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Abstract 

Correspondence analysis and principal components analysis are often used as 

descriptive tools in analyzing multivariate data. In certain applications, there have been 

attempts to justify the usefulness of these techniques through latent variable models. We 

assess the theoretical basis for such inference, examining the consistency of estimators of the 

modes of unimodal response curves defined in generalized linear models. In general, both 

principal components analysis and correspondence analysis lead to inconsistent estimators. 

However, with Gaussian responses and appropriate moment conditions on the latent variable, 

the principal components analysis estimator can be consistent up to a location and scale 

adjustment when response curves have constant widths. Simulations reveal that for finite 

sample sizes correspondence analysis can provide reasonable approximations when the modes 

of the response curves span a large range of the latent variable. But when dealing with 

incidence data where response curves are more clustered together, principal components 

analysis may approximate better. 

Keywords: correspondence analysis; principal components analysis; ordination; incidental 

parameters; consistency. 

1. Introduction 

Principal component analysis (PCA) and correspondence analysis (CA) have a long 

history as techniques that provide low-dimension summaries of multivariate data. The latter 

is also mathematically equivalent to canonical correlation analysis, dual-scaling, and 

reciprocal averaging, with each method originating from a different context (Greenacre 1984). 

In many applications, the purpose for using PCA or CA is exploratory. In ecology, these 

methods are used for ordination to order sites and species in a manner that describes their 

ecological relationship, and the sites and species scores generated from these methods are 

typically plotted graphically. PCA and CA have also been compared to least squares and 

maximum likelihood estimation in models where the abundances (e.g. biomass, percentage, 

frequency, or incidence) of different species of flora/fauna are assumed to be specific 

functions of some latent environmental gradient (Gauch et a/. 1974, 1977, Goodall and 

Johnson 1982, Ihm and van Groenewood 1984, Ter Braak 1985). However, most of these 



comparisons did not examine the properties of the estimators. We address the theoretical 

basis for statistical inference using PCA and CA. The models and discussion will be 

motivated within an ecological context since much of the research in modeling originated in 

this area, but as Ihm and van Groenewood (1984) noted, ordination is applicable to many 

other disciplines. For example, an economist may model different types of consumption for 

different socio-geographic groups as a function of a latent living standard index, or a medical 

researcher may arrange patients with different diagnoses (e.g. depression, chronic anxiety, 

stomach ulcer) along a hypothetical personality profile; and in archaeology ordination is 

known as seriation, a process by which artifacts excavated at different sites are typed and 

chronologically ordered. In section 2, we present a class of models where the expected 

response is a quadratic function of the latent variable, and also clarify identifiability issues 

associated with the parameters. Sections 3 and 4 introduce PCA and CA as eigenvector 

solutions obtained from singular value decompositions. The asymptotic property of the 

estimators are inspected in terms of consistency in section 5, while their finite sample 

properties are studied using simulations in section 6. Finally, section 7 suggests a possible 

alternative approach to the ordination problem. 

2. Model 

The typical ecological model assumes different species occupy different niches in their 

habitat and lets species abundances be unimodal functions of the environmental gradient. We 

model the species abundances, y!i, as Gaussian, Poisson and Bernoulli random variables under 

the class of generalized linear models, with 

( )
J 

I x.-u -
-[" k( ) - I J ("-I . . ·-I . ) ll!i- m f.l!i - aj- 2 12 , z- , ... ,n Sites, J- , ... ,m species . 

J 

(1) 

Canonical links are assumed for fl!i=E(y!i); i.e. the linear, log, and logit links for the Gaussian, 

Poisson and Bernoulli cases respectively. aj is the maximum of the expected response curve, 

tj is the tolerance which measures the curve width, uj is the optimum or mode of the response 
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curve, and X; can be some hypothetical gradient or it can be some environmental variable 

which is too expensive to measure or can no longer be measured as in paleontological studies. 

The Poisson model is often used when dealing with species counts, and the Bernoulli model 

applies to the case where only the presence/absence of the species is recorded (e.g. 

observations based on the distinct callings of songbirds which are difficult to locate visually). 

These two models were used by Ter Braak (1985), while the Gaussian case is included as a 

pedagogical model to illustrate the derivation of the asymptotic results. 

