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NEW COMBINATORIAL DESIGNS AND THEIR APPLICATIONS TO GROUP TESTING* 

D. Raghavarao, H. Pesotan and W. T. Federer 

Abstract 

A class of designs with property C(t) are intro­
duced for the first time and their applications in 
group testing of experiments are studied. 

1. 1 rr..tJr.o du.c;Uo YL • 

Let us consider the problem of classifying each of n given 

units into one of two disjoint categories called satisfactory and 

unsatisfactory (or, .simply, good and bad or defective). The character-

istic feature of group testing is that any number of units, say x , 

can be tested simultaneously, but the information obtained from a 

single test on x units, without any chance of error, is that either 

(i) all the x units are good, or (ii) at least one of the x units 

tested is bad, but it is unknown how many and which ones are bad. The 

problem is to devise a suitable method of classifying all the n units 

into good or bad categories with the least number of trials. 

The first application of group testing in the literature was 

made by Dorfman [2] in pooling blood samples in order to classify 

each one of e large group of people as to whether or not they have a 

particular disease. Sobel and his co-workers [5], (7], [8], [9], [10] 
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have devised various sequential procedures to classify the units and 

established the optimality of their results for large n • Lindstr~m 

[3], [4] was interested in a slightly modified problem, in which each 

trial determines the exact number of defectives, and provided optimal 

procedures in a set-theoretic frame. 

In Section 2 we introduce a new class of combinatorial 

designs, which we call designs with completeness property on t 

symbols, written as property C(t) and study them in some detail. 

We then use them in group testing of'experiments in Section 5. For 

terminology in combinatorics of design of experiments, we refer to 

Raghavarao [6]. 

2. A New Combin.a:to!Uai.. Ve-oign.. 

Let s be a set of v symbols 1, 2, . .. , v and let Bl' 

B2' ... , Bb be non-empty proper subsets of s for i = 1, 2, ... ' b 

The design D is the collection of subsets Bl' B2' ... , Bb along with 

the set of symbols s . We now define the following: 

DEFINITION 2.1. The de-oign. D ~ ~aid to have the QOmpleten.e,o~ p~ope~ 

on. t ~ ymbo~, J.>hotttly wl!.iti:en. aJ.> the property c ( t) , i6 6o~ eveJty t 

(2 .1) 

whe~e T = { j I e . i B . for i = 1, 2, .•• , t } • 
~ J 

The balanced incomplete block design (BIB design) 

(0, 1, 3); (1, 2, 4); (2, 3, 5); (3, 4, 6); (4, 5, 0); 
(2. 2) 

(5, 6, 1); (6, 0, 2) 

with parameters 
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v = 7 = b , r = k 3 , A 1 (2. 3) 

has the property C(2) • For example, let us consider the symbols 

0, 5 • The sets in which none of the symbols 0, 5 occur are (1, 2, 4), 

(3, 4, 6) and the union of these two sets is {1, 2, 3, 4, 6} . Similarly, 

if we consider the symbols 2, 6 the sets in which none of the symbols 

2, 6 occur are (0, 1, 3)' (4, 5, 0) whose union is {0, 1, 3, 4, 5} . 
Trivially a C(t) design exists for l::;t::;v 

' with b=v . In 

fact, the design with B. = {i} 
' for i = 1, 2, ... ' v is a C(t) 

~ 

design for l::;t::;v . We call such a design a trivial C( t) design. 

The class of designs to be looked into to obtain C(t) designs 

are not necessarily the BIB designs alone. Any kind of design may possess 

the property C(t) • The result regarding the C(2) property in BIB 

designs is contained in the following: 

THEOREM 2. 1. A BIB du..i..gn IJ.1U.h pa.JtamUVL6 v, b, r, k, 'A paM el>.O e6 

:the. property c (2) ..i..n a.nd on4f ..i..6 

r - 2A > 0 . (2. 4) 

P~oo6. Let 81 , 82 be any 2 symbols of the design. It is well known 

that there are b - 2r + A sets of the design which do not contain the 

symbols either 81 or 82 • The sufficiency part of the proof will be 

completed if we show that of the remaining v - 2 symbols each occurs 

at least once among those b 2r + A sets. If ¢ is a symbol of the 

design other than 81 ' 82 ' it can occur at most 2A times in the 

sets where there is at least one of 91 ' 82 and hence it must occur 

at least r - 2A (> 0) times in the sets where there is none of 81 

82 . Conversely, since every symbol other than 81 ' 82 occurs at 
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least once in the sets where there is none of e1 , or e2 and as this 

number should be at least r - A , it follows that r - 2A ~ 1 or 

equivalently (2.4) proving the necessity part of the theorem • 
• 

From Theorem 2.1 it follows, for example, that the BIB design 

with parameters v = 7 = b r = 4 = k , A = 2 does not have the 

property C(2) • 

In searching for designs with the C(t) property in the 

known classes of designs, the following theorem will be helpful. 

