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We present a search for pair production of new physics resonances decaying

into a top quark and a light parton in final states with two leptons, interpreting

the results in the context of an R-parity violating supersymmetric model. We

use 19.5 fb−1 of data collected by the CMS experiment at the LHC from proton-

proton collisions at
√

s = 8 TeV in 2012. The experimental signature consists

of two leptons (e or µ), two jets identified as originating from the decay of a

b quark, and two jets identified as coming from light flavor quarks or gluons.

We reconstruct and analyze potential resonant decays. The dominant standard

model background is top quark pair production with additional jets from initial-

or final-state radiation. We perform an extended unbinned maximum likelihood

fit to the transverse momenta of the two leading light jets and the reconstructed

resonance mass. The observation is consistent with the standard model expec-

tation, and we set upper limits on the signal cross section for R-parity violating

bottom squarks with masses between 250 and 600 GeV. We exclude R-parity

violating bottom squark pair production at the 95% confidence level between

250 GeV and 326 GeV.
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To new physics, what ever it may be.
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CHAPTER 1

THEORETICAL FRAMEWORK

1.1 Motivation

The subject of this thesis is a search for pair-produced new physics resonances

that decay to a top quark and light parton. We use data collected in 2012 by the

Compact Muon Solenoid (CMS) detector, a general-purpose apparatus record-

ing the results of proton-proton collisions at the Large Hadron Collider (LHC),

which is located at CERN in Geneva, Switzerland. The analysis is documented

in a CMS Public Analysis Note [1] and an internal note [2]. A journal publica-

tion, including other CMS results, is underway.

The standard model of particle physics is the current best description of el-

ementary particles and their interactions at the quantum level, successfully de-

scribing a wide range of phenomena over many orders of magnitude in energy

up to the ∼ 102 GeV scale with excellent precision. However the standard model

leaves some essential questions unanswered, foretelling the necessity of a more

fundamental theory to explain physics beyond the standard model, at the TeV

scale. One potential candidate is supersymmetry [3], which predicts a wealth of

new particles. The LHC was built with the intention of searching for these new

particles.

Within the standard model, the masses of the particles arise from the sponta-

neous breaking of the electroweak symmetry [4–6]. The top quark, with its high

mass, has long been suspected to play a special role in this mechanism. Its cou-

pling to hypothetical particles described by physics beyond the standard model

1



could potentially be large. It is therefore natural to search for new particles that

couple to the top quark. We search for pair-produced new physics resonances

that couple to a top quark and another parton. We study in detail the R-parity

violating minimal supersymmetric model constrained to have minimal flavor

violation [7], which allows bottom squarks (b̃) to be the lightest supersymmet-

ric particle and restricts their decays to a top quark and strange quark. Due

to the excellent lepton resolution in CMS, we restrict our search to final states

with two leptons, where both top quarks undergo leptonic decays. A Feynman

diagram of this process is presented in Fig. 1.1.

b̃

¯̃
b

t W+

t̄ W−
p

p

s

s̄

b

b̄

`+

ν

ν̄

`−

Figure 1.1: Leading order Feynman diagrams for R-parity violating bot-
tom squark pair production.

This thesis is structured as follows. In Chapter 1 we outline the theoreti-

cal framework behind the standard model, supersymmetry, and the R-parity

violating minimal supersymmetric model. The Large Hadron Collider and the

Compact Muon Solenoid experiment are described in Chapter 2. Techniques

for event and object reconstruction are detailed in Chapter 3. Finally in Chap-

ter 4 we present a search for pair-produced R-parity violating bottom squarks

decaying into a top quark and light parton. We conclude in Chapter 5.

In this chapter, we present the theoretical framework that serves as the basis
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for the analysis presented in Chapter 4, which is R -parity violating supersym-

metry.

In Section 1.2, we describe the standard model (SM) of particle physics, the

theory that is the current best description of elementary particles and their in-

teractions at the quantum level. However, although predictions of the SM have

been in excellent agreement with data collected by experiments in the past cen-

tury, it does not provide an answer for a certain number of questions, a few of

which are presented in Section 1.2.5. Several models that attempt to provide

explanations have been developed. We focus on one such model, supersymme-

try (SUSY), in Sections 1.3 and 1.4. Faced with the most recent results from the

ATLAS and CMS experiments, which have not yet found evidence for SUSY, we

detail a modified version of the theory in Section 1.5. This is the model upon

which the search presented in Chapter 4 is based.

1.2 The standard model Lagrangian

In this section we describe the SM in the formalism of quantum field theory. The

discussion is based on Refs. [8, 9].

1.2.1 Gauge and fermion fields

The SM is a SU(3)C × SU(2)L × U(1)Y gauge theory, with SU(3) symmetry in the

color sector and SU(2)L × U(1)Y in the electroweak (EWK) sector. The gauge

bosons of the SM (W± and Z0 bosons, photon, and gluons) are incorporated into
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the Lagrangian via the field strength tensors Wa
µν, Bµν, and Ga

µν:

Bµν = ∂µBν − ∂νBµ, (1.1a)

Wa
µν = ∂µWa

ν − ∂νW
a
µ + gεabcWb

µWc
ν , (1.1b)

Ga
µν = ∂µGa

ν − ∂νG
a
µ + gs f abcGb

µG
c
ν, (1.1c)

where:

• in the SU(1) sector, the structure is identical to that of classical Abelian

electromagnetism;

• g is the gauge coupling of the SU(2) sector, and εabc is the antisymmetric

tensor with ε123 = 1;

• gs is the strong coupling constant of SU(3), and the structure constants f abc

are related to the generators of SU(3) by [ta, tb] = i f abctc.

The W± and Z0 bosons and photon are obtained from linear combinations of the

first two fields Bµ and Wa
µ , while the last field Ga

µ corresponds to the gluons. The

corresponding kinetic terms in the SM Lagragian are:

Lgauge = −
1
4

Ga
µνG

a µν −
1
4

Wa
µνW

a µν −
1
4

BµνBµν. (1.2)

Finally, gauge interactions are introduced in the SM Lagrangian with the covari-

ant derivative:

Dµ = ∂µ − ig′BµY − igWa
µT a − igsGa

µt
a, (1.3)

with g′ the U(1) gauge coupling and T a = σa

2 the generators of SU(2), where σa

are the Pauli matrices.

The SM contains the chiral fermion fields listed in Table 1.1. They are the

color triplets QL, uR and dR, and the color singlets LL and eR, where QL and LL
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are SU(2)L doublets; there exist three generations of each. Kinetic terms for the

fermions are obtained by replacing ∂µ with the covariant derivative Dµ, defined

in Eq. 1.3, in the Dirac Lagrangian.

Table 1.1: Chiral Standard Model fermion fields and their quantum num-
bers.

Field SU(3)C SU(2)L U(1)Y

QL =

( uL

dL

)
3 2 1

6

uR 3 1 −2
3

dR 3 1 1
3

LL =

(
ν

eL

)
1 2 −1

2

eR 1 1 1

1.2.2 The Higgs field

The mass terms for the above fermion and gauge fields are not gauge invariant

and therefore cannot be included in the SM Lagrangian: as it currently stands,

these fields must be massless. However, since the observed particles (quarks,

leptons, W± and Z0 bosons) are massive, the SM as described above is not com-

plete. In order to write gauge-invariant mass terms, we must introduce a SU(2)L

doublet of scalar fields H = φ, the Higgs doublet [3].

We can write the standard Lagrangian for a generic SU(2) doublet. Within
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the SM, including interactions with the fermion fields:

Lφ =
(
Dµφ

)†
(Dµφ) − V (φ) +LF

φ, (1.4)

where V(φ) is the scalar potential for which we assume the most general, gauge-

invariant form:

V (φ) = −µ2φ†φ + λ
(
φ†φ

)2
, (1.5)

where µ and λ are unknown parameters. Let us examine the possible shapes of

the potential, depending on the values of these parameters:

• −µ2 > 0 and λ > 0 – the potential has a minimum at φ = 0. In this case,

SU(2) × SU(1) (EWK) symmetry is unbroken, and the vacuum state is in-

variant. We know this is not the case in the SM – otherwise there would

be no mechanism by which the gauge bosons acquire mass terms.

• −µ2 < 0 and λ > 0 – the potential has minima at φ , 0, and the vacuum

state is not invariant.

• λ < 0 – the scalar potential is unbounded from below, and there is no stable

vacuum. This is clearly not the case in the SM either.

Therefore in the SM −µ2 < 0 and λ > 0, and the scalar potential has a minimum

at µ2/2λ. Since φ is an SU(2) doublet, its components can be written in terms

of four real scalar fields. In consequence, the minimum µ2/2λ corresponds to a

four-dimensional spherical surface, and the SU(2)×SU(1) gauge transformations

are rotations in this four-dimensional space.

In particular, there are three rotations that leave the ground state invariant,

while it is not invariant under rotations in the fourth direction: these correspond
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to three massless Goldstone bosons, which can be removed by selecting a par-

ticular gauge, and one massive particle, the Higgs boson. The non-invariance

of the vacuum state breaks the EWK symmetry. The Higgs field may then be

rewritten:

φ (x) =

( 0

v + h(x)

)
, (1.6)

where v =
√
µ2/λ is the minimum of the potential and h is a fluctuation around

this minimum, < h >= 0. This gauge is the unitary gauge.

For future discussion, we note that the Higgs boson mass is given by:

m2
H = λv2. (1.7)

The discovery of a SM Higgs-like particle, achieved with Run I data at the

LHC experiments ATLAS and CMS [10, 11], was a significant milestone in that

it completed the set of particles predicted by the SM. Thus far, measurements

of the new particle’s spin, couplings, and decays have agreed well with SM

predictions [10–13]. Due to the excellent performance in reconstructing pho-

tons, electrons, and muons, the golden channels H → γγ and H → ZZ∗ → 4`

(` = e or µ) have the best resolution on the reconstructed Higgs boson mass;

ATLAS has measured mH = 126.0 ± 0.4 (stat.) ± 0.4 (syst.) while CMS obtains

mH = 125.3±0.4 (stat.)±0.5 (syst.). The invariant mass of the reconstructed four-

lepton system is presented in Fig 1.2.
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ATLAS result; right: CMS result.

1.2.3 Gauge boson masses

We now turn to the kinetic term in Eq. 1.4. Since the scalar φ is a color singlet,

we only consider the action of the first three terms in Eq. 1.3. Let:

cos θW ≡ cW =
g√

g2 + g′2
, sin θW ≡ sW =

g′√
g2 + g′2

,

where θW is the Weinberg angle. Defining the new basis:

W±
µ =

W1
µ ∓W2

µ
√

2
, (1.8a)

Zµ = cWW3
µ − sW Bµ, (1.8b)

Aµ = sWW3
µ + cW Bµ, (1.8c)

we can rewrite the kinetic term in a manner that makes the gauge boson mass

terms and couplings to the Higgs field apparent.

For the W± bosons, the kinetic term becomes:

1
4

g2 (h + v)2 W+
µ W− µ =

(gv)2

4
W+

µ W− µ +
g2v
2

hW+
µ W− µ +

g2

4
h2W+

µ W− µ, (1.9)
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where we can identify the W± mass mW = (gv)2 /4, and the hW±W± and hhW±W±

vertices have strengths g2v/2 and g2/4, respectively.

The kinetic term for the Z0 boson can be written:

1
8

(
g2 + g′2

)
(h + v)2 ZµZµ =

(
g2 + g′2

)
v2

8
ZµZµ +

(
g2 + g′2

)
v

4
hZµZµ +

(
g2 + g′2

)
8

h2ZµZµ,

(1.10)

where the Z0 mass is mZ =
(
g2 + g′2

)
v2/4, and the hZ0Z0 and hhZ0Z0 vertices have

respective strengths
(
g2 + g′2

)
v/2 and

(
g2 + g′2

)
/4.

The final term in the expansion is the kinetic term for the real scalar field h,

1
2∂µh∂

µh; the photon Aµ does not couple to h, and is therefore massless. Iden-

tifying the coupling eQ ≡ gsWT 3 + g′cWY in the expression for the covariant

derivative in the gauge boson mass basis, we therefore have e = gsW = g′cW the

quantum of electric charge, and each particle’s value of Q = T 3 + Y determines

its overall charge.

The covariant derivative term in the gauge boson mass basis is:

Dµ = ∂µ − igsGa
µt

a − i
e

sW

(
W+

µ T + + W−
µ T−

)
− i

e
sWcW

Zµ
(
T 3 − s2

W Q
)
− ieAµQ. (1.11)

1.2.4 Fermion masses

In this paragraph, we concentrate on the interaction term LF
φ between the scalar

Higgs field and the fermions. We can use power-counting to construct the renor-

malizable couplings that are allowed in the Lagrangian.

To write terms for both the up-type and down-type quarks, it is necessary

to introduce the complex conjugate φ̃, which has Y = −1/2, of the SU(2) Higgs
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doublet φ (which has Y = 1/2). The most general interaction term is:

LYukawa = −yuQ̄Lφ̃
†uR − ydQ̄Lφ

†dR − yeL̄LφeR + h.c. , (1.12)

where ye, yu, yd are constant dimensionless Yukawa couplings. Since there are

three generations of quarks and leptons, these are 3 × 3 matrices containing 18

complex couplings overall.

Mass terms for the fermions are also obtained by replacing φ by its expansion

h + v around the minimum of the potential. We obtain the mass matrices:

Me =
v
√

2
ye , Mu =

v
√

2
yu , Md =

v
√

2
yd ,

whose eigenvalues correspond to the quark mass eigenstates. For the leptons,

there are three mass eigenstates corresponding to the electron, muon and tau.

The quark matrices can be diagonalized simultaneously, yielding the six quark

mass eigenstates. The up-type and down-type left-handed quarks are rotated

differently; the mismatch of bases is responsible for vertices that violate flavor

through the exchange of a W± boson. The coupling strengths associated with

these vertices are encoded in the Cabibbo-Kobayashi-Maskawa (CKM) matrix,

which is parameterized by three mixing angles θ12, θ13, θ23 between quark gen-

erations and one phase δ, which is responsible for CP-violation.

The issue of neutrino masses is not important in the theoretical framework

we investigate, and will not be discussed here.

In conclusion, the SM is governed by a finite list of parameters: the three

lepton masses, the six quark masses, the three angles and one phase of the CKM

matrix, the SU(1), SU(2) and SU(3) gauge couplings, the vacuum expectation

value (VEV) of the Higgs field, and the Higgs boson mass, all of which have

been measured to date.
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1.2.5 Limitations of the standard model

Although experiments within the past century have all found results in excel-

lent agreement with the SM [14], several open questions remain. We list a few

important issues below.

Gravity. The gravitational force is much weaker than the other fundamental

forces, the electromagnetic, weak and strong interactions; its impact on SM par-

ticles is negligibly small in comparison to these other forces. In addition, there

is currently no description of gravity in the formalism of quantum field theory

that is valid past the Planck scale. The question as to why gravity is so weak

and how to incorporate it into the SM remain to be understood.

Dark matter and dark energy. Astrophysical observations show that matter

as described by the SM, made up almost entirely of baryons (particles consti-

tuted by three quarks), represents less than 5% of the total matter in the Uni-

verse. The standard model of cosmology, ΛCDM, accounts for the remaining

95% by introducing dark matter, which is essential to understand large-scale

gravitational effects, and dark energy, which is necessary to describe the ob-

served acceleration of the expansion of the universe. Dark matter is generally

assumed to be non-baryonic and to not interact electromagnetically; the current

SM does not contain any good candidates. Dark energy is generally accepted to

originate from the vacuum energy; its density as predicted by quantum electro-

dynamics is vastly inconsistent with experimental upper bounds.

The hierarchy problem. The insertion of virtual fermion or scalar loops of

particles that couple to the Higgs field in its propagator yields divergent quan-

tum corrections to the Higgs squared mass parameter m2
H defined in Eq. 1.7. An
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ultraviolet (UV) cutoff is used to regulate the loop integrals and avoid such un-

physical divergences; this energy corresponds to the scale at which the SM is no

longer valid, and new physics emerge. This UV cutoff can be anywhere between

the TeV scale and the Planck scale MPl ≈ 1.22×1019 GeV, the scale at which quan-

tum gravitational effects can no longer be neglected. Cancelling the corrections

is necessary to account for the measured mass mH = 125 GeV [10,11], but would

require an unlikely level of fine-tuning, i.e., cancellations across many orders of

magnitude, unless the UV cutoff, at which new physics emerge, is at the TeV

scale.

Neutrino masses. Neutrino mixing has been experimentally observed [15–

17] thus proving that neutrinos have small, non-zero masses. However the exact

procedure by which neutrinos acquire their mass has not yet been determined.

1.2.6 Physics beyond the standard model: supersymmetry

New physics must emerge at a certain scale to answer the above open questions.

In this section we focus on supersymmetry (SUSY). The description that follows

below and in the next section is adapted from Ref. [3].

As mentioned in Section 1.2.5, quantum corrections to the Higgs mass, which

arise from virtual loop contributions from particles that couple to the Higgs

field, are divergent. Consider for example one-loop corrections to m2
H from a

fermion and a scalar, shown in Fig 1.3. Let the fermion f (scalar S ) have mass m f

(mS ); it couples to the Higgs field via the interaction term −λ f H f̄ f (−λS |H|2|S |2).

Corrections to m2
H must be expressed in terms of ΛUV, a UV cutoff that en-
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Figure 1.3: One-loop quantum corrections to the Higgs squared mass pa-
rameter m2

H, due to (a) a Dirac fermion f , and (b) a scalar S .

sures the loop integrals are finite. It represents the energy scale at which the SM

is no longer valid, and a new (as yet unknown) theory describes particles and

their interactions. The corrections to m2
H from f and S are:

∆m2
H = −

|λ f |
2

8π2 Λ2
UV + . . . , (1.13a)

∆m2
H =

λS

16π2

[
Λ2

UV − 2m2
S ln

ΛUV

mS
+ . . .

]
. (1.13b)

Taken separately, both corrections can become arbitrarily large. However, as

Eq. 1.13 suggests, one can introduce a new symmetry that produces systematic

cancellations of all the divergent terms, by pairing each SM fermion with a new

boson, and each SM boson with a new fermion, such that λS = |λ f |
2. This sym-

metry guarantees the cancellation of divergent contributions from virtual loops

to the Higgs mass to all orders.

Supersymmetry (SUSY) predicts that all SM particles have an associated su-

perpartner, whose spin differs from that of its SM counterpart by 1/2. Thus,

SM fermions have bosonic superpartners, and SM bosons have fermionic su-

perpartners. The SM fermions (quarks, leptons and neutrinos) have superpart-

ners called squarks, sleptons, and sneutrinos, respectively. Superpartners of the

SM gauge bosons are called gauginos, while the Higgs boson superpartners are

called higgsinos.
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1.3 Components of a basic SUSY model

1.3.1 Chiral and gauge fields

A supersymmetry transformation acting on a fermionic state gives a bosonic

state, and vice versa. In an interacting quantum field theory with chiral

fermions, as is the case with the SM, generators Q and Q† of such a symmetry

must satisfy the commutation and anti-commutation relations:

{Q,Q†} = Pµ,

{Q,Q} = {Q†,Q†} = 0,

[Pµ,Q] = [Pµ,Q†] = 0.

The commutation rules for these generators define the supersymmetry alge-

bra. Irreducible representations of the algebra are called supermultiplets, with

each element of the supermultiplet corresponding to a single-particle state. A

supermultiplet contains superpartner fermionic and bosonic states that have

identical gauge interactions – otherwise the cancellations in ∆m2
H disappear –

and with identical numbers of fermionic (nF) and bosonic (nB) degrees of free-

dom.

The simplest supermultiplet contains a left-handed Weyl fermion ψ (spin-

1/2, complex two-component object). It has four off-shell degrees of freedom,

and two on-shell degrees of freedom corresponding to one equation of motion

each for ψ and ψ†. The simplest superpartner is a complex scalar (spin-0) field

φ with two degrees of freedom, corresponding to the real and imaginary com-

ponents of the field. In order for nB to match nF , it is necessary to introduce a
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non-propagating complex scalar auxiliary field F, which has two off-shell de-

grees of freedom and zero on-shell degrees of freedom. The combination of ψ, φ

and F is called a chiral supermultiplet.

The next simplest supermultiplet contains a massless spin-1 vector boson,

which has two on-shell degrees of freedom corresponding to the two possible

helicity states. It also has three off-shell degrees of freedom, since the gauge

transformation equation reduces nB from four to three. The simplest super-

partner is a Weyl fermion that has four off-shell degrees of freedom, and two

on-shell degrees of freedom. In order to have nF = nB in this case, we must in-

troduce a real bosonic auxiliary field D with one off-shell degree of freedom and

zero on-shell degrees of freedom. This combination is called a gauge supermul-

tiplet.

In the N = 1 supersymmetry framework, in which there is one distinct copy

of Q and Q†, all other representations are reducible to combinations of chiral

and gauge supermultiplets. This is the simplest case in which the known SM

particles can be integrated, and the one we focus on here.

Since none of the predicted superpartners can be matched to known SM par-

ticles, they must correspond to entirely new particles. Additionally, because no

equal-mass superpartners have been observed, supersymmetry must be bro-

ken, with superpartners much heavier than their SM counterparts. In order

to guarantee that supersymmetry-breaking does not spoil the cancellations in

divergent quadratic corrections to the Higgs squared mass, a so-called “soft”

SUSY-breaking term,Lsoft, must be included in the supersymmetric Lagrangian;

it contains only mass terms and coupling parameters that have positive mass

dimensions. The Lsoft term is discussed in more detail in Section 1.3.5. The
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superpartners do not necessarily correspond to mass eigenstates: EWK symme-

try breaking and SUSY breaking allow for mixing of the different gauginos and

higgsinos, and different masses for elements of one supermultiplet.

We now turn to the task of writing the Lagrangian density for a supersym-

metric model.

1.3.2 Free supermultiplets

Free chiral supermultiplet. In this paragraph, we establish the expression for

the Lagrangian density of a free chiral supermultiplet:

Lchiral = Lscalar +Lfermion +Lauxiliary

A chiral supermultiplet contains a Weyl fermion ψ, a complex scalar field φ,

and a complex non-propagating field F. The standard kinetic terms for ψ and φ,

−∂µφ∗∂µφ and iψ†σ̄µ∂µψ, can be added to the Lagrangian density.

To determine how the scalar and fermion fields transform under a super-

symmetric transformation, we require the action to be invariant under such a

transformation. In order to preserve the group structure, we must also require

closure of the supersymmetry algebra, i.e., the commutator of two supersym-

metry transformations must also be a supersymmetry transformation.

The most general transformation satisfying these conditions is parameter-

ized by an infinitesimal spinor εα, with ∂µε = 0 (we only consider global trans-
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formations 1). The transformation rules for the fields φ, ψ and F are:

δφ = εψ, δφ∗ = ε†ψ†,

δψα = −i(σµε†)α∂µφ + εαF, δψ†α̇ = i(εσµ)α̇∂µφ∗ + ε†α̇F∗,

δF = −iε†σ̄µ∂µψ, δF∗ = i∂µψ†σ̄µε,

where spinor indices on scalars have been contracted.

The free Lagrangian density for a chiral supermultiplet is then:

Lchiral = −∂µφ∗∂µφ + iψ†σ̄µ∂µψ + F∗F,

implying that the auxiliary field F follows the equations of motion F = F∗ = 0.

Because no kinetic term for F appears in the Lagrangian, the auxiliary field is

non-propagating.

Free gauge supermultiplet. A gauge supermultiplet contains a massless

gauge boson Aa
µ, a Weyl fermion gaugino λa, and a real bosonic auxiliary field

Da, where the index a refers to an element in the adjoint representation of the

gauge group: a = 1...8 for SU(3)C color, a = 1, 2, 3 for SU(2)L weak isospin, and

a = 1 for U(1)Y weak hypercharge.

Gauge transformations are parameterized by an infinitesimal gauge trans-

formation parameter Λa, the gauge coupling strength g, and the antisymmetric

structure constants f abc defining the gauge group:

δgaugeAa
µ = ∂µΛ

a + g f abcAb
µΛ

c,

δgaugeλ
a = g f abcλbΛc.

1Local transformations, with ∂µε , 0, are unnecessarily general, requiring a supersymmet-
ric theory of gravity. In the limit that gravity is weak, global transformations are sufficient to
describe the SM.
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For the action to be invariant under a supersymmetry transformation, the

fields must transform as:

δAa
µ =

1
√

2
(ε†σ̄µλ

a + λ†aσ̄µε),

δλa
α =

i

2
√

2
(σµσνε)αFa

µν +
1
√

2
εαDa,

δDa =
i
√

2
(−ε†σ̄µDµλ

a + Dµλ
†aσ̄µε).

The free Lagrangian density for a gauge supermultiplet is then:

Lgauge = −
1
4

Fa
µνFµν a + iλ†aσ̄µDµλ

a +
1
2

DaDa, (1.18)

where Fa
µν = ∂µAa

ν − ∂νA
a
ν + g f abcAb

µAc
ν and the covariant derivative of the gaugino

field is Dµλ
a = ∂µλ

a + g f abcAb
µλ

c.

Here too, the auxiliary field has a trivial equation of motion Da = 0. How-

ever, once chiral and gauge supermultiplets are coupled, this will not be the case

anymore.

