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To efficiently transcribe genes, RNA Polymerase II (Pol II) must overcome 

the barrier imposed by nucleosomes and higher order chromatin structure.  

Many genes, including Drosophila melanogaster Hsp70, undergo changes in 

chromatin structure upon activation.  It has long been thought that changes to 

chromatin structure occur co-transcriptionally as a result of Pol II movement 

through the gene and recruitment of Pol II associated factors that disrupt 

chromatin structure.  In this dissertation, I demonstrate that, upon activation, 

the changes in chromatin structure of Drosophila melanogaster’s Hsp70 gene 

occur in an extremely rapid manner that is independent of active transcription 

of the gene.  In addition, these changes extend beyond the gene encoding unit 

to natural chromatin insulating elements.  From a series of targeted RNAi 

screens I indentified four proteins necessary for the rapid, transcription-

independent loss of nucleosomes at the Hsp70 locus following heat shock and 

an ordered mechanism through which they function.  The first factor identified, 

heat shock factor (HSF), is the master transcriptional activator of heat shock 

genes and is rapidly recruited to the gene within seconds of heat shock, and 



 

binds cooperatively with the second factor, GAGA Factor, already bound to the 

gene.  HSF is necessary for the recruitment of the third identified factor, 

dTip60, a histone acetyltransferase that acetylates histone H2A lysine 5.  This 

acetylation is necessary for the enzymatic activation of the fourth and final 

factor, Poly(ADP)-Ribose Polymerase (PARP), which catalyzes the formation 

Poly(ADP-ribose).  PARP is associated with the 5’ end of Hsp70 before heat 

shock, and its enzymatic activity is rapidly induced by heat shock. This 

activation causes PARP to redistribute throughout the Hsp70 loci and 

Poly(ADP-ribose) to concurrently accumulate in the wake of PARP’s 

redistribution.  Both the protein PARP and its catalytic activity are necessary 

for the rapid loss in nucleosome structure of Hsp70 upon heat shock and full 

transcriptional activation of Hsp70.  In this dissertation I propose a novel 

mechanism to overcome the nucleosome barrier to achieve full transcriptional 

activation through the enzymatic activation of PARP which results in a rapid, 

transcription-independent, locus-wide disruption of chromatin structure. 

 



 

iii 

BIOGRAPHICAL SKETCH 

I was born on August 24, 1983 in Seattle, WA to two accountants, Doug and 

Mary Anne Petesch.  I grew up in Seattle and infamously did not speak much 

of my early life, as my older sister Anne did most of the talking for me.  I was 

said to be content sitting and doing puzzles quietly.  As I grew older, and my 

younger sister Julie appeared I found myself most happy doing math 

homework, both teaching it to my classmates and sometimes to my sisters as 

well.  I graduated from St. Mark’s Catholic Grade School as the class 

valedictorian where I convinced my 8th grade math teacher, without the 

support of my classmates, to teach the entirety of our math textbook for the 

first time in twenty years.  I followed my sister to Seattle Preparatory High 

School where at the end of my freshman year I met my wife-to-be, Krissy 

Hope, as I helped manage the school’s girl’s volleyball team.  It was here that I 

was the editor-in-chief of our school’s newspaper, was the first student to take 

the BC AP Calculus test and helped convince the school to implement a BC 

AP Calculus class, and received the math award and class valedictorian at 

graduation.  I decided to leave Washington for Harvey Mudd College in 

southern California mainly because I wanted to attend a challenging math and 

science college as I thought that I wanted to be an engineer and also because 

I still had far-fetched dreams of becoming a volleyball player.  By my second 

year of college I realized that engineering was no longer rewarding enough for 

me and there was no chance of me ever becoming a professional volleyball 



 

iv 

player.  It was also at this time that I took an inspiring organic chemistry class 

that convinced me I would be most happy transferring into the chemistry 

department.  Harvey Mudd College hired a new Biochemistry professor, Dr. 

Haushalter, the following year that had just finished a post doc in Jim 

Kadonaga’s lab, working with single-molecule techniques, chromatin, and 

DNA repair proteins.  It was in Dr. Haushalter’s lab that I first gained laboratory 

experience in biochemistry and molecular biology research, was introduced 

into chromatin biology, and I fell in love with it all.  After spending four years 

apart in college, I decided that I would follow Krissy to Cornell to do my 

graduate school work, where she was already in her first year of graduate 

school.  It was here at Cornell that I was first able to experience all things that I 

am most passionate about at once: science, teaching, Krissy, and volleyball.  

As I leave Cornell and head back to Seattle I hope to continue pursuing 

science in creative ways, challenging others when it comes to what they are 

capable of achieving, and maybe, if there is still time, become a better 

volleyball player.  

 

 

 

 

 

 

 



 

v 

 

I would like to dedicate this work to my family, friends, and particularly my wife, 

who, through perseverance, is now appropriately named Dr. Hope.



 

vi 

ACKNOWLEDGMENTS 

 I would first, and foremost, like to acknowledge my advisor, John Lis, 

for accepting me into his lab and being incredibly supportive of allowing me to 

investigate the things that most interested me.  John is an advisor whose 

enthusiasm and passion for science is nothing short of infective.  John is an 

incredibly creative thinker that always is looking towards developing unique 

techniques that allow us to visually observe and quantitatively measure the 

many aspects of transcription.  I have learned a lot from him throughout the 

years as to how to go about picking interesting questions to answer and to 

push the limits of a technology’s current capabilities to provide the most 

comprehensive and accurate answer to those questions.  In my years of being 

in the lab with John I can honestly say that after every time I spoke with him 

about my project I came away from those discussions more inspired and 

always looking at some aspect of my project from a different perspective than 

before.  I attribute much of the success of my project to his critical thinking and 

providing a creative soundboard through which this project was cultivated and 

grew into the story it is today. 

 I would also like to acknowledge my two committee members, Eric 

Alani and Michelle Wang.  I had the privilege of rotating through Eric’s lab as a 

first year graduate student and learned a lot from him, and his class, about 

how to think about a problem from a geneticist’s point of view.  His discussions 

of how to identify the target of PARP’s actions at Hsp70 were always very 



 

vii 

helpful.  I also would like to thank him for his cheery disposition as I looked 

forward to updating him about my recent progress and developments in my 

project and future career goals.  I would also like to thank Michelle for her 

added expertise about how to think about this project through the prospective 

of a physicist.  Her continued suggestions of how to improve the temporal and 

spatial resolution of my assays to better describe the potential models for how 

nucleosomes could be lost or how PARP redistributes were very beneficial.  I 

could not have asked for a better committee as their background and input 

complimented each other greatly. 

 In addition to thanking all the members of the John’s lab that I have 

overlapped with in my time, I would like to mention a few in particular.  Upon 

rotating through the lab, I was guided by both Behfar Ardehali and Nicholas 

Fuda.  Throughout the years they have provided me with exceptional technical 

guidance and some of the most useful experimental suggestions throughout 

our many subgroup and group meetings.  Their selfless, thoughtful, and critical 

perspectives provided me with role models as to how to think and approach 

science in a laboratory setting.  I would also like to thank Abbie Saunders for 

her willingness to help edit and revise my first publication and to help me 

achieve a writing style that was more “sexy” for publication purposes.  I lastly 

have to thank Janis Werner, John’s lab manager, who has provided an easy, 

organized, and efficient lab work environment while I was here. 

 I finally have to thank my family, friends, and wife.  I first have to thank 

my parents for their willingness to send me to a great college and pay for my 



 

viii 

education, even after telling them that I no longer wanted to be an engineer 

but would rather pursue chemistry.  I would also like to acknowledge my 

friends, both scientists and nonscientists, for being able to share in my 

excitement and celebrate with me my accomplishments.  Finally, I would like 

to thank my wife, Krissy Hope, who, as a scientist, has provided me with just 

as much feedback, insights, and criticisms regarding my project than the 

members of my lab.   

 I would like to end my acknowledgements with an explanation of how 

John’s patience and creative input helped mold this project from the beginning.  

After joining John’s lab in June of my first year, he and I talked almost every 

day for multiple months about potential ideas or questions that we had 

surrounding the interface of chromatin and transcription.  Besides an ongoing 

RNAi screen in the lab, I did not pick up a pipette for my own project for 

virtually months.  Instead, my many ideas that were presented were met with 

either fair criticisms or tepid responses.  Although frustrated, and slightly 

concerned that John might soon regret his decision to let me join the lab, I 

always felt inspired from my discussions with John to think of a new idea and 

grateful for his patience with me.  It was ultimately after one group meeting 

that a discussion with him resulted in us both excited about the prospect 

probing the chromatin landscape near the paused polymerase of Hsp70 both 

before and after heat shock to understand the fate of transcribed nucleosomes 

at high resolutions.  I look back and acknowledge that these first few months in 

the lab of critically thinking and talking with John as what truly helped me 



 

ix 

develop a project that, regardless of the results of the experiments, would 

provide answers to relatively unanswered, interesting questions.   

 This work was supported by an NIH grant GM25232 to J.T.L and a 

predoctoral training grant T32-GM70723 to S. J. P.  



 

x 

   

TABLE OF CONTENTS 

 
BIOGRAPHICAL SKETCH ......................................................................................... iii 

ACKNOWLEDGMENTS ............................................................................................. vi 

TABLE OF CONTENTS ............................................................................................... x 

LIST OF FIGURES ..................................................................................................... xiv 

LIST OF TABLES ..................................................................................................... xvii 

LIST OF ABBREVIATIONS ................................................................................... xviii 

LIST OF SYMBOLS .................................................................................................. xxii 

CHAPTER 1 AN INTRODUCTION TO OVERCOMING THE NUCLEOSOME 

BARRIER DURING TRANSCRIPT ELONGATION .................................................. 1 

1.1 The Nucleosome is a Natural Barrier to Transcript Elongation of Pol II .. 1 

1.2 Single-Molecule Analysis of Nucleosome Disassembly and Transcription 

through Nucleosomes ................................................................................... 3 

1.3 Chromatin Remodelers are ATP Driven Motors that Slide Nucleosomes 

and Evict Histones ........................................................................................ 7 

1.4 Histone Chaperones Facilitate the Disassembly and Reassembly of the 

Nucleosome ................................................................................................ 10 

1.5 Histone Post-Translational Modifications Alter Nucleosome Composition 

and Chromatin Structure ............................................................................. 14 

1.6 Histone Variants Affect Nucleosome Structure and Stability ................. 19 

1.7 Activation of Poly(ADP-Ribose) Polymerase Promotes Chromatin 

Decondensation .......................................................................................... 22 

1.8 Drosophila Hsp70 Provides a Model Gene to Determine How Pol II 

Overcomes the Nucleosome Barrier upon Transcriptional Activation ......... 24 

1.9 Summary of Dissertation and Concluding Remarks about the Future of 

Understanding how Pol II Overcomes the Nucleosome Barrier .................. 26 

CHAPTER 2 RAPID, TRANSCRIPTION-INDEPENDENT LOSS OF 

NUCLEOSOMES OVER A LARGE CHROMATIN DOMAIN AT HSP70 LOCI ... 31 

2.1 INTRODUCTION ................................................................................... 31 



 

xi 

2.2 RESULTS .............................................................................................. 36 

2.2.1 The Chromatin Structure at Hsp70 is Rapidly and Dramatically 

Altered Following Heat Shock ................................................................. 36 

2.2.2 Nucleosomes at Hsp70 can be Lost Independently of Transcription

 ................................................................................................................ 45 

2.2.3 The Loss of Nucleosomes at Hsp70 Halts at the Drosophila scs and 

scs’ Boundary Elements ......................................................................... 48 

2.2.4 HSF and GAF are Necessary for Nucleosome Loss at Drosophila 

Hsp70 ..................................................................................................... 51 

2.2.5 Poly(ADP-Ribose) Polymerase is Necessary for Nucleosomal Loss 

at Hsp70 ................................................................................................. 55 

2.3 DISCUSSION ........................................................................................ 68 

2.4 EXPERIMENTAL PROCEDURES ........................................................ 73 

2.4.1 ChIP ............................................................................................... 73 

2.4.2 High-resolution MNase Mapping .................................................... 75 

2.4.3 Quantitative Real-Time PCR Analysis ........................................... 76 

2.4.4 Chemical Treatments ..................................................................... 77 

2.4.5 dsRNA Generation ......................................................................... 77 

2.4.6 RNAi Treatments ........................................................................... 78 

2.4.7 mRNA Expression Analysis ........................................................... 79 

2.4.8 Western Blots................................................................................. 80 

2.5 PRIMER SETS USED ........................................................................... 80 

CHAPTER 3 ACTIVATOR INDUCED SPREAD OF POLY(ADP-RIBOSE) 

POLYMERASE PROMOTES NUCLEOSOME LOSS AT HSP70 ........................... 92 

3.1 INTRODUCTION ................................................................................... 92 

3.2 RESULTS .............................................................................................. 97 

3.2.1 PARP Rapidly Redistributes along Hsp70 upon Heat Shock ......... 97 

3.2.2 PAR Rapidly Accumulates in the Wake of PARP and Tethers PARP 

to the Locus following Heat Shock ........................................................ 103 

3.2.3 HSF is Necessary for Activation and Spread of PARP Following 

Heat Shock ........................................................................................... 110 

3.2.4 The Activity of HDAC3 Maintains PARP Inactivity at Hsp70 Prior to 

Heat Shock ........................................................................................... 112 



 

xii 

3.2.5 Heat Shock Factor Facilitates Rapid Acetylation of Histone H2A at 

Lysine 5 upon Heat Shock .................................................................... 116 

3.2.6 dTip60 is Responsible for Acetylation of Histone H2A Lysine 5 and 

Activation of PARP upon Heat Shock ................................................... 120 

3.2.7 dTip60 is Necessary for the Loss of Nucleosomes and Full 

Transcriptional Activation of Hsp70 upon Heat Shock .......................... 123 

3.3 DISCUSSION ...................................................................................... 129 

3.4 EXPERIMENTAL PROCEDURES ...................................................... 134 

3.4.1 ChIP ............................................................................................. 134 

3.4.2 Quantitative Real-Time PCR Analysis ......................................... 135 

3.4.3 Chemical Treatments ................................................................... 135 

3.4.4 RNAi Treatments ......................................................................... 136 

3.4.5 mRNA Expression Analysis ......................................................... 136 

3.4.6 High-resolution MNase Mapping .................................................. 136 

3.4.7 PARG and PARP Purification ...................................................... 137 

3.4.8 Western Blots............................................................................... 137 

3.5 Primer Sets Used ................................................................................ 138 

CHAPTER 4 A SURVEY OF ADDITIONAL SITES THAT BIND HSF 

FOLLOWING HEAT SHOCK TO DETERMINE THE GENERALITY OF THE 

HSP70 MECHANISM OF NUCLEOSOME LOSS .................................................. 140 

4.1 Introduction ......................................................................................... 140 

4.2 Results ................................................................................................ 144 

4.2.1 Major Heat Shock Sites Contain Genes that Exhibit Nucleosome 

Loss upon Heat Shock .......................................................................... 144 

4.2.2 Additional Non Heat Shock Puff Sites that Recruit HSF Do Not 

Exhibit Nucleosome Loss upon Heat Shock ......................................... 155 

4.2.3 Major Heat Shock Puff Sites Require HSF, PARP, and Tip60 to Lose 

Nucleosomes following Heat Shock ...................................................... 164 

4.3 Conclusions ......................................................................................... 168 

CHAPTER 5 POTENTIAL FUTURE DIRECTIONS OF THE PROJECT .............. 175 

5.1 Determining if the Components and Mechanism Used by Hsp70 is 

General for Sites that Undergo Chromatin Decondensation Following Heat 

Shock ........................................................................................................ 175 



 

xiii 

5.2 Determining How the Tip60 Complex is Capable of Activating PARP in 

vivo ............................................................................................................ 176 

5.3 Determining the Target of PARP Activation that Facilitates Chromatin 

Decondensation ........................................................................................ 177 

5.4 Establishing the Generality of Transcription Independent Nucleosome 

Loss .......................................................................................................... 179 

5.5 Determining what Constitutes a Chromatin Insulator and Blocks the 

Progression of Nucleosome Loss from Occurring ..................................... 180 

5.6 Concluding Remarks ........................................................................... 181 

APPENDIX A ADDITIONAL FACTORS SCREENED FOR THEIR ABILITY TO 

FACILITATE TRANSCRIPTIONAL ACTIVATION OF HSP70 AFTER A 20 

MINUTE HEAT SHOCK .......................................................................................... 182 

A.1 Introduction ......................................................................................... 182 

A.2 Results from Selected RNAi Screens ................................................. 184 

A.3 Conclusions ........................................................................................ 186 

APPENDIX B: CHIP-SEQ ANALYSIS OF PARP IN DROSOPHILA S2 CELLS 

UNDER NON HEAT SHOCK CONDITIONS ......................................................... 192 

 

 

 
 



 

xiv 

LIST OF FIGURES 

 
Figure  Page 

1 
The nucleosome contains specific interactions that provide a 
barrier to transcript elongation and can be disassembled 
through chromatin remodelers……………………………………  provide a barrier to transcript elongation and can be disassembled through chromatin remodelers 5 

2 
Transcriptionally Active Genes are Associated with Specific 
Histone PTMs and Histone Variants that Facilitate Transcript 
Elongation………………………………………………………….. 21 

3 
Heat Shock Factor Triggers the Enzymatic Activity of 
Poly(ADP-Ribose) Polymerase to Facilitate the Rapid 
Disruption of Nucleosomes……………………………………….. 28 

4 
Rapid Loss of Chromatin Structure at Hsp70 upon Heat 
Shock Detected by a High Resolution MNase Scanning Assay 37 

5 
Titration of MNase to Produce Mononucleosome Size DNA 
Fragments………………………………………………………….. 40 

6 Individual Time Course MNase Profiles with Error Bars………. 41 

7 
Rapid Loss of Chromatin Structure at Hsp26 upon Heat 
Shock Detected by a High Resolution MNase Scanning Assay 43 

8 Rapid loss of Histone H3 from Hsp70 upon Heat Shock……… 44 

9 
Initial Loss of Nucleosomes at Hsp70 is Independent of 
Transcription……………………………………………………….. 46 

10 
Initial Loss of Nucleosomes at Hsp26 is Independent of 
Transcription……………………………………………………….. 49 

11 
The scs and scs’ Regions Insulate the Heat Shock Locus from 
the Spread of Nucleosome Loss…………………………………. 50 

12 
Expression and Pol II occupancy of Genes within the 87A 
Heat Shock Locus do not change after Heat Shock…………… 52 

13 
HSF, GAF, and PARP are Essential for the Loss of 
Nucleosomes at Hsp70…………………………………………… 53 

14 
RNAi and Chemical Treatments do not Significantly Change 
between 30 Seconds and 2 Minutes of Heat Shock…………… 54 

15 Upstream Activator RNAi MNase Profiles………………………. 57 

16 SAGA Subunit RNAi MNase Profiles……………………………. 58 

17 Elongation Factor RNAi MNase Profiles………………………… 59 

18 Chromatin Remodeler RNAi MNase Profiles…………………… 60 

19 Nucleosome Interactor RNAi MNase Profiles………………….. 61 

20 DNA Topology RNAi MNase Profiles……………………………. 62 

21 Boundary Factor RNAi MNase Profiles…………………………. 63 

22 Western Blots of Confirmed RNAi Knockdowns……………….. 64 

 
  

 



 

xv 

   

23 
MNase Protection outside the 87A Heat Shock Locus 
Enclosed by scs and scs´ are not Affected by RNAi 
Knockdown of Several Factors…………………………………... 66 

24 
The Enzymatic Activity of PARP s Needed for Nucleosome 
Loss at Hsp70 and PARP is Required for full Hsp70 
Expression………………………………………………………….. 67 

25 
PARP Rapidly Redistributes Across the Hsp70 Heat Shock 
Locus upon Heat Shock…………………………………………... 98 

26 
PARP is Not Necessary for HSF Recruitment to Hsp70 
Following Heat Shock and the PARP ChIP signal is Specific 
for dPARP………………………………………………………….. 101 

27 
PAR Rapidly Accumulates Across the Hsp70 Heat Shock 
Locus Upon Heat Shock………………………………………….. 104 

28 
Accumulation of PAR at Hsp70 is Dependent on PARP and 
rPARG is able to Metabolize PAR from ChIP Extracts………... 107 

29 
HSF is Necessary for the Activation and Redistribution of 
PARP at the Hsp70 Heat Shock Locus Following Heat Shock  111 

30 
The HSF ChIP signal is Specific for HSF at Hsp70 following 
Heat Shock…………………………………………………………. 112 

31 
HDAC3 Knockdown Activates PARP at the Hsp70 Heat 
Shock Locus under Non Heat Shock Conditions………………. 114 

32 
Inhibition of HDAC3’s Catalytic Activity through treatment with 
the HDAC inhibitor. TSA, Recapitulates Results Found with 
an HDAC3 Knock Down…………………………………………... 115 

33 
HSF Directs Acetylation of Histone H2A Lysine 5 upon Heat 
Shock at the Hsp70 Heat Shock Locus…………………………. 117 

34 
HSF, but not PARP, is necessary for both Tetra Acetylation of 
H4 and Acetylation of H2AK5 Following Heat Shock and is 
Maintained by HDAC3 Before Heat Shock……………………... 118 

35 
The dTip60 Histone Acetyltransferase is Necessary for 
Acetylation of Histone H2A Lysine 5 and Activation of PARP 
upon Heat Shock…………………………………………………... 121 

36 
Figure 36.Knockdown of dTip60 is specific and does not 
Affect the Acetylation of H4 or the Recruitment of HSF 
Following Heat Shock……………………………………………... 122 

37 
The dTip60 Histone Acetyltransferase is Necessary for 
Nucleosomal Loss and Transcriptional Activation of the Hsp70 
Heat Shock Locus…………………………………………………. 124 

38 
Sodium Salicylate Induces Histone Acetylation under Non 
Heat Shock Conditions and Activates PARP in a 
Transcription-Independent Manner……………………………… 127 

39 
Nucleosome Loss Occurs at Hsp22 after Two Minutes of Heat 
Shock……………………………………………………………….. 145 

   



 

xvi 

   

40 
Nucleosome Loss Occurs at Hsp27 after Two Minutes of Heat 
Shock……………………………………………………………….. 

 
147 

41 
Nucleosome Loss Occurs at Hsp68 after Two Minutes of Heat 
Shock……………………………………………………………...... 149 

 
 
 

42 

 
Nucleosome Loss Occurs at Hsrω after Two Minutes of Heat 
Shock……………………………………………………………….. 

 
 

150 

43 
Nucleosome Loss Does Not Occur at Mod(mdg4) after Two 
Minutes of Heat Shock……………………………………………. 151 

44 
Nucleosome Loss Does Not Occur at DnaJ-1 after Two 
Minutes of Heat Shock……………………………………………. 153 

45 
Nucleosome Loss Does Not Occur at Cct5 after Two Minutes 
of Heat Shock……………………………………………………… 154 

46 
Nucleosome Loss Does Not Occur at CG3884 after Two 
Minutes of Heat Shock……………………………………………. 158 

47 
Nucleosome Loss Does Not Occur at CG130125 or CG9705 
after Two Minutes of Heat Shock………………………………… 159 

48 
Nucleosome Loss Does Not Occur at CG33111 after Two 
Minutes of Heat Shock……………………………………………. 161 

49 
Nucleosome Loss Does Not Occur at CG9837 after Two 
Minutes of Heat Shock……………………………………………. 162 

50 
Nucleosome Loss Does Not Occur Throughout Dm after Two 
Minutes of Heat Shock….………………………………………… 163 

51 
Nucleosome Loss at Hsp22, Hsp27, Hsp68, and Hsrω after 
Two Minutes of Heat Shock is Dependent on HSF……………. 165 

52 
Nucleosome Loss at Hsp22, Hsp27, Hsp68, and Hsrω after 
Two Minutes of Heat Shock is Dependent on PARP………….. 166 

53 
Nucleosome Loss at Hsp22, Hsp27, Hsp68, and Hsrω after 
Two Minutes of Heat Shock is Dependent on Tip60…………... 167 

54 RNAi Screen of Kinases Upstream of p38………………………   186 

55 PARP Non Heat Shock ChIP seq Input DNAs…………………. 193 
   

 



 

xvii 

LIST OF TABLES 

Table  Page 

1 
Histone chaperones interact with specific histones, histone 
post-translational modifications, and additional factors that 
facilitate transcriptional elongation……………………………….. 13 

2 
Elongating Pol II associates with specific PTMs of histones 
which a variety of effector proteins bind to and facilitate 
transcription…………………………………………………………. 16 

3 
Affect of RNAi Depletion of Different Factors on the Chromatin 
Architecture at Hsp70……………………………………………… 56 

4 
Primer Sets Used for MNase Scanning Assay with Respect to 
the Transcription Start Site of Hsp70Ab…………………………. 80 

5 
Primer Sets Used for MNase Scanning Assay with Respect to 
the Transcription Start Site of Hsp26…………………………….. 87 

6 Primer Sets Used for RT-qPCR………………………………….. 88 

7 Primer Sets Used for ChIP of scs/scs´…………………………... 88 

8 Primer Sets Used for RNAi……………………………………….. 88 

9 Primer Sets Used for ChIP of Hsp70…………………………….. 138 

10 Primer Sets Used for Tip60……………………………………….. 139 

11 
Summary of Analyzed Genes with Proximal HSF Binding After 
Heat Shock, their Pol II and Transcriptional Status, and if they 
Lose Nucleosomes………………………………………………… 157 

12 Primer Sets Used in Survey of Additional 12 Loci……………… 171 

13 
RNAi Primer Sets Designed and Incorporated into the RNAi 
Screen Presented in (Ardehali et al., 2009)…………………….. 183 

   
   



 

xviii 

LIST OF ABBREVIATIONS 

Asf1: anti-silencing factor 1 

BEAF-32: boundary element associated factor, 32 kDa 

bp: base pairs 

BPTF: bromodomain PHD-finger transcription factor 

CAF-1: chromatin assembly factor 1 

CHD: chromodomain-helicase-DNA-binding protein 

ChIP: chromatin immunoprecipitation 

Chz1: chaperone for H2A.Z-H2B 

CBP: CREB (cAMP-response-element-binding protein)-binding protein 

Daxx: death domain associated protein 

DRB: 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole 

DSIF: DRB sensitivity inducing factor 

ERCC3: excision repair cross-complementing rodent repair deficiency, 

complementation group 3 

FACT: facilitates chromatin transcription 

FRAP: fluorescence recovery after photobleaching 

FRET: fluorescence resonance energy transfer 

GAF: GAGA associated factor 

Gcn5: general control non-derepressible 5 

H2A: histone H2A 

H2B: histone H2B 



 

xix 

H3: histone H3 

H4: histone H4 

HDAC3: histone deacetylase 3 

HIRA: histone regulator A protein 

HS: heat shock 

HSF: heat shock factor 

Hsp70: heat shock protein, 70 kDa 

INO80: inositol-requiring 80 

IP: immunoprecipitation 

ISWI: imitation switch 

kDa: kilo Daltons 

LacZ: beta-galactosidase encoding gene 

Med15: mediator of RNA polymerase II transcription subunit 15 

Med23: mediator of RNA polymerase II transcription subunit 23 

MI-2: idiopathic inflammatory myopathy nuclear antigen 2 

Min: minute 

MNase: micrococcal nuclease 

NAD+: nicotinamide adenine dinucleotide 

Nap1: nucleosome assembly protein 1 

NHS: non heat shock 

Nurf301: nucleosome remodeling factor, 301 kDa 

P-TEFb: positive transcription elongation factor b 

Paf1: RNA polymerase II associated factor 



 

xx 

PAR: poly(ADP-ribose) 

PARP: poly(ADP-ribose) polymerase 

PHD: plant homeodomain 

Pol II: RNA polymerase II 

PTM: post-translational modification  

qPCR: quantitative polymerase chain reaction 

rcf: rate centrifugal force 

RNAi: RNA interference 

Rp49: ribosomal protein gene RpL32 

Rpm: revolutions per minute 

RSC: remodels the structure of chromatin 

RT-qPCR: reverse transcription-quantitative polymerase chain reaction 

scs/scs´: specialized chromatin structure elements 

sec: seconds 

S2: Drosophila Schneider 2 

SWI/SNF: switch/sucrose nonfermentable 

SWR1: SWI/SNF related protein 1 

Spt3: suppressor of ty homolog 3 

Spt6: suppressor of ty homolog 6 

Tip60: TAT interactive protein, 60 kDa 

Topo1: topoisomerase 1 

Topo2: topoisomerase 2 

Tra1: transformation/transcription domain–associated protein 1 



 

xxi 

Ubp8: ubiquitin specific protease 8 

Zw5: zeste white 5 



 

xxii 

LIST OF SYMBOLS 

´: minutes 

´´: seconds 

°C: degrees Celsius 

M: molar 

mg: milligrams 

mL: milliliters 

mM: millimolar 

U: units 

μg: micrograms 

μL: microliters 

μM: micromolar 

x g: times the acceleration due to gravity 

 



 

1 

CHAPTER 1 AN INTRODUCTION TO OVERCOMING THE NUCLEOSOME 

BARRIER DURING TRANSCRIPT ELONGATION1 

RNA Polymerase II (Pol II) must break the nucleosomal barrier to gain 

access to DNA and efficiently transcribe genes.  New single molecule 

techniques have elucidated many molecular details of nucleosome 

disassembly and what happens once Pol II encounters a nucleosome.   This 

introduction highlights mechanisms that Pol II utilizes to transcribe through 

nucleosomes including the roles of chromatin remodelers, histone 

chaperones, post-translational modifications of histones, incorporation of 

histone variants into nucleosomes, and activation of the Poly(ADP-Ribose) 

Polymerase enzyme.  Future studies need to assess the molecular details and 

the contribution of each of these mechanisms, individually and in combination, 

to transcription across the genome to understand how cells are able to 

regulate transcription in response to developmental, environmental, and 

nutritional cues. 