The key feature of (1) is that the x;'s are treated as latent fixed effects to be estimated 

along with the other parameters, implying in essence a functional measurement error model 

(Fuller 1987). In ordination, the focus is on ujs, the species optima, and x;'s, the site 

parameters. However, these parameters are intrinsically aliased (McCullagh and Neider 1989) 

and identifiability constraints must be imposed to obtain unique estimates. 

2.1 Identifiability 

To illustrate what constraints are required, (1) will be examined as a series of simpler 

models. Consider first, 

(2) 

which is similar to the ANOV A 2-way classification model ()l+a;+13) but without the 

intercept parameter ).I.. In the ANOVA model, n)l is confounded with La; and Ll31 since the 

sum of the indicators vectors for a and 13 add up to a constant unit vector. Constraints like 

Laz=O and LP1=0 are usually applied to obtain unique estimates. For (2), only one of the 

constraints is required (e.g. LX z=O or :Lu _;=0) since there is no intercept parameter, and with 

the constraint x; and u 1 are determined up to a sign-change since (x; - u) is squared in (2). 

Now suppose 

TJ!i = aj- (x;- u)2 • (3) 

Observe that aj and l~ are aliased, which implies that for each j either a 1 or u 1 must be 

specified to obtain an unique estimate of the other parameter. Finally, with the additional 
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tolerance parameters in ( 1 ), tj and uj are also aliased and thus for each j either i j or u j must be 

specified. (Note also that if all the u Js were specified, then a constraint on the scale of either 

the x /s or the i Js is also required.) Consequently, a host of constraints are required to obtain 

unique estimates for (1). For example, by setting Ix FO and specifying all the iiJs and i Js, 

the x /s and u Js can be estimated up to a sign-change. It should be pointed out that these 

constraints are merely convenient rules for identifying the estimates, and are not part of the 

model. Although it does imply that two researchers may arrive at different estimates since 

there are an infinite number of possible constraints. 

With PCA and CA, only the x/s and uJs are estimated, while the maxima and 

tolerances are ignored. This in effect assumes the aJs and tJs to be known, implying that the 

identifiability constraints required on xi and u j are the same as those for (2). However, since 

the solutions from PCA and CA are themselves only unique up to a scale change, xi and u j 
will only be identified up to a scale change when using PCA and CA. 

3. Principal Component Analysis 

PCA provides an orthogonal least squares approximation to the data via a singular 

value decomposition (Greenacre 1984). The popular method is species-centered PCA (Orl6ci 

1966), where the mean of each species is subtracted from the columns of the nxm site-by­

species data matrix Y={yii}. Formally, if W={yii - ji) has rank R, the singular value 

decomposition of W gives 
R 

W = LA., p,q~ , such that 
r=l 

WW' _ ... 2 p,-JI.,Pr' 

W'Wq,='A~q,, 

p~p1 = q~q1 = 8,1 , where 8,1 is Kronecker's delta. 

(4) 

(5) 

(6) 

Typically, the first two terms in (4) are selected and the coordinates (A.UJ 1i,A2fJ2) (i=l, ... ,n) and 

(qlj,q2) (i=l, ... ,m) or their rescaled versions are treated as site and species scores respectively. 

These scores are then plotted together in a biplot (Gabriel 1971) for a visual appraisal of the 
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relationship between species and sites. Equation (6) is also the usual definition of PCA, 

which can be derived by finding orthonormal vectors qr that maximize the norm ofWqr. 

4. Correspondence Analysis 

CA is a multi-faceted technique (Nishisato 1980, Goodman 1986, Vander Heijden et 

al. 1989) dating back to the 1930s. In ecology, it is referred to as "reciprocal averaging" (Hill 

1973) and was proposed as an extension to Whittaker's (1967) weighted averaging. Like 

PCA, CA applies a singular value decomposition to the data, except the data are weighted 

inversely by the square root of the row and column sums. 

Let C=diag(y) be a mxm diagonal matrix with Yr LYii >0, and R=diag(y;.) a nxn 

diagonal matrix withy;.= LYii >0. CA can be defined by 
j 

R 

R- 112YC-112 = ""A p q' such that ~ r r r' 
r=l 

(7) 

(8) 

(9) 

where zr=A~-112pr , vr=C-112qr are the site and species scores respectively. Using (7), the 

scores can be combined to give 

R-Iy d 'I 2 _ c-Iyt 
Zr = Vr an 11.rVr - Zr, or 

(10) 

According to (1 0), site scores are weighted averages of the species scores and vice versa, 

hence the term "reciprocal averaging". It is easily verified that a solution to (10) is A1=1 with 

the corresponding site scores and species scores all equal to 1. In fact, Hill (1974) showed 

that A1 is the largest singular value. This trivial or zero order solution is generally ignored, 

and site and species scores are obtained from the higher order solutions. 