1.3.3 Interaction terms

Interactions of chiral supermultiplets. This paragraph describes how to con-

struct non-gauge interaction terms for a collection of chiral supermultiplets, in-

dexed by i, containing a Weyl fermion ψi, a complex scalar field φi, and a com-

plex scalar auxiliary field Fi. The dual requirements that the Lagrangian be

invariant under supersymmetry transformations, and renormalizable by power

counting, greatly constrain the form of these terms.
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The most general interaction term can be written in terms of a complex func-

tion that is analytical in the scalar fields φi, the superpotential W:

W = Liφi +
1
2

Mi jφiφ j +
1
6

yi jkφiφ jφk, (1.19)

where Li are parameters with dimension [mass]2, and Mi j is a symmetric mass

matrix for the fermion fields. In analogy with previous results from field the-

ory, yi jk can be interpreted as a Yukawa coupling between a scalar φk and two

fermions ψ j and ψk, and is symmetric under interchange of i, j, k.

The parameters Li only appear in the scalar potential, through a term pro-

portional to the superpotential squared; in particular, terms linear in a scalar

field will be present. This is only allowed if the field is a gauge singlet, and

since there are no such chiral fields in the SM, as they are forbidden by gauge

transformations, the term will be omitted from this point forward.

The interaction part of the Lagrangian density for a collection of chiral su-

permultiplets can then be written:

Lint = −
1
2

(W i jψiψ j + W∗
i jψ
†iψ† j) −W iW∗

i ,

with:

W i j =
δ2W
δφiδφ j

= Mi j + yi jkφk, W i =
δW
δφi

= Mi jφ j +
1
2

yi jkφ jφk.

The masses of the fermions and scalars are obtained by computing the equa-

tions of motion for these fields, using the full Lagrangian density (sum of the

free and interaction terms). In consequence, the masses of the fermion and bo-

son elements of a supermultiplet are given by the same squared mass matrix

(M2) j
i = M∗

ikMk j. Chiral supermultiplets therefore contain a mass-degenerate

complex scalar and Weyl fermion, as postulated (recall that a supersymmetry-

breaking term has not yet been included in the Lagrangian).
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The non-propagating auxiliary fields Fi and F∗i have been eliminated from

the Lagrangian density using their equations of motion Fi = −W∗
i , F∗i = −W i.

We express for future use the scalar potential V(φ, φ∗) = W iW∗
i :

V(φ, φ∗) = M∗
ikMk jφ∗iφ j +

1
2

Miny∗jknφiφ
∗ jφ∗k +

1
2

M∗
iny jknφ∗iφ jφk

+
1
4

yi jny∗klnφiφ jφ
∗kφ∗l

(1.20)

The Lagrangian density can then be written:

L = − ∂µφ∗i∂µφi − V(φ, φ∗) + iψ†iσ̄µ∂µψ −
1
2

Mi jψiψ j −
1
2

M∗
i jψ
†iψ† j

−
1
2

yi jkφiψ jψk −
1
2

y∗i jkφ
∗iψ† jψ†k

(1.21)

Gauge interactions. The properties under gauge transformations of the

gauge supermultiplets were studied in Section 1.3.2. Because they act on dif-

ferent spaces, supersymmetry and gauge transformations commute. The fields

in a chiral supermultiplet are therefore in the same representation of the gauge

group, and transform as:

δgaugeXi = igΛa(T aX)i,

where Xi = φi, ψi, Fi, and T a is a set of Hermitian matrices satisfying the standard

commutation relation [T a,T b] = i f abcT c, which correspond to the representation

chosen for the gauge transformation.

For the Lagrangian density to be invariant under the gauge transformation,

the ordinary derivative ∂µ is replaced by the covariant derivative Dµ, whose

action on the fields is defined as:

Dµφi = ∂µφi − igAa
µ(T

aφ)i, (1.22a)

Dµφ
i∗ = ∂µφ

i∗ + igAa
µ(φ
∗T a)i, (1.22b)
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Dµψi = ∂µψi − igAa
µ(T

aψ)i. (1.22c)

This effectively couples vector bosons residing in gauge supermultiplets with

scalars and fermions in chiral supermultiplets.

Other allowed interactions, i.e., with field dimension less than [mass]4, cou-

ple gaugino λa and auxiliary Da fields. They have the form:

(φ∗T aψ)λa, λ†a(ψ†T aφ), (φ∗T aφ)Da.

The interactions described above can be combined into the full Lagrangian

density for a renormalizable supersymmetric theory, which is invariant up to

total derivatives under a transformation of the chiral fields:

δφi = εψi,

δψiα = −i(σµε†)αDµφi + εαFi,

δFi = −iε†σ̄µDµψi +
√

2g(T aφ)iε
†λ†a.

The full Lagrangian density is:

L = Lchiral +Lgauge −
√

2g(φ∗T aψ)λa −
√

2gλ†a(ψ†T aφ) + g(φ∗T aφ)Da, (1.24)

where the regular derivatives in Lchiral have been replaced by the gauge-

covariant derivatives defined in Eq. 1.22.

The strength g of the last three terms in the Lagrangian is determined by the

gaugle coupling, although these terms are not gauge interactions in the ordinary

field theory sense. The first and second of these terms correspond to couplings

between gauginos and chiral fields; the last term combined with the Da term in

Lgauge give the equation of motion for the auxiliary gauge field Da = −g(φ∗T aφ).
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Note that both types of auxiliary fields (Fi and Da) can be expressed as a function

of the scalar fields.

The scalar potential for this Lagrangian density is:

V(φ∗, φ) = F∗iFi +
1
2

∑
a

DaDa = W∗
i W i +

1
2

∑
a

g2
a(φ∗T aφ)2. (1.25)

The terms in this expression are called F-term and D-term contributions, re-

spectively, and are regulated exclusively by the other interactions in the theory:

fermion mass terms and Yukawa couplings for the F-term, and gauge interac-

tions for the D-term.

1.3.4 SUSY model-building

The expression for the full supersymmetric Lagrangian density shows that all

interactions and masses are determined by properties under gauge transforma-

tions, and by the superpotential.

The full supersymmetric Lagrangian density, expanded to make all inter-

action vertices explicit, is given in Eq. 1.21. The last two terms correspond

to scalar-fermion-fermion couplings. There is also a (scalar)4 coupling, which

arises from the last term in the superpotential given in Eq. 1.19. These types of

vertices all have dimensionless couplings.

The Lagrangian also contains interactions with a coupling strength of di-

mension [mass], corresponding to (scalar)3 interactions from the middle terms

of Eq. 1.20; and [mass]2, from the first term in Eq. 1.20, and fourth and fifth terms

in Eq. 1.21, which are the scalar and fermion propagators, respectively.
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We come next to the supersymmetric gauge interaction vertices. The field

strength term in Eq. 1.18 yields cubic and quartic gauge boson interaction ver-

tices. The covariant derivative in Eq. 1.22 introduces gauge boson-fermion and

gauge boson-scalar field interactions, which can be of type scalar-scalar-gauge

boson and fermion-fermion-gauge boson. Fermion-gaugino-scalar interactions

emerge from the third and fourth terms in Eq. 1.24. Finally, the last term in

Eq. 1.25 is responsible for (scalar)4 interactions, this time with a strength deter-

mined by the gauge coupling.

These represent general rules for building an interacting theory; we will soon

specify the superpotential in the case of the Minimal Supersymmetric standard

model (MSSM).

1.3.5 Soft SUSY breaking

Since no superpartners with masses equal to that of their SM counterparts have

been observed, supersymmetry must be spontaneously broken: the Lagrangian

is invariant under supersymmetry transformations, but the ground state is not.

Supersymmetry breaking is explicitly introduced in the supersymmetric La-

grangian through the addition of a term Lsoft.

By construction this term violates supersymmetry, but must contain only

mass terms and couplings with positive mass dimension. Dimensionless and

negative mass dimension SUSY breaking terms are forbidden: dimensionless

couplings will spoil the cancellations in ∆m2
H, while negative mass dimension

couplings imply that supersymmetry breaks down beyond a certain energy

scale, requiring a new mechanism to constrain ∆m2
H and avoid fine-tuning, this
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time at a much higher scale.

In the context of a model with minimal field content, as is discussed here,

the allowed soft SUSY-breaking terms may be written

Lsoft = −

(
1
2

Maλ
aλa +

1
6

ai jkφiφ jφk +
1
2

bi jφiφ j + tiφi

)
+ c.c. −

(
m2

)i

j
φ j∗φi,

where Ma are gaugino masses for each group,
(
m2

)i

j
and bi j are scalar squared-

mass terms, ai jk are (scalar)3 couplings, and ti are tadpole couplings, which can

be omitted in analogy with the Li term in the scalar potential, due to the absence

of a chiral gauge singlet candidate in the SM. Although (scalar)3 couplings c jk
i

between the fields φ∗i, φ j, and φk are in principle allowed, these tend to be van-

ishingly small in any model with spontaneous SUSY breaking, and are typically

neglected.

Mass splittings between superpartners and their SM counterparts are con-

trolled by msoft, the highest mass scale associated with terms inLsoft. Corrections

to the Higgs squared mass parameter due to these terms may be written

∆m2
H = m2

soft

[
λ

16π2 ln
(
ΛUV

msoft

)
+ . . .

]
,

where higher-order loop corrections and terms independent of the UV cutoff are

not explicitly written. The coupling λ stands for any dimensionless coupling.

In order to avoid fine-tuning, msoft can therefore not be too large, and the

lightest superpartners at least cannot be too heavy. If the UV cutoff ΛUV is of

order the Planck scale, for λ ∼ 1 the upper bound on the masses of the lightest

superpartners is approximately 1 TeV.
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1.4 The Minimal Supersymmetric Standard Model

1.4.1 Particle content

The SM Higgs boson is spin-0, and must therefore reside in a chiral supermulti-

plet 2. Fermionic partners of the Higgs are called higgsinos.

The SM fermions, leptons, neutrinos and quarks, have left- and right-handed

components which transform differently under gauge transformations; these

fermions must reside in chiral supermultiplets. Their spin-0 superpartners are

called sleptons, sneutrinos and squarks, respectively. Since elements of a super-

multiplet have the same gauge transformation, there is one distinct superpart-

ner for left and right-handed fermions.

SM vector bosons, which have spin-1, must be contained in gauge super-

multiplets, along with their fermionic superpartners, which are called gauginos.

The supersymmetric partners of the Wµ and Bµ bosons, mediators of the EWK

gauge symmetry, are respectively called the winos and bino; after EWK symme-

try breaking the W0 and B0 gauge eigenstates mix to form the Z0 and γ, whose

superpartners are called zino and photino. The gluon, mediator of color gauge

interactions, has a spin-1/2 superpartner called the gluino g̃.

The full particle content of the MSSM is presented in Table 1.2.

The MSSM contains four neutral fermions, the superpartners of the B0 and

W0 and two higgsinos. Electroweak symmetry breaking mixes the neutral hig-

2Actually, two Higgs chiral supermultiplets with weak hypercharge Y = ±1/2 are required
to give mass to both up-type quarks (Y = +1/2), and down-type quarks and leptons (Y = −1/2).
A reason for this will be given in section 1.4.2.
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Table 1.2: Fermion and gauge fields of the Minimial Supersymmetric Stan-
dard Model and their quantum numbers.

Field spin spin SU(3)C SU(2)L U(1)Y

chiral 0 1/2

Q
( ũL

d̃L

) ( uL

dL

)
3 2 1

6

ū ũ∗R u†R 3̄ 1 −2
3

d̄ d̃∗R d†R 3̄ 1 1
3

L
(
ν̃

ẽL

) (
ν

eL

)
1 2 −1

2

ē ẽ∗R e†R 1 1 1

Hu

( H+
u

H0
u

) ( H̃+
u

H̃0
u

)
1 2 +1

2

Hd

( H+
d

H0
d

) ( H̃+
d

H̃0
d

)
1 2 −1

2

gauge 1/2 1

g̃ g 8 1 0

W̃ W̃±, W̃0 W±, W0 1 3 0

B̃ B̃0 B0 1 1 0
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gsinos H̃0
u and H̃0

d and gauginos B̃ and W̃0 to form four mass eigenstates called

neutralinos Ñi, conventionally labelled in ascending order of mass. Usually, Ñ1

is assumed to be the LSP.

The charged higgsinos H̃+
u and H̃−d mix with the charged winos W̃± to form

two mass eigenstates with charge ±1, called charginos C̃1, C̃2, with mC̃1
< mC̃2

.

The gluino is the only color octet fermion in the MSSM, and therefore cannot

mix with any other particle.

The MSSM contains 21 scalar fields that are superpartners of the SM right-

and left-handed quarks and leptons. For the first generation, these are the four

squarks ũL, ũR, d̃L, d̃R, two sleptons ẽL, ẽR and a sneutrino ν̃eL ; similar copies exist

for the other generations.

1.4.2 Superpotential and interactions

Before applying the general expression for the superpotential, based on Eq. 1.19,

to the MSSM, we must identify the different possible terms.

The Yukawa term couples a scalar and two fermion fields of chiral super-

multiplets, which in the case of the MSSM can be the squarks and quarks, or

sleptons and leptons, or Higgs and higgsinos. The mass term couples scalar

fields of chiral supermultiplets, which in this case are squarks or sleptons.

Thus we obtain a superpotential of the form:

WMSSM = ūyuQHu − d̄ydQHd − ēyeLHd + µHuHd.

The signs are chosen so that the terms giving quark and lepton masses have
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positive sign. The µ term is the supersymmetric equivalent of the SM Higgs

boson mass. It produces both higgsino mass terms and Higgs squared-mass

terms.

Based on this expression, it is clear why two Higgs supermultiplets are

needed to produce Yukawa couplings, and hence masses, to all families of

quarks and leptons: the superpotential must be an analytical function of the

scalar fields only, and not their complex conjugates, so that terms of the form

ūQH∗d cannot replace ūQHu; similarly for ēLH∗u and ēLHd.

Once the neutral scalar components of the Higgs have acquired non-zero

VEVs, the 3×3 Yukawa matrices yu, yd and ye will determine current masses, and

constrain the mixing angles between quark generations (much like the CKM

matrix in the SM). In the approximation that the third generation of quarks and

leptons is much heavier than the first two, we can assume that only the (3, 3)

element of these matrices is non-zero. Let these couplings be called yt, yb and yτ.

This simplifies the expression for the MSSM superpotential:

WMSSM ≈ yt(t̄tH0
u − t̄bH+

u ) − yb(b̄tH−d − b̄bH0
d) − yτ(τ̄ντH−d − τ̄τH0

d) + µ(H+
u H−d − H0

u H0
d).

(1.26)

In addition to the Higgs-quark-quark and Higgs-lepton-lepton couplings

made explicit in the superpotential, squark-higgsino-quark and slepton-

higgsino-lepton couplings also exist. For example, based on the superpotential,

the SM coupling of top, anti-top and Higgs has strength yt. Since the Yukawa

coupling yi jk is completely symmetric under the exchange of i, j and k, the stop-

Higgsino-top couplings also have strength yt. The same holds for the exchange

of a t and b quark, as can be seen in the second term of Eq. 1.26.

28



These are not the only terms with couplings that are a power of yt. As the

last term in the expression for the scalar potential in Eq. 1.20 shows, there will

also be (scalar)4 terms of strength y2
t , coupling four stops or two stops and two

Higgs. Since the Yukawa couplings are symmetric, the exchange of a stop for a

sbottom squark yields an interaction of the same strength. In general, all scalar

quartic couplings [(squark)4, (slepton)4, (squark)2(slepton)2, (squark)2(Higgs)2

and (slepton)2(Higgs)2] can be obtained from elements of yu, yd and ye.

Note that since the Yukawa couplings are quite small, superpartners will

most likely be produced via gauge-strength supersymmetric interactions, for ex-

ample squark-quark-gluino, squark-quark-wino and slepton-lepton-wino (the

wino can only couple to left-handed squarks and sleptons), squark-quark-bino

and slepton-lepton-bino, Higgs-higgsino-wino and Higgs-higgsino-bino, with

strength proportional to the electroweak gauge couplings g (wino) and g′ (bino).

In addition, the last term in Eq. 1.24 allows for (scalar)4 terms, for example

(Higgs)4, proportional to g2 and g′2.

1.4.3 R-parity

The supersymmetric Lagrangian is expressed in Eq. 1.24. It is possible to write

other, additional terms that do not conserve baryon and lepton numbers. This

type of interaction has not been experimentally observed; the most notable con-

sequence is that the decay time of a proton into states containing a lepton and

meson must be greater than 1032 years. Therefore a new symmetry, called R-

parity (or matter parity), is introduced to eliminate terms in the renormalizable

Lagrangian that violate baryon and lepton number conservation; it is defined
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for each particle as:

PR = (−1)3(B−L)+2s,

where B and L are the baryon and lepton numbers, respectively, and s the spin

of the particle.

By construction, the known SM particles are even under R-parity, while their

superpartners, called sparticles, are odd, because their spins differ by exactly

1/2. Conservation of R-parity implies that regular particles and sparticles can-

not mix, and each interaction vertex in the supersymmetric theory must contain

an even number of particles with PR = −1. The MSSM is defined to conserve

R-parity.

There are three phenomenologically important consequences to R-parity

conservation:

• The lightest supersymmetric particle (LSP) is stable, because there are no

other PR = −1 states to which it can decay. If the LSP is electrically neutral,

it is a good dark matter candidate.

• Other sparticle decay chains must include an odd number of LSPs.

• Sparticles can only be pair-produced in collider experiments.

1.4.4 Naturalness

In minimal SUSY the symmetry between fermions and bosons cancels the di-

vergent terms in Eq. 1.13. However SUSY must be broken, and SUSY-breaking

terms in the Lagrangian may introduce new divergent terms in ∆m2
H that must
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also be regulated by a cutoff scale. Excessive fine-tuning can nevertheless be

avoided for sparticle masses at or near the TeV scale [18].

SUSY models with a mass spectrum satisfying the above requirement are

called natural SUSY models. In many of these, the stop and sbottom squarks

are expected to be the lightest squarks; searches for superpartners have often

aimed at discovering these particular sparticles. Since they strongly couple to

their third generation SM counterparts, multiple b quarks are expected to be

produced in collisions. These can in turn be reconstructed.

1.4.5 Experimental signature

At hadron colliders, sparticles must be pair-produced, either in interactions of

EWK or strong (QCD) strength. At the LHC, gluon-gluon and gluon-quark fu-

sion dominates, producing gluinos and squarks, although associated produc-

tion of a chargino or neutralino with a squark or gluino is also allowed (with a

smaller cross-section).

Since sparticles must be pair-produced, and their decay chains always in-

clude at least one LSP, the final state is characterized by a minimum of 2mLSP

of missing energy. Due to the fact that the longitudinal component of parton

momenta is unknown in hadron colliders (each parton has a momentum that is

an unkown fraction of the proton to which it belongs), only missing energy in

the direction transverse to the beam (Emiss
T ) is observable. In general, the exper-

imental signature of SUSY includes zero or more leptons, zero or more jets, and

Emiss
T . If the lightest stop and sbottom are light enough, typical SUSY events can

have high b-jet multiplicities.
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Multiple searches targeting these signatures have been performed, at the

LHC and elsewhere [19–23]. With data from its first run, the LHC has already

placed stringent bounds on the MSSM, excluding large swaths of parameter

space at low masses. Figure 1.4 presents a summary of limits obtained by CMS

sparticle production in certain decay channels, as a function of the sparticle

mass and for different LSP masses. Already the TeV scale favored by natu-

ralness is nearly excluded.
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Figure 1.4: Left: summary of CMS limits on gluino pair production, with
the gluino decaying to top anti-top neutralino, in the mg̃ −mLSP

plane. Right: summary of CMS limits on stop squark pair pro-
duction in the mt̃ − mLSP plane.

In recent years, the focus has therefore switched to other new physics mod-

els, in particular those in which the LSP decays promptly, resulting in an ex-

perimental signature without significant Emiss
T , a direct consequence of R-parity

conservation. In Section 1.5, we will describe one such model, the R-parity vi-

olating MSSM constrained to have Minimal Flavor Violation (MFV) [7]. This

model provides the theoretical motivation for the search presented in Chapter 4.
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1.5 R-parity violating SUSY with Minimal Flavor Violation

In this section we present the theoretical framework that forms the basis for the

analysis performed in this thesis.

1.5.1 Superpotential

Instead of requiring strict R-parity conservation, as in the framework of the

MSSM, R-parity violating terms may be introduced into the Lagrangian. Pro-

vided the couplings are small enough, these terms will not conflict with current

experimental bounds on the proton lifetime [24].

In the MFV framework, instead of R-parity conservation, the sole Yukawa

couplings are hypothesized to violate flavor symmetry. Due to their size, these

couplings, along with CKM factors, contribute to suppressing the R-parity vio-

lating terms in the Lagrangian. As shown in Ref. [7], in the limit of vanishing

neutrino masses, the proton is still stable; we will therefore restrict ourselves to

the limit of zero-mass neutrinos.

With the inclusion of these terms, only one new allowed operator is renor-

malizable and can be added to the MSSM superpotential given in Eq. 1.26:

WBNV =
1
2

w′′ (yuū)
(
ydd̄

) (
ydd̄

)
, (1.27)

where w′′ is an unknown O(1) coefficient. As noted, this term exclusively vio-

lates baryon number (BNV); lepton number is still conserved in this modified

MSSM.

33



1.5.2 BNV vertices and coupling strengths

In this section, we evaluate the coupling strengths associated with the BNV ver-

tex in Eq. 1.27.

Through an SU(3)5 rotation, we can move to the basis in which the Yukawa

matrices can be expressed simply in terms of the CKM matrix VCKM, the Higgs

VEVs vu and vd, and the quark masses:

yu =
1
vu

V†CKM


mu 0 0

0 mc 0

0 0 mt

 , yd =
1
vd


md 0 0

0 md 0

0 0 mb

 , ye =
1
vd


me 0 0

0 mµ 0

0 0 mτ

 .

The new R-parity and baryon-number violating term can be written:

WBNV =
1
2
λ′′i jkε

abcūi
ad̄ j

bd̄k
c , (1.28)

where a, b, c are color indices and i, j, k are flavor indices, and in this particular

basis the coupling strength is given by:

λ′′i jk = w′′y(u)
i y(d)

j y(d)
k ε jklVil,

y(u)
i and y(d)

i being the up- and down-type Yukawa couplings. There are nine

distinct vertices, whose strengths can be estimated using the following quark

masses [14]:

mu ∼ 3 MeV , mc ∼ 1.3 GeV , mt ∼ 173 GeV ,

md ∼ 6 MeV , mc ∼ 100 MeV , mb ∼ 4 GeV ,

the lepton masses:

me ' 0.511 MeV , mµ ' 106 MeV , mτ ∼ 1.78 GeV ,
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and the CKM matrix:

VCKM ∼


1 λ λ3/2

λ 1 λ2

λ3 λ2 1

 ,
where λ ∼ 1/5 gives an estimate of the matrix elements to within 20% accuracy.

Consequently, the nine vertices have strengths parameterized by tan β, the

ratio of the Higgs VEVs vu and vd:

λ′′usb ∼ tan2 βmbmsmu

m3
t

, λ′′ubd ∼ λ tan2 βmbmdmu

m3
t

, λ′′uds ∼ λ
3 tan2 βmdmsmu

2m3
t
,

λ′′csb ∼ λ tan2 βmbmcms

m3
t

, λ′′cbd ∼ tan2 βmbmcmd

m3
t

, λ′′cds ∼ λ
2 tan2 βmcmdms

m3
t

,

λ′′tsb ∼ λ
3 tan2 βmbms

m2
t
, λ′′tbd ∼ λ

2 tan2 βmbmd
m2

t
, λ′′tds ∼ tan2 βmdms

m2
t
.

(1.30)

Taking w′′ = 1 and tan β = 45, we subsequently obtain the approximate values:

λ′′usb ∼ 5 × 10−7 , λ′′ubd ∼ 6 × 10−9 , λ′′uds ∼ 3 × 10−12 ,

λ′′csb ∼ 4 × 10−5 , λ′′cbd ∼ 1.2 × 10−5 , λ′′cds ∼ 1.2 × 10−8 ,

λ′′tsb ∼ 2 × 10−4 , λ′′tbd ∼ 6 × 10−5 , λ′′tds ∼ 4 × 10−5 .

(1.31)

Since the parameter λ′′tsb dominates by an order of magnitude, we expect the

most common MFV RPV SUSY interactions to occur between third-generation

particles.

1.5.3 Phenomenology

The experimental signature of MFV RPV SUSY will depend on the nature of

the LSP. As previously noted, since R-parity is no longer required to be con-

served, the LSP is allowed to decay. Furthermore, the assumption that the LSP

be electrically and color neutral places unecessary restrictions, and is accord-

ingly dropped.
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The mass spectrum of the model is dictated by the constraints MFV places on

squark and slepton masses [7]: CKM elements and Yukawa couplings suppress

all but the stop, sbottom and stau. Other squarks and sleptons are much heavier

and usually degenerate, but there can be one light stop or sbottom squark. Thus,

we consider the natural scenario of a third generation squark LSP. Both stop and

sbottom LSP scenarios are considered in Ref. [7]; in the context of this thesis we

study the case of a sbottom LSP.