1.1 The Nucleosome is a Natural Barrier to Transcript Elongation of Pol II 

 Eukaryotic organisms efficiently package their genetic information into 

the nucleus by compacting DNA into chromatin.  The fundamental repeating 

unit of chromatin is the nucleosome which is comprised of 147 base pairs (bp) 

of DNA bound to a central octamer of histone proteins, consisting of two H2A-

                                                 
1
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H2B dimers and one H3-H4 tetramer (Figure 1a).  The primary effect of 

nucleosome formation is a six fold compaction of DNA, which subsequently, 

can form yet higher order chromatin structures (Li and Reinberg, 2011). 

Although DNA compaction into the nucleosome serves an important 

structural necessity for packaging genetic information into the nucleus, it also 

presents an inherent obstacle to any cellular process that requires DNA 

access, such as gene expression (Kulaeva et al., 2007).  Transcription of 

mRNA encoding genes by Pol II can be regulated at many distinct steps (Fuda 

et al., 2009).  Although nucleosomes can inhibit the stage of transcription 

initiation by occupying key regulatory DNA sequences near the promoter and 

transcriptional start sites of genes, these DNA regions are often depleted of 

nucleosomes in vivo (Yuan et al., 2005) and the rules that dictate nucleosome 

positioning and occupancy near these regions are an area of active research 

(Jiang and Pugh, 2009; Segal and Widom, 2009).  Nucleosomes, however, 

occupy the coding region of nearly all genes and have been shown to severely 

inhibit the rate of transcription and processivity of purified Pol II complexes in 

vitro (Izban and Luse, 1991; Knezetic and Luse, 1986; Lorch et al., 1987).  

More recent in vitro studies have shown that the magnitude of the nucleosome 

barrier to Pol II transcription is dictated by the strength of local histone-DNA 

interactions and by the positions of these interactions within the nucleosome 

(Bondarenko et al., 2006).  Surprisingly, Pol II transcript elongation rates in 

vitro on naked DNA are comparable to the rates that have been measured in 

vivo on genes (~1-4 kb/min) where nucleosomes should, in principle, impede 
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its path (Ardehali and Lis, 2009).  Additionally, nucleosomes that contain DNA 

sequences that have strong local interactions and impose a polar barrier to 

transcription in vitro do not greatly affect transcription when inserted into the 

genome in vivo (Gaykalova et al., 2011).  These results indicate that the cell 

utilizes mechanisms to abrogate the inherent barrier that the nucleosome 

poses to transcribing Pol II.    

1.2 Single-Molecule Analysis of Nucleosome Disassembly and 

Transcription through Nucleosomes 

 The nucleosome assembles through the addition of an H3-H4 tetramer 

to DNA followed by sequential addition of each H2A-H2B dimer, and 

disassembles through the reverse reaction.  However, less understood are the 

intermediate structures formed during this reversible process and the 

mechanisms by which Pol II and its associated factors facilitate the formation 

of such intermediates.  Recent single-molecule fluorescence resonance 

energy transfer (FRET) studies using donor or acceptor tags on histones or 

DNA have uncovered two important findings regarding how the nucleosome 

disassembles.  First, the frequency of DNA breathing (i.e. spontaneous, 

localized release of DNA contact with histones) of the first ~20 bp occurs once 

every 250 ms (Li et al., 2005), but the frequency of DNA breathing ~40 bp into 

the nucleosome progressively and rapidly decreases to once every 10 minutes 

and even longer closer to the nucleosome dyad (Tims et al., 2011) (Figure 1a).  

Second, nucleosome disassembly occurs initially through an opening of the 
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H3-H4 tetramer/H2A-H2B dimer interface followed by the release of H2A-H2B 

dimers from the DNA (Bohm et al., 2011; Gansen et al., 2009) (Figure 1b).  

These results indicate that Pol II is likely able to gain access to the first 

segment of nucleosomal DNA through its breathing but is unlikely to be able to 

spontaneously access the DNA that is in direct contact with an H2A-H2B 

dimer, although these experiments have yet to be reported with 

transcriptionally engaged Pol II.  Additionally, one rate-limiting step that might 

be facilitated by Pol II’s traversal of the nucleosome is the loosening of the H3-

H4 tetramer/H2A-H2B dimer interface.  This is supported by the fact that a 

single round of Pol II transcription through a nucleosome can remove an H2A-

H2B dimer and the resulting hexamer of histones is now more conducive to 

Pol II transcription (Bintu et al., 2011; Kireeva et al., 2002).  

Single-molecule optical trap experiments have also provided additional 

high-resolution insight into the DNA-histone interactions and the outcomes of 

transcriptionally engaged Pol II encountering a nucleosome (Killian et al., 

2011).  Molecular unzipping experiments in which DNA is peeled away from 

the histone octamer reveal interactions with the DNA every 5 bp with the 

strongest interactions occurring at the nucleosome dyad, nearest the H3-H4 

tetramer, and to a lesser extent 40 bp on either side of the dyad, where DNA 

contacts the H2A-H2B dimers (Hall et al., 2009).  These techniques have also 

been used to measure the effects a nucleosome has on Pol II transcription 

and, as expected, the nucleosome greatly impeded Pol II’s transcription, 

especially at physiological salt conditions, sometimes resulting in complete 
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Figure 1 The nucleosome contains specific interactions that provide a 
barrier to transcript elongation and can be disassembled through 
chromatin remodelers  
 
(a) The crystal structure of the nucleosome as visualized from PDBid 1AOI 
[72].  The nucleosome consists of 147 bp of DNA (strands colored black) 
wrapped 1.7 times around a core octamer of histone proteins with 2 H2A 
(yellow) H2B (red) dimers associated with an H3 (blue) H4 (green) tetramer.  
All the subsequent depictions of nucleosomes will use the color coordination 
depicted here unless otherwise noted. The strongest DNA contacts that exist 
between the DNA and histones are marked by asterisks with the first being 30 
bp into the nucleosome where DNA contacts the H2A-H2B dimer interface 
and 70 bp into the nucleosome at the nucleosome dyad.  This perspective of 
the nucleosome also shows the direction of DNA movement when breathing, 
a process whereby DNA spontaneously breaks contact with the histones, 
which occurs once every 250 ms 20 bp into the nucleosome but once every 
10 minutes 40 bp into the nucleosome.  The figure on the right is rotated to 
show the same nucleosome looking at the nucleosome dyad, which is the 
perspective Pol II takes when it engages the nucleosome.  This is the 
perspective sketched in (b) and subsequent figures.   
 
(b) Diagram depicting the reversible process of nucleosome 
disassembly/assembly as determined by FRET assays. The first step depicts 
the H2A-H2B dimers breaking contact with the H3-H4 tetramer in the intact 
nucleosome state (i) and opening up to form the intermediate shown in (ii).  
The second step shows the dissociation of the H2A-H2B dimers from the DNA 
template leaving just the H3-H4 template as shown in (iii).  The last step 
includes the dissociation of the H3-H4 tetramer from the DNA template 
resulting in naked DNA (iv). 
 
(c) Chromatin remodelers contain multiple functions which results in either 
changes in the nucleosome position or composition. These four functions are 
depicted as reversible processes that can be achieved independently of one 
another.  Chromatin remodelers are capable of sliding nucleosomes along a 
DNA template to change nucleosome positions (i), ejecting individual histones 
(ii), exchanging new histones into the nucleosome (H2A.Z is shown to be 
exchanged  as an example in pink) (iii), or completely ejecting a full histone 
octamer (iv). 
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arrest (Hodges et al., 2009).  The nucleosome increases Pol II’s pause 

duration as it enters the first ~30 bp of the nucleosomal DNA and decreases 

Pol II’s pause-free transcript elongation rates.  These results also support 

additional biochemical data whereby a transient loop is formed from the 

upstream, transcribed DNA rewrapping around the histone, which 

consequently, returns histones back to the DNA in cis and maintains 

nucleosome positioning   (Bintu et al., 2011; Hodges et al., 2009; Kulaeva et 

al., 2009).  Both FRET and optical trap measurements demonstrate that under 

physiological conditions, the nucleosome provides a formidable barrier to Pol II 

transcription and that a significant barrier is first encountered after transcription 

of approximately the first 30 bp of nucleosomal DNA where contacts with the 

H2A-H2B dimer are strongest. 

1.3 Chromatin Remodelers are ATP Driven Motors that Slide 

Nucleosomes and Evict Histones 

 Chromatin remodelers are enzymes, often a part of large 

macromolecular complexes, which hydrolyze ATP to translocate nucleosomes 

along a DNA template, evict or exchange histones, or in some cases 

completely evict the histone octamer (Figure 1c) (Clapier and Cairns, 2009; 

Hota and Bartholomew, 2011).  Currently, there are four main families of 

chromatin remodelers that carry out these functions: switch/sucrose 

nonfermentable (SWI/SNF), imitation switch (ISWI), chromodomain-helicase-

DNA-binding protein (CHD), and inositol-requiring 80 (INO80).  The combined 
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result of these family members’ actions can provide access to underlying DNA 

elements or change the position, occupancy, or composition of an underlying 

nucleosome.    

Although the SWI/SNF complex has been better studied for its role in 

nucleosome depletion near promoters (Brown et al., 2011; Tolkunov et al., 

2011), it has also been implicated in remodeling nucleosomes in those genes 

that respond to rapid transcription activation.  In yeast, SWI/SNF is present at 

both promoters and gene bodies and travels with elongating Pol II at many 

genes (Schwabish and Struhl, 2007; Shivaswamy and Iyer, 2008).  These 

studies also show that SWI/SNF is needed for the loss of histones and full 

transcript elongation of activated methionine and heat shock genes 

(Schwabish and Struhl, 2007; Shivaswamy and Iyer, 2008).  Just as with 

yeast, SWI/SNF can stimulate the loss of nucleosomes and transcription 

activation in humans following heat shock in vitro (Brown et al., 1996) as well 

as with Tat-activated transcription of the HIV-1 gene (Treand et al., 2006).  It is 

likely that the ability of SWI/SNF to eject histones or full octamers (Bruno et 

al., 2003; Dechassa et al., 2010; Lorch et al., 1999) facilitates a robust 

transcriptional activation of many genes that respond to environmental stimuli. 

Both the ISWI and CHD family of chromatin remodelers have been 

implicated in their ability to affect transcript elongation.  The ISWI family of 

chromatin remodelers has been shown in vitro to possess histone exchange 

capabilities (Bruno et al., 2003) and to help overcome the nucleosomal 

barriers to transcription (Gaykalova et al., 2011).  Although the ISWI complex 
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containing bromodomain PHD finger transcription factor (BPTF or NURF-301) 

is able to bind to H3K4Me3 and H4K16Ac (Ruthenburg et al., 2011), both 

marks of active transcription, ISWI is found only on the coding regions of 

highly transcribed genes (Gkikopoulos et al., 2011).  CHD1 is also able to bind 

H3K4Me3; but in contrast to ISWI, CHD family members all colocalize with Pol 

II and can participate in early steps in transcript elongation (Srinivasan et al., 

2005).  CHD1 is also likely to be important during transcript elongation, as it 

interacts with both the histone chaperone facilitates chromatin transcription 

(FACT) and the Pol II elongation factor DRB sensitivity inducing factor (DSIF) 

(Simic et al., 2003) and can facilitate replication-independent deposition of 

H3.3 (Konev et al., 2007).  However, both ISWI and CHD’s major reported 

function in vivo is to slide nucleosomes into ordered arrays throughout gene 

bodies and promote assembly of chromatin (Lusser et al., 2005).  In yeast, 

ISWI helps position nucleosomes on the edge of the 5’ and 3’ nucleosome free 

regions (Whitehouse et al., 2007) and, even more strikingly, in combination 

with Chd1, ISWI directs the majority of nucleosome positions throughout the 

gene body into an ordered, repeating periodicity (Gkikopoulos et al., 2011).  

How or if the establishment of an ordered, periodic repeat of nucleosomes on 

gene bodies might be able to facilitate Pol II elongation has yet to be 

discovered.   

The split family of ATPases which include the INO80 and SWI/SNF 

related protein 1 (SWR1) chromatin remodeling complexes facilitate transcript 

elongation by their ability to exchange histones.  The SWR1 remodeling 
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complex is recruited to the 5’ ends of many genes and is best characterized 

for its ability to deposit the variant H2A.Z-H2B dimer into nucleosomes 

containing canonical H2A-H2B dimers (Luk et al., 2010).  Although INO80, like 

ISWI, slides nucleosomes into evenly spaced arrays (Udugama et al., 2011) it 

has also been recently shown that INO80 is able to carry out the reverse 

reaction of SWR1, the removal of H2A.Z-H2B variant dimers and reinsertion of 

canonical H2A-H2B dimers back into nucleosomes (Papamichos-Chronakis et 

al., 2011).   It is not yet known though if the opposing actions of SWR1’s 

deposition and INO80’s removal of H2A.Z is an actively used mechanism to 

facilitate or hinder transcript elongation of Pol II. 

1.4 Histone Chaperones Facilitate the Disassembly and Reassembly of 

the Nucleosome 

 The cell has provided the nucleus with specific safeguarding proteins 

that guide the proper incorporation of histones onto DNA and regulate the 

proper disassembly and reassembly of nucleosomes during passage of Pol II 

through the nucleosome.  Unlike chromatin remodelers, histone chaperones 

do not use the energy of ATP hydrolysis, but instead have strong affinities for 

specific surfaces on either the H2A-H2B dimer or the H3-H4 tetramer to 

facilitate disruption of nucleosomes or deposition of histones (Das et al., 2010; 

Ray-Gallet and Almouzni, 2010).  Many histone chaperones have been found 

to associate with specific histones, histone post-translational modifications, 

and elongation factors, which are listed in Table 1.  I will focus on those 
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chaperones that have been implicated in their ability to facilitate transcription. 

 As Pol II approaches a nucleosome, the contacts of the nucleosome 

with the upstream H2A-H2B dimer are the first to be disrupted, and it is not 

surprising that the actions of the H2A-H2B chaperones, nucleosome assembly 

protein 1 (Nap1) and FACT, contribute to this process.  Both Nap1 and FACT 

have been used extensively in vitro for the assembly and disassembly of H2A-

H2B within nucleosomes.  Nap1 is able to cooperate with many other factors 

associated with transcriptionally active regions such as the remodel the 

structure of chromatin (RSC) (Lorch et al., 2006) or Chd1 (Walfridsson et al., 

2007) chromatin remodelers to facilitate the disassembly of H2A-H2B dimers.  

Nap1 can also act directly on H3K14Ac modified nucleosomes (Luebben et al., 

2010) to facilitate this disassembly.  Nap1 could affect transcript elongation by 

managing the relative H2A-H2B density on genes by regulating the deposition 

of free H2A-H2B dimers onto DNA (Andrews et al., 2008).  As opposed to 

Nap1, FACT has been shown to directly affect transcription coupled 

nucleosome disassembly.  FACT was first identified by its ability to facilitate 

Pol II transcription through a nucleosome template in vitro (Orphanides et al., 

1998).  In vivo, FACT tracks with elongating Pol II (Mason and Struhl, 2003; 

Saunders et al., 2003) and also physically associates with many known factors 

that aid transcript elongation (Table 1).  Ubiquitination of H2BK123, which is 

also associated with transcriptionally active regions (Figure 2), greatly 

stimulates FACT’s ability to aid Pol II’s transcription through chromatin 

assembled templates in vitro (Pavri et al., 2006).  Recently, H2BK123 
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ubiquitination was shown to facilitate transcription elongation in vivo through 

its ability to promote nucleosome reassembly following Pol II transcription 

(Batta et al., 2011), perhaps through its association with FACT, or by directly 

altering chromatin structure (Fierz et al., 2011).  It is not yet clear if Nap1 and 

FACT have separate or redundant functions, or if their major in vivo 

contribution to transcript elongation comes from aiding in disassembly of the 

H2A-H2B dimer or, as clearly shown in yeast (Del Rosario and Pemberton, 

2008; Schwabish and Struhl, 2004), in the reassembly of the nucleosome in 

the wake of Pol II’s passage or both. 

 Of the many histone chaperones that facilitate the disassembly and 

reassembly of the H3-H4 tetramer (Table 1), anti silencing factor 1 (Asf1) and 

suppressor of ty homolog 6 (Spt6) facilitate transcript elongation.  Asf1 

interacts with promoters and gene bodies and mediates H3’s eviction and 

deposition during Pol II transcription (Schwabish and Struhl, 2006).  Asf1 also 

associates with the histone acetylase responsible for H3K56Ac and together 

can facilitate the replication-independent exchange of H3-H4 within coding 

regions (Rufiange et al., 2007).  Spt6 also possesses H3-H4 chaperone 

activity and closely associates with elongating Pol II (Andrulis et al., 2000) and 

can positively affect the transcript elongation rate of Pol II in vivo (Ardehali et 

al., 2009).  Loss of Spt6 function results in a genome-wide reduction in H3 

density across many transcriptionally active genes implicating Spt6 in the 

reassembly of H3 back into nucleosomes after Pol II elongation (Ivanovska et 

al., 2011).  It is unknown if Spt6’s function in facilitating transcript elongation is  
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Table 1 Histone chaperones interact with specific histones, histone post-
translational modifications, and additional factors that facilitate 
transcriptional elongation. 

Histone 
Chaperone 

Associated 
Histonesa 

Associated 
PTMsb 

Associated 
Transcript elongation 

Factorsc 

Nap1 

H2A-H2B 
(preferred) 
H2A.Z-H2B 
H3-H4 

 FACT, Chd1 

FACT 

H2A-H2B 
H2A.X-H2B 

H2BK123Ub Pol II, Chd1, PARP-1, 
CK2, PAF, Nap1, 
DSIF, Spt6, TopoI, 
TopoII, RPA 

Chz1 
H2A-H2B 
H2A.Z-H2B 

H2BK123Ub Swr1 

Asf1 

H3-H4 H3K56Ac, 
H3K9Ac, H4K5Ac, 
H4K12Ac, 
H3K36Me3 

HIRA, CAF-1, CK2, 
Set2, Bdf1, Spt15, 
TFIID, SWI/SNF 

Spt6 
H3-H4 H3K36Me2/3 Pol II, CK2, Spn1, 

FACT, DSIF  

HIRA 
H3.3-H4  Asf1, TFIID, SWI/SNF, 

Rtt106, DSIF 

Daxx H3.3-H4  Atrx 

CAF-1 
H3-H4 H3K56Ac, 

H4K5Ac, H4K12Ac 
Rtt106, Asf1,  

Rtt106 
H3-H4 H3K56Ac HIRA, SWI/SNF, CAF-

1 

Vps75 
H3-H4 H3K9Ac, 

H3K23/27Ac 
R1109, Pol II, NuA4 

 
aas reviewed in (Das et al., 2010) 
bas reviewed in (Avvakumov et al., 2011) 
cas reviewed in (Das et al., 2010) and mined from physical interaction data 
from http://www.thebiogrid.org and http://www.yeastgenome.org 
 

  

http://www.thebiogrid.org/
http://www.yeastgenome.org/
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a result of promoting nucleosome reassembly (Kaplan et al., 2003) or 

disassembly, or if Spt6 affects Pol II elongation through a completely separate 

mechanism.  

 Just as canonical histones have specific chaperones so too do histone 

variants.  Whereas an H2A.Z specific histone chaperone, Chz1, has been 

identified in yeast (Luk et al., 2007) as a part of the Swr1 remodeling complex, 

other organisms may rely on Nap1 for this function or contain a yet to be 

determined H2A.Z chaperone.  H3.3 variants have completely separate 

chaperones.  Both the histone regulator A protein (HIRA) (Tagami et al., 2004) 

and death domain-associated protein (Daxx) (Goldberg et al., 2010) are able 

to aid in the assembly of the histone variant H3.3 into chromatin where it is 

deposited onto transcriptionally active gene bodies in a replication-

independent manner (Deal et al., 2010).  The Chd1 chromatin remodeler 

interacts with HIRA and aids in the deposition of H3.3 (Konev et al., 2007).  

Single-molecule experiments, with their ability to track individual transcribing 

complexes in real time, could provide valuable insights to the mechanisms by 

which histone chaperones actively destabilize or disassemble nucleosomes in 

the presence of elongating Pol II. 

1.5 Histone Post-Translational Modifications Alter Nucleosome 

Composition and Chromatin Structure 

Post-translational modifications (PTMs) of histones are able to regulate the 

specific composition and structure of nucleosomes at individual genes 
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(Bannister and Kouzarides, 2011; Taverna et al., 2007).  These modifications 

alter the localized chromatin structure or composition by either directly 

changing the chromatin structure or by providing a specific binding surface 

that increases the affinity of particular effector proteins that are able to change 

chromatin.  New modifications and related functions continue to be discovered 

(Tan et al., 2011).  Here, I summarize those modifications associated with 

active transcription, along with the enzymes responsible for the modification, 

and the protein effectors that can bind to those modifications and further affect 

chromatin structure and function (Table 2).  In this section, I will highlight 

modifications that specifically alter the structure of chromatin in a way that 

facilitates Pol II transcription. 

There exists a plethora of data showing that nearly every imaginable 

post-translational modification within the cell can be found on histones.  These 

include classical modifications such as acetylation, methylation, 

phosphorylation, ubiquitination, and sumoylation, but also less well studied 

modifications including ADP-ribosylation, citrullination, glycosylation, 

hydroxylation, formylation, and crotonylation.  They occur at many residues, 

particularly on the N-terminal tails of histones, and can occur in specific 

combinations that can increase or decrease the affinity of other effector 

proteins important for transcript elongation.  Although many of these 

modifications are known to positively correlate with the transcriptional activity 

of a gene, less causative information exists regarding their ability to facilitate 

Pol II’s traversal of the nucleosome structure by either directly affecting the   
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Table 2 Elongating Pol II associates with specific PTMs of histones 
which a variety of effector proteins bind to and facilitate transcription.  

Histone PTMa Modifying Enzymea Known Effector Domains 
and Proteinsb 

H2A K5 Ac Tip60/Esa1  

H2B 

K5 Ac P300, ATF2 

K12 Ac P300/CBP, ATF2 

K15 Ac P300/CBP, ATF2 

K20 Ac P300 

S33/S36 
PO4 

TAF1, AMPK 

K120/123 Ub UbcH6/Rad6 COMPASS (Cps35) 

H3 

R2 Me CARM1  

K4 Me2/3  Set1, Set7/9, MLL, ALL-1, 
Ash1, ALR, ALR-1/2 

Chromo (Chd1), PHD 
(BPTF, TAF3, RAG2, 
ING2,4, PHF2,8, YNG1) 
Tudor (JMJD2A,C, Sgf29), 
MBT, Zf-CW 

K4 Ac Esa1  

K9 Ac Gcn5 

S10 PO4 Msk1, Msk2, IKK- ,Snf1, Jil-1 14-3-3, Gcn5, Bmh1, Bmh2 

K14 Ac Gcn5/PCAF, P300, 
Tip60/Esa1, TAF1, Sas3 

Tandem PHD (DPF3b), 
Tandem Bromo (Rsc4), 
Bromo 2 (Polybromo) 

R17 Me CARM1 Tudor (TDRD3) 

K18 Ac Gcn5, P300/CBP  

K23 Ac Gcn5, P300/CBP, Sas3 

R26 Me CARM1 

S28 PO4 Msk1, Msk2 

K36 Me3  Set2, HYPB, Smyd2, NSD1 Chromo (Eaf3, MSL3, 
MRG15), PWWP (Dnmt3A, 
Msh-6, BRPF1, NSD1,2,3, 
N-PAC) 

K56 Ac Rtt109, P300 SWI/SNF (Snf5), Rtt106 

K79 Me2  Dot1 Tudor (53BP1) 

H4 

R3 Me PRMT1, PRMT5 P300, Tudor (TDRD3), 
Dnmt3a 

K5 Ac P300, ATF2, Tip60/Esa1, HAT1 Bromo (Brdt) 

K8 Ac P300, Gcn5/PCAF, ATF2, 
Tip60/Esa1, Elp3 

Bromo (Brdt) 

K12 Ac P300, HAT1, Tip60/Esa1  

K16 Ac Gcn5, MOF, Tip60/Esa1, ATF2, 
Sas2, NuA4 

Bromodomain (Gcn5, 
NoRC) 

aAs reviewed in (Peterson and Laniel, 2004) bAs reviewed in (Yun et al., 2011) 
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nucleosome structure or indirectly through facilitating the binding of a 

chromatin remodeler, histone chaperone, or transcriptional activator.  

Generally, the most commonly studied post-translational modifications of 

histones associated with elongating Pol II are the acetylation of the N-terminal 

tails of H3 and H4, the methylation of H3K4, H3K36, and H3K79, as well as 

the ubiquitination of H2B’s C-terminus.  Table 2 summarizes the factors that 

deposit and bind to the histone PTMs that are associated with active 

transcription.   

The best studied example of how histone modifications can directly 

affect chromatin structure is through the acetylation of lysine residues within 

the histone tails.  Generally, acetylation neutralizes the positive charge of 

lysine and thus weakens the ionic interaction with the negatively charged DNA 

backbone.  In vitro, the acetylation of the H2A-H2B tails weakens the 

interactions that are present 40 bp on either side of the dyad, and acetylation 

of H3-H4 greatly reduces the formation of higher order structures and reduces 

the amount of DNA bound in the nucleosome (Brower-Toland et al., 2005).  

This effect caused by acetylation of H3-H4 agrees with predictions based on 

the nucleosome crystal structure that show the H4 tail mediating 

internucleosomal packing by contacting H2A-H2B dimers in an adjacent 

nucleosome (Luger et al., 1997).  Acetylation of H4K16 was found to 

significantly hinder the ability of chromatin to form higher order structures by 

impeding internucleosomal interactions (Shogren-Knaak et al., 2006).  A 

functional result of this modification is seen from dosage compensation in 
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Drosophila in which H4K16Ac is enriched on the male X chromosome and 

results in the twofold upregulation of X-linked genes by facilitating transcript 

elongation (Larschan et al., 2011).  

Additional modifications have recently been discovered that also affect 

the intrinsic properties of chromatin structure to aid gene expression.  These 

studies take advantage of new technologies in which site specific histone 

modifications can be made through chemical ligation (Allis and Muir, 2011).  

The ubiquitination of the C-terminal tail of H2B interferes with chromatin’s 

ability to form higher order structures by creating an open, accessible fiber 

through a mechanism independent of and synergizes with the acetylation of 

the H4 tail (Fierz et al., 2011).  Acetylation of H3K56, increases DNA breathing 

of the nucleosome ~40 bp away from the dyad by 7 fold, allowing DNA that is 

less tightly wound to gain easier access to proteins such as Pol II (Neumann 

et al., 2009).  Lastly, phosphorylation of H3T118 was shown to be able to 

weaken histone-DNA interactions near the dyad thereby increasing 

accessibility at the dyad sixfold and increasing nucleosome mobility twenty-

eightfold, making it easier to be remodeled by SWI/SNF (North et al., 2011). 

