane. Perhaps these charged residues are exposed to the 
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aqueous environment of either the ER lumen (if they span the bilayer) or the cytosol 

(if they form some other more complex structure) to aid in Yop1p adopting a 

functional conformation. Further studies are needed to determine the structure of the 

hydrophobic domains of Yop1p. 

 

DISCUSSION 

Previous studies have provided evidence supporting a role for Yop1p in the 

formation of the tubules of the peripheral ER [1-4]. Voeltz et al [1] have proposed a 

model for the mechanism of Yop1p action on membranes that results in membrane 

deformation. These studies suggest that the two hydrophobic domains of Yop1p drive 

membrane deformation through their presence within the membrane, though the 

molecular details that govern Yop1p function are poorly understood. A previous study 

has suggested that the ability of Yop1p to form homo-oligomeric complexes is critical 

for tubule formation and the formation of these complexes may be mediated through 

interactions of the hydrophobic regions of Yop1p [2]. To dissect the individual role 

each hydrophobic domain of Yop1p plays in its ability to function in tubule formation 

I generated mutants lacking H1 or H2 and tested them for their ability to restore a 

tubular peripheral ER in rtn1∆rtn2∆yop1∆ cells. Deletion of either hydrophobic 

domain from Yop1p resulted in a loss of function (Figure 2.5), indicating that these 

regions contribute to the ability of Yop1p to form tubular membranes. Expression of 

GFP-Yop1∆H1 and GFP-Yop1∆H2 together were also unable to function (Figure 2.5), 

indicating that both hydrophobic domains need to be physically linked together to 

function (as in Yop1p). It is possible that these two mutants are unable to bind to one 

another, which would suggest that oligomer formation is mediated through 

interactions of the hydrophobic domains and that the hydrophilic regions of Yop1p are 

not required to generate higher order complex formation. It is also possible that, if H1 
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and H2 cannot interact intramolecularly in these mutants (because one is missing), the 

shape of Yop1p is altered and thus its ability to generate membrane curvature is 

decreased. Further studies aimed at the ability of these proteins to oligomerize would 

distinguish between these possibilities. Analysis of the level of expression of these 

constructs is also needed to ensure that the lack of function noted in my results is due 

to the missing hydrophobic domain and not because the mutant protein is expressed at 

a lower level than GFP-Yop1p.  

The model proposed by Voeltz et al [1] suggests that the insertion of the 

hydrophobic domains into the membrane is the driving force in tubule formation. To 

understand more clearly the role of each hydrophobic domain in this process, as well 

as to investigate if the hydrophilic regions of Yop1p are dispensable for function, I 

tested just the hydrophobic domains of Yop1p, fused to GFP, for their ability to 

function in peripheral ER tubule formation in the rtn1∆rtn2∆yop1∆ cells. Expression 

of the individual hydrophobic domains, GFP-H1 or GFP-H2, were both unable to 

restore a tubular peripheral ER in the rtn1∆rtn2∆yop1∆ cells (Figure 2.6). Even when 

expressed together these proteins could not function. These results may indicate that 

these two domains must be held in close proximity to one another to interact properly 

for function. It is also possible that the hydrophilic regions of Yop1p are in fact critical 

for membrane tubulation and being absent from these mutants is the reason they 

cannot function. Western blot analysis investigating the level of expression of these 

mutant constructs would rule out the possibility that the lack of function is due to a 

decreased expression level/stability.  

To determine if the hydrophilic regions of Yop1p are necessary for function 

and if the two hydrophobic domains need to be held close together to form the tubules 

of the peripheral ER, I generated a construct with both H1 and H2 separated by an 

artificial linker (KTASAGSSA), GFP-H1-H2. rtn1∆rtn2∆yop1∆ cells expressing this 
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construct were found to have a normal tubular peripheral ER, similar to GFP-Yop1p 

expressing cells (Figure 2.6). This result shows that the information necessary for 

tubule formation is contained within the hydrophobic domains of Yop1p, both of 

which are critical for function. Furthermore, the hydrophilic regions of Yop1p appear 

to be dispensable for normal function. This result suggests the physical presence of the 

hydrophobic domains within the membrane drives membrane tubulation and that the 

hydrophobic domains need to be physically close to one another to form membrane 

tubules. Further studies are needed to determine exactly how the hydrophobic domains 

interact within the membrane.  

To determine if H1 and H2 interact specifically or if this interaction is simply 

due to hydrophobic attractions, I designed constructs in which the identity and 

organization of the hydrophobic domains of Yop1p were reorganized. GFP-H1-H2 is 

able to function like wild-type Yop1p; however, any alteration of the organization of 

the hydrophobic domains (GFP-H1-H1, GFP-H2-H2) abolishes their ability to restore 

a tubular peripheral ER in the rtn1∆rtn2∆yop1∆ cells (Figure 2.7). This fact suggests 

that H1 interacts in a specific manner with H2 within the membrane and that both H1 

and H2 are absolutely required for function. Also, these results suggest it is unlikely 

that the interaction between H1 and H2 is due to non-specific hydrophobic clustering 

of these domains. The proposed model suggests that Yop1p adopts a wedge-like 

conformation within the membrane, a shape that drives disruption of the outer leaflet 

of the membrane generating membrane curvature [1]. My results confirm there is 

likely a specific interaction between H1 and H2 and that this interaction may aid in 

Yop1p forming this wedge-like structure. Interestingly, a reversal of the functional, 

GFP-H1-H2 construct, namely H2-H1-GFP, was unable to restore a tubular peripheral 

ER in the rtn1∆rtn2∆yop1∆ cells (Figure 2.7). This fact suggests that the interaction 

between H1 and H2 has an asymmetry that cannot be mimicked in the reversed H2-
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H1-GFP. The H2-H1-GFP construct may not fold into the proper shape during 

synthesis due to the reversed order of the hydrophobic domains, which could have 

drastic effects on its ability to function. Alternatively, it is possible that this protein is 

expressed at a lower level or has a decreased stability and is rapidly degraded. Further 

studies are needed to distinguish these possibilities.   

The interaction between H1 and H2 appears to be a critical factor in Yop1p 

function, likely contributing to formation of a conformation that drives membrane 

deformation. In order for Yop1p to adopt the proposed wedge-like shape within the 

membrane, the two hydrophobic domains must be physically linked. The linker region 

between H1 and H2 is approximately 9 amino acids long in wild-type Yop1p as well 

as in the GFP-H1-H2 construct. Considering the requirement for H1 and H2 to be 

physically linked for function, I sought to understand if this linker region plays a role 

in the ability of Yop1p to function, and thus to investigate its role in generating a 

functional conformation. To accomplish this analysis the linker region between H1 

and H2 was lengthened to 13 and 19 amino acids and tested for function in the 

rtn1∆rtn2∆yop1∆ cells. Both of these constructs were found to be functional (Figure 

2.8), suggesting that the hydrophobic domains are in close enough proximity to 

interact in these mutants to give Yop1p a functional conformation. However, when 

GFP was inserted between H1 and H2, H1-GFP-H2, this protein lost the ability to 

restore tubules in the peripheral ER (Figure 2.8). These results show that slightly 

longer linker regions do not disrupt the ability of H1 and H2 to interact, but too much 

distance between the two hydrophobic domains does not allow this interaction to 

occur.  

To further investigate the possibility that this linker region acts as a spacer, 

holding the surface exposed ends of the hydrophobic domains apart, I created a series 

of H1-H2 constructs where the linker region was shortened successively. I tested these 
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mutants for function in the rtn1∆rtn2∆yop1∆ cells to determine if there is a minimum 

spacing required for Yop1p to function normally. The results of these experiments 

suggest that the linker region between H1 and H2 must be at least 5-6 amino acids to 

maintain normal function. Shorter linker regions result in non-functional proteins 

(Figure 2.8) indicating that the linker region likely acts as a spacer, holding the 

cytosol-exposed ends of the hydrophobic domains apart. This result, taken with the 

model that the hydrophobic domains interact within the membrane, suggests that 

Yop1p adopts a wedge-like conformation with the linker region acting to hold the ends 

of H1 and H2 apart, while interactions between H1 and H2 within the membrane 

maintain the wedge-like shape. Analysis of the expression level of these constructs is 

still needed to confirm that their ability to function (or lack thereof) can be attributed 

to their specific mutation rather than to a lower expression level or decreased stability. 

Additionally, the analysis of the functionality of each of the constructs in this chapter 

were conducted on a single YOP1 mutant. In order to confirm these results 

independently created constructs will need to be tested.  

The hydrophobic domains of Yop1p both contain a number of conserved 

charged residues, predicted to be membrane embedded (E61, E104, K108 and K121, 

Figure 2.11). It is unlikely that these charged amino acids would be present in a 

charged state within the hydrophobic environment of the membrane. My results 

suggesting an interaction between H1 and H2 that is necessary for Yop1p function led 

me to consider the possibility that these charged residues are involved in this 

interaction. E is capable of forming a salt bridge with K, neutralizing both charges in 

the process [22]. To test the possibility that the charged residues in the hydrophobic 

domains of Yop1p are involved in the interaction between H1 and H2, single point 

mutants were first created that would disrupt any salt bridge formation (E61K, E104K, 

K108E and K121E respectively). I tested these single point mutants for function in 
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restoring peripheral ER tubules in the rtn1∆rtn2∆yop1∆ cells. Both mutations E61K 

and K108E did not disrupt Yop1p function, but mutations in E104K and K121E both 

abolished the ability of Yop1p to form peripheral ER tubules (Figure 2.11). These 

results identified two residues, E104 and K121 (both in H2), that are required for 

Yop1p to form the tubules of the peripheral ER and suggest these amino acids may be 

involved in maintaining a functional conformation. While these residues may be 

neutralized in a salt bridge, this would not contribute to the interaction between H1 

and H2, as both E104 and K121 are located within H2. Perhaps these residues 

contribute to the structuring of the second hydrophobic domain within the membrane.  

Double point mutants were next constructed to determine if any combination 

of these 4 residues are involved in the formation of a salt bridge. By replacing E with 

K, and K with E, any possible salt bridge formation (that was lost in the single mutant) 

would be restored in the double mutant. E61K K121E, E104K K121E, and E104K 

K108E all tested for function in the rtn1∆rtn2∆yop1∆ cells were found to be non-

functional. E61K K108E was however found to retain the ability to restore a tubular 

peripheral ER (Figure 2.11). These results do not confirm the presence of salt bridge 

neutralization between any of the amino acids tested, as none of the double mutants 

regained function. These results did however identify two charged amino acids located 

within H2 that are important for Yop1p function, E104 and K121, which is likely the 

reason any double mutant containing these individual mutations were found to be non-

functional. Perhaps these charged residues contribute to the conformation of the 

second hydrophobic domain, thus affecting the shape of Yop1p within the membrane. 

These residues may be exposed to the cells aqueous environment, altering the 

proposed hairpin structure of this domain (H2) into something more complex than an 

alpha helix. Further studies investigating the topology of Yop1p within the membrane 

more closely would elucidate whether these residues are indeed cytosol exposed or if 
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they assert their effect on Yop1p function through other means. Analysis of the level 

of expression of each of these constructs is needed to validate the above results and 

rule out the possibility that decreased expression/stability is not the reason for their 

lack of function.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 119 

REFERENCES 

 

1. Voeltz, G.K., et al., A class of membrane proteins shaping the tubular 

endoplasmic reticulum. Cell, 2006. 124(3): p. 573-86. 

2. Shibata, Y., et al., The reticulon and DP1/Yop1p proteins form immobile 

oligomers in the tubular endoplasmic reticulum. J Biol Chem, 2008. 283(27): 

p. 18892-904. 

3. Hu, J., et al., A class of dynamin-like GTPases involved in the generation of the 

tubular ER network. Cell, 2009. 138(3): p. 549-61. 

4. Hu, J., et al., Membrane proteins of the endoplasmic reticulum induce high-

curvature tubules. Science, 2008. 319(5867): p. 1247-50. 

5. Oertle, T., et al., A reticular rhapsody: phylogenic evolution and nomenclature 

of the RTN/Nogo gene family. FASEB J, 2003. 17(10): p. 1238-47. 

6. Papaloukas, C., et al., Estimating the length of transmembrane helices using Z-

coordinate predictions. Protein Sci, 2008. 17(2): p. 271-8. 

7. Krishnakumar, S.S. and E. London, Effect of sequence hydrophobicity and 

bilayer width upon the minimum length required for the formation of 

transmembrane helices in membranes. J Mol Biol, 2007. 374(3): p. 671-87. 

8. Tolley, N., et al., Overexpression of a plant reticulon remodels the lumen of 

the cortical endoplasmic reticulum but does not perturb protein transport. 

Traffic, 2008. 9(1): p. 94-102. 

9. Calero, M., G.R. Whittaker, and R.N. Collins, Yop1p, the yeast homolog of the 

polyposis locus protein 1, interacts with Yip1p and negatively regulates cell 

growth. J Biol Chem, 2001. 276(15): p. 12100-12. 

 

 



 

 120 

10. Chen, C.Z., et al., Genetic analysis of yeast Yip1p function reveals a 

requirement for Golgi-localized rab proteins and rab-Guanine nucleotide 

dissociation inhibitor. Genetics, 2004. 168(4): p. 1827-41. 

11. Heidtman, M., et al., A role for Yip1p in COPII vesicle biogenesis. J Cell Biol, 

2003. 163(1): p. 57-69. 

12. Calero, M. and R.N. Collins, Saccharomyces cerevisiae Pra1p/Yip3p interacts 

with Yip1p and Rab proteins. Biochem Biophys Res Commun, 2002. 290(2): 

p. 676-81. 

13. Chen, C.Z. and R.N. Collins, Insights into biological functions across species: 

examining the role of Rab proteins in YIP1 family function. Biochem Soc 

Trans, 2005. 33(Pt 4): p. 614-8. 

14. Calero, M., et al., Dual prenylation is required for Rab protein localization 

and function. Mol Biol Cell, 2003. 14(5): p. 1852-67. 

15. Calero, M., N.J. Winand, and R.N. Collins, Identification of the novel proteins 

Yip4p and Yip5p as Rab GTPase interacting factors. FEBS Lett, 2002. 515(1-

3): p. 89-98. 

16. Bevis, B.J. and B.S. Glick, Rapidly maturing variants of the Discosoma red 

fluorescent protein (DsRed). Nat Biotechnol, 2002. 20(1): p. 83-7. 

17. Prinz, W.A., et al., Mutants affecting the structure of the cortical endoplasmic 

reticulum in Saccharomyces cerevisiae. J Cell Biol, 2000. 150(3): p. 461-74. 

18. Bevis, B.J., et al., De novo formation of transitional ER sites and Golgi 

structures in Pichia pastoris. Nat Cell Biol, 2002. 4(10): p. 750-6. 

19. Hammond, A.T. and B.S. Glick, Dynamics of transitional endoplasmic 

reticulum sites in vertebrate cells. Mol Biol Cell, 2000. 11(9): p. 3013-30. 

 

 



 

 121 

20. Dreier, L. and T.A. Rapoport, In vitro formation of the endoplasmic reticulum 

occurs independently of microtubules by a controlled fusion reaction. J Cell 

Biol, 2000. 148(5): p. 883-98. 

21. Feng, D., et al., The transmembrane domain is sufficient for Sbh1p function, its 

association with the Sec61 complex, and interaction with Rtn1p. J Biol Chem, 

2007. 282(42): p. 30618-28. 

22. Marqusee, S. and R.L. Baldwin, Helix stabilization by Glu-...Lys+ salt bridges 

in short peptides of de novo design. Proc Natl Acad Sci U S A, 1987. 84(24): 

p. 8898-902. 
 