As described in Section 1.5.2, the sbottom will decay to a top and strange

quark in 99% of cases. The remaining sbottom decays mainly produce top and

down quarks. Displaced vertices (greater than 50 µm) are expected only for

tan β . 10. Hence, at the LHC we expect to see increased top quark production

in conjunction with light jets. This signature is the subject of this thesis.
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CHAPTER 2

ACCELERATOR AND DETECTOR

The subject of this thesis is a search for new physics resonances using data

collected with the CMS detector, a general-purpose apparatus recording the re-

sults of proton-proton collisions from beams delivered by the LHC accelerator

complex, located at CERN. The LHC is described below in Section 2.1. Charac-

teristics of the CMS detector are presented in Section 2.2.

2.1 The Large Hadron Collider

Following the motivations for physics beyond the SM outlined in Chapter 1,

there was an international consensus to build a TeV collider, the Large Hadron

Collider (LHC), in order to probe this particular range of energies in search

of new physics. In addition, the LHC would provide another opportunity to

search for the Higgs boson, in parallel with the CDF and D0 experiments at

Fermilab.

The collider was built at CERN, re-purposing accelerator facilities and an

underground tunnel below the Franco-Swiss border that had previously been

the site of the LEP collider. We briefly describe the accelerator and collider be-

low, following closely the material in Ref. [25]. A more in-depth description can

be found elsewhere [26].
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2.1.1 Machine layout and operation

The LHC is a circular proton-proton collider with a circumference of 26.7 km,

housed in a tunnel built beneath the Earth’s surface, at a depth varying be-

tween 45 and 170 m, on a 1.4% incline towards Geneva and the Lac Léman.

Hadron colliders present the advantage that synchrotron radiation is much

smaller than at electron-positron colliders, allowing for higher center-of-mass

energies to be probed. The choice of protons, which are readily available, re-

quired a double-ring configuration with proton beams circulating in opposite

directions. A schematic view of the LHC and CERN accelerator complex is pre-

sented in Fig. 2.1 [27].

Figure 2.1: Schematic view, not to scale, of the Large Hadron Collider and
accelerator complex at CERN. The different LHC experiments,
ALICE, ATLAS, CMS, and LHCb, are denoted by black points
around the circumference.
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Protons are obtained by stripping electrons from hydrogen atoms using an

ion source. They then go through the machine’s injection chain, which com-

prises the following elements. The Linac2 is a linear accelerator that accelerates

protons to 50 MeV. Protons are then channeled into a series of circular accel-

erators: the Proton Synchrotron Booster (PSB) of radius 25 m that accelerates

protons to 1.4 GeV; the Proton Synchrotron (PS) with a circumference of 630 m

accelerates protons to 26 GeV; and the Super Proton Synchrotron (SPS) with a

circumference of 6.9 km, which brings protons to 450 GeV before injecting them

into the LHC rings.

The LHC machine is composed of arcs alternating with straight sections.

Arcs contain dipole magnets that serve to bend protons around the circumfer-

ence of the tunnel, while straight sections contain quadrupole magnets acting

to focus the proton beams. Superconducting technologies are employed to pro-

duce the high magnetic fields (8.3 T), and thus high currents, that are necessary:

the magnets are built using niobium-titanium Rutherford cables, and superfluid

helium is used to efficiently absorb heat generated in coils throughout the mag-

net structures.

Protons circulating in the LHC rings are accelerated using radio frequency

(RF) cavities that produce oscillating electric fields: protons traveling around

the ring at a frequency that is an integer multiple of the resonant frequency of

the cavity are accelerated at each revolution. This creates a discrete structure in

the beams, where protons are grouped into bunches with a well-defined spac-

ing between each. The RF cavities operate at 400 MHz and produce an overall

voltage per beam of 16 MV/m.

The two counter-rotating proton beams are brought into collision at four in-
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teraction points (IP) around the ring, at which experiments are located to record

the interactions. These correspond to the two general-purpose experiments AT-

LAS (A Toroidal LHC Apparatus) and CMS, and the two specialized experi-

ments ALICE (A Large Ion Collider Experiment) and LHCb. In order to avoid

parasitic interactions between multiple proton bunches, the beams collide with

a crossing angle θc ∼ µrad instead of head-on.

The LHC’s main quadrupole magnets constitute a magnetic lattice that acts

to alternatively focus and defocus the proton beams, producing independent os-

cillations of varying amplitudes in the plane transverse to the beam direction s

(by convention, the axis is oriented in the clockwise direction). Individual pro-

tons are deflected differently by the magnets, depending on their momentum

and initial transverse position in the injected bunches; the maximum amplitude

is parameterized by the beta function β(s), a machine-dependent quantity that

plays a significant role in evaluating the performance of the machine. The value

of the beta function at the interaction point is called β∗.

The motion of protons within a bunch through the magnetic lattice creates a

transverse spread in the beam, with a size at position s that depends on the beta

function as σ(s) =
√
ε β(s), where ε is the emittance of the beam, defined as the

contour confining a given fraction of the protons. Particles within the beam are

assumed to be normally distributed. Generally, a more useful parameter that is

independent of beam energy is the normalized emittance εn = βγε, where β and

γ are the relativistic parameters.
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2.1.2 Performance

The performance of the LHC is measured in terms of the delivered luminosityL,

which depends on a limited number of beam parameters: the number of protons

per bunch Nb, the number of bunches per beam nb, the revolution frequency of

the protons f , the relativistic factor of the protons γ, the normalized transverse

beam emittance εn, the value of the beta function at the interaction point β∗, and

a factor F . 1 accounting for the crossing angle between beams.

Assuming the two counter-rotating beams are identical, round at the inter-

action points, and the protons are normally distributed within the beams, the

luminosity is given by

L =
N2

bnb fγ
4πεnβ∗

F. (2.1)

The parameter F quantifies the reduction in luminosity associated with increas-

ing the crossing angle:

F =
1√

1 +
(
θcσz
2σ∗

)2
, (2.2)

where σz is the RMS bunch length and σ∗ the beam size at the collision point.

Beam parameters are listed in Table 2.1, which compares the design values

to the settings used in 2012, when the data used in this thesis were collected.

Gradually, as protons are lost in collisions, the luminosity decreases, and it is

necessary to dump the beams and start a new fill. The luminosity integrated

over time Lint is directly related to the number of events produced in the proton-

proton collisions,

N = σtotal Lint = σtotal

∫
Ldt,

where σtotal ∼ 100 mb is the 8 TeV cross section of proton-proton processes at the

LHC. In 2012, the LHC delivered a total integrated luminosity in proton-proton
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Table 2.1: Some LHC machine parameters and their values in 2012, com-
pared to the design specifications.

Parameter 2012 Design Unit

Collision energy
√

s 8 14 TeV

Protons per bunch Nb 1.7 × 1011 1.15 × 1011

Bunches per beam nb 1380 2808

Bunch separation τbunch 50 25 ns

Beta function at the IP β∗ 60 55 cm

Normalized emittance εn 2.5 3.75 µm mrad−1

Luminosity L up to 8 × 1033 1034 cm−2 s−1

collisions of 23.30 fb−1.

The majority of physics processes that CMS intends to observe have cross

sections measured in pb, a factor of 1011 smaller than σtotal. In fact, inelastic

scattering events, with a cross section σinelastic ≈ 70 mb at 8 TeV, account for the

majority of events observed in proton-proton collisions at the LHC, and repre-

sent a major difficulty in isolating potentially “interesting” events. On average

we expect Ninelastic = σinelastic τbunchL such interactions per bunch. Using values

from Table 2.1, we estimate that an average of 28 inelastic scattering interactions

per beam crossing, referred to as pile-up, occurred in 2012.

2.2 The Compact Muon Solenoid

The LHC hosts several experiments with multiple physics goals. Amongst

them, ATLAS and CMS were intended to spearhead the search for the Higgs

42



boson and physics beyond the SM. In this section we describe the CMS detector,

focusing on components that play an essential role in reconstructing the physics

objects used in the analysis described in Chapter 4: leptons, jets, and missing

transverse energy. A more complete description can be found elsewhere [28,29].

CMS is a cylindrically shaped detector measuring 21.6 m in length, 14.6 m

in diameter, and weighing 12.5 kt. The innermost layer of the detector is a sil-

icon tracker that is used to reconstruct the trajectories of charged particles. It

is surrounded by electromagnetic and hadronic calorimeters, which record en-

ergy deposits from charged and neutral particles, respectively. These lay inside

the coils of a superconducting solenoid that provides the high magnetic field

necessary to accurately measure the momenta of charged particles. Outside of

this volume, interspersed with the iron return yoke of the magnet, are detec-

tors for muons. Due to their mass (approximately 200 times that of electrons),

muons lose less energy to Bremsstrahlung radiation than electrons and inter-

act less frequently with detector material. They are thus more likely to travel

from the interaction region, through the inner layers, and reach this region of

the detector. A diagram of the detector is presented in Fig. 2.2 [29].

The experiment uses the following coordinate conventions. The coordindate

system is centered at the interaction point. The x axis is oriented radially in-

ward, toward the center of the LHC; the y axis points vertically upward. The z

axis is oriented along the counter-clockwise rotating proton beam. Azimuthal

angles φ are measured from the x axis and in the x − y plane. Polar angles θ

are measured from the z axis. Pseudo-rapidity η, commonly used instead of the

polar angle, is defined as η = − log tan (θ/2).
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Figure 2.2: Layout of the CMS detector, showing the location of the differ-
ent sub-detectors.

2.2.1 Tracking systems

Due to the proximity of the tracker to the interaction point, its design poses

multiple challenges. At a distance of 4 cm from the IP, the charged particle flux

resulting from high luminosity collisions is expected to be of order 108 s−1 [29].

The high flux results in an extremely dense tracking environment, potentially

high occupancy for detectors close to the IP, and high radiation. In order to deal

with these challenges, the tracker is designed to be finely segmented, resulting

in low occupancy; to have excellent track resolution, in order to successfully

reconstruct secondary vertices from the decays of heavy-flavor objects; and to

be radiation-hard.
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The inner tracking system extends radially to r = 110 cm and has a length

of 540 cm. Dual silicon pixel and silicon microstrip systems, offering hermetic

coverage in the r−φ plane, are used. The tracker is composed of an Inner Barrel,

an Outer Barrel (longer than the Inner Barrel), and two Endcaps, one on each

side of the tracker barrel. A diagram of the inner tracker in the r − z plane is

presented in Fig 2.3 [30].

Figure 2.3: A view of the CMS tracking systems in the r − z plane, These
consist of the pixel detector, tracker inner and outer barrels
(TIB and TOB), tracker inner disks (TID), and tracker endcaps
(TEC).

2.2.1.1 Pixel tracker

Silicon pixels are used in the region closest to the interaction point, up to r ≈

10 cm. The pixels have dimensions of 100×150 µm2 (and 285 µm thick), resulting

in an occupancy of approximately 10−4 per bunch crossing. The barrel region

comprises three layers of pixels that are located at r = 4.4, 7.3, and 10.2 cm; each

layer is 53 cm long, and is hermetic in r and φ. On either side are two end disks,
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at |z| = 34.5 and 46.5 cm, which extend between r = 6 and 15 cm. The layout of

the pixel detector is illustrated in Fig. 2.4 [29].

Figure 2.4: Perspective view of the CMS pixel detector, the innermost
tracking system.

In the barrel portion of the pixel detector (BPix), each layer is divided into

two half-cylinders, one in the +z direction and the other in the −z direction. A

half-cylinder is composed of ladders and half-ladders situated to ensure her-

metic coverage in r and φ up to |η| < 2.5, and which provide the necessary

structural support and cooling. The barrel is made up of 768 modules that are

divided into half-ladders of four identical modules each. The read-out of each

module is performed by 16 Read-Out Chips (ROC), bump-bonded to the sen-

sors, which each read a 52× 80 array of pixels. There are 48 million pixels in the

BPix.

The pixel endcaps (FPix) are composed of two disk, with each disk compris-
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ing multiple blades (trapezoidal-shaped panels) that are rotated by 20◦, creating

a turbine-like geometry. Each blade is contructed from different-sized plaque-

ttes that hermetically cover the blade. There are 672 plaquettes overall, with 7

modules per blade and between two and ten ROCs per module, for a total of 18

million pixels in the FPix. There are thus 66 million unique channels in the pixel

detector, which has an area of 1 m2.

The strength of the magnetic field inside the pixel detector is 4 T. Charged

particles moving in this field are deflected perpendicularly from their path

along electric field. Ionizing particles traversing a pixel create electron-holes

pairs that drift across the sensor and into neighboring pixels. This charge-

sharing effect between neighboring pixels increases spatial resolution by pro-

viding a measure of the center of gravity of the overall charge. The spatial res-

olution of the pixel detector is 10 µm in r − φ and 20 µm in z. The geometry of

the pixel detector provides track measurements (three in the barrel, two in the

endcap) within |η| < 2.5.

2.2.1.2 Strip tracker

At a distance of r ≈ 20 cm, the particle flux has decreased to a level at which sil-

icon microstrips provide sufficient resolution to reconstruct tracks. Between 20

and 55 cm, these have minimum dimensions 10 cm × 80 µm, and have an occu-

pancy of 2−3% per bunch crossing; while above 55 cm the minimum dimensions

are 25 cm × 80 µm, and the occupancy ≈ 1% per bunch crossing. The layout of

the silicon microstrip detector is illustrated in Fig. 2.5 [29].

In the barrel the silicon tracker extends to r = 110 cm and is divided into the
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Figure 2.5: Layout of one quarter of the CMS silicon microstrip tracker in
the r − z plane.

Tracker Inner Barrel (TIB) and Tracker Outer Barrel (TOB), which are composed

of rectangular sensors. The TIB, composed of four layers of silicon microstrips

of thickness 320 µm and pitch varying from 80 to 120 µm, extends to |z| = 65 cm.

The TOB comprises six layers of 500 µm-thick microstrips with pitch between

120 and 180 µm, and extends to |z| = 110 cm. The first two layers of the TIB and

TEC consist of double-sided modules made from two back-to-back sensors with

a stereo angle of 100 mrad, allowing for measurements parallel and perpendic-

ular to the strip.

The forward stip tracker is separated into the Tracker End Cap (TEC) and the

Tracker Inner Disks (TID), and is built using different wedge-shaped sensors.

The TEC disks, composed of nine microstrip layers of thickness 320 or 500 µm,

cover the region 120 cm < |z| < 280 cm, while the TID, comprising three disks

each with thickness 320 µm, are located in the space between the TIB and TEC.

Strips are placed in concentric rings that are centered on the beam line, with

sensors pointing toward the beam line. The modules are mounted on petals

that are attached to the disks. The strip pitch varies between 100 and 140 µm in
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the TID, and 140 and 180µ in the TEC. As in the barrel, certain layers are made

up of stereo modules: the first two rings of the TID, and the first two and fifth

rings of the TEC.

There are 15 148 modules overall in the strip tracker, each composed of one

thin or two thick sensors, with 24 244 sensors total and 9.6 million silicon strips

spread over 200 m2. Each sensor consists of 512 or 768 strips, with blocks of 256

channels sent via fiber-optic cable to be processed through one read-out channel,

the strip tracker Front End Driver (FED). The strip tracker has 450 FEDs overall.

The tracker is hermetic in r − φ up to |η| < 2.5, and provides a resolution of

approximately 30 µm in r − φ and 230 µm in z.

2.2.2 Calorimeter systems

We describe below the two calorimeter systems used in the CMS experiment, the

Electromagnetic Calorimeter (ECAL) and the Hadronic Calorimeter (HCAL).

2.2.2.1 Electromagnetic calorimeter

One of the design goals of the ECAL was to successfully reconstruct decays of

Higgs bosons to a pair of photons. In practice the ECAL records energy deposits

from photons, electrons and other charged particles using crystals that scintil-

late when traversed by ionizing radiation, and photodetectors that measure the

emitted photon shower. In its environment inside the detector, the ECAL faces

challenges similar to that of the tracker. It was therefore designed to be finely

segmented, with a fast response, and radiation-resistant.
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The ECAL is divided into a barrel section (EB) and endcaps (EE) on either

side. In addition there is a preshower system (ES) that is located on the inner

face of the EE. The calorimeter is hermetic with the EB covering the pseudora-

pidity range |η| < 1.479, the EE extending to 1.479 < |η| < 3.0, and the ES in

the region 1.653 < |η| < 2.6. Lead tungstate (PbWO4) crystals are used through-

out. This type of crystal permits rapid feedback: 80% of light produced through

scintillation is emitted within 25 ns, the design LHC bunch spacing. The short

radiation length results in a high-granularity system, allowing precise measure-

ment of the electromagnetic shower. The crystals are polished to maximize total

internal reflection of light within the crystals, and thus ensure optimal function-

ing conditions for the photodetectors. The layout of the ECAL is illustrated in

Fig. 2.6 [29].

y

z

Preshower (ES)

Barrel ECAL (EB)

Endcap

 = 1.653

 = 1.479

 = 2.6
 = 3.0

ECAL (EE)

Figure 2.6: View of one quarter of the CMS electromagnetic calorimeter
(ECAL) in the r − z plane.

The EB has an inner radius of 129 cm. It is segmented into 360 regions in

φ and 2 × 85 regions in η, for a total of 61 200 crystals. At the inner radius the

front face of the crystals have area 22 × 22 mm2, while the rear face measures
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26 × 26 mm2; the length of the crystals is 230 mm. The crystals are placed in

alveolar structures called submodules, which are then assembled into modules

made up of between 400 and 500 crystals. Different types of modules are pro-

duced for different η regions. In order to avoid crystal edges, and hence cracks,

aligned with the trajectories of particles emanating from the interaction point,

the crystals are tilted by 3◦ in both η and φ directions. Ensembles of four mod-

ules are joined by an aluminium web to create supermodules of 1 700 crystals.

Overall there are 36 identical supermodules that each stretch across half the bar-

rel length, with each supermodule spanning 20◦ in φ. Read-out is performed by

pairs of silicon avalanche photodiodes (APD) of active area 5 × 5 mm2 that are

attached to the rear face of each crystal.

The EE are located at |z| = 314 cm on either side of the interaction point. The

disks are divided into two D-shaped sections (Dees). Each Dee is composed of

5 × 5 arrays of identical crystals called supercrystals, also housed in alveolar

structures; in total there are 3 662 crystals organized into 138 supercrystals and

18 partial supercrystals located around the circumference of the Dees. In the EE

the crystals are of length 220 mm with front faces of area 28.6 × 28.6 mm2 and

rear faces of area 30 × 30 mm2; they are segmented in x − y and arranged in a

rectangular grid. Single vacuum phototriodes (VPT) of active area ≈ 280 mm2

are mounted on the backs of crystals for read-out.

The ES detectors are located in front of the EE disks over the range 1.653 <

|η| < 2.6, and are 20 cm thick. The detectors also have a Dee structure, with ele-

ments having the same orientation as those in the EE. The ES is composed of two

layers of lead radiators that are backed by silicon strip detectors, which measure

shower shapes and energy deposits. The lead components are matched to the
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neighboring EE crystals for optimal performance. The silicon sensors are com-

posed of 32 strips with 1.9 mm pitch, have a thickness of 320 µm, and an active

area of 61 × 61 mm2. The strips in the second plane are mounted orthogonally

to those in the first plane; by design approximately 95% of incident photons

begin to shower in the first layer. Unit elements composed of one sensor, read-

out electronics, and a support structure, are called micromodules. Groupings of

seven, eight or ten micromodules connected to an electronics motherboard form

a ladder, and ladders are affixed to the lead radiators. There are approximately

4 300 micromodules overall, corresponding to 137 000 read-out channels.

The performance of the ECAL is quantified by its energy resolution, which

was measured in electron test beams [31] and found to be:(
σE

E

)2
=

(
2.8%
√

E

)2

+

(
0.415

E

)2

+ (0.30%)2 ,

where the energy is measured in GeV. In these measurements electrons were

incident on a central crystal and the deposited energy was measured in the sur-

rounding 3×3 crystal array. In order to maintain this resolution the temperature

in the ECAL is closely monitored. The operating temperature is 18◦C, moti-

vated in part by the need to minimize radiation damage to the crystals, with

a ±0.05◦C window dictated by temperature-sensitive factors such as the light

output of the crystals. A water-cooling system is used to dissipate heat in the

ECAL.

2.2.2.2 Hadronic calorimeter

The HCAL completes the ECAL system in that it measures energy deposits from

hadronic jets, collimated structures of particles resulting from the hadronization
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of quarks and gluons, and missing transverse energry (Emiss
T ), which is the one

essential characteristic of classic SUSY signatures, as discussed in Section 1.4.5.

The HCAL occupies the space between the ECAL and solenoid. It must with-

stand high radiation and particle fluxes, and be constructed from non-magnetic

materials in order to not impact the field produced by the magnet. For optimal

performance it was designed to be hermetic, covering the range |η| < 5.0, and to

maximize the amount of absorbing material inside the magnet coils. It is con-

structed from brass plates and tiles of plastic scintillator material. The emitted

light is read out using multi-pixel hybrid photodiodes (HPD) that are connected

to the scintillator material by a combination of wavelength-shifting (WLS) fibers

and clear fibers.

The HCAL is composed of barrel (HB) and endcap (HE) sections, forward

calorimeters (HF), and a “tail-catcher” outer section (HO) located beyond the

magnet coils. The HB covers the range |η| < 1.4 while the endcaps are installed

in the range 1.3 < |η| < 3.0. The HF extends forward coverage in 2.9 < |η| < 5.2

and the HO increases coverage in the region |η| < 1.26. The layout of the HCAL

is illustrated in Fig. 2.7 [32].

The HB extends between r = 1.77 m and 2.95 m, respectively the outer edge

of the ECAL and the inner edge of the magnet, and is composed of two half-

barrels (HB+ and HB−). These are in turn comprised of 36 identical azimuthal

wedges that are each divided into four φ sectors. The wedges are made of two

external stainless steel support and 14 inner brass absorber plates. The inner and

outer steel plates have thicknesses of 40 mm and 75 mm, respectively; there are

successively eight 50.5 mm and six 56.5 mm brass plates in between. The brass

plates, which are 30% zinc and 70% copper, contribute an absorber thickness
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Figure 2.7: Layout of one quarter of the CMS hadronic calorimeter
(HCAL) in the r − z plane.

varying between approximately six and ten interaction lengths, depending on η.

In order to avoid holes the plates are assembled such that the different layers are

staggered in φ. The layers of plates alternate with tilings of plastic scintillator

material that are 9 mm thick for the external plates and 3.7 mm thick for the

remaining plates, with the first layer located in front of the inner steel plate.

In each φ segment the scintillator is divided into 16 different η regions called

towers that produce an overall (∆η,∆φ) = (0.087, 0.087) segmentation. Tiles are

assembled into units called trays that span a φ segment; there are 108 trays per

scintillator layer. Grooves are machined in the tiles, and showers produced in

each tile are read out by a WLS fiber. At the edge of the tile, the WLS fiber is

spliced with a clear fiber that runs to an optical connector at the end of the tray,

from which an optical fiber carries the signal to an HPD for read-out.

The HE are situated on either side of the HB, and their design is similar to

the barrel system. In this system also, brass plates are assembled in a staggered
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fashion. The plates are 79 mm thick and are interspersed with 9 mm gaps filled

by tiles of plastic scintillator material. Each HE is composed of 20 196 tiles or-

ganized into 1368 trays. There are 36 φ wedges called megatiles, and 32 towers

of varying η width in each megatile, for a total of 2304 towers. The segmen-

tation of the HE is (∆η,∆φ) = (0.087, 0.087) in the region 1.3 < |η| < 1.6 and

(∆η,∆φ) ≈ (0.17, 0.17) for 1.6 < |η| < 3.0. External stainless steel support plates of

thickness 10 cm frame this structure. Read-out is performed in the same manner

as in the HB.

The HO is installed outside of the magnet coils in the region |η| < 1.3 to

compensate for the shorter depth of interacting material in the central region

of the detector, in which there is not enough space inside the volume of the

solenoid to capture the full hadron shower. The HO geometry is constrained

by the magnet return yoke and muon detector structures. The iron return yoke

consists of five rings of length 2.5 m that are numbered −2, −1, 0, +1, +2 and

arranged along the z axis, with the HO representing the innermost absorbing

layer. The central ring comprises two 19.5 cm-thick iron layers at r = 3.82 m and

4.07 m, each placed in between two layers of plastic scintillator material; the

remaining rings are composed of only one layer of iron surrounded by plastic

scintillators, at r = 4.07 m. In the central region the HO increases the absorber

depth to over ten interaction lengths, similar to that in more forward regions.

Following the distribution of the muon systems, each ring is composed of 12

identical φ sectors interleaved with material belonging to the return yoke and

muon systems. The φ sectors are further divided into six slices that lay in a

common plane. The subdivision of each slice in η defines a tile, with tiles in one

slice assembled in a tray. The tray length matches the muon ring length in z.

The η, φ segmentation and resulting tower stucture are designed to align with
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the HB geometry. Each of the six trays per φ sector are composed of five tiles in

rings ±2, six tiles in rings ±1, and 8 tiles in ring 0, for a total of 72 trays in the

internal layer of ring 0 and 360 trays for all other layers and rings, and 2730 tiles

overall. Read-out is also performed via WLS and clear fibers steered through

optical connectors to photodetectors. Simulation of incident pions confirmed

the reduction in leakage in the central region, while QCD dijet events were used

to verify the improvement in Emiss
T resolution with the HO.

The HF is designed to cover the forward pseudorapidity range 3.0 < |η| < 5.0.

