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ABSTRACT 

Lesser chlorinated ethenes, cis-dichloroethene (cDCE) and vinyl chloride (VC) 

are reductive dechlorination products of tetrachloroethene and trichloroethene which 

are among the most-abundant groundwater contaminants in the United States. Due to 

their ubiquitous and potentially carcinogenic nature, cDCE and VC have been 

classified as priority pollutants by the United States Environmental Protection Agency.  

Through two decades of field study and laboratory research, chlorinated 

ethenes are found subject to a range of microbial degradation processes, including 

reductive dechlorination, aerobic oxidation, aerobic cometabolism and anaerobic 

oxidation. Among these biodegradation mechanisms, anaerobic oxidation of cDCE 

and VC is the most recently recognized — neither anaerobic chloroethene oxidizing 

microorganisms nor the pathways involved in these processes have been identified yet. 

Therefore, acquiring enrichment cultures capable of anaerobically oxidizing cDCE and 

VC and identifying the mediating organisms is prerequisite to eventual development 

of molecular biological tools to evaluate the in situ presence of such microorganisms. 

Microcosm studies on anaerobic oxidation of cDCE and VC under Fe(III)- and 

Mn(IV)-reducing conditions were conducted in this research. In all, 21 series of 

microcosms (approximately 350 in total) were prepared, covering 17 sampling 

locations from 9 chloroethene-contaminated sites or sources throughout the United 

States, including those where cDCE or VC mineralization under metal-reducing 

conditions was supposedly observed by previous investigators, or where Fe(III)-

reduction is the predominant terminal electron-accepting process. Microcosms were 

constructed using a variety of site materials, such as aquifer sediments, streambed 

sediments, soil, groundwater, sludge supernatant, and column contents constructed 

with tree mulch, cotton gin trash, and river sand. A small amount of yeast extract, 

along with excess Fe(III) or Mn(IV), was used to rapidly establish metal-reducing 



 
 

conditions, after which the yeast extract would be depleted and cDCE or VC thereafter 

would serve as the main electron donors. Change of chloroethenes and accumulation 

of Fe(II) or Mn(II) in the microcosms were monitored periodically via headspace-

sampling/gas-chromatography and a wet-chemistry assay, respectively. 

Through a one-and-one-half-year experimental period, anaerobic oxidation of 

cDCE or VC was not detected in any of the 350 microcosms. No loss of cDCE or VC 

was detected in 8 series of microcosms, while reductive dechlorination was observed 

to various degrees in other series, three of which showed complete reductive 

dechlorination to ethene followed by further reduction of ethene to ethane. Most 

microcosms that exhibited reductive dechlorination were those unamended with Fe(III) 

or Mn(IV), but robust reductive dechlorination was also observed in Fe(III)-amended 

microcosms constructed with organic-rich materials from two sites.   

The failure to observe anaerobic cDCE or VC oxidation gave rise to a 

hypothesis that the ostensibly anaerobic cDCE or VC oxidation observed at some sites 

or in some laboratory studies might, in fact, have been aerobic oxidation carried out 

under very low fluxes of oxygen. This hypothesis was based on the low oxygen 

thresholds previously reported for isolated aerobic VC-oxidizers and on the occurrence 

of oxygen-contamination reported by other research teams attempting to investigate 

anaerobic mineralization of cDCE and VC. Therefore, we conducted a subsequent 

aerobic experiment in which oxygen was added to 16 previously anaerobic 

microcosms to find out if aerobic cDCE or VC oxidation would occur readily in 

microcosms that had previously been incubated anaerobically for an extended period. 

After about 40 days of aerobic incubation, three aerobic VC-oxidizing mixed cultures 

were obtained.  

Future study is thus warranted to investigate whether aerobic VC 

mineralization can occur in simulated mixed-culture subsurface environments that are 



 
 

subject to steady influx of oxygen but maintained at extremely low oxygen 

concentrations.
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BIOGRAPHICAL SKETCH 

“The flowers and plants withered, the birds' souls disappeared, and the fish 

passed away.  The spring comes again but lacks the beautiful appearance of a hundred 

flowers, of birds' song, of joyous leaping fish. There is only silence covering a piece of 

land, forest, and swamp.” – <Silent Spring>  

Disturbed by the reckless use of synthetic chemical pesticides after World War 

II, Rachel Carson, a famous marine biologist, reluctantly changed her focus in order to 

warn the public about the long-term effects of misusing pesticides. Her legacy for the 

beauty and integrity of life continues to inspire new generations, including me, to 

protect the living world and all its creatures. While reading a good book could change 

one’s life, <Silent Spring> first raised my attention to environmental protection, and 

made me determined to pursue it as a lifelong career.   

Jan 5th, 1985, I was born in Qingdao, a most beautiful coastal city in China.  

I got my bachelor’s degree in water supply and sewage engineering at Qingdao 

Technological University. Fall 2007, I came to Cornell to pursue a master’s degree in 

Environmental Engineering. Besides the top education at Cornell, I feel lucky to be 

supervised under Prof. James Gossett, who’s so accomplished in chloroethene 

bioremediation. In addition to professional knowledge and research skills, the most 

valuable lesson I have learned from Prof. Gossett is the correct attitude of a researcher 

– committed, modest and persistent. I’m going to start a new academic life at Texas 

A&M University in the PhD program in Environmental Engineering, Fall 2009. My 

ultimate goal is to become a good professor in China. Just like Prof. Gossett, I will 

make encouragement one of the most important factors in my teaching philosophy. 
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Drops fall 
in the sweet sweeping rush 

of the rain 
into the sea 

into 
the cup of its shining waters. 

Or 
down 

to a tranquil, 
brown-eyed little river 

or the brook 
that plunged 

over the edge of the cliff 
and froze to a stalactite of crystal 

it 
became 

my waterfall. 
 

 

  Donald Culross Peattie and Noel Peattie 

<A Cup of Sky>
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Context 

Chlorinated solvents, such as tetrachloroethene (PCE), trichloroethene (TCE), 

cis-1,2-dichloroethene (cDCE) and vinyl chloride (VC) are among the most frequently 

detected groundwater contaminants in the United States. More than 1000 sites on 200 

military installations were estimated by the U.S. Department of Defense (DoD) to 

contain chlorinated solvents, resulting from the prevalent use of PCE and TCE as dry 

cleaning solvents and metal degreasers and the improper methods for their disposal 

[34]. Remediation of such chlorinated ethene contaminated sites is of great concern 

due to their toxic and xenobiotic nature. VC is a known carcinogen, while cDCE as 

well as PCE and TCE are suspected carcinogens [2, 5]. Bioremediation is being 

heralded as a promising groundwater cleanup technology for chloroethene 

contaminated sites, especially the development of monitored natural attenuation 

(MNA) and enhanced in situ bioremediation (EISB) [70, 71, 80].  

The occurrence of the less-chlorinated ethenes in the groundwater is due 

largely to the reductive dechlorination of PCE and TCE, whereby the chlorine 

substituents are sequentially replaced by hydrogen to yield cDCE and VC. Under 

anaerobic conditions, the rate of reductive dechlorination declines as the number of 

chlorine atoms in the chloroethenes decreases [86, 87]. Consequently, although VC 

can be further degraded to innocuous ethene via complete reductive dechlorination, 

this process happens at a slow rate often requiring highly reducing methanogenic 

conditions, which is responsible to a great degree for the accumulation of VC in the 

subsurface environment [26, 28, 37]. In contrast, as a relatively reduced compound, 
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VC has a well- documented susceptibility to microbial oxidation processes [41, 42, 

86]. Considering that adding oxygen to otherwise anaerobic groundwater aquifers is 

technically difficult and expensive, anaerobic oxidation of cDCE and VC – if it occurs 

– provides a potential mechanism for the complete biodegradation of chloroethenes in 

the groundwater systems. 

Through two decades of research, both field evidence and laboratory studies 

have suggested the possibility of anaerobic oxidation of cDCE and VC. On the one 

hand, field studies of a number of formerly chloroethene contaminated sites have 

shown clear evidence of natural attenuation but with an inconclusive mass balance of 

chlorinated ethenes [22, 91]. These observations indicated that cDCE and VC may 

have been mineralized to carbon dioxide and chloride through Fe (III) reduction [22, 

91]. On the other hand, subsequent laboratory investigations have reported anaerobic 

oxidation of cDCE and VC under various electron-accepting conditions, such as Fe 

(III)-, Mn (IV)-, SO4
2- reducing, and methanogenic conditions [9, 10, 12, 13, 14, 85]. 

In particular, the Fe(III)- or Mn(IV)-linked microbial oxidation could be very 

significant in the groundwater aquifers, where the oxygen availability is limited.  

Unfortunately, anaerobic oxidation of cDCE and VC is still an area under 

study. No molecular techniques are currently available to confidently and reliably 

assess the metal-linked oxidative chloroethene degradation at field sites, as the 

responsible microorganisms involved in these anaerobic oxidations of cDCE and VC 

still remain unknown, and the underlying mechanisms have not been delineated. For 

this reason, research is required to better understand these key factors and their overall 

relevance to the environment. Enhanced knowledge of the metal-linked anaerobic 

oxidation of cDCE and VC would allow assessment of — and provide increased 

confidence in — the contributions of these chloroethene degradation mechanisms to 

MNA and EISB remedies. Reliable MNA or EISB technologies would be expected to 
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result in increased efficacy and significant cost savings for the remediation of 

chloroethene contaminated sites versus existing alternatives. 

 

1.2 Objectives 

The first objective of this project was to develop enrichment cultures and 

isolate microorganisms capable of anaerobic oxidation of cDCE and VC under Fe(III)- 

or Mn(IV)-reducing conditions. Once isolated, the mediating organisms then would be 

used as model systems to i) elucidate the cDCE and VC anaerobic oxidation pathways, 

ii) guide the development of molecular biological tools (MBTs) to detect cDCE and 

VC anaerobic oxidizing bacteria in field samples, iii) develop 13C/12C isotopic 

fractionation signatures of cDCE and VC anaerobic oxidation in field samples, and iv) 

assess the ubiquity and distribution of cDCE and VC anaerobic oxidizers at field sites.  

If no organisms capable of anaerobic oxidation of cDCE and/or VC could be isolated 

from the materials of the candidate sites, the succeeding steps would, of course, not be 

implemented.  
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CHAPTER 2 

 

BACKGROUND 

 

2.1 Cis-1,2- Dichloroethene and Vinyl Chloride 

2.1.1 Identity, Uses, and Health Effects 

1,2-Dichloroethene (1,2-DCE) has been widely detected in groundwater, 

surface water, industrial effluents, and drinking water supplies throughout the United 

States. It is a highly flammable and extremely corrosive colorless liquid with a sharp, 

harsh odor, used as a solvent for waxes, resins, polymers, perfumes, dyes and lacquers 

[1, 2]. Of the two isomers, cis-1, 2-DCE (cDCE) and trans-1, 2-DCE (tDCE), cDCE is 

the more frequently encountered groundwater contaminant, as an intermediate product 

of anaerobic reductive dechlorination of PCE and TCE present in groundwater [2, 32]. 

Of 146 groundwater sites on the National Priorities List (NPL), which contains the 

most serious hazardous waste sites in the nation identified by the U.S. Environmental 

Protection Agency (USEPA), 130 have been detected with cDCE.  The maximum 

contaminated level (MCL) for cDCE in drinking water is 0.07 mg/L [2]. 

While lower oral doses of cDCE have effects on the blood, such as decreased 

numbers of red blood cells, and effects on the liver, extremely high doses of cDCE 

orally administered to animals may cause death. Lethal symptoms in animals exposed 

orally to cDCE involve central nervous system depression and respiratory depression. 

The USEPA has placed cDCE in a non-cancer or a ‘not classifiable’ category ‘D’ [2].  

At room temperature, vinyl chloride (VC) is a colorless gas with mildly sweet 

odor, which burns easily and is not stable at high temperatures [4, 5]. Most of the VC 

produced in the United States (approximately 98%) is used for the industrial 

manufacture of polyvinyl chloride (PVC), which has been widely used in manufacture 
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of pipes, furniture, packaging products, automotive parts, wire and cable coatings, and 

a variety of other products [4, 5]. 

VC is a known carcinogen, as determined by the U.S. Department of Health 

and Human Services. As demonstrated in numerous studies of workers in the VC 

production industry, chronic exposure to VC can result in hepatic angiosarcoma, a 

very rare liver cancer in humans. Other results of exposure to VC on human health 

include narcotic effects, Raynaud’s phenomenon (problems with the blood flow in the 

hands – fingers turn white and hurt when they go into the cold), scleroderma-like skin 

changes, and hepatocellular alterations [4, 5]. In addition, breathing extremely high 

levels of VC is lethal. The MCL for VC in drinking water is 0.002 mg/L [4, 5]. 

 

2.1.2 Environmental Fate and Transport 

While massive synthesis of various industrial solvents and PVC plastics can 

generate contaminant effluents containing DCE and VC respectively, incomplete 

reductive dehalogenation of PCE and TCE is likely the most prevalent source of these 

reduced daughter products in subsurface environments. The primary transport process 

for VC in most surface waters is rapid volatilization to the atmosphere, on the order of 

hours or days. However, groundwater systems are gas-phase limited and unmixed: 

therefore volatilization is limited. Biotransformation of cDCE and VC can occur 

through a variety of mechanisms, including: i) anaerobic reductive dechlorination to 

ethene and/or ethane [27, 37]; ii) anaerobic oxidation to CO2 under humic acid 

conditions [11] or CO2 and CH4 under methanogenic conditions [14, 85]; iii) 

anaerobic oxidation to CO2 using a number of inorganic electron acceptors, such as Fe 

(III), Mn (IV), and SO42- [9, 10, 12, 13]; iv) aerobic cometabolic oxidation to CO2, 

using methane, propane, methanol, ammonia as the co-substrates [33]; v) aerobic 
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oxidation to CO2 utilizing cDCE or VC as primary growth substrate [24, 25]; and vi) 

reduction through a range of metal and metal-oxide surface catalyzed reactions [20]. 

 

2.2 Biodegradation of DCE and VC  

2.2.1 Reductive Dechlorination of Chloroethenes 

Microbial reductive dechlorination is the best understood chloroethene 

degradation pathway under anaerobic conditions, wherein chloroethenes serve as 

electron acceptors and require the supply of molecular hydrogen [29, 39, 44, 67, 81] or 

in some instances acetate, as the electron donors[18, 44]. Because of the electron-

acceptor role served by chloroethenes, the process is sometimes called 

“chlororespiration” [50, 67, 77]. Complete reductive dechlorination involves the 

sequential dechlorination of PCE to TCE to DCEs to VC to ethene (Figure 2.1), which 

can be further reduced to ethane under highly reducing conditions, e.g., 

methanogenesis [27]. The combined production of ethene and ethane, therefore, is 

commonly applied to evaluate the extent of reductive dechlorination of chloroethenes, 

especially VC, at field sites [18, 90]. The efficiency of reductive dechlorination is 

greatly varied in situ, and a full dechlorination to ethene or ethane is difficult to 

achieve due to numerous factors, such as the redox characteristics of the chlorinated 

compounds, the presence of competent dechlorinators, and the supply of electron 

donors and the like [18, 51]. 

 

 
Figure 2.1 Complete reductive dechlorination process from PCE to ethene [67]. 
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The rate and extent of reductive dechlorination are directly proportional to the 

number of chlorine substituents attached to the carbon atoms. As highly oxidized 

compounds, PCE and TCE readily undergo a reduction process, whereas the 

dechlorination of DCE and VC traditionally occur at relatively slow rates, especially 

from VC to ethene, which is considered the rate-limiting process in complete reductive 

dechlorination [26, 67].  

The results of many previous studies have indicated that complete reductive 

dechlorination of chloroethenes may be ascribed to the cooperative activities of 

multiple microbial consortia instead of one single species [26]. While a fairly large 

number of pure cultures capable of reductive dechlorination of PCE to TCE or to DCE 

have been developed, several bacterial species coupling growth to efficient 

degradation of DCE and VC but not PCE have also been isolated, including 

Dehalococcoides sp strain BAV1 and Dehalococcoides sp strain FL2 [26, 68, 47]. Up 

to now, the only identified organism that catalyzes full reductive dechlorination from 

PCE to ethene is D. ethenogenes Strain 195 [26, 36, 48, 67]. However, the final 

dechlorinating step, VC to ethene, has been proved to be rather slow and apparently a 

cometabolic transformation in Strain 195 [26, 67, 82]. 

The supply of electron donor is another major factor affecting the efficiency of 

reductive dechlorination. Since groundwater aquifers are usually oligotrophic, electron 

donors can often become the limiting factor for the full dechlorination of chloroethene 

contaminants [51]. Molecular hydrogen is the electron donor directly used by nearly 

all bacteria that carry out reductive dechlorination of chloroethenes; however, under in 

situ conditions, H2 may serve as electron donor for multiple indigenous organisms 

mediating other reductive processes, resulting in the competition between the 

reductive dechlorinators and other hydrogentrophs. The minimum H2 requirement, or 

H2 threshold, required by organisms mediating different metabolic processes is in the 
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following order (high to low): acetogenesis > methanogenesis > sulfate-reduction > 

reductive dechlorination > iron-reduction > manganese-reduction > nitrate-reduction 

[54, 66, 94] (Table 2.1). With a H2 threshold value well below that of homoacetogens 

and hydrogenotrophic methanogens, reductive dechlorinators should commonly 

outcompete these two classes of hydrogen consumers under electron-donor limiting 

conditions [18]. And while it is commonly suggested that the biotransformation of VC 

to ethene or ethane demands highly reducing methanogenic conditions, examination of 

the hydrogen thresholds makes it clear that it is possible for complete reductive 

dechlorination to happen in the mildly reducing environments predominated by  SO4
2- 

reduction —  or even in systems characterized as Fe(III)- or Mn(IV)-reducing, when  

 

Table 2.1 H2 threshold and 
'0G values for different redox conditions. 

Process                                                  H2 threshold [nM] 
'0G [kJ/mol H2] 

Acetogenesis                                         
Methanogenesis                                     
Sulphate reduction [SO4

2-→HS-]     
Reductive dechlorination                    
Iron reduction                                        
Manganese reduction                            
Nitrate reduction [NO3

-→N2O, N2] 

336-3,640 
5-95 
1-15 
<0.3 
0.1-0.8 
<0.05 
<0.05 

-26.1 
-33.9 
-38 
-130 to -187 
-228.3 
－a 

-240 

Data from Maurice L.G. C. Luijten et al. 2004[66] and Löffler et al. 1999 [54]. 
a. Value is indicated in neither reference. 
 

sufficient electron donors are provided [54, 94]. Complete dechlorination of cDCE 

and VC to ethene or ethane in the presence of Fe(III) or Mn(IV) was observed in our 

microcosm studies (as is later presented in this thesis). 

In summary, anaerobic reductive dechlorination is the most significant 

biotransformation pathway for the natural attenuation of more-chlorinated ethenes, 

PCE and TCE. However, incomplete reductive dechlorination is frequently observed 
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at field sites due to  one or more factors (e.g., inadequate dechlorinating populations; 

insufficient electron donor; competing microbial processes; unfavorable 

environmental conditions), resulting in the accumulation of cDCE and VC — the latter 

being of special concern because it is considered more toxic than its more-chlorinated 

precursor compounds. Therefore, it has been proposed that the combination of 

reductive dechlorination with microbial oxidation under either aerobic or anaerobic 

conditions can be a successful strategy for the in situ bioremediation of chloroethenes 

at some sites. 

 

 2.2.2 Aerobic Oxidation of cDCE and VC 

Aerobic oxidations of cDCE and VC are cometabolic processes in some 

microorganisms, but there are bacteria capable of growth-coupled aerobic oxidation of 

cDCE or VC in which they are used as primary substrates and carbon sources. 