This power to create homogeneous samples with site-specific histone 

modifications will undoubtedly soon reveal how many of the histone 

modifications influence chromatin structure. 

 Histone modifications can also influence transcription through their 

ability to bind to and recruit specific effector proteins.  For example, SWI/SNF 

and RSC chromatin remodelers both contain subunits that have a 
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bromodomain and can bind to acetylated H3 tails.  In vitro, acetylation of H3 

by the SAGA or NuA4 histone acetyltransferase complexes greatly stimulate 

RSC and SWI/SNF chromatin remodeling activities to facilitate Pol II transcript 

elongation (Carey et al., 2006; Chatterjee et al., 2011).  Chd1, a 

chromodomain containing protein, is specifically targeted to the 5’ ends of 

active genes through its ability to bind trimethylated H3K4 (H3K4Me3) (Pray-

Grant et al., 2005) (Figure 2).  Another example is the PHD containing BPTF 

subunit of an ISWI remodeling complex that, like Chd1, can bind 

H3K4Me3nucleosomes, but it binds more tightly to those nucleosomes 

containing both H3K4Me3 and H4K16Ac, thus increasing the specificity of 

genomic locations where it will remodel nucleosomes (Ruthenburg et al., 

2011).  Another PTM associated with transcript elongation, H3K36 

trimetylation (Figure 2), is important for the recruitment of a chromodomain-

containing histone deacetylase that aids in nucleosome reassembly following 

transcription and is necessary for repression of cryptic initiation in gene bodies 

(Li et al., 2007b).  The discovery of additional effectors of histone modifications 

will provide new insight as to how particular histone modifications are able to 

facilitate Pol II elongation by affecting chromatin structure and composition. 

1.6 Histone Variants Affect Nucleosome Structure and Stability 

 In addition to histone PTMs, histone eviction, and chromatin 

remodeling, de novo deposition of specific histone variants can facilitate 

transcription through the nucleosome (Szenker et al., 2011).  There are 
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numerous examples of different histone variants, whose families have 

expanded evolutionarily in higher eukaryotes (Talbert and Henikoff, 2010).  

Almost all eukaryotic organisms have variants of both H2A and H3, some 

contain H2B variants, but no variants of H4 appear to exist.  As with PTMs, 

some of these variants are positively correlated with transcriptional activation 

including H2A.Z and H3.3, which I will highlight.  

The deposition of H2A.Z into chromatin is an essential process for 

many organisms and is important for the proper transcription of many genes 

(Talbert and Henikoff, 2010).  The Swr1 remodeling complex exchanges H2A-

H2B dimers to create nucleosomes containing H2A.Z-H2B dimers near the 5’ 

ends of genes (Luk et al., 2010) (Figure 2).  Interestingly, homotypic H2A.Z-

containing nucleosomes have been shown to be more stable than canonical 

H2A containing nucleosomes, creating a dichotomy as to why such a histone 

variant would facilitate transcript elongation (Ishibashi et al., 2009).  

How H2A.Z facilitates transcript elongation might lie in the deposition of 

another histone variant H3.3.  Deposition of histone H3.3 occurs mainly 

outside of the period of DNA replication and in a transcription-dependent 

manner (Tagami et al., 2004).  H3.3 is deposited into promoters, gene bodies, 

and other gene regulatory elements by the HIRA and Daxx chaperones 

(Goldberg et al., 2010).  Amazingly, H3.3 only differs from canonical H3.1 by 4 

amino acids (Talbert and Henikoff, 2010).  However, these small changes are 

enough to provide an in vivo mechanism whereby nucleosomes containing 

both H2A.Z and H3.3 are less stable than those containing canonical H3 or 
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Figure 2 Transcriptionally Active Genes are Associated with Specific 
Histone PTMs and Histone Variants that Facilitate Transcript 
Elongation 
A transcriptionally active gene is shown with the transcription start site of 
the gene indicated by the arrow, and a representative profile of Pol II 
density along the gene is shown above in a red line trace.  The promoter 
region of most genes contain a nucleosome depleted region with flanking 
nucleosomes on either side that are enriched in the histone variants H2A.Z 
(pink) and H3.3 (purple) which have a higher rate of exchange than their 
canonical histones found further into the open reading frame.  
Nucleosomes are periodically spaced flanking the nucleosome-depleted 
region and may be the result of chromatin remodelers that evenly space the 
nucleosomes such as Chd1 and ISWI.  Additionally, PTMs of histones that 
correlate positively with gene transcription are depicted above the gene.  
These include histone acetylation of the N-terminal tails of both H3 and H4, 
such as H3K9, H4K5, H4K8, H4K12, and H4K16, which are found near the 
promoters of genes (blue dome) and trimethylated at H3K4 (orange 
triangles), which are present on nucleosomes flanking the promoter in a 
monotonically decreasing fashion.  Finally, the open reading frames of 
active genes are progressively modified by H3K36Me3, H3K79Me2, and 
H2BK123Ub (gold triangle). 
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H3.3 histones (Jin et al., 2009).  Interestingly, H2A.Z and H3.3-containing 

nucleosomes occupy regions surrounding the promoter and also the 5’ ends of 

transcribed genes (Figure 2).  Taken together, these results imply less stable 

nucleosomes contribute to 5’ nucleosome-depleted regions in vivo and allow 

Pol II and its regulators access to the underlying DNA to facilitate transcription.  

In support, both H2A.Z (Zhang et al., 2005) and H3.3 (Deal et al., 2010) are 

more rapidly incorporated into gene bodies and promoters (Figure 2) than their 

canonical counterparts.  Of interest is how chaperones, modifications, or 

remodelers might synergize with the added instability and turnover of H2A.Z-

H3.3 containing nucleosomes. 

1.7 Activation of Poly(ADP-Ribose) Polymerase Promotes Chromatin 

Decondensation 

 Poly(ADP-Ribose) Polymerase (PARP) provides yet another way to 

alleviate the repressive nature of the chromatin fiber to facilitate transcription.  

PARP is a chromatin associated factor without any known remodeling or 

chaperoning activity that can facilitate transcription by altering chromatin 

structure at many genes.  When activated, it uses NAD+ as a substrate to 

synthesize Poly(ADP-Ribose) (PAR) onto target proteins as a PTM.  The 

enzymatic activity of PARP is stimulated by many things including broken 

DNA, aberrant DNA structures, individual histones, and polynucleosomes.  

PARP binds to both DNA and to nucleosomes in vivo in a manner similar to 

that of the linker histone H1 (Kim et al., 2004).  In vitro and in vivo the primary 
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target of PARP’s enzymatic activity is itself, however other proteins have been 

identified as targets of PARylation including DNA repair factors, transcription 

factors, and histones.   

PAR is chemically akin to a nucleic acid with the following key 

exceptions: PAR contains two negatively charged phosphates per nucleic acid 

and PAR can form either linear or branched structures of up to 200 units 

(Krishnakumar and Kraus, 2010a).  One function of PAR’s chemical likeness 

to a nucleic acid is that it is capable of competing or interfering with the 

functions of factors that bind nucleic acids.  The ability of PARP to affect a 

wide-variety of cellular processes is likely a result of the generality of PAR to 

interact, compete, and interfere with many factors whose function is reliant on 

their affinity for nucleic acids.    

PARP has been long studied for its role in DNA repair, but it has 

recently been investigated for its ability to affect chromatin structure and aid 

transcriptional activation.  The activation of PARP’s enzymatic activity has 

been long known to bring about relaxation of chromatin structure 

(Krishnakumar and Kraus, 2010a).  Recently, PARP was shown to contribute 

to the formation of chromosomal puffs that occur at the loci of active transcript 

elongation in Drosophila polytene chromosomes (Tulin and Spradling, 2003).  

After heat shock, the loosening of chromatin structure is a result of the 

activation of PARP’s enzymatic activity.  How and to what extent PARP is able 

to bring about decondensation of chromatin structure upon transcriptional 

activation will be a major focus of this dissertation. 
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1.8 Drosophila Hsp70 Provides a Model Gene to Determine How Pol II 

Overcomes the Nucleosome Barrier upon Transcriptional Activation   

One of the most dramatic visual demonstrations of the decondensation 

event that occurs during transcriptional activation is with heat shock genes in 

Drosophila melanogaster. Drosophila polytene chromosomes have nine 

inducible heat shock puffs that form reproducibly and synchronously and are 

maximal in size by 20 minutes (Ashburner, 1967; Lewis et al., 1975).  One of 

the most highly upregulated heat shock gene that undergoes one of the most 

dramatic decondensation events out of the nine inducible heat shock puffs is 

the Hsp70 gene.  The rapid and robust activation of Hsp70 is ideal for studying 

not only how the chromatin structure changes in response to transcriptional 

activation of the gene but also factors that are responsible for bringing about 

these changes. 

Before heat shock, Hsp70 is primed in multiple ways to facilitate a rapid 

response to a heat stimulus.  Notably, Hsp70 was shown to contain a 

promoter that is relatively devoid of nucleosomes as it is highly sensitive to 

digestion by both DNaseI and MNase (Wu et al., 1979; Wu, 1980).  The 

promoter has also been shown to contain a sequence specific DNA binding 

factor called GAGA Factor (GAF) already bound to it that is able to interact 

with the chromatin remodeler ISWI that is presumably able to affect the 

chromatin structure before heat shock (O'Brien et al., 1995; Sala et al., 2008; 

Tsukiyama et al., 1994).  Just downstream of the promoter exists both the 

Drosophila H2A.Z variant, H2Av, and H3.3 (Leach et al., 2000; Mito et al., 
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2007).  The open chromatin structure near the promoter before heat shock 

(Shopland et al., 1995) extends beyond the transcription start site where Pol II 

has initiated, transcribed, and paused approximately 20-40 nucleotides into 

the gene (Rasmussen and Lis, 1993; Rougvie and Lis, 1988).  The paused Pol 

II can be rapidly induced to undergo transcript elongation upon receiving 

correct activation signals.  However, this elongating Pol II, like any other, still 

needs to overcome the nucleosome barrier during transcription elongation to 

achieve a robust activation.   

Many factors that either directly affect chromatin structure or indirectly 

affect it through activating transcription are recruited to the Hsp70 gene 

following heat shock.  The first factor that is recruited to Hsp70 is the master 

transcriptional activator heat shock factor (HSF).  Upon heat shock, HSF 

trimerizes and binds within seconds to its cognate DNA elements (three 5-mer 

sites of AGAAN repeated head-to-tail), of which there are 4 found within the 

promoter of Hsp70 (Boehm et al., 2003; Perisic et al., 1989; Westwood et al., 

1991; Zobeck et al., 2010).  HSF is necessary for both the gene activation and 

the chromatin decondensation at Hsp70 following heat shock (Jedlicka et al., 

1997; Wu, 1980). HSF is thought to do this through direct or indirect 

recruitment of coactivators and general transcription factors, specifically the 

mediator and SAGA complexes (Lebedeva et al., 2005; Park et al., 2001), 

elongation factors, including P-TEFb, the PAF complex, and Spt6 (Ardehali et 

al., 2009; Lis et al., 2000; Ni et al., 2007), histone modifying enzymes such as 

those mediating H3 K4, K36, and K79 methylation as well as histone 
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acetylation by CBP and Gcn5 (Adelman et al., 2006; Ardehali et al., 2011; 

Lebedeva et al., 2005; Smith et al., 2004), histone chaperones, such as FACT 

(Saunders et al., 2003), and chromatin remodelers including those from the 

CHD and ISWI families (Badenhorst et al., 2002; Simic et al., 2003; Srinivasan 

et al., 2005), but curiously not SWI/SNF(Armstrong et al., 2002).  It is therefore 

imaginable that any of these factors, or combinations thereof, are able to 

alleviate the nucleosome barrier to Pol II upon heat shock.  Hsp70 therefore 

provides an excellent model gene with which to observe changes in 

nucleosomes upon transcriptional activation and to what extent different 

factors help alleviate the nucleosome barrier during transcript elongation. 

1.9 Summary of Dissertation and Concluding Remarks about the Future 

of Understanding how Pol II Overcomes the Nucleosome Barrier 

To better understand individual changes that happen to nucleosomes 

along the gene body of Hsp70 throughout the time course of heat shock, I 

developed a sensitive method to be able to measure quantitatively the 

changes that occur in these nucleosomes.  My results demonstrate that there 

is a rapid change in nucleosome structure by 30-60 seconds of HS that 

continues throughout the gene and is independent of active transcription of the 

gene (Petesch and Lis, 2008).  The immediate and widespread change in 

chromatin structure at Hsp70 following HS are critically dependent on HSF, 

GAF, and PARP.  Both RNAi knockdown of HSF and PARP, as well as 

catalytic inhibition of PARP, results in the failure of Hsp70 to undergo rapid, 
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transcription-independent loss of the chromatin structure upon HS.  The 

activation of PARP and formation of PAR at Hsp70 results in the depletion of 

histone density on the body of heat shock genes that in turn facilitates Pol II 

transcription (Petesch and Lis, 2008).  This is achieved initially through 

recruitment of HSF, which in turn recruits the Drosophila Tip60 complex to 

acetylate H2AK5 and ignites PARP’s enzymatic activity, the rapid spread of 

PAR throughout the region, and correspondingly rapid nucleosome loss 

(Petesch and Lis, 2012a) (Figure 3).  Together, these results provide 

additional insight into a new method through which the nucleosome barrier can 

be overcome rapidly, and even before Pol II transcript elongation occurs. 

Additionally, it has been found from the Tulin lab that the activation of 

PARP in vivo is also dependent on the C-terminal phosphorylation of H2A 

(Kotova et al., 2011), which is a known prerequisite for H2AK5Ac in Drosophila 

(Kusch et al., 2004).  The Drosophila Tip60 complex also contains a known 

homolog of Swr1, whose ability to exchange out H2A is stimulated by H2AK5 

acetylation (Kusch et al., 2004).  It will be of interest to know how or if the 

disruption of nucleosomes through Swr1’s exchange can activate PARP’s 

enzymatic activity in vivo, how the activation and localized spread of PAR can 

lead to such dramatic histone depletion and relaxation of chromatin structure, 

and to what extent this mechanism of chromatin disruption is used at other 

genes.  
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Figure 3 Heat Shock Factor Triggers the Enzymatic Activity of Poly(ADP-
Ribose) Polymerase to Facilitate the Rapid Disruption of Nucleosomes 
 
Model of PARP activation at heat shock loci summarizing (Petesch and Lis, 
2008; Petesch and Lis, 2012a). 
 
(a) Before heat shock, the Drosophila Hsp70 gene contains a transcriptionally 
engaged, paused Pol II (red) and inactive PARP (gray) present near the first 
well-positioned nucleosomes after the transcription start site, indicated by the 
arrow.  Hsp70 is known to contain the Drosophila H2A.Z variant, H2Av (pink), 
at the 5’ end of the gene before heat shock.  It is not known if the C-terminal 
S137 of H2Av is already in a phosphorylated state. 
 
(b) After heat shock, the master transcriptional activator, heat shock factor 
(HSF, orange), is recruited to the promoter of Hsp70 as a trimer.  HSF in turn 
is responsible for recruiting the dTip60 complex (purple cloud), which is part of 
a chromatin remodeling complex containing a protein homologous to Swr1. 
dTip60 is responsible for acetylating H2AK5 near the 5’ end of the gene.   
 
(c) Following acetylation of H2AK5, the dTip60 complex is likely to exchange 
out the H2Av variant as it is known to do in vitro with H2Av that is acetylated at 
K5 and phosphorylated at S137.  The combination of the acetylation of H2AK5 
and the exchange of H2A triggers activation of PARP’s enzymatic activity (now 
shown in blue). 
 
(d) The activation of PARP (blue) results in the formation of PAR (blue lines) 
and the redistribution of PARP throughout the coding region, and beyond, but 
halts at nearby natural chromatin insulating elements (not shown).  This rapid 
and domain wide process leads to a buildup of PAR throughout the region 
which is able to locally disrupt and strip histones from the gene allowing for 
efficient transcript elongation and robust gene activation. 
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The exploration of mechanisms by which cells overcome the 

nucleosome barrier to allow for efficient transcript elongation has resulted in 

the discovery of an entire subfield of eukaryotic gene expression.  The 

discovery of a new mechanism of nucleosome displacement by PARP 

activation has generated numerous intriguing questions that can be addressed 

with existing and new technologies (Petesch and Lis, 2008; Petesch and Lis, 

2012a).  The advent of new technologies such as single molecule experiments 

(Killian et al., 2011) and protein chemical ligations (Allis and Muir, 2011; Fierz 

et al., 2011; North et al., 2011; Shimko et al., 2011) are just beginning to 

provide mechanistic details as to how chromatin remodelers, chaperones, 

modifications, and variants are able to destabilize, disassemble, or 

reassemble nucleosomes and should prove useful for dissecting PARP-based 

mechanisms.  In addition, these technologies are being used to answer 

fundamental questions about what happens when Pol II engages a 

nucleosome and how specifications including Pol II density on genes (Jin et 

al., 2010), transcription rates (Bintu et al., 2011), and processivity affect the 

process of transcript elongation through nucleosomes.  These views should be 

augmented with real time and high-resolution imaging approaches (Leung and 

Chou, 2011; Yao et al., 2008).  Finally, genome-wide studies of Pol II, the 

composition of histones, and the presence of particular chromatin associated 

factors will be useful in evaluating the generality of particular mechanisms in 

regulating transcript elongation and alleviating nucleosomal barriers. 
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CHAPTER 2 RAPID, TRANSCRIPTION-INDEPENDENT LOSS OF 

NUCLEOSOMES OVER A LARGE CHROMATIN DOMAIN AT HSP70 LOCI2 

To efficiently transcribe genes, RNA Polymerase II (Pol II) must overcome 

barriers imposed by nucleosomes and higher order chromatin structure.  Many 

genes, including Drosophila melanogaster Hsp70, undergo changes in 

chromatin structure upon activation.  To characterize these changes, I mapped 

the nucleosome landscape of Hsp70 following an instantaneous heat shock at 

high spatial and unprecedented temporal resolution.  Surprisingly, I find an 

initial disruption of nucleosomes across the entire gene within 30 seconds 

following activation, faster than the rate of Pol II transcription, followed by a 

second further disruption within 2 minutes.  This initial change occurs 

independently of Pol II transcription.  Furthermore, the rapid loss of 

nucleosomes extends beyond Hsp70 and halts at the scs and scs’ insulating 

elements.  An RNAi screen of 28 transcription and chromatin-related factors 

reveal that depletion of heat shock factor, GAGA Factor, or Poly(ADP-Ribose) 

Polymerase or its activity abolishes the loss of nucleosomes upon Hsp70 

activation. 

2.1 INTRODUCTION 

In eukaryotic cells, DNA is packaged into chromatin providing a natural 

barrier to factors requiring access to DNA (Rando and Ahmad, 2007).  Many 

essential cellular processes, including gene expression, rely on the ability of 
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 Taken from (Petesch and Lis, 2008) 
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the cell to regulate and alleviate the restrictive properties of chromatin.  In vitro 

studies have shown that the transcriptional rate and processivity of RNA 

Polymerase II (Pol II), which is responsible for expressing all mRNA-encoding 

genes, is severely inhibited by nucleosomes (Knezetic and Luse, 1986; Lorch 

et al., 1987).  However, in vivo studies show that Pol II, and even the first 

‘pioneer’ Pol II to transcribe an induced gene, is able to transcribe at rates 

(~1.5 kb/min) that suggest it is not inhibited by the presence of nucleosomes 

(O'Brien and Lis, 1993; Thummel et al., 1990).  These results indicate that 

eukaryotic cells have mechanisms that modulate nucleosome position and 

structure at active genes. 

The diversity of factors that act on chromatin indicate that eukaryotic cells 

use multiple general mechanisms to alter the position or composition of the 

nucleosome, allowing critical factors such as Pol II access to DNA (Li et al., 

2007a).  Chromatin remodeling complexes, such as SWI/SNF and ISWI, 

provide the cell with the ability to remove, transfer, or slide a nucleosome 

along a DNA template (Saha et al., 2006).  Additionally, many transcription 

elongation factors and histone chaperones, such as FACT, Spt6, and Asf1 aid 

in the disassembly of nucleosomes and their reassembly in the wake of 

transcribing Pol II (Bortvin and Winston, 1996; Orphanides et al., 1998; 

Schwabish and Struhl, 2006).  Finally, histone modifying enzymes can 

acetylate, methylate, phosphorylate, monoubiquitinate, sumoylate, or ADP-

ribosylate histones, or carry out the reverse of each reaction (Li et al., 2007a).  

Many of these modifications can modulate inter and intranucleosomal 
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interactions (Reinke and Horz, 2003; Shogren-Knaak et al., 2006) and most 

are likely to serve as specific targets for effectors (Jenuwein and Allis, 2001; 

Wysocka et al., 2006), which can act locally to alleviate or reinforce the 

repressive structure of chromatin. 

Understanding where nucleosomes are positioned and how these positions 

change during transcription is critical in deciphering how the changes occur.  

Early studies with micrococcal nuclease (MNase) or DNase1 on chromatin 

isolated from cells produced the first views of the chromatin structure of 

Drosophila melanogaster heat shock (HS) genes in vivo.  These analyses 

showed that both the promoter and the 3’ end of the Hsp70 gene contained 

large hypersensitive regions and that nucleosomes on the coding regions 

before HS were disrupted after an extended HS (Wu et al., 1979; Wu, 1980).  

Recently, whole genome ChIP-chip and ChIP-seq studies have shown that 

many genes exhibit similar patterns of nucleosome occupancy (Johnson et al., 

2006; Lee et al., 2007; Schones et al., 2008).  In particular, nucleosomes are 

often absent in promoter regions just upstream of the transcriptional start site, 

allowing the transcriptional machinery easy access to DNA elements 

(Crawford et al., 2006; Mito et al., 2005; Yuan et al., 2005).  Moreover, genes 

in Saccharomyces cerevisiae on average contain 1 well-positioned 

nucleosome on each side of the promoter region and nucleosomes become 

progressively less positioned beyond this point (Albert et al., 2007; Lee et al., 

2007; Yuan et al., 2005).  Thus, while many promoters are open and 
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accessible, and even occupied by Pol II (Lis, 2007), Pol II still must overcome 

nucleosomes occluding its downstream path into the gene. 

D. melanogaster Hsp70 is a model gene used to study general 

mechanisms by which Pol II is able to transcribe through chromatin.   Hsp70 is 

rapidly activated within seconds after HS, and concomitantly its chromatin 

structure decondenses, evident by the formation of large puffs on polytene 

chromosomes (Boehm et al., 2003).  Not surprisingly, an entire battery of 

transcription factors is recruited to Hsp70 upon activation, under the direction 

of the master heat shock factor (HSF) activator (Saunders et al., 2006). 

Curiously, although puff size at HS induced genes increases with transcript 

length and promoter strength (Simon et al., 1985), previous studies also show 

that puffing of HS loci can be decoupled from active transcription of the gene 

using a chemical stimulus (Winegarden et al., 1996).  Although informative, 

these studies do not demonstrate at the molecular level in living cells that 

changes are indeed happening to the nucleosomes occupying Hsp70. 

The dramatic change in the chromatin structure upon gene activation begs 

several questions.  Does this puffing entirely represent changes in 

nucleosomes?  Are the nucleosomes evicted, or are their positions or 

configuration altered?  How rapidly can changes in the chromatin structure be 

detected at the molecular level?  And finally, which factors are responsible?  

Previous studies have shown that deletion of either Heat Shock Elements 

(HSEs) or GAGA factor (GAF) binding sites in the Hsp70 promoter region 

result in reduced HSF binding and a loss in puff formation upon HS (Shopland 
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et al., 1995).  GAF, encoded by the Trithorax-like gene, binds to repeating 

(GA)n sequences and is present at the Hsp70 promoter before HS (O'Brien et 

al., 1995).  GAF itself has been shown to play important roles in gene 

activation presumably by regulating chromatin structure by itself or through its 

interactions with the NURF remodeling complex (Tsukiyama et al., 1994; 

Tsukiyama and Wu, 1995). 

In addition to HSF and GAF, recent evidence indicates that Poly(ADP-

Ribose) Polymerase (PARP) is important in puff formation at many loci 

including Hsp70 (Tulin and Spradling, 2003).  PARP is an enzyme that 

catalyzes the polymerization of ADP ribose units from NAD+ onto target 

proteins (primarily itself) and interacts with DNA and nucleosomes (Kim et al., 

2004; Pinnola et al., 2007).  PARP proteins have roles in several nuclear 

processes, including DNA damage responses (D'Amours et al., 1999), but 

have only recently been examined with respect to transcription (Kraus and Lis, 

2003).  A P-element insertion that disrupts PARP expression, or inhibition of 

PARP’s catalytic activity, displays decreased puff sizes in polytene 

chromosomes and reduced Hsp70 protein levels upon HS (Tulin and 

Spradling, 2003).  To understand puff formation and the roles of HSF, GAF, 

and PARP, examination of chromatin at the nucleosomal level is required.  

Moreover, the potential role of other factors needs to be evaluated. 

 In this paper, I map the nucleosome architecture of the D. melanogaster 

Hsp70 gene at a 30 bp resolution and track its changes seconds after an 

instantaneous HS.  I find that before HS, the chromatin structure of Hsp70 has 
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characteristics similar to general genome-wide features at most genes.  After 

HS, I find that the chromatin architecture at Hsp70 has an initial dramatic 

change throughout the gene that is so rapid that it occurs even before the first 

wave of transcribing polymerase reaches the corresponding regions of the 

gene.  Furthermore, I find this initial loss of nucleosomes is independent of 

transcription and extends to natural insulating elements flanking the HS genes.  

Through an RNAi screen of known coactivators, chromatin remodeling 

enzymes, histone modifiers, nucleosome assembly and disassembly factors, 

modifiers of DNA topology, and elongation factors, I indentify HSF, GAF, and 

PARP as each necessary for the rapid loss of nucleosomes at the Hsp70 gene 

following HS.  The effect of PARP requires its activity and a specific inhibitor 

added only 10 minutes before HS is sufficient to block the nucleosome loss. 

2.2 RESULTS 

2.2.1 The Chromatin Structure at Hsp70 is Rapidly and Dramatically 

Altered Following Heat Shock 

I employed a previously developed method (Sekinger et al., 2005) to 

track in vivo changes in the chromatin structure of the Hsp70 gene at the 

mononucleosome level following activation.  In my assay, Hsp70 is induced in 

Drosophila S2 cells by an instantaneous HS for various times.  The cells are 

cross-linked with formaldehyde and chromatin is then isolated and split into 

mock and MNase treated samples (Figure 4A).  The DNA is then probed with   
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Figure 4 Rapid Loss of Chromatin Structure at Hsp70 upon Heat 
Shock Detected by a High Resolution MNase Scanning Assay 

(A) Diagram depicting the procedure followed for the high resolution 
MNase assay.  S2 cells are heat shocked for 0 (dark blue), 5 (light blue), 
30 (green), 60 (orange), or 120 seconds (red) (colors refer to 1C), 
immediately cooled to room temperature and crosslinked, and their 
chromatin is isolated.  Purified DNA products from samples are treated 
with 0 or 500 U of MNase and used for qPCR. 
 
(B) Diagram showing the PCR amplicons used at the Hsp70Ab gene.  
PCR products are 100±5 bp in size and are spaced 30±6 bp apart.  The 
mRNA-encoding unit is shown in black.  The gene nucleotide location, 
corresponding to panel C, is numbered below with the HSEs, TSS, and 
PolyA site (at +2343) indicated. 
 
(C) The HS time course chromatin profile of Hsp70 is determined by 
normalizing the amount of the MNase digested PCR product to that of the 
undigested product using the ΔC(t) method (y-axis), which is plotted 
against the gene nucleotide location (x-axis).  Values from overlapping 
primer sets are averaged.   The x-axis represents base pair units with 0 
being the TSS.  Lines represent the average of 3 separate experiments 
with error bars omitted for clarity. 
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over 100 separate primer sets that on average are spaced 30 bp apart and 

amplify 100 bp regions along the Hsp70Ab copy (Figure 4B and Table 4).  The 

ability of a primer pair to amplify depends on the amount of contiguous DNA 

between the primers that remains after MNase digest; MNase cleaves linker 

DNA between nucleosomes and cleaves nucleosome-free DNA.  To determine 

the amount of digestion in a particular region at the Hsp70 gene, I calculated 

the relative ratio of the amount of digested DNA to the undigested control 

using quantitative PCR (qPCR).  Efficient amplification of 100 bp regions 

ensures that amplifiable DNA in the digested sample is mononucleosome or 

subnucleosome in size but larger than tetrameric or hexameric structures.  