It is cylindrically shaped with an inner radius of 12.5 cm, and extends to r =

130.0 cm, with the face closest to the interaction point located at z = 11.2 m. Due

to its proximity with the beam line and resulting high particle fluxes as well as

radiation, the HF makes use of a different technology than the other HCAL com-

ponents: 5 mm-thick steel absorber plates separated into 13 concentric rings and

threaded through by quartz fibers, for an overall absorber depth of 165 cm. In

order to distinguish signals produced by electrons and photons, which shower

over short distances, from those generated by hadrons, half the fibers cover the

full absorber length while the other half, measuring 1.43 m, begin 22 cm past

the inner face of the HF. Alternating long and short fibers of width 0.6 mm, ar-

ranged parallel to the beam, are organized in a 5.0 mm square lattice. A signal

is registered when incident particles originating from a shower emit Cherenkov

radiation in a fiber. The rings are separated into azimuthal wedges spanning

10◦ (20◦) in the outermost 11 (innermost two) rings, and into towers measur-

ing ∆η = 0.175, except in the innermost ring where ∆η = 0.300 and the out-

ermost ring for which ∆η = 0.111; fibers are arranged in bundles within each

tower. The detector is placed in a hermetic radiation shield made of 40 cm-thick

layers of steel and concrete and an additional 5 cm-thick layer of polyethylene
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designed to protect the read-out devices and electronics. The quartz fibers are

connected to light guides (phototubes) that extend through part of the radiation

shield, and terminate in photomultiplier tubes (PMT). Read-out from the long

and short fibers is performed in separate channels; groups of 24 PMTs are used

for read-out of a single half-wedge.

The energy resolution of the HCAL has been measured in combination with

that of the ECAL [33, 34], leading to the following parameterization:(
σE

E

)2
=

(
a
√

E

)2

+ b2,

where the energy is measured in GeV, and parameters a and b are ∼ 2 GeV1/2

and ∼ 0.07, respectively.

2.2.3 Superconducting solenoid

Charged particles traveling in a static magnetic field have a helical trajectory

with a bending radius at a given momentum that is inversely proportional to the

field strength. In addition the recontructed trajectory can be used to calculate a

particles’s charge-to-mass ratio. Thus high magnetic fields can be used to obtain

excellent momentum resolution as well as discriminate between particles and

their antiparticles.

The CMS experiment makes use of a 3.8 T magnetic field delivered by a su-

perconducting solenoid to achieve its performance goals of ∆p/p ≈ 10% mo-

mentum resolution and resolving the sign of 1 TeV/c muons. The magnet and

associated cryogenic system form a 12.5 m-long cylindrical structure of diame-

ter 6.3 m that is centered on the beam pipe; a return yoke is used to confine the

magnetic flux.
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The magnet distinguishes itself from solenoids used in previous experiments

by the energy it is capable of storing and the high mechanical deformation it

must withstand. The system was therefore designed to be self-supporting. The

solenoid is constructed from mechanically reinforced NbTi Rutherford cables

with an aluminium insert; these are wound into four layers, with 2168 turns to-

tal. The inductance of the magnet is 14.2 H, and operated at a current of 19 kA

it stores 2.6 GJ of energy. The magnet coils are separated into five rings of cryo-

genic modules, for a total weight of 220 t; the system is operated at 5 K.

The return yoke (barrel and endcaps) is made of 10 kt of iron, thus consti-

tuting the bulk of the detector. It is situated outside the magnet volume, and is

interleaved with the muon detectors. The barrel part is also divided into five

cylindrical segments, numbered YB −2, −1, 0, +1, +2, beginning at the far end of

the z axis and going towards increasing z. In addition to confining the magnetic

flux, the iron also serves as an absorber for hadronic matter.

2.2.4 Muon systems

The muon detectors were designed to maximize muon identification capabili-

ties, which are essential in order to measure Higgs decays to four muons via

a pair of Z0 bosons, for example. Following the structure of the inner detector

layers, the muon systems are composed of a cylindrical barrel section and two

flat endcaps on either side of the barrel. The total detector area is approximately

25 000 m2; the muon systems must therefore be robust and inexpensive. Three

types of gaseous detectors are used. These systems are described below.

Drift tubes (DT) are employed in the barrel region, where the intensity of
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the magnetic field, mostly confined by the return yoke, and the particle flux are

low; they cover the range |η| < 1.2. In the endcap regions the particle flux, com-

prising muons as well as other types of particles, is higher and the magnetic

field is non-uniform and of higher intensity, leading to the choice of cathode

strip chambers (CSC). These extend |η| coverage between 0.9 and 1.2. The DT

and CSC systems are augmented by resistive plate chambers (RPC), which pro-

vide secondary position measurements, albeit with a lesser resolution, as well

as fast response times, in both barrel and endcap regions. RPCs cover the range

|η| < 1.6. The layout of the different systems is illustrated in Fig.2.8 [29].
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Figure 2.8: Layout of one quarter of the CMS muon systems: drift tubes
(DT), cathode strip chambers (CSC), and resistive plate cham-
bers (RPC), in the r − z plane.
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2.2.4.1 Drift tubes

Part of the Muon Barrel (MB) system is made of drift tube chambers. Each

sensor is composed of a gas-filled tube, whose walls are grounded, containing

a wire that is kept at a high potential. Particles traveling through the system

ionize the gas; the resulting charges are collected and produce a current in the

wire that is proportional to the initial particle’s energy. In combination with

high-precision timing, the position of incoming particles with respect to the wire

can be inferred. DTs can therefore be used to measure the energy and position

of incident muons.

As in the magnetic field return yoke, the DTs are separated into five rings, or

wheels, that are centered on the beam pipe. Within wheels the rectangular DT

chambers are organized into four concentric cylindrical layers, called stations,

that are interspersed with the return yoke. The stations are numbered MB 1–4.

Each wheel is divided into 12 identical φ sectors that are numbered starting with

the sector centered at φ = 0, and increasing with φ.

Within the stations MB 1–3 (MB 4) are 12 (eight) layers of DTs organized

into three (two) units called superlayers (SL), consisting of four neighboring

layers. In order to minimize dead zones, tubes are staggered by a half-tube

length in each SL. In the innermost stations MB 1–3 the outer SLs, in which

wires are oriented parallel to the beam line, measure a track’s position in φwhile

the middle SL, in which wires are perpendicular to the beam line, measures its

z position. Only the φ coordinate is measured in the outer station MB 4. An

aluminium honeycomb plate is inserted between the innermost SL and the outer

SL(s), thus providing mechanical support. Each SL provides a time resolution of

a few nanoseconds, allowing for the attribution of measurements to individual
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bunch crossings.

Each tube is filled with a gas mixture of argon (Ar) and carbon dioxide (CO2).

Field electrodes, made from an aluminium sheet, are glued to an insulating my-

lar sheet and set on the inner and outer faces of the drift cells. A gold-plated

stainless steel wire of length ∼ 2.4 m and diameter 50 µm serves as the anode.

Cathodes are built following the same design as the field electrodes and pro-

vide insulation from external grounded aluminium plates. Wires are held at

+3 600 V, while electrode strips and cathodes are held at +1 800 V and −1 200 V,

respectively.

A DT unit, the SL, is formed from aluminium plates, with cells (drift tubes)

of width 42 mm placed in between I-shaped support structures (I-beams); the

spacing between sheets is 13 mm. These values were chosen because they rep-

resent a compromise between granularity and number of active channels. The

wires and electrodes are powered by high voltage supplies mounted to the alu-

minium plates. SLs are then glued to the honeycomb support plate to form

individual DT chambers. There are 60 (70) such chambers in the MB 1–3 (MB 4)

stations, for a total of 250 chambers per wheel and approximately 172 000 sensi-

tive wires summed over wheels.

The spatial resolution associated with a signal registered in a single wire is

250 µm, with an angular resolution of approximately 1 mrad. Combined with

tracker information, DTs increase the resolution for muons that register in both

subsytems.
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2.2.4.2 Cathode strip chambers

The Muon Endcap (ME) system is comprised in part of cathode strip chambers,

another type of proportional sensor. One unit consists of a gas-filled enclosure

cris-crossed with orthogonal anode wires and cathode strips. An incident muon

ionizes the gas, prompting electrons to move towards the anode and ions to-

wards the cathode. The resulting charges and their positions on the wires and

strips are measured. Two sets of coordinates are thus measured, allowing for

the computation of the center of gravity of the charges. Charges are distributed

across multiple cathode strips, increasing the detector resolution.

There are 468 CSCs divided between the two endcaps, organized into four

rings numbered ME 1–4 towards increasing |z|. The rings are separated into

radial groupings of three, two, two, and one trapezoid-shaped chambers, re-

spectively. Each chamber covers between 10◦ and 20◦ in φ. The chambers

overlap in order to provide full φ coverage, and span 0.9 < |η| < 2.4. Muons

with 0.9 < |η| < 1.2 are measured by both DTs and CSCs, while muons with

1.2 < |η| < 2.4 cross between three and four CSCs. Additional coverage is also

provided for muons with |η| < 1.6 by RPCs, described below.

The CSCs are multi-wire proportional chambers consisting of seven radially-

oriented copper cathode sheets segmented into strips, and six azimuthally-

oriented gold-plated tungsten anode wires. These provide φ and r coordinate

measurements, respectively. The wire spacing is approximately 3.2 mm, and the

spacing between the cathode strips creates 9.5 mm-high gas gaps. The chambers

are filled with a mixture of Ar, CO2 and CF4. The largest chambers have dimen-

sions of 1.5× 3.4 m2. The overall sensitive area of the CSC system is 5000 m2, for

a total of approximately 2 × 106 wires.
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Each chamber provides a spatial resolution on the order of 200 µm, while the

angular resolution is approximately 10 mrad.

2.2.4.3 Resistive plate chambers

Resistive plate chambers are used throughout the muon barrel and endcap sys-

tems in order to supplement measurements from the DTs and CSCs. They con-

sist of a gas-filled enclosure delimited by parallel plates, one anode and one

cathode. Incident muons ionize the gas, creating an electron avalanche. The

resulting charged particles migrate towards the two types of plates depending

on their charge. In addition to sensible spatial resolution even in a high-rate

environment (up to 1 kHz/ cm2), RPCs provide nanosecond timing resolution,

ensuring that a trigger system relying on these detectors will unambiguously

assign a signal to a specific bunch crossing all but a fraction of the time.

One unit consists of a double-gap structure made from plates a high-

resistivity plastic, bakelite, separated by a 2 mm-wide gas gap. RPC modules

consist of two such units. The small gas gap width guarantees the excellent tim-

ing resolution. Modules of different shapes are used in the barrel and endcap

muon systems. There are a total of 610 RPCs in the barrel and endcaps com-

bined.

In the barrel, RPCs are organized into four concentric stations that are num-

bered RB 1–4 with increasing r. In the two inner stations, the RPCs are located

on the internal and external faces of the corresponding DT stations, while in the

outer stations the RPCs are located on the internal face of the corresponding DT

stations. The barrel RPCs are approximately 2.5 m long, oriented parallel to the
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beam pipe, and between 1.5 and 2.5 m wide.

Endcap RPCs are separated into three layers, RE 1–3, that are mounted on a

single face of the iron return yoke endcap disks. The rings are subdivided into

three concentric rings of trapezoidal chambers. Each segment spans between

10◦ and 20◦ in φ, with segments overlapping in order to minimize dead zones

on the edges of the chambers. The endcap RPCs extend dual coverage (by two

different types of muon detectors) to |η| < 1.6, with plans to extend to |η| < 2.1.

2.2.5 Trigger and data acquisition

At the LHC’s design bunch spacing of 25 ns, the event rate is 40 MHz. However,

a large fraction are simple pp scattering events that are unlikely to result in the

type of physics the LHC is meant to probe; these events are therefore discarded.

Combined with write-out and storage limitations, a rejection rate of ∼ 106 is

necessary. The trigger and data acquisition (DAQ) systems address this need.

Triggering is divided into two sub-systems that make successive decisions using

increasingly detailed data read out by the front-end electronics of the different

sub-detectors. These are the Level-1 (L1) trigger and the High-Level Trigger

(HLT).

The L1 trigger is responsible for lowering the rate to approximately 100 kHz,

before further processing by the HLT. In order to make fast decisions, it uses

only low-granularity data from the calorimetry and muon systems. For trig-

ger purposes, the ECAL and HCAL are divided into towers, constructed from

blocks of ECAL crystals and corresponding HCAL towers, which are read out

together. The muon systems supply track candidates as well as timing informa-
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tion used to identify bunch crossings. Trigger-primitive objects, i.e., electrons,

muons, photons, or jets above a certain threshold, as well as the total ET and

Emiss
T in the event, are constructed from these data. Logical expressions formed

from the number, energy and momentum of the various trigger-primitive ob-

jects are then evaluated. The final decision of the L1 is expressed as an OR of

all the algorithms, or bits. For example, the triggers used in this thesis require

the presence of two leptons (either electrons or muons), with the leading lep-

ton pT above 17 GeV and sub-leading lepton pT above 8 GeV. The L1 trigger

is built using custom hardware, and has a latency of 3.2 µs. During this time,

high-resolution data from the full detector read-out is held in front-end mem-

ory pipelines.

The HLT reduces the output rate ∼ 100 Hz. If an event passes the L1 trig-

ger, the full detector read-out is sent to front-end read-out buffers, and onto a

processor residing in a ∼ 1000-node farm of commercial-grade processors, via

a switching network. The HLT comprises multiple levels of decisions that are

based on increasingly complex and CPU-intensive physics reconstruction and

selection steps. This allows the system to efficiently reject events before per-

forming a more complex analysis of potentially interesting event.

First, high-resolution data from the calorimetry and muons systems are

used; partial tracker information from hits in the pixel detector are then added;

the last level employs the full tracker read-out and track reconstruction using

algorithms that are similar to the final offline reconstruction. At each step, se-

lection requirements are applied to the reconstructed physics objects, followed

by a decision to keep the event for further reconstruction and analysis, or to re-

ject the event. In the latter case, events are entirely discarded. The HLT software
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follows a structure similar to the L1 trigger, with multiple trigger paths defined

and the event saved if it passes at least one of these. The overall runtime per

event is of order 1 s [35], and the stored event size is 1.5 MB on average.

66



CHAPTER 3

EVENT RECONSTRUCTION

In this chapter we describe how particles are reconstructed from the infor-

mation collected in the sub-detectors presented in Chapter 2. We wish to recon-

struct events containing b̃ squarks that decay to a top quark and a light flavor

quark. Top quarks decay almost exclusively to a b quark and W boson, and the

W boson can decay either hadronically, to a qq̄ pair, or leptonically, to a lep-

ton and neutrino. Neutrinos interact extremely weakly with matter and escape

undetected, resulting in a momentum imbalance in the plane transverse to the

beam direction, or Emiss
T .

We therefore focus on the techniques used to reconstruct quarks, leptons,

and Emiss
T . In order to accurately identify these different types of particles, CMS

relies on an algorithm that exploits the full detector read-out to reconstruct

all stable particles produced in proton-proton collisions, i.e., electrons, muons,

photons, charged hadrons, and neutral hadrons. Higher-order objects such as

jets (including b-tagged jets) and Emiss
T are then reconstructed using the full list

of particles, thus providing a global event description. This algorithm is de-

scribed in Section 3.1.

Full event reconstruction begins with the identification of tracks, which are

the signature of charged particles in the detector; and vertices, which corre-

spond to either interactions between quarks within colliding protons (primary

vertices), or decays of particles produced in collisions (secondary vertices). Pri-

mary vertex reconstruction is detailed in Section 3.2. Of particular interest for

the analysis presented in Chapter 4 are particles produced in the decays of sbot-

toms. We first detail the reconstruction of electrons and muons in Sections 3.3
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and 3.4, before turning to the description of jets and missing transverse energy

in Section 3.5.

3.1 Particle Flow

The Particle Flow (PF) algorithm has been documented in detail [36,37]. A short

summary of the algorithm, as it pertains to this thesis, is presented below. By

combining information from all the different sub-detectors, the PF algorithm

aims to provide a precise determination of the type, momentum, and direction

of all stable particles produced in a proton-proton collision. This is made possi-

ble by the high magnetic field, fine granularity, and near-hermeticity of the CMS

detector.

The inputs to the PF algorithm are tracks from charged particles, which are

reconstructed in the pixel and strip tracker; clusters of energy deposits in the

ECAL and HCAL; and muon tracks reconstructed in the muon chambers. Si-

multaneous high reconstruction efficiencies and low fake rates in these sub-

systems are necessary to guarantee the performance of the method. A linking

algorithm is used to form blocks, composed of a track and/or a calorimeter

cluster and/or a muon track, which are then assumed to originate from a single

particle. Particle species are identified in a certain order; blocks are removed

once they have been successfully linked and before proceeding to the next can-

didate type.

First, PF muons are constructed from compatible muon tracks and tracker

tracks. PF electrons are then built from tracks and ECAL clusters, along with

any neighboring deposits attributed to radiated Bremsstrahlung photons. Next,
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the remaining tracks are matched to energy-compatible ECAL and HCAL clus-

ters to construct PF charged hadrons. Any remaining cluster energy in excess

of the track energies is used to build PF photons and neutral hadrons. Lastly,

PF photons and neutral hadrons are constructed from any remaining unlinked

calorimeter clusters.

The techniques used to reconstruct objects that are relevant for this thesis are

described in the following sections.

3.2 Tracks and vertices

3.2.1 Tracks

Track reconstruction begins with a clusterization step, in which hit clusters are

formed from hits in the pixel and strip tracker. The clusters comprise estimates

of the cluster position and associated uncertainty. An iterative method is then

used to reconstruct tracks. First, tracks seeds are constructed and extrapolated

from to form track trajectories. The extrapolation assumes in a first estimate

that the magnetic field is uniform in the tracker volume, producing helical track

trajectories. Track fitting is then performed using a combinatorial Kalman fil-

ter [38]. Lastly, high-quality tracks are selected and corresponding hits removed,

before proceeding to the next iteration, progressively loosening the seeding cri-

teria.

Tracks seeds are generated from either pairs or triplets of hits in different

layers of the tracker. An iterative pattern recognition procedure, based on a
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Kalman filter 1, is then applied. The filter is initialized with a track seed and

the associated pixel and strip hits, estimates of track parameters (pT, η, φ, and

impact parameters in the transverse and longitudinal planes), and their covari-

ance matrix. Following the initialization, the track trajectory is extrapolated to

the next detector layer. The predicted trajectory is compared with hits in this

layer; one trajectory candidate per potential matching hit is created, as well as

one trajectory candidate without a hit in the layer (corresponding to a fake, or

“invalid”, hit).

Track parameters and their covariance matrix are updated with information

from the new hit, and a mean of the predicted trajectory and the hit, weighted by

their uncertainties, is assigned to each candidate. Only the candidates passing

certain selection requirements are extrapolated to the next layer, where the effect

of interactions with material at the sensor surface are taken into account before

advancing to the next iteration. This procedure is carried out until the outermost

detector layer is reached.

Finally, the Kalman filter method is applied to the output list of hits, now

taking into account the non-uniformity of the magnetic field. In addition, a

smoothing filter is implemented, proceeding iteratively back to the interaction

region, and allowing for hits not found in prior iterations to be associated with

track candidates. This results in a final, more precise estimate of the track pa-

rameters.

At each iteration, selection requirements are applied. With default values

noted in parentheses, these include the maximum number of track candidates

propagated at each step (5); the maximum value of the χ2 measuring the con-

1A Kalman filter performs a linear least-squares minimization, assuming Gaussian fluctua-
tions for the parameters.
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sistency of a hit with the predicted trajectory (30); whether to include invalid

hits (yes); the maximum consecutive invalid hits (1); the minimum track pT

(0.9 GeV); the minimum number of hits per track (5). These parameters can

be tuned to work within the different constraints of the HLT, governed by CPU

time, and offline level, where high reconstruction efficiency is the goal.

The efficiency to reconstruct muons in the range 1 < pT < 100 GeV is above

97% throughout most of the tracker η range, with a decrease to ∼ 75% occurring

in the forward region, close to the edge of the pixel detector. For pions in the

same pT range, the efficiency is lower because of interactions with the tracker

material, but still above 70% (80% for 10 < pT < 100 GeV).

3.2.2 Vertices

After track reconstruction, vertices are reconstructed to determine the point of

origin of the corresponding particles. For a given track collection, tracks are

clustered to form compatible vertex candidates, and a fit is used to determine

the vertex position, its uncertainty, and the associated track parameters, as well

as a measure of the goodness of the fit.

Beginning with all reconstructed tracks in an event, tracks are preselected

based on the number of pixel and strip hits, the normalized track χ2, and

transverse impact parameter with respect to the interaction region (beamspot).

Tracks are then grouped into clusters depending on their z coordinate at the

distance of closest approach to the beamspot.

An adaptive vertex fitter [39], also based on the Kalman filter method, and
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which is robust to contamination from tracks originating from different vertices,

is employed. It consists of an iterative least squares fit in which tracks are as-

signed a weight between 0 and 1, according to their consistency with the vertex.

Tracks not consistent with the vertex are recursively removed, and the fit con-

verges when all the tracks in the cluster are consistent at a certain (user-defined,

adjustable) level with originating from the vertex.

Reconstructed vertices are ordered by
∑

tracks

p2
T, where the sum runs over

tracks associated with the vertex. The highest vertex is assumed to correspond

to the hard interaction in the event.

3.3 Electrons

The reconstruction of electrons draws upon information collected in the electro-

magnetic calorimeter, the pixel detector, and the strip tracker. As an electron

travels through interacting material in the tracker, it radiates bremsstrahlung

photons. The 3.8 T magnetic field, which bends the trajectory of the electron,

results in an electromagnetic shower that deposits energy into multiple ECAL

crystals distributed along φ. The difficulty lays in estimating the energy and

momentum of the initial electron.

An electron candidate consists of a collection of energy deposits, or “super-

cluster”, in the ECAL, which is matched to one track that is identified as origi-

nating from a primary vertex. The reconstruction proceeds in multiple steps.

First, clustering algorithms are used to identify super-clusters. In the barrel

the algorithm searches in 1 × 3 or 1 × 5 arrays in η for energy clusters in the φ
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direction, thus building 3×3 or 5×5 crystal arrays. In the endcaps the algorithm

starts from a crystal with a local maximum in deposited energy and searches in

φ, then in η, for an edge at which the energy stops decreasing, thus creating

5 × 5 crystal arrays. Both algorithms then form super-clusters from blocks of

clusters in a ∼ 0.3 rad-wide φ strip. The position of a super-cluster is defined as

the energy-weighted average of the constituent cluster positions.

A matching step then attempts to pair a super-cluster with a track. The po-

sition of the super-cluster is extrapolated inwards to the interaction region. Ex-

pected hits in the pixel detector are computed and compared to existing hits. If

two such hits are found in different layers of the pixel detector, electron track

candidates are constructed using a dedicated algorithm. Instead of the Kalman

filter technique detailed in Section 3.2.1, a non-linear filter, the Gaussian-sum

filter (GSF) [40], must be used to account for non-Gaussian fluctuations intro-

duced by bremsstrahlung radiation of the electron; these are modeled by a sum

of Gaussian terms. Seeds consisting of a pair of pixel hits are used to initialize

the filter.

Electron candidates must furthermore satisfy pre-selection requirements:

track and super-cluster are required to match in φ and η, as well as in energy and

momentum; and the energy deposited in the hadron calorimeter tower immedi-

ately behind the super-cluster must be less than 20% of the super-cluster energy.

These help reduce the rate of misidentification of a jet as an electron. Analyses

such as this thesis are concerned with prompt leptons, i.e., those produced by

the hard interactions in proton-proton collisions. In this context, electrons are

therefore additionaly required to be consistent with originating from the hard

interaction vertex.
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The efficiency to reconstruct electrons from super-clusters is presented in

Fig. 3.1 [41] as a function of super-cluster ET in different ranges of super-cluster

η. Above ET of 20 GeV the efficiency is found to be greater than ∼ 90% across

the range of the ECAL, |η| < 2.5.

Figure 3.1: Electron reconstruction efficiency in data (black points) and
simulation (blue points) in different super-cluster η regions as a
function of super-cluster ET . The bottom panel shows the cor-
responding data-to-simulation scale factors. The blue shaded
area represents the total systematic uncertainty on the predic-
tion in simulation. Left: 0 < |η| < 0.8. Right: 0.8 < |η| < 1.4442.

3.4 Muons

Muon reconstruction proceeds in multiple steps, beginning with a local recon-

struction at the detector level, using only data collected in the muon chambers

(CSC, DT, RPC) in which hits were measured. For DTs, segment candidates are

constructed from a linear fit to aligned hits, in different DT layers, that are found

to be consistent with originating from the nominal interaction region. In CSCs,

strip hits are clustered and a linear fit is performed to build track segments. RPC
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strips are clustered and the position of hits determined.

Next, “stand-alone” muon candidates are built using a Kalman filter and the

full muon system read-out. The input seeds are track segments, produced dur-

ing local reconstruction, in the innermost muon stations. The segments are then

extrapolated outwards, taking into account interactions in the detector material

and the effect of the magnetic field. The procedure terminates at the outermost

muon station, at which point a second Kalman filter is applied in the reverse

direction. Lastly, track candidates are extrapolated backwards to the interaction

region, and a vertex-constrained fit is performed to obtain final estimates of the

track parameters and their associated uncertainties.

Finally, information from the pixel detector and strip tracker is incorporated

to construct “global” muons. A stand-alone muon is extrapolated inwards from

the innermost muon station, accounting for the possibility of scattering and in-

teractions with detector material. Potential matching hits in the different layers

of the silicon detector are used to define a region in which tracks are recon-

structed with a Kalman filter technique, following the method outlined in Sec-

tion 3.2.1. In the final smoothing step, hits in the muon chambers are included.