Aerobic cometabolic oxidation of chlorinated solvents requires the existence of 

oxygen as well as an additional carbon/energy source to achieve the normal metabolic 

functions of the responsible organisms [69]. These organisms decompose the 

chloroethene compounds more or less fortuitously as the result of certain non-specific 

oxygenases but derive no energy-conserving or growth-linked benefit from the 

oxidation process [18, 69]. Effective oxygenase inducing substrates for VC or cDCE 

cometabolism include methane, and the end products of reductive dechlorination, 

ethene and ethane [75, 82, 83, 84]. Additionally, cDCE can also be cometabolized by 

VC oxidizers and aromatic compound oxidizers [18, 84], while VC cometabolism can 

also use a range of other substrates such as propane, butane, propene, isoprene, and 

ammonium [82]. However, as a remediation technology, cometabolic oxidation 

requires the administration of suitable cosubstrate (and probably oxygen, too) to the 

subsurface — a challenging requirement. As for non-engineered remediation (MNA), 
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cometabolism of cDCE or VC is likely to be limited to interfacial “fringe” regions 

where anaerobic plumes (in which cDCE and/or VC are produced via reductive 

dechlorination, along with potential cosubstrates such as methane) meet aerobic 

conditions [18]. 

Significant mineralization of cDCE under aerobic conditions without the 

addition of co-substrates has been observed in microcosm and enrichment culture 

studies [24]. 14±2% and 67±11% of [1, 2-14C]DCE was recovered as 14CO2 in 

microcosms inoculated with aquifer and creek-bed sediments, respectively, from a 

former drum disposal site at Naval Air Station, Cecil Field. However, none of the 

responsible microorganisms were identified in these studies. To date, the only 

organism isolated that can utilize cDCE as the sole carbon and energy source is 

Polaromona vacuolata strain JS666 [24]. JS666 may be a prime candidate for 

bioaugmentation at sites where cDCE has migrated into aerobic zones, in that growth-

linked oxidation of cDCE appears to be uncommon at field sites, and JS666 can obtain 

rapid cDCE removal rates without the need for co-substrates. 

Another study by Coleman et al. revealed that aerobic bacteria capable of the 

growth-coupled oxidation of VC are likely to play a major role in the natural 

attenuation of VC due to their wide distribution and kinetic characteristics, and 

consequently are equally as important, if not more important, than organisms carrying 

out cometabolic VC oxidation [25]. Twelve different strains of bacteria were isolated 

from 23 out of 37 microcosms and enrichments inoculated with material from 22 

different sites in the USA, Germany and Australia: 11 of them are Mycobacterium 

strains and one is a Nocardioides strain. Other bacteria that are capable of growth on 

VC as a sole carbon and energy source, including the first characterized strain 

Mycobacterium L1 and Pseudomonas aeruginosa strains MF1 and DL1, had been 

previously isolated by Hartmans and deBont, and Verce et al., respectively. VC 
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oxidation metabolism of these organisms is likely to contain an initial step catalyzed 

by an inducible alkene monooxygenase to generate the VC epoxide, chlorooxirane [42]  

(Figure 2.2). 

 

 
Figure 2.2 Initial step of aerobic oxidation of VC catalyzed by alkene monooxygenase 
[42]. 
 

Furthermore, it is worth noting that five of 12 strains of bacteria isolated by 

Coleman et al. were further studied with respect to their oxygen-utilizing kinetics. All 

were found to effectively biodegrade VC under extremely low oxygen concentrations 

indicated by the low half-velocity constant (Ks) measured (from 0.03 to 0.3 mg/liter). 

The minimum oxygen requirement (i.e., threshold) needed to carry out the VC 

oxidation metabolism by these microorganisms was as low as 0.02 to 0.1 mg/L (Table 

2.2). These results, along with the field observation that VC often disappears in the 

aerobic zones downgradient of chloroethene contaminated sites, suggests that VC-

assimilating bacteria are potentially responsible for the successful in situ 

bioremediation of VC.  

Table 2.2 Oxygen half-velocity constants of VC-assimilating bacteria [25]. 

Strain Ks(O2) [mg/liter] O2 threshold [mg/liter] 
Mycobacterium 
JS60 
JS61 
JS616 
JS617 
Nocardioides sp. strain JS614 

 
0.17 ± 0.06 
0.03 ± 0.04 
0.3 ± 0.24 
0.07 ± 0.06 
0.11 ± 0.04 

 
0.02 ± 0.01 
0.07 ± 0.01 
0.10 ± 0.02 
0.06 ± 0.02 
0.06 ± 0.01 
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 2.2.3 Anaerobic Oxidation of cDCE and VC 

Field studies of many originally chloroethene-contaminated sites have shown 

lines of evidence of natural attenuation, but with an indecisive mass balance of the 

chlorinated compounds. A former fire training area at Plattsburgh Air Force Base, 

New York, has a history of chloroethene contamination including TCE, DCE and VC, 

in the groundwater systems. Early studies at this site illustrated that VC, the reductive 

dechlorination product of TCE and DCE, accumulated near the fire-training pit. 

However VC was further degraded downgradient with a lack of ethene/ethane 

accumulation, most likely via Fe(III) reduction or aerobic respiration [91].  

A similar situation related to the biotransformation of chlorinated ethenes 

occurred at Naval Air Station (NAS) Cecil Field, Florida [22]. A methanogenic zone 

was present in the groundwater near the contaminant source, which gave preference to 

the reductive dechlorination of PCE, TCE and DCE, and was surrounded by an iron-

reducing zone further downgradient, where anaerobic oxidation of VC to CO2 

appeared favorable. These postulated processes are highly consistent with the 

observed behavior of chloroethenes at this site. PCE, cDCE and VC were present in 

ground water near the contaminant source but dropped below detectable levels along 

the flowpath. In the downgradient zone, without measurable chloroethenes, there were 

elevated concentrations of dissolved inorganic carbon and chloride. These 

observations suggested that chloroethenes probably had been transformed to CO2 and 

chloride through the combined effects of reductive dechlorination in the methanogenic 

zone and oxidation in the downgradient, iron-reducing and aerobic zones. 

Besides circumstantial field evidence, laboratory investigations have suggested 

a number of mechanisms for anaerobic oxidation of VC to carbon dioxide and/or 

reduction to methane (Figure 2.3). The potential for anaerobic oxidation of 

chloroethenes was first reported by Vogel and McCarty in 1985 in a small continuous-
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flow fixed-film methanogenic column fed with [14C]PCE [85]. In addition to TCE, 

DCE and VC, up to 24% radiolabeled PCE was recovered as 14CO2 in the effluent. 

The addition of unlabeled VC to the column feed caused a decrease of 14CO2 activity 

to 12%, whereas the cessation of VC supply increased the 14CO2 activity 

approximately back to the original level (23%), which led to the hypothesis that 14CO2 

production is a result of [14C]VC mineralization. Furthermore, this study suggested a 

potential pathway for microbial oxidation of VC, which may involve a hydration 

reaction to yield chloroethanol followed by the oxidation to aldehydes and ultimate 

mineralization to CO2 or CO2 and CH4. However, since none of these hypothetical 

intermediates was detected in the study, this pathway is best described as speculative. 

Studies by Bradley and Chapelle suggested the potentially important role of 

oxidative acetogenesis in anaerobic mineralization of VC to CO2 or CO2 and CH4 [15, 

16]. In their research of anaerobic degradation of [1,2-14C]VC under methanogenic 

conditions, equimolar recovery of 14CO2 and 14CH4 (22±2% and 22±1% respectively) 

was observed without delay [14]. This observation gave rise to the hypothesis that VC 

mineralization involves an initial fermentation step to yield acetate, because acetate is 

the only known two-carbon-compound substrate for methanogenesis that typically 

accounts for 70% of CH4 production in the methanogenic process, and more 

importantly, it distinctively generates CO2 and CH4 in equal amounts [15, 16, 31]: 
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Figure 2.3 Complete anaerobic biodegradation pathways of chloroethenes via reductive dechlorination and microbial 
oxidation [18].
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To further corroborate this assumption, microcosms were set up using 

carboxyl-labeled acetate ([1-14C]acetate) and methyl labeled acetate ([2-14C]acetate). 

75±2% [1-14C]acetate was recovered as 14CO2  within 24 days, and a total amount of 

74±7% [2-14C]acetate was recovered as 14CO2 and 14CH4 with 55±7% and 19±5% of 

the initial radioactivity respectively.  Subsequent investigation confirmed the 

immediate and transient conversion of [1,2-14C]VC to [14C]acetate was associated with 

concomitantly rapid increase of 14CO2 and 14CH4 [16]. The immediate conversion of 

[14C]acetate to 14CO2 and 14CH4  observed in these studies was consequently 

supportive of the hypothesis that acetotrophic methanogenesis was directly involved in 

the VC mineralization [15]. 

Bradley et al. also tested the contribution of methanogens to the degradation of 

[1,2-14C]VC to 14CO2 and 14CH4 by adding 20mM 2-bromoethanesulfonic acid (BES, 

a known inhibitor for methanogenesis) [15]. In the BES-unamended microcosms, 

14±2% [14C]VC was recovered as 14CH4 and 63±3% as 14CO2. In contrast, while 

14CH4 production was completely inhibited in the microcosms with BES, an almost 

equal amount decrease (13±2%, compared with 14±2%) of 14CO2 recovery(51±2%) 

was observed. The amount of 14CO2 recovery was approximately 36% greater than that 

of 14CH4. These results implied that, i) methanogens were responsible for the 

biodegradation of VC to CH4; ii) and apart from methanogenesis, an undefined 

nonmethanogenic mechanisms may be predominantly accountable for VC 

mineralization to CO2. Since O2, NO3
-, Fe(III), and SO4

2- reduction were calculated to 

be insignificant in the cultures, previously identified humic acid reduction became a 

suggested mechanism for the anaerobic oxidation of VC observed in the study.  

Microcosm studies initiated by the same research team previously 

demonstrated that humic acid, a ubiquitous constituent of soil and sediments, is 

capable of serving as the electron acceptor for the efficient mineralization of both VC 
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and DCE [63, 76]. The streambed sediment sample used in this study was 

characterized to contain rich organic matter and saturated with humic acid — the same 

material used in the oxidative acetogenesis studies. In the microcosms unamended 

with humic acid, an immediate 39±3% of original radioactivity of [14C]VC was 

recovered as 14CO2 in 50days, and 14CO2 was the only observed product without the 

accumulation of 14CH4. The amount of [14C]VC recovered (39±3%) was comparable to 

that observed in the oxidative acetogenesis study — a 36% access of 14CO2 recovery 

with respect to 14CH4 when methanogenesis was not suppressed, indicating that humic 

acid reduction might be the nonmethanogenic metabolism hypothesized responsible 

for the VC mineralization observed in that study. Compared with VC mineralization 

under humic acid-reducing conditions, the recovery of [1,2-14C]DCE was relatively 

low. While only 7±1% [1,2-14C]DCE  recovered as 14CO2  and trace amounts of VC, 

ethene and ethane were detected in the unamended microcosms, the addition of humic 

acid substantially stimulated [1,2-14C]DCE recovery to 25±6% as 14CO2, and no VC, 

ethene or ethane were observed. 

Due to the lack of detectable intermediates, the acetate formed during oxidative 

acetogenesis is also suggested to be capable of being utilized by various inorganic 

acceptors, such as Fe(III), Mn(IV) and SO4
2-, in anaerobic mineralization of VC. 

Bradley and Chapelle provided the first evidence [9] and a number of reports of 

anaerobic VC oxidation under Fe(III)-reducing conditions [9, 10, 12, 13]. Experiments 

were conducted using shallow aquifer sediment collected from one site of NAS Cecil 

Field, with the absence of detectable chlorinated contaminants, and two sites at 

Plattsburgh Air Force Base, within an anaerobic chloroethene plume. All microcosms 

from the three sites showed fast mineralization of [1,2-14C]VC to 14CO2  within 84 

hours. Following experiments with microcosms from NAS Cecil Field further 

affirmed that the evaluated amount of 14CO2  recovery was consistent with the[14C] VC 
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loss. The excess Fe(II) accumulation (380±100 nmol observed vs. 82±34 nm expected) 

was also measured, implying that VC mineralization might be coupled to Fe(III) 

reduction.  

Finally, another mechanism contributing to the anoxic oxidation of VC may 

involve an initial reductive dechlorination of VC to ethene followed by mineralization 

of ethene to CO2 via SO4
2- reduction [17, 18]. In experimental treatments amended 

with SO4
2-, 84±12% of [1,2-14C]ethene was recovered as 14CO2 accompanied by 

simultaneous  SO4 reduction (>40%) and dissolved sulfide (880±90 μM) production 

(92±3% of [1,2-14C]ethene retained in the killed control). In contrast, in microcosms 

unamended with SO4
2-, which proved to contain active methanogens, stoichiometric 

reduction of ethene to ethane was observed. In light of these observations, ethene was 

suggested as an alternative intermediate, besides acetate, formed during net microbial 

oxidation of VC to CO2. However, in a previous study that used shallow aquifer 

sediments from another site, [1,2-14C]ethene was not detected during the 

mineralization of [1,2-14C]VC to 14CO2 under Fe(III)-reducing conditions [9]. It is 

possible, therefore, that ethene as an intermediate for anaerobic VC oxidation may not 

be widespread.  

In a nutshell, the characterized mechanisms of anaerobic VC oxidation involve 

an initial conversion to acetate, which can be further fermented to CO2 and CH4 via 

acetotrophic methanogens; or oxidized to CO2 via humic acid reduction or under a 

range of inorganic electron accepting conditions, such as Fe(III)-, Mn(IV)-, SO4
2-- and 

NO3
--reductions. Alternatively, ethene could also be an important intermediate product 

for anoxic VC mineralization to CO2.  Finally, when an appropriate terminal electron 

acceptor is available, VC might be directly oxidized to CO2 without the accumulation 

of any intermediate products [9, 18]. However, further investigations are needed to 
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validate these hypotheses. Potential mechanisms for anaerobic microbial oxidation of 

VC and DCE are summarized in Table 2.3.   

 
Table 2.3  Anaerobic oxidation of DCE and VC summary. 

 
Electron Acceptors 

Reference Fe(III) Mn(IV) SO4
2- CH4 Humic 

Acid

VC 

     9, 10, 12 

     12, 17 

     12, 14, 15, 85 

     11 

DCE 

     10, 12 

     13 

     12 

     12 

     11 

 

The effect of redox conditions on anaerobic DCE and VC mineralization has 

been investigated in microcosm studies [12]. Compared with VC oxidation,  rate and 

extent of DCE oxidation was much lower under each electron-accepting condition 

examined; and anaerobic DCE mineralization was half as fast as aerobic DCE 

mineralization. Mineralization of [1, 2-14C]VC decreased under increasingly reducing 

conditions, in the order of aerobic> Fe (III)-reducing> SO4
2--reducing> methanogenic 

conditions. On the other hand, the rate and magnitude of [1, 2-14C]DCE oxidation did 

not differ significantly between iron-reducing, SO4
2--reducing and methanogenic 

conditions. Combined with the fact that [14C]VC, [14C]ethene, and [14C]ethane were 

also detected in the headspace of DCE microcosms, it was proposed that the anaerobic 

oxidation of DCE may involve an initial, rate-limiting reduction step and Fe(III) and 

SO4
2- may not be adequately powerful oxidants to improve DCE oxidation[10, 12]. 

Subsequently, Mn(IV), as a stronger oxidant than Fe(III) and SO4
2-, was demonstrated 
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to successfully oxidize [1,2-14C]DCE  to 14CO2 with the absence of detectable 

reductive dechlorination products[13].  

Kinetic work on anaerobic mineralization of DCE and VC in creek bed 

sediments under methanogenic and Fe(III)-reducing conditions has been reported [10]. 

VC mineralization exhibited Michaelis-Menten kinetics for VC concentrations ranging 

from 0.2-57 μM, with a maximum oxidation rate of 0.76±0.07 μM d-1 under Fe(III)-

reducing conditions, which was four times greater than that under methanogenic 

conditions (0.19±0.01 μM d-1). The metabolism involved in VC mineralization via 

Fe(III) reduction had a greater affinity for VC than that via methanogenesis, indicated 

by a lower Km value (1.3±0.5 μM and 7.6±1.7 μM under Fe(III)-reducing and 

methanogenic conditions, respectively). The anaerobic oxidation of DCE, on the other 

hand, could be described by first-order kinetics under examined DCE concentrations 

(1.4-80 μM)－the rate of DCE mineralization did not show considerable difference 

between Fe(III) reduction and methanogenesis (both about 0.6±0.2% d-1). The results 

on the kinetics of anaerobic mineralization of DCE and VC provided further support 

for the conclusion that the mechanisms underlying these two processes are 

dramatically distinct from each other [10, 12, 18]. 

Through two decades of field and laboratory research, knowledge on the 

degradation pathways of anaerobic mineralization of VC and DCE has been greatly 

improved. Consensus has been reached that the combined effort of reductive 

dechlorination followed by anaerobic oxidation can provide a propitious alternative 

for the complete biodegradation of chlorinated ethenes. However, further scientific 

research is required to develop a pure culture that is capable of anaerobic oxidation of 

the lesser chlorinated ethenes and clearly identify the underlying mechanisms, or the 

application of in situ bioremediation can not be a successful remedy for chloroethene 
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contaminated sites.   The metal-linked oxidative mechanism of DCE and VC through 

Fe(III) and Mn(IV) reduction is the point of interest in this research.  

 

2.3 Fe(III) and Mn(IV) Reduction 

Iron and manganese, as the two most abundant redox-active metals in the 

Earth’s crust, have shown great potential to serve as the electron acceptors in the 

mineralization of diverse organic contaminants in a wide range of subsurface 

environments [59, 64, 72]. Under anoxic conditions, toluene, xylene, phenol, benzene, 

benzoate, benzylalcohol, benzaldehyde, and other recalcitrant organic contaminants 

have been reported to be extensively oxidized to CO2 by the Fe(III)- and/or Mn(IV)-

respiring microorganisms coupled to energy conservation [57]. Furthermore, 

anaerobic microbial oxidation of cDCE and VC under Fe(III)- and/or Mn(IV)- 

reducing conditions has been observed by Bradley and Chapelle [9, 10, 12, 13].  

The abundance of Fe(III) and its availability to readily convert between ferric 

(Fe(III)) and ferrous (Fe(II)) states have made Fe(III) reduction an important process 

for the oxidation of organic matter to CO2 in sedimentary environments [64, 72]. A 

higher concentration of Fe(III) is frequently found in aquatic sediments than that of 

other electron acceptors such as oxygen, sulfate and nitrate [57].  Although Mn(IV) 

oxides are typically only 10% as plentiful as Fe(III) oxides, a larger proportion of 

Mn(IV) oxides is expected to be available for microbial reductions and Mn(IV) 

reduction is more energetically favorable [13, 61]. In most conditions, Mn(II) is the 

end product of Mn(IV) reduction, sometimes with Mn(III) as an intermediate.  

Apart from the rich contents of Fe(III) in groundwater sediments, it is 

interesting to note that the Fe(III)-reducing zone often appears immediately 

downgradient of  the contaminant plume, due to the zone’s ability to migrate over time 

[64]. Concomitant with the development of anaerobic conditions and the relocation of 
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the Fe(III)-reducing zone further downgradient, another electron-accepting process, 

normally methanogenesis, will appear near the contaminant source taking the place of 

Fe(III) reduction. In the case of chloroethene degradation, this distribution of electron-

accepting zones promotes the complete biotransformation of chlorinated ethenes in 

two aspects. On the one side, it favors the reductive dechlorination of the parent 

compounds (i.e., PCE and TCE) to the lesser-chlorinated ethenes (i.e. cDCE and VC) 

under methanogenic conditions close to the contaminant source; on the other side, it 

supports the anoxic oxidation of the daughter products to CO2 under Fe(III)-reducing 

conditions. Thus, the movement of the Fe(III)-reducing zone gives more weight to the 

importance of Fe(III) reduction in subsurface environments. The distribution of 

predominant redox conditions along the flow path in deep pristine aquifers and 

shallow contaminant aquifers is shown in Figure 2.4.  