THEOREM 2. 2. I 6 a. de~.>ig n D wi.th .6 et6 S l, S 2 , ••• , Sb a.nd S a..6 

.the. .6 et a 6 .6 ymbo.io ha.-6 .the. property C ( t) , :then in .the. c.omp.eime.ntaJty 

de~.>-i..gn D* 6otune.d 6Jtom .the. .6W Sf, s~, ... , s~ , :the. numbe.Jt o6 .time~.> 

e.ve.Jty t-pfe:t o6 ~.>ymbo.io (e 1 , e2 , ••• , et) oc.c.UJt, de.no:te.d by 

A i-6 a. po~.>ili ve. in:te.g e.Jt, whe.Jte. s ~ = s - s . , 6oft i = 1, 
ele2 ••• et ~ ~ 

2, ••• , b • 

PJtoo6. When the design D has property C(t) , there exist sets, say, 

s. , s. , ... , s. 
1 1 1 2 1 x 

where a given t-plet of symbols 

do not occur, while all the other symbols occur at least once. Then in 

D* ' the blocks si* , s~ , 
1 ~2 

... , S* 
i 

X 

will each contain the symbols 

el, e2' ••• ' et and hence Ae e e = x (> O) . 
1 2 .•. t 

The condition stated in the theorem is only necessary, but 

not sufficient. The BIB design with parameters v = 7 = b , r = 4 = k , 

A = 2 has its complimentary design in ~-1hich every symbol occurs at least 

once satisfying the condition of the theorem, but does not possess the 

C(2) property as indicated after Theorem 2.1. 

It is well known that C[k, ~, 6, v] configurations are also 

C(k, £', o', v] configurations. Analogous to this result we have the 

following: 
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THEOREM 2.3. 16 a. du-i..gn D ha.6 the. property C(t) I the.n a ha.6 

the. property C(t-1) no~ 2~t~v • 

P~oo6. Let (e 1, e2, ••• , et) be any t-plet. Among the sets where 

at least one of the symbols el, e2, ••• , et occur; for each e. 
~ 

(i = 1, 2, ••• , t) there exist at least one set in which ei occurs 

t-plet 

For, otherwise for the 

with ¢> ::f e. 
~ 

the property 

C(t) for the design D will be violated. Now the sets in which none 

of (e1 , e2, ••• , ei-l' ei+l' ••• , et) occur all the other v-t+l 

symbols occur proving that D has property C (t-1) • 

In view of the group testing situations for which these designs 

are proposed, we need the designs with property C(t) for which b<v • 

We discuss these results in the next 2 sections • 

3. Vu-i..gYL6 w.Uh b<v Ha.v-i..ng property C(l) • 

where k = 1, 2, and are positive integers. Without loss 

of generality, we assume al" > ·a2 > • • • > ak • The numbers can then be 

written in the form of a staircase: 

I __ _ 
~ 

We then form b blocks where b = a1 + x1 + x2 + ... + ~ by writing 

the symbols in the a1 rows and the x1 + x2 + ... + ~ columns. 
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Such designs will have exactly 2 replications for each symbol and have 

various cardinalities for the sets constituting the design. A moment's 

consideration into the above construction indicates that such designs 

have the property C(l) • 

Let us illustrate our construction method for v=l9 • Since 

19 = 4x4 + 3xl , we write the 19 symbols in the staircase array 

1 2 3 4 

5 6 7 8 19 

9 10 11 12 18 

13 14 15 16 17 

We now form 9 sets for the design by writing the sets formed from 

the rows and columns of the array (3.1) to get 

(1,.2, 3, 4); (5, 6, 7, 8, 19); (9, 10, 11, 12, 18); 

(13, 14, 15, 16, 17); (1, 5, 9, 13); (2, 6, 10, 14); 

(3, 7, 11, 15); (4, 8, 12, 16); (17, 18, 19). 