 

 

 



 

122 

CHAPTER 3 

 

MORPHOLOGICAL AND BIOCHEMICAL ANALYSIS OF YOP1-INDUCED 

MEMBRANE TUBULES 

 

ABSTRACT 

 There is recent evidence that Yop1p functions in the formation of the tubules 

of the peripheral ER through a membrane wedging mechanism, likely a redundant 

function shared with Rtn1p. Furthermore, purified Yop1p has been shown to form 

membrane tubules in vitro, though these tubules have a narrow diameter compared to 

the peripheral ER tubules. Here I show that Yop1p overexpression results in an 

accumulation of tubular structures and these tubules form from ER membranes. 

Furthermore, I show that the formation of Yop1p tubular structures does not require 

Rtn1p. I also developed a means to enrich for these tubular structures and show they 

contain a very narrow diameter, similar to the in vitro formed Yop1p tubules. These 

results strengthen our understanding of how Yop1p is acting on membranes in vivo 

and the types of membrane alterations Yop1p is capable of accomplishing. 
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INTRODUCTION 

Previous studies have provided evidence that Yop1p is involved in the process 

of tubule formation in the peripheral ER [1-4]. Furthermore, purified Yop1p is capable 

of forming tubules from lipids in vitro. Interestingly, the tubules formed by purified 

Yop1p in vitro have a very small diameter [4], ~10-15 nm, compared to the diameter 

of the tubules in the peripheral ER (50-100 nm) [5]. Hu et al [4] have suggested that 

the diameter of the in vitro formed tubules is considerably smaller than those of the 

ER due to the high concentration of Yop1p in this artificial setting [2, 6, 7]. It is also 

possible that Yop1p acts in concert with other ER resident proteins and that these 

other proteins modulate Yop1p function and thereby contribute to the formation of the 

larger tubules of the peripheral ER. 

Yop1p is known to interact with many ER resident proteins, which may also 

aid in the formation of the peripheral ER tubules. For example, Rtn1p is also thought 

to redundantly function in the formation and/or maintenance of the peripheral ER 

tubules and is known to form oligomeric complexes with Yop1p [1]. Additionally, 

YIP1/YIF1 family proteins physically interact with Yop1p and Rtn1p [8, 9]. It is 

possible that the tubules of the peripheral ER are formed through the combined action 

of all of these proteins together.  

YIP1/YIF1 family proteins bind to Rab proteins in a prenylation-dependant 

manner [10, 11]. The binding of Rab proteins to YIP1/YIF1 family proteins may act as 

a signal, controlling the activity of YIP1/YIF1 family members as they interact with 

Yop1p. The Rab signal may alter the activity of Yop1p, Rtn1p, and other YIP1/YIF1 

family proteins to regulate the generation of the tubules of the peripheral ER.  

Sey1p is a dynamin-like GTPase that resides on the membranes of the ER, 

mainly on the tubules of the peripheral ER. Sey1p binds to Yop1p and is thought to 

aid in the formation of the junction points that connect the peripheral ER tubules [12, 
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13]. Considering the fact that Yop1p acts to form membrane tubules it is possible that 

Sey1p may function to form junction points by altering the ability of Yop1p to act on 

membranes, thereby facilitating the negative curvature required for a junction point to 

form when two tubules fuse. Furthermore, overexpression of Yop1p results in the 

formation of long, unbranched tubular structures perhaps due to an inability of these 

small diameter tubules to be acted upon by Sey1p [4].  

This study aims to investigate the morphology of tubular structures formed by 

overexpression of Yop1p in vivo. I show that overexpression of Yop1p forms long, 

unbranched tubular structures from ER membranes, and the formation of these tubular 

structures does not require Rtn1p. I have developed an enrichment protocol to partially 

purify these tubular structures for further analysis. Furthermore, I show that the 

tubules formed by Yop1p overexpression have a morphology that is similar to the 

tubules generated by purified Yop1p from lipids in vitro strengthening our 

understanding of the function of Yop1p in vivo.  

 

MATERIALS AND METHODS 

Yeast strains and Plasmids 

All S. cerevisiae strains used in this study are listed in table 3.1. Manipulations 

of these strains were using standard biological techniques. Cell density was 

determined using a Thermo Spectronic Genesys 10UV spectrophotometer (Rochester, 

NY) at 600nm. Overexpression studies were performed in reg1∆ cells. Overexpression 

of constructs under GAL1/10 promotor control was performed by growing cells 

overnight in SD media to a density of 0.4-0.8. Cells were pelleted, washed once in 

ddH20, and resuspended in 1mL ddH20. Washed cells were inoculated into minimal 

media containing 2% galactose to an initial density of 0.05-0.2, depending on the 

length of induction.  
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Table 3.1 S. cerevisiae strains used in this study 
RCY Strain Genotype Source 
RCY239 MATa ura3-52 leu2-3,112 This lab 
RCY4274 MATa/α  reg1ΔKANR/ reg1ΔKANR ura3Δ0/ ura3Δ0, 

leu2Δ0/ leu2Δ0, his3Δ0/ his3Δ0, lys2Δ0/ lys2Δ0, 
met15Δ0/MET15 

This lab 

RCY4164 MATa, yop1ΔHIS5, ura3Δ0, leu2Δ0, his3Δ0 This lab 
RCY4169 MATa, yop1ΔHIS5, ura3Δ0, leu2Δ0, his3Δ0 This lab 
RCY4168 MATα , rtn1ΔKANR yop1ΔHIS5 ura3Δ0 leu2Δ0 his3Δ0 

lys2Δ0 
This lab 

RCY4323 
  

MATa rtn1ΔKANR rtn2ΔKANR yop1ΔHIS5, ura3Δ0, 
leu2Δ0, his3Δ0, lys2Δ0, met15Δ0 

This lab 
  

 

Table 3.2 Plasmids used in this study 
Plasmid number Construct Source 
pRC3588 pRS315 RFP-

KDEL 
This lab 

pRC3589 pRS316 RFP-
KDEL 

This lab 

pRC3825 pRS426 GFP-
YOP1 

This study 

pRC4436 pRS426 YOP1-
GFP 

This study 

pRC3822 pRS315 RFP-RTN1 This study 

  

Plasmids were created using standard biological techniques and are listed in 

table 3.2. GFP fusions were made by linking yEGFP to the NH2 or COOH terminus of 

each construct with a GGPGG linker between the GFP and the ORF. Overexpression 

of each construct was controlled by two means. First, by integrating the GFP-ORF 

fusion into a multi-copy (2µ) vector ensures many copies of each construct in cells to 

increase the production of the protein. Second, overexpression-constructs were placed 

under the control of the promotor region of GAL1/10, which initiates expression by the 

presence of galactose in the growth medium.  
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Purification of GFP-Yop1p tubules 

1 liter culture of cells overexpressing GFP-Yop1p, as described above, were 

induced overnight (~16-24 hours) in galactose containing media and grown to a 

density of 0.5-0.8. Cells were pelleted at 3,500 rpm for 3 minutes, washed in 10 mL of 

SCE (1M sorbitol, 100mM citrate, 50mM EDTA) and pellleted again. Cells were then 

resuspended in 5mL SCE+zymolase to strip the cell walls and then gently lysed by the 

addition of an equal volume of 2X lysis buffer (final concentration 100mM Tris pH 8, 

10mM EDTA). This suspension was then centrifuged at 300Xg for 3 minutes to pellet 

unbroken cells and dense material. The supernatant was then centrifuged at 20,000Xg 

to separate membrane and cytosolic fractions. The pellet was resuspended in 1X lysis 

buffer and loaded in the bottom of a stepwise sucrose flotation gradient. The flotation 

gradient contains 3 cushions of sucrose, 52% w/v on the bottom, 45% w/v in the 

center, and 10%w/v on the top. This gradient was centrifuged at 40,000 rpm for 16 

hours, separating dense material (pelleted) from a heavy membrane fraction (between 

the 45% and 10% cushions) and a light membrane fraction (on top of the 10% 

cushion). GFP-Yop1p tubules are present in the heavy membrane fraction and were 

collected by pipette. This fraction was then loaded on the top of a linear sucrose 

gradient (20-60%) and centrifuged at 20,000 rpm for 1 hour, then 15 1 mL fractions 

were collected. GFP-Yop1p tubules were present in fraction 8 when analyzed by 

fluorescence microscopy. Detergent sensitivity of GFP-Yop1p tubules was done by 

adding an equal volume of 0.4% TritonX-100 (final concentration of 0.2%) to a small 

volume of resuspended tubules. Salt resistance was determined by adding an equal 

volume of 1M NaCl or KCl (final concentration of 500mM for each salt) to a small 

volume of purified tubules.  
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Fluorescence Microscopy 

GFP fusions of YOP1 were created using 238 amino acids of yeast enhanced 

green fluorescence protein (yEGFP) fused to the NH2 terminus separated by a GGPGG 

linker. The promotor region of GAL1/10 was used to induce GFP-Yop1p expression 

upon the addition of galactose to the growth media. RFP-KDEL expression was used 

to visualize ER structures. Cells were grown to mid-log phase in minimal media and 

pelleted, washed once in ddH2O and resuspended in minimal media plus galactose to a 

density of ~0.1. Inductions were carried out for various time lengths depending on the 

experiment, as indicated in the results section. Images were collected using a Nikon 

Eclipse E600 microscope with a 100X (1.4NA) objective and 1x optivar. DIC images 

were collected from a single plane while fluorescence images were gathered as a series 

of 20-30 z steps of 0.2 µm. A CCD camera (Sensicam EM High Performance, The 

Cook Corporation) was used to collect images (software IP Lab version 3.6.5, 

Scanalytics).  Blind deconvolution of each z‐series was done using AutoQuant X2 

program (Media Cybernetics) for 30 iterations. After deconvolution, single planes 

were identified that most clearly identified single tubular structures. Microscopy 

of purified GFP-Yop1p tubules was performed by spotting purified tubule 

preparations directly onto a glass slide and visualized. 

 

Electron Microscopy 

GFP-Yop1p tubules were applied to carbon coated electron microscopy grids 

for 5-15 seconds to allow tubules to settle on the grid then washed with buffer (100 

mM Tris pH8, 50 mM NaCl). The tubules were fixed by the addition of 2% 

gluteraldehyde (in buffer, 100mM Tris pH 8, 50mM NaCl) for 5 minutes. Tubules 

were then stained by the addition of 1% uranyl acetate (in 1X lysis buffer) for 3-10 

seconds. Grids were viewed on an electron microscope (Philips model 201) at 80kV.  
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Immunogold labeling of tubules was performed initially as described 

above. Prior to staining with uranyl acetate, grids were incubated for 1 hour with 

mouse anti‐GFP monoclonal antibodies (Chemicon) in a humidification chamber, 

then washed 10 times with buffer (100mM Tris pH 8, 50mM NaCl). Secondary 

goat‐anti‐mouse antibody, conjuagated to 5 nm colloidal gold particles, was 

applied for 1 hour to the grids, then washed 15 times in buffer. Grids were then 

stained with uranyl acetate and viewed on the electron microscope as described 

above.   

 

RESULTS 

Overexpression of Yop1 p results in the formation of tubular structures.  

Previous studies have established a role for Yop1p in the formation of the 

tubules of the peripheral ER [1-4]. Furthermore, thin section electron microscopy of 

cells overexpressing Yop1p show an accumulation of ER membranes [9]. These two 

facts suggest that the accumulated ER structures may be composed of membrane 

tubules. To further analyze the morphology of the ER membranes that accumulate 

during Yop1p overexpression, GFP-Yop1p was induced in reg1∆ cells by growth in 

galactose containing media and the morphology of the structures formed were 

anyalyzed by fluorescence microscopy. The overexpression of GFP-Yop1p resulted in 

a dramatic accumulation of tubular structures within the cell after induction (Figure 

3.1). The formation of these tubular structures may indicate a direct role for Yop1p in 

the formation of tubular structures in vivo. Considering the fact that Yop1p is involved 

in forming the tubules of the peripheral ER, I examined if these tubular structures co-

localize with ER membranes by fluorescence microscopy. GFP-Yop1p was induced 

for 24 hours and ER membranes were analyzed using RFP-KDEL expression to 

monitor ER structures. The results of this analysis revealed that the tubular structures 
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formed by overexpression of GFP-Yop1p do not co-localize with the membranes of 

the ER (Figure 3.1). This is an unexpected result considering Yop1p localizes to ER 

membranes, as well as its role in the formation of the tubules of the peripheral ER. 

Previous studies of a related protein, reticulon, in plant cells have suggested that the 

tubular structures formed by reticulon overexpression exclude ER luminal proteins 

due to the small diameter of the tubules [14]. Reticulon and Yop1p are thought to act 

in redundant roles to form the tubules of the peripheral ER [1], and purified Rtn1p 

forms small diameter tubules in vitro, similar to the Yop1p formed tubules [4]. Thus, 

the exclusion of luminal proteins from GFP-Yop1p tubular structures would account 

for the lack of colocalization of the tubular structures with ER membranes.  

To further examine the possibility that these tubular structures are formed from ER 

membranes, a time-course induction of GFP-Yop1p was conducted, monitoring the 

formation of tubules and the structure of the ER using fluorescence microscopy. 

Within one hour of GFP-Yop1p induction, short tubular structures begin to appear, 

and these structures co-localize with ER membranes as indicated by co-localization 

with RFP-KDEL. Further induction results in a lengthening of these tubules, which 

co-localize with ER membranes for at least 16 hours. However, by 24 hours after 

GFP-Yop1p induction these structures no longer co-localize perfectly with ER 

membranes, although regions of the tubular structures formed align with regions of the 

peripheral ER (Figure 3.1). Taken together these results indicate that the tubular 

structures formed by overexpression of GFP-Yop1p are formed from ER membranes 

and that between 16 and 24 hours of induction these tubules obtain a small enough 

diameter to exclude ER luminal proteins. 
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Figure 3.1. Overexpression of GFP-Yop1p results in an accumulation of tubular 
structures. A. Fluorescence images of wild-type cells overexpressing GFP-Yop1p, 8 
hours after induction. B. reg1Δ cells expressing RFP-KDEL to visualize the ER. 
Images were collected after 24 hours of induction of GFP-Yop1p. C. Timecourse 
induction of GFP-Yop1 in reg1Δ cells (RCY4274). Fluorescence images collected at 
1, 8, and 16 hours after induction of GFP-Yop1p were analyzed for ER structure using 
expression of RFP-KDEL to visualize ER morphology. D. reg1Δ  cells expressing 
vector control or GFP-Yop1p under control of the GAL1/10 promotor grown on 
SD+LHKM or SGal+LHKM for 3 days.  
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    Figure 3.1 continued 
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Figure 3.1 Continued 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D. 



 

134 

Previous studies have determined that Yop1p overexpression results in cell 

death after approximately 30 hours of induction [9]. In order to determine whether or 

not GFP-Yop1p has the same dominant negative effect on cells as genomic YOP1, 

reg1Δ cells (RCY4274) carrying either an empty vector or inducible GFP-Yop1p were 

struck on both SD and SGal plates. While the vector control cells grew normally on 

both the SD and the SGal plates, GFP-Yop1p induction on the SGal plate slowed cell 

growth (Figure 3.1). This result confirms the detrimental effect Yop1p overexpression 

has on cells and suggests that GFP-Yop1p overexpresssion has a similar effect.  