 

 
Figure 2.4 Typical distribution of electron-accepting process in aquatic sediments of 
deep pristine aquifers (a) and shallow aquifers contaminated with organic compounds 
(b) [61]. 
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The form of Fe(III) and Mn(IV) oxides also plays a major part in the 

decomposition of the organic matters associated with Fe(III) and Mn(IV) reduction 

[61, 62, 72]. Specifically, it determines the rate and extent of the Fe(III)- and Mn(IV)-

respiring process. A number of studies have proved that ill-defined crystalline Fe(III) 

oxides perform higher Fe(III) reduction rates than the more crystalline Fe(III) oxides 

[9, 57]. For example, in the enrichment cultures inoculated with the tidal river and 

estuarine sediments, Lovley et al. demonstrated that glucose was metabolized by 

amorphous Fe(III) oxyhydroxide 10-fold faster than hematite (essentially Fe2O3). 

Furthermore, the fermentable substrates, such as acetate, butyrate and hydrogen were 

completely oxidized with the simultaneous increase of Fe(II) when amorphous Fe(III) 

oxyhydroxide served as the electron acceptor, whereas only small quantities of Fe(II) 

accumulated when hematite was the potential electron acceptor [57]. The form of 

Mn(IV) is also believed to influence the rate and extent of Mn(IV) reduction, but it has 

not been comprehensively studied [61]. 

Briefly, Fe(III) reduction has long been suggested among the earliest 

significant forms of microbial respiration, which is still playing an important role in 

the modern sedimentary environment. Owing to the abundance of Fe(III) and Mn(IV) 

in the anaerobic sediments, Fe(III) and Mn(IV) respirations have the potential to be 

major mechanisms for the mineralization of various organic contaminants in 

groundwater systems when their oxides are in a suitable form. Fe(III) and Mn(IV) 

reductions may play a significant role in the remediation of chloroethene contaminated 

sites.
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CHAPTER 3 

 

MATERIALS AND METHODS 

  

3.1 Experimental Strategy  

The purpose of the experiments described herein was to develop enrichment 

cultures capable of anaerobic oxidation of cDCE and VC under Fe(III)- or Mn(IV)- 

reducing conditions that will further promote the determination of the actual 

pathway(s) of cDCE and VC anaerobic oxidation and the development of MBTs for 

field validation of these processes. Anaerobic microcosms were prepared using 

materials (e.g., sediment, soil, groundwater, and wastewater sludge) obtained from 

nine candidate sources for anaerobic oxidation, including sites where mineralization of 

cDCE and/or VC under metal-reducing conditions was allegedly observed by previous 

investigators, or sources which exhibited metal-reducing (primarily Fe(III)-reducing) 

conditions. Some of the materials were available only in sediment form, or in small 

quantity, in which cases an enrichment medium was prepared based on a modified 

recipe of Lovley and Philip’s for Fe-reducing systems [57]. To quickly establish a 

metal-reducing environment, freshly precipitated Fe(III) or Mn(IV) was added to the 

microcosms, along with the addition of a small amount of yeast extract. Both Fe(III) 

and Mn(IV) were in excess over the yeast extract added. Thus, the yeast extract could 

create metal-reducing conditions rapidly, after which the yeast extract would be 

depleted by Fe- or Mn- reducers and cDCE or VC thereafter would serve as the main 

substrates.  

Remaining masses of cDCE/VC and the accumulation of Fe(II)/Mn(II) in the 

microcosms were monitored periodically (and typically over at least 6 months) via 

headspace-sampling/gas-chromatography and a wet-chemistry assay, respectively. If 
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cDCE or VC levels decreased with accumulation of Fe(II) or Mn(II) in the same 

microcosms, the presence of microorganisms capable of anaerobic oxidation of 

cDCE/VC would be further confirmed. Unfortunately, however, since none of the 

microcosms exhibited anaerobic oxidation of cDCE or VC within the experimental 

period, subsequent characterization could not be performed. 

After the failure to identify microorganisms capable of anaerobic cDCE/VC 

oxidation, a hypothesis was raised that what has appeared to be anaerobic oxidation of 

cDCE and VC at some sites or in some laboratory studies might actually have been 

aerobic oxidation sustained under extremely low fluxes of O2. This hypothesis results 

from two sources: 1) the low oxygen thresholds reported for known, aerobic oxidizers 

of VC [25]; and 2) personal communications we received from two other research 

teams (Paul Bradley & Frank Chapelle; and David Freedman & Stephen Zinder) who 

had observed VC-depletion in ostensibly anaerobic microcosms and reactors, but who 

had also discovered that staff had unintentionally allowed small amounts of air to enter 

the systems during sampling events. Freedman & Zinder even isolated a strain of VC-

oxidizing Mycobacterium from their supposed anaerobic microcosms. We therefore 

thought it entirely possible that at least some reports of “anaerobic oxidation” could 

have, in fact, been the result of aerobic processes. To begin exploring this possibility, 

microcosms that had been previously operated anaerobically were now provided with 

oxygen to ascertain whether or not cDCE/VC degradation might commence 

aerobically after extended anaerobic incubation. Headspace samples were analyzed for 

cDCE/VC and O2 via gas chromatography. 

 

3.2 Chemicals, Stock Solutions, and Medium 

cis-1,2-Dichloroethene (≥99%; Tokyo Chemical Industry Co. Ltd.), and 

gaseous vinyl chloride (≥99.5%; Sigma-Aldrich Co. Ltd.), were used as culture 
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substrates as well as analytical standards. A saturated cDCE stock solution was 

prepared by adding 1.5 mL neat cDCE to a 160 mL serum vial full of DS water and 

sealed with Teflon®-lined, butyl-rubber septum and aluminum crimp cap(solubility of 

cDCE is approximately 7 g/L; the density of cDCE is 1.28 g/mL). Ultra high purity 

compressed ethene obtained from Airgas and ethane with ≥99% purity from Sigma-

Aldrich were used as analytical standards.  

Amorphous Fe(III) oxyhydroxide suspension was prepared following the 

method of Lovley and Phillips [57]. A FeCl3 (98%; Aldrich Chemical Co. Ltd.) stock 

solution of 400 mM was neutralized with NaOH (97%; FisherChemical) solution to 

reach pH 7. The resultant Fe(III) oxyhydroxide suspension was triply centrifuged at 

5,000 rpm for 10 min and rinsed with distilled water so as to remove Cl- ions. The 

Fe(III) stock suspension achieved a final concentration of 200 mM Fe(III). Amorphous 

Mn(IV) suspension (as MnO2) was made by oxidizing 12 mM MnCl2 (Mallinckrodt 

Ltd.) with 8 mM KMnO4 (Mallinckrodt Ltd.) in a solution of NaOH (0.8794 g was 

added) [73]. The resulting suspension was subsequently centrifuged at 5,000 rpm for 

10 min and washed with DS water. This centrifugation/washing procedure was 

repeated twice to remove chloride ion. The final concentration of Mn(IV) suspension 

was about 180 mM Mn(IV). Fe(III) and Mn(IV) stock suspensions were kept in 160 

mL serum bottles and purged with N2 for 30 min. The bottles were then sealed with 

Teflon®-lined, butyl-rubber septa, crimped with aluminum crimp caps, and stored at 4℃ 

until use.  

The enrichment medium was composed of the following ingredients: 2.5 g/L 

NaHCO3, 0.1 g/L CaCl2·2H2O, 0.1 g/L KCl, 1.5 g/L NH4Cl, 0.69 g/L 

NaH2PO4 · 2H2O, 0.1 g/L NaCl, 0.1 g/L MgCl2·6H2O, 0.01 g/L MgSO4·7H2O, 0.005 

g/L MnCl2·4H2O, 0.001 g/L Na2MoO4·2H2O, and 0.01-0.05 g/L yeast extract. The 

medium was purged with N2/CO2 (80/20) gas for 30 min before use. 
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An O2 scrubbing solution was used to absorb trace amounts of O2 from the 

purge-gas mixture, which was composed of 10 mL/L 20% titanous chloride solution 

(FisherScientific), 4.412 g/L sodium citrate dehydrate (Na3C6H5O7·2H2O; 

FisherChemical), and 12.5 g/L sodium bicarbonate (NaH2CO3; Mallinckrodt). 

 

3.3 Experimental Setup 

3.3.1 The Addition of Electron Donors and Electron Acceptors 

The nominal concentration (i.e., ignoring partitioning to headspace) of 

chlorinated ethene substrates added to microcosms was 10 mg/L, which is much 

greater than typical cDCE/VC contamination levels in a chloroethene plume. Three 

concentrations of yeast extract (YE), 0.01 g/L, 0.025 g/L and 0.05 g/L were 

administered to microcosms (of 100-mL liquid volume) for different sources 

according to the characteristics of the materials we obtained.  

 

10 ⁄  
10 ⁄
97 ⁄

103  10.3 ⁄   

10  
10 ⁄

62.5 ⁄
160  16  ⁄  

The μmoles of Fe(III) and Mn(IV) required for the stoichiometric oxidation of 

cDCE, VC and yeast extract are listed in Table 3.1.  

 
Table 3.1 Calculation of electron acceptors required per bottle. 

Electron Donor 
(ED) 

ED amount 
(μmol) 

μeeq EA 
required 

Fe(III) required 
(μmol) 

Mn(IV) required 
(μmol) 

cDCE 10.3 82.4 82.4 41.2 
VC 16 160 160 80 

 

Based on the calculation above, 5 mL of 200 mM Fe(III) oxyhydroxide stock 

solution and 5 mL of 180 mM Mn(IV) stock suspension were added to microcosms 
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designated as receiving Fe or Mn, respectively, resulting in added levels of 1000 μmol 

Fe(III) or 900 μmol Mn(IV) — excesses in all cases. Another evidence for the 

excessive dosage of electron acceptors in the YE-amended microcosms was that the 

formation of Fe(II) or Mn(II) during the incubation period was much lower than the 

initial amount of Fe(III) or Mn(IV) added – based on data presented later in “Results”. 

 

3.3.2 Preparation of Microcosms 

Microcosm studies were initiated using site materials that were obtained from 

nine candidate sources in the USA. These are (in chronological order): (1) contents 

from two different columns, simulating a permeable reactive barrier (PRB) 

constructed with magnetite and bark mulch at Altus Air Force Base, OK; (2) 

supernatant from the anaerobic sludge digester of the Ithaca Area Wastewater 

Treatment Plant, Ithaca NY; (3) groundwaters from three locations influenced by a 

chloroethene plume from a former fire training pit (FT-02) at Plattsburgh Air Force 

Base, NY: (4) sediments from Naval Submarine Base Kings Bay Outcrop and Kings 

Bay KBA-11-13A, GA; (5) sediment from Naval Air Station, Jacksonville, FL; (6) 

soil and adjacent ground waters from three undisclosed Superfund sites, CA; (7) old 

microcosms  from Cardinal Landfill, NH, that had been operated under  anoxic 

conditions; (8) sediments from two locations at Aberdeen Proving Ground, MD; and 

(9) streambed sediment and nearby groundwater from Naval Air Station Cecil Field, 

FL, the location being one where Bradley and Chapelle observed anaerobic oxidation 

of VC and cDCE many years ago [10, 12, 14]. 

Series of microcosms (21 series in all) were prepared, each of which usually 

consisted of eight “treatments” (including four treatments that were amended with 

Fe(III)), with each treatment prepared in duplicate. However, two series (one for 

Ithaca Area Wastewater Treatment Plant and one for Cecil Field), which additionally 
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employed Mn(IV) as electron acceptor, had four additional treatments. More Fe-

reducing microcosms were constructed than Mn-reducing microcosms due to the fact 

that most site materials were from sources where iron reduction was a prevailing 

process. Types of microcosms are shown in Table 3.2.  

 
Table 3.2 Types of microcosms. 

cDCE-fed VC-fed 

live w/ Fe 
live w/Mn 
live w/o Fe/Mn 
autoclaved controls w/ Fe 
autoclaved controls w/Mn 
autoclaved controls w/o Fe/Mn

live w/ Fe 
live w/Mn 
live w/o Fe/Mn 
autoclaved controls w/ Fe 
autoclaved controls w/Mn 
autoclaved controls w/o Fe/Mn

 

Microcosms were created by transferring inoculum site material to each serum 

bottle followed by the dispensing of the enrichment medium, and Fe(III) 

oxyhydroxide stock slurry (for Fe(III)-reducing treatments), or Mn(IV) stock slurry 

(for Mn(IV)-reducing treatments) or anoxic DS water (for unamended treatments), to 

make a final volume of approximately 100 mL. Microcosms were kept purging with a 

mixed gas of N2/CO2 during the whole process of experimental setup. The volume 

ratio of N2:CO2 was adjusted to achieve a neutral pH (6.8-7.2) in the microcosms. 

They were then sealed with Teflon○R  coated butyl-rubber septa and aluminum caps. 

Killed controls were autoclaved for 45 min at 130℃. cDCE and VC were added to 

designated bottles at the final nominal concentration of 103 μM and 160 μM, using a 

volume of about 150 μL (saturated aqueous stock) or 40 μL (gas), respectively. Finally, 

the prepared microcosms were inverted, and agitated on an orbital shaker for 1 hr at 

120 rpm, then incubated (inverted) quiescently in the dark at 22℃. Microcosms 

prepared with sludge supernatant were incubated at 30 ℃. 
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Slight differences occurred in the amounts of inoculum material used and the 

concentration of yeast extract in the medium, depending on the different 

characteristics of the site materials we received. The summary tables of microcosm 

preparation are shown in Appendices I and II. 

 
3.3.2.1 Site/Source 1: PRB Columns from Altus Air Force Base, Site SS-17 

Oklahoma 

Two column materials were provided by John Wilson (USEPA Kerr Lab, Ada, 

OK) from the effluent ends of two continuous-flow columns that were constructed to 

model the permeable reactive barrier (PRB or biowall) at the Altus AFB SS-17 site, 

Oklahoma. Mulch column B2 was packed with a mixture of plant mulch and river 

sand, which originally had a significant amount of biologically available Fe(III). 

Column B4 had mulch and hematite and limestone added to buffer pH. In a recent 

column study by Shen and Wilson [78], it was discovered that the TCE supplied to 

these column influents was effectively removed, only 1% of which was accounted for 

as cDCE, VC, ethene, ethane and acetylene; however, up to 56% of [1, 2-13C]TCE 

added after 353 days of operation was recovered as 13CO2 and no greater than 0.6% of 

13C-TCE was recovered as 13CH4 [79]. Meanwhile, significant sulfate reduction and 

iron sulfide accumulation was observed in all columns with plant mulch, but a greater 

rate constant associated with FeS was achieved in the column amended with mulch 

and hematite [78]. Although the authors attributed the efficient removal of TCE to 

abiotic degradation, iron-reducing bacteria could have played a major role in the 

oxidation process due to the fact that the materials used to construct the columns had 

high concentrations of iron, 1800±130 mg/kg. 

To investigate the potential contribution of biological processes to anaerobic 

mineralization of the chloroethenes, we obtained 30 mL inoculum materials from each 

column — B2 and B4.  Column B2 was filled with 50% (v/v) shredded tree mulch, 10% 
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(v/v) cotton gin trash, and 40% (v/v) river sand; Column B4 was constructed with the 

same material, except for the addition of 32% (v/v) sand, 4% (v/v) granular hematite, 

and 4% (v/v) crushed limestone. The chemical composition of the plant mulch is listed 

below in Table 3.3. 

Two series of microcosms were set up using inoculum materials from the 

effluent ends of columns B2 and B4. Each microcosm contained 1.5 mL column 

material from the respective columns, 94mL medium with 0.05 g/L yeast extract, and 

5mL Fe(III) stock slurry, or 5 mL anoxic distilled water (DS water) in the Fe(III)-

amended or unamended microcosms, to make a final volume of approximately 100 

mL.  

 
Table 3.3 Major component of the tree mulch and cotton gin [79]. 

 

 
3.3.2.2 Site/Source 2: Ithaca Area Wastewater Treatment Plant, Ithaca, 

New York  

Given that digester sludge is a microbe-rich material containing a range of 

organic matter and plenty of other nutrients, we obtained 2 L mixed digester sludge 

from the anaerobic digester at the Ithaca Area Wastewater Treatment Plant, which has 
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been receiving chlorinated contaminants for a long period of time. The sludge was 

settled for several days before using it, to allow separation of the supernatant from the 

sediment.  

Twenty-four microcosms were prepared with 10 mL sludge supernatant as 

inoculum material and 85 mL medium containing 0.05 mg/L yeast extract. Some also 

received 5 mL of Fe(III) sock slurry or 5 mL of DS water. In addition to investigating 

the effects of Fe(III) amendment, we also prepared microcosms with 5 mL of 180-mM 

Mn(IV) stock slurry.  

3.3.2.3 Site/Source 3: Plattsburgh Air Force Base, Plattsburgh, New York 

Groundwater samples were provided by Dave Farnsworth (BRAC Envir. 

Coord., Plattsburgh), from three locations at Plattsburgh Air Force Base (fire training 

area FT-002) in New York. Two liters of groundwater was sampled from the influent 

to the Groundwater Operable Unit, a groundwater treatment system. The dissolved 

oxygen (D.O.) and the redox potential (Eh) for the groundwater sample were 3.89 

mg/L and -471 mV, respectively. Water samples were collected from the Idaho 

Avenue Discharge Pipe and East Flightline Discharge Pipe – both receiving 

groundwaters from subsurface interceptor trenches. D.O. and Eh for the samples from 

the former location were 2.91 mg/L and -350 mV; and 2.68 mg/L and -572 mV for the 

latter location.  

Three series of microcosms were set up using the sampled groundwaters as the 

inocula. Each microcosm contained: 85 mL medium with yeast extract concentration 

of 0.025 g/L; 10 mL water sample from the corresponding locations; 5 mL 200 mM 

Fe(III) stock slurry or 5 mL anoxic DS water in the Fe(III)- amended or -unamended 

microcosms. 
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3.3.2.4 Site/Source 4: Naval Submarine Base, Kings Bay, Georgia 

Fe-reducing sediment material was provided by Paul Bradley (USGS) from 

two locations at Naval Submarine Base, Kings Bay. Two series of microcosms were 

prepared using sediment from Kings Bay Outcrop, sampled at an exposed outcrop of 

shallow aquifer; and Kings Bay KBA-11-13A, collected from the top  organic layer in 

a shallow aquifer system which receives substantial oxygenated infiltration. In the 

previous assay conducted by Bradley et al., these materials had shown mineralization 

activity with [1, 2-14C]VC/DCE at dissolved oxygen concentration below 25 μg/L 

(results not published). 

Microcosms for Kings Bay KBA-11-13A had 9 g sediment as inoculum; 

microcosms for Kings Bay Outcrop were amended with 5 mL shallow aquifer 

sediment. Both series of microcosms contained 95 mL medium, with a yeast extract 

concentration of 0.01 g/L. 

3.3.2.5 Site/Source 5: Naval Air Station, Jacksonville, Florida 

Site material from Naval Air Station (NAS) Jacksonville was provided by Paul 

Bradley (USGS). It consisted of freshwater aquifer sediment material.   

One series of 16 microcosms was prepared from this material. Each microcosm 

contained 5 mL freshwater sediment, 90 mL medium with 0.01 g/L yeast exact, and 

either 5 mL 200 mM Fe(III) stock slurry or 5 mL anoxic DS water in the unamended 

microcosms.          

3.3.2.6 Site/Source 6: Unidentified Superfund Sites, Southern California 

Site materials were provided by David Freedman of Clemson University from 

three undisclosed Superfund sites in Southern California. These were sites used to 

investigate the anaerobic oxidation of VC several years ago and one had yielded an 

enrichment in which VC mineralization was observed without addition of electron 

acceptors (Note that the enrichment activity was later lost) [49]. Groundwater and soil 
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samples were available from these three sites though not all species of sample from 

each. Three series of microcosms were prepared using site materials from the three 

different locations. For Series #1, we received groundwater from a single well (MW 

2116) and two samples of soil from MW-2113-48 – #2151 and #2119. For Series #2, 

groundwater and soil was received from an unspecified monitoring well. For Series 

#3-(a) and -(b), site materials consisted of groundwater from one well and soil from 

two different cores.  