The amount of MNase was titrated to produce mononucleosomes from the 

bulk chromatin of nuclei (Figure 5A), and to observe protection under 

uninduced conditions at Hsp70 with amplification of 100 bp sized fragments 

but not with 190 bp sized fragments (Figure 5B).  This ensures that my assay 

has mononucleosome resolution, and provides a precise way to measure and 

track the positions of nucleosomes along Hsp70 following a HS.  

Under non heat shock (NHS) conditions, Hsp70 contains 4 distinct 

chromatin regions: a nucleosome free promoter region, a well-positioned 

nucleosome centered approximately 330 nucleotides after the transcription 

start site (TSS), poorly positioned nucleosomes in the body of the gene, and a 

second nucleosome free region at the 3’ end of the gene (Figure 4C, dark 

blue).  (Each individual time point can be seen as a separate graph with error 

bars in Figures 6A-E.)  The nucleosome free region at the 5’ end of Hsp70  
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Figure 5 Titration of MNase to Produce Mononucleosome Size DNA 
Fragments 
 
(A) The amount of MNase used to produce mononucleosome size pieces of 
DNA was titrated from 0 to 2000 U of MNase on cross-linked purified 
chromatin.  Purified DNA inputs from 2.5x106 cells, equal to what was used for 
the high resolution MNase mapping, was loaded onto a 1.3% agarose gel and 
stained with ethidium bromide.  Digestion to dinucleosome size pieces is 
achieved by 100 U and by 500 U the chromatin is largely digested to 
mononucleosomes.   
 
(B) The diagram shows the same NHS MNase profile for the NHS profile 
observed in Figure 1C, except PCR products are 190±7 bp to probe pieces of 
DNA that are larger than mononucleosome in size. 
 
 
agree with earlier studies that show these regions are hypersensitive to 

nucleases (Wu, 1980).  The 5’ hypersensitive region extends further into the 
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Figure 6 Individual Time Course MNase Profiles with Error Bars 

 
(A-E) Each individual time course displayed in Figure 4C is plotted separately 
for NHS (A), 5”HS (B), 30”HS (C), 60”HS (D), and 120” HS (E) with error bars 
corresponding to the SEM for 3 independent measurements.   
 
 
transcription unit than where Pol II is known to be transcriptionally engaged 

and paused 20 to 40 base pairs downstream of its initiation site (Giardina et 

al., 1992; Rasmussen and Lis, 1993; Rougvie and Lis, 1990).  Beyond the first 

nucleosome, centered at +330 and well downstream of the paused Pol II, the 

body of the gene contains nucleosomes that gradually lose their positioning.  

This is seen from the relatively even distribution of protection along the gene.  
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A nucleosome just upstream of the polyadenylation (PolyA) site of Hsp70 

bookends the nucleosomes on the 3’ end of the gene.  Overall, under NHS 

conditions, the chromatin structure of the Hsp70 gene accommodates paused 

polymerase but still provides an impending barrier to transcription elongation. 

 To determine how the chromatin structure of Hsp70 changes upon an 

instantaneous HS, I used the high-resolution MNase assay following 5, 30, 60, 

and 120 seconds of HS.  Within 5 seconds of HS, the protection of DNA in the 

immediate 5’ region of the gene decreases (Figure 4C, light blue).  By 30 

seconds (Figure 4C, green), further loss in the 5’ region is observed, but now 

losses are also observed extending past the 3’ region of the gene.  

Surprisingly, these initial changes in the 3’ end of the gene occur before RNA 

polymerase reaches the 3’ end, which takes approximately 2 minutes (Boehm 

et al., 2003; O'Brien and Lis, 1993).  No significant changes in nucleosome 

protection are seen between 30 and 60 seconds (Figure 4C, orange).  

However, by 120 seconds of HS (Figure 4C, red) another broad loss in the 

protection of nucleosomes occurs along the entire gene.  In contrast to NHS 

conditions, the nucleosome protection pattern of a 120 second HS is 

decimated.  This 2 minute protection pattern remains even after 20 minutes of 

HS (data not shown).  Similar changes in nucleosomes were also observed on 

the same time scale for the shorter, HS inducible Hsp26 gene (Figures 7A and 

7B).   During HS, the positions of nucleosomes neither move into nucleosome 

free regions nor do they increase in their relative level of protection. 

To address whether or not these changes in the chromatin landscape  
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Figure 7 Rapid Loss of Chromatin Structure at Hsp26 upon Heat Shock 
Detected by a High Resolution MNase Scanning Assay 
 
The HS time course chromatin profile is determined at the 5’ end (A) and 3’ 
end (B) for the 1010 bp long Hsp26 transcript following a 0 (dark blue), 5 
(light blue), 30 (green), 60 (orange), or 120 seconds (red) HS just as in 
Figure 1 by normalizing the amount of the MNase digested PCR product to 
that of the undigested product using the ΔC(t) method (y-axis), which is 
plotted against the gene nucleotide location (x-axis).  Values from 
overlapping primer sets are averaged.   The x-axis represents base pair 
units with 0 being the transcription start site.  Lines represent the average of 
3 separate experiments with error bars representing the SEM.  Primers used 
can be found in Table S1. 
 
(C) Histone density across the Hsp26 gene detected by ChIP using an H3 
antibody just as in Figure 2.  S2 cells are heat shocked for 0 (dark blue), 5 
(light blue), 30 (green), 60 (orange), or 120 seconds (red).  The y-axis 
represents the percent of input material immunoprecipitated.  Error bars 
represent the SEM of 3 independent experiments.  The x-axis represents 
base pair units along the Hsp26 gene with 0 as the transcription start site; 
each number represents the center of the PCR amplicon.  The intergenic 
region represents a region 32 kb downstream of Hsp70Bc that does not 
change upon HS. 
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are due to either a loss of histones or just an increased accessibility of the  

DNA at this locus, I performed traditional sonication ChIP with an antibody that 

recognizes histone H3 and its variants.  The histone NHS landscape 

determined by ChIP matches that of the MNase protection assay (Figure 8, 

dark blue).  Additionally, the same changes in the MNase protection pattern 

are seen with a histone H3 ChIP at 5, 30, and 60 seconds of HS (Figure 8, 

light blue, green, orange).  The combination of increased MNase accessibility 

and decreased histone density indicate disruption of nucleosome structure on 

the gene, or a loss in nucleosomes.  The only significant difference observed 

between the 2 methods is that there is not a change in histone levels between 

60 and 120 seconds of HS.  One likely explanation for these differences is that  

Figure 8 Rapid loss of Histone H3 from Hsp70 upon Heat Shock 
 
Histone density across the Hsp70 gene detected by ChIP using an H3 
antibody.  S2 cells are heat shocked for 0 (dark blue), 5 (light blue), 30 
(green), 60 (orange), or 120 seconds (red).  The y-axis represents the percent 
of input material immunoprecipitated.  Error bars represent the SEM of 3 
independent experiments.  The x-axis represents base pair units along the 
Hsp70 gene with 0 as the TSS; each number represents the center of the PCR 
amplicon.  The intergenic region represents a region 32 kb downstream of 
Hsp70Bc that does not change upon HS. 
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Pol II accumulates across the body of the gene by this point, resulting in 

further disruption of canonical nucleosomal structures.  This could lead to an 

increased accessibility of this DNA to the MNase without a further decrease in 

the amount of histone H3 present.  Again, similar results were found for Hsp26 

(Figure 7C).  Figures 4 and 7 indicate that changes in nucleosomal structures 

at Hsp70 start at the 5’ end of the gene and move more rapidly than Pol II 

towards the 3’ end. 

2.2.2 Nucleosomes at Hsp70 can be Lost Independently of Transcription 

The loss of nucleosomes at Hsp70 occurring prior to Pol II’s occupancy 

of these regions suggests that the rapid changes in chromatin, which occur 

well before maximal puff formation at 20 min HS (Lewis et al., 1975), might 

also occur independently of transcription.  To catalogue at high-resolution 

what chromatin changes occur independently of transcription, I used sodium 

salicylate or the nucleotide analog 5,6-dichloro-1-β-D-

ribofuranosylbenzimidazole (DRB).  Both of these chemicals reduce the level 

of HS induced Hsp70 transcription (Giardina and Lis, 1993; Winegarden et al., 

1996).  Treatment of S2 cells with DRB followed by a 2 minute HS resulted in 

normal recruitment of HSF to the promoter (-154) (Figure 9A).  Pol II was also 

normally recruited to the pause site (+58); however, it was not detected in 

regions further downstream (+1702) (Figure 9A), indicative of transcription 

elongation being inhibited.  The nucleosome protection profile of a 2 minute (or 

30 second) HS with DRB revealed that the initial loss of nucleosome structure 
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Figure 9 Initial Loss of Nucleosomes at Hsp70 is Independent of 
Transcription 
 
(A) ChIP at Hsp70 for HSF and Rpb3 (Pol II) with and without 125 µM of 
the transcription inhibitor DRB before (NHS, black bars and NHS+DRB, 
dark gray bars) and during HS (2’HS, white bars and 2’HS+DRB, light gray 
bars).  The y-axis represents the percent of input material 
immunoprecipitated.  x-axis values represent base pair units centered on 
the HSEs (-154), the Pol II pause site (+58), a downstream region (+1702), 
and an intergenic region outside the scs and scs’ regions.  Error bars 
represent the SEM of 3 independent experiments. 
 
(B) MNase protection profile of NHS with DRB (dark gray), 2’HS with DRB 
(light gray), and 2’HS (medium gray) as in Figure 4C.  Lines represent the 
average of 3 separate experiments.  Error bars representing the SEM are 
plotted just for the 2’HS+DRB line for clarity. 
 
(C) ChIP as described in (A) except with and without 10 mM of sodium 
salicylate before (NHS, black bars and NHS+salicylate, dark gray bars) 
and during HS (20’HS, white bars and 20’HS+salicylate, light gray bars).  
Error bars represent the SEM of 3 independent experiments. 
 
(D) MNase protection profile as in (B) with NHS (black), NHS+salicylate 
(dark gray), and 1’HS (light gray).  Lines represent the average of 3 
separate experiments.  Error bars representing the SEM are plotted just for 
the NHS+salicylate line for clarity. 
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occurred even though Pol II never moved into the body of the gene (Figures 

9B and 14A).   

Treatment of cells with sodium salicylate under NHS conditions resulted 

in a level of HSF recruitment equivalent to that of a 20 minute HS (Figure 9C).  

The amount of Pol II at the pause site or in downstream regions, however, did 

not change from NHS levels (Figure 9C).  These results are consistent with 

previous studies showing that sodium salicylate induces HSF binding to its 

HSEs, but does not result in additional promoter melting by the paused Pol II 

(Giardina and Lis, 1995).  This NHS treatment with sodium salicylate, like HS 

in the presence of DRB, resulted in the loss of nucleosomes throughout the 

gene similar to the initial loss found by 30 or 60 seconds of  HS (Figure 9D).  

Similar results for both experiments were found for Hsp26 as well (Figures 

10A-D).  These experiments demonstrate that the initial loss of nucleosomes 

is due to a mechanism that is independent of transcription and the subsequent 

loss in protection is due to a transcription-dependent mechanism. 

2.2.3 The Loss of Nucleosomes at Hsp70 Halts at the Drosophila scs and 

scs’ Boundary Elements 

 In my initial assay, I observed chromatin changes across the entire 

Hsp70 region that I surveyed (Figure 4C).  Next, I chose to determine where 

the loss in nucleosomal protection ceases.  Decondensed polytene 

chromosome puffs do not spread indefinitely, suggesting that a relatively 
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Figure 10 Initial Loss of Nucleosomes at Hsp26 is Independent of 
Transcription 
 
MNase protection profile of the 5’ (A) and 3’ (B) end of Hsp26 as in Figure S3 
of a 2 minute HS with DRB (pink) in comparison to a 0 (dark blue), 30 (green), 
60 (orange), or 120 seconds (red) of HS.  Lines represent the average of 3 
separate experiments.  Error bars representing the SEM are omitted for clarity.  
All primer sets are found in Table 5. 
 
MNase protection profile of the 5’ (C) and 3’ (D) end of Hsp26 as in Figure S3 
of NHS with salicylate (light blue) in comparison to a 0 (dark blue), 30 (green), 
60 (orange), or 120 seconds (red) of HS.  Lines represent the average of 3 
separate experiments.  Error bars representing the SEM are omitted for clarity. 
 

defined border of nucleosome loss might exist.  To identify where this border 

occurs, I progressively walked downstream of the Hsp70 genes at 87A to the 

scs and scs’ boundary elements (Figure 11) (Udvardy et al., 1985).  As 

insulators, the scs and scs’ regions protect against positive and negative 
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Figure 11 The scs and scs´ Regions Insulate the Heat Shock Locus from 
the Spread of Nucleosome Loss 
 
(A -D) MNase HS time course protection as in Figure 4C flanking the scs and 
scs’ insulators.  The 87A HS locus shown above depicts the 4 sites analyzed 
flanking scs and scs’.  Regions A and D are outside and B and C are inside of 
the scs and scs’ insulators respectively.  Regions A-D also correspond to A-D 
in the graphs.  The x-axis of all 4 graphs uses the TSS of the Hsp70Ab copy 
as the 0 point.  Each line represented is the average of 3 independent 
experiments.  Error bars are omitted for clarity but the SEM from 3 
independent experiments is less than ±0.06. 
 

 chromatin position effects, and can block cis-acting, promoter-enhancer 

interactions (Kellum and Schedl, 1991; Kuhn et al., 2004). The scs and scs’ 

regions are known to contain nuclease hypersensitive regions as well as DNA 

binding elements for the zeste-white 5 (Zw5) and boundary element 
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associated factor 32 (BEAF-32) DNA binding proteins, respectively (Gaszner 

et al., 1999; Vazquez and Schedl, 1994; Zhao et al., 1995).  Surprisingly, 

protection of nucleosomes anywhere between the Hsp70 copies and either the 

scs or scs’ regions was lost upon HS activation with similar kinetics to the loss 

observed at Hsp70 (Figures 11B, 11C, and data not shown).  However, 

nucleosomes outside the region enclosed by the scs and scs’ elements were 

unaffected (Figures 11A and 11D).  These results indicate that the scs and 

scs’ regions also act as barriers to the spread of severely decondensed 

chromatin and that rapid nucleosome loss upon transcription activation is not 

confined to the transcription unit, but can extend several kb upstream and 

downstream of the activated gene.  Interestingly, even though changes in 

nucleosomes occur over multiple genes within the region, only the Hsp70 

genes are induced following a HS (Figure 12A).  Moreover, the loss of 

nucleosomes across this broad domain, corresponding to the 87A polytene 

puff, occurs well before maximal puff formation; therefore, puffing does not 

merely represent nucleosomal changes, but must also denote higher order 

structural changes at the locus. 

2.2.4 HSF and GAF are Necessary for Nucleosome Loss at Drosophila 

Hsp70 

The above results defined the location and rate of nucleosome loss at 

Hsp70 but did not identify what factors are required for the nucleosome loss.  

To address this question I coupled the high resolution MNase assay to 
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transient depletions of candidate factors by RNAi.  Given that a mutation in 

HSF or deletion or mutation of the HS or GAGA elements greatly inhibits the 

formation of HS puffs (Jedlicka et al., 1997; Shopland et al., 1995), I first 

targeted HSF and GAF for depletion.  Depletion of HSF or GAF to less than 

 

Figure 12 Expression and Pol II occupancy of Genes within the 87A Heat 
Shock Locus do not change after Heat Shock 
 
The 87A HS locus shown above depicts the region enclosed by the scs and 
scs’ regions.   
 
(A) mRNA levels from Aurora, CG3281, and CG31211, CG3281 under NHS 
conditions (blue) and following a  5 (pink) and 20 minute HS (red) were 
measured for S2 cells.  Expression levels were measured by oligo dT primed 
reverse transcription followed by qPCR using specific Hsp70Ab primers.  
Hsp70 mRNA levels are normalized to the Rp49 gene with error bars 
representing the SEM of 3 replicates.  PCR primer sets are found in Table 6. 
 
(B) Pol II occupancy at the TSS of the Aurora, CG3281, and CG31211 genes 
detected by ChIP using an Rpb3 antibody just as in Figure 3.  S2 cells under 
NHS (blue) or 2 minutes of HS (red) conditions were analyzed.  The y-axis 
represents the percent of input material immunoprecipitated.  Error bars 
represent the SEM of 3 independent experiments.  The x-axis represents the 
TSS of the respective gene analyzed.  The intergenic region represents a 
region 32 kb downstream of Hsp70Bc.  Primer sets can be found in Table 7. 
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Figure 13 HSF, GAF, and PARP are Essential for the Loss of 
Nucleosomes at Hsp70 
 
MNase protection profile as in Figure 4C comparing the chromatin architecture 
following an RNAi depletion of either (A) HSF, (B) GAF, or (C) PARP (black 
lines) in comparison to a control RNAi depletion of LacZ (gray lines) after a 
2’HS at Hsp70.  Each line represents the average of 3 independent 
experiments with error bars representing the SEM.  Western blots showing 
corresponding knockdown of HSF, GAF, or PARP are shown to the right of 
each figure with TFIIS used as a loading control and a serial dilution of LacZ 
RNAi to quantify each knockdown. 
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10% of LacZ control cells (Figures 13A and 13B), abolished the changes in the 

chromatin structure of Hsp70 after a 2 minute HS (Figures 13A and 13B) and 

with a shorter 30 second HS (Figures 14B and 14C).  Therefore, both HSF 

and GAF are critical for bringing about the loss of nucleosomes upon HS. 

 

Figure 14 RNAi and Chemical Treatments do not Significantly Change 
between 30 Seconds and 2 Minutes of Heat Shock 
 
(A) The MNase profiles for Hsp70 are shown for NHS with DRB (black), 30 
seconds of HS with DRB (dark gray), and 2 minutes of heat shock with DRB 
(light gray).   
The MNase profiles for Hsp70 are also shown for 30 seconds of HS (gray) and 
2 minutes of heat shock (black) for HSF RNAi (B), GAF RNAi (C), PARP RNAi 
(D), or PJ34 treatment (E).  Error bars representing the SEM from 3 
independent experiments are shown for the 2 minute heat shock condition. 
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2.2.5 Poly(ADP-Ribose) Polymerase is Necessary for Nucleosomal Loss 

at Hsp70 

To determine if other factors are required for the rapid changes in 

nucleosome structure upon HS, I targeted many additional factors by RNAi 

depletion: known players in the HS response, nucleosome remodelers, 

histone-interacting proteins, elongation factors, factors affecting DNA topology, 

and known boundary element factors.  The results of these experiments are 

summarized in Table 3 and in Figures 15-21.  Although not all knock-downs 

were confirmed, due to the unavailability of antibodies, those that were 

checked had protein levels decreased to 5-20% of control cells (Figure 22).  

Under NHS conditions, the ISWI remodeling complex containing Nurf301 and 

Chd1 had the largest effects, as nucleosomes on the body of the gene were 

better positioned in ISWI, Nurf301, and Chd1 RNAi treated cells (Figures 18B, 

18C, and 18E).  Additionally, RNAi depletion of HDAC3 reduced the protection 

of DNA corresponding to the positions of the first 2 nucleosomes (Figure 19D).  

After HS, some transcription related factors including Med15, P-TEFb, Spt6, 

and ERCC3 (Figures 15D, 17A, 17D, and 20C respectively) showed 

nucleosome profiles more closely resembling a 1 minute rather than a 2 

minute HS, which may be a consequence of a transcription defect at Hsp70 

(Ni et al., 2007) or possibly a direct role in the disassembly of nucleosomes 

associated with elongating Pol II.  Regardless, depletion of these 4 factors 

reinforces the finding that the second loss in MNase protection 
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Table 3 Affect of RNAi Depletion of Different Factors on the Chromatin 
Architecture at Hsp70 

 Factor 
Change 
from 
NHS 

Change 
from 2’HS 

Upstream 
Activators 

HSF1 None NHS4 

GAF1 None NHS4 

CBP None None 

Med15 None 1’HS5 

Med23 None None 

SAGA 
Subunits 

Gcn5 None None 

Tra1 None None 

Spt3 None None 

Ubp8 None NMP6 

Elongation 
Factors 

PTEF-b (Cyclin T1) None 1’HS5 

Paf11 None NMP6 

FACT (Spt161) None NMP6 

Spt61 None 1’HS5 

Chromatin 
Remodelers 

Swi/Snf (Brm) None None 

ISWI NWP2 None 

Nurf301 NWP2 None 

MI-2 None None 

Chd1 NWP2 NMP6 

Kismet None None 

Nucleosome 
Interacting 

Proteins 

HIRA None None 

Asf1 None None 

PARP1 None NHS4 

HDAC3 NLP3 NMP6 

DNA 
Topology 

Topo11 None None 

Topo2 None NMP6 

TFIIH (ERCC31) None 1’HS5 

Boundary 
Elements 

BEAF-32 None NMP6 

Zw5 None NMP6 
1Knockdown confirmed by Western to be 5-20% of LacZ RNAi levels. 
2Nucleosomes on the body of the gene are better positioned. 
3DNA at the 1st and 2nd nucleosomes after the TSS is less protected. 
4Resembles a NHS profile. 
5Resembles a 1’ HS profile. 
6DNA at the 1st nucleosome after the TSS is more protected. 
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Figure 15 Upstream Activator RNAi MNase Profiles 
 
The RNAi MNase profiles of both NHS (left) and a 2’HS (right) are shown for 
HSF (A), GAF (B), CBP (C), Med15 (D), and Med23 (E). 
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Figure 16 SAGA Subunit RNAi MNase Profiles 
 
The RNAi MNase profiles of both NHS (left) and a 2’HS (right) are shown for 
Gcn5 (A), Tra1 (B), Spt3 (C), and Ubp8 (D). 
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Figure 17 Elongation Factor RNAi MNase Profiles 
 
The RNAi MNase profiles of both NHS (left) and a 2’HS (right) are shown for 
P-TEFb (Cyclin T) (A), Paf1 (B), FACT (Spt16) (C), and Spt6 (D). 
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Figure 18 Chromatin Remodeler RNAi MNase Profiles 
 
The RNAi MNase profiles of both NHS (left) and a 2’HS (right) are shown for 
SWI/SNF (Brm) (A), ISWI (B), Nurf301 (C), MI-2 (D), Chd1 (E), and Kismet 
(F). 
 
  



 

61 

 
 
 
 
 
 
 
 
 
 

Figure 19 Nucleosome Interactor RNAi MNase Profiles 
 
The RNAi MNase profiles of both NHS (left) and a 2’HS (right) are shown for 
HIRA (A), Asf1 (B), PARP (C), and HDAC3 (D). 
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Figure 20 DNA Topology RNAi MNase Profiles 
 
The RNAi MNase profiles of both NHS (left) and a 2’HS (right) are shown for 
Topo1 (A), Topo2 (B), and TFIIH (ERCC3) (C). 
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Figure 21 Boundary Factor RNAi MNase Profiles 
 
The RNAi MNase profiles of both NHS (left) and a 2’HS (right) are shown for 
Beaf-32 (A), Zw5 (B). 
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Figure 22 Western Blots of Confirmed RNAi Knockdowns 
 
Western blots for the knockdown of Paf1 (A), Spt6 (B), Cyclin T (C), ERCC3 
(D), Topo1 (E), and Spt16 (F) are shown followed by a Western blot of TFIIS 
or HSF used as a loading control.  The percent of knockdown was confirmed 
through loading 10, 30, and 100% dilutions of the LacZ RNAi extracts in the 
first three lanes followed by extract from the knockdown cells corresponding to 
100% of LacZ loaded.   



 

65 

(occurring between 1 to 2 minutes of HS) is a transcription-dependent event.  

Depletion of other factors resulted in slightly more protection at the site of the 

first nucleosome after the TSS upon HS (e.g. Figures 16D, 17B, 17C, etc).  

Additionally, a subset of factors, including Zw5 and BEAF-32, were chosen to 

determine if RNAi depletion of any factor allowed disruption of nucleosomes 

outside scs and scs’, and none were found (Figure 23).   Overall, most factors 

targeted for depletion did not show any difference in the nucleosome profile in 

comparison to control LacZ RNAi treatments before or after a 2 minute HS 

(e.g. Figures 15C, 15E, 16A, etc). 

Beyond HSF and GAF only one additional factor, Poly(ADP-Ribose) 

Polymerase (PARP), was found to be essential for the dramatic changes in 

chromatin structure upon HS.  In comparison to LacZ depleted cells which 

were heat shocked for 2 minutes, depletion of PARP to ~10% of control levels, 

resulted in a nucleosome profile more closely resembling NHS (Figure 13C), 

indicating PARP’s importance in bringing about changes in chromatin structure 

upon HS.  Similar results were found using a shorter 30 second HS (Figure 

14D). 

To determine if PARP’s ability to mediate changes in chromatin 

structure were dependent on its catalytic activity, I used a specific PARP 

catalytic inhibitor, PJ34 (Virag and Szabo, 2002).  Treatment of S2 cells with 

300 nM PJ34 for 10 minutes did not affect the NHS chromatin profile (data not  

shown).  However, treatment of cells with 300 nM PJ34 followed by 2 minutes 

of HS (Figure 24A) or 30 seconds of HS (Figure 14E) resulted in retention of  
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Figure 23 MNase Protection outside the 87A Heat Shock Locus Enclosed 
by scs and scs’ are not Affected by RNAi Knockdown of Several Factors 
 
The 87A HS locus shown above depicts the 4 sites analyzed flanking scs and 
scs’. Regions A and C are outside and B and D are inside of the scs and scs’ 
insulators respectively.  Regions A-D also correspond to A-D in the graphs.  
To compress data for each individual graph generated at a particular region for 
each RNAi knockdown (10 at each region, 40 in total) the highest level of 
protection for each region (found by the peaks seen in Figure 4) for each RNAi 
is plotted as a bar for either NHS (blue) or 2’HS (red).  All knockdowns can be 
compared to control LacZ RNAi treated cells on the left.  Note that the 
protection levels from Zw5 and Beaf32 RNAi did not change significantly from 
LacZ RNAi levels at regions A and D. 
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Figure 24 The Enzymatic Activity of PARP is Needed for Nucleosome 
Loss at Hsp70 and PARP is Required for full Hsp70 Expression 
 
(A) MNase protection profile of Hsp70 as in Figure 4C comparing the 
chromatin architecture of S2 cells treated (black line) or not treated (gray line) 
with the PARP enzymatic inhibitor PJ34 after a 2’HS.  Each line represents the 
average of 3 independent experiments with error bars representing the SEM. 
 
(B) Hsp70 mRNA levels following a 2, 5, and 20 minute HS were measured for 
S2 cells RNAi depleted of LacZ (black) or PARP (gray).  Hsp70 expression 
levels were measured by oligo dT primed reverse transcription followed by 
qPCR using specific Hsp70Ab primers.  Hsp70 mRNA levels are normalized to 
the Rp49 gene with error bars representing the SEM of 3 replicates. 
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the NHS nucleosome profile in comparison to untreated cells.  These results 

confirm the RNAi knockdown data, arguing against an off target effect of the 

transient knockdown, and also show that PARP’s enzymatic activity is required 

for the loss of nucleosomes at Hsp70 following HS. 

I then sought to determine if depletion of PARP has a functional 

consequence beyond retention of chromatin structure following HS.  To 

address this, I measured Hsp70 mRNA levels following 2, 5, and 20 minutes of 

HS.  The result was almost a 3-fold reduction in the amount of transcript 

following each of the time points (Figure 24B), comparable to a previously 

estimated 5-fold reduction in Hsp70 protein levels (Tulin and Spradling, 2003).  

Collectively, my results show that upon HS, PARP is necessary for rapid 

nucleosome loss at Hsp70 and consequently, full transcriptional activation of 

the gene. 

2.3 DISCUSSION 

Using a high resolution in vivo approach to map changes in the 

chromatin structure of the rapidly induced Hsp70 gene, I observed a broad 

disruption of nucleosome structure that occurred at a rate faster than 

transcribing Pol II and broader than a single transcription unit, ceasing at the 

natural insulating elements.  Furthermore, I found that the initial changes in 

chromatin architecture at Hsp70 can be decoupled from transcription of the 

gene, whereas the second disruption by 2 minutes is transcription-dependent.  

A selective RNAi screen identified HSF, GAF, and PARP as each being 



 

69 

necessary for the changes in chromatin landscape at Hsp70. 