 

Formation of GFP-Yop1p tubules does not require Rtn1p 

Rtn1p is an ER localized membrane protein and a known binding partner of 

Yop1p. These proteins are thought to act in redundant roles in generating the tubules 

of the peripheral ER [1]. To investigate the possibility that Rtn1p is critical for the 

formation of the tubular structures by overexpression of GFP-Yop1p, I expressed 

RFP-Rtn1p and induced GFP-Yop1p expression in wild-type cells. Localization of 

these proteins was analyzed by fluorescence microscopy. GFP-Yop1p was localized to 

the tubular structures as seen before. RFP-Rtn1p localized to the ER, which also 

contained some punctate Rtn1p localization. The Rtn1p puncta localized mainly along 

the length of the GFP-Yop1p tubules perhaps indicating that some of the RFP-Rtn1p 

had integrated into the tubules (Figure 3.2). The tubules formed by GFP-Yop1p 

overexpression often align with the tubules of the peripheral ER (see Figure 3.1), thus 

it is possible that the RFP-Rtn1p localization could be a result of Rtn1p present on the 

peripheral ER binding to Yop1p in the tubular structures, and not a result of Rtn1p 

being integrated into the forming tubules.  

I sought to determine if Rtn1p was required for the formation of the Yop1p 

tubular structures by overexpressing GFP-Yop1p in rtn1∆rtn2Δ yop1∆ cells. I found 
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that overexpression of GFP-Yop1p in these cells resulted in the formation of similar 

tubular structures (Figure 3.2), suggesting Yop1p does not require Rtn1p to form 

membrane tubules.  

 

Enrichment of GFP-Yop1p formed tubular structures 

I noticed an interesting property of the GFP-Yop1p tubules during 

fluorescence imaging, namely, that the tubular structures remained intact outside the 

cytosolic environment when a cell inadvertently broke open on the glass slide (Figure 

3.3 A). I sought to develop an enrichment scheme to remove these tubular structures 

from lysed cells for analysis outside the context of the cell. Briefly, membrane 

fractions from cells overexpressing GFP-Yop1p were loaded on the bottom of a 

sucrose flotation gradient and subjected to centifugation. Membranes were separated 

into light and heavy fractions, with the GFP-Yop1p tubules found within the heavy 

fraction. This heavy membrane fraction was further subjected to centrifugation 

through a 20-60% linear sucrose density gradient (Figure 3.3 B). This protocol 

allowed for enrichment of GFP-Yop1p formed tubular structure for further analysis. 

Analysis of the protein composition of the GFP-Yop1p tubules was performed by 

SDS-PAGE and coomassie staining and revealed many protein components within the 

tubule-containing fraction (fraction 8, Figure 3.3 C). I determined GFP-Yop1p to be 

~40 KDa by western blot (data not shown). Membrane contaminants of a similar 

density are also likely present within the enriched tubule fraction, thus it is possible 

that some of the proteins present in this fraction (besides GFP-Yop1p) are derived 

from these contaminating membranes. 
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Figure 3.2. Tubular structures formed by GFP-Yop1p are composed of ER 
membranes. A. rtn1∆rtn2Δyop1∆ cells overexpressing GFP-Yop1p for 8 hours were 
analyzed for ER morphology using expression of RFP-KDEL. Note that the peripheral 
ER is composed of tubular structures. B. reg1Δ cells (RCY4274) overexpressing GFP-
Yop1p for 8 hours. Cells were assayed for RFP-Rtn1p localization by fluorescence 
microscopy. Note regions of punctate RFP-Rtn1p localization near the GFP-Yop1p 
tubules.  
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In an attempt to determine which protein bands in the coomassie stained gel 

may be derived from contaminating membranes of a similar density as the GFP-

Yop1p tubules, wild-type cells were subjected to the same enrichment procedure 

(though not overexpressing GFP-Yop1p, they still expressed endogenous Yop1p). 

Protein profile comparison was then carried out between these cells and cells 

overexpressing GFP-Yop1p to identify any protein components inadvertently carried 

through the purification process. This analysis revealed that all protein bands present 

in the GFP-Yop1p lane appeared to also be present in the wild-type cell lane (Figure 

3.3 D), suggesting that the major protein component of the GFP-Yop1p tubules may 

be GFP-Yop1p and that the other protein components present could be a result of 

other membranous structures carried through the purification procedure inadvertently.  

 

Biochemical analysis of GFP-Yop1p formed tubules 

The GFP-Yop1p tubules floated through up through the sucrose flotation 

gradient, confirming the presence of a membrane component in the tubules. It is still 

possible that the membranous components of the GFP-Yop1p tubules do not 

contribute to the stability of the tubules, but rather interactions between Yop1p 

proteins in the tubules are responsible for maintaining the tubule structure. To 

investigate this possibility tubule fractions were subjected to conditions of extremely 

high salt concentrations. GFP-Yop1p tubule fractions were subjected to conditions of 

500 mM NaCl or KCl and analyzed for the presence of tubules by fluorescence 

microscopy. The addition of 500 mM NaCl or KCl did not result in the dissolution of 

the tubular structures (Figure 3.4 C) suggesting that they are not held together through 

strong protein interactions alone. Taken with the facts that Yop1p is an integral 

membrane protein and the GFP-Yop1p tubules floated through the membrane flotation 
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Figure 3.3. Enrichment of GFP-Yop1p formed tubular structures. A. Cells 
inadvertently broken open during slide preparation. Note the tubular structures remain 
in tact outside the cell wall. B. Purification scheme for GFP-Yop1p tubules. 
Membrane fraction of cells overexpresisng GFP-Yop1p are passed through a 
membrane flotation gradient followed by a linear sucrose gradient yielding in tact 
GFP-Yop1p tubules. C. Coomassie stained SDS-PAGE analysis of 1 mL fractions 
from linear sucrose gradient. GFP-Yop1p tubules are present in fraction 7. D. SDS-
PAGE comparison of proteins present from wild-type cells and GFP-Yop1p 
overexpressing cells after enrichment procedure. E. Fluorescence images of fractions 
collected from the linear sucrose gradient (F1=top F12=bottom).  
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Figure 3.3 continued 
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gradient, this high salt resistance suggests that the membrane component of the Yop1p 

tubules contributes to the stability of the tubules structure.  

To further investigate the composition of these tubular structures and how their 

structure is formed/maintained the tubules were tested for their resistance to detergent. 

Membranous structures are typically sensitive to the addition of detergents through the 

dissolution of the membrane within the structure. GFP-Yop1p tubule fractions were 

subjected to the addition a solution either with or without the detergent Trition-X100 

(0.2% final concentration). Fluorescence images of each sample were analyzed for the 

presence of tubular structures. Only in the control treated sample were tubules still 

present. The addition of detergent abolished the tubular structures (Figure 3.4 A), 

further suggesting they are composed of membrane and protein components both 

important to maintain the tubule structure. Additionally, fluorescence images were 

collected every 1 second after the addition of Trition-X100 of a single tubule. Within 

15 seconds after detergent addition the GFP-Yop1p tubule had been completely 

solubilized (Figure 3.4 B), further confirming the membranous component of the 

GFP-Yop1p tubules.  
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Figure 3.4. Biochemical analysis of GFP-Yop1p tubule composition. A. Enriched 
tubules treated with or without 0.2% Triton-X100 after purification. B. Time-course 
analysis of GFP-Yop1p tubules after the addition of detergent. Images captured every 
1 second. C. Analysis of high salt resistance of GFP-Yop1p tubules. Purified tubules 
after the addition of a final concentration of 500 mM NaCl or KCl.   
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Morphology of GFP-Yop1p tubules 

Previous studies have shown that plant reticulon overexpression results in the 

formation of tubular structures so small in diameter that they exclude ER luminal 

proteins [14]. To gain insight into the function of Yop1p in the formation of the 

tubules of the peripheral ER, analysis of the morphology of the GFP-Yop1p formed 

tubular structures was carried by negative stain electron microscopy. Enriched GFP-

Yop1p tubule fractions were applied to carbon-coated grids, stained with uranyl-

acetate and analyzed by electron microscopy. This analysis revealed individual tubules 

with a small diameter (~15 nm) often containing bulbous ends. These individual 

tubules were bundled together into larger, rope-like structures (Figure 3.5 A, B). 

Presumably, the larger, rope-like structures are the structures seen by fluorescence 

microscopy within cells. The morphology of the GFP-Yop1p tubules shows that 

Yop1p is capable of forming tubules with a very small diameter. It is unlikely that 

these tubules represent functional peripheral ER tubules, but are instead an artificial 

result of the high concentration of Yop1p due to its overexpression. 

In order to eliminate the possibility that the GFP tag on Yop1p is contributing 

to the formation of the tubular structures, HA-tagged Yop1p was overexpressed and 

subjected to the tubule enrichment procedure and assayed for the presence of tubules 

by electron microscopy. I found that HA-Yop1p overexpression resulted in the 

formation of tubular structures as seen by electron microscopy (Figure 3.5 C), while 

wild-type cells subjected to the same treatment did not (Figure 3.5 D).  

To confirm the presence of GFP-Yop1p within the tubular structures, 

immunogold labeling and subsequent electron microscopy was performed on enriched 

GFP-Yop1p tubule fractions with an anti-GFP antibody conjugated to a gold label. 

This analysis revealed a specific labeling of the tubular structures, while all other 
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membranous contaminants present remained devoid of gold labeling (Figure 3.5 E). 

This result confirms the presence of GFP-Yop1p within the tubular structures and 

further suggests that Yop1p is responsible for the formation of these structures. 

However, the wild-type cells do not serve as a conclusive control, thus a control where 

the primary antibody is omitted from the procedure, or an irrelevant primary antibody 

is used instead of the anti-GFP one, is needed to confirm the specific localization of 

Yop1p to the tubules.  
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Figure 3.5. Morphological analysis of purified GFP-Yop1p tubules. A-B. Negative 
stain electron microscopy of purified GFP-Yop1p tubules. Two examples are shown. 
C. Negative stain electron microscopy of HA-Yop1p formed tubules. D. Negative 
stain electron microscopy of similarly treated wild-type (RCY239) cells. E. 
Immunogold labeling of GFP-Yop1p tubules followed by negative stain electron 
microscopic analysis. Four examples are shown.  
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Figure 3.5 Continued 
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DISCUSSION 

Previous studies have determined that Yop1p likely functions in generating the 

tubules of the peripheral ER [1-4]. A model of the molecular mechanism of Yop1p 

action on membranes in generating membrane curvature has been suggested based on 

the presence of the two long hydrophobic domains of Yop1p inserted only part of the 

way through the lipid bilayer [1]. This study seeks to further elucidate the mechanism 

of Yop1p action on membranes through analysis of the structures formed by Yop1p 

overexpression in vivo. Overexpression of Yop1p is known to result in an 

accumulation of membrane tubules though the morphology of these structures have 

not been studied in detail [1, 3]. I have developed a means of partially purifying these 

structures from cells for further morphological analysis to gain insights into how 

Yop1p functions in vivo.  

Yop1p localizes mainly to the tubules of the peripheral ER [1]. Overexpression 

of Yop1p results in the formation of long, unbranched tubules within the cell [1, 3]. 

Interestingly, these tubular structures do not colocalize perfectly with ER membranes 

(Figure 3.1). Additionally, prolonged overexpression of Yop1p is dominant negative 

to cells, eventually resulting in a severe growth defect [9]. The stunted growth of these 

cells may be due to such a massive accumulation of these tubular structures that their 

presence interferes with other essential cellular processes. Alternatively, the formation 

of these tubular structures by Yop1p overexpression from ER membranes may remove 

so much of the ER membranes that the critical processes that occur there cannot occur.  

The localization of Yop1p to ER membranes suggests that the tubular 

structures formed by Yop1p overexpression are likely derived from the membranes of 

the ER. To confirm the membranes present in the Yop1p tubules is indeed ER derived, 

a time-course analysis of the formation of these Yop1p tubules was performed using 
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RFP-KDEL expression to monitor ER membranes. Within one hour of GFP-Yop1p 

induction short tubular structures begin to form. These short tubules co-localize with 

ER membranes. As the induction of GFP-Yop1p continues the length of the tubular 

structures increases. Up to 16 hours after induction the tubular structures continue to 

co-localize with ER membranes, suggesting that the membranes contained in the 

tubular structures are indeed of ER origin. Sometime between 16 and 24 hours after 

Yop1p induction the tubular structures become distinct from the membranes of the 

ER, though areas of alignment can still be seen occasionally (Figure 3.1). Studies of 

the overexpression of a plant reticulon remodels the ER lumen as well as resulting in 

the formation of tubular structures that do not contain ER luminal proteins [14]. The 

authors of this study suggest that the tubular membranes are still continuous with the 

ER membrane, but the diameter of these tubules is so small as to exclude the luminal 

proteins. This fact, taken with our results suggest that the tubules formed by Yop1p 

overexpression are of ER origin and the lack of co-localization with ER membranes 

may be suggest that these tubular structures have a very small diameter as well.  

Considering these tubules are formed from ER membranes we considered the 

possibility that other ER resident proteins may be necessary for the formation of the 

Yop1p tubules. Rtn1p is thought to act in concert with Yop1p in the formation of the 

peripheral ER tubules and is known to interact with Yop1p [1]. Overexpression of 

Yop1p was carried out in rtn1Δrtn2Δyop1Δ cells to investigate whether Rtn1p is 

necessary for the formation of the Yop1p tubules. The same long, unbranched tubular 

structures were seen, despite the absence of Rtn1p in these cells (Figure 3.2). These 

results show that Yop1p is capable of forming these structures without the help of 

Rtn1p. The fact that Yop1p does not require Rtn1p to form these tubular structures 

does not exclude the possibility that some of the Rtn1p present in ER membranes is 

integrated into the tubular structures through interaction with Yop1p during tubule 
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formation and perhaps the Rtn1p is necessary to generate the Yop1p tubules. To 

investigate the possibility that Rtn1p is present in these tubular structures RFP-Rtn1p 

was expressed during GFP-Yop1p overexpression. The localization of these proteins 

was monitored by fluorescence microscopy and revealed that Rtn1p is localized to ER 

membranes but also to puncta present along the length of the Yop1p tubules (Figure 

3.2). The Rtn1p punctate localization is confined to regions where the Yop1p tubules 

still align with the ER tubules and is absent from the regions where the two do not 

align. This result suggests that Rtn1p is likely present on the ER membrane and is not 

incorporated into the Yop1p tubules, further suggesting that Yop1p acts alone in 

forming these structures.  

During microscopic analysis of the Yop1p tubules I noted an interesting 

property of the tubular structures. Inadvertent cell lysis can occur during the 

preparation of slides for microscopic analysis when the coverslip is placed on the glass 

slide. Cells overexpressing Yop1p, when broken open by placement of the coverslip, 

spill their contents outside the cell wall. I noticed that the tubular structures appeared 

to remain intact outside the cell, suggesting they are stable enough to remain intact on 

their own. I sought to develop a protocol to enrich the tubular structures after cell lysis 

to allow a more thorough morphological analysis of these structures outside the 

context of the cell. Cells overexpressing Yop1p were zymolase treated to remove the 

cell wall, then gently lysed by the addition of high salt containing buffer. Membranes 

were then pelleted and loaded on the bottom of a sucrose flotation gradient and 

subjected to centrifugation. In this process, structures composed of membranes float 

up through the step-wise gradient while dense cell material is pelleted. Membranes are 

separated into heavy and light fractions, with the GFP-Yop1p tubules present in the 

heavy membrane fraction. This fraction was then further purified by means of a linear 

sucrose gradient. This protocol resulted in the enrichment of GFP-Yop1p tubules for 
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further analysis. SDS-PAGE analysis of the tubule-containing fraction indicated that 

many other proteins are present within the tubular structures or in the other 

membranous contaminants of a similar density as the tubules, but GFP-Yop1p was the 

major protein band in this fraction (Figure 3.3, fraction 8). To determine which 

proteins may have been inadvertently carried through the purification process wild-

type cells were subjected to the same procedure. A comparison of the protein profiles 

of the wild-type cells and the cells overexpressing GFP-Yop1p revealed that all of the 

protein bands present in the GFP-Yop1p tubule fraction were also present in the wild-

type lane, except GFP-Yop1p (~40KDa) (Figure 3.3), suggesting that GFP-Yop1p is 

the major component of the tubular structures and the other proteins carried through 

the purification are likely a result of the other membranous structures of a similar 

density as the GFP-Yop1p tubules. This result is in agreement with the fact that 

purified Yop1p is capable of forming tubular structures from lipids in vitro alone with 

a very small diameter [4].  