In order to maintain the reconstruction efficiency in the TeV-pT range, muon

candidates are subsequently rejected by a selection on the track fit χ2. This tech-

nique allows for the detection of large energy losses before the first muon station

is reached.

The reconstruction efficiency for stand-alone and global muons with pT be-

tween 10 GeV and 1 TeV is expected to be greater than 98% throughout the ma-

jority of the η range covered by the muon systems, |η| < 2.5; the pT resolution is

between a few tenths and a few %. For global muons with a pT of 100 GeV, the
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rate of charge misidentification is below 0.1%. The reconstruction efficiency for

PF muons is presented as a function of muon pT in Fig. 3.2 [42] in data and sim-

ulation. For muons with pT above 10 GeV the reconstruction efficiency is nearly

100% in the range |η| < 2.4.

Figure 3.2: Reconstruction and identification efficiency of Particle Flow
muons with a reconstructed tracker track in different η ranges
in data (black points) and simulation (red squares) as a func-
tion of muon pT. Left: 0 < |η| < 1.2. Right: 1.2 < |η| < 2.4.

3.5 Jets and missing transverse energy

The full list of candidates – electrons, muons, photons, charged hadrons, and

neutral hadrons – reconstructed by the PF algorithm are used to build higher-

level objects such as jets and Emiss
T .
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3.5.1 Jets

Due to its large cross section, multijet production, or QCD, is the dominating

physics process at the LHC. The differential cross section for dijet production

has been measured in bins of the maximum jet rapidity |ymax| and the mass of

the dijet system Mjj [43], and found to be ∼ 102 pb/GeV for |ymax| < 0.5 and

Mjj ∼ 300 GeV. Integration over bins yields an overall cross section on the order

of 1010 pb, many orders of magnitude larger than the cross section for top quark

pair production, which is ∼ 250 pb at 8 TeV [44]. QCD results in the produc-

tion of quarks and gluons, hereafter referred to as partons. Color confinement

dictates that singlet quark states cannot exist. Instead, quarks (and gluons) un-

dergo hadronization, in which qq̄ pairs are generated from the vacuum. This

process creates hadrons, particles composed of either two or three quarks. In-

teractions lead to the creation of a shower of collimated particles, known as jets.

PF candidates are combined using the anti-kt clustering algorithm [45] to

construct jets. The algorithm proceeds as follows. For a given candidate i the

distance measures di j, and diB between i and the beam B, are calculated. These

are defined as:

di j = min

 1
k2

t,i k2
t, j

 ∆2
i j

R2 ,

diB =
1

k2
t,i

,

with kt,i, yi, and φi respectively the transverse momentum, rapidity, and az-

imuthal angle of the ith particle, and ∆2
i j = (yi − y j)2 + (φi − φ j)2. The minimum

runs over all other candidates j , i. Within CMS the radius parameter is chosen

to be R = 0.5.

Next, the distances di j and diB are compared. If di j < diB, candidates i and j
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are combined into one; otherwise element i is labeled a jet and removed from

the list of candidates. The procedure is repeated until no candidates remain.

A jet is therefore constructed starting from a high-energy particle, and particles

are clustered into a cone of finite size R.

A complete understanding of the jet four-momentum as it relates to that

of the underlying parton is crucial in order to include jets in physics analyses.

Jet constituents can be classified according to the species of the corresponding

PF candidates; charged hadrons have been measured to account for 65% of the

total jet energy, while photons and neutral hadrons carry 15% and 20%, respec-

tively [37]; electron and muon contributions were found to be negligible. Jet

resolution therefore depends upon the performance of the tracker, ECAL, and

HCAL systems, and is limited by the non-linearity and non-uniformity of each

sub-detector’s response. The limiting factor in reconstructing the jet energy is

the HCAL resolution.

The jet energy calibration procedure and determination of the transverse mo-

mentum resolution is described in Ref. [46]. A correction factor relates the four-

momenta of the measured jet and “true” jet, i.e., reconstructed in Monte Carlo

simulation using the above clustering algorithm on the collection of stable par-

ticles originating from the underlying parton and particles arising from pile-up:

pcorrected
µ = C

(
pmeasured

T , η
)
· pmeasured

µ . (3.2)

The correction factor is factorized into multiple components, which address

both the offset and jet response. For PF jets the response is already close to

one. First, an offset correction factor is applied to subtract eventual additional

energy in the jet originating from pile-up. It is a function of the jet area in the

y−φ plane, and the event-specific pT area density ρ, from which the contribution
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from pile-up has been subtracted.

A Monte Carlo correction factor is then applied to account for the difference

between measured and generated jet energy; this restores the uniformity in η

and linearity in pT. Finally, residual corrections are applied to correct for any

remaining differences in the jet energy scale in data and simulation. A relative

correction is used to resolve the η discrepancy, while an absolute correction ad-

justs the pT.

For PF jets within |η| < 2.0 the uncertainty on the jet energy scale is below

3% above 30 GeV, and for jets within |η| < 4.0 the uncertainty is at most 5%.

The pT resolution is better than 10% for jets within detector acceptance and with

pT < 1 TeV, as shown in Fig. 3.3 [47].
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Figure 3.3: Resolution on the transverse momentum of Particle Flow jets
in data (black points) compared to the true resolution in simu-
lation (red dashed line) and the resolution in simulation after
applying a data-to-simulation correction factor (red line) in dif-
ferent η ranges as a function of jet pT. Left: 0 < |η| < 0.5. Right:
1 < |η| < 1.5.
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3.5.2 Missing transverse energy

Missing transverse energy arises from neutral weakly interacting particles, such

as neutrinos, that escape CMS undetected. The presence of these particles is

inferred from the eventual transverse momentum imbalance in an event. In

the context of the PF algorithm, Emiss
T is simply defined as the modulus of the

negative vector sum, over all PF candidates, of the momentum in the plane

transverse to the beam.

Events with real Emiss
T , i.e., arising from invisible particles, must be distin-

guished from events without such particles but in which a mismeasurement

induces fake Emiss
T . For example, a badly mis-measured jet results in fake Emiss

T

aligned with the jet axis (in the opposite direction if the jet is over-estimated, and

vice versa). In multi-jet events, the Emiss
T resolution can be modeled as having a

Gaussian core. As a function of the scalar sum over PF particles of transverse

energies, the width was found to vary between 5 and 10 GeV over the range 50

to 350 GeV, as shown in Fig. 3.4 [48].

Type-I Emiss
T corrections corresponding to the propagation of jet energy cor-

rections, described in Section 3.5.1, are generally applied.

3.6 b-tagging

The reconstruction and identification of jets originating from b quarks is espe-

cially important in top quark physics, due to the near-exclusive decay t → Wb;

and searches for new physics that couple strongly to third-generation SM parti-

cles. Both are of interest in this thesis. Techniques for reconstructing b-quark jets
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Figure 3.4: Missing transverse energy resolution, assuming a Gaussian
distribution, as a function of the scalar sum over Particle Flow
particles of transverse energies, for different Emiss

T reconstruc-
tion algorithms. The blue points show the results for the PF
algorithm in data while the blue line corresponds to the perfor-
mance of the PF algorithm in simulation.

rely on the long lifetime of b hadrons, and associated flight distance ∼ 450 µm,

resulting in secondary vertices (SV) that are displaced from the primary hard

interaction vertex (PV); the high mass of b hadrons; the multiplicity of charged

particles produced in b hadron decays (five on average); and the high energy of

the b hadrons themselves, resulting in collimated jets.

Different algorithms have been developed in CMS to identify b-quark jets.

We briefly describe below the Combined Secondary Vertex (CSV) algorithm [49–

51], which was used in the analysis that is the subject of this thesis. It relies on a

multi-variate technique.

Inputs for b quark identification are tracks and PF jets. Secondary vertices

are reconstructed within jets with an adaptive vertex fitter [39], using a subset

of high-quality tracks built following the technique outlined in Section 3.2.1.
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In particular, tracks are selected based on the impact parameter at the point of

closest approach of the track to the jet axis. The three-dimensional impact pa-

rameter (IP), whose sign is given by the relative orientation of the jet direction

and the vector pointing from the primary vertex to the point of closest approach

of the track, is expected to be positive for tracks corresponding to charged par-

ticles produced in the decay of a b hadron traveling along the jet direction; for

prompt tracks it can have either sign.

If no SVs are reconstructed following the above procedure, an attempt is

made to form pseudo-vertex candidates, using at least two tracks not compati-

ble with the PV, and with a signed transverse IP significance dxy/σdxy greater than

two. Otherwise no vertices can be reconstructed. In order to reduce contami-

nation, only the vertices with fewer than 65% of tracks shared with the primary

vertex are considered.

Nine variables enter in the construction of the CSV discriminator: the ver-

tex category, the invariant mass, rapidity, and multiplicity of charged particles

associated with the SV, the jet track multiplicity, the fraction of energy carried

by SV tracks relative to all tracks in the jet, the significance of the flight distance

in the transverse plane, the three-dimensional IP significance of the SV tracks,

and the transverse IP significance of the SV track, where the track collection has

been ordered by transverse IP significance.

These variables are combined using a likelihood ratio technique. Due to the

significant differences in the distributions of the above variables for b quarks, c

quarks and light-flavor (u, d, s) or gluon jets, three categories are defined. The

discriminating variable is:

dCSV = fc ·
Lb

Lb +Lc
+ fLF ·

Lb

Lb +LLF
,
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where the relative fraction of c and light flavor partons in jets not originating

from a b quark are fc ' 0.25 and fLF ' 0.75, respectively. The likelihood ratios

are defined using as:

Lb,c,LF = f b,c,LF (α)
∏

i

f b,c,LF (xi) ,

where α denotes the vertex category, xi represents the variables entering the

discriminator calculation, and f b,c,LF are the probability density functions for

these variables. The discriminator has values between zero and one, with higher

values representing more b-like jets.

The efficiency to correctly identify b-quark jets (b-tagging efficiency) and the

probability to misidentify a c-quark or light-flavor jet as a b-quark jet (mistag

rate) are a function of dCSV. Loose, medium, and tight working points are de-

fined to correspond to approximately 10%, 1%, and 0.1% mistag rates. At the

medium working point (dCSV = 0.679) the b-tagging efficiency is ∼ 70% for jets

with pT between 80 and 120 GeV [50]. The b-tagging efficiency is presented in

Fig. 3.5 as a function of jet pT and η for this algorithm and working point.
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Figure 3.5: Efficiency to correctly identify b-quark jets with the medium
working point of the Combined Secondary Vertex algorithm.
Data are shown in red and simulation results in black. The bot-
tom panel shows the corresponding data-to-simulation correc-
tion factors, with the shaded area representing the total statis-
tical and systematic uncertainties and the dashed line showing
the statistical uncertainty on the average scale factor values.
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CHAPTER 4

ANALYSIS

4.1 Introduction

4.1.1 Motivation

The subject of this thesis is a search targeting the R-parity violating SUSY model

described in Section 1.5. In particular, we focus on sbottom (b̃) squark decays.

The analysis is constructed to measure the b̃ mass and production cross section,

in case of discovery, and set limits on b̃ production otherwise.

The decays of b̃ squarks overwhelmingly produce a top quark and a light-

flavor quark. Assuming the b̃ particles are pair-produced in proton-proton col-

lisions, two top quarks and two jets originating from light quarks are produced.

Top quarks decay almost exclusively to a b quark and W boson, and the W bo-

son can decay either hadronically, to a qq̄ pair, or leptonically, to a lepton and

neutrino. Although the branching fraction favors hadronic W decays, in the

interest of obtaining a good resolution on the eventual b̃ mass measurement,

we study the leptonic decay channel. The Feynman diagram for this channel is

presented in Fig. 4.1.

We therefore search for pairs of b̃ squarks produced in proton-proton colli-

sions, that each decay to a light flavor quark, b quark, lepton and neutrino. The

final state consists of two light jets, two b-tagged jets, two leptons, and Emiss
T due

to the two neutrinos escaping the detector.
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Figure 4.1: Leading order Feynman diagram for R–parity violating sbot-
tom squark pair production.

4.1.2 Analysis strategy

We search for b̃ squarks with the goal of extracting the particle’s mass in case of

a discovery, and setting limits on the production cross section otherwise. With

this aim in mind, we attempt to reconstruct the full b̃ particle decay chain, from

neutrino to top quark to b̃ candidate.

First we use a kinematic method to reconstruct the four-momenta of neu-

trinos originating from the leptonic decay of W± bosons. We then combine the

neutrinos with the visible decay products of the b̃ particles, i.e., leptons, b- jets,

and light flavor jets. This technique allows us to fully reconstruct the b̃ can-

didate four-momenta, modulo pairing ambiguities. Eliminating the ambiguity

would require being able to distinguish between jets originating from b and b̄

quarks.

Once the resonance reconstruction method is implemented, we perform

a shape analysis. We use the reconstructed resonance mass and the leading

and second leading light jet pT spectra to distinguish signal from background.

These distributions are presented in Fig. 4.2 for background SM processes and
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a 500 GeV b̃ squark, illustrating the discriminating power of the three variables.

The signal and SM background yields have been normalized, using theoretical

cross sections, to the integrated luminosity in data. In addition, the signal dis-

tribution has been scaled upwards by a factor of five in order to better visualize

its contribution.
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Figure 4.2: Variables used for discriminating signal from background in
the search for b̃ squark pairs. Top row: transverse momentum
of the leading (left) and second-leading (right) light flavor jets.
Bottom: reconstructed b̃ resonance mass.

We parameterize the distributions of the reconstructed resonance mass and
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the leading and sub-leading light jet pT in signal and background, and use

the parameterizations to construct an unbinned extended maximum likelihood

which we then fit to data. We extract the overall normalization from the data in

a background-dominated control region. Finally we calculate confidence inter-

vals on the signal cross section.

This strategy presents several advantages. First, it is independent of SM

background simulation and thus is not sensitive to issues of MC generators and

settings or mismodeling effects. Second, the shape analysis is more powerful

than a simple cut and count analysis in that it allows us to extract the mass of

the new particle in the case that one is discovered.

We first present the data and simulation samples used in this analysis in

Section 4.2, and the object and event selections in Section 4.3. We discuss signal

and background discrimination in Section 4.4. Sources of systematic uncertainty

are investigated in Section 4.5. We then describe the statistical model we employ

in Section 4.6. Finally we present and interpret our results in Section 4.7.

4.2 Data and simulation samples

4.2.1 Data

We analyze data collected by the CMS experiment at 8 TeV in 2012, using dilep-

ton triggers, and corresponding to an integrated luminosity of 19.5 fb−1. Events

are classified into three categories, µµ, ee or eµ, depending on the trigger stream

in which they are selected. We use trigger paths designed to collect events with
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two leptons (e or µ) that satisfy loose identification requirements and with pTs

above 17 and 8 GeV for the leading and sub-leading leptons, respectively. The

primary datasets and associated integrated luminosities used in this analysis

are listed in Table 4.1.

The event selection described in Section 4.3 includes a requirement on the

lepton pT such that the triggers are nearly fully efficient. In simulated signal

events passing the final selection, the trigger is more than 95% efficient for b̃

squark masses in the entire range studied (250 to 600 GeV).

4.2.2 Simulation

Simulation is essential in order to understand signal and background physics

processes at colliders, the resulting kinematics, physical observables, and their

signatures within a detector, as well as the detector performance. We use Monte

Carlo (MC) generators to simulate production of b̃ pairs and SM background

processes in proton-proton collisions. Event generation is performed in multiple

steps, before being passed through a full detector simulation.

First the hard interaction in a collision, between a parton in one incoming

proton and a parton in the other colliding proton, is simulated relying on the

knowledge of Parton Distribution Functions (PDF). These tell us the probabil-

ity that a parton carries a certain fraction of an incoming particle’s momentum.

Next the emission of colored particles by the incoming and outgoing partons in

the hard interection, called initial- and final-state radiation (ISR and FSR, respec-

tively), is modeled. This stage is known as the parton shower step, and is fol-

lowed by the hadronization of colored particles into observable states, hadrons.
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Table 4.1: Dataset names and integrated luminosities.

Dataset Lint (pb−1)

/DoubleElectron/Run2012A-13Jul2012-v1/AOD 806.2

/DoubleElectron/Run2012A-recover-06Aug2012-v1/AOD 82.3

/DoubleElectron/Run2012B-13Jul2012-v1/AOD 4447

/DoubleElectron/Run2012C-24Aug2012-v1/AOD 495.0

/DoubleElectron/Run2012C-PromptReco-v2/AOD 6394

/DoubleElectron/Run2012C-EcalRecover 11Dec2012-v1/AOD 134.3

/DoubleElectron/Run2012D-PromptReco-v1/AOD 7273

/DoubleMu/Run2012A-13Jul2012-v1/AOD 806.2

/DoubleMu/Run2012A-recover-06Aug2012-v1/AOD 82.5

/DoubleMu/Run2012B-13Jul2012-v4/AOD 4383

/DoubleMu/Run2012C-24Aug2012-v1/AOD 480.6

/DoubleMu/Run2012C-PromptReco-v2/AOD 6358

/DoubleMu/Run2012C-EcalRecover 11Dec2012-v1/AOD 134.2

/DoubleMu/Run2012D-PromptReco-v1/AOD 7273

/MuEG/Run2012A-13Jul2012-v1/AOD 806.2

/MuEG/Run2012A-recover-06Aug2012-v1/AOD 82.5

/MuEG/Run2012B-13Jul2012-v1/AOD 4446

/MuEG/Run2012C-24Aug2012-v1/AOD 495.0

/MuEG/Run2012C-PromptReco-v2/AOD 6396

/MuEG/Run2012C-EcalRecover 11Dec2012-v1/AOD 134.2

/MuEG/Run2012D-PromptReco-v1/AOD 7273
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The following step consists of simulating sub-leading interactions between the

remaining constituents of the hadrons participating in the hard interaction, re-

ferred to as the underlying event. Finally, the unstable hadrons produced in the

hard interaction are decayed into stable states.

Simulation samples corresponding to distinct processes, such as Z0 boson

or top quark pair production, are produced. In order to compare the simula-

tion to data, simulated events are weighted by a sample-specific factor meant to

normalize the MC to the integrated luminosity Lint in data,

wi =
σiLint

Ni
,

where σi is the cross section of the process simulated in the ith sample and Ni is

the number of generated events in the ith sample.

4.2.2.1 SM backgrounds

The dominant background to the b̃ signal originates from SM top quarks pair-

produced in association with ISR or FSR jets. The leading-order Feynman dia-

grams for these processes are presented in Fig. 4.3. Other SM processes account

for a small (≈ 5%) contribution; they are single-top production (≈ 2%), Drell–Yan

production (≈ 2%), diboson production, and top pair production in association

with vector bosons.

MC simulation of top quark pair production, Drell–Yan production, and tt

production in association with vector bosons (W±/Z0) was performed in MAD-

GRAPH 5 [52]. Single top production was simulated using POWHEG [53] and

TAUOLA [54]. Samples of diboson production (W± W±, W± Z0 and Z0 Z0) were

generated using PYTHIA 6 [55].
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Figure 4.3: Leading-order Feynman diagrams for SM top quark pair pro-
duction at a proton-proton collider, in association with an ad-
ditional radiated jet. Top: initial-state radiation (ISR). Bottom:
final-state radiation (FSR).

The full list of MC samples of SM processes is presented in Table 4.2, along

with the cross sections used to normalize the samples to the recorded integrated

luminosity.

4.2.2.2 Signal

Pair production of b̃ squarks in proton-proton collisions was simulated with

the help of the Minimal Supersymmetric Model with R-parity Violation

(RPVMSSM) implemented in FeynRules [56]. The RPVMSSM model was in-
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Table 4.2: Simulation samples of SM background processes used for com-
parisons to data.

SM process Generator Cross Section (pb) Equivalent L ( fb−1)

tt̄ + jets MADGRAPH 245.8 (CMS)

t/t̄ (s-channel) POWHEG 3.79/1.76 (approx. NNLO)

t/t̄ (t-channel) POWHEG 56.4/30.7 (approx. NNLO)

t/t̄ (tW-channel) POWHEG 11.1/11.1 (approx. NNLO)

Z0
→ `+`− + 1 jet MADGRAPH 43 (NLO)

Z0
→ `+`− + 2 jets MADGRAPH 121 (NLO)

Z0
→ `+`− + 3 jets MADGRAPH 200 (NLO)

Z0
→ `+`− + 4 jets MADGRAPH 273 (NLO)

W± W± PYTHIA 54.8 (NLO)

W± Z0 PYTHIA 33.2 (NLO)

Z0 Z0 PYTHIA 17.7 (NLO)

tt̄W MADGRAPH 0.232 (NLO)

tt̄Z MADGRAPH 0.208 (NLO)

tt̄WW MADGRAPH 0.002037 (NLO)

terfaced with MADGRAPH 5, where each b̃ squark was subsequently decayed

into a top quark and strange quark. The top quarks were forced to decay lep-

tonically.

The output Les Houches Event Files (LHE) are passed to PYTHIA 8.1 [57] for

hadronization, with settings defined in Tune 4C [58], and go through full CMS

detector simulation as modeled in GEANT 4 [59]. CTEQ6L PDF sets [60] are

used.
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Signal samples corresponding to b̃ masses between 250 and 600 GeV were

produced.

4.3 Selections

4.3.1 Object definitions

Event reconstruction is performed using the Particle Flow technique described

in Section 3.1. We use physics objects constructed using charged hadron sub-

traction (CHS), which mitigates the effect of pile-up. In this method, recon-

structed charged hadrons associated with a vertex that is not the primary hard

interaction vertex, i.e., a pile-up vertex, are removed. All object collections are

mutually exclusive.

In order to reliably identify electrons and muons produced in the hard scat-

ter, we apply a selection requirement on the relative isolation of the lepton,

which is defined as

Irel =

∑
charged hadrons

pT +
∑

neutral hadrons

ET +
∑

photons

ET

pl
T

,

where pl
T is the pT of the lepton, and the sums run over all PF candidates con-

tained within a cone of radius ∆R around the lepton. Leptons originating from

the hard scatter are expected to be isolated, with low activity in proximity to the

lepton, and therefore have small values of Irel.

Objects are identified using the following criteria, which are based on the re-

construction algorithms and quality requirements described in Chapter 3. These
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object selections follow the recommendations of the Beyond Two Generations

Physics Analysis Group in 2012, and are standard across CMS.

Vertices are required to have:

• ndof of the vertex fit > 4

• longitudinal distance |z| < 24 cm and transverse distance ρ < 2 cm with

respect to the center of the detector

Electrons are identified with a multivariate technique [61]. The candidates

are selected to fulfill the following criteria:

• identified as a PF electron

• pT > 10 GeV and |η| < 2.4

• |ηsc| < 1.4442 or |ηsc| > 1.5660, in order to exclude electrons with a super-

cluster in the transition region between barrel and endcap

• GSF track transverse impact parameter dxy < 2 mm and longitudinal dis-

tance |z| < 5 mm with respect to the primary vertex

• photon conversion rejection

• relative PF isolation Irel < 0.15 using a cone size of ∆R = 0.3

• MVA-based identification > 0.5

Muons are identified using the “tight” working point described in Refs. [62,

63]. Candidates fulfilling the following criteria are selected:

• reconstructed as a global muon
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• identified as a PF muon

• pT > 10 GeV and |η| < 2.4

• χ2/ndof of the global muon track fit < 10

• at least one muon chamber hit included in the global muon track fit

• muon segments in at least two muon stations

• tracker track transverse impact parameter dxy < 2 mm and longitudinal

distance dz < 5 mm with respect to the primary vertex

• at least one pixel hit

• at least 5 tracker layers with hits

• relative PF isolation Irel < 0.12 using a cone size of ∆R = 0.4

Jets are clustered using the anti-kt algorithm with a distance parameter

R = 0.5. Inputs are the full collections of PF candidates, following removal

of charged hadrons originating from pile-up, and isolated electrons and muons

with pT above 5 GeV and that are consistent with originating from the primary

interaction vertex. The jets must satisfy the following loose requirements:

• pT > 30 GeV and |η| < 2.4

• charged hadron fraction > 0.0

• neutral hadron, charged electromagnetic, and neutral electromagnetic

fractions < 0.99

• At least two constituents, including at least one charged constituent

These help reduce the fake jet rate from e.g. HCAL noise.
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Following the definition in Section 3.5.2, we construct Emiss
T as the modulus

of the negative vector sum of momenta of all PF objects in the event. Jet energy

corrections are propagated into the Emiss
T .

Jets are identified as coming from a b-flavor quark using the Combined Sec-

ondary Vertex algorithm described in Section 3.6. We use the following working

points in this analysis:

CSV Loose (CSVL): 0.244

CSV Medium (CSVM): 0.679

These working points correspond to different rates of misidentification of non-

b partons [50]. At the loose (medium) working point, the b-tagging efficiency

for jets with pT between 80 and 120 GeV is approximately 85% (70%), and the

misidentification rate is 9.9% (1.4%).