Microcosms for Series #1 contained 90 mL groundwater sample and 5 g soil 

collected from each of the two cores. The inoculum for Series #2 consisted of 7 g soil 

sample and 90 mL mixture of groundwater and medium in a ratio of 10:8. Series #3-(a) 

contained 90 mL groundwater sample and 5 g soil from each of the two cores; 

microcosms for Series #3-(b) were composed of 90 mL mixture of 95% groundwater 

and 5% medium, along with 5 g soil from each core. The mixture of groundwater and 

medium for this series was refrigerated overnight before preparation of microcosms. 

Because of concerns that this groundwater-medium mixture used to prepare Series #3-

(b) had been exposed to low levels of O2, microcosms were prepared again for this 

series in the same manner — designated as Series #3-(c). The concentration of yeast 

extract in the enrichment medium was 0.01 g/L for all microcosms, and 5 mL Fe(III) 

stock slurry was amended to the Fe(III)-reducing microcosms, while 5 mL anoxic DS 

water was added to the unamended microcosms.   

3.3.2.7 Site/Source 7: Cardinal Landfill, Farmington, New Hampshire 

The Cardinal Landfill site has been contaminated by cleaning solvents (PCE, 

TCE, methylene chloride) and paint solvents (acetone, ketone, xylenes, toluene) since 

the 1960s [3]. However, according to field data over the years, cDCE and VC have 

been declining along the groundwater flow path — and the decline is not accounted 

for by ethene. Furthermore, the dissolved iron levels at this site are in excess of 100 
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mg/L throughout [Evan Cox (Geosyntec), personal communication]. We obtained 

three microcosms that had been prepared from site materials by U. Toronto 

researchers under the direction of Elizabeth Edwards; they were provided to us by 

Melanie Duhamel; they had been amended with sulfate and were labeled SO4-1A, 

SO4-2A, and SO4-3A. The particular site location from which these microcosms were 

constructed contains a mixture of cDCE, dichloroethanes, acetone, ketones, methyl 

ethyl ketone (MEK), and methyl isobutyl ketone (MIBK). Each microcosm contained 

30 mL sediment and 180 mL groundwater collected from well SW111-Deep and had 

been amended with sulfate. The addition of sulfate was demonstrated by another lab to 

promote the anaerobic oxidation of ketones. However, the degradation of cDCE under 

Fe(III)-reducing conditions was not tested previously with these materials. Thus, we 

prepared new microcosms from these earlier, sulfate-amended microcosms to 

stimulate Fe(III)-reducing activity which might be tied to the potential anaerobic 

oxidation that appears to be occurring in the field at  Cardinal Landfill.   

Two series of microcosms were created for the Cardinal site. The contents of 

the first series included: i) 90 mL mixture of the supernatants from microcosms SO4-

1A and SO4-2A (7%, v/v), groundwater from Superfund series #3 (5%, v/v), and 

medium with 0.01 g/L yeast extract (88%, v/v); ii) 5 g soil from Superfund subset #3; 

iii) 5 mL 200mM Fe(III) stock suspension or 5 mL anoxic DS water in the Fe(III)- 

amended or -unamended microcosms. (Note that materials from Superfund Series #3 

were used in these Cardinal-site microcosms due to a misunderstanding with my 

advisor when we discussed the proposal for experimental setup.) Microcosms for the 

second treatment consisted of 90 mL mixture of 3% (v/v) supernatants from 

microcosm SO4-3A and 97% (v/v) medium (yeast extract concentration 0.01 g/L), 

plus 5 mL Fe(III) suspension or anoxic DS water for the Fe(III)-amended or -

unamended microcosms.  
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3.3.2.8 Site/Source 8: Aberdeen Proving Ground, Maryland 

Freshwater tidal wetland sediments were provided by E. Majcher (Geosyntec, 

Inc) from two locations, WB23 and WB30, along West Branch Canal Creek, 

Aberdeen Proving Ground, Maryland. This study site receives the discharge from a 

contaminated groundwater plume containing tetrachloroethene (TCE) and 

tetrachloroethane (TCA). Field and laboratory evidence have shown that DCE and VC 

accumulated during the biotransformation of TCE and TCA were completely degraded, 

but the dechlorination product ethene was rarely detected [55, 56]. The degradation of 

VC was found to be coupled with an increased proportion of Methanosarcinaceae, a 

group that generally encompasses acetotrophic methanogens.  It was therefore 

suggested that the presence of iron in the wetland porewater may have stimulated the 

growth of acetate-utilizing methanogens, which might in turn promote the 

mineralization activity of the lesser chlorinated ethenes at this site.  

Two series of microcosms were prepared using sediment materials sampled 

from sites WB23 and WB30, respectively. Microcosms contained 25 g sediment from 

the corresponding site, 77.5 mL medium (yeast exact concentration=0.01 g/L), 5 mL 

200 mM Fe(III) stock slurry or 5 mL anoxic DS water in the Fe(III)-amended or -

unamended bottles. 

3.3.2.9 Site/Source 9: Naval Air Station, Cecil Field, Florida 

Rowell Creek, Site 3 at Cecil Field is where Bradley and Chapelle obtained 

most of their field samples from which they observed anaerobic oxidation of DCE and 

VC under various electron accepting conditions, primarily associated with iron 

reduction, but also manganese reduction, sulfate reduction, humic acid reduction, as 

well as methanogenesis. Streambed sediments and groundwater from this same 

location (Rowell Creek, Site 3) were newly sampled and provided by Mike Singletary 

(NAVFAC).  Groundwater was sampled from monitoring well CEF-003-GW-31S 
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(31S). The sediment samples, which were labeled SD-1, SD-2, SD-3, were collected 

from three locations from a depth of 2-10 inches below the sediment/water interface. 

SD-1 was located approximately 9 ft upstream of 31S; SD-2 was located 

approximately 6 ft upstream of 31S; and SD-3 was located approximately 5 ft 

downstream of 31S.  

Two series of microcosms were prepared for Cecil Field site. Series #1 

contained 16 microcosms, and each of them was prepared with 90 mL groundwater 

sample and 25 g mixed sediment of SD-1, SD-2 and SD-3 (1:1:1); Series #2 involved 

16 microcosms, amended with 100 mL mixture of 50% groundwater and 50% medium 

(yeast extract concentration = 0.01 g/L), and 25 g mixed sediment from SD-1, SD-2 

and SD-3 (1:1:1); Series #3 comprised 22 microcosms, which contained 85 mL 

medium (no yeast extract) and 20 g mixed sediment collected from the three locations 

(1:1:1). 5 mL 200 mM Fe(III) stock slurry was added to the Fe(III)-reducing 

microcosms; 5 mL anoxic DS water was added to the unamended microcosms. For 

Series #3, eight microcosms amended with Mn(IV) as the electron acceptor were 

prepared. However, due to the lack of medium prepared, only 1 killed control fed with 

cDCE and VC was created, resulting in a total number of 22 microcosms for Series #3. 

 

3.4 Analytical Methods 

3.4.1 Gas Chromatography  

cDCE, VC, ethene, ethane, methane and O2 were monitored by a  PerkinElmer 

AutoSystem Gas Chromatograph (GC) equipped with an 8-feet × 1/8-inch stainless-

steel column, packed with 1% SP-1000 on 60/80 Carbopack-B (Supelco Inc). Two 

methods were employed to measure the volatile organic compounds and O2. To 

analyze the chloroethenes, 100 μL headspace samples were injected to the GC column 

using a gas-tight locking syringe. The sample flow was routed to a flame ionization 
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detector (FID) at an initial temperature of 90℃ for 2.5 min, and then the temperature 

ramped at 30 ℃ per minute to 195 ℃ for the next 3.5 min of the run. This method 

gave retention times for methane, ethene, ethane, VC, cDCE of 0.58 min, 0.75 min, 

0.82 min, 2 min, and 5.4 min, respectively. 500 μL headspace samples were injected to 

analyze O2. The samples initially flowed through a thermal conductivity detector 

(TCD) for the measurement of O2. After 0.76 min, a switching valve routed the sample 

flow to the FID for the measurement of the volatile organic compounds. The column 

was kept isothermally at 90 ℃ for 2 min after the injection, and the retention time for 

O2 in the method was 0.56 min.  Since only O2 was measured with this method, the 

run was stopped after O2 had eluted. N2 was used as the carrier and reference gas, with 

a flowrate of 30 mL/min. The flowrates for H2 and air were 45 mL/min and 450 

mL/min, respectively. 

 

3.4.2 Analysis of total Fe, Fe(II) and Mn(II) 

3.4.2.1 Total Fe 

The total iron in microcosms was analyzed with the FerroZine method (method 

8147, Hach Company, Loveland, CO), with a measurement range of 0.009 to 1.400 

mg/L Fe. The reagent solution contains ammonium thioglycolate, thioglycolic acid, 

demineralized water and other components (not listed). This method is based on the 

paper by Stookey in Analytical Chemistry (vol. 42, 779-781), in which hydroxylamine 

was used to reduce ferric iron to ferrous iron, and then the trace amount of ferrous iron 

in the samples could react with ferrozine (3-(2-pyridyl)-5,6-bis-(phenylsulfonic acid)-

1,2,4-triazine) to form a stable magenta complex. The purple color is directly 

proportional to the iron concentration, which can then be determined according to the 

absorbance reading on a spectrophotometer.   
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0.1 mL aliquots of microcosm slurry were transferred to 50 mL centrifuge 

tubes, and diluted to 25 mL with distilled-deionized (DDI) water. The reagent solution 

in the pillows (Hach Company) was then added to the tubes, and mixed well with the 

contents. After a 5 min reaction time, the samples were centrifuged (IEC Centra 

MP4R Centrifuge) at 1000 rpm for 2 min before analyzing the absorbance of the 

supernatant on a Hewlett Packard 8452A Diode Array Spectrophotometer at 562 nm. 

A sample blank without reagent and a reagent blank with DDI water were prepared in 

the same manner. The total iron concentration in the microcosms was calculated by 

subtracting the iron concentration of the sample blank from that of the samples, as the 

absorbance reading of the reagent blank was negligible. 

3.4.2.2 Fe(II) 

The accumulation of Fe(II) was analyzed using the phenanthroline method 

(method 8146, Hach Company), with a measurement range of 0.02 to 3.00 mg/L Fe(II). 

The reagent powder for Fe(II) analysis contains 1,10-phenathroline and bicarbonate, 

which will give an orange color when ferrous iron is present.  

A 0.5-mL, well-mixed aliquot was transferred from microcosms to the 50-mL 

centrifuge tubes. 15 μL of 2 N hydrochloric acid was added to adjust the pH of the 

sample to about 3.5. And the sample was then diluted to 25 mL with DDI water, 

mixed well with the reagent powder (Hach Company) and settled for 3 min for full 

color development. Afterwards, the samples were centrifuged at 1000 rpm for 2 min 

before reading the absorbance of the supernatant on a spectrophotometer at 510 nm. A 

sample blank and a reagent blank were prepared as previously described. 

However, when Fe(II) measurement was conducted with microcosms that 

contained muddy and suspended sediments, the results could be highly affected by the 

rate and time of centrifugation. To improve the accuracy of this method, filtration was 

employed to measure the accumulation of Fe(II) in the sediment-rich microcosms, 
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including those from Undisclosed Superfund sites, Cardinal, Aberdeen and Cecil Field 

sites. The diluted sample, therefore, was first filtered (0.45-μm HV Durapore○R  

Membrane Filter, Millipore) to obtain a clarified solution and then mixed with the 

reagent. After a 3-min reaction time, the absorbance of the sample was analyzed by the 

spectrophotometer. Since the samples after filtration was very clear, a sample blank 

was not used in the filtration method.  

3.4.2.3 Total Mn and Mn(II) 

The same method was used for the analysis of total Mn and Mn(II)— Method 

8034 for Mn measurement from  Hach Company, with a range of 0.1 to 20 mg/L. 

Since this method is used to detect all Mn species, filtration was performed to measure 

Mn(II) in order to eliminate  undissolved Mn species from the filtrate, while no 

filtration was conducted to measure total Mn. 

0.1 mL aliquot of well-mixed sample was transferred to a 50-mL centrifuge 

tube and diluted to 10 mL with DDS water. The solution was then filtered, followed 

by the addition of 6 μL 2N hydrochloric acid to adjust the pH to 3-5. After citrate 

buffer powder and sodium periodate (Hach Company) were added, the sample was 

shaken to mix well with the reagent and allowed to sit for 5 min for color development. 

Afterwards, the absorbance of the samples was measured on the spectrophotometer at 

525 nm. A sample blank and a reagent blank were prepared for determining the final 

concentration of Mn(II), as described previously.  

 

3.4.3 Preparation of Standards 

Quantification of each compound in the microcosms was determined by 

comparison of: i) the peak area values given by the data integrator connected to GC 

(for chloroethenes and other gases); and ii) the absorbance value given by the data-

analyzing software connected to the spectrophotometer (for total Fe, Fe(II) and, 
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Mn(II) ) to the predetermined corresponding standard curves. Standards were prepared 

by adding known amounts of compounds to 160-mL sealed serum vials with 100 mL 

of DS water (with the exception of O2), purging the headspace with N2/CO2 at 80:20 

ratio, and allowed to agitate on the orbital shaker for hours to reach equilibrium before 

analysis. 

3.4.3.1 cDCE Standards 

A 10 g/L stock solution of cDCE (≥99%; Tokyo Chemical Industry Co. Ltd.) 

in methanol was prepared by spiking 78 μL neat cDCE into 10-mL methanol. 

Standards were then created by delivering 10/25/50/100/200 μL stock solution to 

sealed serum vials to give 1/2.5/5/10/20 mg/L standards. 0.1-mL headspace samples 

were quantified with GC, yielding a calibration curve representing the linear 

relationship between the peak areas and amounts (in μmol/bottle) of cDCE in the 

bottles. Two cDCE standard curves were prepared, at 22 ℃ and 30 ℃ respectively. 

3.4.3.2 VC /Ethene/ Ethane Standards 

VC(Sigma-Aldrich)/Ethene/Ethane(Airgas) standards were created by 

transferring known volumes of gases to the serum vials. The moles of gases delivered 

were calculated by the ideal gas law: PV nRT , using the temperature and the 

pressure at the time of preparation. 0.1 mL headspace samples were quantified by GC, 

yielding a calibration curve representing the linear relationship between the peak areas 

and amounts (in μmol/bottle) of VC/Ethene/Ethane in the bottles. Two VC standard 

curves were prepared, at 22 ℃ and 30 ℃, respectively. 

3.4.3.3 O2 Standards 

For oxygen — unlike with other analytes — we were primarily interested in 

knowing the aqueous concentrations in microcosms, rather than total quantities per 

bottle. Gaseous O2 standards were prepared by adding known volumes of O2   to 160 

mL N2 filled serum vials. The moles of O2 delivered were determined according to the 
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ideal gas law: , using the temperature and the pressure at the time of 

preparation. The aqueous concentrations of O2 that would be at equilibrium with these 

various gaseous concentrations were calculated from Henry’s Law: , where 

is the aqueous O2 concentration (mol/L);  is the partial pressure of O2 (atm);  is 

Henry’s Law constant, 0.0013 · ·  for O2 at 298K. Headspace samples 

of 0.5 mL were quantified with GC, yielding a calibration curve representing the linear 

relationship between the peak areas and equilibrium aqueous O2 concentrations (in 

mg/L) in bottles.
 

3.4.3.4 Total Fe/Fe(II)/Total Mn/Mn(II) Standards 

A 100-mg/L Total Iron Standard Solution and a 250-mg/L Manganese Voluette 

Ampule Standard Solution were obtained from Hach Company. A 200-mg/L Fe(II) 

standard stock solution was prepared by dissolving 0.7 g ferrous ammonium sulfate 

(Fe(NH4)2(SO4)2·6H2O, Hach) in a 500-mL volumetric flask. Standards were then 

developed by diluting the corresponding standard solution to known concentrations 

and transferred to the cuvettes to test the absorbance with the spectrophotometer.  
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CHAPTER 4 

 

RESULTS  

 

4.1 Results for Anaerobic Microcosms 

All graphs of chloroethenes, iron and manganese measurements are shown in 

Appendix III – Results for Anaerobic Microcosms. Plotted data are generally means ± 

standard deviation for duplicate microcosms (error bars are smaller than the symbols 

where not visible). In case where duplicates showed marked disagreement, data are 

presented for both separately. Total iron concentration, which was an average value of 

that in Fe(III)-amended, live and killed microcosms, was only measured at the 

beginning when microcosms were constructed, and supposed to remain conservative. 

Therefore, this line is horizontal in all the graphs (with the exception of microcosms 

amended with sludge supernatant from the Ithaca Area Wastewater Treatment Plant). 

 
4.1.1 Site/Source 1: PRB Columns from Altus Air Force Base, Site SS-17, 
Oklahoma 

4.1.1.1 Column B2 

About 10 μmol cDCE and 16 μmol VC were initially added to the designated 

microcosms (Figure 4.1).  After 158 days of incubation, no loss of cDCE or VC was 

observed in either the microcosms amended with iron or without iron. The average 

concentration of total iron in the cDCE and VC bottles were approximately 562 mg/L 

and 554 mg/L, respectively. Fe(II) increased rapidly in the live bottles during the first 

13 days and remained at a level of  200-300 mg/L thereafter until the termination of 

monitoring. The accumulation of Fe(II) can be attributable to biological activity since 

Fe(II) concentration remained at the background level in the killed controls. However, 
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the formation of Fe(II) wasn’t associated with the biodegradation of  cDCE or VC, 

which was the interest of this study.  

 

 

Figure 4.1.a Anaerobic microcosm results for Altus AFB Column B2: cDCE in 
cDCE-fed bottles.                                  
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Figure 4.1.b Anaerobic microcosm results for Altus AFB Column B2: VC in 
VC-fed bottles. 
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Figure 4.1.c Anaerobic microcosm results for Altus AFB Column B2: Fe Analysis. 
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4.1.1.2  Column B4 

Following 152 days of incubation, no loss of cDCE or VC was observed in any 

microcosms constructed from column B4 material, except for one cDCE-fed bottle 

without amendment of Fe(III) , in which complete reductive dechlorination occurred 

(Figure 4.2 and Appendix III: 1-B).  

Figure 4.2 Anaerobic microcosm results for Altus AFB Column B4: Chloroethenes in 
cDCE-fed live 1 w/o Fe. 
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dechlorination of cDCE to VC and ethene in this microcosm.  Transformation of 

cDCE can be ascribed to biological activity because no consumption of cDCE was 

observed in the autoclaved control. That reductive dechlorination of cDCE only 

happened in one of the two duplicate “cDCE live” bottles may be due to the fact that 

the materials in the microcosms were not homogeneous. The average total iron 

concentrations in cDCE and VC bottles amended with Fe(III) were 619 mg/L and 614 

mg/L, respectively. Through 152 days of incubation period, Fe(II) concentrations in all 

Fe(III)-amended live bottles were between 100-200 mg/L, while about 100 mg/L Fe(II) 

was accumulated in the killed controls, suggesting that some of the Fe(II) production 

in these microcosms were abiotic. However, the reduction of Fe(III) did not stimulate 

the desired process of  cDCE or VC oxidation.  