To further analyze the composition of the GFP-Yop1p tubules a series of 

biochemical tests were performed on the partially purified tubules. Although Yop1p is 

an integral membrane protein, and the tubular structures floated through the membrane 

flotation gradient, it is possible that the tubular structures do not require a membrane 

component to maintain structure. To assess this possibility the enriched tubular 

structures were analyzed for their sensitivity to the addition of detergent. Membranous 

structures are broken down in the presence of detergents by solubilizing the lipids 

present in these structures. The addition of 0.2% Triton-X100 resulted in the complete 

dissolution of the GFP-Yop1p tubules (Figure 3.4), confirming that the presence of 

membranes within these structures contributes to their stability.  

Strong protein-protein interactions are typically interfered with by the presence 

of high concentrations of salt. We tested the sensitivity of the GFP-Yop1p tubules to 
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high concentrations of salt to determine if interactions between the hydrophilic regions 

of Yop1p are necessary for the structuring of the tubules. The addition of extremely 

high concentrations of either NaCl or KCl (500 mM) was unable to disrupt the 

structure of the tubules (Figure 3.4), suggesting that hydrophobic interactions between 

Yop1p and the membrane are responsible for holding the tubules together.  

The tubular structures formed in vitro by purified Yop1p have a very small 

diameter of ~15 nm [4]. To determine the morphology of the GFP-Yop1p tubules 

generated in vivo purified fractions were analyzed by negative stain electron 

microscopy. This analysis revealed the diameter of the tubular structures to be ~15 

nm, similar to the diameter of the tubules formed by Yop1p in vitro, suggesting that 

the tubules could be formed solely by GFP-Yop1p. The small, individual tubules were 

further bundled together into larger, rope-like structures. The ends of the tubules 

additionally often contain rounded, bulbous ends (Figure 3.5). The bulbous ends of the 

tubules are likely a consequence of the energetically most stable way to terminate the 

tubular structures.  

To confirm the presence of Yop1p within these tubules immuno-gold labeling 

of these structures was performed with an anti-GFP primary antibody and a secondary 

gold-conjugated label. The gold label was found specifically associated with the 

tubular structures, while contaminating membranes present on the grid lacked gold 

labeling (Figure 3.5). However, an additional no primary control is needed to confirm 

that the primary antibody is not associating with the tubular structures non-

specifically. This result suggests that Yop1p is present within the tubular structures 

and that Yop1p is responsible for forming these structures. The fact Yop1p can form 

the tubular structures in the absence of Rtn1p and that these tubules have a very small 

diameter may suggest that Yop1p acts in concert with Rtn1p and other proteins to 

modulate the diameter of the tubules formed in the peripheral ER. It is also possible 
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that, as Hu et al [4] have suggested, that the high concentration of Yop1p due to 

overexpression is responsible for the small diameter of the tubules formed. 

Overexpression of Rtn1p or other binding partners with Yop1p may result in tubules 

of a larger diameter if this is the case. Further studies will determine the ability of 

Yop1p binding partners to modulate the diameter of the tubules formed by Yop1p by 

overexpressing them at the same time within cells and analyzing the morphology of 

the tubules formed.  
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CHAPTER 4 

 

ANALYSIS OF RTN1 PALMITOYLATION 

  

ABSTRACT 

 Reticulon proteins are ubiquitously found in eukaryotic genomes and have 

recently been implicated in the formation of the highly curved tubules of the ER in 

both higher and lower eukaryotes. Rtn1p is thought to function in a redundant role 

with Yop1p in generating peripheral ER tubules in yeast through a membrane wedging 

mechanism. Rtn1p contains two long hydrophobic regions thought to form hairpins 

within the membrane, which give Rtn1p a wedge-like shape that drives membrane 

deformation. Palmitoylation is a post-translational modification that can alter the 

localization of a protein or its activity. Rtn1p is palmitoylated on four cysteine 

residues all located in close proximity to the putative membrane embedded regions. 

Here I investigate the consequences of Rtn1p palmitoylation on its ability to form the 

tubular peripheral ER.  
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INTRODUCTION 

Rtn1p belongs to the eukaryotic reticulon family of integral membrane 

proteins, characterized by a reticulon homology domain (RHD, see Figure 1.4).  This 

domain contains two long hydrophobic stretches (~40 amino acids) separated by a 

hydrophilic loop (~60 amino acids, see Figure 1.4) [Pfam PF02453][1, 2]. Yeast 

contain two reticulon genes, RTN1 and RTN2. Rtn1p is the predominantly expressed 

form, but under stressed conditions the expression of Rtn2p can be induced. All 

reticulons studied to date localize to ER membranes [3], with the possible exception of 

a very small amount of mammalian RTN4 present on the plasma membrane [4]. 

Reticulons have been recently implicated in the formation and/or maintenance of the 

peripheral ER tubules in both lower and higher eukaryotes [1, 5, 6]. Previous studies 

have shown that reticulons form homo-oligomeric complexes [4, 7-9], which may be 

required for their function. 

Rtn1p is also known to interact with other proteins, including Yop1p, Yip3p, 

Sec6p, and Sbh1p [1, 10-12]. Yop1p and Yip3p are both thought to play roles in 

generating or maintaining the tubules of the peripheral ER. Yip3p is a YIP-like protein 

(though not a YIP family member) that forms complexes with YIP family proteins 

[10]. Mutants of YIP1 have been identified that contain peripheral ER sheet-like 

structures at the restrictive temperature [13]. It is thought that the interaction between 

Rab proteins and Yip1p may alter the extensive hydrophobic COOH terminal domains 

of Yip1p and thus affect Yip1p function in forming these tubular structures. Perhaps 

Yip3p provides a bridge to translate the information from the Rab-Yip1p interaction to 

Rtn1p and regulating its ability to form membrane tubules.  

Yop1p is an integral membrane protein thought to share a redundant role with 

Rtn1p, through a similar mechanism of action, in the formation of the tubules of the 

peripheral ER. Rtn1p shares a similar domain organization with Yop1p, where two, 
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long hydrophobic domains are separated by a hydrophilic linker (see Figure 1.5). The 

NH2 and COOH terminal ends are present on the cytoplasmic surface of the ER 

membrane, as well as the hydrophilic linker between the two hydrophobic domains. 

Each of the hydrophobic domains is inserted into the membrane, but not thought to 

pass all the way through. This unique topology has been proposed to give Rtn1p a 

wedge-like shape within the membrane. The presence of the two hydrophobic domains 

within the membrane are thought to drive membrane deformation through a similar 

mechanism of action as Yop1p (investigated in Chapters 2 and 3). Additionally, in 

yeast deletion of RTN1 alone has no apparent phenotype, but rtn1∆yop1∆ cells (and 

rtn1∆rtn2∆yop1∆ cells) display a morphological defect of the structure of their 

peripheral ER, where the normal tubular structure is converted into large areas of sheet 

like cisternae (though some areas of tubules still exist). Expression of RTN1 (or YOP1, 

see Figure 2.1) can rescue this morphological defect, suggesting a redundant function 

for Rtn1p and Yop1p in the formation of these tubular structures [1].  

Post-translational lipid modifications of proteins can have a number of 

potential effects on the function of a protein, from localization to regulation of protein 

function [14-17]. For example, the acylation of Rab proteins is essential for Rab 

protein recruitment to membranes [18]. Additionally, protein acylation has been 

shown to be an important determining factor in some proteins organellular localization 

[19]. Palmitoylation is a reversible reaction where palmitic acid is covalently linked to 

cysteine residues [20]. Rtn1p has 4 cysteine residues, and the Dr. Nick Davis’ lab 

(Wayne State University) has demonstrated that all 4 of these residues are 

palmitoylated.  All four of these cysteines are in close proximity to the two 

hydrophobic domains of Rtn1p and it is possible that the palmitoylation of these 

residues may have alter the function of Rtn1p. Considering the proposed mechanism 

used by Rtn1p in generating membrane curvature through a membrane wedging 



 

160 

mechanism [1] the palmitoylation of these residues may have drastic effects on the 

shape that Rtn1p adopts within the membrane, perhaps as a potential means to regulate 

the action of Rtn1p on membranes. This type of reversible protein modification could 

act as a signal for Rtn1p to alter its action on membranes.  

 

MATERIALS AND METHODS 

Yeast strains and plasmids 

All S. cerevisiae strains used in this study are listed in table 4.1. Manipulations 

of these strains were done using standard biological techniques. Cell density was 

determined using a Thermo Spectronic Genesys 10UV spectrophotometer (Rochester, 

NY) at 600nm. Endogenous level expression of each CEN construct was achieved by 

using the endogenous promotor region of each gene (~500 bp upstream from the start 

codon). Overexpression of constructs under GAL1/10 promotor control was performed 

by growing cells overnight in SD media to a density of 0.4-0.8. Cells were pelleted, 

washed once in ddH20, and resuspended in 1mL ddH20. Washed cells were inoculated 

into minimal media containing 2% galactose to an initial density of 0.05-0.2, 

depending on the length of induction.  

 

Table 4.1 S. cerevisiae strains used in this study 
RCY Strain Genotype Source 
RCY239 MATa ura3-52 leu2-3,112 This lab 
RCY4274 MATa/α  reg1ΔKANR/ reg1ΔKANR ura3Δ0/ ura3Δ0, 

leu2Δ0/ leu2Δ0, his3Δ0/ his3Δ0, lys2Δ0/ lys2Δ0, 
met15Δ0/MET15 

This lab 

RCY4323 
  

MATa rtn1ΔKANR rtn2ΔKANR yop1ΔHIS5, ura3Δ0, 
leu2Δ0, his3Δ0, lys2Δ0, met15Δ0 

This lab 

 

Plasmids were created using standard biological techniques and are listed in 

table 4.2. GFP fusions were made by linking yEGFP to the NH2 or COOH terminus of 
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each construct with a GGPGG linker between the GFP and the ORF. Overexpression 

of particular constructs was done by two means. First, by integrating the GFP-ORF 

fusion into a multi-copy (2µ) vector ensures many copies of each construct in cells to 

increase the proteins production. Second, overexpression constructs are placed under 

the control of the promotor region of GAL1/10, which responds to the presence of 

galactose.  

 

Table 4.2 Plasmids used in this study 
Plasmid number Construct Description Source 
pRC3588 pRS315 RFP-KDEL  This lab 
pRC3589 pRS316 RFP-KDEL  This lab 
pRC3413 pRS315 RTN1-GFP  This study 
pRC3414 pRS315 RTN1-PMut-

GFP 
C19S, C21S, 
C90S, C194S 

This study 

pRC3437 pRS315 RTN1-3XHA 
6XHIS 

 This study 

pRC3438 pRS315 RTN1-PMut-
3XHA 6XHIS 

C19S, C21S, 
C90S, C194S 

This study 

pRC3501 pRS315 GFP-RTN1  This study 
pRC3502 pRS315 GFP-RTN1-

PMut 
C19S, C21S, 
C90S, C194S 

This study 

 

Fluorescence Microscopy 

GFP fusions of each protein were created by fusing 238 amino acids of yeast 

enhanced green fluorescence protein (yEGFP) to either the NH2 or COOH terminus 

and separated by a unique linker sequence (GGPGG). For all peripheral ER 

morphology analysis experiments, expression of fusion constructs was driven by the 

endogenous promotor of each gene. NH2 terminal GFP fusions contain the endogenous 

terminator sequences from each ORF, ~500 bp downstream from the stop codon of 

each gene. For COOH terminal GFP fusions, termination is controlled by 573 bp of 

DNA downstream of the ADH1 ORF. All fusion constructs were created using overlap 
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PCR recombination with ~20 bp overlapping sequences for all PCR fragments and 

recombined into the specified CEN plasmid.  

For the overexpression studies, the promotor region of GAL1/10 was used to 

induce GFP-Rtn1p expression upon the addition of galactose to the growth media. 

RFP-KDEL expression was used to visualize ER structures. Cells were grown to mid-

log phase in minimal media and pelleted, washed once in ddH2O and resuspended in 

minimal media plus galactose to a density of ~0.1. Inductions were carried out for 

various time lengths depending on the experiment, as indicated in the results section. 

Images were collected using a Nikon Eclipse E600 microscope with a 100X (1.4NA) 

objective and 1x optivar. DIC images were collected from a single plane while 

fluorescence images were gathered as a series of 20-30 z steps of 0.2 µm. A CCD 

camera (Sensicam EM High Performance, The Cook Corporation) was used to 

collect images (software IP Lab version 3.6.5, Scanalytics).  Blind deconvolution 

of each z‐series was done using AutoQuant X2 program (Media Cybernetics) for 

30 iterations. After deconvolution, single planes were identified that most clearly 

identified single tubular structures.  

 

Analysis of the number of junction points 

Cells expressing GFP fusions of RTN1 or RTN1­PMut were expressed in 

wild‐type, rtn1∆, and rtn1∆yop1∆ cells and analyzed by fluorescence microscopy 

as described above. After deconvolution, peripheral ER structures were identified 

in peripheral slices of each z‐series and the number of junction points between 

tubules was determined in each mother cell (the larger cell). The surface area in 

each cell was determined by measuring the diameter of the cell in two directions 

and averaging them to get an approximation of the diameter. Then, using πR2 the 

surface area was calculated and used to correct the number of junction points for 
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different sized cells, yielding the number of junction points per square 

micrometer. Junction point quantification numbers are reported as average +/‐ 

standard deviation.  

 

RESULTS 

Overexpression of Rtn1p results in an accumulation of tubular structures in the 

peripheral ER 

Previous studies have suggested a role for Rtn1p in the formation of the 

tubules of the peripheral ER, perhaps providing a redundant role to Yop1p. Rtn1p 

shares a similar, unique topology within the membrane as Yop1p where the presence 

of its two long hydrophobic hairpins are thought to be critical for the generation of 

peripheral ER tubules. Overexpression of GFP-Rtn1p results in an accumulation of 

tubular structures within the cell (Figure 4.1), similar to GFP-Yop1p overexpression 

(see Figure 3.1)[1]. 