(3.1) 

(3. 2) 

The design (3.2) can be easily verified to have the property C(l) . 

It is interesting to note that as the partitioning of v 

as a1x1 + a 2x2 + ••. + ak~ is not unique and different partitionings 

give different numbers of blocks, it is desirable to consider the 

partitioning for a given v which minimizes b = a1 + x1 + x2 + ... 

+~. 

We now study the existence of C(l) designs with b<v and 

the asymptotic property for b/v as v + ~ • Their results are given 

in the following theorem: 
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THEOREM 3 .1. Vuign6 w.i...th property C (1) a.nd b<v eu.J.d. 6oft ill 

v~6 • FU!ttheJtmoJte, 

1 . b 
J.m - = 

v 
0 . (3. 3) 

PJtoo6. Let m2 < v ~ (m + 1) 2 , form= 0, 1, ... We 

distinguish 2 cases: case (i) v = m2 + a , where l~a~m and 

case (ii) v = m2 + m + b , where l~b~m+l . In case (i) clearly 

v = mxm + axl and from our earlier consideration a design with 

property C (1) can be constructed in b = m + (m + 1) = 2m + 1 

sets. In case (ii) we have v = (m+l)xm + bxl and we can construct 

a design with property C(l) in b = (m + 1) + (m + 1) = 2(m + 1) 

sets. Now 2m+ 1 < m2 + a where l~a~m for all m~3 and m=2 , 

a=2 • Again 2m + 2 < (m + l)m + b where l~b~m+l for all m~3 • 

These considerations- imply that b<v for all v~6 • Now 

b 2m+ i -=---v v 
1 = o(-) 
m 

where i = 1 or 2 dep:nding on whether v belongs to case (i) or 

(ii), and the assertion (3.3) follows. 

(3. 4) 

The designs with property C(l) constructed by the above 

staircase method will not always give the smallest b and this 

follows from the following theorem: 

THEOREM 3.2. In Di (i = 1, 2) a!te duign6 with property C(l) on 

v. J.>ymbo£-6 .in b. -6W, then the.Jte ex.A..-6-t-6 a. de.-6-tgn D wdh property 
l. l. 

c (1) on 

PJtoo6. Let s1 . be :the set of v. 
l. 

symbols and let where 

•x• is the Cartesian product of sets. 

sets of the design D. • 
l. 

Consider the 

Let Bli' BZi' •.• , Bb.i be the 
l. 

b1 + b2 sets s1XBj 2 and 



• 

• 

• 

for j = 1, 

design D 

2, ..... b 2 

symbols of 

and i = 1, 2, ••• , b 1 constituting the 

s1Xs 2 • It can easily be verified that 

D has property C(l) • 

From Theorem 3.1 we have a design with property C(l) on 8 

symbols in 6 sets. From this ~esign, using Theorem 3.2, we can construct 

a design with property C(l) on 64 symbols in 12 sets. The design 

given in Theorem 3.1 on 64 symbols with property C(l) has 16 sets, 

while Theorem 3.2 leads us to a design with only 12 sets. Consequently, 

for 642 = 4096 symbols from Theorem 3.2, we can construct a design with 

24 sets, while the design constructable from Theorem 3.1 has 128 sets. 

Thus we achieve considerable reduction in the number of sets used in the 

design by using the method of Theorem 3.3. 

However, in general it remains an open problem to find the 

smallest b for designs with property C(l) on v symbols. 

4._ Vu..tgYL6 wUh Property C(2) w-U:.h b<v . 

We have seen in Section 2 that BIB designs have the property C(2) 

if and only if r - 2A > 0 • However, such designs will have b~v and are 

not useful in group testing experimental situations. While searching for 

designs with property C(2) , the class of designs to be looked at are 

those Partially Balanced Incomplete Block Designs (PBIB designs) for which 

b<v and whose complimentary designs have positive A parameters. 