 

4.1.2 Site/Source 2: Ithaca Area Wastewater Treatment Plant, Ithaca, New York 

Results for 24 “sludge supernatant” microcosms are shown in Appendix III: 2-

1A. Through 131 incubation days, reductive dechlorination occurred in one cDCE 

bottle with Fe(III) and one cDCE bottle without Fe(III). In the former case, trace 

amounts of VC (<0.25 μmol) started to appear in the cDCE-fed microcosm after a lag 

period of 71 days until the end of monitoring; in the latter case, 9 μmol cDCE was 

completely consumed and stoichiometrically transformed to VC via reductive 

dechlorination. The less quantities of dechlorination product (VC) observed in the 

Fe(III)-amended microcosm indicated that reductive dechlorination was effectively 

inhibited by the addition of Fe(III). No loss of cDCE or VC was observed in other 

microcosms, including those amended with Mn(IV). The average concentrations of 

total iron in the Fe-amended, cDCE-fed and VC-fed bottles were 531 mg/L and 555 

mg/L, respectively. Fe(II) concentrations in these bottles first increased up to 170-260 

mg/L by day 36, but dropped to 61-73 mg/L at day 131. Meanwhile, the original 
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orange color of the Fe(III)-amended microcosms disappeared, which was suggestive 

of complete conversion of Fe(III) to Fe(II). Accompanying this, however, was a 

decrease in measured total iron concentration to approximately 215 mg/L. The loss of 

measured Fe(II) and of total iron might be an artifact of sampling – i.e., due to 

precipitation or fixation on the walls of the bottles.  Total Mn concentration in the Mn-

amended, cDCE-/VC-fed bottles were 173 mg/L and 168 mg/L, respectively. However, 

the amount of Mn(II) formed did not increase above a background value, indicating 

that Mn(IV) reduction was not well established in these  microcosms.  

 

4.1.3 Site/Source 3: Plattsburgh AFB, New York 

4.1.3.1 Influent to the Groundwater Treatment Plant 

No degradation of cDCE, either by reductive dechlorination or anaerobic 

oxidation, was observed in any of the cDCE-fed bottles during 219 days of incubation. 

In VC-fed live bottles unamended with Fe(III), reductive dechlorination occurred 

(Figure 4.3). Ethene began to increase from day 41 and reached  9.9 μmol/bottle at day 

219, while VC decreased from 25.3 to 18.6 μmol/bottle — a good mass balance of 

ethenes was achieved. No reductive dechlorination was observed in any VC-fed 

bottles amended with Fe(III), which might be because reductive dechlorination was 

suppressed by the addition of Fe(III). The average total iron concentrations in Fe-

amended, cDCE- and VC-fed microcosms were 634 mg/L  and 606 mg/L, respectively. 

Although Fe(II) was formed in both cDCE- and VC-fed bottles, it did not stimulate the 

biodegradation of cDCE or VC.  
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Figure 4.3 Anaerobic microcosm results for Plattsburgh  AFB, Influent to the ground 
water treatment plant: Chloroethenes in VC live bottles  w/o Fe.                                                                
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(102 mg/L for cDCE-fed bottles; 78 mg/L for VC-fed bottles), it apparently did not 

result in the degradation of cDCE or VC.  

4.1.3.3 East Flightline Discharge Pipe 

Though 172 days of incubation, reductive dechlorination of cDCE to VC was 

observed in one cDCE-fed live bottle without Fe, in which VC started to form at day 

20 and remained almost the same (6.7-7.3 μmol) beyond day 98. Minor reductive 

dechlorination of VC to ethene was detected in one VC-fed live bottle without Fe, 

where ethene began to accumulate following a lag period of 98 days and reached 1.2  

μmol by day 172. No degradation of cDCE or VC occurred in other microcosms. 

However, the remaining amount of cDCE/VC in these microcosms (both live and 

killed) was more or less decreased, which was most probably a result of leakage losses.  

Initial concentrations of total iron in Fe-amended, cDCE- and VC-fed microcosms 

were 650 mg/L and 700 mg/L, and about 93 mg/L and 80 mg/L Fe(II) were formed at 

the last measurement point, respectively. The addition of Fe(III) did not stimulate the 

oxidation of cDCE or VC and probably suppressed the dechlorination process.  

 

4.1.4 Site/Source 4: NAS Kings Bay, Georgia 

4.1.4.1 Kings Bay KBA-11-13A 

At the completion of 182-day monitoring, no loss of cDCE or VC was found in 

any of the 16 microcosms (Appendix III: 4-A). Neither was Fe(III) reduction well 

developed, as indicated by the low value of Fe(II) concentration measured (about 20 

mg/L for both cDCE and VC bottles) at day 155.  
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4.1.4.2 Kings Bay Outcrop 

At the completion of 172-day incubation, none of the 16 microcosms exhibited 

activity — either with respect to cDCE/VC consumption or Fe(II) accumulation 

(Appendix III: 4-B).   

 

4.1.5 Site/Source 5: NAS Jacksonville, Florida 

After 179 days of incubation period, all 16 microcosms showed no signs of 

cDCE or VC degradation (Appendix III: 5-A). Only a small amount of Fe(II) (43 

mg/L and 80 mg/L in cDCE-fed and VC-fed bottles, respectively) accumulated in 

Fe(III)-amended microcosms, a large percentage of which was due to abiotic effects 

because minor accumulation of Fe(II) was also observed in the killed controls.  

 

4.1.6 Site/Source 6: Undisclosed Superfund Sites 

4.1.6.1 Series #1 

During 186 days of incubation, no consumption of cDCE or VC was detected 

in any of the 16 microcosms (Appendix III: 6-A). The small decrease of chloroethenes 

measured at the last point was most likely due to leakage losses through the serum 

vials’ septa.  Total iron data were not shown on the “Fe analysis” graphs because total 

iron concentrations for these microcosms were above the upper limit of the FerroZine 

method we used (1.99-6.62 mg/L vs. 1.40 mg/L Fe). No attempt was made to 

requantify the amount of total iron since no significant amount of Fe(II) was formed 

and no degradation of cDCE or VC occurred in these microcosms. Although Fe(II) 

concentrations reached their highest level at the third measurement point, they did not 

reflect the real concentrations of Fe(II) in these bottles. As mentioned in  

“Materials and Methods”, site materials from this Superfund site contained plenty of 

suspended particles, which resulted in  variable absorbance readings highly affected by 
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the rate and time of centrifugation. This also explained why relatively high 

concentrations of Fe(II) were observed in the autoclaved controls. Filtration was 

employed at the last point of Fe(II) measurement, which suggested either that Fe(III) 

reduction was not well established in these microcosms, or that precipitation of Fe(II) 

species occurred.     

4.1.6.2 Series #2 

Of the 16 microcosms in this series, minor reductive dechlorination was 

observed in one cDCE-fed live bottle unamended with Fe(III) (Appendix III: 6-B). 

After a short lag period of 27 days, VC started to accumulate but remained at a low 

level that was less than 0.55 μmol/bottle at the completion of monitoring. cDCE level 

in the same microcosm, however, dropped from 10.7 to 7.9 μmol, which was most 

probably related to leakage losses. In one VC-fed live bottle without Fe(III), reductive 

dechlorination occurred. About 6 μmol of VC (from 20 to 14 μmol) was consumed, 

while ethene rose to 3 μmol. The difference between VC degradation and ethene 

production was most likely a result of leakage losses after numerous punctures. 

Additionally, VC level in the corresponding killed control, as well as other 

microcosms, more or less decreased probably due to the same reason. The average 

total iron concentrations in the Fe-amended, cDCE- and VC-fed bottles were 248 

mg/L and 239 mg/L, respectively. Despite that approximately 96 mg/L and 117 mg/L 

Fe(II) were accumulated in the cDCE and VC microcosms correspondingly, Fe(III) 

reduction did not successfully induce anaerobic oxidation of cDCE or VC, when 

reductive dechlorination was completely inhibited.  

4.1.6.3 Series #3-(a) 

Following 185 days of incubation period, no consumption of cDCE/VC was 

detected in any of 16 microcosms (Appendix III: 6-C). However, the amount of 

chloroethenes decreased, to some extent, in all microcosms including the autoclaved 
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controls, which was most likely a consequence of leakage losses. Total iron 

concentrations in Fe-amended cDCE- and VC-fed microcosms were 695 mg/L and 

650 mg/L, respectively. Fe(II) concentrations in these Fe(III)-amended bottles 

continuously increased up to 215-259 mg/L at day 147, where sufficient Fe(III) was 

still left as electron acceptor. Nevertheless, Fe(II) dropped to below 100 mg/L at the 

last measurement point on day 230, which might have resulted from the precipitation 

of Fe(II) species.  

4.1.6.4 Series #3-(b) 

Through 219 days of incubation, no degradation of cDCE or VC was observed 

in any of 16 microcosms (Appendix III: 3-D). The amount of chloroethenes was more 

or less lower than what was added initially, which was most probably due to leakage 

losses. The average total iron concentrations in Fe-amended, cDCE- and VC- fed 

microcosms were 576 mg/L and 606 mg/L, respectively. Only about 30 mg/L Fe(II) 

accumulated  in the cDCE-fed microcosms, indicating that Fe(III) reduction was not 

well developed in these bottles. In the VC-fed microcosms, Fe(II) concentration first 

increased to 104 mg/L within 101 days, and then dropped to 29 mg/L on day 184, 

which might be a consequence of Fe(II) precipitation.  

4.1.6.5 Series #3-(c) 

At the completion of 197 days of incubation, all 16 microcosms showed no 

signs of cDCE or VC consumption (Appendix III: 6-E). Only 23 mg/L of Fe(II) 

accumulated in cDCE with Fe(III) live microcosms at the last measurement point (day 

184), suggesting that Fe(III) reduction was not well established in these microcosms. 

Approximately 77 mg/L Fe(II) were accumulated in Fe-amended, VC-fed live bottles, 

but it did not stimulate the desired process of VC mineralization.  
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4.1.7 Site/Source 7: Cardinal Landfill, Farmington, New Hampshire 

4.1.7.1 SO4-1A+SO4-2A 

During 200 days of incubation, only one “cDCE-fed live without Fe(III)” 

microcosm showed minor reductive dechlorination (Appendix III: 7-A). Following a 

134-day lag period, VC began to appear in the microcosm, but only 0.3 μmol of VC 

accumulated at the completion of monitoring. No loss of VC/cDCE was observed in 

other microcosms. The average total iron concentrations in Fe-amended, cDCE- and 

VC-fed microcosms were 614 mg/L and 626 mg/L, respectively. Less than 50 mg/L 

Fe(II) were accumulated in these microcosms by the last measurement on day 186. 

4.1.7.2 SO4-3A 

After 199 days of incubation, trace amounts of VC were detected at the last 

measurement in cDCE-fed live bottles amended with Fe(III) (Appendix III: 7-B). 

cDCE concentration decreased from 8.5 to 6.9 μmol/bottle, with the production of 

about 0.3 μmol/bottle VC. The difference between cDCE consumption and VC 

formation was most probably due to the leakage losses from the microcosm septa after 

numerous punctures because that the corresponding killed controls also showed minor 

loss of cDCE (from 9.2 to 7.7 μmol). Similarly, trace amounts of VC were also 

observed in cDCE-fed live bottles without Fe(III), following a lag period of 71 days. 

However, the concentration of VC remained below 0.2 μmol/bottle to the end of this 

microcosm study of the Cardinal site. No VC degradation occurred in VC-fed 

microcosms, either amended or unamended with Fe(III). The average total iron 

concentrations in cDCE and VC microcosms were 554 mg/L and 534 mg/L, 

respectively. After 185 days, less than 17.4 mg/L (38.0 minus 20.6 mg/L) Fe(II) was 

produced in Fe-amended cDCE-fed microcosms, while Fe(II) level did not increase in 

the VC-fed bottles.  
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4.1.8 Site/Source 8: Aberdeen Proving Ground, Maryland 

4.1.8.1 WB 23  

Vigorous reductive dechlorination occurred in all live microcosms of WB23, 

with or without Fe(III) (Figure 4.4). In Fe-amended, cDCE-fed live bottles, cDCE (7.7 

μmol) was degraded entirely by day 33, with ethene (7.3 μmol) as the only detectable 

product. 150 μL of cDCE saturated solution was then respiked to the microcosms on 

day 34. Two μmol of VC had accumulated when headspace analysis was performed 

after the microcosms were agitated on an orbital shaker for an hour. cDCE, as well as 

its dechlorination product, VC, was rapidly depleted again within seven days, while 

ethene crested to approximately 14 μmol/bottle. These results suggested that the 

chloroethene precursors ((7.7 + 3.8) μmol cDCE + 2 μmol VC=13.5 μmol) were 

stoichiometrically converted to ethene via complete reductive dechlorination. cDCE-

fed live bottles exhibited similar behavior as that in Fe(III)-amended microcosms. 

After the first addition of 7.3 μmol cDCE was fully degraded to 7.3 μmol of ethene, 

another 150 μL cDCE saturated solution was respiked to the microcosms. Within 

seven days, chloroethene precursors (9.5 μmol cDCE and 2 μmol VC) were depleted 

and converted to 7.5 μmol ethene. The difference between cDCE/VC consumption and 

ethene production might result from the leakage losses from the microcosm septa, 

which could also explain the phenomenon of cDCE decrease in the corresponding 

killed controls. In VC-fed live microcosms, reductive dechlorination exhibited similar 

rate and extent in the Fe(III)-amended and unamended bottles. During the first 33 days, 

about 20 μmol of VC was biotransformed to approximately 16 μmol of ethene. The 

second addition of about 17 μmol VC was depleted rapidly in 7 days, with 

accumulation of about 12 μmol ethene. Total iron concentration in cDCE-fed, Fe-

amended microcosms were 475.4 mg/L, and about 251.8 mg/L of Fe(II) was produced 

by day 40; total iron in VC-fed bottles was 583.4 mg/L,  and about 222.9 mg/L Fe(II) 
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was accumulated by day 47. The iron analysis results showed that Fe(III) reduction 

was well developed in these microcosms. However, the addition of Fe(III) did not 

inhibit the occurrence of reductive dechlorination, either in terms of degradation rate 

or extent. Furthermore, a large methane output was detected in all the cDCE-and VC-

fed microcosms (data not shown), suggesting that methanogenesis was not completely 

suppressed by the Fe(III). Since the wetland sediment obtained from Aberdeen site 

was rich in organic matter, which could provide abundant sources of electron donors, 

competition for reducing equivalents between reductive dechlorinators and other 

metabolic groups of indigenous microorganisms did not become a limiting factor for 

the occurrence of reductive dechlorination. Because the organic-rich, highly reducing 

environment would not support anaerobic oxidation of cDCE and VC, monitoring was 

ceased after 47 days. 

4.1.8.2 WB 30 

Microcosms for WB 30 exhibited similar activity as that in WB 23 microcosms 

— extensive reductive dechlorination was detected in all live bottles amended and 

unamended with Fe(III) (Appendix III: 8-B). In cDCE-fed live bottles (with and 

without Fe), about 5 μmol added cDCE was consumed, with about 7.5 μmol ethene as 

the only detectable product after 32 days. Likewise, in VC-fed live microcosms, an 

average of approximately 80% of the VC consumption could be attributable to ethene 

production by day 32 (18.8-19.2 μmol VC vs. 15 μmol ethene). The dechlorination of 

cDCE/VC to ethene was accompanied by a large output of methane observed in all the 

live microcosms (data not shown), suggesting that methanogenesis was not inhibited 

by the addition of Fe(III). Total iron and Fe(II) were only measured at the beginning 

when microcosms were constructed. No attempt was made to measure the subsequent 

change of Fe(II) in these microcosms because anaerobic oxidation would not be 
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favorable under highly reducing methanogenic conditions. Monitoring was then 

terminated after day 32.  

 

        Figure 4.4.a Anaerobic microcosm results for Aberdeen WB23: cDCE in cDCE-
fed bottles. 
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Figure 4.4.b Anaerobic microcosm results for Aberdeen WB23: VC in VC-fed bottles. 
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Figure 4.4.c Anaerobic microcosm results for Aberdeen WB23: Fe analysis. 
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4.1.9 Site/Source 9: NAS Cecil Field, Florida 

4.1.9.1 Sediment+Groundwater 

Following 135-148 days of incubation, significant cDCE and VC consumption, 

via anaerobic reductive dechlorination was observed in all 8 live microcosms, but the 

rate and extent of dechlorination differed between duplicate microcosms, as well as 

between bottles with and without Fe(III) (Figure 4.5).  In cDCE-fed live microcosms 

amended with Fe(III), one exhibited minor reductive dechlorination — 0.9 μmol of 

VC was accumulated during the 135-day incubation, while 3.6 μmol of cDCE was 

degraded (from 7.5 to 3.9 μmol). The lack of mass balance of chloroethenes was 

probably due to leakage, since in its duplicate microcosm, the concentration of cDCE 

declined with the coincident accumulation of VC and ethene after day 9. VC, which 

had increased to 5.3 μmol, started to decrease after day 100, while ethene kept rising 

till reached 8.7 μmol. On day 135, approximately 82.1% of cDCE was converted to 

ethene. The loss was most likely a consequence of leakage from the microcosm septa 

after numerous punctures, as also indicated by the corresponding autoclaved control. 

In comparison with microcosms amended with Fe(III), one cDCE-fed live bottle 

without Fe(III) showed complete reductive dechlorination from cDCE to VC to ethene, 

followed by further reduction of ethene to ethane. VC started to accumulate in the 

microcosm without a lag, accompanied by the simultaneous consumption of cDCE. 

Ethene appeared after day 9 and kept rising till reached the highest level of 11 

μmol/bottle on day 69, when cDCE and VC were almost depleted while ethene began 

to convert to ethane. At the last measurement point, day 148, all the 11 μmol of 

formerly accumulated ethene was completely reduced to 12.5 μmol of ethane — a 

fairly good mass balance of ethenes was achieved. The duplicate cDCE-fed bottle was  
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Figure 4.5.a Anaerobic microcosm results for Cecil Field sediment+groundwater: 
Chloroethenes in cDCE+Fe microcosms. 
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Figure 4.5.b Anaerobic microcosm results for Cecil Field sediment+groundwater: 
Chloroethenes in cDCE w/o Fe microcosms. 
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removed for subsequent aerobic studies (described previously in “Materials and 

Methods”) on day 26, when reductive dechlorination products – VC and ethene – had 

accumulated. Ethane was also found as the end product of reductive dechlorination in 

two VC-fed live microcosms. In one of the VC-fed live bottles amended with Fe(III), 

VC was rapidly transformed to ethene by day 118, after which ethene started to 

decline while ethane rose. By day 135, all 18.5 μmol of VC was depleted, with 

accumulation of 9.4 μmol of ethene and 7.2 μmol of ethane, respectively. In contrast, 

minor reductive dechlorination occurred in the replicated VC with Fe(III) microcosm. 

Following a lag period of 100 days, 1.6 μmol of ethene was produced on day 135. In 

one of the VC-without-Fe(III) live microcosms, ethene started to accumulate 

immediately without a lag and kept increasing with the concomitant decrease of VC. 