However, the tubular structures formed by Rtn1p overexpression often contain 

branch points (Figure 3.1), unlike the unbranched tubules formed by Yop1p 

overexpression. Attempts to purify the GFP-Rtn1p tubules by a similar means used for 

the GFP-Yop1p tubules (see chapter 3) was unsuccessful, suggesting that Rtn1p does 

not form tubules that are stable enough to withstand the enrichment process (data not 

shown). This fact, taken with the presence of junction points in the Rtn1p formed 

tubular structures (Figure 4.1), may suggest that overexpressed Rtn1p is still localized 

to ER membranes, and that the tubules of the ER do not withstand the purification 

procedure. Further studies are needed to determine if Rtn1p tubules colocalize with 

ER membranes.  
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Figure 4.1 Overexpression of GFP-Rtn1p results in an accumulation of tubular 
structures. GFP-Rtn1p was overexpressed in RCY4274 (reg1Δ) cells by galactose 
induction for 16 hours and visualized by fluorescence microscopy. Two examples are 
shown highlighting that some cells have branched tubules while others do not. The 
cause of this discrepancy is unknown.  
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Expression of Rtn1p restores a tubular peripheral ER in rtn1∆rtn2∆yop1∆ cells 

 Previous studies have determined that deletion of RTN1 or YOP1 alone in cells 

has no effect on the morphology of the peripheral ER. However, rtn1∆yop1∆ cells 

(and rtn1∆rtn2∆yop1∆ cells) manifest abnormal peripheral ER sheet-like structures, 

although some areas of tubules remain. Expression of Rtn1p or GFP-Rtn1p is known 

to rescue this morphological defect, restoring tubular morphology typical of the 

peripheral ER [1]. In order to demonstrate that, in my hands, these results are 

reproducible, I analyzed the morphology of the peripheral ER in wild-type, rtn1∆, 

yop1∆, rtn1∆yop1∆, and rtn1∆rtn2∆yop1∆ cells, using RFP-KDEL expression to 

visualize the structure of the ER. In wild-type, rtn1∆, and yop1∆ cells I found the 

peripheral ER is composed of tubules as was previously shown (99 +/- 1%, 93.6 +/- 

1.5%, 96 +/- 4% cells with normal ER, respectively) (Table 4.3, Figure 4.2). Most of 

the rtn1∆yop1∆ and rtn1∆rtn2∆yop1∆ cells contain large areas of membrane sheets in 

their peripheral ER as expected (9.3 +/- 2.6%, 5 +/- 3.6% cells with normal ER, 

respectively) (Table 4.3, Figure 4.2). I also found that expression of Rtn1p was 

sufficient to restore the sheet-like ER phenotype to a normal tubular morphology (63 

+/- 7% cells with normal ER) (Table 4.3, Figure 4.2). These results confirm that Rtn1p 

is a player in the structuring of the tubules of the peripheral ER and demonstrates that 

I have the ability to use the sheet-like ER phenotype of the rtn1∆rtn2∆yop1∆ cells to 

analyze the ability of RTN1 mutants in order to uncover the mechanism of membrane 

tubule formation utilized by Rtn1p. 
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Figure 4.2 Rtnp1 is involved in the formation of the tubules of the peripheral ER 
A. RFP-KDEL expression in wild-type, rtn1Δ, yop1Δ, rtn1Δyop1Δ, and 
rtn1Δrtn2Δyop1Δ cells showing the morphology of the ER. Expression of genomic 
Rtn1p in rtn1Δrtn2Δyop1Δ cells is included in the bottom row. B. Quantification of 
the cells from A. with normal, tubular peripheral ER structure. Numbers are presented 
as average+/-standard deviation (N=300 for all cases) 
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Figure 4.2 Continued 
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Table 4.3 Quantification of cells with a normal peripheral ER morphology, Rtn1p is 
involved in structuring the tubules of the peripheral ER 
RCY 
strain 

Plasmid(s) Slide 1 
100 cells 
counted 

Slide 2 
100 cells 
counted 

Slide 3 
100 cells 
counted 

Average St. Dev. 

239 pRC3588 100 98 99 99 1 
4169 pRC3588 94 92 95 93.6 1.5 
4164 pRC3588 94 97 97 96 4 
4168 pRC3588 3 9 16 9.3 2.6 
4323 pRC3588 6 8 1 5 3.6 
4323 pRC3588, 

pRC4560 
70 56  63 63 7 

 

GFP-Rtn1p functions in generating the tubular peripheral ER 

rtn1Δrtn2Δyop1Δ cells contain large areas of membrane sheets in their 

peripheral ER and complementation of these cells with genomic Rtn1p restores a 

normal, tubular peripheral ER [1]. To determine the ability of GFP tagged Rtn1p to 

functionally replace RTN1 in these cells, GFP-Rtn1p or Rtn1-GFP was expressed in 

rtn1Δrtn2Δyop1Δ cells and the morphology of the peripheral ER was analyzed by 

fluorescence microscopy. Expression of both NH2 and COOH terminally tagged Rtn1p 

was found to restore the tubules of the peripheral ER to a similar level as genomic 

RTN1 (70.3 +/-1.5%, 57.6 +/- 3.5%, 69 +/- 13.2% cells with normal ER, respectively) 

(Table 4.4, Figure 4.3). This analysis provides a platform to test mutants of Rtn1p for 

their ability to restore the tubular morphology to the peripheral ER.  
 
Table 4.4 Quantification of cells with a normal peripheral ER morphology, GFP 
tagged Rtn1p is functional 
RCY 
strain 

Plasmid(s) Slide 1 
100 cells 
counted 

Slide 2 
100 cells 
counted 

Slide 3 
100 cells 
counted 

Average St. Dev. 

4168 pRS315 10 6 11 9 2.6 
4168 pRC4560 84 59 64 69 13.2 
4168 pRC3501 59 69 72 70.3 1.5 
4168 pRC3413 70 61 58 57.6 3.5 
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Figure 4.3 GFP-tagged Rtn1p is functional in restoring a tubular ER morphology 
in rtn1Δrtn2Δyop1Δ  cells A. Vector control, RTN1, GFP-RTN1 and RTN1-GFP was 
expressed in rtn1Δrtn2Δyop1Δ cells and peripheral ER morphology was analyzed by 
fluorescence microscopy. B. Quantification of the cells from A. with normal, tubular 
peripheral ER structure. Numbers are presented as average+/-standard deviation  
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An RTN1 mutant that cannot be palmitoylated functions in generating a tubular 

peripheral ER 

Previous studies have shown that Rtn1p contains four cysteine residues that are 

post-translationally modified by the addition of a palmitoyl fatty acid. Palmitoylation 

of cysteines can provide a hydrophobic functional group to a protein that can be 

inserted into a membrane [21-24].  

All 4 cysteine residues of RTN1 are located in close proximity to the ends of 

the hydrophobic domains (Figure 4.4). Upon membrane insertion, these palmitoyl 

groups may alter the shape/topology of Rtn1p within the membrane and therefore may 

contribute to the ability of Rtn1p to function in membrane tubulation. A cysteine-less 

RTN1 mutant was kindly provided by Dr. Nick Davis (Wayne State University) and I 

COOH terminally tagged it with GFP (GFP-Rtn1p-PMut). This palmitoylation mutant 

of GFP-Rtn1p was tested for its ability to restore a tubular peripheral ER in 

rtn1Δrtn2Δyop1Δ cells. Expression of GFP-Rtn1p-PMut in rtn1Δrtn2Δyop1Δ cells 

resulted in a normal, tubular peripheral ER (70.3 +/- 1.5% cells with normal ER) 

(Table 4.5, Figure 4.5), suggesting the palmitoylation of Rtn1p does not play a role in 

its function in generating the tubules of the peripheral ER.  
 
 
Table 4.5 Quantification of cells with normal peripheral ER morphology, Rtn1p-PMut 
is functional 
RCY 
strain 

Plasmid(s) Slide 1 
100 cells 
counted 

Slide 2 
100 cells 
counted 

Slide 3 
100 cells 
counted 

Average St. Dev. 

4168 pRS315 1 2 2 1.6 0.5 
4168 pRC3501 84 59 64 69 13.2 
4168 pRC3577 59 69 72 70.3 1.5 
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Figure 4.4 MPex hydrophobicity plot of RTN1-PMut Hydrophobicity prediction of 
the primary amino acid sequence of Rtn1p with the location of the four cysteine 
residues indicated by the black Xs.  
 
 
 
 
 
 
 
 
 



 

174 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.5 Rtn1p-PMut is functional in restoring a normal peripheral ER 
morphology A. Vector control, GFP-Rtn1p and GFP-Rtn1p-Pmut were expressed in 
rtn1Δrtn2Δyop1Δ cells and peripheral ER morphology was analyzed by fluorescence 
microscopy. B. Quantification of the cells from A. with normal, tubular peripheral ER 
structure. Numbers are presented as average+/-standard deviation  
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Punctate localization of Rtn1p is increased in the Rtn1p-PMut 

While majority of the cells expressing GFP-Rtn1p show an ER localization 

pattern, during this analysis I also noted that some cells show Rtn1p localization into 

punctate structures, though the morphologies of ER in these cells is unknown. In the 

palmitoylation mutant of Rtn1p it appeared the punctate localization was increased, 

suggesting that the palmitoylation of Rtn1p may in fact play some role in its 

localization. To determine if this observation was significant and to further understand 

how the palmitoylation of Rtn1p affects its function, the number of cells with a 

punctate Rtn1p localization was determined in GFP-Rtn1p and GFP-Rtn1p-PMut 

expressing cells. This analysis confirmed that the localization of Rtn1p to punctate 

structures was increased in the palmitoylation mutant of Rtn1p (61.8 +/- 4.1% cells 

with punctate localization) (Table 4.6, Figure 4.6) when compared to punctate 

localization of GFP-Rtn1p (35.4 +/- 2.3% cells with punctate localization) (Table 4.6, 

Figure 4.6), confirming that this modification does affect the ability of Rtn1p to 

localize to the tubular ER. It may be that Rtn1p has some other function in cells, 

distinct from its role in forming peripheral ER tubules, and the palmitoylation of 

Rtn1p acts to regulate its function between these two roles in cells. However, it is 

unclear why so many of the Rtn1p expressing cells have a punctate localization. It 

may be that these cells are expressing Rtn1p at a higher level that forces the formation 

of puncta and this effect is more severe in the palmitoylation mutant.  

 
Table 4.6 Quantification of cells with punctate Rtn1p localization, for each slide 100 
cells were counted 
RCY 
Strain 

Plasmid Slide 
1 

Slide 
2 

Slide 
3 

Slide 
4 

Slide 
5 

Average St. 
Dev. 

239 pRC3413 35 36 34 39 33 35.4 2.3 
239 pRC3414 64 60 62 56 67 61.8 4.1 
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Figure 4.6 Punctate localization of Rtn1p-Pmut A. Fluorescence microscopy 
images of cells expressing GFP-Rtn1p or GFP-Rtn1p-PMut. B. Quantification of the 
number of cells displaying a punctate localization pattern of the expressed construct. 
Numbers are presented as average+/-standard deviation.  
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Formation of junction points between tubules appears unaffected by the 

palmitoylation of Rtn1p 

The formation of tubular membrane structures requires the generation of 

positive membrane curvature [25]. The point that two tubules are connected in the 

peripheral ER, called junction points, requires localized areas of negative membrane 

curvature for the tubules to be joined [26]. Considering the fact that Rtn1p functions in 

generating the positive membrane curvature required for tubule formation [1], I 

reasoned that the palmitoylation of Rtn1p might act to alter its ability to generate this 

positive curvature. Perhaps the modification of Rtn1p specifically at the junction 

points allows this negative curvature to be formed by modulating the tubulating 

activity of Rtn1p. To assess this possibility, either GFP-Rtn1p or GFP-Rtn1p-PMut 

was expressed in wild-type, rtn1Δ cells and rtn1Δrtn2Δyop1Δ cells and the number of 

junction points per square micrometer was determined. This analysis was carried out 

by capturing fluorescence images of these cells then counting the number of junction 

points present within the mother cell. This number was then divided by the surface 

area of the mother cell (in square micrometers), providing the average number of 

junction points in a square micrometer. Surface area was determined by measuring 

two diameters and using πR2. This analysis determined there was not a significant 

difference in the number of junction points formed by GFP-Rtn1p or GFP-Rtn1p-P-

Mut expression in any of these cell types (Tables 4.7-4.12, Figure 4.7), suggesting that 

the palmitoylation of Rtn1p does not effect the formation of junction points in cells. 
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Figure 4.7 Junction point analysis GFP-Rtn1p or GFP-Rtn1p-PMut was expressed 
in wild-type (A. RCY239), rtn1Δ (B. RCY4164) or rtn1Δyop1Δ (C. RCY4168) cells 
and the number of junction points per square micrometer was determined. Numbers 
are presented as average +/-standard deviation. 
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Figure 4.7 Continued 
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Figure 4.7 Continued 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

183 

Table 4.7 Junction point analysis of wild-type cells expressing GFP-Rtn1p 
Strain Plasmid Diameter 

1 (µm) 
Diameter 
2 (µm) 

Surface 
Area 
(µm2) 

# Junction 
Points 

# Junction 
Points/µm2 

RCY239 pRC3501 5.8 5.5 25.0 102 4.0 
RCY239 pRC3501 5.7 5.4 24.1 75 3.1 
RCY239 pRC3501 5.3 5.6 23.3 58 2.4 
RCY239 pRC3501 5 4.3 16.9 51 3.0 
RCY239 pRC3501 5.5 5.6 24.1 72 2.9 
RCY239 pRC3501 4.2 4.5 14.8 52 3.4 
RCY239 pRC3501 4.6 4.3 15.5 60 3.8 
RCY239 pRC3501 5.7 5.6 25.0 61 2.3 
RCY239 pRC3501 5.6 5.5 24.1 64 2.4 
RCY239 pRC3501 4.6 5 18.0 47 2.5 
RCY239 pRC3501 5.7 6 26.8 76 2.8 
RCY239 pRC3501 4.7 4.7 17.3 58 3.3 
RCY239 pRC3501 5.8 6 27.3 64 2.3 
RCY239 pRC3501 4.8 5.1 19.2 67 3.4 
RCY239 pRC3501 5.4 5.2 22.0 55 2.4 
RCY239 pRC3501 4.8 5.1 19.2 56 2.9 
RCY239 pRC3501 4.8 5 18.5 50 2.6 
RCY239 pRC3501 4.1 4.9 15.9 38 2.3 
RCY239 pRC3501 6.4 6.1 30.6 73 2.3 
RCY239 pRC3501 5.2 5.1 20.8 58 2.7 
RCY239 pRC3501 5 5.2 20.4 44 2.1 
RCY239 pRC3501 6.1 5.5 26.4 61 2.3 
RCY239 pRC3501 4.7 5.2 19.2 48 2.4 
RCY239 pRC3501 4.9 5.4 20.8 28 1.3 
RCY239 pRC3501 3.9 4.4 13.5 36 2.6 
RCY239 pRC3501 6.8 7 37.3 62 1.6 
RCY239 pRC3501 5.8 5.3 24.1 62 2.5 
RCY239 pRC3501 5.6 6 26.4 61 2.3 
RCY239 pRC3501 5.9 5.3 24.6 46 1.8 
RCY239 pRC3501 4.7 5 18.4 39 2.1 
RCY239 pRC3501 5.3 5.9 24.3 43 1.7 
RCY239 pRC3501 5.7 6 26.8 54 2.0 
RCY239 pRC3501 5.2 5.2 21.2 43 2.0 
RCY239 pRC3501 4.8 4.6 17.3 53 3.0 
RCY239 pRC3501 4.9 5.2 20.0 49 2.4 
RCY239 pRC3501 4 4.9 15.5 41 2.6 
     Average 2.6 
     Standard 

Deviation 
0.6 
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Table 4.8 Junction point analysis of wild-type cells expressing GFP-Rtn1p-PMut 
Strain Plasmid Diameter 

1 (µm) 
Diameter 
2 (µm) 

Surface 
Area 
(µm2) 