4.3.2 Event selection

In order to preferentially select signal-like events, we require that each contain:

• at least 2 good jets passing the CSVL requirement; one of these jets must

also pass the CSVM requirement

• at least 2 good jets failing the CSVL requirement

• at least 2 good muons OR at least 2 good electrons OR at least one good

muon and one good electron, each with pT > 20 GeV
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We additionally require that the invariant mass of the lepton pair be above

15 GeV to veto low-mass resonances, and outside a window around the Z0 mass

of [76 GeV, 106 GeV ] if the selected leptons have the same flavor. We hereafter

refer to jets passing the CSVL working point discriminator requirement as loose

b-jets, and jets passing the CSVM working point discriminator requirement as

tight b-jets.

Additional selection cuts defining signal-depleted (control) and signal-rich

regions are described in Section 4.4.1.

4.3.3 Monte Carlo corrections

Some discrepancies are observed when comparing the raw MC to data. For ex-

ample, the vertex multiplicity is different in MC and data. This is due to the

simulation being produced with a particular pile-up scenario, i.e., a certain av-

erage number of pile-up interactions per event. This quantity depends on data-

taking conditions. Since producing MC samples with many different pile-up

scenarios is computationally prohibitive, the simulation is generated with one

such scenario, and reweighted to match the data. The effect of the reweighting

is presented in Fig. 4.4, illustrating the need for this particular correction.

The MC is therefore corrected in several ways in order to match the data.

The corrections we apply are as follows.

The energy resolution on simulated jets is better than for jets in data, thus

jets in simulation must be smeared in order to match the data. The jet energy

resolution is corrected following the procedure described in Section 3.5.1.
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Figure 4.4: Distribution of the vertex multiplicity for vertices satisfying the
selection requirements described in Section 4.3.1, in data and
SM MC simulation. Left: before reweighting of the SM MC
to match the distribution of vertex multiplicity in data. Right:
after reweighting.

Tagging efficiencies for light and heavy flavor jets were measured in the tt

MC sample found in Table 4.2, in events passing the event selection defined

in Section 4.3.2. Standard CMS light and heavy flavor scale factors correcting

for the difference in tagging efficiencies between simulation and data were ap-

plied [49, 50]. These scale factors range between 0.90 and 0.97.

Lepton reconstruction and isolation scale factors binned in pT and η are ap-

plied. These have been provided for the datasets listed in Table 4.1. Electron

scale factors are taken from Ref. [64], while muon scale factors are documented

in Ref. [65].

The simulation is reweighted to match the measured distribution of pile-

up vertex multiplicity in data, using the tools described in Ref. [66]. It is also

weighted to match a combination of three sets of PDFs: CTEQ, MSTW, and

NNPDF.
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These factors are all varied within their uncertainties when calculating sys-

tematic uncertainties. The complete list of these and all other systematic sources

considered can be found in Section 4.5.2.

4.4 Signal and background discrimination

Signal events contain pairs of mass resonances that produce top quarks and

light jets simultaneously, and the lights jets from this decay have a relatively

high pT. We use both of these properties to discriminate between signal and

background.

We parameterize the light jet pT and resonant mass spectra in signal and

background, relying on simulation to test various shapes. The resulting proba-

bility distribution functions are used to construct a likelihood that is fit to data,

as described in Section 4.6. We describe below the different distributions chosen

to model the light jet pT and resonant mass spectra.

4.4.1 Light jet pT spectrum

The pTs of the leading and second-leading light jets are powerful variables to

discriminate between signal and background. The light jet pT spectrum in SM

processes is almost entirely from ISR or FSR production in tt events. This spec-

trum is steeply falling and peaks at lower values than the hard jets from signal

production, an effect that is compounded at high b̃ masses. This effect is illus-

trated in Fig. 4.2. In addition, correlations between lights jets may exist in signal,

but are unlikely to be present in SM backgrounds.
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In this section, we first describe the function chosen to model the two-

dimensional light jet pT spectrum of the SM background, as well as various

closure tests performed in SM simulation. We then present the signal light jet

pT model.

4.4.1.1 Background model

In order to model ISR and FSR light jet production, we test various steeply

falling distributions in SM simulation. We choose a parameterization that fits

the simulation well, can be quickly sampled from, and is sufficiently flexible to

model the data.

We use a two-dimensional probability density function (pdf) ρSM
2D to model

the spectra of the highest-pT and second-highest-pT light jets, denoted p(1)
T and

p(2)
T , respectively. This distribution is constructed as the sum of three two-

dimensional densities ρ2D
i (p(1)

T , p(2)
T ) :

ρSM
2D (p(1)

T , p(2)
T ) = 2

3∑
i=1

fi ρ
2D
i (p(1)

T , p(2)
T ) Θ(p(1)

T − p(2)
T ), (4.1)

where Θ is the Heaviside step function, which enforces the ordering of the light

jets; the parameters fi sum to 1; and the factor of two normalizes the pdf. The pa-

rameters of this function are determined by maximizing the likelihood defined

in Section 4.6 on data.

We factorize each two-dimensional density into one-dimensional densities,

ρ2D
i (p(1)

T , p(2)
T ) = ρ

jet
i (p(1)

T ) ρjet
i (p(2)

T ), (4.2)

and each one-dimensional spectrum has the form:

ρ
jet
i (pT) = λiα exp (−λi pαT), (4.3)
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with α shared across the three components, while the λi differ in each com-

ponent. This function is chosen because it has the steeply falling spectrum we

expect from ISR or FSR jets, and a potentially longer tail than a pure exponential

distribution, becoming identical to an exponential distribition if α = 1.

The two-dimensional density is tested on SM simulation. First we perform a

fit to the full SM simulation, allowing α, λi, and fi vary. Figure 4.5 compares

observed and predicted yields in the two-dimensional plane defined by the

leading and second leading light jet pT. Because the observed yield is an event

count, while the predicted yield is a probability (the pdf defined in Eq. 4.1 is

normalized to one), only the relative distributions are important. An artifact of

of the ROOT contour finding algorithm is responsible for the large triangle in

the right-hand figure. The limited MC statistics produce the jagged edges in

the tail of the distribution visible in the left-hand figure. We see that the SM

simulation is well modeled by the above two-dimensional density.

Figures 4.6 and 4.7 show one-dimensional projections of the two-

dimensional pdf along each light jet pT spectrum. We choose to separate the

simulation depending on the pT of the second leading light jet, because we ex-

pect the SM background to populate the lower end of this spectrum, as opposed

to the signal. In Fig. 4.6 (4.7), we consider events in which both light jets have

pT below (above) 50 GeV. Here too, the figures show good agreement between

the chosen function and the simulated data.

In order to increase the sensitivity of the analysis, we divide the light jet pT

spectrum into four regions of second leading light jet pT, labeled as one signal-

depleted control region (denoted CR), and three signal-enhanced regions (de-

noted SR1–3). The regions are defined as follows:
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Figure 4.5: Light jet pT distributions in SM simulation (left) and the fit to
SM simulation (right) in events where both light jets have pT

above 50 GeV, shown in two dimensions. The distribution de-
fined in Eq. 4.1 is used to fit the two-dimensional light jet pT

shape. The same logarithmic z scale is used in both plots.

• Control Region (CR): second leading light jet pT between 30 and 50 GeV

• Signal Region 1 (SR1): second leading light jet pT between 50 and 80 GeV

• Signal Region 2 (SR2): second leading light jet pT between 80 and 110 GeV

• Signal Region 3 (SR3): second leading light jet pT above 110 GeV

Almost no signal enters into the control region, and larger amounts of signal

enter into the different signal regions, depending on the mass of the b̃ squark.

The binning is also used in constructing the distribution of candidate b̃ invariant

mass, which is described in Section 4.4.2. Each region has different signal and

background invariant mass distributions. Since we do not know the analytic

correlation between the invariant mass distribution for a b̃ of a given mass and

its light jet pT spectrum, we use the above binning to obtain a coarse correlation.

In addition, we fit many unweighted data-sized sub-samples of the SM sim-
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Figure 4.6: Fit to the leading and second leading light jet pT spectra in
SM simulation, in events where both light jets have pT below
50 GeV). The distribution defined in Eq. 4.1 is used to fit the
two-dimensional light jet pT shape. The fit components are
shown in pink, green, and blue, and the full fit function in red.
The left (right) panel shows the pT of the leading (second lead-
ing) light jet. Top: linear scale; center: logarithmic scale; bot-
tom: pull distribution.
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Figure 4.7: Fit to the leading and second leading light jet pT spectra in
SM simulation, in events where both light jets have pT above
50 GeV). The distribution defined in Eq. 4.1 is used to fit the
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ulation to check for eventual biases introduced by the fit function, or sensitivity

to statistical fluctuations. We then compare the yield predicted by the fit, i.e., the

product of the total number of events in the sub-sample and the integral of the

fit function in the selected region, to the observed count in the selected region

in the toy dataset.

We construct the toy datasets by generating random numbers and compar-

ing them to the weight of an event in the SM simulation. We add events with

weights larger than the random number to the sub-sample. This is done for ev-

ery event in the SM simulation, and the procedure is repeated many times to

create multiple toys.

Figure 4.8 shows results of the toy fits in the four regions described above.

Since information is shared amongst bins in the fit, we expect the widths of the

predicted and observed yield distributions to be different; however the central

values of the yields agree as they should. We do not find any systematic shift of

the yield due to the fitted function.

In view of the fit results to both the full SM simulation and data-sized sub-

samples of the simulation, we conclude that the function defined in Eq. 4.1 is a

good description of the background light jet pT distribution.

4.4.1.2 Signal model

The two-dimensional distribution of leading and second leading light jet pT

in signal, ρsignal
2D (p(1)

T , p(2)
T ), is modeled by the sum of two two-dimensional log-

normal distributions, with the jets ordered by pT. The parameters of the two

distributions and their relative fractions are determined from a maximum like-
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lihood fit to the signal simulation.

4.4.1.3 Signal and background comparison

The light jet pT shapes in signal and background are compared in Fig. 4.9, in

which we show results of the background-only hypothesis fit to data, and the

signal distribution fit to the simulation of a b̃ squark with a mass of 350 GeV, in

regions SR1–3. This illustrates the discriminating power of the two-dimensional

light jet pT spectrum, even at low signal mass. For higher b̃ masses the light jets

will be boosted even further, thus enhancing the discriminating power. The re-

sults of the background-only fit to data are presented, in one-dimensional slices

in the leading and second leading light jet pT, in Fig. 4.10.
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Figure 4.10: Light jet pT distributions in data with results of the
background-only fit to data overlaid. The line represents the
fitted function and the points represent the data. The ratio
of the data to the fitted function is also shown. The top row
shows the (left) leading light jet distribution and (right) sec-
ond leading light jet distribution. The bottom row is restricted
to events with second leading light jet pT > 50 GeV.
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4.4.2 Resonance reconstruction

Signal events display a resonance in the mass spectrum of b̃ particles, while

such a behavior is not anticipated in SM backgrounds. We therefore use the re-

constructed resonant mass spectrum to further discriminate between signal and

background. In addition, we would like to derive the mass of the new particle

in case of a discovery. We outline below the technique used to reconstruct the

four-momenta of b̃ candidates. We then present the parameterizations chosen

to model the spectrum in signal and background.

The resonant mass spectrum is calculated by reconstructing the decay chain

of b̃ particles. In this thesis we focus on pair-produced b̃ squarks. Each b̃ decay

produces a top quark and light quark, and in the leptonic channel the top quark

decays to a b quark, lepton, and neutrino. We first reconstruct top quark pair

candidates using the reconstructed b-tagged jet momenta, lepton momenta, and

Emiss
T . We then reconstruct potential b̃ pairs by combining the top quark candi-

dates with the measured light jets.

4.4.2.1 Neutrino reconstruction

In order to reconstruct the top quarks, we must first determine the four-

momenta of the neutrinos produced in the leptonic top quark pair decays. Neu-

trinos escape the detector unmeasured, so we employ the following procedure

to recontruct their four-momenta. We assume that all decays occur on-shell. We

assign the two highest-pT b-jets and leptons in the event as originating from

the top quark pair decays. Using the measured jet and lepton momenta, the

Emiss
T , and the values of the top quark and W± boson masses [14], conservation
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of four-momentum can be written:

m2
t = (p`+ + pν + pb)2 (4.4a)

m2
t = (p`− + pν̄ + pb̄)2 (4.4b)

m2
W = (p`+ + pν)2 (4.4c)

m2
W = (p`− + pν̄)2 (4.4d)

0 = p2
ν (4.4e)

0 = p2
ν̄ . (4.4f)

We further assume the measured Emiss
T in the event arises from the neutrinos

associated with the leptonic W± decays 1:

Emiss
T x = (pν + pν̄)x (4.5a)

Emiss
T y = (pν + pν̄)y . (4.5b)

The above equations reduce to six linear and two quadratic equations in the

neutrino and anti-neutrino four-momenta:

2pb � pν = m2
t − m2

W − 2pb � p+
` (4.6a)

2pb̄ � pν̄ = m2
t − m2

W − 2pb̄ � p
−
` (4.6b)

2p`+ � pν = m2
W − m2

`+ (4.6c)

2p`− � pν̄ = m2
W − m2

`− (4.6d)

0 = p2
ν (4.6e)

0 = p2
ν̄ (4.6f)

Emiss
T x = (pν + pν̄)x (4.6g)

Emiss
T y = (pν + pν̄)y , (4.6h)

1The assumption is reasonable in this analysis framework since we focus on a model that
does not include a source of Emiss

T in the new particle decays. This no longer holds in the R-
parity conserving MSSM.
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which finally reduce to a quartic equation [67, 68].

A quartic equation has up to four solutions that can be real or complex,

though we only consider the physical solutions, i.e., with real positive neutrino

energies. Since we are not able to distinguish between b and anti-b quarks, we

solve the quartic equation twice (once for each lepton and b-jet pairing), yield-

ing up to eight possible solutions.

The four-momenta of top quark candidates are then calculated by summing

the different possible neutrino momenta with the measured lepton and b-tagged

jet momenta. Finally, we obtain b̃ candidate four-momenta by combining top

quark candidates with the two highest-pT light jets in the event, thus generating

up to 16 solutions per event.

4.4.2.2 Jet sampling

Sometimes there are no physical solutions to the quartic equation described

above. Since in decays with two real top quarks the quartic equation should

always have a real solution, we ascribe the lack of solution to a resolution ef-

fect. If the detector resolution were infinite, we would perfectly measure the

objects in the event. However reconstructed objects have varying resolutions,

depending on their type. The main source of uncertainty originates from the

measurement of jets, which will not only affect the jet four-momenta but also

the Emiss
T .

Accordingly, we vary jets within their resolution and determine whether this

allows us to find real solutions. We follow the resampling method outlined

in Ref [69]. We use the standard CMS jet resolutions, which can be found in
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Ref. [70]. We obtain the pT, η and ϕ resolutions of each measured jet in the event,

which are a function of the jet pT and η. For each jet, we randomly sample from

normal distributions of widths the pT, η and ϕ resolutions, and construct a new

jet that represents a potential true jet the reconstructed jet may have originated

from, had the detector resolution been infinite.

The sampling is repeated for each jet in the event, and we recompute the

Emiss
T by adding the original jet four-momenta and subtracting the new jet four-

momenta2. We then re-solve the quartic equation, replacing the original jets

with the resampled jets. We quantify the offset from the collection of new jets

to the collection of original measured jets in terms of the sum, over all jets and

the pT, η and ϕ coordinates, of the square of the ratio of sampling parameters to

resolution widths. This corresponds to a distance in a 3Njets-dimensional space,

where Njets is the number of jets in the event.

We perform the resampling procedure 1000 times per event, and select the

sampling that yields the new jet collection that is closest to the original jets, as

quantified by the measure described above. We then select the solution to the

quartic equation yielding pairs of b̃ candidates with the closest masses, as mea-

sured by the absolute value of the logarithm of the ratio of the two masses, to

reconstruct two b̃ candidates per event. The average of the candidates’ masses,

denoted Mt,jet, is used to approximate the mass of the resonance. It is bounded

below by the top quark mass.

The resampling procedure increases the number of events with at least one

real solution to the quartic equation, and hence the event selection efficiency, by

approximately 40% in both simulated signal and SM background events. The

2The Emiss
T is defined in Section 3.5.2 as the negative vector sum over all objects of object

momenta in the transverse plane.
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increase in efficiency is dependent upon the number of samplings: if we had

the necessary resources to run an infinite number of toys, the procedure would

be 100% efficient and yield the overall closest solution, using the above distance

measure, to the reconstructed jets; in practice this is impossible. The number of

samplings per event (1000) was chosen because it allows a reasonable trade-off

between increase in efficiency and computational time, and we have verified

that the potential gains in sensitivity are negligible. We investigate a different

reconstruction method, one that would yield a 100% reconstruction efficiency,

in Appendix A.

In Table 4.3 we present the efficiency of reconstructing the neutrino four-

momenta, and hence the b̃ candidates, in simulation for different b̃ signal

masses as well as tt for comparison. A summary can be found in Fig. 4.11.

We compare in Fig. 4.12 the reconstructed mass distributions in events where

a real solution to the quartic equation exists and in events where it was neces-

sary to use the resampling method in order to successfully reconstruct b̃ can-

didates, in simulated signal and tt background events. We conclude that the

sampling procedure does not bias the reconstructed resonance mass spectrum.

Finally, we detail below the parameterizations chosen to model the recon-

structed resonance mass distributions in signal and background.

4.4.2.3 Background model

Since SM backgrounds do not contain a mass resonance, we expect the recon-

structed mass spectrum to be steeply falling. However, the selection require-

ments on jet and lepton pTs introduce a turn-on in the shape that is accompa-
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Figure 4.11: Efficiency, after all kinematic selections defined in Section4.3.2
have been applied, of reconstructing b̃ pair candidates. Top
row: before (left) and after (right) the jet resampling technique
has been applied. Bottom row: ratio of efficiencies with and
without jet resampling.
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Figure 4.12: Reconstructed resonance mass spectrum after full event se-
lection in simulated tt (top left) and signal events for b̃ parti-
cle masses of 300 GeV (top right), 450 GeV (bottom left), and
600 GeV (bottom right). The blue histogram corresponds to
events for which a real neutrino solution exists without hav-
ing to sample over jet resolutions, and the red histogram rep-
resents events for which the sampling method was applied.
Both histograms are normalized to unit area.
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Table 4.3: Efficiency of the mass reconstruction method, with and without
integration over jet resolution (resampling procedure), and ratio
of efficiencies, in signal simulation for different mass points. The
efficiency in tt simulation is given for comparison.

b̃ Mass ( GeV) Raw Efficiency Efficiency with Ratio

Resampling Resampled/Raw

250 59.6% 81.9% 1.37

300 53.4% 74.6% 1.40

350 51.0% 71.4% 1.40

400 47.4% 67.4% 1.42

450 45.5% 65.4% 1.44

500 43.2% 61.3% 1.42

550 41.2% 60.1% 1.46

600 40.7% 57.6% 1.42

tt 60.4% 81.0% 1.34

nied as predicted by a falling tail. The distribution is bounded below by the top

quark mass.

We model this spectrum as the sum of a gamma distribution and a log-

normal distribution, and require both functions to peak at the same value. This

produces the desired turn-on, peak, and steeply falling tail. Following the clas-

sification of events depending on the second leading light jet pT, we define

four independent copies of the function, one for each region defined in Sec-

tion 4.4.1. The distribution modeling the background mass spectrum is denoted

ρSM
mass(m | p

(2)
T ), emphasizing that the distribution is defined conditionally upon

the value of the second leading light jet pT. We present results of the fit to data
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of the reconstructed invariant mass distribution in each of the four light jet pT

regions, for the background-only hypothesis, in Fig. 4.13. In this fit the parame-

ters of the gamma and log-normal distributions, and their relative fractions, are

allowed to vary.

The parameters of the two distributions and their relative fractions are deter-

mined from a maximum likelihood fit to the data, using the likelihood defined

in Section 4.6.

4.4.2.4 Signal model

Signal events display a characteristic peak in the reconstructed mass spectrum,

due to the presence of two resonant decays. Since there is a two-fold ambiguity

in pairing the leptons and b-tagged jets, and again in pairing the top quark can-

didates and light flavor jets, there are actually two categories of events entering

into the mass distribution: one corresponds to events where all the different ob-

jects have been correctly paired, while the other includes events in which there

is an incorrect pairing.

These two categories contribute differently to the overall mass spectrum.

When objects are correctly paired, the resulting peak has a narrower width

than when objects are incorrectly paired. In addition, incorrect pairings result in

longer tails. Figure 4.14 illustrates these features in simulated signal events, for

low-mass and high-mass b̃ particles, in the three signal regions defined above.

It follows that the regions are populated differently depending on the b̃ particle

mass. This aspect plays an important role in the increased sensitivity.

In order to model the two separate categories, we parameterize the recon-
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Figure 4.13: Reconstructed invariant mass Mt, jet distribution in data with
results of the background-only fit to data overlaid. The fitted
function is the sum of a gamma distribution and a log-normal
distribution that are forced to peak at the same value. The
line represents this fitted function and the points represent
the data. The ratio of the data to the fitted function is also
shown. Top left: second leading jet pT between 30 GeV and
50 GeV. Top right: second leading jet pT between 50 GeV and
80 GeV. Bottom left: second leading jet pT between 80 GeV
and 110 GeV. Bottom right: second leading jet pT greater than
110 GeV.
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Figure 4.14: Reconstructed invariant mass Mt,jet distribution in simulated
signal events with b̃ squark mass of 300 GeV (right) and
600 GeV (left). Events are categorized using Monte Carlo truth
to determine whether the b-quark jets and leptons have been
correctly (red) or incorrectly (blue) paired in reconstructing
the top quark candidates. Uncertainties are statistical only.
Top: second leading light jet pT between 50 and 80 GeV (SR1).
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(SR2). Bottom: second leading light jet pT above 110 GeV
(SR3).
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structed resonant mass spectrum in signal as the sum of two gamma distribu-

tions. Again we use four independent functions to model the spectrum in each

signal region. The parameters of the distributions are determined by a maxi-

mum likelihood fit to the signal simulation. We denote the signal mass distri-

bution ρsignal
mass (m | p(2)

T ).
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4.5 Systematic uncertainties

Measurements of a physical observable must account for systematic uncertain-

ties, i.e., uncertainties arising from the dependence of this observable on other

quantities, which are either unknown or imperfectly known. For example, the

measurement of the energy of a jet depends on the jet energy resolution, itself

a function of the detector performance, and the jet energy calibration, which is

dependent on how well the detector response is understood. Systematic effects

are taken into account by estimating the consequence of a variation due to these

effects, e.g. a shift in the jet energy scale, on the result of the measurement.

4.5.1 Background

The background model is parameterized using the shapes described in Sec-

tions 4.4.1.1 and 4.4.2.3. Although we rely on the SM simulation to test various

pdfs, the parameters for the light jet pT and resonant mass distributions are de-

termined entirely from a fit to the data. Therefore we do not consider simulation

uncertainties on the background shape estimate.

The flexibility of the background shape was studied in SM simulation by

fitting toy datasets. Results are presented in Section 4.4.1.1. We find that the

chosen distribution is sufficiently general, with any differences between the as-

sumed and true shapes negligible in comparison with statistical uncertainties.
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4.5.2 Signal

We use MC simulation to model the signal, and consider a range of systematic

effects that may affect the light jet pT spectrum, the resonance reconstruction

procedure, and the distribution of the mass of the reconstructed heavy reso-

nances. We discuss below the sources of systematic uncertainty considered and

the methods used to evaluate their effect on the parameters of the signal model

and the signal selection efficiency.

We account for the uncertainty in the jet energy scale measurement by vary-

ing jet four-momenta upwards and downwards using standard CMS pT- and

η-dependent correction factors in data and simulation [71]. The different jet

energy resolutions in simulation and data are corrected for by scaling the dif-

ference between reconstructed jet pT and matched generator jet pT by an η-

dependent data-to-simulation resolution ratio. These scale factors are varied

within their uncertainties. Finally we account for any remaining discrepancy

in Emiss
T due to unclustered objects between simulation and data following the

method described in Ref. [72]. We recalculate the Emiss
T separately after each of

these corrections have been applied.

Differences in energy scale for lepton objects in simulation and data are cor-

rected using energy scale factors [42,61]. The four-momenta of electrons passing

the selection requirements described in Section 4.3.1 within the range |η| < 1.5 is

varied by 0.6%, while that of electrons with 1.5 < |η| < 2.5 is varied by 1.5%. We

vary the four-momenta of muons passing the selection requirements described

in Section 4.3.1 by 0.2%. We neglect uncertainties on the scale factors, which

are smaller than 0.1%. The Emiss
T is recalculated after varying each lepton four-

momentum. We account for uncertainties originating from lepton reconstruc-
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tion and isolation effects by assigning a 0.5% uncertainty to the signal selection

efficiency in each lepton flavor category (ee, eµ and µµ). These three uncertain-

ties are 100% correlated between each category. We account for the uncertainty

in the trigger efficiency by applying a 1% systematic on the signal selection effi-

ciency in each lepton flavor category (ee, eµ and µµ), as measured in Ref. [73].

We separately vary the b, c and light flavor tagging efficiencies within their

statistical uncertainties. To account for differences in tagging efficiencies be-

tween simulation and data, we vary the standard CMS data-to-simulation scale

factors within their measured uncertainties [49,50]. The b and c scale factors are

treated as correlated, while the light flavor scale factors are treated as uncorre-

lated with the heavy flavor scale factors.

We follow the prescription of the PDF4LHC Working Group [74] to account

for uncertainties on the PDFs. The luminosity is assigned its measured uncer-

tainty of 2.6% [75]. We vary the measured distribution of the number of pile-up

interactions in data by 5% to account for uncertainties due to pile-up. Finally

we take into account uncertainties on the signal selection efficiency due to the

limited size of the signal simulation samples using Poisson statistics.