Before HS, the Hsp70 gene contains a chromatin landscape that has 

many general, as well as some distinct features.   Like many other TATA 

containing genes (Albert et al., 2007), a highly positioned nucleosome exists 

downstream of the promoter region and the adjacent nucleosomes on the 

body of Hsp70 gradually lose their positioning.  Likewise, as seen with many 

genome-wide studies, the promoter, and a region at the 3’ end of the gene, is 

relatively nucleosome free (Mito et al., 2005; Trinklein et al., 2007; Yuan et al., 

2005).  It is yet to be determined why 3’ ends of genes are hypersensitive to 

nucleases.  However, while many genes in yeast contain a positioned 

nucleosome starting within the first 100 bp of the transcription unit, Hsp70 

contains a nucleosome free region that extends further, with the first 

nucleosome centered 330 bp following the TSS.  This extended nucleosome-

free region may be a more general feature of genes containing a paused 

polymerase. 

My HS time course shows that within 2 minutes following HS, the 

chromatin landscape of Hsp70 drastically changes.  By my assay, following 2 

minutes of HS, there no longer exists appreciable protection of a contiguous 

100 bp piece of DNA that would normally be provided from a histone octamer.  

However, there are still detectable levels of histone H3 on the body of the 

gene, albeit three-fold less than NHS levels.  Although these results differ from 

early observations that histone levels on Hsp70 do not change following HS 

(Nacheva et al., 1989; Solomon et al., 1988), my 3-fold decrease measured by 
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qPCR agrees with more recent quantifications of histone levels following HS 

(Adelman et al., 2006) and may have gone undetected in the qualitative 

analysis of these early experiments.  Early electron microscopy spreads of 

native transcribing Pol II complexes with a growing RNA chain from D. 

melanogaster indicate that the bulk of transcribing Pol II in vivo appears to 

have nucleosomes flanking its path (McKnight and Miller, 1979).  My results, 

however, suggest that at least for the rapidly induced Hsp70 gene, the 

nucleosomal structure present before HS no longer exists following activation 

of the gene. 

I also found that changes in chromatin upon Hsp70 induction extend 

well beyond the transcription unit of Hsp70 and halt at the scs and scs’ 

insulating elements.  Previous studies of scs and scs’ have shown that these 

insulators are capable of blocking enhancer functions and establishing 

chromatin domains that are resistant to position effects (Kellum and Schedl, 

1991; Kuhn et al., 2004).  However, the scs and scs’ regions have been 

located by DNA FISH on squashed polytene chromosomes to be within a HS 

puff at the endogenous 87A HS locus (Kuhn et al., 2004).  This indicates that 

the scs and scs’ regions by themselves are not absolute boundaries to 

changes in chromosome architecture, and supports my observation that 

puffing is maximal at a time well after nucleosome disruption and therefore 

denotes additional structural alterations beyond those observed here.  

Although transcription of CG31211, CG3281, and Aurora did not change 

following HS, and no factor targeted for RNAi permitted the disruption of 
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nucleosomes beyond scs or scs’, both of these regions include a TSS with 

detectable amounts of Pol II (Figure 12B), consistent with previous results 

(Muse et al., 2007).   It is therefore possible that the promoter architecture with 

Pol II present at these genes may be responsible for establishing a barrier at 

these sites.  Overall, my results show that scs and scs’ provide a primary 

barrier to the spread of chromatin decondensation, at least at the nucleosomal 

level, and add to my limited knowledge of the chromatin architecture of a puff. 

Previous results, combined with ours, indicate that transcription-

independent chromatin decondensation may prove more general.  Changes in 

chromatin structure independent of transcription have been implicated at 

Hsp70 in humans (Brown and Kingston, 1997) and also at developmentally 

regulated puffs in Drosophila (Crowley et al., 1984).  Furthermore, my results 

indicate that the changes in chromatin at D. melanogaster Hsp70 do not 

depend on many different transcription factors.  In Saccharomyces cerevisiae, 

many HS genes also lose histone density within the body of the gene by 2 

minutes of HS (Zhao et al., 2005), and as in my study, these changes are 

independent of SWI/SNF, Gcn5, and Paf1.  Overall, transcription-independent 

chromatin decondensation might allow cells to rapidly activate genes by 

clearing the obstacles in the path of Pol II prior to its movement, together with 

its entourage of elongation factors, through the gene. 

My results show that in addition to HSF and GAF, which have 

previously been implicated in the decondensation at Hsp70 loci (Shopland et 

al., 1995), PARP is also necessary for rapid changes in the nucleosome 
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architecture of Hsp70.  This is consistent with the finding that reduction of 

PARP expression results in decreased HS puff sizes (Tulin and Spradling, 

2003).  My results go further in demonstrating that PARP aids the rapid 

removal of nucleosomes within 2 minutes of HS.  Poly(ADP-Ribose) (PAR) 

polymers are the enzymatic product of PARP and have similar chemical and 

structural features as a nucleic acid (D'Amours et al., 1999).  Upon activation, 

PARP polyribosylates itself, which results in PARP’s release from chromatin 

(Wacker et al., 2007).  The result of this could be two fold.  First, since PARP 

binds to nucleosomes in a similarly repressive manner as linker histone H1 

(Kim et al., 2004), the activation of PARP could result in its release from 

chromatin to reverse any repressive effects on the chromatin structure at 

Hsp70.  Second, the ADP-ribosylation of histones may destabilize the 

nucleosome, and the creation of these PAR polymers could act locally as a 

nucleic acid that attracts and removes histones from the body of the Hsp70 

gene.  Alternatively, PARP could covalently modify another protein to activate 

its role in removal of nucleosomes. 

In addition to histones, PAR could also attract transcription factors that 

bind nucleic acids.  This could explain the rapid recruitment of Pol II and other 

important transcription factors to the site of active HS transcription (Boehm et 

al., 2003).  Likewise, PAR could also provide a means through which 

transcription factors recruited to the gene are then retained locally (Yao et al., 

2007).  The activation of PARP could thus provide a rapid, transcription-

independent method to deplete histones and promote transcription of the 
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Hsp70 gene. 

2.4 EXPERIMENTAL PROCEDURES 

2.4.1 ChIP 

D. melanogaster S2 cells were grown in M3+BPYE media + 10% FBS 

(Invitrogen) to 5-7 x 106 cells/mL.  Heat shocks were performed as in (Boehm 

et al., 2003).  Briefly, an equal volume of M3+BPYE media that was preheated 

to 48 ˚C was added to an Erlenmeyer flask containing the S2 cells while under 

constant, slow swirling.  The flask was then placed into a preheated incubator 

at 37 ˚C for the indicated time, except for the 5 second treatment in which 

cooling directly follows addition of the preheated media.  After heat shock, the 

S2 cells were taken out of the 37 ˚C incubator and an equal volume of 

M3+BPYE media prechilled on ice is added to the flask while being swirled 

slowly and constantly.  The cells were then immediately crosslinked at a final 

concentration of 1% formaldehyde for 1 minute at room temperature by the 

addition of 16% paraformaldehyde (Electron Microscopy Sciences).  Cross 

linking was quenched by the addition of 2.5M glycine to the final concentration 

of 125 mM for 6-10’ at room temperature, while being constantly swirled.  

Cross linked cells were resuspended to 1 x 108 cells/mL in sonication buffer 

(0.5% SDS, 20mM Tris pH 8.0, 2mM EDTA, 0.5 mM EGTA, 0.5 mM PMSF, 

and 1 complete protease inhibitor tablet/10mL) and incubated on ice for 10’ 

prior to sonication.  Extracts were sonicated at 4˚C on the high sonication 
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setting of the Bioruptor (Diagenode) using one 15 minute followed by three 5 

minute intervals of 20” bursts followed by 1’ of inactivity (corresponding to 24 

total bursts) to receive average fragment sizes of 400bp.  Sonicated material 

was then centrifuged at 20,800 rcf for 10’ at 4˚C to remove debris.  Extract 

corresponding to 2.5 x 106 cells was diluted 20 fold in ChIP dilution buffer (0.5 

% Triton X-100, 2 mM EDTA, 20 mM Tris pH8.0, 150 mM NaCl, 10% glycerol) 

for all IP’s excluding H3 in which only 0.5 x 106 cells were used.  An input of 

2.5 x 106 cells was saved at -20˚C and processed with the IP samples at the 

point of reversing cross links.  Each IP was precleared with 30 µL of Protein-A 

conjugated agarose beads (Upstate), equilibrated in IP buffer, for 1-2 hours at 

4˚C.  The precleared extract was collected by centrifugation for 1’ at 1,000 rcf 

and to the supernatant the following amount of antibody per IP was used: 4 µL 

rabbit anti-Rpb3 (Adelman et al., 2006), 2 µL rabbit anti-HSF (Boehm et al., 

2003), and 2 µL rabbit anti-Histone H3-ChIP grade (Abcam ab1791).  60 µL of 

Protein-A conjugated agarose beads, equilibrated in IP buffer, were added 

and was allowed to IP overnight at 4˚C in 1.7 mL tubes on a rotating epindorf 

tube holder at 8 rpm.  The beads were then washed with three 1 mL low salt 

washes (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris pH 8.0, 150 

mM NaCl), three 1 mL high salt washes (same as low salt except 500 mM 

NaCl), two 1 mL LiCl washes (1 mM EDTA, 10 mM Tris pH 8.0, 0.25M LiCl, 

1% NP-40, 1% NaDeoxycholate), and two 1 mL TE washes at 4˚C.  Each 

wash was minimally 1’ in length and after centrifugation at 1000 rcf for 1’ the 

supernatant was discarded, always leaving 250 uL of supernatant above the 
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beads.  The material was eluted sequentially with two 250 µL 15 minute 

washes with elution buffer (1% SDS and 100 mM NaHCO3).  500 uL of elution 

buffer was then added to the frozen input material from the day before.  20 uL 

of 5 M NaCl was added to each elution and cross links were reversed for, 

minimally, 4 hours at 65˚C, followed by a 30’ proteinase K digestion (2 µL of 

20 mg/mL proteinase-K (Invitrogen) and 7.5 µL of 2 M Tris pH 8.0) at 37˚C.  

The material was extracted with an equal volume of phenol/chloroform and 1 

mL of 100% ethanol and 1 µL of GlycoBlue (Ambion) were added to the 

aqueous layer.  The sample was allowed to precipitate at room temperature 

for 10’ before centrifugation at 20,800 rcf at 4˚C for 20’.  IP pellets were 

resuspended in 100 µL of 10 mM Tris pH 8.0 to be used for quantitative PCR 

analysis.  Inputs were resuspended in 30 uL of 10 mM Tris pH 8.0 and split 

into two.  One sample was digested with 1 µL RNase Cocktail (Ambion) at 37 

˚C for 30’ and visualized on a 1.3% agarose gel for fragment sizes.  The other 

was brought up to a volume of 500 µL to be used for inputs to the quantitative 

PCR analysis, which was the equivalent of 10% of the input material. 

2.4.2 High-resolution MNase Mapping 

The same procedure for ChIP was used up until resuspension in sonication 

buffer.  At this point, cross-linked cells were resuspended in hypertonic buffer 

A (300 mM sucrose, 2 mM Mg Acetate, 3 mM CaCl2, 10 mM Tris pH 8.0, 0.1% 

Triton X-100, and 0.5 mM DTT) to 1 x 108 cells/mL, incubated on ice for 5’, 

and dounced 20 times with a 2 mL dounce homogenizer (tight pestle, 
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Wheaton).  Nuclei were collected by centrifuging at 4 ˚C for 5’ at 720 g.  The 

pellets were washed twice in buffer A, and then resuspended in buffer D (25% 

glycerol, 5 mM Mg Acetate, 50 mM Tris pH 8.0, 0.1 mM EDTA, 5 mM DTT) at 

1 x 108 nuclei/mL.  Chromatin was collected by centrifuging at 4 ˚C for 5’ at 

720 g.  The pellets were washed twice in buffer D and then resuspended in 

buffer MN (60 mM KCl, 15 mM NaCl, 15 mM Tris pH 7.4, 0.5 mM DTT, 0.25 M 

sucrose, 1.0 mM CaCl2) at 1 x 108 nuclei/mL.  The equivalent of 2 x 107 nuclei 

was used per MNase reaction.  MNase (USB), diluted in buffer MN, was 

added so that 0, 0.5, 5, 50, and 500 total units were used per reaction and 

timed for 30’ at room temperature.  Reactions were stopped with the addition 

of EDTA and SDS to final concentrations of 12.5 mM and 0.5% respectively.  

The equivalent of 5 x 106 nuclei was removed and processed like ChIP 

samples from the point of elution from the beads. 

2.4.3 Quantitative Real-Time PCR Analysis 

ChIP and RT-qPCR primer sets have previously been characterized as in 

(Adelman et al., 2006).  Real-Time PCR was performed as in (Ni et al., 2007).  

For ChIP samples, a standard curve was generated by serially diluting input 

samples tenfold to quantify IP samples with a 10%, 1%, 0.1%, and 0.01% 

input.  For MNase digests, a fold difference was calculated (Schmittgen et al., 

2000) between MNase treated and untreated samples.  All values used were 

collected from the linear range of amplification.  Each qPCR well contained the 

following mix: 4 µL of DNA sample, 1.33 µL of the 5 µM forward qPCR primer, 
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1.33 µL of the 5 µM reverse qPCR primer, 3.34 µL ddH2O, and 10 µL of 2x 

Sybr Green Mix.  2x Sybr Green mix consists of 950 µL of (1.7% glycerol, 12 

mM Tris pH 8.0, 50 mM KCl, 5 mM MgCl2, 165 mM (+)-Trehalose, 200 µg/mL 

ultrapure nonacetylated BSA (Ambion), 0.14x Sybr Green (Invitrogen)), 40 µL 

of lab prepared qPCR hot-start-TAQ polymerase, and 10 µL of 25 mM dNTP 

mix (Roche) containing equimolar amounts of dATP, dTTP, dCTP, and dGTP. 

2.4.4 Chemical Treatments 

All chemicals were added to S2 cells in media, at final concentrations of 125 

µM DRB (Sigma), 10 mM Sodium Salicylate, and 300 nM PJ34 (Alex 

Biochemicals) and allowed to mix for 10’ at room temperature.  Cells were 

then collected following NHS or 2’ HS conditions outlined in the ChIP section. 

2.4.5 dsRNA Generation 

To generate the dsRNA used for the RNAi treatment of S2 cells, the T7 RNA 

polymerase recognition sequence was added to the 5’ ends of primers that 

were used to amplify >200 bp of the corresponding cDNA of the targeted 

mRNA that limited off-target effects.  Genomic or cDNA from S2 cells was 

used to amplify the corresponding region targeted for RNAi.  RNAi primers and 

RefSeq DNA Identifiers for all knockdowns are provided in Table 8.  For 1 T7 

reaction the following was added together: 8.75 uL DEPC treated water, 6 uL 

of 25 mM rNTPs (all 4 in equimolar amounts, Roche), 2 uL of 10x T7 reaction 

buffer (400 mM Tris-Cl pH8.0, 100 mM DTT, 20 mM spermidine-HCl, 200 mM 
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MgCl2), 0.25 uL of PCR purified DNA template (100 ng/ uL), 0.5 uL 

SUPERaseIN (Ambion), 0.5 uL PPiase (100 U/mL, NEB), and 2 uL of a 1:20 

dilution in DEPC water of lab stock T7 enzyme.  Incubate the reaction at 37 ˚C 

for 16 hours. 1ul of DNaseI (RNase free, Ambion) is then added and incubated 

for 15-30’ at 37 ˚C.  20ul NH4Ac and 155 ul sterile ddH2O (DEPC treated) are 

added for a single reaction or 50 ul NH4Ac and sterile ddH2O (DEPC treated) 

up to 500 ul for up to 5 reactions are added to aid precipitation.  The solution is 

extracted twice with acid phenol:chloroform and precipitated by adding 2 

volumes of 100% ethanol and incubated at room temperature for 10’.  The 

solution is centrifuged at 20,000 rcf for 20’ at 4 C and the dried pellet is 

resuspended in 30-100 uL of ddH2O (DEPC treated).  The dsRNA is annealed 

by incubating at 90 ˚C for 3’, transferred to 75 ˚C for 3’, and then allowed to 

cool to room temperature in water taken out from the 75 ˚C water bath.  

2.4.6 RNAi Treatments 

All RNAi treatments were preformed as in (Adelman et al., 2005) except 

knockdown was allowed to proceed for 96 hours.  Briefly, S2 cells were grown 

to ~6x106 cells/mL and split to 2x106 cells/mL in M3+BPYE media without 

FBS.  2.5 mL of the corresponding 2x106 cells/mL were added to a T-25 cm2 

flask containing 50 ug of the corresponding dsRNA.  S2 cells were treated with 

double stranded RNA targeting either the coding sequence of the listed factor 

or β-galactosidase (LacZ, as a negative control).  The flask was allowed to 

rest in the cell culture incubator for 1 hour before addition of an equal amount 
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of volume, 2.5 mL, of M3+BPYE media + 20%FBS.  After 96 hours, cells were 

collected and split into NHS and 2’ HS samples to be processed using the high 

resolution MNase assay. 

2.4.7 mRNA Expression Analysis 

All mRNA expression analyses were as performed in (Adelman et al., 2006).  

Briefly, total RNA was isolated (following the protocol set out by Qiagen 

RNeasy kits) from PARP RNAi and LacZ RNAi S2 cells following 2, 5, and 20 

minutes of HS.  Hsp70 levels were determined from oligo dT mediated 

quantitative real-time reverse transcription-PCR.  25.2 ul of 20 uM oligo(dT) 

primer was mixed with 720ng RNA in 18ul (for 3 RT reactions, for 2 duplicates, 

and 1 no RT reaction). The samples were incubated at 80 ˚C for 5 minutes 

and then chilled on ice.  To 12 uL of the primer/RNA mix 8 uL of the RT mix 

was added (4 uL 5x first strand buffer, 1 uL 0.1 M DTT, 1 uL 10 mM dNTPs, 

1.7 uL DEPC-treated sterile ddH2O, and 0.3 uL SuperscriptIII reverse 

transcriptase (Invitrogen) (or 0.3 uL of DEPC-treated sterile ddH2O for the no 

RT control). The mixture was incubated at 42 ˚C for 15’ and then at 50 ˚C for 

45 additional minutes.  To each sample 5 uL of the corresponding mix was 

added to degrade the RNA (4.7 uL sterile ddH2O, 0.15 uL of RNaseH 

(Ambion), and 0.15 uL RNase cocktail (Ambion)) and incubated at 37 ˚C for 

30’.  Each sample was brought up to a final volume of 200 uL in ddH2O.  

Three serial tenfold dilutions of the control were used to quantify each 

experimental sample using qPCR and the corresponding primer sets to 
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measure the gene in question along with the stable ribosomal protein RpL32 

gene (Rp49) to internally standardize for the amount of RNA. 

2.4.8 Western Blots 

Western blots were performed using standard conditions, and input dilutions 

were used as a quantitative indication of signal linearity.  Antibody lab stocks 

were used at the following dilutions: HSF 1:2000 (Shopland et al., 1995), 

1:1000 GAF (O'Brien et al., 1995), 1:3000 TFIIS (Adelman et al., 2005), 

1:2000 Paf1 (Adelman et al., 2006),1:1000  Spt6 (Andrulis et al., 2000), 

1:2000 Cyclin T (Lis et al., 2000), 1:5000 ERCC3, an antibody raised in guinea 

pig to full length Ercc3 by Pocono Rabbit Farms and Laboratory Inc., 1:1000 

Topo1 (Fleischmann et al., 1984), and 1:2000 Spt16 (Saunders et al., 2003).  

Rabbit anti-Parp serum raised to recognize the C-terminus (Kim et al., 2004) 

was a gift of W. Lee Kraus and used at a 1:1000 dilution. 

2.5 PRIMER SETS USED 

Table 4. Primer Sets Used for MNase Scanning Assay with Respect to 
the Transcription Start Site of Hsp70Ab 

5' Start 
location Forward 

-190 TCTCTGGCCGTTATTCTCTATTCG 

-163 TTGTGACTCTCCCTCTTTGT 

-140 TTGCTCTCTCACTCTGTCACAC 

-116 TAAACGGCGCACTGTTCTCGTTG 

-85 AGAGCGCGCCTCGAATGTT 

-56 GCGCCGGAGTATAAATAGAGGA 

-25 CGGAGAGTCAATTCTATTCAAACA 

15 CGCTAAGCGAAAGCTAAGCAA 

40 ACAAGCGCAGCTGAACAAGCTA 
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71 GCAATAAAGTGCAAGTTAAAGTGA 

103 AAAGTAACCAACAACCAAGTAA 

135 ACTGCAACTACTGAAATCAACCAAG 

171 TGAAGACAAGAAGAGAACTCTGAA 

197 CTTTCAACAAGTCGTTACCGAGG 

223 AGAACTCACACACAATGCCTGC 

247 ATTGGAATCGATCTGGGCAC 

280 TGGGTGTCTACCAACATGGCAA 

310 ATTATCGCCAACGACCAGGGCAA 

344 CGTCCTACGTGGCTTTCACAGATT 

377 TCATCGGCGATCCGGCTAAGAA 

393 TAAGAACCAGGTGGCCATGA 

427 TGTTTGACGCCAAGCGACTGAT 

469 CCAAGATCGCAGAGGACATGAA 

490 AGCACTGGCCTTTCAAGGTTGT 

517 ACGGCGGAAAGCCCAAGAT 

550 AGGGTGAGTCCAAGAGATTTGC 

583 TCAGCTCGATGGTACTGACCAA 

609 AAGGAGACGGCGGAGGCATATCT 

639 AGCATCACAGACGCAGTCATCA 

668 AGCCTACTTCAACGACTCCCA 

698 TACCAAAGACGCCGGTCACAT 

728 GAATGTGCTCCGCATCATCAA 

763 CAGCACTGGCCTACGGACT 

789 AACCTCAAGGGTGAGCGCAAT 

814 TTATCTTCGACTTGGGCGGCG 

844 ATGTCTCCATCCTGACCATCGAC 

872 ATCACTGTTCGAGGTGCGCT 

908 ACACTTGGGCGGCGAGGACTTT 

933 AACCGGCTAGTCACTCATCT 

970 GCAAGTACAAGAAGGATCTGCGCT 

1004 CGCCCTACGACGCCTCAGAACA 

1025 AGCAGCTGAACGGGCCAA 

1062 ACGGAGGCCACCATCGAGATT 

1093 TTGAGGGCCAAGACTTCTACACCA 

1116 AAAGTGAGCCGCGCCAGGTTT 

1152 GACCTCTTCCGCAACACCCT 

1183 AGAAGGCCCTCAACGATGCCAA 

1211 TAAGGGTCAGATCCACGACATC 

1240 TCGGCGGATCCACTCGCATT 

1275 CTGCTGCAGGACTTCTTCCACG 

1301 GAACCTCAACCTATCCATCAACCC 
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1325 AGACGAGGCAGTTGCATACGGA 

1362 GCTATCCTCAGCGGAGACCAGA 

1389 AAGATCCAGGACGTGCTGCTG 

1422 CCACTTTCATTGGGAATTGAGACCGC 

1448 TGGAGGTGTAATGACCAAGCTG 

1479 AACTGCCGCATTCCGTGCAA 

1512 TTCTCCACATACGCGGACAACCA 

1543 TCTCCATTCAGGTGTATGAGGGC 

1570 GTGCGATGACGAAGGACAACAA 

1602 ACCTTCGATCTGTCCGGCATT 

1621 TTCCACCTGCACCAAGGG 

1663 TCGACTTGGACGCCAATGGAAT 

1687 TGAACGTCAGCGCCAAGGAGAT 

1717 GCAAGGCCAAGAACATCACGATCA 

1757 GCTCTCGCAGGCCGAGATTGAT 

1780 GCATGGTGAACGAGGCTGAAA 

1810 ACGAGGACGAGAAGCATCGCCA 

1839 ACCTCTAGAAATGCCCTGGAGA 

1867 TCTTCAATGTGAAGCAGGCCGT 

1898 ACCTGCTGGCAAATTGGACGA 

1929 AACTCCGTCTTGGACAAGTGC 

1958 TATCCGGTGGCTGGACA 

1990 AGAAGGAGGAGTTCGACCACAA 

2017 AGGAGCTCACCCGCCACT 

2049 ACCAAGATGCATCAGCAGGGTG 

2081 AGCTGGTGGTCCGGGAGCAAA 

2110 AGCAGGCGGGAGGATTT 

2133 TACTCTGGACCCACGGTCGA 

2165 AGGCCAAAGAGTCTAATTTT 

2195 TGGGTTATAACATATGGGT 

2242 AGACTGATAAGAATGTTTCG 

2264 CGAATATTCCATAGAACAAC 

2288 GTATTACCTAATTACCAAGTCT 

2318 CAAAAATGTTATTGCTTATAG 

2348 ATTATTTATTTGAAATTTAAAGT 

2371 CAACTTGTCATTTAATGTTTT 

2401 TGAAAGTCTTACGATACAATT 

2432 ATACATGGGTTCATTCTACA 

2461 AGTGATGATTTCTTTAGCTAG 

2501 TCGGCTTTGATGATTTTCTG 

2528 CCGAACGGATTTTCGTAGACCCTTT 

2564 TGGCTCATTTTATTGCGATG 
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2586 CGGTCAGGAGAGCTCCACTTT 

2617 TTCGCAGACACCGCATTTGTAGCA 

2647 CGGGACATCCGGTTTGGG 

2676 GTCTCTGTTGCAATTGGT 

2707 TTGCAGGCGCATACGCTCTATATC 

2741 CGCTGGTTGACCCTAGCATTTACA 

2781 AATTTGCCTCTACTTCATTGCCCG 

2810 AGCAGGCGGGAGGATTTGGA 

  
 3667 AGCTGAACAGTCTTGGTCTCCA 

3702 TTTCCACGTGCTGTTCGGCAAA 

3726 ACGTGGACAGGTATTGTGCCAT 

3758 TCGTCTTGGTCTATAAGCTCCACG 

3791 TGAACTTCATCCGGCTTGGCA 

3821 TGTTGCTCGAAGAGATTCTGTAAAGT 

  
 4673 TCGGCTTTCATTGTTAACTGACC 

4707 CTGTTCTGTTAGTTGTCGAGTGCC 

4713 TGTTAGTTGTCGAGTGCCTGTG 

4758 CATGTGCTGCGTCCCAAGGAAA 

4778 AAATGCTCCGCACAGAATGCCA 

  
 -8480 ACGCTACTCCGGTGCCCAT   

-8446 GCCGCCCATCATCAGCAATTT  

-8427 TTGCGAGAATACCACCAGCAGA  

-8402 TAGCAATGCCGGTGCCCAGTGT  

-8368 ATTTCCGCAACTAGAGGAGCAC  

-8330 ACATGGACGATGAGAATGATCGGG 

-8284 ACCGCCAGCACCTTTGGTTA 

  
 -11840 CCAACCATGCAGCCGTATACCAAA 

-11789 TAACATAATTGAGGCACCCGGC 

-11775 CACCCGGCCGTTGAATGTTT 

-11744 TGAGCAGAAAGCGAAGACCTGA 

-11720 ATACGGGAGGTGAAACATGGAGCA 
 
 