# Junction 
Points 

# Junction 
Points/µm2 

RCY239 pRC3577 5.7 6 26.8 35 1.3 
RCY239 pRC3577 5.1 5 20.0 54 2.6 
RCY239 pRC3577 6 6 28.2 54 1.9 
RCY239 pRC3577 6 6.2 29.2 40 1.3 
RCY239 pRC3577 4.4 4.5 15.5 38 2.4 
RCY239 pRC3577 6.4 7.2 36.3 56 1.5 
RCY239 pRC3577 5.9 6.3 29.2 51 1.7 
RCY239 pRC3577 5.8 5.8 26.4 48 1.8 
RCY239 pRC3577 5 5 19.6 46 2.3 
RCY239 pRC3577 6 6.3 29.7 50 1.6 
RCY239 pRC3577 6.1 6 28.7 57 1.9 
RCY239 pRC3577 5.1 5.3 21.2 47 2.2 
RCY239 pRC3577 7 7.1 39.3 55 1.4 
RCY239 pRC3577 5.6 5.6 24.6 48 1.9 
RCY239 pRC3577 4.8 5.3 20.0 44 2.1 
RCY239 pRC3577 5.2 4.9 20.0 40 1.9 
RCY239 pRC3577 5.1 5.2 20.8 50 2.4 
RCY239 pRC3577 5.6 6 26.4 38 1.4 
RCY239 pRC3577 4.9 5.1 19.3 37 1.8 
RCY239 pRC3577 4.9 4.6 17.7 35 1.9 
RCY239 pRC3577 4.8 3.9 14.8 26 1.7 
RCY239 pRC3577 6.6 5.8 30.1 45 1.4 
RCY239 pRC3577 5 5.3 20.8 50 2.4 
RCY239 pRC3577 5.5 6.2 26.7 46 1.7 
RCY239 pRC3577 5.4 5.9 25.0 46 1.8 
RCY239 pRC3577 4.6 5.3 19.2 36 1.8 
RCY239 pRC3577 6.5 6.5 33.1 66 1.9 
RCY239 pRC3577 5.1 5.7 22.9 29 1.6 
RCY239 pRC3577 4.6 5 18.0 45 2.4 
RCY239 pRC3577 5.6 5.9 25.9 51 1.9 
RCY239 pRC3577 6 5.8 27.3 43 1.5 
     Average 1.8 
     Standard 

Deviation 
0.4 
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Table 4.9 Junction point analysis of rtn1∆ cells expressing GFP-Rtn1p 
Strain Plasmid Diameter 

1 (µm) 
Diameter 
2 (µm) 

Surface 
Area 
(µm2) 

# 
Junction 
Points 

# Junction 
Points/µm2 

RCY4164 pRC3501 3.8 4 11.9 32 2.6 
RCY4164 pRC3501 4.6 4.7 16.9 31 1.8 
RCY4164 pRC3501 5.4 6.3 26.8 35 1.3 
RCY4164 pRC3501 6.3 6.9 34.2 41 1.2 
RCY4164 pRC3501 4.5 5.4 19.2 33 1.7 
RCY4164 pRC3501 4.5 3.9 13.8 26 1.8 
RCY4164 pRC3501 3.8 4.2 12.5 30 2.8 
RCY4164 pRC3501 6.7 6.1 32.1 42 1.3 
RCY4164 pRC3501 5.2 5 20.4 38 1.8 
RCY4164 pRC3501 6 6.8 32.1 46 1.4 
RCY4164 pRC3501 5.7 5.8 25.9 42 1.6 
RCY4164 pRC3501 5.9 6 27.8 36 1.2 
RCY4164 pRC3501 5 5.3 20.8 41 1.9 
RCY4164 pRC3501 5 4.8 18.8 36 1.9 
RCY4164 pRC3501 5.4 6.4 27.3 55 2.0 
RCY4164 pRC3501 5.5 6.1 26.4 46 1.7 
RCY4164 pRC3501 4.2 4.4 14.5 33 2.2 
RCY4164 pRC3501 5.8 5.6 25.5 43 1.6 
RCY4164 pRC3501 6.8 6.3 33.7 49 1.4 
RCY4164 pRC3501 5 5.7 22.4 51 2.2 
RCY4164 pRC3501 5.2 5.8 23.7 47 1.9 
RCY4164 pRC3501 4.9 5 19.2 47 2.4 
RCY4164 pRC3501 5.3 6.5 27.3 56 2.0 
RCY4164 pRC3501 5.6 6 26.4 48 1.8 
RCY4164 pRC3501 6 6.6 31.1 44 1.4 
RCY4164 pRC3501 5.9 6.5 30.1 57 1.8 
RCY4164 pRC3501 6 5.8 27.3 57 2.0 
RCY4164 pRC3501 7 7.2 39.5 82 2.0 
RCY4164 pRC3501 5.4 5 21.2 36 1.6 
RCY4164 pRC3501 6 6.3 29.7 55 1.8 
RCY4164 pRC3501 5.3 5.3 22.0 56 2.5 
RCY4164 pRC3501 6 6.5 30.6 52 1.6 
RCY4164 pRC3501 5.4 5.3 22.4 40 1.7 
RCY4164 pRC3501 5.7 5 22.4 56 2.4 
     Average 1.8 
     Standard 

Deviation 
0.4 
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Table 4.10 Junction point analysis of rtn1∆ cells expressing GFP-Rtn1p-PMut 
Strain Plasmid Diameter 

1 (µm) 
Diameter 
2 (µm) 

Surface 
Area 
(µm2) 

# Junction 
Points 

# Junction 
Points/µm2 

RCY4164 pRC3577 5.3 4.4 18.4 35 1.8 
RCY4164 pRC3577 4.9 6 23.3 38 1.2 
RCY4164 pRC3577 4.7 4.8 17.7 41 2.3 
RCY4164 pRC3577 5 4.8 18.8 33 1.7 
RCY4164 pRC3577 4 4 12.5 31 2.4 
RCY4164 pRC3577 6 5.2 24.6 52 2.1 
RCY4164 pRC3577 4 3.9 12.2 47 3.8 
RCY4164 pRC3577 4.4 4.8 16.6 34 2.0 
RCY4164 pRC3577 4.9 4.6 17.7 32 1.8 
RCY4164 pRC3577 6.1 6 28.7 44 1.5 
RCY4164 pRC3577 4.2 4 13.2 28 2.1 
RCY4164 pRC3577 3.6 3.5 9.9 30 3.0 
RCY4164 pRC3577 6 6 28.2 47 1.6 
RCY4164 pRC3577 4 4 12.5 23 1.8 
RCY4164 pRC3577 6.1 6.2 29.7 64 2.1 
RCY4164 pRC3577 6.6 6.7 34.7 56 1.6 
RCY4164 pRC3577 4.9 4.4 16.8 47 2.7 
RCY4164 pRC3577 5.6 5.2 22.9 45 1.6 
RCY4164 pRC3577 4.3 4.6 15.5 50 3.2 
RCY4164 pRC3577 4.5 4.3 15.2 37 2.4 
RCY4164 pRC3577 4.1 4 12.8 40 3.1 
RCY4164 pRC3577 5.5 5.8 25.0 45 1.7 
RCY4164 pRC3577 4.6 4.4 15.9 42 2.6 
RCY4164 pRC3577 5 5.3 20.8 52 2.4 
RCY4164 pRC3577 5.3 5.5 22.9 44 1.9 
RCY4164 pRC3577 5.9 6.1 28.2 59 2.0 
RCY4164 pRC3577 6 6.6 31.1 60 1.9 
RCY4164 pRC3577 5.2 5.3 21.6 50 2.3 
RCY4164 pRC3577 4.5 4.5 15.9 47 2.9 
RCY4164 pRC3577 5.2 5.3 21.6 37 1.7 
     Average 2.2 
     Standard 

Deviation 
0.5 
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Table 4.11 Junction point analysis of rtn1∆yop1∆ cells expressing GFP-Rtn1p 
Strain Plasmid Diameter 

1 (µm) 
Diameter 
2 (µm) 

Surface 
Area 
(µm2) 

# Junction 
Points 

# Junction 
Points/µm2 

RCY4168 pRC3501 5 5.3 20.8 43 2.0 
RCY4168 pRC3501 4.2 4.9 16.2 45 2.7 
RCY4168 pRC3501 3.1 3.2 7.7 22 2.8 
RCY4168 pRC3501 5 4.9 19.2 43 2.2 
RCY4168 pRC3501 6 6.6 31.1 66 2.1 
RCY4168 pRC3501 4.4 4.2 14.5 40 2.7 
RCY4168 pRC3501 7.3 8 45.9 92 2.0 
RCY4168 pRC3501 5.5 5.3 22.9 59 2.5 
RCY4168 pRC3501 4.7 5.5 20.4 42 2.0 
RCY4168 pRC3501 5.4 5.5 23.3 40 1.7 
RCY4168 pRC3501 6.1 6.1 29.2 65 2.2 
RCY4168 pRC3501 6 6.1 28.7 44 1.5 
RCY4168 pRC3501 5.4 5.9 25.0 42 1.6 
RCY4168 pRC3501 5.2 5.5 22.4 39 1.7 
RCY4168 pRC3501 4 3.8 11.9 33 2.7 
RCY4168 pRC3501 5.1 5.2 20.8 32 1.5 
RCY4168 pRC3501 5 4.8 18.8 40 2.1 
RCY4168 pRC3501 5.1 5.2 20.8 47 2.2 
RCY4168 pRC3501 5.5 5.5 23.7 42 1.7 
RCY4168 pRC3501 4.5 5.8 16.9 38 2.2 
RCY4168 pRC3501 5.1 4.9 19.6 45 2.2 
RCY4168 pRC3501 6.5 6.6 33.6 55 1.6 
RCY4168 pRC3501 6.8 7 37.3 47 1.2 
RCY4168 pRC3501 6 6.4 30.1 43 1.4 
RCY4168 pRC3501 5.3 5.5 22.9 37 1.6 
RCY4168 pRC3501 5.3 5 20.8 29 1.3 
RCY4168 pRC3501 5.5 6 25.9 45 1.7 
RCY4168 pRC3501 5 5.1 20.0 38 1.8 
RCY4168 pRC3501 6.1 6.2 29.7 49 1.6 
RCY4168 pRC3501 5.5 5.1 22.0 53 2.4 
RCY4168 pRC3501 4.6 4.8 17.3 32 1.8 
RCY4168 pRC3501 4.7 4.3 15.9 35 2.2 
RCY4168 pRC3501 4.5 4.3 15.2 38 2.4 
     Average 2.0 
     Standard 

Deviation 
0.4 
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Table 4.12 Junction point analysis of rtn1∆yop1∆ cells expressing GFP-Rtn1p-PMut 
Strain Plasmid Diameter 

1 (µm) 
Diameter 
2 (µm) 

Surface 
Area 
(µm2) 

# Junction 
Points 

# Junction 
Points/µm2 

RCY4168 pRC3577 5 5.4 21.2 42 1.9 
RCY4168 pRC3577 5.7 6.1 27.3 56 2.0 
RCY4168 pRC3577 6.8 6.5 34.7 57 1.6 
RCY4168 pRC3577 5.7 5.6 25.0 44 1.7 
RCY4168 pRC3577 4.9 5.3 20.4 57 2.7 
RCY4168 pRC3577 5.7 6.3 28.2 56 1.9 
RCY4168 pRC3577 5 5 19.6 50 2.5 
RCY4168 pRC3577 5.3 5.4 22.4 49 2.1 
RCY4168 pRC3577 4.6 5 18.0 56 3.0 
RCY4168 pRC3577 4.3 5 16.9 44 2.5 
RCY4168 pRC3577 4.5 4.8 16.9 41 2.4 
RCY4168 pRC3577 4.7 5.2 19.2 47 2.4 
RCY4168 pRC3577 4.7 4.9 18.0 44 2.4 
RCY4168 pRC3577 4.3 4.9 16.6 32 1.9 
RCY4168 pRC3577 5.6 6.4 28.7 60 2.1 
RCY4168 pRC3577 5.1 5.3 21.2 44 2.0 
RCY4168 pRC3577 4.9 4.8 18.4 57 3.0 
RCY4168 pRC3577 5 5 19.6 38 1.3 
RCY4168 pRC3577 4.5 5.2 18.4 38 2.5 
RCY4168 pRC3577 6.3 6.8 33.6 67 1.9 
RCY4168 pRC3577 4.9 5.2 20.0 41 2.0 
RCY4168 pRC3577 5.2 5 20.4 41 2.0 
RCY4168 pRC3577 4.9 5 19.2 39 2.0 
RCY4168 pRC3577 3.6 4.2 11.9 34 2.8 
RCY4168 pRC3577 4.5 4.9 17.3 43 2.4 
RCY4168 pRC3577 4.7 5 18.4 57 3.0 
RCY4168 pRC3577 4.3 4.7 15.9 35 2.2 
RCY4168 pRC3577 6 5.6 26.4 46 1.7 
RCY4168 pRC3577 5.9 6.3 29.2 45 1.5 
RCY4168 pRC3577 6.4 6.6 33.1 51 1.5 
     Average 2.2 
     Standard 

Deviation 
0.4 
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DISCUSSION 

Rtn1p is thought to provide a redundant function in peripheral ER tubule 

formation with Yop1p, considering one can functionally replace the other in this 

process (see figures 2.1 and 4.2) [1]. Additionally, both must be deleted in cells in 

order to alter the morphology of the normally tubular peripheral ER into largely, 

sheet-like structures [1]. I have previously shown that overexpression of Yop1p results 

in the formation of unbranched, long tubular structures that are stable enough to be 

partially purified through two sucrose gradients (see Chapter 3). Overexpression of 

Rtn1p results in a dramatic accumulation tubular structures within the cell, though 

these structures still contain junction points (Figure 4.1). I found that the Rtn1p 

tubules were not stable enough to withstand the enrichment procedure that yields the 

Yop1p tubules (data not shown, see Chapter 3), perhaps suggesting Rtn1p is more 

critical for the formation of the tubular structures while Yop1p is more critical for the 

maintenance of the tubular structure. However, a previous study provided evidence 

that purified Rtn1p was capable of forming tubules from pure lipids in vitro [6], thus 

both Rtn1p and Yop1p must share some redundancy in their function.  

A model for the mechanism of Rtn1p in the formation of the tubules of the 

peripheral ER suggests that the insertion of the two long hydrophobic domains part-

way through the membrane are responsible for its ability to generate membrane 

curvature [1]. The shape of Rtn1p within the membrane is thought to be responsible 

for its ability to function in tubule formation, though it is unclear if other factors also 

contribute to generating and maintaining this functional shape. It is clear that the post-

translational palmitoylation of Rtn1p occurs at four cysteine residues located in close 

proximity to the long hydrophobic domains, though what effect this modification has 

on the conformation of Rtn1p, and thus its function, is unclear.  

 



 

190 

Expression of GFP-Rtn1p can restore the tubules of the peripheral ER in 

rtn1Δrtn2Δyop1Δ cells (Figure 4.3), providing a useful tool for the analysis of Rtn1p 

function and in determining how the palmitoylation of Rtn1p may also contribute to 

its function in cells. In most cells GFP-Rtn1p is localized to the peripheral ER as 

previously shown [1]. Interestingly, I also noted that in a subset of cells GFP-Rtn1p 

was localized into punctate structures. The identity of these punctate structures 

remains unknown, though they could be protein aggregates lacking membrane 

components. Alternatively a localized area with a high concentration of Rtn1p could 

form ER membrane aggregations resulting in the formation of karmellae. These ER 

membrane structures are often seen upon overexpression of ER membrane proteins 

[27, 28].   

A mutant Rtn1p, where the four cysteine residues were all mutated to serine 

(C19S, C21S, C90S, C194S), was kindly provided by Dr. Nick Davis. An NH2 

terminal GFP fusion to this RTN1 mutant (GFP-RTN1 P-Mut) was constructed and 

tested for its ability to restore the tubules of the peripheral ER in rtn1Δrtn2Δyop1Δ 

cells. This analysis provided insight into the contribution the palmitoylation of Rtn1p 

may have on its function in generating a tubular peripheral ER. I found that GFP-

Rtn1p-PMut was equally as functional in restoring a normal, tubular peripheral ER as 

GFP-Rtn1p (Figure 4.5). This result suggests that the palmitoylation of Rtnp1 likely 

does not influence its ability to function in forming the tubules of the peripheral ER.  