The method used to incorporate these systematics into the statistical model

is described in Section 4.6.3.

Figure 4.15 presents the overall signal selection efficiency in each lepton fla-

vor category after the event selection described in Section 4.3.2 has been applied,

and including the above systematic uncertainties, as a function of b̃ squark

mass. Here we have incorporated the 9.4% branching fraction of top quarks

to leptonic final states [14]. Correlations between the efficiencies or changes to
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the relative efficiency in each of the light jet pT bins defined in Section 4.4.1.1 are

not included here, but are taken into account in the full statistical model.
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Figure 4.15: Signal selection efficiency and relative systematic uncertainty
in the efficiency in each lepton flavor channel for the b̃ sig-
nal model, as a function of b̃ mass. This neglects correlations
between the efficiencies, which are taken into account in the
full analysis. Left: eµ channel, center: ee channel, right: µµ
channel.

We present the uncertainty in the signal selection efficiency due to each of

the above systematic effects in Table 4.4 for a b̃ squark of mass 350 GeV. We find

that the combined systematic uncertainties change the calculated value of the

upper limit on the signal cross section by between 1% and 10%, depending on

the b̃ mass, in comparison to the upper limit calculated with statistical uncer-

tainties only. Across the considered range of b̃ squark masses, variations to the

jet energy scale constitue the dominant systematic effect .

4.6 Statistical model

We combine the parameterizations of the light jet pT and resonance mass dis-

tributions defined in Section 4.4 to build a three-dimensional pdf, and use this
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Table 4.4: Relative systematic uncertainty on the signal selection efficiency
broken down by source of signal systematic uncertainty in the
signal simulation of a 350 GeV b̃ squark.

Simulation uncertainty 350 GeV b̃

Heavy flavor scale factor for b-tagging 4.9%

Light flavor scale factor for b-tagging 4.7%

Jet Energy Scale 4.6%

Signal MC Statistics 2.1%

Jet Energy Resolution 1.8%

Pile up 1.5%

Parton density function 1.0%

MC b-tagging efficiency for b-jets 0.43%

MC b-tagging efficiency for c-jets 0.25%

MC b-tagging efficiency for light jets 0.52%

Electron Energy Scale 0.19%

Muon Energy Scale 0.04%

pdf to create a likelihood function. We fit this likelihood to the data in order

to determine the amount of signal allowed in the observed dataset, which is

controlled by the signal cross section.

4.6.1 Background probability density function

The background shape is defined as a three-dimensional distribution in the in-

variant mass, leading, and second leading light jet pT variables, and is written
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as the product of the background light jet shape and the invariant mass shapes

that are defined in Eq. 4.1 and Section 4.4.2.3, respectively:

ρSM
3D (m, p(1)

T , p(2)
T ) = ρSM

mass(m|p
(2)
T ) ρSM

2D (p(1)
T , p(2)

T ). (4.7)

The relative normalizations of the invariant mass distributions in the four re-

gions (CR and SR1–3) are determined by the integral of the two-dimensional

light jet distribution in the corresponding region.

4.6.2 Signal probability density function

Just as in the background parameterization, we take the product of the two-

dimensional light jet signal shape with the signal invariant mass shape, defined

in Sections 4.4.1.2 and 4.4.2.4, respectively, to construct a three-dimensional sig-

nal distribution:

ρ
signal
3D (m, p(1)

T , p(2)
T ) = ρ

signal
mass (m|p(2)

T )ρsignal
2D (p(1)

T , p(2)
T ). (4.8)

Again the relative normalizations of the mass shapes in the different signal re-

gions are controlled by the light jet shape.

4.6.3 Incorporating systematic uncertainties

We include uncertainties due to the systematic effects described in Section 4.5.2

into the likelihood through the use of external constraint functions, following

the method described below.

The signal simulation is reweighted to account for a ±1 standard deviation

variation in a particular source of systematic uncertainty. We then perform a
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maximum likelihood fit to the re-weighted simulation of the signal distribution,

and determine how the parameters of the signal model vary. In addition we

find how the signal selection efficiency changes with the ±1 standard deviation

variation.

We incorporate this information into a covariance matrix, and add the co-

variance matrices for each source of systematic uncertainty. Finally we construct

a multi-variate normal distribution from the summed covariance matrices and

the central values of the signal model parameters, which are taken from the sim-

ulation. This distribution, denoted ρsyst, is used to constrain the signal model

parameters.

We find that allowing the signal invariant mass parameters to vary within

their uncertainties in the constraint function has a negligible effect on the signal

sensitivity, but speeds the calculation of toy limits by a large factor. Therefore

we set the signal mass parameters in the constraint function to their maximum

likelihood values in simulation, and do not allow them to vary. However, in the

final constraint function the signal light jet parameters and selection efficien-

cies are allowed to vary within their uncertainties. Along with the background

shape parameters these constitute the set of nuisance parameters.

4.6.4 Signal plus background model

We construct a complete distribution from the sum of the background and signal

distributions, defined in Eqs. 4.7 and 4.8, respectively, accounting for the signal

cross section σsignal and the signal selection efficiency E:

ρtotal
3D = (µSMρSM

3D + Eσsignalρ
signal
3D )/(µSM + Eσsignal), (4.9)
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where µSM is the SM yield. The distribution constraining the signal parameters,

defined in Section 4.6.3, is ρsyst.

We use the above distributions and the data to build an extended unbinned

likelihood function, which is written as:

L(σsignal, θ) = ρsyst
(µSM + Eσsignal)N exp (−µSM − Eσsignal)

N!

N∏
i=0

ρtotal
3D (mi, p(1)

Ti
, p(2)

Ti
),

(4.10)

where N is the number of events in the data sample; mi, p(1)
Ti

, and p(2)
Ti

are, re-

spectively, the reconstructed resonance mass, leading light jet pT, and second

leading light jet pT of the ith event; σsignal is the cross section of the signal model;

and θ is the set of all nuisance parameters, namely the signal light jet, back-

ground invariant mass, and background light jet parameters, and the selection

efficiencies. The parameter of interest is the signal cross section.

4.6.5 Constructing confidence intervals

We perform hypothesis tests on the signal model for different b̃ squark masses,

applying the unified approach described in Ref. [76] to the parameter of interest,

i.e., the signal cross section. The test statistic is the profile likelihood ratio, which

is defined as

λp(σ) =
L(σ, ˆ̂θ(σ))
L(σ̂, θ̂)

, (4.11)

where σ is a test value of the cross section and θ is the set of nuisance parameters

as defined above. The numerator is the profile likelihood function of σ, with

ˆ̂θ(σ) the values of the nuisance parameters that conditionally maximize L given

a particular value of σ. The denominator corresponds to the global maximum

of the likelihood, where {σ̂, θ̂} are the parameter values that maximize L, with
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only the requirement that σ̂ be non-negative.

We evaluate the profile likelihood ratio in data and in pseudo-data toy ex-

periments. The pseudo-experiments are generated following the frequentist ap-

proach outlined in Ref. [77]. Given a particular signal cross section hypothesis,

we first determine the values of the nuisance parameters ˆ̂θ(σ) that conditionally

maximize the likelihood function of the observed data, with the constraint that

the signal cross section is fixed to the test value. We refer to this as the signal-

plus-background model. These values ˆ̂θ(σ) are used to generate pseudo-data

from the distribution ρtotal
3D , and we evaluate the test statistic defined in Eq. 4.11

for each toy experiment. We repeat this procedure over a finely binned range of

values for σ, thus constructing the distribution of λp(σ).

Using the distribution of λp(σ) we test a signal cross section hypothesis by

determining the critical value λCr
p for which 95% of the toys satisfy λp(σ) > λCr

p .

We reject the cross section hypothesis at 95% confidence level (CL) if the profile

likelihood ratio evaluated in data is less than λCr
p . Finally we construct unified

intervals from the union of cross sections that are not rejected under this pro-

cedure. This treatment of the nuisance parameters was found to have good

coverage [78]. If an interval has a lower edge of zero we conclude that we do

not see evidence of signal, and use the upper edge as an upper limit on the sig-

nal cross section. If on the other hand an interval has a positive lower edge we

claim a discovery.
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4.7 Results and interpretation

We perform a scan of the b̃ squark simulation over the range of generated

masses and construct confidence intervals for each mass point following the

procedure outlined above. We observe consistency with the SM-only expecta-

tion, i.e., all intervals have a lower edge of zero, and thus set upper limits on the

signal cross section. The expected limit distribution is constructed in a similar

manner from pseudo-experiments generated using the background-only model,

meaning the signal cross section is set to zero in Eq. 4.9.

The observed and expected 95% CL upper limits on the production cross

section of b̃ squark pairs are presented in Table 4.5 and compared to theoretical

predictions in Fig. 4.16. Using the intersection of the cross section upper limit

and the cross section predicted by the model minus its theoretical uncertainty,

we find the median expected limit is 298 GeV, with 68% of the limits falling in

the range [283 GeV, 347 GeV ], and the observed limit is 326 GeV.

We find that the limits at large b̃ masses are always greater than the median

expected limit. This is due to the bulk of the signal distributions being located in

the SR3 region at high mass, and overlaps between the reconstructed invariant

mass spectra for the different mass points. The data on the other hand clusters

at low mass and in the CR and SR1 regions. An upwards fluctuation in the

data therefore easily accomodates a larger amount of signal at high b̃ mass, thus

creating a correlated difference between observed and expected limits.

Figures 4.17 to 4.19 present the results of maximizing the likelihood on the

data with the signal cross section set to the observed 350 GeV b̃ upper limit.

These show the reconstructed invariant mass, leading light jet pT, and second
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Table 4.5: Expected and observed 95% CL upper limits on the pair produc-
tion cross section of b̃ squarks decaying to a top quark and light
quark, as a function of the squark mass.

b̃ Mass 95% CL obs. limit 95% CL exp. limit ( pb)

( GeV) ( pb) Median 68% CL band 95% CL band

250 2.1 2.2 [1.0,3.1] [0.50,4.1]

300 1.0 1.8 [1.1,2.5] [0.35,3.3]

350 1.3 1.5 [0.73,2.0] [0.25,2.6]

400 0.92 0.76 [0.47,1.2] [0.18,1.6]

450 0.68 0.48 [0.27,0.72] [0.067,0.94]

500 0.53 0.37 [0.22,0.56] [0.051,0.77]

550 0.37 0.27 [0.15,0.41] [0.043,0.55]

600 0.30 0.21 [0.11,0.32] [0.031,0.43]

leading light jet pT distributions, respectively. In this fit all nuisance parameters,

i.e., the signal light jet, background invariant mass, and background light jet

parameters, and selection efficiencies, are allowed to vary, while the parameter

of interest, the signal cross section, is fixed.

In Figs. 4.20, 4.21, and 4.22 we present the results of scanning over signal

cross section hypotheses for the 350 GeV b̃ mass point. The distribution of

p-values, or fraction of pseudo-experiments with a value of the test statistic

greater than that observed in data, is shown in Fig. 4.20 as a function of the

signal cross section hypothesis. The distribution of observed p-values is deter-

mined from the global maximum of the likelihood evaluated on toys generated

using the signal-plus-background hypothesis, while the distribution of expected
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Figure 4.16: Observed and expected 95% CL upper limits on the produc-
tion cross section of b̃ squark pairs as a function of squark
mass.

p-values is computed from toys generated using the background-only hypoth-

esis. The 68% (95%) CL bands on the expected limit is calculated from the his-

togram in Fig. 4.21 by determining the values of the best-fit signal cross section

at which the fraction of toys above and below the median value corresponds

to ±1 (2) standard deviations. Distributions of the profile likelihood ratio test

statistic obtained from the toy experiments for each tested signal cross section

hypothesis are presented in Fig. 4.22.

We note that Figs. 4.20 and 4.21 may not be interpreted in the familiar frame-

work of CLs [79, 80], since the unified approach produces confidence intervals

that may be one-sided (with a lower edge of zero) or two-sided (with a strictly

positive lower edge), while CLs intervals are one-sided by construction. The

intervals we observe with the unified approach happen to all be one-sided.
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Figure 4.17: Reconstructed invariant mass distributions for results of the
likelihood maximization with signal cross section set to the
350 GeV b̃ upper limit. The solid line shows the fitted func-
tion, the dashed line shows the signal component, and the
points show the data. From left to right, these are for the CR,
SR1, SR2, and SR3 regions.
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Figure 4.18: Leading light jet pT distributions for results of the likelihood
maximization with signal cross section set to the 350 GeV b̃
upper limit. The solid line shows the fitted function, the
dashed line shows the signal component, and the points show
the data. From left to right, these are for the CR, SR1, SR2, and
SR3 regions.
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Figure 4.19: Second leading light jet pT distributions for results of the
likelihood maximization with signal cross section set to the
350 GeV b̃ upper limit. The solid line shows the fitted func-
tion, the dashed line shows the signal component, and the
points show the data. From left to right, these are for the CR,
SR1, SR2, and SR3 regions.
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Figure 4.20: Distribution of p-values from the results of the scan over
signal cross section hypotheses for the pair production of
350 GeV b̃ squarks. The vertical axis shows the fraction of
toys with a test statistic (the profile likelihood ratio) value
greater than that observed in data, as a function of the cross
section hypothesis. Black points show the results for toys
generated with the signal-plus-background hypothesis, while
the dashed line shows results for toys generated using the
background-only hypothesis. The green (yellow) band rep-
resents the fraction of background-only toys with a best-fit
signal cross section within ±1 (2) standard deviations of the
median value of the cross section corresponding to the global
maximum of the likelihood, evaluated on the set of toys gen-
erated with the background-only hypothesis. The observed
(expected) upper limit on the cross section for this mass point
is found as the intersection of the observed (expected) curve
with the red horizontal line at 5%, corresponding to a 95% CL.
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Figure 4.21: Histogram of the signal cross section for the pair production
of 350 GeV b̃ squarks corresponding to the global maximum
of the likelihood evaluated on the set of toys generated with
the background-only hypothesis. The horizontal axis corre-
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CL band on the expected limit is determined by calculating
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Figure 4.22: Profile likelihood ratio distributions for pseudo-data toy ex-
periments in each signal strength scan point for the 350 GeV
b̃ squark model. Top left scan point corresponds to a cross
section of zero and increases from left to right and top to
bottom, with the bottom right being the maximum cross sec-
tion. In red is the test statistic distribution constructed from
toys generated using the signal-plus-background hypothesis
and in blue is the distribution from toys generated with the
background-only hypothesis. The vertical black line marks
the value of the profile likelihood ratio evaluated in data for
the particular signal strength hypothesis.
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CHAPTER 5

CONCLUSION

We presented a search for pair-produced new physics resonances decaying

into a top quark and light parton, in final states with two leptons. We used

19.5 fb−1 of data collected by the CMS experiment at the LHC during proton-

proton collisions at 8 TeV. We selected events with at least two leptons (e or µ),

two b-tagged jets and two non-b-tagged jets. We employed a kinematic method

to reconstruct pairs of potential resonant decays. We performed an extended

unbinned maximimum likelihood fit to the shapes of the reconstructed reso-

nance mass and the leading and second leading light jet transverse momenta in

data, and observed results consistent with the standard model. We set upper

limits on the pair production cross section of R-parity violating bottom squarks

for masses between 250 and 600 GeV. We excluded R-parity violating bottom

squarks at the 95% confidence level between 250 and 326 GeV.

This constitutes the first LHC result on bottom squarks in the context of the

R-parity violating minimal supersymmetric model constrained to have minimal

flavor violation. While other searches inspired by this model have been carried

out at the LHC, they have generally focused on different particles and decay

modes, such as g̃→ t̄b̄s̄ or t̃→ b̄s̄. The results of the CMS searches are expected

to be combined with the above b̃ results and published in one legacy paper on

R-parity violating supersymmetry searches at CMS with Run I data. There is

currently one ongoing search in CMS for b̃ squarks in the context of a different

R-parity violating supersymmetric model, in which baryon number violation is

assumed [81].

We found that our result is limited by statistics and therefore look forward
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to Run II of the LHC, during which a minimum of 100 fb−1 of data are expected

to be collected at a center-of-mass energy of 13 TeV. In addition to performing

the analysis on a larger dataset, we expect that a significant improvement will

come from employing a different strategy to reconstruct neutrinos in top quark

decays. We investigated a promising method that is applicable to this analy-

sis, as well as different types of measurements in events containing top quarks,

such as W± helicity from top quark decay, tt charge asymmetry, or tt produc-

tion in association with a Higgs boson. This technique will be documented in a

forthcoming publication in the Journal of Nuclear Instruments and Methods.
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APPENDIX A

OBJECT RECONSTRUCTION IN COLLIDER EVENTS WITH TOP

QUARKS

A.1 Introduction

A.1.1 Motivation

We described in Section 4.4.2 a method to analytically reconstruct the four-

momenta of neutrinos in fully leptonic top quark pair decays by solving a

quartic equation, thus allowing for the reconstruction of the top quark four-

momenta [67]. The inputs are the measured leptons and b-quark jets, the mea-

sured Emiss
T , and the top quark and W± boson masses. In order to circumvent

the issue of non-physical solutions, the remaining jets in the event are sampled

within their resolutions and smeared in order to account for detector resolution

effects.

This technique has been used previously within CMS [69]. It is approxi-

mately 80% efficient in tt MC simulation. In the remaining fraction of events,

jet sampling is not able to recover the “true” top quark pair system, and the

method fails. Since the results presented in Section 4.7 are statistics-limited, we

developed a method that guarantees solutions. It extends the tools described in

Ref. [82] to include uncertainties on all objects in the event. The method will be

useful for the analysis of collider events containing top quarks.
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A.1.2 Outline of the strategy

Top quarks overwhelmingly decay to a b quark and W± boson. In the hadronic

decay channel the W± boson produces a quark-antiquark pair, while in the lep-

tonic channel a lepton and neutrino are produced; in each case the final state

contains three objects. Although we focus on the leptonic channel, the method

is also applicable to hadronic top decays.

Neutrinos are extremely weakly interacting and escape the detector, result-

ing at a hadron collider in an observed momentum imbalance in the plane trans-

verse to the the beam direction. Conservation of momentum and energy con-

strain the momentum of a neutrino originating from a leptonic top quark decay

to the intersection of two ellipsoids [82], i.e., an ellipse. The parameters of this

ellipse are functions of the measured lepton and b-quark jet four-momenta, and

the assumed top quark and W± boson masses.

In the case of top quark pair production there are two neutrinos in the final

state, each constrained to its own ellipse. Assuming the entire amount of Emiss
T

is due to the pair of neutrinos, the neutrino momenta can be further constrained

to the intersection points of the two neutrino ellipses. There can be zero, two,

or four such intersections, at which points the summed neutrinos are exactly

consistent with the observed Emiss
T . Thus we recover the solution multiplicity of

the method described in Section 4.4.2, which is that of a quartic equation. In fact

the solutions found by this method correspond to the solutions of the quartic

equation. The intersection points of two ellipses can be calculated numerically.

If no intersections exist, we assume experimental mismeasurements are re-

sponsible. We extend the above framework to include uncertainties on all ob-
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jects other than the leptons and b-quark jets. We allow the objects to vary within

their uncertainties, and minimize a χ2 variable that corresponds to an object con-

figuration leading to intersecting neutrino ellipses. The minimum of the χ2 can

be solved analytically.

Finally we construct a per-event χ2 variable as the sum of the above light

jet χ2 as well as a χ2 combining uncertainties on the b-quark jets, the top quark

mass, and the W± mass. At CMS the uncertainties on leptons (e or µ) are small

compared to uncertainties on jets. These are therefore neglected in our frame-

work, but can be easily introduced. We minimize the per-event χ2 numerically.

A.2 Details of the algorithm

A.2.1 Neutrino ellipse construction

The first step in the algorithm is to calculate the ellipse constraining the mo-

mentum of a neutrino. For this we rely on the solution provided in Ref. [82]. We

reproduce here some key results.

A.2.1.1 Definitions

We consider the decay chain in which a top quark t decays to a b quark and

W boson, and the W boson decays leptonically to a lepton ` and a neutrino ν.

In the laboratory frame the four-momentum of particle i is written
(
pi , Ei

)
; φi

and θi denote the particle’s azimuthal and polar angles, respectively. The world

average measured values [14] for the top quark, b quark, W± boson, lepton, and
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neutrino masses are assumed. Conservation of four-momentum constrains pb

and p` each to a surface that limits on an ellipsoid, the three-dimensional equiv-

alent of an ellipse, in the relativistic limit for the each particle; pW is constrained

to the intersection of these two surfaces.

In the laboratory frame, the coordinate system in momentum space F{x̃, ỹ, z̃}

(F′{x̃′, ỹ′, z̃′}) is defined as being oriented along p` (pb), with F and F′ sharing

a common z̃ axis. A transformation from F to F′ corresponds to a rotation of

angle θb`, the angle between p` and pb, around the z̃ axis.

A.2.1.2 Neutrino solutions

Homogeneous coordinates r = (x y z 1)T may be used to calculate the ex-

tended (4× 4) matrix representation of three-dimensional surfaces such as ellip-

soids. In these coordinates, an ellipsoid may be represented by a 4×4 symmetric

matrix A, with rT Ar = 0. The ellipsoids for the b quark and lepton may be writ-

ten as

Ãb =



1 − (cβb)2 −csβ2
b 0 cx̃′0βb

−csβ2
b 1 − (sβb)2 0 sx̃′0βb

0 0 1 0

cx̃′0βb sx̃′0βb 0 m2
W − x̃′20


, (A.1a)

Ãµ =



γ−2
µ 0 0 S x̃β

2
µ

0 1 0 0

0 0 1 0

S x̃β
2
µ 0 0 m2

W − x̃2
0 − ε

2


, (A.1b)
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where βi and γi are, respectively, the relativistic speed and Lorentz factors for

particle i,

βi ≡
pi

Ei
, γ−1

i ≡
mi

Ei
=

√
1 − β2

i ,

and

x̃′0 = −
1

2Eb

(
m2

t − m2
W − m2

b

)
, (A.2)

x̃0 = −
1

2Eµ

(
m2

W − m2
µ − m2

ν

)
, (A.3)

S x̃ =
(
x̃0βµ − pµγ−2

µ

)
/β2

µ, (A.4)

ε2 = γ−2
µ

(
m2

W − m2
ν

)
. (A.5)

The W boson momentum is constrained to the ellipse that is the intersection

of the ellipsoids Ã` and Ãb. Similarly the neutrino momentum is constrained

to an ellipse; in the F coordinate system it may be parameterized as p̃ν = H̃ t,

where

H̃ =


Z/Ω 0 x̃1 − pµ

ωZ/Ω 0 ỹ1

0 Z 0

 , t =


cos t

sin t

1

 , (A.6)

with

S ỹ =
1
s
(
x̃′0/βb − cS x̃

)
, (A.7)

ω =
1
s

(
±
βµ

βb
− c

)
, (A.8)

Ω2 = ω2 + γ−2
µ , (A.9)

x̃1 = S x̃ − (S x̃ + ωS ỹ)/Ω2, (A.10)

ỹ1 = S ỹ − (S x̃ + ωS ỹ)ω/Ω2, (A.11)

Z2 = x̃2
1Ω

2 −
(
S ỹ − ωS x̃

)2
−

(
m2

W − x̃2
0 − ε

2
)
. (A.12)

When the parameter t varies between 0 and 2π, the product H̃ t describes an

ellipse. Points on this ellipse represent the set of allowed neutrino momenta
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that are consistent with a leptonic top quark decay. A point on the ellipse is

referred to as a solution.

Determining the allowed neutrino momenta in the laboratory frame neces-

sitates a transformation from the F coordinate system back to the laboratory

coordinate system. Transforming from the laboratory frame to F requires three

successive rotations:

• a rotation of angle φ` around the z-axis in the laboratory frame, yielding p`

in the x′ − z′ plane,

• a rotation of angle θ` − π
2 around the y′-axis, so that p` is along the x′′-axis,

• a rotation of angle α = arg
(
y′′b + i z′′b

)
around the x′′-axis, leaving pb in the

x̃ − ỹ plane with ỹb > 0.

Therefore the transformation from F to the laboratory coordinate system is

given by the product of the rotation matrices corresponding to the above rota-

tions,

R = Rz(φ`)Ry′

(
θ` −

π

2

)
Rx′′ (α) . (A.13)

The ensemble of neutrino solutions in the laboratory frame is then parameter-

ized as

pν = H t , H = RH̃. (A.14)

We present below the expressions for the neutrino ellipse in homogeneous

coordinates,

H⊥ =


H11 H12 H13

H21 H22 H23

0 0 1

 , (A.15)
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and the extended representation,

N⊥ = H−T
⊥ UH−1

⊥ , (A.16)

where U = diag
(

1 1 −1
)

is the matrix representation of the unit circle.

In homogeneous coordinates, components of the neutrino momentum in the

transverse plane are parameterized as

ν⊥ = H⊥t , ν⊥ = (xν yν 1)T . (A.17)

For a given solution ν⊥, corresponding to a specific point on the solution ellipse,

the neutrino momentum is

pν = HH−1
⊥ ν⊥. (A.18)

A.2.1.3 Algorithm implementation

The construction of the solution ellipse for neutrino momenta is performed in a

C++ class, NeutrinoEllipseCalculator. We implement methods to calcu-

late the homogeneous and extended matrices of the solution ellipse. Note that

the calculation fails when the parameter Z2 is non-positive. In the case of Z2 = 0,

the neutrino ellipse is trivially reduced to a point; the case Z2 < 0 is unphysi-

cal in the sense that there is no neutrino momentum consistent with the initial

assumption of a top quark undergoing a leptonic decay.