5' Start 
location Reverse 

-95 AACGAGAACAGTGCGCCGTTTA 

-61 TTCGCGAACATTCGAGGCG 

-37 CCTCTATTTATACTCCGGCGCTCT 
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-5 TGAATAGAATTGACTCTCCGTCG 

18 GCGATGTGTTCACTTTGCTTG 

50 GCTGCGCTTGTTTGTTTGCT 

84 CTTGCACTTTATTGCAGATTGT 

121 ACTTGGTTGTTGGTTACTTT 

130 GTTTAATTACTTGGTTGTTGGTTAC 

163 CTTCTTGGTTGATTTCAGTAGTTGC 

193 TCAGAGTTCTCTTCTTGTCTTC 

236 TGTGTGTGAGTTCTTCTTCCTCGG 

261 CAGATCGATTCCAATAGCAGGC 

296 ATGTTGGTAGACACCCACGCA 

316 GCGATAATCTCCACCTTGCCAT 

359 AAAGCCACGTAGGACGGC 

379 ATGAGGCGTTCCGAATCTGTGA 

412 TTCATGGCCACCTGGTTCTT 

444 TCGCTTGGCGTCAAACACT 

475 TCTTGGGGTCGTCGTATTTT 

496 AGTGCTTCATGTCCTCTGCGAT 

517 TCGCTTACAACCTTGAAAGGCCAG 

561 TGGACTCACCCTTATACTCCAC 

598 AGTACCATCGAGCTGATCTCC 

618 CCGTCTCCTTCATCTTGGTCAGTA 

648 CTGTGATGCTCTCGCCCAGATA 

681 CGTTGAAGTAGGCTGGAACTGT 

706 TCTTTGGTAGCCTGGCGCT 

745 ATGATGCGGAGCACATTCAGGC 

764 TGCCGCCGTGGGCTCATT 

800 ACCCTTGAGGTTCTTGTCCAGT 

830 GCCCAAGTCGAAGATAAGCACA 

861 TGGTCAGGATGGAGACATCGAA 

891 AGCGCACCTCGAACAGTGAT 

916 CCCAAGTGTGTGTCTCCGGC 

947 AGTGACTAGCCGGTTGTCAAAG 

979 TTGTACTTGCGCTTGAACTCGTCC 

1013 TCGTAGGGCGCGAGGGTT 

1038 CCCGTTCAGCTGCTGTTCTGA 

1066 TCCGTGCTGGAGGAGAGTGT 

1103 TTGGCCCTCAAACAGTGCGTCAAT 

1126 CGGCTCACTTTGGTGTAGAAGT 

1154 GTCCGCGCACAGCTCCTCAAA 

1195 TTGAGGGCCTTCTCCACAGGCT 

1219 TGACCCTTATCCATCTTGGCATCG 
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1248 ATCCGCCGACGAGCACGATGT 

1279 AGCAGACTTTGCACCTTGGGAA 

1314 ATAGGTTGAGGTTCTTGCCGTG 

1342 TATGCAACTGCCTCGTCTGGGTT 

1370 GAGGATAGCGGCCTGCACAGCA 

1396 TGGATCTTGCCGCTCTGGTCT 

1432 AATGAAAGTGGGGCCACGTC 

1458 TTACACCTCCAGCGGTCTCAAT 

1490 AATGCGGCAGTTGCGCTCGAT 

1520 TGTGGAGAACGTCTTAGTCTGC 

1550 AATGGAGACTCCGGGCTGGTT 

1578 TCATCGCACGTTCGCCCTCATA 

1614 ACAGATCGAAGGTGCCCAATGC 

1638 CCCTTGGTGCAGGTGGAAT 

1667 GTCGAAGGTAACTTCTATCTGGG 

1698 CGCTGACGTTCAGGATTCCATT 

1725 TGGCCTTGCCCGTGCTCAT 

1761 AGAGCCGTCCCTTGTCGTTCTT 

1789 TTCACCATGCGATCAATCTCGG 

1819 TCGTCCTCGTCGGCGTACTTT 

1854 GGCATTTCTAGAGGTTATTCGCTGGC 

1884 CCTGCTTCACATTGAAGACGTAGC 

1910 TTTGCCAGCAGGTGCCTGTTCC 

1939 AAGACGGAGTTCTTGTCAGCCT 

1969 AGCCACCGGATAGTGTCGTT 

2002 AACTCCTCCTTCTCGGCAGTGG 

2028 GGGTGAGCTCCTCCAGCTT 

2064 GCTGATGCATCTTGGTCAT 

2090 ACCACCAGCTCCAGCTCC 

2114 CTGCTGGCCGCAGTTTGCT 

2145 TGGGTCCAGAGTAGCCTCCAAAT 

2179 TAGACTCTTTGGCCTTAGTCGACCTC 

2211 CCATATGTTATAACCCATTGATGAAC 

2230 AACAAACTTATAATATAACCCA 

2261 CGAAACATTCTTATCAGTCT 

2297 TAGGTAATACTATTGTTGTTCTATGG 

2336 ATAAGCAATAACATTTTTGC 

2370 ACTTTAAATTTCAAATAAATAAT 

2390 AAACATTAAATGACAAGTTGA 

2415 ATCGTAAGACTTTCAAAAGT 

2451 TGTAGAATGAACCCATGTAT 

2471 AAATCATCACTAATATAGAATGTAG 
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2501 AATATAATTAAAATGTATTACTAGC 

2531 TCGGAAAAAATCAGAAAATC 

2562 AGTGATGATTTCTTTAGCTAG 

2607 AAAAGTGGAGCTCTCCTGAC 

2631 TGCGGTGTCTGCGAACAGAA 

2670 AATCTCCCCAAACCGGATGT 

2692 CCAATTGCAACAGAGACTGG 

2718 ATGCGCCTGCAACGCATTCCCGAAA 

2748 AACCAGCGCCGTTCGGAGGATATAGA 

2778 GCTGCTGATCCTTATGTAAATGC 

2807 TTCCGGGCAATGAAGTAGAGGCAA 

2839 TCGTAACCGAAAGGGACATCTG 

2874 GAGAGCTTTGTGTGCGGTTCG 

2905 GTTATAACCCATTGATGAAC 

  
 3763 AGACGATGTGGTCAGTATGGCA 

3792 TCATGTGGATGTCGTGGAGCTT 

3827 AGCAACAGGAAGTTGCTGCCAA 

3856 CGCCCATGAAACTTTACAGAATCTC 

3884 CCTATGAGTTCATCGTCGAAGTGG 

3920 CTGCCTATGCATCTGTGTCAAA 

  
 4762 ACATGGTCAGACGGATGGGACAT 

4789 TGGCATTCTGTGCGGAGCATTT 

4812 TTCTGGCATTCTGTGCGGAGCATT 

4848 CGTACCTTCTTTCCCAATAGCAAG 

4875 GCTGCACTCCAGAGATTTACCA 

  
 -8390 ACCGGCATTGCTAGCGTCT   

-8348 TGCTCCTCTAGTTGCGGAAATC  

-8320 ATCGTCCATGTCCATATCCGCCT   

-8308 CCGATCATTCTCATCGTCCATGTCCA  

-8265 TAACCAAAGGTGCTGGCGGT  

-8222 ATCTGACCAGCCACTTCGGT 

-8190 TCTACAAACCCGCTCCGTTGGA 

  
 -11732 CGCTTTCTGCTCATCAAAGCAC 

-11699 CTCCATGTTTCACCTCCCGTAT 

-11686 TCCCAACTCTCTGCTCCATGTT 

-11655 TAGCCCTCCATCGCCATCTGCAT 

-11618 TCCATCGTTGTTCTGCCAAGCG 
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Table 5. Primer Sets Used for MNase Scanning Assay with Respect to 
the Transcription Start Site of Hsp26 

5' Start 
location Forward 

-13 TGTCACTTTCCGGACTCTTCT 

29 AAAGCAGCGTCGCTTGACGAACA 

75 CGAGCAGTGAACAACTCAAAGC 

110 AGCAAAACTTCAAACGAGAA 

151 GCTTACAAGTCAAACAAGTTCATTC 

196 ATTTCAATCTCGCAAAAGGAAC 

241 TGTCGCTATCTACTCTGCTTTCGC 

298 TCTACGAGCTTGGACTGGGATT 

  746 CAAGTCCAAGGAGCGCATCATTCA 

766 TTCAAATTCAGCAAGTGGGACCCG 

808 CAAATGAAAGCGAGGTGAAGGGCA 

850 ACGGCAAGGACAAGTAAAGGAG 

871 GCCATCATCATCCAACATCATCCA 
 
 

5' Start 
location Reverse 

96 GCTTTGAGTTGTTCACTGCTCG 

108 TTGCGCAAAGTTGCTTTGAGTTGT 

169 ACTTGTTTGACTTGTAAGCAAAGGT 

216 TTCCTTTTGCGAGATTGAAA 

260 AAGCAGAGTAGATAGCGACATTTT 

308 AAGCTCGTAGATGGGGCTGC 

330 AATGCGGATGCAATCCCAGTCCAA 

389 GCAAGGGCATCCGTTGATGGAA 

  
 831 TGCCCTTCACCTCGCTTTCATTTG 

867 TTTACTTGTCCTTGCCGTTGGGTG 

893 GGATGATGTTGGATGATGATGGCTCC 

931 GCAATAAATTAGGAACAATTAAGTAGGG 

956 GTCTTTAGCTCATTACAAATACAATGC 
 

Table 6. Primer Sets Used for RT-qPCR  

Gene Forward 

Hsp70 TGGACGAGGCTGACAAGAACT 

Aurora AAACTGCCGGAGCACATTTCCA 
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CG3281 ATGTCCCGGCTATGTGCTACAA 

CG31211 ATGATCATGGCAGCAACCGTAG 
 
 

 Gene Reverse 

Hsp70 ACCGGATAGTGTCGTTGCACTT 

Aurora ATCCAAGGATGCACCATCACCT 

CG3281 TTATTGCGATGGACGGTCAGGA 

CG31211 TATGCTTTCGAGCTGGAGTGGT 

  

  Table 7. Primer Sets Used for ChIP of scs/scs’ 

 
 

Gene Forward 

Aurora GTCACGATATTCTTCAACCAACCG 

CG3281 ATCGGGCATCTCTGAACATCAGGT 

CG31211 TCATATGAGCGACCCGCTGTTAC 
 

Gene Reverse 

Aurora TTGAATTGTGAAGCGGGCGTGT 

CG3281 TGGATCTCCGGTGTGTCCATGATT 

CG31211 TTCGTCGCCTTCTACGCCATTT 
 

 

  

 Table 8. Primer Sets Used for RNAi 

Gene 
Name Forward 

LacZ 
GAATTAATACGACTCACTATAGGGAGAGATATCCTGCTGAT
GAAGC 

HSF 
GAATTAATACGACTCACTATAGGGAGAGCCTTCCAGGAGAA
TGCA 

GAF 
GAATTAATACGACTCACTATAGGGATGGTTATGTTGGCTGG
CGTCAA 

CBP 
GAATTAATACGACTCACTATAGGGATGGCAACATTCCAGCA
CCACT 

Med15 
GAATTAATACGACTCACTATAGGGATGCCGGCGTTATGGAG
AACC 

Med23 
GAATTAATACGACTCACTATAGGGATCATTCGCCTCCGTCAT
CTCCAT 

Gcn5 GAATTAATACGACTCACTATAGGGATAGGGATCCAGTTCCA
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GCATGAACGAGCTA 

Tra1 
GAATTAATACGACTCACTATAGGGACTTCACCTCTGTTTGCC
ACTGTTC 

Spt3 
GAATTAATACGACTCACTATAGGGATCACTGCTCACAGAGA
TTGCGGAT 

Ubp8 
GAATTAATACGACTCACTATAGGGACATATGCGCGCGTGTG
TATGTGTT 

PTEF-b 
(Cyclin T) 

GAATTAATACGACTCACTATAGGGAGACGTGGTGGATATCC
AGGC 

Paf1 
GAATTAATACGACTCACTATAGGGACGTAACTTCAAGTATGA
CGTGCTGACGG 

FACT 
(Spt16) 

GAATTAATACGACTCACTATAGGGAGCTGCGAGGCTGCCAT
TGGCG 

Spt6 
GAATTAATACGACTCACTATAGGGACCGTAACCCCGGTGCC
CGAGG 

Swi/Snf 
(Brm) 

GAATTAATACGACTCACTATAGGGACAGACGTACTACAGCA
TCGCTCATAC 

ISWI 
GAATTAATACGACTCACTATAGGGAGCTATGGATCGTGCTC
ATCGTATTGGTC 

Nurf301 
GAATTAATACGACTCACTATAGGGAACGCCATCTGTCCCAT
AAGTTCTC 

MI-2 
GAATTAATACGACTCACTATAGGGAAGAAGAAACCTCGTCG
TAAGCGCA 

Chd1 
GAATTAATACGACTCACTATAGGGAAGTGCGAAACCATAGA
GCGTATCC 

Kismet 
GAATTAATACGACTCACTATAGGGAACTGGCGCCTTTGTGT
GATTGATG 

HIRA 
GAATTAATACGACTCACTATAGGGATAGCGATTGCTGTTGC
CTCAA 

Asf1 
GAATTAATACGACTCACTATAGGGATTTGTGCGAAGACAAG
CGGA 

PARP 
GAATTAATACGACTCACTATAGGGATGATGCCTACTTCAGG
TTTCGC 

HDAC3 
GAATTAATACGACTCACTATAGGGATGACATCGTCATCGGC
ATTCTGGA 

Topo1 
GAATTAATACGACTCACTATAGGGAAAGAGCAGCAGTTCGT
CGTCAA 

Topo2 
GAATTAATACGACTCACTATAGGGATCAGCCAAGTCATTGG
CCGTAT 

TFIIH 
(ERCC3) 

GAATTAATACGACTCACTATAGGGAACTGGTGGACGACAAT
GATACTTTGGATG 

Beaf-32 
GAATTAATACGACTCACTATAGGGATATTACCAAGGCCAAG
ACGCTGA 

Zw5 GAATTAATACGACTCACTATAGGGATACACAAATGTCAAGC
CGCACCA 
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Gene 
Name Reverse 

LacZ 
GAATTAATACGACTCACTATAGGGAGAGCAGGAGCTCGTTA
TCGC 

HSF 
GAATTAATACGACTCACTATAGGGAGAGCTCGTGGATAACC
GGTC 

GAF 
GAATTAATACGACTCACTATAGGGATCTTTACGCGTGGTTTG
CGT 

CBP 
GAATTAATACGACTCACTATAGGGATCTGGACTTGGCCATTT
CGT 

Med15 
GAATTAATACGACTCACTATAGGGAGGCATTTACGTTCATTG
GTC 

Med23 
GAATTAATACGACTCACTATAGGGACAAGGTGCTGATGTGC
GAGAAAC 

Gcn5 
GAATTAATACGACTCACTATAGGGATCACCCACACTGGTCC
TCTTGTTT 

Tra1 
GAATTAATACGACTCACTATAGGGATGACAAGCGGACCGGA
ACTGTAA 

Spt3 
GAATTAATACGACTCACTATAGGGAAATCTTACGGCTGCTCA
TTTGCCG 

Ubp8 
GAATTAATACGACTCACTATAGGGATTTGATAGTGCCGACAA
CCCGTCT 

PTEF-b 
(Cyclin T) 

GAATTAATACGACTCACTATAGGGAGAGGGCCCACTAGCCA
AACTGG 

Paf1 
GAATTAATACGACTCACTATAGGGAGTTGTACTCTCGAGCG
ATCTTGTACTCG 

FACT 
(Spt16) 

GAATTAATACGACTCACTATAGGGACAGCTCGCGCTGTGCT
CCTTGC 

Spt6 
GAATTAATACGACTCACTATAGGGAGGCTCTTGTGCCAGCT
GTCGG 

Swi/Snf 
(Brm) 

GAATTAATACGACTCACTATAGGGAGACGACGAATGATAAG
GATGCTCTCC 

ISWI 
GAATTAATACGACTCACTATAGGGAGATTCTCCTTCTCCTGG
ATCTCTTCCTC 

Nurf301 
GAATTAATACGACTCACTATAGGGAAGAAGCCATCTGCTCC
TCGAC 

MI-2 
GAATTAATACGACTCACTATAGGGATGATCTTCTCAGCCTTG
CCAGTGA 

Chd1 
GAATTAATACGACTCACTATAGGGAATCACCGAGTTCTCCTT
GCACCAT 

Kismet 
GAATTAATACGACTCACTATAGGGACACCAGCTTTGGTGCA
AAGGAGAA 

HIRA GAATTAATACGACTCACTATAGGGATAAAGGCGCAATGCAC
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TGCAGAA 

Asf1 
GAATTAATACGACTCACTATAGGGATAAAGAGGCTTTGTTG
GCGGGTT 

PARP 
GAATTAATACGACTCACTATAGGGATTGGCACTATGCATGC
CGATCT 

HDAC3 
GAATTAATACGACTCACTATAGGGAAATCGGGCTTGTCTTG
GTCCTGAT 

Topo1 
GAATTAATACGACTCACTATAGGGATCGTCGTCATCGTCGTT
ATCCA 

Topo2 
GAATTAATACGACTCACTATAGGGAATGGAGCGCTCATTGT
CAGCAT 

TFIIH 
(ERCC3) 

GAATTAATACGACTCACTATAGGGACCCGAATTGAGTAATA
GCCTTGCC 

Beaf-32 
GAATTAATACGACTCACTATAGGGATACGACACGCTGATTT
GCCCATT 

Zw5 
GAATTAATACGACTCACTATAGGGATACAGCACCATCACCA
CTTTGGA 
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CHAPTER 3 ACTIVATOR INDUCED SPREAD OF POLY(ADP-RIBOSE) 

POLYMERASE PROMOTES NUCLEOSOME LOSS AT HSP703 

 Eukaryotic cells possess many transcriptionally regulated mechanisms 

to alleviate the nucleosome barrier. Dramatic changes to the chromatin 

structure of Drosophila melanogaster Hsp70 gene loci are dependent on the 

transcriptional activator, Heat shock factor (HSF), and Poly(ADP-ribose) 

polymerase (PARP). Here I find that PARP is associated with the 5’ end of 

Hsp70, and its enzymatic activity is rapidly induced by heat shock. This 

activation causes PARP to redistribute throughout Hsp70 loci and Poly(ADP-

ribose) to concurrently accumulate in the wake of PARP’s spread. HSF is 

necessary for both the activation of PARP’s enzymatic activity and its 

redistribution. Upon heat shock, HSF triggers these PARP activities 

mechanistically by directing Tip60 acetylation of histone H2A lysine 5 at the 5’ 

end of Hsp70 where inactive PARP resides before heat shock. This 

acetylation is critical for the activation and spread of PARP as well as for the 

rapid nucleosome loss over the Hsp70 loci. 

3.1 INTRODUCTION 

Packaging of eukaryotic DNA into the nucleus relies on compaction of 

DNA into nucleosomes and higher order chromatin structures. Consequently, 

critical DNA sequences can be occluded from proteins that function by 

accessing particular DNA elements. Transcription is one such nuclear process 

                                                 
3
 Taken from (Petesch and Lis, 2012a) 
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that can be significantly inhibited by the barriers created by nucleosomes. In 

vitro studies demonstrate that nucleosomes are sufficient to block transcription 

initiation and also impair efficient transcription elongation by RNA Polymerase 

II (Pol II) (Knezetic and Luse, 1986; Lorch et al., 1987).  Genome-wide, in vivo 

studies demonstrate that nucleosome disruption and turnover is greatest at the 

most highly transcribed mRNA encoding genes (Deal et al., 2010). These 

results indicate that eukaryotic cells possess mechanisms to alleviate the 

nucleosomal barrier to efficiently transcribe genes. 

 Addressing how Pol II traverses the nucleosome has resulted in the 

discovery of unique features of transcriptional regulation. Eukaryotes utilize 

five general mechanisms to change the occupancy, position, structure, or 

composition of nucleosomes. First, chromatin-remodeling complexes change 

the position and occupancy of nucleosomes through their ability to slide entire 

nucleosomes as well as remove or transfer individual histones (Saha et al., 

2006). Second, histone chaperones facilitate transcription by the disassembly 

and reassembly of nucleosomes in the path of Pol II (Das et al., 2010). Third, 

the composition of individual histones are changed by the numerous post-

translational modifications including acetylation, methylation, phosphorylation, 

ubiquitination, and sumoylation which can either directly affect chromatin 

structure or promote association of chromatin binding proteins (Taverna et al., 

2007). Fourth, canonical core histones can be replaced by histone variants, 

like H2A.Z, which can change both the composition and structure of chromatin 

(Talbert and Henikoff, 2010). Lastly, many other non-histone proteins that bind 



 

94 

to nucleosomes or naked DNA can synergize or compete with nucleosomes to 

affect position, occupancy, structure, and composition (Gilchrist et al., 2010; 

Saunders et al., 2006). 

Model inducible gene systems continue to elaborate the many ways in 

which these five methods are utilized to coordinate transcription-coupled 

nucleosome changes and thereby regulate changes in gene expression 

(Weake and Workman, 2010). The D. melanogaster heat shock (HS) inducible 

Hsp70 genes employ these methods (Saunders et al., 2006) as well as an 

additional method that leads to rapid loss of nucleosomes extending beyond 

the Hsp70 gene to the flanking scs and scs’ insulator elements (Petesch and 

Lis, 2008). Interestingly, the nucleosome loss that occurs within the first 

minute of HS can be uncoupled from active transcription of Hsp70, whereas 

the additional changes in nucleosome structure by 2 minutes of HS are 

dependent on transcription. A directed RNAi screen identified both Heat shock 

factor (HSF) as well as Poly(ADP-ribose) polymerase (PARP) as factors 

necessary for both transcription-independent and dependent nucleosome loss 

during HS (Petesch and Lis, 2008). Although both HSF and PARP have been 

identified to bring about a rapid change in the entire HS locus independently of 

transcription, the mechanism through which these proteins accomplish this 

feat is still unknown. 

HSF is the master regulatory protein of HS genes and acts as a 

traditional transcriptional activator of HS genes. Within seconds of HS, HSF 

trimerizes and binds to a specific HS DNA element (HSE) repeated multiple 
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times within the promoter of Hsp70 (Boehm et al., 2003). Activated HSF is 

thought to increase transcription by recruiting transcriptional coactivators such 

as the mediator complex, P-TEFb, and histone acetyltransferases (HATs) (Lis 

et al., 2000; Park et al., 2001; Smith et al., 2004). These coactivators are 

thought to facilitate transcription by regulating additional recruitment and 

initiation of Pol II, releasing paused Pol II, or altering the structure and 

composition of nucleosomes to enhance Pol II elongation.  It is yet to be 

determined if HSF-mediated, transcription-independent nucleosome loss is 

also achieved through a coactivator and what, if any, are the connections 

between HSF, coactivators, and PARP. 

 PARP is an enzyme well studied for its function in DNA repair, 

apoptosis, transcriptional regulation, as well as altering chromatin structure 

(Krishnakumar and Kraus, 2010a; Rouleau et al., 2010). PARP’s enzymatic 

activity uses NAD+ donor molecules to catalyze the polymerization of 

Poly(ADP-ribose) (PAR) onto acceptor proteins as a post-translational 

modification. The Zn fingers of PARP bind to many aberrant DNA structures, 

especially broken DNA, but also bind to nucleosomes (Kim et al., 2004; 

Krishnakumar and Kraus, 2010a). Damaged DNA, individual histones, and 

polynucleosomes can activate the enzymatic activity of PARP (Kim et al., 

2004; Pinnola et al., 2007).  In vivo, PARP primarily targets itself, although 

other proteins, including histones, are also known to be substrates of 

PARylation (D'Amours et al., 1999). Even though PARP is also able to affect 

transcription independently of its enzymatic activity at some genes (Hassa et 
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al., 2001; Pavri et al., 2005), the catalytic activity of PARP is known to be able 

to affect transcription at many genes, including Hsp70 (Ju et al., 2006; 

Krishnakumar and Kraus, 2010b; Tulin and Spradling, 2003). PARP and its 

catalytic activity are necessary for decompaction of chromatin structure at HS 

loci as well as transcription-independent nucleosome loss at Hsp70 (Petesch 

and Lis, 2008; Tulin and Spradling, 2003). Although formation of PAR is 

necessary to bring about changes in chromatin structure at HS loci, little is 

known about how PARP is activated at Hsp70 and, more so, how this 

activation can lead to nucleosome loss over such a broad domain. 

 Here, I map the immediate kinetic changes that occur to PARP and its 

catalytic product, PAR, at Hsp70 loci immediately following HS. I observe that 

PARP colocalizes with the first 2 nucleosomes at the beginning of the Hsp70 

transcription unit before HS. Upon HS, PARP spreads rapidly throughout the 

Hsp70 gene and beyond, to the scs’ insulator element, with kinetics similar to 

those previously measured to track changes in chromatin structure. The 

activation of PARP leads to accumulation of PAR throughout the locus in the 

wake of spreading PARP. Additionally, I find that HSF is necessary for both 

the activation and spread of PARP at Hsp70 following HS and triggers these 

changes by altering the level of histone acetylation at the site where PARP is 

found prior to HS. Finally, I identify Drosophila Tip60 (dTip60) as the HAT 

responsible for increasing acetylation of histone H2A lysine 5 at Hsp70 

following HS. This increase in acetylation induces the activation and spread of 

PARP and a resulting nucleosome loss that is independent of transcription. 



 

97 

3.2 RESULTS 

3.2.1 PARP Rapidly Redistributes along Hsp70 upon Heat Shock  

To investigate potential mechanisms by which PARP is able to bring 

about rapid and drastic changes in chromatin structure at the Hsp70 gene loci 

upon heat shock (HS), I first examined PARP’s location on Hsp70 before and 

in the seconds following HS using chromatin immunoprecipitation (ChIP). In 

my assay, Drosophila S2 cells are instantaneously heat shocked, cooled, and 

immediately crosslinked with formaldehyde for durations previously used to 

characterize changes in nucleosomes (Petesch and Lis, 2008). The 

immunoprecipitated DNA was measured using quantitative PCR (qPCR) with 

25 primer sets spaced, on average, 200 base pairs (bp) apart to canvas the 

Hsp70 HS loci from the Hsp70Ab promoter to the scs’ insulator element 

(Figure 25A). 

Prior to HS, PARP is bound to the Hsp70 gene downstream of the 

transcription start site (TSS) (Figure 25A, dark blue), and overlaps with the 

previously mapped position of the first 2 well-protected nucleosomes at Hsp70 

(Petesch and Lis, 2008). These results are consistent with those studies in 

Drosophila that detect PARP present at the Hsp70 HS loci (Kotova et al., 

2011; Tulin and Spradling, 2003; Zobeck et al., 2010) and studies in humans 

that show PARP concentrates on regions near the TSS (Krishnakumar et al., 

2008). Within 5 seconds of HS (Figure 25A, light blue) PARP begins to be lost 

from its site occupied prior to HS, and decreases monotonically by 30, 60, and  
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Figure 25 PARP Rapidly Redistributes Across the Hsp70 Heat Shock 
Locus upon Heat Shock 
 
(A) Kinetic ChIP analysis of PARP at the Hsp70Ab HS locus. S2 cells are heat 
shocked for 0 (dark blue), 5 (light blue), 30 (green), 60 (orange), or 120 
seconds (red). 25 primer sets, spaced approximately 200 bp apart provide 
high spatial resolution. The y-axis represents the percent of input material 
immunoprecipitated. The x-axis corresponds to base pair units with 0 being 
the TSS. Error bars represent the SEM of 3 independent experiments. The 
diagram below depicts the Hsp70Ab locus, noting the sites of the HSEs, its 
TSS, the PolyA site (+2343), the downstream gene, CG3281, and the site of 
the scs’ insulator element. The diagram is on the same scale as the x-axis. 
Each subsequent figure labeled as ChIP will be for the Hsp70Ab HS locus and 
contains the same error bars, y-axis, and x-axis that corresponds to the 
diagram depicted. 
 
(B) The amount of PARP detected by ChIP at the Hsp70Ab HS locus stays 
constant during the first 2 minutes of HS. The ChIP values for each of the 5 
HS time points were integrated across the region depicted in (A) using the 25 
percent input values as points to trapezoids. Each sum was normalized back 
to the NHS summation and plotted on the y-axis. The x-axis represents the 
elapsed time following HS in seconds. Error bars represent the propagated 
error associated with the summation of the SEM of each percent input. 
 
(C) ChIP of PARP in the presence of PJ34, a catalytic inhibitor of PARP. 
Untreated NHS (dark blue) and 2’ HS (red) S2 cells are compared to those 
NHS (light blue) and 2’ HS (pink) cells pretreated with 300 nM PJ34 for 10 
minutes. Error bars represent the SEM of 3 independent experiments. 
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120 seconds of HS (Figure 25A, green, orange, and red respectively).   

Interestingly, the rate of PARP loss from this region mirrors the rate of 

nucleosome loss previously measured at this region. More surprising is the 

transient accumulation of detectable PARP ChIP signal progressively further 

downstream by 30, 60, and 120 seconds of HS, extending all the way to the 

scs’ insulator element. These results can be explained by two simple models: 

1) local PARP molecules are lost and new PARP is recruited to downstream 

sites after HS or 2) pre-bound PARP rapidly spreads across the Hsp70 gene 

loci upon HS. 