4.1 Approximations 
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Ecologists have found CA to provide reasonable descriptions of the data when 

responses are unimodal, and this may be attributed to several explanations. Lancaster (1957) 

showed that when two variables X 1 and X 2 have a bivariate normal density, the CA scores 

correspond to Tchebycheff-Hermite polynomials of X1 and X2: the first order CA solutions 

are first order Hermite polynomials (which are X; and u), and the second order CA solutions 

are second order Hermite polynomials (which are proportional to x} and u] ). In our model, X; 

and u1 are not random variables but, for Poisson counts, J.l!i has a similar form as the bivariate 

normal density; i.e. J.lij oc exp( -(x; - u)2). Therefore we may expect the first order CA scores 

to approximate X; and u1 for the Poisson case. This also explains why a plot of the first and 

second order solutions of CA can exhibit an arch shape, sometimes referred to as the 

horseshoe effect. 

There are also similarities between CA and ML estimation in our generalized linear 

models. The likelihood equations for X; and u1 in model (1) can be rearranged as: 

x; = I/ij~j /I Y; +lr I (x;- u;) J.l!i /I Y; 1j and 
j tj j tj j tj j tj 

Ter Braak (1985) indicated that these reduce to the reciprocal averaging equations in ( 1 0) 

when t1 is constant across species and the terms in the square brackets are negligible. The 

latter condition holds under equal maxima, and uniformly distributed species optima (site 

scores) over an interval which is large compared to the range of site scores (species optima). 

Although Ter Braak (1987) further noted that the uJs and x/s cannot simultaneously be 

uniformly distributed about intervals beyond each others' range. 

More importantly, it may not be desirable to approximate the maximum likelihood 

estimator since it can be inconsistent. In the scenario where the number of species m is fixed 
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but the number of sites n increases with sample size, the number of site parameters increases 

with n, leading to the well known incidental parameters problem (Neyman and Scott 1948). 

5. Consistency of Estimators 

In the following sections, we examine the consistency of estimators of the species 

optima from PCA and CA assuming m fixed and n too. This assumption seems appropriate in 

many ecological studies where there are a finite number of species but conceivably a much 

larger sampling frame. The x/s are treated as nuisance parameters since, unlike the species 

parameters, they are not required to define the functional form of the predicted model. 

Ecological applications sometimes only require an accurate ordering of the species, therefore 

it suffices to consistently estimate u=(u1, ••• ,um)' up to a location and scale change. In fact, we 

can at best only consistently estimate u up to a scale change when using PCA and CA. For 

both PCA and CA, consistency will first be examined theoretically via their exact or 

approximate eigenvector solutions, and the conclusions are then verified numerically. 

5.1 PCA Estimator 

The PCA estimator of u is taken to be the dominant eigenvector w associated with the 

largest eigenvalue, "-max , of W'W defined in ( 6) with (j,k)th element equal to 

LYuY;k- _!_ LYu LY;k, (i,k=1 , ... ,m). (11) 
; n ; ; 

To examine the asymptotic property ofw, we first establish the conditions that n-IW'W~2:. 

If the yit's are independent Gaussian random variables with mean ).l!i and variance cr;, then 

Var(LYu) =ncr; = o(n2), and 
i 

Var(LYuY;k) = L {!l~ Var(y;k) + ll7k Var(y!i) + Var(yit.)Var(y;k)} 
i 

if the y!i's are independent Poisson counts, then 

Var(LYu) = I llu ~ n exp(a) = o(n2), and 
i i 

Var(LYuY;k) = L(ll~ + 11:k + llijllik) ~ n(exp(3a) + exp(3ak) + exp(a1+ak)) = o(n2); 
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and lastly if the yif's are independent Bernoulli variables then yif and Yy)/;k are uniformly 

bounded. Therefore by the Weak Law of Large Numbers (WLLN) 

1 1 1 1 
- LYiiYik ~- L E(yyY;k) and- LY!i ~- L E(yif). 
n ; n ; n ; n ; 