While scanning through the designs given in the Tables of Two-

Associate-Class Partially Balanced Designs [1], the authors found that 

SR41 and T85 have the property C(2) . These are designs in 12 symbols 

and 9 sets, and in 36 symbols with 28 sets respectively, and both of 

these designs have the property C(2) . . 
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5. App.U.ca..tion6 o6 VuigM w..Uh property C(2) in Gttoup Tu:ti.ng ExpeJU.me.iU:.ll • 

Let there be v units in the population and let it be known to 

the experimenter before hand that there are exactly t units in the popu­
• 

lation which are defective, while v-t units are good. Further, it is 

unknown to the experimenter which of the units are defective. Then one can 

make b tests (or runs) on the v units, where each test is made on the 

collection of the units belonging to the sets of a design D with property 

C(t) . If the test gives a negative result, the units involved in the test 

are all good and if the test gives a positive result, at least one of the 

units involved in the test is bad. If x tests give negative results in 

each test and the remaining b-x tests give positive results, the C(t) 

property of the design guarantees that the units, included in the set union 

of the sets corresponding to the negative test results, are all good which 

will be v-t in number, while the other v-t are bad. 

As an illustration, let us consider that there are 12 units 

among which we know that 2 are bad and 10 are good. We indicated 

in Section 4 that the design SR41 of the Tables [1] has property C(2) • 

The test number and the units tested in each are as follows: 

Test Units Included 
Number in the Test 

1 1, 2, 3, 4 

2 7, 10, 5, 4 

3 6, 11, 9, 4 

4 1, 7, 6' 8 

5 11, 5, 2, 8 

6 10, 9, 3, 8 

7 1, 11, 10, 12 

8 9, 2, 7, 12 

9 5, 3, 6, 12 



• The classification of items and the test numbers indicating 

negative results are as follows: 

Test Defective Test Defective 
Number Items Number Items 

• 

2, 3, 6, 9 1, 2 7, 8, 9 4, 8 
2, 3, 5, 8 1, 3 4, 5, 7, 9 4, 9 
5, 6, 8, 9 1, 4 4, 5, 8, 9 4, 10 
3, 6, 8 1, 5 4, 6, 8, 9 4, 11 
2, 5, 6, 8 1, 6 4, 5, 6 4, 12 
3, 5, 6, 9 1, 7 1, 6, 7" 8 5, 6 ' 2, 3, 8, 9 1, 8 1, 3, 6, 7 5, 7 
2, 5, 9 1, 9 1, 3, 7, 8 5, 8 
3, 5, 8, 9 1~ 10 1, 4, 7 5, 9 
2, 6, 8, 9 1, 11 1, 3, 4, 8 5, 10 
2, 3, 5, 6 1, 12 1, 4, 6, 8 5, 11 
2, 3, 4, 7 2, 3 1, 3, 4, 6 5, 12 
4, 6, 7, 9 2, 4 1, 5, 6, 7 6, 7 
3, 4, 6, 7 2, 5 1, 2, 7, 8 6, 8 
2, 6, 7, 9 2, 6 1, 2, 5, 7 6, 9 
3, 6, 7, 9 2, 7 1, 5, 8 6, 10 
2, 3, 7, 9 2, 8 1, 2, 6, 8 6, 11 
2, 4, 7, 9 2, 9 1, 2, 5, 6 6, 12 
~ 4, 9 2, 10 1, 3, 7, 9 7, 8 .... , 
2, 4, 6, 9 2, ll 1, 5, 7, 9 7, 9 
2, 3, 4, 6 2, 12 1, 3, 5, 9 7, 10 
4, 5, 7, 8 3, 4 1, 6, 9 7, 11 
3, 4, 7, 8 3, 5 1, 3, 5, 6 7, 12 
2~ 5, 7, 8 3, 6 1, 2, 7, 9 8, 9 
3, 5, 7 3, 7 1, 3, 8, 9 8, 10 
2, 3, 7, 9 3, 8 1, 2, 8, 9 8, 11 
2, 4, 5, 7 3, 9 1, 2, 3 8., 12 
3~ 4, 5, 8 3, 10 1, 4, 5, 9 9, 10 
2, 4, 8 3, 11 1, 2, 4, 9 9, 11 
2, 3, 4, 5 3, 12 1, 2, 4, 5 9, 12 
4, 6, 7, 8 4, 5 1, 4, 8, 9 10, 11 
5, 6, 7, 8 4, 6 1, 3, 4, 5 10, 12 
5, 6, 7, 9 l}' 7 1, 2, 4, 6 11, 12 

• 
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In view of Theorem 3.1, if a large population has exactly 1 

bad item, it can be detected in b tests, where b is only a very tiny 

fraction of v • 

The statistical properties of our test procedure and the 

comparison of our technique to the known procedure are expected to be 

discussed in a later communication. 
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