When VC was entirely consumed on day 118, ethene began to decline while ethane 

started to appear in the microcosms. At the completion of monitoring (day 148), 18.6 

μmol of ethane was the only detectable end product of reductive dechlorination. 18.6 

μmol of added VC was stoichiometrically converted to ethane. The duplicate VC w/o 

Fe(III) bottle was taken out for the aerobic studies on day 26 when ethene had 

accumulated. The average total iron concentrations in Fe-amended, cDCE- and VC-

fed microcosms were 552 mg/L and 573.7 mg/L. At last measurement on day 127, 

101.9 mg/L of Fe(II) had accumulated in the cDCE-fed bottles;  while  94.5 mg/L 

Fe(II) was formed in the VC-fed bottles. It is noteworthy that the complete reduction 

from ethene to ethane observed in the three microcosms was accompanied by a large 

production of methane, which gave evidence that the nutrient-rich materials from 

Cecil Field provided sufficient electron donors for the growth of both methanogens 

and Fe(III)-reducers.  
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Figure 4.5.c Anaerobic microcosm results for Cecil Field sediment+groundwater: 
Chloroethenes in VC+ Fe microcosms. 
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Figure 4.5.d Anaerobic microcosm results for Cecil Field sediment+groundwater: 
Chloroethenes in VC w/o Fe microcosms. 
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Figure 4.5.d Anaerobic microcosm results for Cecil Field sediment+groundwater: Fe 
Analysis. 
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4.1.9.2 Sediment+Groundwater+Medium 

In all eight live microcosms, reductive dechlorination occurred, with VC, 

ethene or ethane as the final product (Appendix III: 9-B). The duplicate microcosms 

showed a degradation activity similar to each other in this series of Cecil Field 

microcosms. In Fe-amended, cDCE-fed live bottles, one showed 2.9-μmol degradation 

of cDCE  with production of 3.5 μmol VC and 0.6 μmol ethene on day 119; the other 

one had 0.7 μmol of cDCE converted to 0.6 μmol of VC, which was the only 

detectable dechlorination product by day 119.  The extent of reductive dechlorination 

was much more extensive in cDCE microcosms unamended with Fe(III), in which 

reduction from ethene to ethane was observed. In the first cDCE-w/o-Fe(III) live 

bottle, cDCE kept declining till the depletion on day 105, while ethene and VC were 

accumulated without a lag. On day 36, VC was almost entirely consumed, while 

ethene started to decrease with the concurrent increase of ethane production. For the 

last measurement, the addition of 5.1 μmol of cDCE was converted to 6.8 μmol of 

ethane. Ethane was also the end product of the replicate cDCE-w/o-Fe(III) live bottle, 

but appeared later after 90 days. At the last measurement point, about 6.0 μmol of 

cDCE was depleted with 7.4 μmol of ethane produced. In Fe-amended, VC-fed live 

microcosms, minor reductive dechlorination was observed. Following a lag period of 

36 days, 0.9 μmol of ethene was accumulated in the first bottle on day 120; ethene 

started to appear after a 90-day lag period in the second bottle and increased to 1.2 

μmol on day 120. In the first VC-w/o- Fe(III) live microcosm, ethene was the principal 

product — 23.7 μmol of VC degradation was completely accounted for  the 

production of 26.6 μmol of ethene and 0.9 μmol of ethane. On the other hand, ethane 

was the predominant product in its replicated microcosm — 16.7 μmol of VC was 

completely converted to 18.2 μmol of ethane and 3.9 μmol of ethene during 120 days. 

The average total iron concentrations in Fe-amended, cDCE- and VC-fed microcosms 
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were 435.5 mg/L and 466.3 mg/L, respectively. Little accumulation of Fe(II) was 

detectable in the Fe(III)-amended microcosms after 95 days. However, the addition of 

Fe(III) did inhibit, to some extent, the occurrence of reductive dechlorination (more 

extensive reductive dechlorination happened in bottles without iron). Additionally, 

compared to the large output of methane in the live microcosms without Fe(III), only a 

small amount of methane was detected in the live microcosms amended with Fe(III) 

(data not shown).  

4.1.9.3 Sediment+Medium 

Given that robust reductive dechlorination occurred in the previously prepared 

Cecil Field microcosms due to the nutrient-rich nature of the site materials, no yeast 

extract was added to the basal medium when constructing the third series of 

microcosms. Following 84 days of incubation period, minor reductive dechlorination 

was observed in four cDCE-fed live bottles amended with Fe(III) or Mn(IV) — the 

production of VC or VC + ethene was below 1 μmol (Appendix III: 9-C). In contrast, 

complete reductive dechlorination occurred in live bottles without Fe(III) or Mn(IV), 

ethane accumulated in one of the duplicate microcosms. VC started to accumulate in 

these microcosms without a lag, and then decreased with the continuous production of 

ethene. By day 84, 94.3% of cDCE degradation could be attributable to the 

accumulation of ethene in the first microcosm (10 μmol ethene production vs. 10.6 

μmol cDCE consumption). In its duplicate microcosm, cDCE and VC entirely 

disappeared with 8.6 μmol of ethene as the final product (7.4 μmol cDCE was added). 

Trace amount of ethane appeared on day 84. No degradation of VC was observed in 

VC-fed microcosms with Fe(III) or Mn(IV), while complete reductive dechlorination 

occurred in VC live bottles without Fe(III) and Mn(IV). At the completion of 

monitoring on day 84, an average of 89.9% of VC was converted to ethene (14.3 μmol 

ethene formed vs. 15.9 μmol VC added). Total iron data were not shown on “Fe 
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analysis” graphs because that total iron concentrations for these microcosms were 

above the upper limit of the FerroZine method we used (1.17-3.27 mg/L vs. 1.40 mg/L 

Fe). No attempt was made to requantify the amount of total iron since the only 

observed metabolic process in these microcosms was reductive dechlorination. During 

61 days, approximately 40 mg/L of Fe(II) accumulated in the Fe(III)-amended 

microcosms (from 54.3 to 93.3 mg/L in cDCE-fed bottles; from 52.5 to 93.8 mg/L in 

VC-fed bottles); On day 73, the measured Mn(II) concentration was below 30 mg/L 

(similar values were measured in the killed controls), which suggested that Mn(IV) 

reduction was not well developed in these microcosms. Compared with the 

chloroethene results of Fe(III)- and Mn(IV)-unamended live microcosms, the addition 

of Fe(III) or Mn(IV)  could contribute to the inhibition of reductive dechlorination, as 

well as the production of methane .   

 

4.2 Results for Aerobic Microcosms 

As outlined earlier, we hypothesized that what some have reported to be 

anaerobic oxidation might actually be aerobic oxidation occurring under conditions of 

low oxygen-flux at extremely low levels of dissolved oxygen. We thus investigated 

the potential for aerobic oxidizers to survive after prolonged incubation in our 

ostensibly anaerobic microcosms. Therefore, 10 mL oxygen was added to 16 of the 

formerly anaerobic microcosms from the following sites: Plattsburgh AFB, Influent to 

the groundwater treatment plant and Idaho Avenue discharge pipe; NSB Kings Bay, 

KBA-11-13A and  Outcrop; Unidentified Superfund Site, Subset #1, Subset #2, and 

Subset #3-(a); NAS Cecil Field, sediment+groundwater. Microcosms for the aerobic 

experiment are shown in Appendix IV: Table IV. Most of these microcosms were 

unamended with Fe(III) and had shown no degradation of cDCE or VC during 

anaerobic incubation. The corresponding duplicate anaerobic microcosms continued to 
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serve as the anoxic controls for the aerobic experiment. The remaining amounts of 

chloroethenes and oxygen were measured periodically with GC/FID and GC/TCD, 

respectively.  

After 64 days of aerobic incubation, no oxidation of cDCE was observed in 

any of the cDCE-fed microcosms. One cDCE-fed microcosm, constructed with 

sediment and groundwater from Cecil Field, showed extensive reductive 

dechlorination even after the addition of oxygen (Appendix IV: 1-A). Repeated 

additions of cDCE could be degraded without a lag. Although oxygen remaining in the 

aerobic microcosms was monitored periodically, there were two peaks that co-eluted 

with each other on the GC/TCD chromatogram for Cecil Field microcosm. These two 

peaks were first thought to be O2 and CO2, but turned out to be CO2 and ethene after 

identification. Consequently, the occurrence of reductive dechlorination in the 

originally aerobic microcosm probably resulted from the depletion of oxygen by a 

range of degradation processes in the organic-rich materials from Cecil Field and the 

dominance of reductive dechlorinators thereafter.  

Among eight of the VC-fed aerobic microcosms, three microcosms – from 

Undisclosed Superfund Sites Series #2 and #3(a) and Cecil Field – showed VC-

oxidizing activity (Figure 4.6). VC, along with previously accumulated ethene, was 

completely degraded within 44 days. A subsequent addition of VC was entirely 

consumed in 12 days without accumulation of any reductive dechlorination products. 

In their anoxic controls, VC either remained more or less the same level or degraded 

via reductive dechlorination. No oxidation of VC was observed in other VC-fed 

aerobic microcosms (Appendix IV: 1-B). 
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Figure 4.6.a Aerobic microcosm results for Superfund site series #2. 
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Figure 4.6.b Aerobic microcosm results for Superfund site series #3-(a). 
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Figure 4.6.c Aerobic microcosm results for Cecil Field sediment+groundwater. 
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4.3. Summary of Results 

In summary, of 21 series of anaerobic microcosms, 8 showed no loss of cDCE 

or VC (Table 4.1. Category I); 10 exhibited various extents of reductive dechlorination 

(usually those without Fe or Mn amendment) (Table 4.2. Category II); finally, 

complete reductive dechlorination occurred with Cecil Field site materials and ethane 

was the final product (Table 4.3. Category III).  
 

Table 4.1 Results for Anaerobic Microcosms. Category I: No loss of cDCE/VC. 

No. Site/Source Name Starting Date Duration Days 
1 Altus AFB, Column B2 11/19/07 158 d 

4 
NSB, Kings Bay KBA-11-13A 04/10/08 182 d 
NSB, Kings Bay Outcrop 04/21/08 172 d 

5 NAS, Jacksonville 04/09/08 179 d 

6 

Unidentified Superfund Site, Series #1 06/18/08 186 d 
Unidentified Superfund Site, Series #3-(a) 06/19/08 185 d 
Unidentified Superfund Site, Series #3-(b) 07/04/08 219 d 
Unidentified Superfund Site, Series #3-(c) 07/17/08 197 d 
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Table 4.2 Results for Anaerobic Microcosms. Category II: Reductive Dechlorination (RD).  

No. Site/Source Name 
Starting & 

Duration Days 
Results 

1 Altus AFB, Column B4 11/28/07 152 d 1 live w/o Fe (III)  RD of cDCE 

2 
Anaerobic Sludge Supernatant, Ithaca Wastewater Treatment 
Plant 

12/13/07 131 d 
1 live w/ Fe (III)  minor RD of cDCE 
1 live w/o Fe(III)/Mn(IV) RD of cDCE 

3 

Plattsburgh AFB, Influent to the groundwater treatment plant 01/30/08 219 d 2 live w/o Fe (III)  RD of VC 

Plattsburgh AFB, Idaho Avenue discharge pipe 01/31/08 173 d 2 live w/o Fe (III)  RD of VC 

Plattsburgh AFB, East Flightline discharge pipe 02/01/08 172 d 
1 live w/o Fe (III) RD of cDCE 
1 live w/o Fe (III)  minor RD of VC 

6 Unidentified Superfund Site, Series #2 06/24/08 180 d 
1 live w/o Fe (III)  minor RD of cDCE 
2 live w/o Fe (III) minor RD of VC 

7 
Cardinal Landfill, SO4-1A + SO4-2A 07/13/08 200 d 1 live w/o Fe (III) minor RD of cDCE 

Cardinal Landfill, SO4-3A 07/15/08 199 d All live w/ and w/o Fe(III)  minor RD of cDCE 

8 
Aberdeen Proving Ground, WB23 08/15/08 41 d All live w/ and w/o Fe(III)  extensive RD of cDCE/VC 

Aberdeen Proving Ground, WB30 08/16/08 32 d All live w/ and w/o Fe(III)  extensive RD of cDCE/VC 

 
Table 4.3 Results for Anaerobic microcosms.  
Category III: Complete Reductive Dechlorination (RD) with ethane as the final product. 

No. Site/Source Name 
Starting & Duration 

Days 
Results 

9 

NAS, Cecil Field,  
Sediment+Groundwater 

10/15/08 135 d 
All live w/ and w/o Fe(III)  RD of cDCE/VC 
Ethane in cDCE live 1; VC+Fe live 1; VC live 2 

NAS, Cecil Field, 
Sediment+Groundwater+Medium 

10/31/08 119 d 
All live w/ and w/o Fe(III) RD of cDCE/VC 
Ethane in all cDCE and VC live w/o Fe(III) bottles 

NAS, Cecil Field,  
Sediment+Medium 

12/08/08 84 d 
All live w/ and w/o Fe(III)/Mn(IV)  RD of cDCE 
All live  w/o Fe(III)/Mn(IV) RD of VC 
Ethane in one cDCE live bottle w/o Fe(III)/Mn(IV) 
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On the other hand, when oxygen was added to several formerly anaerobic 

microcosms, VC oxidation was observed in three microcosms from Undisclosed 

Superfund Sites Series #2 and #3-(a) and Cecil Field. No cDCE or VC oxidation 

occurred in other now-aerobic microcosms. 
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CHAPTER 5 

 

DISCUSSION 

 

The primary objective of this project was to develop enrichment cultures and 

characterize microorganisms that can oxidize cDCE and VC under Fe(III)- or Mn(IV)-

reducing conditions. Microcosm studies were initiated using materials from 17 

different sample-locations, obtained from 9 sources throughout the United States, 

including those where the nominally anaerobic mineralization of cDCE and/or VC was 

observed in previous investigations. Varieties of materials were examined to seek the 

potential metal-linked cDCE-/VC- oxidizers, such as aquifer sediments, streambed 

sediments, soil, groundwater, sludge supernatant, and column contents constructed 

with tree mulch, cotton gin trash, and river sand. However, after monitoring 350 or so 

microcosms for over one and a half years, the only observed microbial metabolic 

pathway in anaerobic microcosms was reductive dechlorination.   

Among 10 series of microcosms that exhibited reductive dechlorination, most 

were microcosms devoid of Fe(III) (Table 4.2). The presence of Fe(III) also appeared 

to suppress methanogenesis (with the exception of Aberdeen). These results are 

consistent with the consensus that i) reductive dechlorination of cDCE and VC is more 

favorable under strongly reducing conditions, such as methanogenesis and sulfate 

reduction [9, 18, 27, 94, 95]; and ii) iron-reducers can generally outcompete 

methanogens when abundant, microbially reducible Fe(III) oxides are available [74]. 

On the other hand, when available organic material is abundant, it is reasonable to 

expect that iron-reducers would be unable to keep hydrogen levels low enough to 

suppress reductive dechlorination and methanogenesis. 
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The tendency of reductive dechlorination of chloroethenes declines as the 

number of chlorine substituents decreases. While dechlorination of PCE and TCE to 

cDCE is favored under mildly reducing conditions, i.e., NO3
- and Fe(III) reduction, 

further degradation from cDCE to VC or  to ethene is most likely to occur under 

highly reducing methanogenic or sulfate-reducing conditions [21]. Inefficient 

reductive dechlorination of cDCE and VC under Fe(III)-reducing conditions has been 

reported in other studies [21, 93]. On the other hand, mechanisms for suppression of 

methanogenesis under Fe(III)-reducing conditions are usually interpreted as 

competition between methanogens and Fe(III)-reducing bacteria for the common 

substrates, e.g. hydrogen and acetate [58,74]. Fe(III)-reducers have a much lower 

hydrogen requirement, i.e., H2 threshold, than methanogens (0.1-0.8 nM vs. 5-95 nM) 

[54, 66]. Furthermore, besides substrate competition, a recent study also demonstrated 

that Fe(III)-reduction may directly affect methanogens by siphoning electrons away 

from methanogens during the Fe(III)-reduction process [7].   

However, when electron donor availability was high, vigorous reductive 

dechlorination of cDCE and VC occurred in Fe(III)-amendment microcosms for 

Aberdeen Proving Ground, accompanied by the accumulation of Fe(II) and a large 

output of methane. Aberdeen sediment was very “mucky,” and obviously organic-rich. 

Previous studies have demonstrated the significance of substrate availability on 

microbial interspecies competition.  Lovley and Phillips, as well as other researchers, 

have shown that the formerly inhibited metabolic processes under more-oxidizing 

conditions could be overcome in the presence of excess hydrogen and acetate [50, 58, 

88].  The site materials from Aberdeen Proving Ground came from wetland sediments. 

Fermentation of the copious organic matter in such material, therefore, could provide a 

steady release of hydrogen and acetate that were sufficient to sustain, simultaneously, 

the functions of Fe(III)-reducers, chlororespirers, and methanogens.  
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Similarly, reductive dechlorination occurred in all live microcosms for three 

series from Cecil Field, except for four VC live bottles amended with Fe(III) or Mn(IV) 

constructed with sediments and a basal medium. Complete reductive dechlorination 

from cDCE or VC to ethene, followed by further reduction of ethene to ethane under 

methanogenesis was observed in eight of these microcosms, one of which was 

amended with Fe(III). These observations agree with those from other studies that 

reduction from ethene to ethane is associated with strongly reducing methanogenic 

conditions [18, 27]. That the addition of Fe(III) did not inhibit reductive 

dechlorination and methanogenesis, again, was most probably a result of abundant 

hydrogen and acetate sources continuously produced by fermentative microbes 

metabolizing a range of organic matters in these rich, bed sediments.  

Despite the considerable number of microcosms prepared for this study, no 

signs of cDCE/VC oxidation were observed, even with site materials collected from 

the same locations where cDCE/VC mineralization activity was previously reported by 

other researchers. Bradley and Chapelle first reported anaerobic mineralization of VC 

in Fe(III)-reducing, shallow aquifer sediments collected from NAS Cecil Field and 

Plattsburgh AFB in 1996 [9]. Subsequently, the same research group published a 

series of investigations on DCE/VC anaerobic mineralization under differing electron-

accepting processes, most of which were based on microcosm studies using creek bed 

sediments collected from Cecil Field — from the same location where we obtained 

material in our study. The previous studies included microbial mineralization of DCE 

and VC under Fe(III)-reducing, SO4
2- -reducing and methanogenic conditions [10, 12, 

14], DCE/VC anaerobic oxidation under humic acid-reducing conditions [11], and 

acetogenic microbial oxidation of VC [15, 16]. Likewise, we also obtained 

groundwater and soil samples, courtesy of Dr. David Freedman (Clemson University), 

where VC mineralization was observed several years ago (although the activity was 
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later lost for unknown reasons). However, given the elapse of time between these 

previous studies and ours, the more recent collection of materials from the same 

locations as used in previous studies would not guarantee similar results. 

Temporal and spatial variations of terminal electron-accepting processes can 

exert a strong influence on the pathways and rates of cDCE/VC degradation. Field and 

laboratory studies on biotransformation of petroleum hydrocarbon contaminants have 

demonstrated that terminal electron-accepting processes (TEAP) can shift from one to 

another in response to natural or anthropogenic changes in groundwater recharge, 

discharge, and withdrawal, which would significantly alter the pathways and products 

of organic-contaminant biodegradation [12, 21, 88].  

At NAS Cecil Field, substantial temporal variability of the creek bed sediments, 

even during a short time frame, was shown in Bradley and Chapelle’s studies a decade 

ago. Microbial activity varied over time from predominantly oxidized products to 

entirely reductive dechlorination products [Bradley, personal communication]. Apart 

from CO2, ethene and ethane were detected as the concurrent end products of VC 

biodegradation under methanogenic conditions [15, 17]. Another annotation on 

temporal variability is that the activity of anaerobic DCE/VC oxidation under humic 

acid reduction was never dependably produced again by the same research team 

[Bradley, personal communication]. In addition, a contaminant plume is also dynamic 

in spatial distribution. For example, the groundwater and soil samples obtained from 

Dr. Freedman were collected further downgradient from the location his lab used for 

the original study several years ago, in that the highly reducing zone of the plume has 

since moved downgradient [Freedman, personal communication]. Freedman’s lab was 

conducting similar microcosm studies on anaerobic VC mineralization concurrently 

with ours, but using different experimental methods. They tested VC degradation 

activity under various electron acceptors, including amorphous Fe(III), EDTA-Fe(III), 
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Mn(IV), sulfate and anthraquinone-2,6-disulfonate (AQDS) [49]. However, anaerobic 

oxidation of VC was neither observed in their microcosm study nor ours. In our study, 

only minor reductive dechlorination occurred in three of the live microcosms for these 

sites; others exhibited no loss of cDCE or VC.  

The failure to observe anaerobic cDCE/VC oxidation can also be attributable to 

an integration of other variables. For example, method or personnel changes in sample 

collection, experimental setup, analysis procedures and even flawed monitoring can 

introduce variability into experimental results. As a consequence, it can be a hit-or-

miss event, in terms of finding just the right conditions for microbial anaerobic 

mineralization. 