It follows according to (11) that n-1W'W converges to L which has (j,k)th element equal to 

1 I I 
- L ( Var(yif)81k + 1-lijl-lik)-- L j.l if- L j.l ik· (12) 
n ; n ; n ; 

When "-max of W'W is unique (i.e. has multiplicity one), w is a continuous function of the 

elements of W'W (Ortega 1972 p.45). Let w be the dominant eigenvector of L satisfying the 

equation "-ww = Lw. If "-w is also unique, then w converges to w the dominant eigenvector of 

L. We declare w to be a consistent (up to a scale and location change) estimator of u when w 

satisfies the equation A.w = k11 + k2u or equivalently 

(13) 

where k1, k2 e9l, kit:O, and 1 is a mx1 unit vector. This implies that asymptotically w has 

perfect correlation with u. Conversely, if A.w * c11+c2u, then w cannot be a consistent 

estimator of u. 

Without loss of generality, consider thejth element ofw. Using (12), it can be shown 

after some algebraic simplifications that for the Gaussian case: 

"-wwJ = L wk { cr;o1k + b1bivx- 2cxCu1 + uk) + 4cr; ui1k)} 
k 

= cr;w1 + b/VxLbk wk-2cxLbk ukwk) + b1u1(4cr; Lbk ukwk-2cxLbk wk), (14) 
k k k k 

where v = .u: -(ui )2 c = ui - Lx; ui 0"2 = ui - (L.x;)2 and b.= _1_ 
X 2 ' X ' X 2 ' ) 2/2 • n n n nn n n j 

For the Poisson case, we have 

While for the Bernoulli case, 
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Observe that for all three distributions, the asymptotic eigenvector equations ( 14 ), (15) and 

(16) do not have the simple linear form as in (13), suggesting that in general w is inconsistent. 

However, for the Gaussian case, the eigenvector equation ( 14) can be linear in uj if the 

tolerances are all equal. The result is stated in the following proposition: 

Proposition. If lim_!_ Ilx;l< oo for r={1,2,3,4} and cr;:.to, bj=b for allj, "-max and "-w 
11-+a:J n i=l 

(the largest eigenvalues ofW'W and 2:. respectively) are unique, and "-w > cr; , then 

I A 1 n- w ~ e1 + e2u, 

where e 1 = v xl 'w-2cxu 'w, and e2 = 2 cr; u 'w-cxl 'w. Furthermore, if 

2 2 , 1, crxuw:.tcx w, 

then e2:.t0 and w the PCA estimator is consistent up to a location and scale change. 

Proof When all the tolerances 0 are equal, brb for allj and (14) implies that 

2:. = cr21 + b2l(v 1 '- 2c ul\ + b2u(4cr2 u'- 2c ll\ e X X J X X }• (17) 

Let 2:. 1=2:.-cr;I. Observe that 2:. 1 has rank 2, and thus it has 2 non-trivial eigenvectors and m-2 

trivial eigenvectors with zero as their eigenvalue. Since 

2:. 1w = L.w-cr;w = (A11.-cr;)w, 

the eigenvectors ofL. are equivalently those of2:. 1, and likewise 2:. has m-2 trivial eigenvectors 

with the same eigenvalue cr; . Therefore, if "-w>cr;, its associated eigenvector w is non-trivial. 

Moreover, w is proportional to 

2:. 1w = e11 + e2u, where e1 = v) 'w-2cxu 'w, e2 = 2cr; u 'w-cxl 'w. 

It follows that n-1 w ~ e11 +e2u, which implies that w is a location and scale consistent 

estimator ofu when e2:.t0. 

There are two interesting notes concerning this proposition. Firstly, the conditions 
1 II 

lim- Ilx;l<oo forr={1,2,3,4} 
"-+"' n i=l 
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ensure that the terms vx, ex, and cr~ are finite such that 2: is defined. These are similar to 

conditions used to establish consistency in functional measurement error models (Fuller 

1987). Intuitively, this suggests that we regard xi as coming from some population with finite 

moments, which is reminiscent of Keifer and Wolfowitz's (1956) approach. Secondly, the 

proof of the proposition actually showed that the two non-trivial eigenvectors of 2: are both 

linear in u when their associated eigenvalues are greater than cr;. This implies that both the 

dominant (i.e. first) eigenvector and also the second eigenvector ofW'W are consistent (up to 

a location and scale change) estimators of u. 