We note that Z2 = 0 is quartic in Eb, demonstrating the equivalence between

the reconstruction method presented in Ref. [82] and the one described in Sec-

tion 4.4.2.1. In the latter method, the lack of physical solutions was ascribed

to detector resolution effects. The jet resampling technique was introduced in

order to circumvent these effects.
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The same methodology can be applied here. We determine the b-quark jet

four-momenta that yield Z2 > 0. Since Z2 = 0 is quartic, the roots can be deter-

mined numerically. Given the possibility of multiple allowed ranges in Eb that

yield Z2 > 0, we select the one either containing the measured value, or closest to

it as measured by the logarithm of the ratio of corrected energy to reconstructed

energy.

Inputs for the NeutrinoEllipseCalculator constructor are simply the

measured four-momenta of a b-quark jet and lepton, and the resolution on the

jet. From these we are able to numerically determine solutions for the neutrino

momentum under the assumption of a leptonic top quark decay, and the range

of corrections to the b-quark jet pT and energy that guarantee physical solutions

for the neutrino momentum.

A.2.2 Light jet minimization

A.2.2.1 Missing transverse energy constraint

In a collider event containing a pair of top quarks that both decay leptonically,

t → b`+ν and t̄ → b̄`−ν̄, assume the longitudinal momentum of the tt system

is unconstrained. This is the case at hadron colliders. We apply the above pro-

cedure to construct the ellipse of solutions for both neutrino momenta. In the

extended matrix representation the transverse momenta of the neutrinos verify

νT
⊥N⊥ν⊥ = 0 , ν̄T

⊥N̄⊥ν̄⊥ = 0. (A.19)

Assuming that the entire amount of Emiss
T in the event is due to the pair of

neutrinos, an additional constraint may be applied such that the sum of the neu-
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trino components in the transverse plane equal the measured Emiss
T components

(6x 6y). This constraint may be written in matrix form as

ν̄⊥ = Γν⊥ , Γ =


−1 0 6x

0 −1 6y

0 0 1

 , (A.20)

where Γ−1 = Γ.

Thus the extended representation ν̄⊥ may be expressed in terms of ν⊥,

νT
⊥N̄′⊥ν⊥ = 0 , N̄′⊥ = ΓT N̄⊥Γ, (A.21)

meaning that the neutrino and anti-neutrino momenta that are consistent with

a fully leptonic top quark pair decay, and whose sum in the transverse plane

is constrained to the Emiss
T , correspond to the intersections of the two neutrino

ellipses. Excluding tangencies there may be zero, two, or four such solutions,

which may be calculated numerically. We have verified that these solutions are

identical to those obtained following the quartic equation method described in

Ref. [67].

We now focus on the case of non-intersecting ellipses. At this point in Sec-

tion 4.4.2, sampling over jet resolutions was introduced. We extend the idea to

this framework by requiring that objects in the event other than the top quark

decay products account for the difference between the neutrino solution com-

ponents and the measured Emiss
T . This means varying the corresponding objects

within their uncertainties in order to shift the distance between the centers of

the neutrino ellipses and thus force them to intersect.
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A.2.2.2 Per-object χ2

At hadron colliders such as the LHC the objects that are not associated with the

top quark decays are typically light-flavor jets. The method described below

can however be extended to any type of reconstructed object, given its four-

momentum and assumed resolution. With this information, we can construct a

per-object χ2 representing the degree of belief in a true object hypothesis,

χ2 =
∑

i

(
δi

σi

)2

,

where δi is the correction with respect to the measured object component in

the ith direction, σi is the corresponding resolution, and the sum runs over in-

dependent directions in a chosen basis. This assumes the uncertainties on are

uncorrelated across directions in this basis.

It is possible to work in the two-dimensional transverse basis, or the

full three-dimensional basis. We present below the calculation in the three-

dimensional basis; the two-dimensional case is treated analogously. Although

resolutions at hadron colliders are generally measured in radial coordinates pT,

η and φ, leading to

χ2
radial =

(
δpT

σpT

)2

+

(
δη

ση

)2

+

(
δφ

σφ

)2

,

we wish to work in the Cartesian basis, in which the Emiss
T constraint is most

naturally written. Another advantage is that the minimum χ2, corresponding to

the most likely true object, may be calculated analytically as we will soon show.

We define δ =
(
δpx δpy δpz

)
, representing the vector of corrections to each
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component of the three-momentum of an object, and the covariance matrix

Σ =


σ2

x σxy σxz

σxy σ2
y σyz

σxz σyz σ2
z

 .
The per-object χ2 in the Cartesian basis is then written

χ2
cartesian = (δ)

(
Σ−1

)
(δ)T (A.22)

The elements of the covariance matrix may be calculated assuming the fol-

lowing forms for the corrections:

px = pT exp (δpT) cos (φ + δφ) (A.23)

py = pT exp (δpT) sin (φ + δφ) (A.24)

pz = pT exp (δpT) sinh (η + δη), (A.25)

and assuming each resolution parameter follows a normal distribution,

ρ(δpT) =
1

σpT

√
2π

exp
(
−

1
2
( δpT

σpT

)2)
, (A.26)

ρ(δφ) =
1

σφ

√
2π

exp
(
−

1
2
( δφ
σφ

)2)
, (A.27)

ρ(δη) =
1

ση

√
2π

exp
(
−

1
2
( δη
ση

)2)
. (A.28)

Thus

(σx)2 = < (px)2 > − < (px) >2

(σx)2 =

∫ ∞

−∞

∫ ∞

−∞

(pT exp (δpT) cos (φ + δφ))2ρ(δpT)dδpTρ(δφ)dδφ

−

(∫ ∞

−∞

∫ ∞

−∞

(pT exp (δpT) cos (φ + δφ))ρ(δpT)dδpTρ(δφ)dδφ
)2
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(σy)2 = < (py)2 > − < (px) >2

(σy)2 =

∫ ∞

−∞

∫ ∞

−∞

(pT exp (δpT) sin (φ + δφ))2ρ(δpT)dδpTρ(δφ)dδφ

−

(∫ ∞

−∞

∫ ∞

−∞

(pT exp (δpT) sin (φ + δφ))ρ(δpT)dδpTρ(δφ)dδφ
)2

(σz)2 =< (pz)2 > − < pz >
2

(σz)2 =

∫ ∞

−∞

∫ ∞

−∞

(pT exp (δpT) sinh (η + δη))2ρ(δpT)dδpTρ(δη)dδη

−

(∫ ∞

−∞

∫ ∞

−∞

pT exp (δpT) sinh (η + δη)ρ(δpT)dδpTρ(δη)dδη
)2

σxy = < px py > − < px >< py >

σxy =

∫ ∞

−∞

∫ ∞

−∞

(pT exp (δpT))2 cos (φ + δφ) sin (φ + δφ)ρ(δpT)dδpTρ(δφ)dδφ

−

(∫ ∞

−∞

∫ ∞

−∞

(pT exp (δpT) cos (φ + δφ))ρ(δpT)dδpTρ(δφ)dδφ
)

×

(∫ ∞

−∞

∫ ∞

−∞

(pT exp (δpT) sin (φ + δφ))ρ(δpT)dδpTρ(δφ)dδφ
)

σxz =< px pz > − < px >< pz >

σxz =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(pT exp (δpT))2 cos (φ + δφ) sinh (η + δη)ρ(δpT)dδpTρ(δφ)dδφρ(δη)dδη

−

(∫ ∞

−∞

∫ ∞

−∞

(pT exp (δpT) cos (φ + δφ))ρ(δpT)dδpTρ(δφ)dδφ
)

×

(∫ ∞

−∞

∫ ∞

−∞

pT exp (δpT) sinh (η + δη)ρ(δpT)dδpTρ(δη)dδη
)
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σyz =< py pz > − < py >< pz >

σyz =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(pT exp (δpT))2 sin (φ + δφ) sinh (η + δη)ρ(δpT)dδpTρ(δφ)dδφρ(δη)dδη

−

(∫ ∞

−∞

∫ ∞

−∞

(pT exp (δpT) sin (φ + δφ))ρ(δpT)dδpTρ(δφ)dδφ
)

×

(∫ ∞

−∞

∫ ∞

−∞

pT exp (δpT) sinh (η + δη)ρ(δpT)dδpTρ(δη)dδη
)

Finally, computing the integrals leads to

(σx)2 =
p2

T exp (2σ2
pT

)

2
(1 + cos (2φ)(exp (−2σ2

φ))

−
p2

T exp (σ2
pT

)

2
(1 + cos (2φ))(exp (−σ2

φ))

(A.29)

(σy)2 =
p2

T exp (2σ2
pT

)

2
(1 − cos (2φ) exp (−2σ2

φ))

−
p2

T exp (σ2
pT

)

2
(1 − cos (2φ))(exp (−σ2

φ))

(A.30)

(σz)2 =
p2

T exp (2σpT)
2

(exp (−2ση) cosh(2η) − 1)

− p2
T exp (σ2

pT
) sinh2 (η) exp (σ2

η)
(A.31)

σxy =
p2

T exp (2σ2
pT

)

2
sin (2φ) exp (−2σ2

φ)

−
p2

T exp (σ2
pT

)

2
sin (2φ) exp (−σ2

φ)

(A.32)

σxz = p2
T exp (2σpT) cos (φ) sinh (η) exp (

ση − σφ

2
)

− p2
T exp (σ2

pT
) cos (φ) sinh (η) exp (

σ2
η − σ

2
φ

2
)

(A.33)

σyz = p2
T exp (2σpT) sin (φ) sinh (η) exp (

ση − σφ

2
)

− p2
T exp (σ2

pT
) sin (φ) sinh (η) exp (

σ2
η − σ

2
φ

2
)

(A.34)
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A.2.2.3 Inverting the global covariance matrix with the momentum conser-

vation constraint

Having expressed a per-object χ2, we may now write a per-event χ2 that sums

the per-object χ2 over the objects we wish to correct in order to create intersect-

ing neutrino ellipses. We denote by

δi =

(
δx,i δy,i δz,i

)
, Σi =


σ2

x,i σxy,i σxz,i

σxy,i σ2
y,i σyz,i

σxz,i σyz,i σ2
z,i

 ,
the difference between a hypothesized true object and the ith reconstructed ob-

ject, and the covariance matrix for the ith object. In this notation the per-object

χ2 is χ2
i = δi Σ−1

i δi.

Let n be the number of objects in the event that we wish to correct. We define

the vector ∆ = (δ1 δ1 . . . δn) and the matrix

X =



Σ−1
1 0 . . . 0

0 Σ−1
2 . . . 0

...
...

. . .
...

0 0 . . . Σ−1
n


. (A.35)

The per-event χ2 is then given by

χ2 = ∆X∆T . (A.36)

We now apply the constraint that momentum be conserved. We wish to

determine the set of hypothetical true objects that have a sum at some distance

d =
(
dx dy dz

)
from the sum of reconstructed objects that minimizes the total

χ2. This requirement may be written in matrix form as C∆T = d, having defined

the constraint matrix C = (I I . . . I).
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In order to minimize the χ2 with the conservation of momentum constraint,

we employ the technique of Lagrange multipliers. We define the Lagrange mul-

tipliers λ =

(
λx λy λz

)
. The minimum χ2 corresponds to the stable points of

the Lagrangian

L(∆, λ) = ∆X∆T + λ(C∆T − d)T , (A.37)

which may be found by setting its partial derivatives to zero. This may be writ-

ten as a system of equations that is linear in the δi parameters,X CT

C 0


∆

T

λT

 =

0T

dT

 , (A.38)

where 0T is the zero vector in three dimensions1.

In order to find the solution to the above system of linear equations we must

invert the (symmetric) matrix

X CT

C 0

 =



Σ−1
1 0 . . . 0 I

0 Σ−1
2 . . . 0 I

...
...

. . .
...

...

0 0 . . . Σ−1
n I

I I . . . I 0


.

The solution to the system of linear equations defined in Eq. A.38 may then be

determined by solving for the matrix such that

A1,1 A1,2 . . . A1,n B1

A2,1 A2,2 . . . A2,n B2

...
...

. . .
...

...

An,1 An,2 . . . An,n Bn

BT
1 BT

2 . . . BT
n D





Σ−1
1 0 . . . 0 I

0 Σ−1
2 . . . 0 I

...
...

. . .
...

...

0 0 . . . Σ−1
n I

I I . . . I 0


=



I 0 . . . 0 0

0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0

0 0 . . . 0 I


, (A.39)

1Had we carried out the calculation of the χ2 in two dimensions, the zero vector would have
been scaled appropriately.
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The solution to the above system of linear equations is then

A1,1 A1,2 . . . A1,n B1

A2,1 A2,2 . . . A2,n B2

...
...

. . .
...

...

An,1 An,2 . . . An,n Bn

BT
1 BT

2 . . . BT
n D





0T

0T

...

0T

dT


=



B1dT

B2dT

...

BndT

DdT


=



δT
1

δT
2

...

δT
n

λT


(A.40)

In this form, solutions to this system are determined solely by the Bi matrices.

We now solve for the Ai, Bi, and D matrices. We note that due to the sym-

metric nature of
(

X CT

C 0

)
, AT

i, j = A j,i . We also have

n∑
i=1

BT
i = I =

n∑
i=1

Bi (A.41)

BT
i Σ−1

i + D = 0 (A.42)

And thus

BT
i = −DΣi (A.43)

n∑
i=1

BT
i =

n∑
i=1

−DΣi (A.44)

I = −D
n∑

i=1

Σi (A.45)

D = −

 n∑
i=1

Σi

−1

(A.46)

BT
i =

 n∑
j=1

Σ j


−1

Σi (A.47)

Bi = Σi

 n∑
j=1

Σ j


−1

(A.48)

As noted earlier, this is all that is needed in order to calculate the minimum

value of the per-event χ2. However we also present the solution for the Ai, j
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matrices below. We have

n∑
i=1

BT
i = I =

n∑
i=1

Bi (A.49)

BT
i Σ−1

i + D = 0 . (A.50)

Introducing the solutions for the Bi matrices leads to

Ai, j =


Σi − BiΣi if i = j,

−B jΣi if i , j.
(A.51)

Ai, j =


Σi − Σi

(∑n
k=1 Σk

)−1
Σi if i = j,

−Σ j
(∑n

k=1 Σk
)−1

Σi if i , j.
(A.52)

Returning to the minimimum of the χ2, which corresponds to the solution in

Eq. A.40, we find

(
dBT

1 dBT
2 . . . dBT

n

)


Σ−1
1 0 . . . 0

0 Σ−1
2 . . . 0

...
...

. . .
...

0 0 . . . Σ−1
n





B1dT

BT
2 dT

...

BndT


= d

n∑
i=1

(( n∑
j=1

Σ j
)−1

Σi
( n∑

k=1

Σk
)−1

)
dT

(A.53)

d
n∑

i=1

(( n∑
j=1

Σ j
)−1

Σi
( n∑

k=1

Σk
)−1

)
dT = d

( n∑
j=1

Σ j
)−1dT (A.54)

The minimum per-event χ2 is therefore determined solely by the inverse of the

covariance matrix of the sum of all objects, as expected in the approximation of

normal resolutions. The corresponding corrections to the different objects are

determined in Eq. A.40, using the Bi matrices found in Eq. A.48.
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A.2.2.4 Algorithm implementation

We write a lightJetChiSquareMinimumSolver class that computes the

necessary corrections to the four-momenta of objects other than the decay prod-

ucts of the top quark pairs in order to balance the summed neutrino momenta

and the Emiss
T . The inversion of the covariance matrix is performed using the

ROOT class TDecompBase.

We focus on corrections to the objects in the two-dimensional transverse

plane, since at a hadron collider the momentum constraint is on the two-

dimensional Emiss
T object. The necessary inputs are therefore the pT and φ co-

ordinates of the light jets, the corresponding per-jet resolutions σpT and σφ, and

the components of the vector d. In practice the latter are set to the difference

between the observed Emiss
T and the sum of the neutrino momenta in the x and y

directions.

A.2.3 Per-event χ2 minimization

Finally we wish to incorporate uncertainties on the b-quark jets, the masses of

the top quarks, and the masses of the W± bosons2. We construct a global per-

event χ2 variable and search for the δ values on all the different objects that

minimize this χ2. We assume Breit–Wigner widths of 2.0 GeV and 2.09 GeV for

the top quark and W boson masses, respectively. An associated error is defined

by computing the point on a normal distribution at which the cumulative distri-

bution function has the same value as that of the Breit–Wigner at a given mass.

We write the corresponding χ2 term χ2
mass(ECM|m,Γ).

2Recall that we are neglecting uncertainties on the leptons.
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Finally the global χ2 is written as

χ2 =

 δb
pT

σb
pT

2

+

 δb
η

σb
η

2

+

 δb
φ

σb
φ

2

+

 δb̄
pT

σb̄
pT

2

+

 δb̄
η

σb̄
η

2

+

 δb̄
φ

σb̄
φ


2

+ χ2
mass

(
Et

CM|mt,Γt

)
+

χ2
mass

(
EW+

CM|mW+ ,ΓW

)
+ χ2

mass

(
E t̄

CM|mt̄,Γt

)
+ χ2

mass

(
EW−

CM|mW− ,ΓW

)
+ χ2

light jet. (A.55)

We take into account the ambiguity in pairing the b-quark jets and leptons to re-

construct the top quark pair by minimizing the χ2 for both pairings and selecting

the one yielding the lowest minimum χ2. The minimization, implemented in a

topSystemChiSquare class, proceeds in multiple minimization steps in order

to guarantee convergence.

First we find a good starting point for the minimizer by determining the

corrections to the b-jet momentum, top quark mass, and W boson mass that

yield physical neutrino solutions, for each top quark in the event. This is im-

plemented as a minimization within a minimization. The inner minimization

governs the correction to the top quark mass. It considers the Z2 variable de-

fined in Section A.2.1.2 as quadratic in the top quark mass squared and solves

for the ranges in which the top quark mass will yield a physical solution. The

outer minimzer runs over corrections to the b-quark jet pT, η, and φ coordinates

and the W boson mass.

After initializing the δ values for the b-quark jet momenta and the masses

of the top quarks and W± bosons using those found by minimizing the above

χ2, we turn to minimizing the per-event χ2. This procedure is separated into

four nested minimizations. The outermost minimizer has eight variables corre-

sponding to the δ parameters on the φ and η of the two b-quark jets, the masses

of the top quarks, and the masses of the W± bosons. Nested in this minimizer

we perform a minimization over the b-quark jet pT parameters. Within this
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minimizer is a minimization that serves to define a starting point for the light

jet χ2 minimization. The innermost minimizer corresponds to the light jet χ2

minimization.

The nested minimizations function as follows. Given a set of corrections for

the η and φ of the b-quark jets, the top quark masses, and the W± boson masses,

we can compute the neutrino ellipses using the corrected values as input. Vary-

ing the above parameters and the b-quark jets causes the shapes of the neutrino

ellipses to change. Assuming in turn a given set of corrections for the pT of the

b-quark jets fixes the ellipse parameters and therefore the ellipses themselves.

First we check whether these ellipses intersect. If they do the light jet χ2 is set to

zero and the per-event χ2 may be directly computed; otherwise we proceed to

determine the corrections to the remaining objects, i.e., the light jets, that force

the neutrino ellipses to intersect.

Thus the minimum of the per-event χ2 may be written as nested minima. The

outer minimization is performed over the unconstrained parameters, i.e., the η

and φ coordinates of the two b-quark jets, the masses of the top quarks, and the

masses of the W± bosons. For each iteration in this minimization, we determine

the allowed ranges for the parameters correcting the pT (and the energy) of the

b-quark jets that yield physical neutrino solutions. We then use these parame-

ters to minimize the χ2 over all objects in the event not associated with the top

quark decays. We write this as

χ2
minimum = Minimum

Unconstrained

(
χ2

unconstrained + Minimum
Constrained

(
χ2

constrained + Minimum
(
χ2

light jets

)))
(A.56)

Finally we retrieve the values of the parameters that minimize the total χ2.

We use these to correct the four-momenta of all the objects in the event, thus
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allowing us to determine the momenta of the assumed neutrinos. The four-

momenta of the top quarks may then be computed by combining the neutrinos

with the b-quark jets and leptons, in the same manner as in the reconstruction

technique described in Section 4.4.2.

A.3 Results in simulation

The algorithm described in Section A.2 is tested in a sample of top quark pair

events generated with MADGRAPH. The exact process generated is tt + 2 par-

tons. In order to simulate detector effects we smear jets at the LHE level assum-

ing a 10% resolution in pT and a 1% angular resolution. We study the events in

which the measured b-quark jets, leptons, and Emiss
T yield non-intersecting neu-

trino solution ellipses. In this case the above minimization algorithm is applied

in order to find physical neutrino solutions.

We find that the pairing of b-quark jets and leptons that yields the mini-

mum per-event χ2 corresponds to the truth-level pairing in approximately 90%

of events. Figure A.1 presents the minimum χ2 distribution for events in which

the correct pairing is used, and when the incorrect pairing is used. We note that

in the latter case the distribution is wider and has a longer tail. The minimum χ2

variable may therefore be used to correctly identify the b-quark jet and lepton

pairing with a high efficiency and low misidentification rate.

Excluding leptons, for each of the generated objects, i.e., the top quarks, b

quarks, W± bosons, and neutrinos, we compare the four-momenta of the gener-

ated objects to that of the corrected objects. The corrections are determined by

the minimization procedure and define the most likely true object from which
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Figure A.1: Minimum per-event χ2 distribution in simulated top quark
pair events. The blue (red) line corresponds to events in which
the b-quark jets and leptons are correctly (incorrectly) paired.
Left: linear scale. Right: logarithmic scale.

each reconstructed object may have originated.

We present distributions of the pT resolution, defined as the difference be-

tween the corrected and generated object pT divided by the generated object pT,

for the neutrinos, W± bosons, top quarks, and bottom quarks in Figs. A.2, A.4,

A.7, and A.10, respectively. The light jet minimization procedure corrects jets

in the transverse plane only. Thus we show the distributions of the px and py

resolutions for the two light partons in Figs. A.12 and A.13. These distributions

are all sharply peaked at zero and steeply falling, demonstrating that the min-

imization procedure successfully reconstructs objects, with a momentum close

to that of the generated object momentum.

Distributions of the angular distance ∆R between generated and corrected

objects are shown in Figs. A.3, A.6, A.9, and A.11 for neutrinos, W± bosons,

top quarks, and bottom quarks, respectively. The bulk of these distributions
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is found to be within ∆R of 0.5. We therefore conclude that the minimization

procedure achieves excellent angular resolution.

Finally we present in Figs. A.5 and A.8 the resolution on the masses of the

top quarks and W± bosons. We find that the minimization produces corrections

resulting in reasonable masses for the top quarks and W± bosons.
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Figure A.2: Distribution of the difference between the corrected and gen-
erated neutrino pT, normalized to the generated neutrino pT.
Left: neutrinos; right: anti-neutrinos.
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Figure A.3: Distribution of the angular distance between the corrected and
generated neutrinos. Left: neutrinos; right: anti-neutrinos.
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Figure A.4: Distribution of the difference between the corrected and gen-
erated W± boson pT, normalized to the generated W± boson
pT. Left: W+ bosons; right: W− bosons.
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Figure A.5: Distribution of the difference between the corrected and gener-
ated W± boson masses, normalized to the generated W± boson
mass. Left: W+ bosons; right: W− bosons.

R(gen, corrected)∆ +W
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.02

0.04

0.06

0.08

0.1

0.12

R(gen, corrected)∆ -W
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.02

0.04

0.06

0.08

0.1

0.12

Figure A.6: Distribution of the angular distance between the corrected and
generated W± bosons. Left: W+ bosons; right: W− bosons.
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Figure A.7: Distribution of the difference between the corrected and gen-
erated top quark pT, normalized to the generated top quark
pT. Left: top quarks; right: anti-top quarks.
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Figure A.8: Distribution of the difference between the corrected and gener-
ated top quark masses, normalized to the generated top quark
mass. Left: top quarks; right: anti-top quarks.
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Figure A.9: Distribution of the angular distance between the corrected and
generated top quarks. Left: top quarks; right: anti-top quarks.
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Figure A.10: Distribution of the difference between the corrected and gen-
erated bottom quark pT, normalized to the generated bottom
quark pT. Left: bottom quarks; right: anti-bottom quarks.
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Figure A.11: Distribution of the angular distance between the corrected
and generated bottom quarks. Left: bottom quarks; right:
anti-bottom quarks.
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Figure A.12: Distribution of the difference between the corrected and gen-
erated light parton px, normalized to the generated light par-
ton px. Left: first generated light partons; right: second gen-
erated light partons.
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A.4 Conclusions and outlook

We have presented a method to reconstruct collider events containing top

quarks. The method incorporates uncertainties on all objects in the event and

performs a χ2 minimization in order to determine the most likely hypothetical

true objects from which the measured objects may have originated. The algo-

rithm was written in C++ and has been successfully tested on simulated top

quark pair events. This method, although originally developed for the purpose

of the analysis that is the subject of this thesis, is widely applicable and may be

particularly useful to measurements of top quark properties.
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