During fluorescence analysis I noticed that the number of cells with a punctate 

Rtn1p localization appeared to be elevated in the palmitoylation mutant when 

compared to GFP-Rtn1p. Upon closer analysis I confirmed that 35.4 +/- 2.3% cells 

expressing wild-type GFP-Rtn1p displayed a punctate localization while 61.8 +/- 4.1% 

cells expressing GFP-Rtn1p-PMut had this localization pattern (Figure 4.6). The 

increase in the unidentified puntate localization of the Rtnp1 palmitoylation mutant 
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may suggest that this modification plays a role in the normal localization of Rtn1p to 

the peripheral ER, although these structures have not been colocalized with ER 

labeling by RFP-KDEL. Considering the fact that Rtn1p is known to form homo-

oligomeric complexes and that palmitoylation of proteins can alter their localization, it 

is possible that this modification may reduce Rtn1p oligomerization. Thus, in the 

Rtn1p-PMut, the lack of palmitoylation results in massive oligomerization of Rtn1p, 

resulting in aggregation seen as puncta by fluorescence microscopy. Further studies 

would elucidate the ability of Rtn1p-PMut to form oligomeric complexes and the 

influence this ability has on the formation of the puncta seen in cells.  

I found that the palmitoylation of Rtn1p was not a critical modification for the 

generation of a tubular peripheral ER (Figure 4.5). It is possible the addition of this 

fatty acid to Rtn1p may be an important factor in regulating its function in generating 

membrane tubules, perhaps modulating the curvature generated by Rtn1p to allow the 

formation of junction points between tubules. The membranes at the intersection of 

two tubules must be bent in the negative direction, relative to the positive curvature 

that generates the tubules [25]. The palmitoylation of Rtn1p may decrease its ability to 

maintain the positive curvature of the tubule to allow fusion of two tubules. If this 

modification occurred specifically to the Rtn1p present at junction points it could 

decrease the energy required to curve the membrane in the negative direction and 

facilitate junction point formation.  

I tested this hypothesis by analyzing the average number of junction points per 

square micrometer in cells. GFP-Rtn1p and GFP-Rtn1p-PMut were expressed in wild-

type, rtn1Δ and rtn1Δrtn2Δyop1Δ cells and fluorescence images were captured. The 

number of junction points between tubules was determined within the mother cell and 

divided by the surface area of that cell yielding the average number of junction points 

per square micrometer. This analysis determined that there was not a significant 
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difference in the number of junction points in the Rtn1p-PMut (Figure 4.7). This result 

could mean that the palmitoylation of Rtn1p is not necessary for the formation of these 

junction points or that Rtn1p is not involved in the formation of these structures.  

Palmitoylation is a modification that has been shown to alter the localization of 

a protein [19]. My findings suggest that the localization of Rtn1p was altered by the 

absence of palmitoylation (Figure 4.6), perhaps indicating that this modification 

functions as a localization signal to aid in the proper localization of Rtn1p to 

peripheral ER membranes. GFP-Rtn1p-PMut localized to punctate structures in many 

cells, though the exact identity of these structures is yet to be determined. In addition, 

in a fairly large number of GFP-Rtn1p expressing cells also displayed the punctate 

localization, suggesting this pattern may be exaggerated by the absence of 

palmitoylation. Overexpression of other ER membrane proteins is known to generate 

membrane aggregates called karmellae [27, 28]. It is also possible that the puncta seen 

in these cells are a result of aggregated Rtn1p and membranes and does not represent a 

true shift in localization, but is an artifact of a localized area of concentrated Rtn1p on 

the ER. This fact may suggest that the palmitoylation serves to stabilize Rtn1p within 

the membrane and prevent aggregation. Further studies aimed at identifying any 

membrane connections of the puncta could distinguish between a true shift in Rtn1p 

localization and the formation of lamellae.  
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CHAPTER 5 

 

CONCLUSIONS 

 

Previous studies have identified a redundant function for Yop1p and Rtn1p in 

the formation of the tubular structure of the peripheral ER. Deletion of YOP1 or RTN1 

alone has no apparent phenotype, while deletion of both together results in a 

morphological alteration of the tubules of the peripheral ER into large areas of sheet-

like, cisternal membranes. This sheet-like ER phenotype can be restored to a normal, 

tubular structure by complementation with either Rtn1p or Yop1p, indicating one can 

functionally replace the other in this process (see Figures 2.1 and 4.2)[1]. 

Overexpression of either Yop1p or Rtn1p results in the accumulation of membrane 

tubules with a small diameter. These tubules appear to exclude ER luminal proteins 

due to their very small diameter, though presumably they remain continuous with the 

ER membrane [1-4].  These results are consistent with findings that purified Rtn1p or 

Yop1p have the ability to tubulate membranes in vitro. The tubules formed by purified 

Yop1p or Rtn1p have a small diameter of ~15 nm, small enough to exclude soluble 

proteins in the ER lumen. Interestingly, the tubules formed by Yop1p appear to have a 

very regular structure while the Rtn1p formed tubules appear to have more variation in 

the surface of the tubule [3]. This observation is constant with our finding that the 

Yop1p tubules are stable enough to withstand purification but the Rtn1p formed 

tubules are not able to withstand the same treatment. This difference in tubule stability 

between Yop1p and Rtn1p tubules may indicate a slightly different function in cells. 

Yop1p may mainly act to stabilize the tubules after formation in vivo, while Rtn1p 

may mainly initiate tubule formation, though both can accommodate the function of 

the other if need be. Distinguishing between the formation and the maintenance of 
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membrane tubules is especially difficult in this situation because of the redundancy of 

the function of Rtn1p and Yop1p. 

Another observation made by Hu et al [3] was that purified Yop1p formed 

tubules contained areas where tubule junction points were present. This finding may 

suggest that Yop1p has the ability to form the junction points between tubules, or that 

junction point formation is possible without the influence of other factors. Studies 

have identified a small dynamin-like GTPase, Sey1p, that appears to function in 

regulating the formation of the three-way junction points of the peripheral ER, and the 

GTPase activity is required for this function [5, 6]. Sey1p is known to interact with 

Yop1p and it has been suggested that Sey1p may regulate the activity of Yop1p in 

generating the tubules of the peripheral ER, allowing junction point formation 

between two tubules. These authors [5] have suggested that Yop1p functions in the 

formation of the junction points through its interaction with Sey1p, although this role 

for Yop1p seems contradictory to its function in tubule formation. Sey1p is localized 

more heavily to the junction points, but Yop1p appears to be evenly distributed 

throughout the peripheral ER tubules [5]. Yop1p and Rtn1p present on the tubular 

structures may interact to generate the positive membrane curvature required for 

tubule formation [1]. When Yop1p interacts with Sey1p it may alter the function of 

Yop1p, through the GTPase activity of Sey1p, and function in generating the negative 

curvature necessary for junction point formation between two tubules [5, 6]. Perhaps 

the interaction between Yop1p and Sey1p abolishes the ability of Yop1p to generate 

positive membrane curvature, which decreases the energy required to bend the 

membrane in the negative direction and facilitating the formation of a junction point.   

Another contradiction to the wedging mechanism used by Rtn1p/Yop1p in 

generating membrane curvature [1, 3] is the activity of flippases. Flippases act in 

many cases to rebalance the lipid distribution between the leaflets of the bilayer by 
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flipping lipids from one leaflet of the bilayer to the other [7-13]. A mechanism of 

maintaining the uneven surface area of the bilayer must exist for the wedging 

hypothesis to hold true. Flipases within the ER membrane must somehow sense that 

the high levels of curvature need to exist to allow the uneven surface areas to remain. 

Perhaps if the overall number of lipids remains constant between the two leaflets the 

flippases activity is decreased. This possibility would allow the mechanism used by 

Rtn1p/Yop1p to curve membranes to maintain membrane tubules by keeping the 

flippases from redistributing the lipids from the outer leaflet to the inner leaflet and 

decreasing the curvature of the peripheral ER tubules.  

In recent years there has been an explosion in the field of membrane curvature 

generated by proteins. It would be interesting to develop a search engine aimed at 

locating and identifying ORFs that contain long, 30-40 amino acid, hydrophobic 

regions from sequenced genome databases. There are many organelles with very 

complex structures with no known mechanism to generate their specific morphology. 

The appendix of my thesis investigates an ORF from SARS-CoV contains a long 

hydrophobic domain which may function in generating membrane vesicles. Thus, 

there is evidence that viruses have hijacked the wedging mechanism of generating 

membrane curvature, which may suggest that the use of long hydrophobic domains to 

generate membrane curvature may be more widespread than we currently understand. 

This search engine would allow identification of other candidates for further analysis.  
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APPENDIX 

 

INVESTIGATION OF SARS-CoV ORF6 REVEALS A POTENTIAL ROLE IN 

THE GENERATION OF DOUBLE MEMBRANE VESICLES 

 

ABSTRACT 

 SARS-CoV is the causative agent of severe acute respiratory syndrome 

(SARS), a devastating disease that emerged in 2003. SARS-CoV has since been the 

subject of much research to uncover its pathogenesis. SARS-CoV is thought to form a 

specialized compartment within a host cell where replication of the viral genome takes 

place, called double membrane vesicles (DMVs) because they are composed of an 

inner and outer membrane barrier. Interestingly, SARS-CoV contains a group of 

accessory open reading frames (ORFs) with no known function. These ORFs appear to 

be dispensable for viral infection of tissue culture cells but it is thought that they 

confer some advantage to the virus during infection of a host organism. ORF6 is 

known to increase the replication rate of a related coronavirus and localizes to sites of 

viral replication within a host cell. ORF6 contains a single, long hydrophobic domain 

that is thought to form a hairpin within the membrane. Here I begin to investigate the 

possibility that this hydrophobic hairpin drives the formation of DMVs, perhaps 

through a membrane wedging mechanism.  
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INTRODUCTION 

The coronaviruses represent a large family of enveloped, plus strand RNA 

viruses. Severe acute respiratory syndrome (SARS) is a devastating human disease 

that emerged in 2003 [1-4]. The SARS associated coraonavirus (SARS-CoV) was 

identified as the causative agent of SARS and has since been the subject of an 

enormous amount of research to understand the mechanism and progression of 

infection. Coronaviruses have the largest viral RNA genomes known and the genome 

of SARS-CoV is comprised of ~30 kb of RNA encoding 14 open reading frames with 

a similar organization pattern as other studied coronaviruses [5]. Interestingly, SARS-

CoV also contains 8 accessory proteins (3a, 3b, 6, 7a, 7b, 8a, 8b, and 9b), which all 

appear to be non-essential during infection in tissue culture but provide some 

advantage to the virus during infection of a host [6]. Little is known of the function of 

these 8 accessory proteins. ORF3a is known to bind to spike and is postulated to 

provide a structural role for viral assembly [7, 8]. ORF7a localizes to ER-Golgi 

intermediate compartments where viral assembly is thought to occur, suggesting this 

protein may function in some stage of viral assembly. Additionally, ORF3a, ORF3b 

and ORF7a have all been shown to induce apoptosis in tissue culture, potentially as a 

means of lytic viral particle release [9-12].  

The SARS-CoV lifecycle (Appendix Figure 1) begins with fusion of the viral 

envelop with a host cell plasma membrane, mediated by interactions between SARS-

CoV spike protein and host ACE2 [13]. SARS-CoV (and other coronavirus) 

replication has been shown to occur within a series of unique vesicular structures 

known as double membrane vesicles (DMV), so called because the vesicles contain 

two lipid bilayers with replication taking place within the lumen of the inner 
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Figure 1 Simplified lifecycle of SARS CoV  
Abbreviations: DMV Double Membrane Vesicles  
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membrane [14-16]. More recently, the morphology of these DMV structures was 

analyzed by electron microscopy revealing that the individual vesicles formed were 

also connected by a system of tubules, and that the entire tubular-vesicular structures 

are contained within the lumen of the ER. The unique morphology of the replication 

sites of SARS-CoV has led to the description of the replication sites as a reticulo-

vesicular-tubular network [17]. DMV formation is thought to involve many of the host 

cells autophagocytic machinery [18], though the viral machinery that directs the 

formation of these vesicular structures has not been identified.  

ORF6 expression has recently been shown to increase the replication rate and 

virulence of a related mouse coronavirus, murine hepatitis virus (MHV) and 

physically interact with nsp8, a non-structural protein that contains a RpRd domain 

that acts as a viral replicase [19]. These results may suggest that ORF6 functions 

during viral replication and acts to increase the rate of viral genome production. ORF6 

may have an additional role in fighting the host cells immune response through 

interactions with the nuclear import adaptor molecule karyopherin alpha 2 in the 

cytoplasm. This interaction prevents interferon-induced nuclear import of STAT1 and 

decreases the host cells response to viral infection [23, 24].  

In mammalian cells ORF6 localizes primarily to ER membranes as well as 

colocalizing with components of the SARS-CoV replication machinery and viral RNA 

[19-21]. ORF6 is a small integral membrane protein of 63 amino acids comprised of a 

hydrophilic NH2 terminal region and a long (~43 amino acid) COOH terminal 

hydrophobic domain. Previous work using antibody accessibility in permeabalized and 

non-permeablized cells has determined that both the NH2 and COOH termini of ORF6 

are found on the cytoplasmic face of the ER membrane, suggesting the long 

hydrophobic domain adopts a hairpin-like conformation within the membrane [20]. 

Furthermore, previous work identified the hydrophobic domain of ORF6 as the 
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functional domain in increasing the rate of viral replication[20]. Thus, I reasoned that 

the presence of this hydrophobic domain within the membrane may act as a 

hydrophobic wedge, increasing the surface area of the outer leaflet of the membrane 

and driving membrane deformation, similar to the mechanism of caveolin action on 

membranes in generating caveolae [22].  

The purpose of this study is to investigate the potential role of ORF6 in the 

formation of SARS-CoV replication DMV and to elucidate the mechanism of ORF6 

action on membranes in remodeling the morphology of the ER into a reticulo-

vesicular tubular network.  

 

MATERIALS AND METHODS 

Yeast strains and plasmids 

All S. cerevisiae strains used in this study are listed in Appendix Table 1. 

Manipulations of these strains were done using standard biological techniques. Cell 

density was determined using a Thermo Spectronic Genesys 10UV spectrophotometer 

(Rochester, NY) at 600nm. Expression of ORF6 was driven by the promotor and 

terminator regions of YOP1 (~500 bp upstream and downstream from the start codon, 

respectively). Overexpression of constructs under GAL1/10 promotor control was 

performed by growing cells overnight in SD media to a density of 0.4-0.8. Cells were 

pelleted, washed once in ddH20, and resuspended in 1mL ddH20. Washed cells were 

inoculated into minimal media containing 2% galactose to an initial density of 0.05-

0.2, depending on the length of induction.  
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Appendix Table 1 S. cerevisiae strains used in this study 
RCY Strain Genotype Source 
RCY239 MATa ura3-52 leu2-3,112 This lab 
RCY4274 MATa/α  reg1ΔKANR/ reg1ΔKANR ura3Δ0/ ura3Δ0, 

leu2Δ0/ leu2Δ0, his3Δ0/ his3Δ0, lys2Δ0/ lys2Δ0, 
met15Δ0/MET15 

This lab 

 

Plasmids were created using standard biological techniques and are listed in 

Appendix Table 2. GFP fusions were made by linking yEGFP to the NH2 or COOH 

terminus of each construct with a GGPGG linker between the GFP and the ORF. 