In a special case of the proposition, consistency up to a scale change can be 

established with the additional constraints that the x/s be symmetric about zero and the ujs 

sum to zero. 

Corollary. If cx=O, u'l=O, and mvx< 4cr~ u'u, then w is consistent up to a scale change. 

Proof When cx=O, ( 17) implies that 

2: = cr;I + b21(vxl ~ + b2u(4cr~ u ~-

Thus with u'l=O, the two non-trivial eigenvectors of 2: are easily verified to be 1 and u with 

eigenvalues mb2vx + cr; and 4b2cr! u 'u + cr; respectively. 

The above results imply that if one only requires consistency up to a location and scale 

change then both the first and second PCA eigenvectors are consistent under the conditions of 

the proposition. However, if consistency up to a scale change is required then either the first 

or the second PCA eigenvector is consistent under the conditions of the corollary. In 

particular, if mvx>4cr! u 'u then the second (rather than the first) PCA eigenvector should be 

used to estimate u. Likewise, we will explore the performance of both the first and the second 

PCA eigenvectors in the simulations since in certain situations one may be preferred over the 

other. 

We stated earlier that the eigenvector equations (14), (15) and (16) suggest that w 

cannot be linear in u, implying that w is inconsistent for model (1 ). This can also be verified 

numerically by calculating w for selected values of the parameters since w is simply the 
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eigenvector of L given in (12), which is a function of llij· However, the expression for L in 

( 12) cannot be used directly since it depends on n, and we are interested in its numerical value 

as ntoo. Therefore, in order to remove the dependency on n, we assume X;- iid N(0,1) and 

essentially apply a conditioning argument. This assumption is also congruent with the 

"moment" conditions that the x/s must satisfy to establish consistency. It can then be shown 

that the (j,k)th element L equals 

cr;81k + 2b1bil + u1uk) 

for the Gaussian case. For Poisson counts, the moment generating function for non-central 

chi-square distributions can be used to show that L has (i,k)th element 

s181k + exp(a1 - b1uJ + ak- bkui)exp(~Jc1k- ~k)(l - c1k)-112 + s1sk, 

where s1 = exp(a)exp(-b1u](l + 2b)-1)(1- 2b)- 112, c1k = 1 + 2(b1 + bk), and 

~k = (b1u1 + bkuk)2(-b1 - bk)-1. 

In the Bernoulli case, there is no closed form solution but the components of L can be 

calculated using numerical integrations. For example, 

1 1 
- :LE(y!i) =-LE x[E(y!il X;)]= Ex[(l + exp(a1 - b/X- u)2))-1], 
n ; n ; 

where Ex(·) is the expectation with respect to the standard Gaussian density. For the Poisson 

and Bernoulli cases, we set m=31, a=£(0.5,2), b=E(1 ,2.5), and u=E( -2,2), where E(p,q) 

denotes a vector of equally spaced elements between (p,q). While for the Gaussian case, 

cr;=1, a=£(30,32.25), b=£(1,4), and u=£(0,0.4). Gaussian and Uniform random variables 

were generated using built-in functions in GAUSS (Aptech Systems 1992) and numerical 

integration was performed using Simpson's method. The results are displayed in Figures 1 a, 

1 b and 1 c, where the residuals wru1 are plotted against the true values ui" If w is linear in u 

then the plot would show a straight line. However, the PCA solutions produced curvilinear 

plots for all three distributions, confirming that \V is inconsistent. 

5.2 CA Estimator 
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Before proceeding, we point out that Y;- and y1 must be positive according to the 

definition of CA in (7), yet under model (1) there is a nonzero probability that Y;. andy 1 can be 

non-positive. Thus, in order to inspect the consistency of the CA estimator, we assume that Yu 

has expectation and variance according to the specifications in model (1) but conditional on Y;. 

and y1 being positive. Using these assumptions, we suggest by analogy that the asymptotic 

solution of the CA estimator is not linear in u by showing that its Taylor's series 

approximation cannot be written as k11 + k2u, (k 1 ,k2)E~. 