Although the results of our study, as well as those from other studies, illustrate 

the difficulty of finding metal-linked cDCE/VC- oxidizing microorganisms, a question 

has been raised in the meantime: is the previously observed “anaerobic mineralization” 

really, in all cases, anaerobic?    

Compared with strongly reducing electron-accepting processes where oxygen 

is strictly absent (e.g., methanogenesis), iron reduction and manganese reduction are 

relatively oxidized “anaerobic” processes where oxygen is not detectable but existent 

[19]. Furthermore, Coleman et al. have reported that effective aerobic oxidation of VC 

can occur under extremely low oxygen concentrations. The measured half-velocity 

constants (Ks) for five strains of VC-assimilating bacteria are from 0.03 to 0.3 mg/liter; 

their minimum oxygen requirements (O2 thresholds) are as low as 0.02 to 0.1 mg/L 

[25]. Thus, trace amounts of O2 existing in ostensibly O2-free systems might 

potentially contribute to mineralization of the lesser-chlorinated compounds. 

Experimental bias resulting from oxygen contamination is thus another concern 

in judging the authenticity of the formerly found “anaerobic mineralization.” As 

mentioned previously (Materials and Methods), Bradley and Chapelle have discovered, 
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in their recent studies, that small amounts of air were accidentally introduced to the 

nominally anoxic microcosms and reactors during sampling procedures, which is a 

common risk in anaerobic experiments. Moreover, unexpectedly, a strain of aerobic 

VC-oxidizing bacteria, a Mycobacterium, was isolated from Freedman’s “anaerobic” 

enrichment culture. Given the fact that only a small proportion of their previous 

microcosms showed positive activity (2/15 and 1/18), which was eventually lost [49], 

oxygen contamination might be one of the possible explanations for previously 

observed mineralization (though it must be pointed out that Freedman’s group did 

seem to link disappearance of VC to appearance of acetate). 

Finally, a recent investigation on biotransformation of cDCE and VC in 

Fe(III)-reducing cultures developed from landfill leachate sediment demonstrated that 

the enrichment culture was capable of degrading cDCE and VC without accumulation 

of reductive dechlorination products [43]. However, this oxidative activity was proved 

not to be associated with Fe(III)-reduction, SO4
2--reduction, or methanogenesis, but 

rather associated with  other unclear microbial mechanisms.   

A comprehensive consideration of the facts mentioned above gave rise to the 

hypothesis that what has appeared to be anoxic mineralization of cDCE and VC in 

some microcosm studies might in fact have been aerobic mineralization under 

extremely low O2 concentrations. To initiate an investigation on this possibility, 10 

mL of pure O2 was added to 16 of the previously anaerobic microcosms to assess if 

aerobic cDCE-/VC-oxidizers could survive after being incubated anaerobically, and, if 

so, to ascertain the speed of their resurgence.  

After a 44-day incubation, VC-oxidizing activity was exhibited in three of the 

eight VC-amended experimental microcosms — Superfund sites series #2 and # 3-(a) 

and NAS Cecil Field. Repeat additions of VC were completely consumed within 6-12 

days. No oxidation of cDCE was observed in any of the eight cDCE-amended 
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microcosms. Instead, robust reductive dechlorination occurred in Cecil Field 

microcosm, most likely because the added O2 was depleted by various biotic or abiotic 

mechanisms in the organic-rich material in the microcosm, and reductive 

dechlorination could again become the predominant metabolic process.   

Results support the notion that aerobic VC-oxidizers can persist even after 

extended anaerobic incubation. What remains is to see if aerobic VC oxidation can 

occur under the influence of a low, steady influx of O2 that enables only extremely low 

oxygen concentrations to be maintained. 
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CHAPTER 6 

 

SUMMARY AND CONCLUSIONS  

 

Anaerobic oxidation of cDCE and VC under Fe(III)- and Mn(IV)-reducing 

conditions metabolized by indigenous microorganisms at chloroethene-contaminated 

sites has been hypothesized as a significant alternative metabolic pathway to reductive 

dechlorination [9, 23]. However, anaerobic mineralization is still an area of active 

research since microorganisms capable of oxidative cDCE/VC degradation have not 

been identified, and neither have the metal-linked metabolic pathways been clearly 

elucidated [18]. Aiming at the development of enrichment cultures exhibiting 

cDCE/VC mineralization activity under iron- or manganese-reducing conditions, we 

hereby initiated this microcosm study. Over a one-and-one-half-year period, 21 series 

of microcosms – about 350 microcosms in total – were constructed, with materials 

from 17 different sampling locations from 9 sources in the USA. The change of 

chloroethenes, along with the accumulation of Fe(II) and Mn(II), was monitored 

periodically for each series of microcosms during an approximately 6 month of 

incubation period. 

The following results were achieved: 

(1) cDCE or VC mineralization under Fe(III)- or Mn(IV)-reducing conditions 

was not discovered in any of the 350 microcosms. Instead, reductive 

dechlorination was the only anaerobic metabolic pathway observed in this 

study: 8 series of microcosms showed no loss of cDCE or VC; 10 exhibited 

various extents (from minor to complete) of reductive dechlorination; 

complete reductive dechlorination occurred with Cecil Field site materials 

and ethane was the final product in 8 Cecil Field microcosms.  
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(2) Most microcosms showing reductive dechlorination were those unamended 

with Fe(III) or Mn(IV) and without methane production. This is consistent 

with the results from previous studies that addition of Fe(III) or Mn(IV) 

can suppress reductive dechlorination and methanogenesis.  

(3) When electron donor was not a limiting factor, extensive reductive 

dechlorination with large methane output was observed in Fe- and Mn-

amended microcosms constructed with materials from Aberdeen Proving 

Ground and NAS Cecil Field. Site materials from these two sites are 

characterized as organic-rich, likely resulting in abundant hydrogen and 

acetate sources to satisfy the metabolic needs for Fe(III)-/Mn(IV)-reducers, 

reductive dechlorinators,  and methanogens. 

(4) In view of the considerable, unsuccessful efforts made to characterize 

anaerobic cDCE/VC-oxidizers (in studies by both our lab and other 

research teams), we perceive considerable challenges to the identification 

of anaerobic cDCE/VC oxidizing microorganisms. Temporal and spatial 

variations as well as other variables, such as method or personnel changes 

in sample collection, different methods in experimental setup, and flawed 

monitoring could perhaps partially explain the lack of success that we and 

others have encountered in attempting to reproduce the previously observed 

cDCE/VC mineralizations by other researchers. It appears that anaerobic 

cDCE/VC oxidation – if it exists at all – is not a microbial metabolic 

process as widespread as reductive dechlorination. However, considering 

the decade-long effort before the final isolation of D. ethenogenese 195, 

characterization of metal-linked cDCE/VC oxidizers, if they really exist, 

might be a similarly lengthy process – or even more so. The metal-reducing 

environment – existing as somewhat of a transition zone between truly 
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aerobic and highly reductive, anaerobic zones of a contaminant plume – is 

a comparatively smaller niche than either of those that flank it. Given that 

zone boundaries shift with time, this is a situation that makes locating 

anaerobic oxidizers all the more difficult. 

(5) While not denying the existence of anaerobic cDCE/VC oxidizing 

microorganisms, we propose a hypothesis (based on previous research 

results and personal communication with other research teams) that what 

has been reported to be anaerobic oxidation (at least in some studies) might 

have in fact been aerobic oxidation sustained under extremely low fluxes of 

oxygen. We added 10 mL of pure oxygen to 16 of cDCE- and VC-fed 

microcosms that were previously operated anaerobically and obtained three 

active cultures showed VC-oxidizing activity (Superfund sites series #2 and 

#3-(a) and Cecil Field). Future work is needed to continue the investigation 

on aerobic VC oxidation under low O2 concentration.    
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APPENDEX I: SUMMARY OF MICROCOSMS 

Table I-1 Summary of Microcosms. 

Site 
No. 

Site Name Microcosm Inoculum 
Treatments 

Fe (III) reducing unamended Mn (IV) reducing 
cDCE VC cDCE VC cDCE VC 

1 Altus Air Force Base 
Column B2 effluent 

2 active    
2 killed 

2 active      
2 killed 

2 active      
2 killed 

2 active      
2 killed 

  

Column B4 effluent 
2 active      
2 killed 

2 active      
2 killed 

2 active      
2 killed 

2 active      
2 killed 

  

2 
Ithaca Wastewater 
Treatment Plant 

Sludge supernatant 
2 active      
2 killed 

2 active      
2 killed 

2 active      
2 killed 

2 active      
2 killed 

2 active      
2 killed 

2 active  
2 killed 

3 
Plattsburgh Air Force 
Base  

Influent to groundwater 
treatment system 

2 active      
2 killed 

2 active      
2 killed 

2 active      
2 killed 

2 active      
2 killed 

  

Groundwater from Idaho 
Ave Discharge Pipe 

2 active      
2 killed 

2 active      
2 killed 

2 active      
2 killed 

2 active      
2 killed 

  

Groundwater from East 
Flightline Discharge Pipe 

2 active      
2 killed 

2 active      
2 killed 

2 active      
2 killed 

2 active      
2 killed 

  

4 
Naval Submarine 
Base, Kings Bay 

Sediment from KBA-11-
13A  

2 active      
2 killed 

2 active      
2 killed 

2 active      
2 killed 

2 active      
2 killed 

  

Sediment from KB Outcrop 
2 active      
2 killed 

2 active      
2 killed 

2 active      
2 killed 

2 active      
2 killed 

  

5 
Naval Air Station 
Jacksonville 

Sediment 
2 active      
2 killed 

2 active      
2 killed 

2 active      
2 killed 

2 active      
2 killed 

  

6 
Undisclosed 
Superfund Sites 

Series #1: soil and 
groundwater 

2 active      
2 killed 

2 active      
2 killed 

2 active      
2 killed 

2 active      
2 killed 

  

Series #2: soil + 
groundwater + medium 

2 active      
2 killed 

2 active      
2 killed 

2 active      
2 killed 

2 active      
2 killed 

  

Series #3-(a): soil + 
groundwater 

2 active      
2 killed 

2 active      
2 killed 

2 active      
2 killed 

2 active      
2 killed 

  

Series #3-(b): soil+ 
groundwater + medium 

2 active      
2 killed 

2 active      
2 killed 

2 active      
2 killed 

2 active      
2 killed 
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Table I-1 Continued 

Site 
No. 

Site Name Microcosm Inoculum 
Treatments 

Fe (III) reducing unamended Mn (IV) reducing 
cDCE VC cDCE VC cDCE VC 

6 
Undisclosed 
Superfund Sites 

Series #3-(c): soil+ 
groundwater + medium  

2 active       
2 killed 

2 active       
2 killed 

2 active       
2 killed 

2 active       
2 killed 

  

7 
Cardinal Landfill       
a           

SO4-1A + 
SO4-2A  

2 active     
2 killed 

2 active       
2 killed 

2 active       
2 killed 

2 active       
2 killed 

  

SO4-3A 
2 active       
2 killed 

2 active       
2 killed 

2 active       
2 killed 

2 active       
2 killed 

  

8 
Aberdeen Proving 
Ground 

Groundwater and sediments 
from WB 23 

2 active       
2 killed 

2 active       
2 killed 

2 active       
2 killed 

2 active       
2 killed 

  

Groundwater and sediments 
from WB 30 

2 active       
2 killed 

2 active       
2 killed 

2 active       
2 killed 

2 active       
2 killed 

  

9 
Naval Air Station 
Cecil Field 

Sediment+ 
Ground water 

2 active       
2 killed 

2 active       
2 killed 

2 active       
2 killed 

2 active       
2 killed 

  

Sediment+Ground 
water+Medium 

2 active       
2 killed 

2 active       
2 killed 

2 active       
2 killed 

2 active       
2 killed 

 
 
 

Ground water+ 
Medium 

2 active       
2 killed 

2 active       
2 killed 

2 active       
1 killed 

2 active       
1 killed 

2 active      
2 killed 

2 active  
2 killed 

 

 

 

 

 

 

88
 



 

89 

APPENDIX II: CONTENTS OF MICROCOSMS 
 
Table II-1A Site/Source 1: Altus AFB, Column B2. 
Inoculum 

type 
Conditions No. of 

bottles Inoculum Medium cDCE/VC Fe/DS water live/killed 

B2 
Effluent 

1.5 mL 

94 mL 
(yeast 
extract 
0.05 
g/L) 

150 μL cDCE 
saturated 
solution  

5 mL Fe(III) 
stock slurry 

live 

2 

150 μL cDCE 
saturated 
solution 

5 mL DS 
water 

2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 
5 mL DS 
water 

2 

150 μL cDCE 
saturated 
solution 

5 mL Fe(III) 
stock slurry 

killed 

2 

150 μL cDCE 
saturated 
solution 

5 mL DS 
water 

2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 
5 mL DS 
water 

2 

Total  16 

 
 
Table II-1B Site/Source 1: Altus AFB, Column B4. 
Inoculum 

type 
Conditions No. of 

bottles Inoculum Medium cDCE/VC Fe live/killed 

B4 
Effluent 

1.5 mL 

94 mL 
(yeast 
extract 
0.05 
g/L) 

150 μL cDCE 
saturated 
solution  

5 mL Fe(III) 
stock slurry 

live 

2 

150 μL cDCE 
saturated 
solution 

5 mL DS 
water 

2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 
5 mL DS 
water 

2 

150 μL cDCE 
saturated 
solution 

5 mL Fe(III) 
stock slurry 

killed 

2 

150 μL cDCE 
saturated 
solution 

5 mL DS 
water 

2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 
5 mL DS 
water 

2 

Total  16 
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Table II-2 Site/Source 2: Ithaca Area Wastewater Treatment Plant. 
Inoculum 

type 
Conditions No. of 

bottles Inoculum Medium cDCE/VC Fe/Mn live/killed 

Sludge 
supernatan
t 

10 mL 

85 mL 
(yeast 
extract 
0.05 
g/L) 

150 μL cDCE 
saturated solution 

5 mL Fe(III) 
stock slurry 

live 

2 

150 μL cDCE 
saturated solution 

5 mL Mn(IV) 
stock slurry 

2 

150 μL cDCE 
saturated solution 

5 mL DS 
water 

2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 
5 mL Mn(IV) 
stock slurry 

2 

400 μL neat VC 
5 mL DS 
water 

2 

150 μL cDCE 
saturated solution 

5 mL Fe(III) 
stock slurry 

killed 

2 

150 μL cDCE 
saturated solution 

5 mL Mn(IV) 
stock slurry 

2 

150 μL cDCE 
saturated solution 

5 mL DS 
water 

2 

400 μL neat VC 
5 mL Mn(IV) 
stock slurry 

2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 
5 mL DS 
water 

2 

Total  24 
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Table II-3A Site/Source 3: Plattsburgh AFB, Influent to the groundwater treatment plant. 

Inoculum 
type 

Conditions 
No. of 
bottles Inoculu

m 
Medium cDCE/VC Fe/Mn live/killed 

Groundwate
r 

10 mL 

85 mL 
(yeast 
extract 
0.025 
g/L) 

150 μL cDCE 
saturated solution 

5 mL Fe(III) 
stock slurry 

live 

2 

150 μL cDCE 
saturated solution 

5 mL DS 
water 

2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 
5 mL DS 
water 

2 

150 μL cDCE 
saturated solution 

5 mL Fe(III) 
stock slurry 

killed 

2 

150 μL cDCE 
saturated solution 

5 mL DS 
water 

2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 
5 mL DS 
water 

2 

Total  16 

 
 
Table II-3B Site/Source 3: Plattsburgh AFB, Idaho Avenue discharge pipe. 
Inoculum 

type 
Conditions No. of 

bottles Inoculum Medium cDCE/VC Fe/Mn live/killed 

Groundwa
ter 

10 mL 

85 mL 
(yeast 
extract 
0.025 
g/L) 

150 μL cDCE 
saturated solution 

5 mL Fe(III) 
stock slurry 

live 

2 

150 μL cDCE 
saturated solution 

5 mL DS 
water 

2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 
5 mL DS 
water 

2 

150 μL cDCE 
saturated solution 

5 mL Fe(III) 
stock slurry 

killed 

2 

150 μL cDCE 
saturated solution 

5 mL DS 
water 

2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 
5 mL DS 
water 

2 

Total  16 
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Table II-3C Site/Source 3: Plattsburgh AFB, East Flightline discharge pipe. 
Inoculum 

type 
Conditions No. of 

bottles Inoculum Medium cDCE/VC Fe/Mn live/killed 

Groundwa
ter 

10 mL 

85 mL 
(yeast 
extract 
0.025 
g/L) 

150 μL cDCE 
saturated solution 

5 mL Fe(III) 
stock slurry 

live 

2 

150 μL cDCE 
saturated solution 

5 mL DS 
water 

2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 
5 mL DS 
water 

2 

150 μL cDCE 
saturated solution 

5 mL Fe(III) 
stock slurry 

killed 

2 

150 μL cDCE 
saturated solution 

5 mL DS 
water 

2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 
5 mL DS 
water 

2 

Total  16 

 
 
 
 
 
 
Table II-4A Site/Source 4: NSB, Kings Bay KBA-11-13A. 
Inoculum 

type 
Conditions No. of 

bottles Inoculum Medium cDCE/VC Fe/Mn live/killed 

Sediment 9 g 

95 mL 
(yeast 
extract 
0.01 
g/L) 

150 μL cDCE 
saturated solution 

5 mL Fe(III) 
stock slurry 

live 

2 

150 μL cDCE 
saturated solution 

5 mL DS 
water 

2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 
5 mL DS 
water 

2 

150 μL cDCE 
saturated solution 

5 mL Fe(III) 
stock slurry 

killed 

2 

150 μL cDCE 
saturated solution 

5 mL DS 
water 

2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 
5 mL DS 
water 

2 

Total  16 
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Table II-4B Site/Source 4: NSB, Kings Bay Outcrop. 
Inoculum 

type 
Conditions No. of 

bottles Inoculum Medium cDCE/VC Fe/Mn live/killed 

Shallow 
Aquifer 
Sediment 

5 mL 

95 mL 
(yeast 
extract 
0.01 
g/L) 

150 μL cDCE 
saturated solution 

5 mL Fe(III) 
stock slurry 

live 

2 

150 μL cDCE 
saturated solution 

5 mL DS 
water 

2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 
5 mL DS 
water 

2 

150 μL cDCE 
saturated solution 

5 mL Fe(III) 
stock slurry 

killed 

2 

150 μL cDCE 
saturated solution 

5 mL DS 
water 

2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 
5 mL DS 
water 

2 

Total  16 

 
 
 
 
 
 
Table II-5 Site/Source 5: NAS, Jacksonville. 
Inoculum 

type 
Conditions No. of 

bottles Inoculum Medium cDCE/VC Fe/Mn live/killed 

Freshwater
Sediment 

5 mL 

95 mL 
(yeast 
extract 
0.01 
g/L) 

150 μL cDCE 
saturated solution 

5 mL Fe(III) 
stock slurry 

live 

2 

150 μL cDCE 
saturated solution 

5 mL DS 
water 

2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 
5 mL DS 
water 

2 

150 μL cDCE 
saturated solution 

5 mL Fe(III) 
stock slurry 

killed 

2 

150 μL cDCE 
saturated solution 

5 mL DS 
water 

2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 
5 mL DS 
water 

2 

Total  16 
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Table II-6A Site/Source 6: Unidentified Superfund Site, Subset #1. 

Inoculum 
type 

Conditions 
No. of 
bottles Inoculum 

Mediu
m 

cDCE/VC Fe/Mn live/killed 

 
Groundwater 
& two types 
of  soil 

90 mL 
groundwater; 
5 g soil from 
MW-2113-
48 #2151; 5g 
soil from 
MW-2113-
48 #2119 

no 

150 μL cDCE 
saturated solution  

5 mL Fe(III) 
stock slurry 

live 

2 

150 μL cDCE 
saturated solution 

5 mL DS 
water 

2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 
5 mL DS 
water 

2 

150 μL cDCE 
saturated solution 

5 mL Fe(III) 
stock slurry 

killed 

2 

150 μL cDCE 
saturated solution 

5 mL DS 
water 

2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 
5 mL DS 
water 

2 

Total  16 

 
 
 
 
 
 
Table II-6B Site/Source 6: Unidentified Superfund Site, Subset #2. 