Previous live cell imaging experiments of PARP at Hsp70 during HS show that 

the total amount of PARP at the loci, both unbound and bound to chromatin, 

remains unchanged from the non heat shock (NHS) state (Zobeck et al., 

2010). To determine if the amount of PARP associated with the chromatin at 

the Hsp70Ab locus remains constant throughout the HS time course, I took the 

integral of each PARP ChIP time point curve (Figure 25B). The level of total 

PARP ChIP signals for 5, 30, 60, and 120 seconds of HS does not significantly 

change from the NHS time point. This is in contrast to most factors which 

progressively accumulate at Hsp70 loci following the first few minutes of HS 

(Boehm et al., 2003). Together these experiments are consistent with a model 

in which PARP is pre-bound to the Hsp70 loci before HS and this pre-bound 

PARP rapidly redistributes upon HS. 

Since PARP’s catalytic activity is necessary for the changes in 

chromatin structure that occur at Hsp70 upon HS (Petesch and Lis, 2008), I 
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Figure 26 PARP is Not Necessary for HSF Recruitment to Hsp70 
Following Heat Shock and the PARP ChIP signal is Specific for dPARP  
 
(A) Western blot confirming the RNAi knockdown of PARP.  A serial dilution of 
the LacZ RNAi control cells were used to help measure the extent of PARP 
knockdown, shown in the last lane, with 100% equivalent to 5x106 cells.  The 
top panel shows the immunoblot of PARP and bottom panel shows the 
immunoblot of TFIIS as a loading control. 
 
(B) Western blot showing the specificity of the N-terminal PARP antibody.  
Increasing amounts of full length, purified His-tagged Drosophila PARP (~115 
kDa) was loaded in increasing amounts (10, 100, 1000 ng) from left to right 
and compared to a dilution of LacZ RNAi cells and PARP RNAi cells, with 
100% equivalent to 5x106 cells.  The antibody is also capable of recognizing 
the first 43.6 kDa of a His-tagged recombinantly purified N-terminal truncation 
of Drosophila PARP shown in decreasing amounts in the final 3 lanes (1000, 
100, 10 ng).  The top panel shows the immunoblot of PARP and bottom panel 
shows the immunoblot of TFIIS as a loading control for the central 3 lanes. 
 
(C) ChIP of PARP at the Hsp70Ab HS locus in PARP knockdown cells. S2 
cells RNAi depleted of PARP are heat shocked for either 0 (light blue) or 2 
minutes (pink) and compared to those LacZ RNAi NHS (dark blue) and 2’ HS 
(red) cells. Error bars represent the SEM of 3 independent experiments. 
 
(D) ChIP of HSF at Hsp70 in PARP knockdown and PJ34 treated cells. S2 
cells RNAi depleted of LacZ or PARP or treated with 300 nM PJ34 are heat 
shocked for either 0 (dark blue, medium blue, or light blue, respectively) or 2 
minutes (red, pink, or dark pink, respectively). The y-axis represents the 
percent of input material immunoprecipitated. The x-axis represents the center 
of the PCR amplicons in base pair units with 0 being the TSS of Hsp70 and -
154 located at the promoter, 58 at the pause site, and 1702 in the body of the 
gene. Error bars represent the SEM of 3 independent experiments.  
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tested whether PARP’s enzymatic activity was also required for rapid loss and 

redistribution of PARP upon HS. S2 cells treated with PJ34, a catalytic 

inhibitor of PARP, did not alter the position or level of PARP present at the 

Hsp70 gene before HS, indicating that PARP is bound to the Hsp70 promoter 

independently of its catalytic activity (Figure 25C). Treatment with PJ34 for 10 

minutes prior to a 2 minute HS prevented PARP redistribution. The loss of 

PARP from its NHS site upon HS is consistent with in vitro data showing that 

PARP binds to chromatin through its DNA binding domain and dissociates 

following activation of its catalytic domain (Kim et al., 2004; Poirier et al., 1982; 

Wacker et al., 2007). 

3.2.2 PAR Rapidly Accumulates in the Wake of PARP and Tethers PARP 

to the Locus following Heat Shock 

 As the catalytic activation of PARP is necessary for the loss and 

redistribution of PARP along the Hsp70Ab locus, I employed the same kinetic 

ChIP assay outlined in Figure 25 to track the changes in PAR.  Prior to HS, 

PAR is absent from Hsp70 (Figure 27A, dark blue); immediately following 5 

seconds of HS, PAR begins to accumulate at the 5’ end of Hsp70 (Figure 27A, 

light blue). Interestingly, the initial site of PAR polymerization overlaps with 

PARP’s position before HS. By 30, 60, and 120 seconds of HS, PAR 

monotonically increases at the 5’ end of Hsp70 and, more surprisingly, 

accumulates further downstream until it reaches the scs’ insulator element 

by120 seconds of HS (Figure 27A, green, orange, and red respectively). As 
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Figure 27 PAR Rapidly Accumulates Across the Hsp70 Heat Shock 

Locus Upon Heat Shock 

 
(A) Kinetic ChIP analysis of PAR at the Hsp70Ab HS locus as in Figure 25A. 
S2 cells are heat shocked for 0 (dark blue), 5 (light blue), 30 (green), 60 
(orange), or 120 seconds (red). Error bars represent the SEM of 3 
independent experiments for all 4 panels 
 
(B) ChIP of PAR in the presence of the catalytic inhibitor of PARP, PJ34. 
Untreated NHS (dark blue) and 2’ HS (red) S2 cells are compared to NHS 
(light blue) and 2’ HS (pink) cells pretreated with 300 nM PJ34 for 10 minutes.  
 
(C) ChIP of PAR at the Hsp70Ab HS locus with PARG digestion. ChIP extracts 
prepared for PAR IP were treated with 1200 nM of purified recombinant rat 
PARG (rPARG) prior to IP with either NHS (light blue) or 2’ HS samples (pink). 
These values were compared to control NHS (medium blue) or 2’ HS (dark 
red) samples that were mock treated at 37 °C for 30 minutes. The values of 
the mock treatment were not significantly different from those obtained without 
any additional treatment for NHS (dark blue) or 2’ HS (red). 
 
(D) ChIP for PARP with rPARG digestion as in (C). 
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expected, the accumulation of PAR at Hsp70 after HS is dependent on both 

PARP and PARP’s catalytic activity (Figures 28A and 27B). The position of 

PARP before HS and its downstream position by 30, 60, and 120 seconds of 

HS bookends the region of PAR accumulation at the corresponding time point 

of HS. These kinetic results demonstrate that PAR accumulates in the wake of 

PARP spreading along the Hsp70Ab locus. 

 Two non-mutually exclusive models can explain the results from the 

kinetic ChIP analysis of PARP and PAR. The first model asserts that PARP 

progressively modifies the underlying histones, or another component of 

chromatin, that fall within its path and cross-linking during ChIP captures 

PARP directly interacting with chromatin. The second model asserts that 

activated PARP modifies itself and the polymerization of PAR results in 

continuously further reaching contacts with distal chromatin and cross-linking 

captures PARP bridged indirectly to chromatin through PAR. 

To test these two models, I purified recombinant Poly(ADP-ribose) 

glycohydrolase (PARG) and confirmed its ability to cleave PAR in ChIP 

extracts from cross-linked cells (Figure 28B).  ChIP for PAR after PARG 

treatment of cross-linked material, in comparison to the mock treated samples, 

confirmed catabolism of PAR at Hsp70 (Figure 27C). ChIP for PARP with 

PARG treated extracts resulted in no change in the ChIP signal under NHS 

conditions (Figure 27D), supporting the conclusion that PARP bound to the 5’ 

end of Hsp70 before HS is inactive and directly bound to chromatin. However, 

when 2 minute HS samples were treated with PARG the level of PARP ChIP 
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Figure 28 Accumulation of PAR at Hsp70 is Dependent on PARP and 
rPARG is able to Metabolize PAR from ChIP Extracts 
 
(A) ChIP of PAR at the Hsp70Ab HS locus in PARP knockdown cells. S2 cells 
RNAi depleted of PARP are heat shocked for either 0 (light blue) or 2 minutes 
(pink) and compared to those LacZ RNAi NHS (dark blue) and 2’HS (red) 
cells. Error bars represent the SEM of 3 independent experiments. 
 
 (B) Titration of the amount of purified recombinant, purified rat 6xHis-PARG 
(rPARG) using ChIP extracts. Western blots of sonicated ChIP extracts mock 
treated (first 3 lanes) or those treated with various amounts of rPARG (last 5 
lanes) for 30 minutes at 37 °C to titrate the amount of rPARG needed to digest 
the bulk PAR. The first three panels are a serial dilution of the mock treated 
sample to help quantify the extent of digestion, with 100% of the input 
corresponding to 2.5x106 S2 cells. The last five lanes contain the same 
amount of ChIP extracts as in lane 1 but varying amounts of rPARG, from 
1200, 600, 300, 150, to 0 nM. Top panel: immunoblot of PAR showing the 
PAR signal associated with bands migrating at the molecular weight of PARP 
(~114 kDa). Middle panel: immunoblot for 6x-His to detect the amount of 
rPARG added to the ChIP extract. Bottom panel: immunoblot of TFIIS as a 
loading control. 
 
(C) ChIP of PARP at the Hsp70Ab HS locus with PARG digestion. ChIP 
extracts prepared for PARP IP were treated with mock treatment or with 1200 
nM of rPARG prior to IP with either NHS (light blue) or 30” HS samples (pale 
green-yellow). These values were compared to control NHS (medium blue) or 
30” HS (dark green) samples that were mock treated at 37 °C for 30 minutes.  
The values of the mock treatment were not significantly different from those 
obtained without any additional treatment for NHS (dark blue) or 30” HS (bright 
green). Error bars for the mock and rPARG treated samples represent the 
SEM of 3 independent experiments. Error bars represent the SEM of 3 
independent experiments. 
 
(D) PARP’s movement follows a constant rate of three-dimensional expansion 
at Hsp70Ab. The average distance of movement (from the center of the peak 
of PARP) was measured in base pairs for each time point and then subtracted 
from the NHS value. No significant difference was found between the 0 and 5 
second time point.  The distance between the 0 (+480) and the 30 (+2230), 60 
(+2820), and 120 (+3400) second time points were used as a first order 
measure of linear distance. The base pair units were converted to nanometer 
distances by the fact that 1 base pair of DNA measures 0.34 nm.  As the DNA 
is compacted into chromatin, the values were also divided by a compaction 
ratio of 10, typical of most 10-30 nm chromatin fibers. (Linear distances are 
plotted in Fig S2E, which shows a non-linear relationship versus time.) The 
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nanometer distances were then cubed and plotted on the y-axis to model the 
volume encompassed in μm3. The x-axis represents the time elapsed following 
HS in seconds. The error bars represent the propagated error in volume from 
the SEM of each percent input used in measuring the average base pairs of 
movement. 
 
(E) The average distance of movement in base pairs was measured for each 
time point and then subtracted from the NHS value. The distance between the 
0 (+480) and the 30 (+2230), 60 (+2820), and 120 (+3400) second time points 
were first converted to nanometer distances by the fact that 1 base pair of 
DNA measures 0.34 nm.  Since this DNA is compacted into chromatin, the 
value was also adjusted by a compaction ratio of 10, typical of most 10-30 nm 
chromatin fibers.  The y-axis represents the linear distance traveled in μm. 
The x-axis represents the time following HS in seconds. The error bars 
represent the propagated error from the SEM of each percent input used in 
measuring the average base pairs of movement. The linear R2 value is 
depicted on the graph.  
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decreased in comparison to the mock treated sample (Figure 27D, pink 

compared to dark red). These results indicate that PARP detected by ChIP 

downstream during HS arises from cross-links that capture PAR bridging the 

interaction between PARP and chromatin and not from a direct interaction with 

the chromatin. Similar results are also found after 30 seconds of HS (Figure 

28C). These results are additionally supported by the kinetics of PARP’s 

redistribution more closely correlating with a constant rate of expansion in 3 

dimensions (Figure 28D) rather than a 1-dimensional movement along the 

chromatin fiber (Figure 28E).  

3.2.3 HSF is Necessary for Activation and Spread of PARP Following 

Heat Shock 

 My initial RNAi screen for factors that affected the loss of chromatin 

structure at Hsp70 identified both PARP and HSF as critical components in 

both the transcription-dependent and independent changes that occurred 

following HS (Petesch and Lis, 2008). To determine if these two factors were 

working together in an ordered pathway, I RNAi depleted either HSF or PARP 

and used ChIP to assay if the other factor was affected. When PARP was 

either depleted or inhibited, the recruitment of HSF to the promoter of Hsp70 

following HS was not affected (Figures 26A-D).  In contrast, HSF knockdown 

(Figures 29A and 30) prevented the redistribution (Figure 29B) and activation 

(Figure 29C) of PARP at Hsp70 following HS, but not PARP deposition prior to 

HS. These results order a mechanism whereby HSF recruitment to Hsp70  
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Figure 29 HSF is Necessary for the Activation and Redistribution of 
PARP at the Hsp70 Heat Shock Locus Following Heat Shock 
 
(A) Western blot confirming the RNAi knockdown of HSF.  A serial dilution of 
the LacZ RNAi control cells were used to quantify the extent of HSF 
knockdown, shown in the last lane, with 100% equivalent to 5x106 cells.  The 
top panel shows the immunoblot of HSF and bottom panel shows the 
immunoblot of TFIIS as a loading control. 
 
(B) ChIP of PARP at the Hsp70Ab HS locus in HSF RNAi cells. S2 cells RNAi 
depleted of HSF are heat shocked for either 0 (light blue) or 2 minutes (pink) 
and compared to those LacZ RNAi NHS (dark blue) and 2’ HS (red) cells. 
Error bars represent the SEM of 3 independent experiments for (B) and (C). 
 
(C) ChIP of PAR at the Hsp70Ab HS locus in HSF RNAi cells as in (B). 
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Figure 30 The HSF ChIP signal is Specific for HSF at Hsp70 following 
Heat Shock 
 
ChIP of HSF at Hsp70. S2 cells RNAi depleted of LacZ or HSF are heat 
shocked for either 0 (dark blue or light blue respectively) or 2 minutes (red or 
pink respectively). The y-axis represents the percent of input material 
immunoprecipitated. The x-axis represents the center of the PCR amplicons in 
base pair units with 0 being the TSS of Hsp70 with -154 located at the 
promoter, 58 at the pause site, and 1702 in the body of the gene. Error bars 
represent the SEM of 3 independent experiments.  
 
results in the rapid activation and spread of PARP. 

3.2.4 The Activity of HDAC3 Maintains PARP Inactivity at Hsp70 Prior to 

Heat Shock 

 Activated HSF binds to multiple HSEs at the promoter of Hsp70 upon 

HS and directs changes in transcription by signaling to downstream, paused 

Pol II through multiple coactivators. I hypothesized that HSF recruitment to 

Hsp70 also triggers a signaling mechanism through its coactivators that leads 

to activation of downstream PARP and the resulting transcription-independent 
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loss of nucleosomes. 

 To identify a potential coactivator responsible for activating PARP upon 

HS, I examined data from my previous RNAi screen looking for factors that 

affected the loss of chromatin structure at Hsp70 before and after HS. Of the 

28 factors tested, only one factor, HDAC3, had a significant effect on the loss 

of chromatin structure prior to HS (Petesch and Lis, 2008). Interestingly, RNAi 

depletion of HDAC3 in NHS cells results in a loss in chromatin structure to the 

level seen by 1 minute of HS when the initial, transcription-independent loss 

occurs. To determine if HDAC3 was responsible for the maintenance of PARP 

in an inactive state at Hsp70 prior to HS, I RNAi depleted HDAC3 (Figure 31A) 

and looked by ChIP to determine if PARP or PAR was affected in NHS 

conditions. RNAi depletion of HDAC3 resulted in loss of PARP from its 5’ 

binding site prior to HS and redistribution further downstream (Figure 31B, 

light blue). Strikingly, HDAC3 knockdown under NHS conditions also resulted 

in the accumulation of PAR across the Hsp70Ab locus, indicating HDAC3 is 

responsible for the maintenance of inactive PARP bound to Hsp70 under NHS 

conditions (Figure 31C, light blue). HS and HDAC3 RNAi did not result in an 

additive effect as only a small increase in PAR accumulation was observed 

upon HS, comparable to normal HS levels.  This increase in PAR upon HS is 

likely due to the activation and loss of the remaining PARP at the 5’ end in 

HDAC3 RNAi NHS cells. Similar results were obtained by treating S2 cells 

with trichostatin A (TSA), an inhibitor of class I and II histone deacetylases, 

which includes HDAC3 (Figures 32A and 32B). Interestingly, the inhibition of  
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Figure 31 HDAC3 Knockdown Activates PARP at the Hsp70 Heat Shock 
Locus under Non Heat Shock Conditions 
 
(A) Western blot confirming the RNAi knockdown of HDAC3 as in Figure 29A 
with the top panel showing the immunoblot of HDAC3 and bottom panel shows 
the immunoblot of TFIIS as a loading control. * Indicates a slower-migrating, 
cytoplasmic, and cross-reactive protein to the HDAC3 antibody that is not 
affected by HDAC3 RNAi. 
 
(B) ChIP of PARP at the Hsp70Ab HS locus in HDAC3 RNAi cells. S2 cells 
RNAi depleted of HDAC3 were heat shocked for either 0 (light blue) or 2 
minutes (pink) and compared to those LacZ RNAi NHS (dark blue) and 2’HS 
(red) cells. Error bars represent the SEM of 3 independent experiments for (B) 
and (C) 
 
(C) ChIP of PAR at the Hsp70Ab HS locus in HDAC3 RNAi cells as in (B). 
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Figure 32 Inhibition of HDAC3’s Catalytic Activity through treatment with 
the HDAC inhibitor. TSA, Recapitulates Results Found with an HDAC3 
Knock Down  
 
(A) ChIP of PARP at the Hsp70Ab HS locus in the presence of the HDAC 
inhibitor, TSA. Untreated NHS (dark blue) and 2’ HS (red) S2 cells are 
compared to those NHS (light blue) and 2’ HS (pink) cells pretreated with 3 μM 
TSA for 30 minutes. Error bars represent the SEM of 3 independent 
experiments. 
 
(B) ChIP of PAR at the Hsp70Ab HS locus in the presence of TSA as in (A). 
Error bars represent the SEM of 3 independent experiments. 
 
(C) ChIP of HSF at Hsp70 in HDAC3 knockdown and TSA treated cells. S2 
cells RNAi depleted of LacZ or HDAC3 dsRNA or treated with 3 μM TSA are 
heat shocked for either 0 (dark blue, medium blue, or light blue respectively) or 
2 minutes (red, pink, or dark pink respectively). The y-axis represents the 
percent of input material immunoprecipitated. The x-axis represents the center 
of the PCR amplicons in base pair units with 0 being the TSS of Hsp70 and -
154 located at the promoter, 58 at the pause site, and 1702 in the body of the 
gene. Error bars represent the SEM of 3 independent experiments. 
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the enzymatic activity of HDAC3 is sufficient to bring about activation of PARP  

at Hsp70 independent of HS-induced activated binding of HSF (Figure 32C). 

3.2.5 Heat Shock Factor Facilitates Rapid Acetylation of Histone H2A at 

Lysine 5 upon Heat Shock 

 HDAC3 has multiple in vivo targets of deacetylation (Karagianni and 

Wong, 2007), but perhaps its best known targets are the N-terminal tails of 

histones H2A at lysine 5 (H2AK5) and H4 at lysines 5 and 12 (H4K5 and 

H4K12) (Johnson et al., 2002). I depleted cells of HDAC3 by RNAi knockdown 

and used ChIP assays to examine if either H2AK5Ac or H4K5Ac and 

H4K12Ac were affected using an antibody that specifically detects H2AK5Ac 

or an antibody recognizing 4 acetylation marks on H4 (K5, K8, K12, and K16) 

(Egelhofer et al., 2011). Under NHS conditions, HDAC3 knockdown results in 

an increase of H2AK5Ac as compared to control NHS LacZ RNAi cells (Figure 

33A) and also moderate increases in the acetylation of H4 (Figure 34A). 

Again, similar results were found using TSA inhibition (Figures 34B and 34C). 

 To address if HS-induced loss of nucleosomes is accompanied by rapid 

histone acetylation, I performed a kinetic ChIP analysis. H2AK5Ac and H4Ac 

rapidly accumulate at Hsp70 following HS (Figures 33B and 34D respectively) 

with kinetics similar to the extremely rapid recruitment of HSF (Boehm et al., 

2003). Interestingly, the buildup of histone acetylation overlaps with the site 

occupied by PARP prior to HS. The rate of histone acetylation is also 

consistent with both the rates of loss of PARP and nucleosomes from the  



 

117 

Figure 33 HSF Directs Acetylation of Histone H2A Lysine 5 upon Heat 
Shock at the Hsp70 Heat Shock Locus 
 
(A) ChIP of H2AK5 acetylation at the Hsp70Ab HS locus in HDAC3 
knockdown cells. S2 cells RNAi depleted of HDAC3 and heat shocked for 
either 0 (light blue) or 2 minutes (pink) are compared to LacZ RNAi cells that 
were heat shocked for 0 (dark blue) or 2 minutes (red). The level of H2AK5 
acetylation is normalized to ChIP values for histone H2A and plotted on the y-
axis. Error bars represent the SEM of 3 independent experiments for all 3 
panels. 
 
(B) Kinetic ChIP analysis of H2AK5 acetylation normalized to histone H2A as 
in (A). S2 cells were heat shocked for 0 (dark blue), 5 (light blue), 30 (green), 
60 (orange), or 120 seconds (red).  
 
(C) ChIP of H2AK5 acetylation normalized to H2A as in (A) but with HSF RNAi 
depleted cells.  
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Figure 34 HSF, but not PARP, is necessary for both Tetra Acetylation of 
H4 and Acetylation of H2AK5 Following Heat Shock and is Maintained by 
HDAC3 Before Heat Shock   
 
(A) ChIP of tetra acetylated H4 (antibody can recognize H4K5, K8, K12, and 
K16 acetylation) at the Hsp70Ab locus normalized to histone H3 and plotted 
on the y-axis. Cells RNAi depleted of HDAC3 and heat shocked for either 0 
(light blue) or 2 minutes (pink) are compared to LacZ RNAi cells not heat 
shocked (dark blue) or heat shocked for 2 minutes (red). Error bars represent 
the SEM of 3 independent experiments. 
 
(B) ChIP of H2AK5 acetylation at the Hsp70Ab locus in untreated NHS (dark 
blue) and 2’ HS (red) S2 cells are compared to those NHS (light blue) and 2’ 
HS (pink) cells pretreated with 3 μM TSA for 30 minutes. The level of H2AK5 
acetylation is normalized to ChIP values for histone H2A and plotted on the y-
axis. Error bars represent the SEM of 3 independent experiments. 
 
(C) ChIP of tetra acetylated H4 as in (A) but untreated NHS (dark blue) and 2’ 
HS (red) S2 cells are compared to those NHS (light blue) and 2’ HS (pink) 
cells pretreated with 3 μM TSA for 30 minutes. Error bars represent the SEM 
of 3 independent experiments. 
 
(D) Kinetic ChIP analysis of tetra acetylated H4 as in (A). S2 cells are heat 
shocked for 0 (dark blue), 5 (light blue), 30 (green), 60 (orange), or 120 
seconds (red). Error bars represent the SEM of 3 independent experiments. 
 
(E) ChIP of tetra acetylated H4 as in (A) but cells RNAi depleted of HSF and 
heat shocked for either 0 (light blue) or 2 minutes (pink) are compared to LacZ 
RNAi cells not heat shocked (dark blue) or heat shocked for 2 minutes (red). 
Error bars represent the SEM of 3 independent experiments.    
 
(F) ChIP of H2AK5 acetylation as in (B) but untreated NHS (dark blue) and 2’ 
HS (red) S2 cells are compared to those NHS (light blue) and 2’ HS (pink) 
cells pretreated with 300 nM PJ34 for 10 minutes. Error bars represent the 
SEM of 3 independent experiments. 
 
(G) ChIP of H2AK5 acetylation as in (B) but with S2 cells RNAi depleted of 
PARP and heat shocked for either 0 (light blue) or 2 minutes (pink) and 
compared to LacZ RNAi cells that were not heat shocked (dark blue) or heat 
shocked for 2 minutes (red). Error bars represent the SEM of 3 independent 
experiments.  
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5’ end of Hsp70. Additionally, knockdown of HSF severely inhibits the  

acetylation of H2AK5 and H4 following HS (Figures 34C and 35E). However, 

inhibition or RNAi depletion of PARP did not affect acetylation following HS 

(Figures 35F and 35G). Together, these results demonstrate that HSF is 

necessary for acetylation of H2AK5 and H4 upon HS, and acetylation either 

under NHS conditions by HDAC3 knockdown or after HS by HSF recruitment 

both result in the activation of PARP and reduced nucleosome occupancy at 

Hsp70. 

3.2.6 dTip60 is Responsible for Acetylation of Histone H2A Lysine 5 and 

Activation of PARP upon Heat Shock 

 To demonstrate that acetylation of histones H2A or H4 was necessary 

for the activation and spread of PARP following HS at Hsp70, I sought to 

identify the responsible histone acetyltransferase (HAT). Previously, 

knockdown of CBP or Gcn5, 2 major HATs recruited to Drosophila Hsp70 

following HS (Lebedeva et al., 2005; Smith et al., 2004), did not block 

nucleosomes loss upon HS (Petesch and Lis, 2008). Instead, I sought to 

target the dTip60 HAT, which was previously shown to acetylate H2AK5 as 

well as other sites on H4 (Kimura and Horikoshi, 1998; Kusch et al., 2004). 

Indeed, knockdown of dTip60 (Figure 36A) prevented the full acetylation of 

H2AK5Ac following a 2 minute HS (Figure 35A), but only mildly affected 

acetylation of H4 (Figure 36B), indicating that dTip60 specifically targets 

H2AK5 for acetylation at Hsp70 following HS. Strikingly, depletion of dTip60 



 

121 

Figure 35 The dTip60 Histone Acetyltransferase is Necessary for 
Acetylation of Histone H2A Lysine 5 and Activation of PARP upon Heat 
Shock  
 
(A) ChIP of H2AK5 acetylation at the Hsp70Ab HS locus in dTip60 knockdown 
cells. S2 cells RNAi depleted of dTip60 and heat shocked for either 0 (light 
blue) or 2 minutes (pink) are compared to LacZ RNAi cells heat shocked for 0 
(dark blue) or 2 minutes (red). The level of H2AK5 acetylation is normalized to 
ChIP values for histone H2A and plotted on the y-axis. Error bars represent 
the SEM of 3 independent experiments for all 3 panels. 
 
(B) ChIP of PARP in dTip60 knockdown cells. S2 cells RNAi depleted of 
dTip60 and heat shocked for either 0 (light blue) or 2 minutes (pink) are 
compared to LacZ RNAi treated cells heat shocked for 0 (dark blue) or 2 
minutes (red).  
 
(C) ChIP of PAR in dTip60 knockdown cells as in (B).  
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Figure 36 Knockdown of dTip60 is specific and does not Affect the 
Acetylation of H4 or the Recruitment of HSF Following Heat Shock 
 
(A)Tip60 mRNA levels following 0, 5, and 20 minutes of HS were measured for 
S2 cells RNAi depleted of LacZ (black) or Tip60 (gray). Tip60 expression 
levels were measured by oligo dT primed reverse transcription followed by 
qPCR usingTip60 specific primers. Tip60 mRNA levels are normalized to the 
Rp49 gene with error bars representing the SEM of 3 replicates. 
 
(B) ChIP for tetra acetylated H4 (antibody can recognize H4 K5, K8, K12, and 
K16 acetylation) normalized to histone H3 was performed using S2 cells RNAi 
depleted of Tip60 and heat shocked for either 0 (light blue) or 2 minutes (pink) 
and compared to LacZ RNAi cells that were not heat shocked (dark blue) or 
heat shocked for 2 minutes (red).  
 
(C) ChIP of HSF at Hsp70. S2 cells RNAi depleted of LacZ or Tip60 are heat 
shocked for either 0 (dark blue or light blue respectively) or 2 minutes (red or 
pink respectively). The y-axis represents the percent of input material 
immunoprecipitated. The x-axis represents the center of the PCR amplicons in 
base pair units with 0 being the TSS of Hsp70 with -154 located at the 
promoter, 58 at the pause site, and 1702 in the body of the gene. Error bars 
represent the SEM of 3 independent experiments.  
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prevented the full loss of PARP from its 5’ site and its spread further 

downstream (Figure 35B). Correspondingly, dTip60 RNAi inhibited full 

activation of PARP at Hsp70 following HS (Figure 35C). Loss of dTip60, 

however, did not prevent recruitment of HSF to Hsp70 (Figure 36C). These 

results demonstrate that upon HS, HSF stimulates dTip60 to specifically 

acetylate H2AK5 at Hsp70 which results in activation of PARP. 