Overexpression of each construct was done by two means. First, by integrating the 

GFP-ORF fusion into a multi-copy (2µ) vector ensures many copies of each construct 

in cells to increase the proteins production. Second, overexpression constructs are 

placed under the control of the promotor region of GAL1/10, which responds to the 

presence of galactose.  

 
Appendix Table 2 Plasmids used in this study 
Plasmid number Construct Description Source 
pRC3588 pRS315 RFP-

KDEL 
 This lab 

pRC3589 pRS316 RFP-
KDEL 

 This lab 

pRC4437 pRS426 ORF6-
GFP 

 This study 

pRC4438 pRS426 GFP-
ORF6 

 This study 

pRC4500 pRS315 GFP-
ORF6 

 This study 

pRC4501 pRS316 GFP-
ORF66 

 This study 

pRC4529 pRS315 HORF6-GFP Amino acids 1-43 This study 
pRC4530 pRS426 HORF6-GFP Amino acids 1-43 This study 
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Fluorescence Microscopy 

GFP fusions of each protein were created by fusing 238 amino acids of yeast 

enhanced green fluorescence protein (yEGFP) to either the NH2 or COOH terminus 

and separated by a unique linker sequence (GGPGG).  

For the overexpression studies, the promotor region of GAL1/10 was used to 

induce ORF6 expression upon the addition of galactose to the growth media. RFP-

KDEL expression was used to visualize ER structures. Cells were grown to mid-log 

phase in minimal media and pelleted, washed once in ddH2O and resuspended in 

minimal media plus galactose to a density of ~0.1. Inductions were carried out for 

various time lengths depending on the experiment, as indicated in the results section. 

Images were collected using a Nikon Eclipse E600 microscope with a 100X (1.4NA) 

objective and 1x optivar. DIC images were collected from a single plane while 

fluorescence images were gathered as a series of 20-30 z steps of 0.2 µm. A CCD 

camera (Sensicam EM High Performance, The Cook Corporation) was used to 

collect images (software IP Lab version 3.6.5, Scanalytics).  Blind deconvolution 

of each z‐series was done using AutoQuant X2 program (Media Cybernetics) for 

30 iterations. After deconvolution, single planes were identified that most clearly 

identified single tubular structures.  

 

RESULTS 

Localization of ORF6 in yeast 

Considering the ER localization of ORF6 in mammalian cells [19-21], I sought 

to determine if ORF6 also localized to ER membranes in yeast and if yeast would be a 

useful model organism to study ORF6 function in. To accomplish this, ORF6 was 

tagged with GFP on its NH2 terminus. Expression of this construct was driven by the 

promotor region of YOP1 and termination by the terminator of YOP1. This analysis 
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Figure 2 ORF6 localization in S. cerevisiae  GFP-ORF6 or ORF6-GFP was 
expressed in wild-type (RCY239) cells and localization was analyzed by fluorescence 
microscopy. Co-expression of RFP-KDEL allowed visualization of ER.  
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revealed that GFP-ORF6 does in fact localize to what appeared to be ER membranes 

in yeast. Expression of the ER marker, RFP-KDEL, was co-expressed with GFP-

ORF6 and confirmed that ORF6 is present on ER membranes as the two colocalized 

(Appendix Figure 2). This result indicates that ORF6 localizes to ER membranes 

through a mechanism that is conserved from yeast to mammalian cells. Furthermore, 

this result indicates that yeast will be a suitable organism to study the function of 

ORF6 in a genetically amenable cell.   

 

Overexpression of GFP-ORF6 results in the formation of vesicular structures 

from ER membranes 

During viral infection the concentration of viral proteins can reach very high 

levels, thus, I reasoned that overexpression of ORF6 in yeast might more closely 

mimic the levels of this protein during an actual infection. GFP-ORF6 was placed 

under the control of the GAL1/10 promotor region and induced for 16 hours by the 

addition of 2% galactose. Examination by fluorescence microscopy revealed that 

ORF6 now localized to many vesicular structures spreading throughout the cytosol of 

the cell. 

The vesicles formed resembled bunches of grapes and often appeared to 

surround the nuclear membrane of the cell (Appendix Figure 3). The grape-like 

bunches of vesicles appeared distinct in morphology from the ER membranes ORF6 

localized to when lower protein levels were present so I performed a time-lapse 

experiment of the induction of GFP-ORF6 to determine the membrane source of the 

ORF6 formed vesicles. Cells were induced for GFP-ORF6 expression and protein 

localization was determined by fluorescence microscopy at 1 hour, 2 hours, 3.5 hours, 

7 hours, 16 hours and 24 hours after induction. At early time points after induction, 

GFP-ORF6 localized to what appeared to be ER membranes with visible vesicular 
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Figure 3. Overexpression of ORF6 A. Wild-type cells overexpressing GFP-ORF6 by 
galactose induction after 24 hours. Fluorescence images of three planes taken through 
the indicated level of the cell are shown. B. A time-course induction of GFP-ORF6 by 
galactose induction. Fluorescence images were collected at 1 hour, 2 hours, 3.5 hours, 
7 hours, 16 hours and 24 hours after induction. The images represent a cross sectional 
view through the center of the cell. C. Fluorescence images of wild-type cells 
overexpressing GFP-ORF6 for 16 hours. RFP-KDEL expression was used to monitor 
the morphology of the ER. D. Wild-type (RCY239) and reg1∆ (RCY4274) carrying 
either vector control or inducible GFP-ORF6 were struck onto minimal media plates 
containing either glucose (SD) or galactose (SGal) and grown at 30°C for three days 
and analyzed for growth. 
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Figure 3 Continued 
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structures near the nuclear envelope by 7 hours. By 24 hours after induction, GFP-

ORF6 localized completely to the vesicular structures and the ER localization was no 

longer discernable (Appendix Figure 3).  

Since the vesicular structures form from ER membranes but the ER 

morphology is no longer discernable by 24 hours after induction, I sought to 

understand if the ER membranes were converted into the vesicular structures by ORF6 

overexpression or if the ORF6 vesicles become distinct from the ER by 24 hours post-

induction. If the vesicles are distinct from the ER, then I would expect the ER 

morphology to remain intact after the induction of ORF6. I used the expression of 

RFP-KDEL to monitor the morphology of the ER after the induction of GFP-ORF6 by 

fluorescence microscopy. After 24 hours GFP-ORF6 induction, RFP-KDEL localized 

solely to the ORF6 vesicles, and the typical ER morphology was no longer apparent. 

Interestingly, upon closer examination I noticed that the RFP-KDEL seemed to 

specifically localize around the vesicles, and was not present within the lumen of the 

vesicles (Appendix Figure 3). This localization, taken with the fact that the vesicles 

are formed from ER membranes, suggests that the vesicles may form within the ER 

lumen or that they form by budding into the ER lumen. Coronaviruses replicate within 

a unique membrane vesicle within the cell during infection known as a double 

membrane vesicle (DMV) ([14-16]. The DMV is thought to derive its membranes 

from the ER, and also form within the ER lumen [17]. It is thought that these vesicular 

structures are formed mainly by viral proteins, but also using host factors as well [18]. 

These results suggest that ORF6 may in part drive the formation of the DMV during 

infection, either directly or by recruiting host factors to bud membrane vesicles into 

the ER lumen.  
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ORF6 overexpression results in a slow growth phenotype 

I noticed that cells overexpressing GFP-ORF6 appeared to grow somewhat 

more slowly than wild-type cells did, based on a decreased cell density after overnight 

growth (empirical observation). To confirm this observation vector control cells and 

cells containing the inducible GFP-ORF6 were struck onto minimal media plates 

containing either glucose or galactose as a carbon source. As expected, both cell lines 

grew normally on the glucose plate, and the GFP-ORF6 overexpressing cells showed 

decreased growth on the galactose plate when compared to the vector control cells 

(Appendix Figure 3). This result confirms that overexpression of GFP-ORF6 results in 

a slower division time. When this result is considered with the fact that overexpression 

of GFP-ORF6 appears to convert most of the ER membranes into the vesicular 

structures (Appendix Figure 3), it seems likely that the decreased cell growth may be 

due to the disruption of the morphology of the ER. Further studies aimed at analyzing 

the function of the ER, perhaps an ER to Golgi trafficking defect, would more 

definitively determine the reason for the decreased viability.  

 

Localization of the hydrophobic domain of ORF6 

Inspection of the predicted hydrophobic character of ORF6 primary amino acid 

sequence shows that ORF6 contains a long hydrophobic domain, ~43 amino acids 

long. Previous studies have determined that both the NH2 and COOH termini are 

located on the cytoplasmic face of the ER membrane in mammalian cells, suggesting 

the hydrophobic domain of ORF6 may adopt a hairpin structure within the ER 

membrane [20]. There are other examples of long hydrophobic domains with the 

capacity to act as “wedges” within the membrane resulting in membrane bending. In 

order to determine if the hydrophobic domain of ORF6 is responsible for the action of 

ORF6 on the membrane, I created a GFP-tagged ORF6 truncation, containing only the  
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Figure 4 Localization of GFP-HORF6 A. Fluorescence images of wild-type cells 
expressing GFP-HORF6 to assess its localization. RFP-KDEL expression allowed 
visualization of ER structures. B. MPeX plot of hydrophobicity of the amino acid 
sequence of ORF6. Black bar indicates the highly hydrophobic region. C. Primary 
amino acid sequence of ORF6. Black bar indicates the highly hydrophobic region.  
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43 amino acid hydrophobic domain of ORF6 fused to GFP (separated by a GGPGG 

linker sequence). I expressed this construct in cells at low levels using the promotor 

region of YOP1. The GFP-HORF6 localized to the ER membrane, similar to the full-

length protein (Appendix Figure 4). The fact that GFP-HORF6 localizes to the ER, 

similar to the full-length protein, allowed me to further assess whether the 

hydrophobic domain is responsible for the formation of the vesicular structures upon 

ORF6 overexpression. 

 

Overexpression of GFP-HORF6 

To further investigate my model that ORF6 acts on membranes through a 

hydrophobic wedging mechanism to drive the formation of the vesicle structures I 

placed the GFP-HORF6 construct under the control of the GAL1/10 promotor region. 

GFP-HORF6 localization was monitored by fluorescence microscopy at 1 hour, 4 hours, 

8 hours, 16 hours, and 24 hours after induction. Similar to the full length GFP-ORF6 

construct, GFP-HORF6 initially localized to the ER membranes (Appendix Figure 5). By 

4 hours after induction the appearance of vesicular structures was seen close to the 

nuclear envelope. The vesicular structures formed by GFP-HORF6 at 4 hours post-

induction were formed more quickly than full-length ORF6 vesicles (see Figure 3) and 

may suggest the hydrophobic domain alone can act more quickly to form the vesicular 

structures. Consistent with this observation, the morphology of the ER is indiscernible 

in cells overexpressing GFP-HORF6 by 8 hours after induction (Appendix Figure 5) 

while the full length ORF6 did not have this effect on cells until between 16 and 24 

hours after induction (see Figure 3). Perhaps the NH2 and COOH terminal hydrophilic 

domains of ORF6 serve some regulatory function, slowing the formation of the 

vesicular structures during infection until the virus has progressed through its lifecycle 

far enough to begin replication, and hence have a need for the DMV.  
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Figure 5 Overexpression of GFP-HORF6 A. Fluorescence images of reg1∆ 
(RCY4274) overexpressing GFP-HORF6 taken 16 hours after induction with galactose. 
Images represent a cross-sectional view through the center of the cell. B. A time-
course induction of GPF-HORF6 with fluorescence images collected at 1 hour, 4 hours, 
6 hours, 8 hours, 16 hours and 24 hours after induction. Images represent a cross-
sectional view through the center of the cell. 
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Figure 5 Continued 
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DISCUSSION 

To accomplish my investigation of the function of ORF6 in cells I utilized 

budding yeast as a model organism for the ease of genetic manipulation and live cell 

imaging. In mammalian cells ORF6 is expressed during infection of a host cell and 

localizes to ER membranes and sites of viral replication [19-21]. GFP-tagged ORF6, 

expressed at levels similar to a yeast endogenous protein (YOP1 promotor control), 

was found to localize to ER membranes (Figure 2), suggesting a conservation of the 

mechanism of ORF6 localization to these membranes. The conservation of the 

localization of ORF6 from yeast to mammalian cells may further suggest that the 

function of ORF6 may be conserved as well and indicate that yeast may be a suitable 

cell to study in more detail the function of ORF6 during SARS-CoV infection.  

During a viral infection, host cell machinery is hijacked by viral factors for the 

purpose of making more viral particles, and as such, viral protein levels can reach 

relatively high levels when compared to host proteins. The ER localization of ORF6 

was determined using a yeast endogenous promotor region (promotor region of YOP1) 

(Figure 2), thus presumably the protein levels of ORF6 in these cells was similar to the 

levels of Yop1p. I increased the expression of ORF6, reasoning that higher levels 

would more closely mimic the levels of ORF6 in an infected host cell, by placing the 

GFP-ORF6 construct under the control of the promotor region of the galactose 

inducible GAL1/10 within a mult-copy vector (pRS425).  

Overexpression of GFP-ORF6 was found to result in the formation of many 

vesicular structures within the cell with membranes derived from the ER membranes 

(Figure 3). High levels of ORF6 appeared to convert the typical cisternal and tubular 

morphology into the vesicular structures resembling bunches of grapes. Interestingly, 

the vesicular structures formed by GFP-ORF6 overexpression appeared to colocalize 

with the ER lumenal marker, RFP-KDEL, however the RFP signal was restricted to 
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outside the lumen of the vesicle (Figure 3). This localization pattern suggests that the 

vesicular structures are formed inside the lumen of the ER, either by formation de 

novo or by membrane budding into the ER luminal space. After prolonged 

overexpression (24 hours) the vesicular structures formed fill most of the cytoplasmic 

space of the cell and a complete conversion of normal ER morphology into the 

vesicular structures (Figure 3). Considering the vital functions the ER provides to the 

cell it is not surprising that the extended overexpression of ORF6 results in cell death, 

though further studies are needed to identify the functional defects imparted on the ER 

by high levels of ORF6.  

Previous work has identified the long hydrophobic domain of ORF6 to 

function to similar levels as the full-length protein in increasing the replication rate 

and virulence during infection [20]. I have ascertained that the hydrophobic domain of 

ORF6 is sufficient to localize this protein to the correct compartment of the cell for 

proper function (the ER) and upon overexpression the hydrophobic domain alone is 

capable of forming the vesicular structures seen by overexpression of full length 

ORF6 (Figures 4 and 5). These results confirm that the hydrophobic domain of ORF6 

is the functional unit of the protein and suggests that this domain may directly deform 

membranes through a hydrophobic wedging mechanism. Although these results 

suggest ORF6 acts directly on membranes, it is likely that this protein does not act 

alone in this process. Interactions between the hydrophobic domain of ORF6 and other 

viral proteins and/or host proteins may also contribute to the formation of the DMV 

replication site for SARS-CoV.  

The formation of the DMV structures by SARS-CoV during infection requires 

some of the host cells autophagocytic machinery, for example microtubule associated 

light chain 3 (LC3), Apg12, and Apg5, and these proteins colocalize with DMV [18]. 

However, successful infection occurs even in the absence of ORF6 [19-21]. Thus it 
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seems likely that ORF6 functions in a redundant role with some as yet unidentified 

protein (host or viral) and/or interacts with the host autophagocitic machinery. Perhaps 

interactions between the hydrophobic domain of ORF6 and other proteins accelerates 

the formation of the vesicular structures as well as the viral replication rate, but 

removing ORF6 does not abolish the ability of the virus to form replication sites. 
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