Inoculum 
type 

Conditions No. of 
bottles Inoculum Medium cDCE/VC Fe/Mn live/killed 

Groundwater 
&  one type 
of soil 

90 mL 
mixture of 
groundwate
r and 
medium 
(10:8); 7 g 
soil  

90 mL 
mixture 
of 
ground 
water 
and 
medium 
(10:8) 

150 μL cDCE 
saturated solution  

5 mL Fe(III) 
stock slurry 

live 

2 

150 μL cDCE 
saturated solution 

5 mL DS 
water 

2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 
5 mL DS 
water 

2 

150 μL cDCE 
saturated solution 

5 mL Fe(III) 
stock slurry 

killed 

2 

150 μL cDCE 
saturated solution 

5 mL DS 
water 

2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 
5 mL DS 
water 

2 

Total  16 
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Table II-6C Site/Source 6: Unidentified Superfund Site, Subset #3-(a). 

Inoculum 
type 

Conditions 
No. of 
bottles Inoculum 

Mediu
m 

cDCE/VC Fe/Mn live/killed 

 
Groundwate
r & two 
types of  soil 

90 mL 
groundwater; 
5 g soil from 
each type of 
cores 

no 

150 μL cDCE 
saturated solution  

5 mL Fe(III) 
stock slurry 

live 

2 

150 μL cDCE 
saturated solution 

5 mL DS 
water 

2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 
5 mL DS 
water 

2 

150 μL cDCE 
saturated solution 

5 mL Fe(III) 
stock slurry 

killed 

2 

150 μL cDCE 
saturated solution 

5 mL DS 
water 

2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 
5 mL DS 
water 

2 

Total  16 

 
 
 
 
 
 
Table II-6D Site/Source 6: Unidentified Superfund Site, Subset #3-(b).  

Inoculum 
type 

Conditions No. of 
bottles Inoculum Medium cDCE/VC Fe/Mn live/killed 

Groundwater 
& two types 
of  soil 

90 mL 
groundwate
r; 5 g soil 
from each 
type of 
cores 

90 mL 
mixture 
of 
ground 
water 
and 
medium 
(17:1) 

150 μL cDCE 
saturated solution  

5 mL Fe(III) 
stock slurry 

live 

2 

150 μL cDCE 
saturated solution 

5 mL DS 
water 

2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 
5 mL DS 
water 

2 

150 μL cDCE 
saturated solution 

5 mL Fe(III) 
stock slurry 

killed 

2 

150 μL cDCE 
saturated solution 

5 mL DS 
water 

2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 
5 mL DS 
water 

2 

Total  16 
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Table II-6E Site/Source 6: Unidentified Superfund Site, Subset #3-(c). 

Inoculum 
type 

Conditions No. of 
bottles Inoculum Medium cDCE/VC Fe/Mn live/killed 

 
Groundwater 
& two types 
of  soil 

90 mL 
groundwate
r; 5 g soil 
from each 
type of 
cores 

90 mL 
mixture 
of 
ground 
water 
and 
medium 
(17:1) 

150 μL cDCE 
saturated solution  

5 mL Fe(III) 
stock slurry 

live 

2 

150 μL cDCE 
saturated solution 

5 mL DS water 2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 5 mL DS water 2 

150 μL cDCE 
saturated solution 

5 mL Fe(III) 
stock slurry 

killed 

2 

150 μL cDCE 
saturated solution 

5 mL DS water 2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 5 mL DS water 2 

Total  16 

 
 
 
 
 
 
Table II-7A Site/Source 7: Cardinal Landfill, SO4-1A + SO4-2A. 

Inoculum 
type 

Conditions 
No. of 
bottles Inoculu

m 
Medium cDCE/VC Fe/Mn live/killed 

Supernatant 
from old 
microcosms 

90 mL 
mixture 
of the 

supernat
ant (7% 

v/v), 
groundw

ater 
from 

Superfu
nd series 
#3 (5%, 
v/v) and 
medium 
(88%, 
v/v) 

88% 
(v/v) 

medium 
(yeast 
extract 
0.01 
g/L) 

150 μL cDCE 
saturated solution  

5 mL Fe(III) 
stock slurry 

live 

2 

150 μL cDCE 
saturated solution 

5 mL DS water 2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 5 mL DS water 2 

150 μL cDCE 
saturated solution 

5 mL Fe(III) 
stock slurry 

killed 

2 

150 μL cDCE 
saturated solution 

5 mL DS water 2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 5 mL DS water 2 

Total  16 
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Table II-7B Site/Source 7: Cardinal Landfill, SO4-3A. 

Inoculum 
type 

Conditions 
No. of 
bottles Inoculu

m 
Medium cDCE/VC Fe/Mn live/killed 

Supernatant 
form old 
microcosms 

90 mL 
mixture 
of the 

supernat
ant (3% 
v/v), and 
medium 
(97%, 
v/v) 

97% 
(v/v) 

medium 
(yeast 
extract 
0.01 
g/L) 

150 μL cDCE 
saturated solution  

5 mL Fe(III) 
stock slurry 

live 

2 

150 μL cDCE 
saturated solution 

5 mL DS water 2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 5 mL DS water 2 

150 μL cDCE 
saturated solution 

5 mL Fe(III) 
stock slurry 

killed 

2 

150 μL cDCE 
saturated solution 

5 mL DS water 2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 5 mL DS water 2 

Total  16 

 
 

 
 
 
 
Table II-8A Site/Source 8: Aberdeen Proving Ground, WB23. 
Inoculum 

type 
Conditions No. of 

bottles Inoculum Medium cDCE/VC Fe/Mn live/killed 

 Freshwater 
tidal 
wetland 
sediments 

25 g 

77.5 mL 
(yeast 
extract 
0.01 
g/L) 

150 μL cDCE 
saturated solution  

5 mL Fe(III) 
stock slurry 

live 

2 

150 μL cDCE 
saturated solution 

5 mL DS water 2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 5 mL DS water 2 

150 μL cDCE 
saturated solution 

5 mL Fe(III) 
stock slurry 

killed 

2 

150 μL cDCE 
saturated solution 

5 mL DS water 2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 5 mL DS water 2 

Total  16 
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Table II-8B Site/Source 8: Aberdeen Proving Ground, WB30. 
Inoculum 

type 
Conditions No. of 

bottles Inoculum Medium cDCE/VC Fe/Mn live/killed 

Freshwater 
tidal 
wetland 
sediments 

25 g 

77.5 mL 
(yeast 
extract 
0.01 
g/L) 

150 μL cDCE 
saturated solution  

5 mL Fe(III) 
stock slurry 

live 

2 

150 μL cDCE 
saturated solution 

5 mL DS water 2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 5 mL DS water 2 

150 μL cDCE 
saturated solution 

5 mL Fe(III) 
stock slurry 

killed 

2 

150 μL cDCE 
saturated solution 

5 mL DS water 2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 5 mL DS water 2 

Total  16 

 
 
 
 
 
 
Table II-9A Site/Source 9: NAS, Cecil Field, Sediment+Groundwater. 

Inoculum 
type 

Conditions 
No. of 
bottles Inoculu

m 
Medium cDCE/VC Fe/Mn live/killed 

Streambed 
sediment+ 
Groundwater 

25 g 
mixed 

sediment 
from 3 

locations
; 90 mL 
ground 
water 

No 

150 μL cDCE 
saturated solution  

5 mL Fe(III) 
stock slurry 

live 

2 

150 μL cDCE 
saturated solution 

5 mL DS water 2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 5 mL DS water 2 

150 μL cDCE 
saturated solution 

5 mL Fe(III) 
stock slurry 

killed 

2 

150 μL cDCE 
saturated solution 

5 mL DS water 2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 5 mL DS water 2 

Total  16 
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Table II-9B Site/Source 9: NAS, Cecil Field, Sediment+Groundwater+Medium. 

Inoculum 
type 

Conditions 
No. of 
bottles Inoculu

m 
Medium cDCE/VC Fe/Mn live/killed 

Streambed 
sediment+ 
Groundwater 
+Medium 

25 g 
mixed 

sedimen
t from 3 
location

s; 90 
mL 

mixture 
of 

ground 
water 
and 

medium 
(1:1) 

90 mL 
mixture 

of 
ground 
water 
and 

medium 
(1:1) 
(yeast 
extract 
0.01 
g/L) 

150 μL cDCE 
saturated solution  

5 mL Fe(III) 
stock slurry 

live 

2 

150 μL cDCE 
saturated solution 

5 mL DS water 2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 5 mL DS water 2 

150 μL cDCE 
saturated solution 

5 mL Fe(III) 
stock slurry 

killed 

2 

150 μL cDCE 
saturated solution 

5 mL DS water 2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 5 mL DS water 2 

Total  16 

 
Table II-9C Site/Source 9: NAS, Cecil Field, Sediment+Medium. 
Inoculum 

type 
Conditions No. of 

bottles Inoculum Medium cDCE/VC Fe/Mn live/killed 

Streambed 
sediment+ 
Medium 

25 g 
mixed 

sediment 
from 3 

locations 

85 mL 
(no 

yeast 
extract) 

150 μL cDCE 
saturated solution  

5 mL Fe(III) 
stock slurry 

live 

2 

150 μL cDCE 
saturated solution 

5 mL Mn(IV) 
stock slurry 

2 

150 μL cDCE 
saturated solution 

5 mL DS water 2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 
5 mL Mn(IV) 
stock slurry 

2 

400 μL neat VC 5 mL DS water 2 

150 μL cDCE 
saturated solution 

5 mL Fe(III) 
stock slurry 

killed 

2 

150 μL cDCE 
saturated solution 

5 mL Mn(IV) 
stock slurry 

2 

150 μL cDCE 
saturated solution 

5 mL DS water 1 

400 μL neat VC 
5 mL Mn(IV) 
stock slurry 

2 

400 μL neat VC 
5 mL Fe(III) 
stock slurry 

2 

400 μL neat VC 5 mL DS water 1 

Total  22 
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APPENDIX III:  RESULTS FOR ANAEROBIC MICROCOSMS 

1-A. Site/Source 1: Altus AFB, Column B2: 
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1-B. Site/Source 1: Altus AFB, Column B4: 
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2-A. Site/Source 2: Ithaca Area Wastewater Treatment Plant: 
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3-A. Site/Source 3: Plattsburgh AFB, Groundwater Influent: 
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3-B. Site/Source 3: Plattsburgh AFB, Idaho Ave Discharge Pipe: 
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3-C. Site/Source 3: Plattsburgh AFB, East Flightline Discharge Pipe: 
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4-A. Site/Source 4: NSB, Kings Bay KBA-11-13A: 
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4-B. Site/Source 4: NSB, Kings Bay Outcrop: 
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5-A. Site/Source 5: Naval Air Station, Jacksonville: 
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6-A. Site/Source 6: Undisclosed Superfund Site Series #1: 
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6-B. Site/Source 6: Undisclosed Superfund Site Series #2:  
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6-C. Site/Source 6: Undisclosed Superfund Site Series #3-(a): 
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6-D. Site/Source 6: Undisclosed Superfund Site Series #3-(b): 
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6-E. Site/Source 6: Undisclosed Superfund Site Series #3-(c): 
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7-A. Site/Source 7: Cardinal Landfill SO4-1A + SO4-2A: 
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7-B. Site/Source 7: Cardinal Landfill SO4-3A: 
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8-A. Site/Source 8: Aberdeen Proving Ground WB23: 

 
 

0

100

200

300

400

500

600

‐20

0

20

40

60

80

100

0 50 100 150 200

To
ta
l F
e
 c
o
n
c.
(m

g/
L)

Fe
 (
II
) 
co
n
c.
 (
m
g/
L)

Time (days)

Cardinal SO4‐3A, Fe analysis‐VC bottles

VC+Fe, live VC+Fe, killed  Total Fe,average

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35 40 45

C
O
N
C
.(
u
m
o
le
/b
o
tt
le
)

Time (days)

Aberdeen WB23, cDCE+Fe 

cDCE+Fe, live cDCE+Fe, killed VC,cDCE+Fe live ETH,cDCE+Fe live



 

 154

 
 

 

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35 40 45

C
O
N
C
.(
u
m
o
le
/b
o
tt
le
)

Time (days)

cDCE live cDCE killed VC,cDCE live ETH,cDCE live

Aberdeen WB23, cDCE w/o Fe

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45

C
O
N
C
. (
u
m
o
le
/b
o
tt
le
)

Time (days)

Aberdeen WB23,VC+Fe 

VC+Fe, live VC+Fe, killed ETH,VC+Fe live



 

 155

 
 

 
 

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45

C
O
N
C
. (
u
m
o
le
/b
o
tt
le
)

Time (days)

Aberdeen WB23,VC w/o Fe

VC live VC killed ETH,VC live

0

100

200

300

400

500

0

50

100

150

200

250

300

350

400

0 10 20 30 40

To
ta
l F
e
 c
o
n
c.
(m

g/
L)

Fe
 (
II
) 
co
n
c.
 (
m
g/
L)

Time (days)

Aberdeen WB23, Fe analysis‐cDCE bottles 

cDCE+Fe,live cDCE+Fe,killed Total Fe,average



 

 156

 
 
 
 
 
 
8-B. Site/Source 8: Aberdeen Proving Ground WB30: 
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9-A. Site/Source 9: Naval Air Station, Cecil Field, Sediment+Groundwater: 
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9-B. Site/Source 9: NAS Cecil Field, Sediment+Groundwater+Medium: 

 

0

100

200

300

400

500

600

0

25

50

75

100

125

150

175

0 20 40 60 80 100 120 140

To
ta
l F
e
 c
o
n
c.
(m

g/
L)

Fe
 (
II
) 
co
n
c.
 (
m
g/
L)

Time (days)

Cecil Field SD+GW, Fe analysis‐VC bottles

VC+Fe, live VC+Fe, killed  Total Fe,average

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120

C
O
N
C
.(
u
m
o
le
/b
o
tt
le
)

Time (days)

Cecil Field SD+GW+Med, cDCE+Fe 1 

cDCE+Fe live 1 cDCE+Fe killed 1 VC,cDCE+Fe live 1 ETH,cDCE+Fe live 1



 

 165

 
 
 

 
 

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120

C
O
N
C
.(
u
m
o
le
/b
o
tt
le
)

Time (days)

Cecil Field SD+GW+Med, cDCE+Fe 2 

cDCE+Fe live 2 cDCE+Fe killed 2 VC,cDCE+Fe live 2

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100 120

C
O
N
C
.(
u
m
o
le
/b
o
tt
le
)

Time (days)

cDCE live 1 cDCE killed 1 VC,cDCE live 1

ETH,cDCE live 1 ethane,cDCE live 1

Cecil Field SD+GW+Med, cDCE w/o Fe 1



 

 166

 

 
 
 

‐1

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100 120

C
O
N
C
.(
u
m
o
le
/b
o
tt
le
)

Time (days)

cDCE live 2 cDCE killed 2 VC,cDCE live 2

ETH,cDCE live 2 ethane,cDCE live 2

Cecil Field SD+GW+Med, cDCE w/o Fe 2

0

2

4

6

8

10

12

14

16

18

20

0 20 40 60 80 100 120

C
O
N
C
. (
u
m
o
le
/b
o
tt
le
)

Time (days)

Cecil Field SD+GW+Med,VC+Fe 1 

VC+Fe live 1 VC+Fe killed 1 ETH,VC+Fe live 1



 

 167

 

 
 
 

0

2

4

6

8

10

12

14

16

18

20

0 20 40 60 80 100 120

C
O
N
C
. (
u
m
o
le
/b
o
tt
le
)

Time (days)

Cecil Field SD+GW+Med,VC+Fe 2 

VC+Fe live 2 VC+Fe killed 2 ETH,VC+Fe live 2

0

5

10

15

20

25

30

0 20 40 60 80 100 120

C
O
N
C
. (
u
m
o
le
/b
o
tt
le
)

Time (days)

Cecil Field SD+GW+Med,VC w/o Fe 1

VC live 1 VC killed 1 ETH,VC live 1 ethane,VC live 1



 

 168

 
 

 
 

0

5

10

15

20

25

0 20 40 60 80 100 120

C
O
N
C
. (
u
m
o
le
/b
o
tt
le
)

Time (days)

Cecil Field SD+GW+Med,VC w/o Fe 2

VC live 2 VC killed 2 ETH,VC live 2 ethane,VC live 2

0

100

200

300

400

500

0

25

50

75

100

125

150

0 20 40 60 80 100

To
ta
l F
e
 c
o
n
c.
(m

g/
L)

Fe
 (
II
) 
co
n
c.
 (
m
g/
L)

Time (days)

Cecil Field SD+GW+Med, Fe analysis‐cDCE bottles 

cDCE+Fe,live cDCE+Fe,killed Total Fe,average



 

 169

 
 
 
 
 
9-C. Site/Source 9: NAS Cecil Field, Sediment+Medium: 
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APPENDIX IV: RESULTS FOR AEROBIC MICROCOSMS 
 

Table IV. Microcosms for Aerobic Experiment. 

No. Site Experiment Control 

1 
Plattsburgh AFB, Influent to the 
groundwater treatment plant 

cDCE live 1 cDCE live 2 
VC+Fe live 1 VC+Fe live 2 

2 
Plattsburgh AFB, Idaho Avenue 
discharge pipe 

cDCE live 2 cDCE live 1 
VC live 2 VC live 1 

3 NSB, Kings Bay KBA-11-13A 
cDCE live 2 Broken 

VC live 2 VC live 1 

4 NSB, Kings Bay Outcrop 
cDCE live 1 cDCE live 2 

VC live 2 VC live 1 

5 
Unidentified Superfund Site, 
Subset #1 

cDCE live 2 cDCE live 1 
VC live 2 VC live 1 

6 
Unidentified Superfund Site, 
Subset #2 

cDCE live 2 cDCE live 1 
VC live 2 Broken 

7 
Unidentified Superfund Site, 
Subset #3-(a) 

cDCE live 2 cDCE live 1 
VC live 2 VC live 1 

8 
NAS Cecil Field, 
Sediment+Groundwater 

cDCE live 2 cDCE live 1 
VC live 1 VC live 2 

Total   16 14 
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1-A.  cDCE-fed Aerobic Microcosms 

 
 
 

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70

C
O
N
C
.(
u
m
o
le
/b
o
tt
le
)

Time (days)

cDCE live 2 VC,cDCE live 2 ETH,cDCE live 2

Cecil Field SD+GW, cDCE live 2‐‐aerobic microcosm

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80

C
O
N
C
.(
u
m
o
le
/b
o
tt
le
)

Time (days)

cDCE live 1 VC,cDCE live 1 ETH,cDCE live 1 ethane,cDCE live 1

Cecil Field SD+GW, cDCE live 1‐‐anaerobic control



 

 178

 
 
 

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90 100 110 120 130

u
m
o
le
/b
o
tt
le

Time (days)

cDCE for other aerobic microcosms

GW Idaho Ave cDCE live 1 GW Inf cDCE live 1

KBA cDCE live 2 KB Outcrop cDCE live 1

Superfund site #1 cDCE live 2 Superfund site #3 cDCE live 2

Superfund site #2 cDCE live 1 VC, Superfund site #2 cDCE live 1

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90 100 110 120

u
m
o
le
/b
o
tt
le

Time (days)

cDCE for other anaerobic controls

GW Idaho Ave cDCE live 2 GW Inf cDCE live 2

KB Outcrop cDCE live 2 Superfund site #1 cDCE live 1

Superfund site #3 cDCE live 1 Superfund site #2 cDCE live 2

VC, Superfund site #2 cDCE live 2 VC, GW Info cDCE



 

 179

1-B. VC-fed Aerobic Microcosms 
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