Let v be the CA estimator of u obtained from the first order solution in (9); i.e. the 

eigenvector associated with the second largest eigenvalue in (9). When the eigenvalue of v is 
unique and c-1Y'R-1Y ~L, v converges to v, the second eigenvector of L. First, we establish 

the conditions for c-1Y'R-1Y to converge to L. The (j,k)th element of c-1Y'R-1Y equals 

I YiJYik _ n 1 I YiJYik 
i Yi.Y.j - IYij-;; i ---y:· 

i 

Let Y;[mJ be the largest element in the series Y;- . Since Yr is by definition positive, Yi[mJ is also 

positive. This implies that for all three distributions 

2 2 2 2 

Var(I YiJYik) ~I E(yiJ~ik) ~ I E(yiJ:ik) ~I E(y~) ~ o(n2). 
; Y;. ; Y;. ; Y;tmJ ; 

Therefore, by the WLLN and using a Taylor's series expansion, 

IYijYik ~ 1 IE(YijYik)=I E(yijyik) +IRijk' 
i Y;.Y.j I E(y ij) i Y;. i E(y)E(Y;.) i 

(18) 

where Rijk is the remainder term. It follows that thejth element ofv satisfies 

_ 1 "" "" V ar (y iJ )8 Jk + Jl ii Jl ik "" "" J....v.---L...iv*L...i + L...JvkL...JRk. 
1 E(y1 ) k ; E(Y;.) * ; u 

(19) 

The first term on the right hand side of ( 19) equals 

I cr 2 1 
-(v1I-" + I-<arb/x;-u)2) I v* (acbk(x;-uk)2)) 
Jl.j i Jl;. i Jl;. k 

for the Gaussian case, 
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for the Poisson case, and 

_l_(vJZ:-1 ru(l + ru)-2 + I-1 (1 + ru)-1 I vk (1 + r;k)-1) 
Jl-j i Jl;. i Jl;. k 

for the Bernoulli case, with llr I Jl u, Jl;.= I 1-l u, and 1-lu defined according to the three 
j 

distributions respectively. The above three expressions are all nonlinear functions of ui' 

which suggest that, if the first order Taylor's series approximation were exact, v1 cannot be 

linear in t~ and likewise v cannot be a consistent estimator of u. 

The hypothesis that v is inconsistent is now verified by numerically calculating v 

under the assumption that X;- iid N(O, 1 ). According to (18), ~ has (j,k)th element 

n 1 IE(YuY;k ). 
IE(yu) n ; Y;. 

i 

The first expectation can be obtained using the same methods as described above for the 

numerical calculations of the PCA solutions, while the second expectation can be calculated 

using Monte Carlo integration. The same parameter inputs for calculating the PCA solutions 

are used here again, and Poisson and Bernoulli random variables were simulated using the 

inverse transform method. As shown in Figures 1 a, 1 b and 1 c, the residuals vru1 are 

nonlinear functions ofv1 , indicating that theCA estimator v is inconsistent for model (1). 

6. Simulations 

We compare the finite sample behavior of the CA and PCA estimates under different 

configurations of the parameter inputs. The focus is on the Poisson and Bernoulli cases since 

count data and incidence data are more common in ordination. We let m=31, n=41, u equal 

£(0,0.4), £(0,1.2), E(-0.2,0.2), or E(-0.6,0.6), x equal E(-1,1) or E(-1.5,1.5), arU(0.5,1.25) 

or U(0.5,2.0), and hrU(1 ,4) or U(1 ,7), where U(p,q) is the discrete Uniform distribution with 

equally spaced elements between (p,q). The results are summarized in terms of the correlation 

between u and its estimate, which also indicates how well the ranks of the estimates 
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approximate the ranks of the u/s. The entries in tables 1 and 2 represent averages of 1 0 runs 

of 1000 replications each, with each run being one independent draw from the Uniform 

distributions. Overall, the largest effect on the correlations comes from changing the variance 

of the uJs, while altering the variability of the other parameters has smaller impacts. The 

correlations are highest when the uJs have large variance relative to the variance of the x/s; 

e.g. u=E(-0.6,0.6) or E(O, 1.2). Plots of the response curves corresponding to these two cases 

are presented in Figures 2a and 2b respectively. In contrast, when u=E(-0.2,0.2) or £(0,0.4) 

the u/s have small variance relative to the x/s and the response curves are clustered together 

(e.g. Figure 2c and 2d), resulting in weaker correlations. Changing the location of the uJs 

seems to have negligible effect on the CA estimates. But for PCA, the behavior of its first and 

second eigenvectors switched when u=E(-0.6,0.6). In particular, the first PCA eigenvector 

has higher correlations when x=E( -1,1) but the second PCA eigenvector has higher 

correlations when x=E( -1.5, 1.5). This may be compared to the Corollary in section 5.1, 

which showed that in certain circumstances the second eigenvector may be the preferred 

estimator. 

In terms of the comparative performance between CA and PCA, the CA estimates 

have stronger correlations when the u/s have large variance. However, interestingly, the PCA 

method can also produce reasonable estimates. The PCA second eigenvector did better in 

situations when the first eigenvector performed poorly. Their correlations are slightly weaker 

compared to those for theCA estimates, but can be stronger when the uJs have small variance. 

The advantage of PCA becomes more pronounced in the Bernoulli model, where the second 

PCA eigenvector usually does better than the CA estimator when the uJs have small variance, 

and is comparable to the CA estimator when the uJs have large variance. 

7. Discussion 

Although the physical concept of a "latent" variable may be debatable, latent variable 

models are used extensively in statistics especially in applications of economics, sociology 
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and psychology where factor analysis and structural equation models abound. In ecology, 

latent variable models have been introduced to better understand and compare with PCA and 

CA. For example, PCA is equivalent to ML estimation for a linear Gaussian latent variable 

model. Here, we focus on examining how PCA and CA perform when used for estimation in 

the quadratic latent variable model in (1 ). Two points are important in this progression from 

treating PCA and CA as descriptive tools to more inferential methods. Firstly, the problem of 

overparameterization or non-identifiability of the estimates needs to be addressed. As 

discussed earlier, unique estimates cannot be obtained for model (1) unless a host of 

constraints are imposed on the estimates. Secondly, under the scenario with m fixed and ntoo, 

certain "moment" conditions must be imposed on the latent parameters before consistency can 

be ascertained for the estimators of u. This incidental parameters problem is a consequence of 

treating the latent parameters as fixed effects. However, when sites are a random sample of 

ecological environments it may be reasonable to treat them as random effects, and apply 

methods used in analyzing generalized mixed effects models (McCulloch 1997). In addition, 

for some applications where m and n can conceptually both increase to infinity, consistency 

can also be attained without requiring any conditions on the x/s (Haberman 1977, Portnoy 

1988). 

This research provides guidelines in deciding which estimator to consider when 

estimating u, the modes or optima of the response curves. The PCA estimator is in general 

inconsistent, but can be a location and scale consistent for the Gaussian model when the bjs 

are constant. Algebraically, this is similar to Kooijman's ( 1977) derivation of u as the PCA 

solution of the interaction matrix, 

Z'Z, where Z={z!i- z;.- Z.1 + Z..} and ziJ = arb(xi-u)2• 

It is noteworthy and perhaps surprising that the PCA estimator can be consistent for a 

quadratic model since PCA implicitly assumes a linear model. On the other hand, although 

CA scores have been proposed as approximations to x and u, the CA estimator is shown to be 
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inconsistent. Nevertheless, consistency may be less important to ecologists, and for finite 

sample sizes the PCA and CA estimators can be satisfactory if one wishes only to obtain some 

approximate ordering of the uJs. CA performs well when the optima of the different response 

curves are spread out over a large range of the x/s, an assumption known as the "species 

packing model" in ecology (Gauch et a!. 1974, Ter Braak 1985). However, when dealing 

with incidence data where response curves are clustered together, the PCA estimator (second 

eigenvector) may provide a better approximation. The advantage of PCA on incidence data 

has also been pointed out by Hill (1974), although he stated that "the reasons why the method 

is successful with such data have not been made clear". In situations where the response 

curves are very tightly clustered together, both CA and PCA provide poor approximations and 

are not recommended. 

In section 5.2, we mentioned that model (1) is strictly speaking not suitable for CA. It 

would be more compatible to work with the conditional distributions FCYulY;.>O, y1>0), 

although such a formulation introduces undue complications when examining the consistency 

of the estimators. Furthermore, it seems unproductive to apply this to PCA since it does not 

require Y;- or y1 to be positive. Likewise, our approach is to use a previously adopted and 

relatively simple model (1) as a working model to examine the behavior of the estimators. 

Finally, the proposed ecological models assume species act independently of each other, when 

in reality correlation might be expected due to symbiosis or competition effects or it can be 

induced through site effects. Such non-independence increases the complexity of the 

problem, and further research is warranted since for categorical data there is less of a 

consensus as to how associations should be modeled and which method of estimation is most 

appropriate. 
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Figures la, lb. Asymptotic solutions of the CA (solid lines) and PCA (dotted lines) 
estimators for the Gaussian and Poisson models. 
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Figure 1b. Plot of PCA, CA Asymptotic Solutions for Poisson Model 
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Figure lc. Asymptotic solutions of theCA (solid lines) and PCA (dotted lines) estimators for 
the Bernoulli model. 
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Table I. Correlations ( x 1 00) between u and its CA and PCA estimates for different 
parameter inputs to the Poisson model. The entries are listed as rllr2/r3, where rl, r2, r3 
are the correlations of u with its CA, PCA (first eigenvector), and PCA (second 
eigenvector) estimates respectively. U(p,q) is the discrete Uniform distribution with 
equally spaced elements between (p,q), and E(p,q) is a vector of equally spaced elements 
between (p ,q). 

Poisson 
Model 

brU(1,4) 

brU(1,7) 

brU(1,7) 

u £(0,0.4) 

X E(-1,1) £(-1.5,1.5) 

arU(0.5,1.25) 68/21154 50/17/47 

arU(0.5,2.0) 76119/66 55/15/61 

arU(0.5,0.25) 60/21164 38117/55 

arU(0.5,2.0) 62/19/72 36116/65 

u E( -0.2,0.2) 

X E(-1,1) £(-1.5,1.5) 

arU(0.5,1.25) 70/19/56 49117/47 

arU(0.5,2.0) 79117/68 54/15/61 

arU(0.5,0.25) 60/19/66 37/17/55 

arU(0.5,2.0) 58/18/74 35/16/65 

21 

£(0,1.2) 

£(-1,1) £(-1.5,1.5) 

93/42/85 96/41191 

94/40/82 97/38/86 

94/42/85 96/44/90 

94/41181 97/45/83 

E( -0.6,0.6) 

E(-1,1) £(-1.5,1.5) 

97/91131 97/43/90 

97/84/32 98/43/84 

97/91129 97/50/88 

97/83/34 98/49/80 



Table 2. Correlations (x 1 00) between u and its CA and PCA estimates for different 
parameter inputs to the Bernoulli model. The entries are listed as r11r2/r3, where r1, r2, r3 
are the correlations of u with its CA, PCA (first eigenvector), and PCA (second 
eigenvector) estimates respectively. V(p,q) is the discrete Uniform distribution with 
equally spaced elements between (p,q), and E(p,q) is a vector of equally spaced elements 
between (p,q). 

Bernoulli 
Model 

brU(1,4) 

hrU(1,7) 

hrU(1,4) 

brU(1,7) 

u £(0,0.4) 

X E(-1,1) E(-1.5,1.5) 

arV(0.5, 1.25) 35/29/29 26/17/31 

arV(0.5,2.0) 37/33/30 25117/35 

arV(0.5,0.25) 35/23/40 23/17/35 

arV(0.5,2.0) 34/24/45 19/16/40 

u E( -0.2,0.2) 

x E(-1,1) E(-1.5,1.5) 

arV(0.5, 1.25) 35/17/34 26/17/31 

arV(0.5,2.0) 36116/38 24/15/35 

arV(0.5,0.25) 32/17/43 22117/35 

arV(0.5,2.0) 30/15/49 18/16/40 
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£(0,1.2) 

E(-1,1) E(-1.5,1.5) 

85/54/66 88/46/86 

85/60/67 88/53/87 

87/45/79 91141189 

86/48/80 91/44/89 

E( -0.6,0.6) 

E(-1,1) E(-1.5,1.5) 

91/88/29 92/37/90 

90/90/27 93/35/91 

92/90/30 93/38/90 

92/91130 93/35/92 



Figures 2a, 2b. Sample plots of !ly's generated from the Bernoulli model of Table 2 using 
u=£(0,0.4) (Figure 2a) and u=£(0,1.2) (Figure 2b), when x=E(-1,1), bj-U(1,7), and 
aj-U(0.5,2.0). 
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Figures 2c, 2d. Sample plots of ll!i's generated from the Bernoulli model of Table 2 using 
u=£(-0.2,0.2) (Figure 2c) and u=£(-0.6,0.6) (Figure 2d), when x=E(-1,1), bj-U(l,7), and 
Gj-U(0.5,2.0). 
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