3.2.7 dTip60 is Necessary for the Loss of Nucleosomes and Full 

Transcriptional Activation of Hsp70 upon Heat Shock 

 As dTip60 is necessary for the activation of PARP upon HS, changes in 

chromatin structure at Hsp70 should also be dependent on dTip60. I utilized 

my previously developed high-resolution MNase protection assay of 

mononucleosomes at Hsp70 both before and after HS (Petesch and Lis, 

2008). Briefly, S2 cells from NHS and 2 minute HS samples are cross-linked 

and their chromatin is isolated and split into mock and MNase treated 

samples. The DNAs from both matched samples are probed using qPCR to 

quantify the amount of protection for each of the 100 primer sets amplifying 

100 bp regions of Hsp70Ab spaced 30 bp apart. The MNase protection assay 

of nucleosomes at Hsp70 before HS does not show significant differences with 

dTip60 depletion. However, following a 2 minute HS, knockdown of dTip60 

significantly inhibits the loss in chromatin structure of Hsp70 that occurs both 

initially from PARP’s activation as well as from Pol II’s movement through the 

gene by 2 minutes of HS (Figure 37A, compare pink to red). This pattern of  
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Figure 37 The dTip60 Histone Acetyltransferase is Necessary for 
Nucleosomal Loss and Transcriptional Activation of the Hsp70 Heat 
Shock Locus 
 
(A) dTip60 affects the rapid loss of nucleosomes at the Hsp70Ab HS locus. 
Control S2 cells treated with RNAi targeting LacZ or dTip60 were heat 
shocked for 0 (dark blue and light blue respectively) or 2 minutes (red and pink 
respectively), immediately cooled to room temperature and crosslinked, and 
their chromatin was isolated.  Purified DNA products from samples were 
treated with 0 or 500 U of MNase and assayed by qPCR. PCR products are 
100±5 bp in size and are spaced 30±6 bp apart. The chromatin profile of 
Hsp70 was determined by using approximately 100 PCR amplicons with an 
average size of 100±5 bp, spaced 30±6 bp apart.  To assess relative levels of 
protection the amount of MNase digested PCR product was normalized to the 
undigested product using the ΔC(t) method (y-axis), which is plotted against 
the gene nucleotide location (x-axis). Values from overlapping primer sets are 
averaged. The x-axis represents base pair units with 0 being the TSS.  Lines 
represent the average of 3 separate experiments with error bars representing 
the SEM of 3 independent experiments. 
 
(B) Hsp70 mRNA levels following 0, 5, and 20 minutes of HS were measured 
for S2 cells RNAi targeting of LacZ (black) or dTip60 (gray). Hsp70 expression 
levels were measured by oligo dT primed reverse transcription followed by 
qPCR using Hsp70 specific primers and normalized to the Rp49 gene with 
error bars representing the SEM of 3 replicates. 
 
(C) Model of HSF mediated actions at Hsp70 to activate PARP and affect 
nucleosome loss. Top: Linear order of steps of the model depicted below. 
Bottom: Under NHS conditions, GAGA Factor (GAF) is bound to the promoter 
of Hsp70, Pol II is transcriptionally paused 20-40 base pairs downstream of 
the TSS, and inactive PARP is bound to the region occupied by the first well 
positioned nucleosome at Hsp70. Upon HS, by 30-60 seconds, HSF trimerizes 
and binds to multiple HSEs found at the promoter of Hsp70. The recruitment of 
HSF stimulates dTip60 mediated H2AK5 acetylation of nearby nucleosomes, 
which in turn activates PARP’s catalytic activity, PAR chain formation, and 
release from the nucleosome it was bound prior to HS. The activation of PARP 
leads to the spread of active PARP and build up of PAR across the HS locus.  
The progressive and rapid buildup of PAR within the region ultimately leads to 
nucleosome loss contained within the HS locus.  
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nucleosome retention following HS in dTip60 depleted cells matches those 

found when PARP is inhibited or depleted (Petesch and Lis, 2008). 

To test if retention of chromatin structure by 2 minutes of HS in dTip60 

depleted cells has functional consequences on Hsp70 transcription, I 

measured mRNA levels before HS and after a 5 and 20 minute HS. dTip60 

depletion does not significantly affect Hsp70 NHS mRNA levels but 

significantly reduces mRNA levels of Hsp70 by 50% to that of control cells 

following both 5 and 20 minutes of HS (Figure 37B), mirroring those results 

obtained with PARP depletion (Petesch and Lis, 2008). 

My previous results demonstrated that nucleosome loss upon HS could 

occur independently of Hsp70 transcription. Treatment of S2 cells with sodium 

salicylate induces recruitment of HSF to the Hsp70 promoter under NHS 

conditions, but it does not result in Pol II movement into the gene (Petesch 

and Lis, 2008; Winegarden et al., 1996). To both assess PARP and dTip60’s 

role in this transcription-independent nucleosome loss and solidify an ordered 

mechanism whereby HSF recruitment results in nucleosome loss, I performed 

ChIP in S2 cells treated with sodium salicylate. Under NHS conditions, sodium 

salicylate causes the activation, loss, and spread of PARP at Hsp70 (Figures 

38A and 38B). Additionally, under NHS conditions, sodium salicylate also 

induces H2AK5Ac and H4Ac (Figures 38C and 38D). These results support a 

mechanism whereby HSF-induced histone acetylation triggers PARP 

activation and spread and nucleosome loss at Hsp70 that can be decoupled 

from active transcription. 
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Figure 38 Sodium Salicylate Induces Histone Acetylation under Non Heat 
Shock Conditions and Activates PARP in a Transcription-Independent 
Manner  
 
(A) ChIP of PARP at the Hsp70Ab HS locus in the presence of sodium 
salicylate. Untreated NHS (dark blue) and 2’ HS (red) S2 cells are compared 
to those NHS (light blue) and 2’ HS (pink) cells pretreated with 10 mM sodium 
salicylate for 30 minutes. 
 
(B) ChIP of PAR at the Hsp70Ab HS locus in the presence of sodium 
salicylate as in (A). Error bars represent the SEM of 3 independent 
experiments. 
 
(C) ChIP of H2AK5 acetylation normalized to H2A in the presence of sodium 
salicylate as in (A). Error bars represent the SEM of 3 independent 
experiments. 
 
(D) ChIP of tetra acetylated H4 normalized to H3 in the presence of sodium 
salicylate as in (A). Error bars represent the SEM of 3 independent 
experiments. 
 
(E) Model depicting how dTip60 activates PARP. A single nucleosome, 
representing the first nucleosomes at Hsp70 before HS, is depicted with H2Av 
in yellow, H2B in red, H3 in blue, and H4 in green with inactive PARP bound 
depicted in gray. The N-and C-terminal tails of H2Av are shown as yellow 
protrusions from H2Av with K5 and S137 highlighted.  An unknown kinase is 
responsible for phosphorylating the C-terminal domain of H2Av at S137.  Upon 
HS, Tip60 is recruited to Hsp70 and the acetyltransferase activity is stimulated 
by the presence of S137 phosphorylation, leading to H2AvK5Ac. The 
acetylation stimulates the dTip60 complex to exchange the modified H2Av-
H2B dimer, thereby exposing the H4 within the nucleosome.   The exposure of 
H4 within the nucleosome can provide an epitope that stimulates the activity of 
PARP leading to its activation, shown in purple. 
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3.3 DISCUSSION 

This study establishes an ordered mechanism by which a transcription 

activator binding to a gene’s regulatory region leads to rapid removal of 

nucleosomes throughout the gene locus. Specifically, the transcriptional 

activator, HSF, stimulates dTip60 acetylation of H2AK5 that in turn activates 

PARP, causing its redistribution along Hsp70 and reduced nucleosome 

occupancy over the locus (Figure 37C). Moreover, all of these steps can be 

accomplished independently of transcription. This activation of PARP and its 

rapid spread throughout the Hsp70 HS loci demonstrate an interesting 

mechanism by which the nucleosome barrier can be alleviated to facilitate 

efficient transcription by Pol II. 

HSF and many other transcriptional activators have been classically 

studied for their ability to recruit or release Pol II into transcriptional elongation. 

My results speak to another function of HSF as an activator to direct changes 

in chromatin structure upon HS. HSF is able to achieve this function through 

physically interacting with the dTip60 complex and facilitating its recruitment to 

Hsp70 following HS (personal communication by Thomas Kusch). Just as the 

presence of paused Pol II in NHS conditions primes the Hsp70 gene for rapid 

transcriptional induction (Rougvie and Lis, 1988), inactive PARP bound in 

NHS conditions primes Hsp70 for rapid changes in chromatin structure. 

Interestingly, trimerization and binding of HSF to the promoter of Hsp70 

precipitates the activation of both Pol II and PARP through distinct pathways 

that ultimately synergize to facilitate rapid and robust transcriptional activation. 
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In vitro studies have shown that the DNA binding and catalytic domains of 

PARP comprise the minimal structure sufficient for inactive PARP to bind and 

locally compact nucleosomes and, upon activation, release PARP from 

chromatin and decompact chromatin structure (Kim et al., 2004; Leduc et al., 

1986; Poirier et al., 1982; Wacker et al., 2007). Activation of PARP is known to 

result in the formation of linear and branched anionic polymers with upwards 

of 200 units of ADP-ribose (D'Amours et al., 1999). Electron micrograph 

structures of branched PAR make it easy to visualize how creation of these 

voluminous, dendritic structures causes automodified PARP to expand 3-

dimensionally throughout the Hsp70 loci following HS (de Murcia et al., 1983). 

My results also indicate that PARP is cross-linked to Hsp70 after HS through a 

PAR linkage to chromatin. Although PARylation of another target, such as 

histones, cannot be ruled out, my results fit the simplest model where PARP is 

its own target. In agreement with the aforementioned in vitro studies, PARP 

automodification would result in its release from nucleosomes bound prior to 

HS and the PAR created from this automodification could create a bridging 

interaction between PARP and chromatin formed during cross-linking as seen 

in Figure 27D. This also is consistent with in vivo studies showing the major 

target of PARylation is PARP itself (D'Amours et al., 1999; Kim et al., 2004). 

Antibodies specifically recognizing ADP-ribosylated target proteins, such as 

PARP or histones, are needed to identify the target of PARP following HS at 

Hsp70. 

 The accumulation of PAR throughout the Hsp70 locus provides 
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additional functional consequences to how activation of PARP upon HS can 

affect chromatin structure and transcriptional activation. PAR has remarkable 

chemical similarity to other nucleic acids, such as DNA and RNA, but it has 

twice the charge per nucleic acid residue and the potential to form non-linear, 

branched structures. As such, in vitro reconstitution assays have shown that 

PAR has the ability to locally compete with DNA to bind histones and 

potentially disrupt native chromatin structure (Althaus et al., 1994). The 

transient formation of PAR to alter chromatin structure followed by catabolism 

of PAR to return histones to its DNA template has been referred to as histone 

shuttling (Althaus et al., 1994). While initially investigated to explain PARP’s 

role in DNA damage repair, this phenomenon can be equally extended to 

PARP’s role in facilitating transcription. Indeed, the formation of PAR at Hsp70 

loci after HS results in formation of a localized compartment that aids in the 

local retention of transcription factors, including Pol II, to sustain continued 

transcription activation of Hsp70 (Zobeck et al., 2010). It is yet to be 

determined if PAR also aids in the local retention of histones that were 

previously measured to be lost from Hsp70 after HS (Petesch and Lis, 2008). 

The activation of PARP through the acetylation of H2AK5 also ascribes 

a unique function to dTip60. Like PARP, Tip60 has been studied for both its 

roles in DNA repair and also transcriptional activation (Sapountzi et al., 2006). 

In Drosophila, dTip60 is part of a complex containing Domino, an ATPase 

homologous to the mammalian p400 and SRCAP proteins, which, like Swr1p 

in S. cerevisiae, catalyzes the exchange of histone variant H2A.Z into H2A 
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containing nucleosomes (Kusch et al., 2004; Mizuguchi et al., 2004; Talbert 

and Henikoff, 2010). Drosophila contains only one H2A variant, which has 

properties of both H2A.Z and the C-terminal extension of H2A.X, and, when 

phosphorylated, marks sites of DNA damage (Madigan et al., 2002). Before 

HS, it is known that Hsp70 contains nucleosomes harboring H2Av near the 5’ 

end of the gene that is lost upon HS (Leach et al., 2000). Recently, the 

phosphorylation of H2AvS137 was shown to globally regulate PARP activation 

and is necessary for full transcriptional activation of Hsp70 (Kotova et al., 

2011). dTip60 acetylates K5 on H2Av that is already phosphorylated on its C-

terminal domain at S137 (Kusch et al., 2004). This acetylation stimulates the 

dTip60 complex to exchange out the modified H2Av. Additionally, in vitro 

studies show that the ability of H4 to activate PARP is squelched in the context 

of a nucleosome due to H2A (Pinnola et al., 2007).  Collectively, these studies 

suggest a model in which the phosphorylation of H2AvS137 stimulates dTip60 

to acetylate H2AvK5 following its recruitment upon HS (Figure 38E).  These 

modifications are sufficient to stimulate the dTip60 complex to remove the 

modified H2Av and expose PARP that is bound to these nucleosomes to H4 

and activate its enzymatic activity. The importance of H2A variant exchange 

has also been documented in Arabidopsis where the Swr1 complex is also 

necessary for changes in chromatin structure at HS genes following HS 

(Kumar and Wigge, 2010). 

This purposed model for the order of events that lead to the activation 

of PARP upon HS raises many questions for future exploration.  First, is the 
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H2Av that is present before HS already phosphorylated and what is the kinase 

responsible for phosphorylation? Second, is phosphorylation of H2Av 

necessary for dTip60 acetylation of H2AvK5 upon HS? Third, is H2AvK5Ac or 

in combination with S137 phosphorylation sufficient for PARP activation in 

vitro? Fourth, is the ATPase activity of the dTip60 complex to exchange H2Av 

following HS necessary or sufficient for PARP activation? Finally, is the activity 

of PARP regulated on a genomic scale at sites with H2Av nucleosomes that 

are both acetylated at K5 and phosphorylated at S137?  

The fact that transcription-independent nucleosome loss following HS at 

Hsp70 is reliant on factors that respond to DNA damage provokes the 

question if changes in chromatin at Hsp70 are the result of a response to DNA 

repair. Indeed, transcriptional activation can occur in response to PARP 

activation from a topoisomerase II break in DNA (Ju et al., 2006). However, in 

contrast to this study, I find that PARP is already present at Hsp70 before HS 

and is not recruited upon HS. Although topoisomerase II mediated breaks 

have been mapped to sites near the TSS of Hsp70 before HS (Udvardy and 

Schedl, 1991), these breaks are not sufficient to detect active PARP at Hsp70 

before HS and might be more important for the initial deposition of PARP 

before HS. I propose an alternative mechanism for PARP activation whereby a 

transcriptional activator hijacks DNA repair proteins to aid transcriptional 

activation. The fact that PARP is bound near the majority of human TSSs 

containing Pol II (Krishnakumar et al., 2008), like at Drosophila Hsp70, also 

hints at the generality for a mechanism whereby activation of pre-bound PARP 
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leads to changes in chromatin structure and ultimately contributes to gene 

expression. 

3.4 EXPERIMENTAL PROCEDURES 

All primer sets used are listed in Table 9. The experimental procedures follow 

those used in (Petesch and Lis, 2008) and in section 2.4 with the following 

exceptions.  

3.4.1 ChIP 

Heat shocks and ChIP were performed as in (Petesch and Lis, 2008) with the 

following exceptions. Following resuspension of the cross-linked pellet in 

sonication buffer, samples to be immunoprecipitated for PAR were TCA 

precipitated. 100% (w/v) TCA was added to a final concentration of 20% and 

incubated at 4 °C for 10 minutes. The sample was centrifuged at 4 °C for 5 

minutes at 20,000 g and the resulting pellet was washed twice with 250 μL of 

acetone with the same centrifuging conditions. The final pellet was dried and 

resuspended in ChIP sonication buffer and the typical ChIP protocol was 

resumed from the point of sonication. 

For ChIP with PARG treated extracts, chromatin from cross-linked cells 

was isolated as in the high-resolution MNase assay and resuspended in the 

sonication buffer not containing SDS. Samples were split and either treated 

with final concentrations of 0 or 1200 nM PARG for 30 minutes at 37 °C. The 

reaction was stopped by addition of SDS to a final concentration of 0.5% and 
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the ChIP protocol continued at the step of sonication. The amount of antibody 

per IP used was: 8 µL rabbit anti-PARP raised to the N-terminus (Kim et al., 

2004) a gift of W. Lee Kraus, 4 µL mouse anti-PAR (Trevigen 4335), 2 µL 

rabbit anti-Histone H2A acetyl K5 (Abcam ab45152), 4 µL rabbit anti-Histone 

H2A-ChIP grade (Abcam ab13923), 2 µL of rabbit anti-HSF (Boehm et al., 

2003), 2 µL of rabbit anti-tetra acetyl-Histone H4 (Millipore 06-598), and 2 µL 

of rabbit anti-Histone H3 ChIP grade (Abcam ab1791). 

3.4.2 Quantitative Real-Time PCR Analysis 

ChIP and RT-qPCR primer sets are provided in Table S1.  Real-Time PCR 

was performed as in (Petesch and Lis, 2008).  For ChIP samples, a standard 

curve was generated by serially diluting input samples to quantify IP samples.  

For MNase digests, a fold difference was calculated between MNase treated 

and untreated samples.  All values used were collected from the linear range 

of amplification. 

3.4.3 Chemical Treatments 

PJ34 was added to S2 cells in media to a final concentration of 300 nM and 

allowed to mix for 10’ at room temperature.  Cells were then collected 

following NHS or 2’ HS conditions outlined in the ChIP section. Additional 

chemical treatments included in supplementary figures not performed in the 

main document were performed by adding both final concentrations of 3 μM 

TSA or 10 mM sodium salicylate directly to the S2 cells while still in media 
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either 30 or 10 minutes respectively prior to HS for either 0 or 2 minutes. 

 3.4.4 RNAi Treatments 

All RNAi treatments were performed as in (Petesch and Lis, 2008). RNAi 

primers and RefSeq DNA Identifiers for all knockdowns are provided in Table 

S1. Briefly, S2 cells were treated with double stranded RNA, designed using 

the Ambion MEGAscript manual, targeting either the coding sequence of the 

listed factor or β-galactosidase (LacZ, as a negative control). Cells were 

collected and split into NHS and 2’ HS samples to be processed using the 

ChIP or high-resolution MNase assay. 

3.4.5 mRNA Expression Analysis 

All mRNA expression analyses were as performed in (Petesch and Lis, 2008). 

Briefly, total RNA was isolated (Qiagen RNeasy) from Tip60 and LacZ RNAi 

S2 cells following 0, 5, and 20 minutes of HS. Hsp70and Tip60 levels were 

determined from oligo dT mediated quantitative real-time reverse transcription-

PCR using primers targeting either Hsp70 or Tip60. The stable ribosomal 

protein RpL32 gene (Rp49) was used to internally standardize for the amount 

of RNA. 

3.4.6 High-resolution MNase Mapping 

MNase mapping was preformed as in (Petesch and Lis, 2008). Briefly, nuclei 

isolation, followed by chromatin isolation was performed using cross-linked S2 
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cells. Samples were split into equal portions and treated with either 0 or 500 

total units of MNase (USB) for 30 minutes at room temperature and their DNA 

recovered. 

3.4.7 PARG and PARP Purification 

Recombinant, rat, 6xHis-N-terminally tagged PARG was a gift of W. Lee Kraus 

and was purified as in (Kim et al., 2004). Drosophila full length and N-terminus 

(corresponding to the first 383 amino acids) PARP were cloned into pET-19b 

harboring a 6xHis-N-terminal tag. Briefly, transformed BL21-CodonPlus (DE3)-

RIPL E. coli cells (Agilent Technologies) were induced with 1 mM IPTG for 3 

hours at 30 °C. 6xHis tagged proteins were purified using conventional Ni-NTA 

Agarose (Qiagen) methods. 

3.4.8 Western Blots 

Western blots were performed using standard conditions, and input dilutions 

were used as a quantitative indication of signal linearity. Antibody lab stocks of 

HSF (Shopland et al., 1995) and TFIIS (Adelman et al., 2005) were used at 

dilutions of 1:2000 and 1:3000 respectively. Rabbit anti-HDAC3 antibody 

(Santa Cruz sc-11417) was used at a 1:500 dilution. Additional Western blots 

were performed using rabbit anti-Parp serum raised to recognize the N-

terminus (Kim et al., 2004) was a gift of W. Lee Kraus, mouse anti-PAR 

(Trevigen 4335), and mouse anti-6xHis (Santa Cruz sc-8036) at 1:1000, 

1:500, and 1:1000 dilutions respectively. 
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3.5 Primer Sets Used 

Table 9 Primer Sets Used for ChIP of Hsp70 

 5’ Start Forward Primer 

-200 TGCCAGAAAGAAAACTCGAGAAA 

-13 CAATTCAAACAAGCAAAGTGAACAC 

196 CTTTCAACAAGTCGTTACCGAGG 

335 CACCACGCCGTCCTACGT 

517 ACGGCGGAAAGCCCAAGAT 

626 ATATCTGGGCGAGAGCATCACA 

860 CATCGACGAGGGATCACTGTTC 

1093 TTGAGGGCCAAGACTTCTACACCA 

1301 GAACCTCAACCTATCCATCAACCC 

1512 TTCTCCACATACGCGGACAACCA 

1637 GGGTGTGCCCCAGATAGAAG 

1912 TGGACGAGGCTGACAAGAACT 

2185 TGTTCATCAATGGGTTATAACATATGGGTT 

2371 CAACTTGTCATTTAATGTTTT 

2501 TCGGCTTTGATGATTTTCTG 

2707 TTGCAGGCGCATACGCTCTATATC 

2882 ACTCCACACTGATATGGTCGCT 

3077 GTGTGCTGACGCATGTGAAGACTA 

3265 CGTTTCTTCGGGTTCCAATGCGAT 

3419 CTGTCAGTTTGTGGGCTTGGGAAA 

3667 AGCTGAACAGTCTTGGTCTCCA 

3791 TGAACTTCATCCGGCTTGGCA 

4013 TGGAAACTGCCTCCAACAACTG 

4207 TTGTTAATAACACCTGATGTTCAGAGAT 

4394 AGACGCTTTGATAGATGTATTTGTATAG 
 
5' Start  Reverse Primer 

-108 GACAGAGTGAGAGAGCAATAGTACAGAGA 

97 TGATTCACTTTAACTTGCACTTTA 

296 ATGTTGGTAGACACCCACGCA 

414 GGTTCATGGCCACCTGGTT 

618 CCGTCTCCTTCATCTTGGTCAGTA 

700 GTAGCCTGGCGCTGGGAGTC 

1007 GGCGCGAGGGTTGGA 

1195 TTGAGGGCCTTCTCCACAGGCT 

1396 TGGATCTTGCCGCTCTGGTCT 

1614 ACAGATCGAAGGTGCCCAATGC 
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1749 TGTCGTTCTTGATCGTGATGTTC 

1965 ACCGGATAGTGTCGTTGCACTT 

2310 AAGACTTGGTAATTAGGTAATACTATTGTT 

2471 AAATCATCACTAATATAGAATGTAG 

2607 AAAAGTGGAGCTCTCCTGAC 

2807 TTCCGGGCAATGAAGTAGAGGCAA 

2989 TCAAAGGCCGTACTCCTGCAAA 

3174 ATTCGGCGACATACGGGCGATAAT 

3345 ACATTCAAGCGTCAGGACACACTC 

3509 ACTTCATCTACAAGTGCGCCGTCT 

3763 AGACGATGTGGTCAGTATGGCA 

3884 CCTATGAGTTCATCGTCGAAGTGG 

4102 AGACGCACGAGACCAATCTGTA 

4315 ATCGTTAATTGTGTACATCTCAATTCCA 

4476 TTGAATAGTGCTCTAAACTTTGGCATTT 
 

Table 10 Tip60 Primer Sets Used 

RT-qPCR 

Tip60 Forward CAATGGACAAGCGCAAGATC 

Tip60 Reverse ACTACAAGCTACAACGAAGCC 
 
RNAi 

Tip60 
Forward 

GAATTAATACGACTCACTATAGGGATCTGTACACGCGAAA

GGTGCAA 

Tip60 
Reverse 

GAATTAATACGACTCACTATAGGGATTGTGAGAATGCAG
GCCACGTT 
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CHAPTER 4 A SURVEY OF ADDITIONAL SITES THAT BIND HSF 

FOLLOWING HEAT SHOCK TO DETERMINE THE GENERALITY OF THE 

HSP70 MECHANISM OF NUCLEOSOME LOSS  

 The mechanistic insight gained from a detailed analysis of changes in 

nucleosomes that occur after heat shock at Hsp70 have provided a new 

mechanism to further study how Pol II is able to overcome the nucleosome 

barrier during transcription.  One interesting and unanswered question from 

this work is how general this mechanism is to other sites that respond to heat 

shock.  A survey of 12 additional genes throughout the Drosophila genome 

nearby an HSF binding site identified Hsp22, Hsp27, Hsp68, and Hsrω as 

genes that also have a reduced nucleosome protection upon heat shock.  As 

with Hsp70, these four genes identified are also dependent on HSF, PARP, 

and dTip60 to bring about this loss.  These results indicate that HSF binding 

alone is not sufficient to induce changes in nucleosome protection, but a 

similar mechanism like that identified at Hsp70 is used at other sites where 

nucleosome loss does occur upon heat shock.  The results from a PARP 

ChIP-seq experiment will likely provide insight into the proximity requirement 

between PARP deposition before heat shock and HSF binding after heat 

shock and those sites that exhibit a loss in nucleosomes.   

4.1 Introduction 

 Nucleosomes pose a ubiquitous barrier to the ability of RNA 

Polymerase II (Pol II) to be able to efficiently transcribe mRNA enconding 
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genes.  The cell has distinct methods with which to facilitate Pol II’s traversal 

of the nucleosome (Petesch and Lis, 2012b).  Recent studies have uncovered 

a novel mechanism of nucleosome loss whereby a transcription activator is 

able to activate the enzymatic activity of Poly(ADP-Ribose)Polymerase 

(PARP) through the histone acetyltransferase coactivator Tip60 (Petesch and 

Lis, 2008; Petesch and Lis, 2012a).  These studies have extensively mapped 

the changes that occur to both nucleosomes and the formation of Poly(ADP-

Ribose) (PAR) polymers upon heat shock stimulation at the major heat shock 

gene in Drosophila melanogaster, Hsp70.  Although initial studies of 

Drosophila PARP indicate that its enzymatic activity is used to facilitate 

chromatin decondensation at many sites upon heat shock (Tulin and 

Spradling, 2003), as well as at sites that decondense upon hormone treatment 

and stimulation of the innate immune response, the generality of this 

phenomenon and what is sufficient to elicit the PARP-dependent loss of 

chromatin structure is unknown.   

 HSF is the master regulator of the heat shock response and 

orchestrates the cellular response to heat shock stimulation through the 

upregulation of heat shock genes.  HSF achieves this through first a 

trimerization event (Rabindran et al., 1993) followed by its DNA binding 

domain recognizing and binding to its consensus DNA sequence of three 

tandem 5-mer repeats of AGAAN oriented in a head-to-tail fashion (Perisic et 

al., 1989).  Initial studies of HSF binding in Drosophila melanogaster upon 

heat shock were able to map over 164 distinct cytological loci from polytene 
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chromosome staining (Westwood et al., 1991), however, only 9 of these sites 

were observed to undergo visible chromatin decondensation to various extents 

(Andrulis et al., 2000; Ashburner, 1967; Lis et al., 2000; Saunders et al., 

2003).   Although these sites are known to contain genes that are upregulated 

upon heat shock, as observed by the recruitment of active Pol II to these sites 

(Plagens et al., 1976; Saunders et al., 2003), HSF recruitment and chromatin 

decondensation can be uncoupled from active transcription of these genes 

(Winegarden et al., 1996).  Together, these results indicate that, even though 

HSF is recruited to many sites throughout the genome, HSF recruitment is not 

sufficient to elicit either transcriptional activation or chromatin decondensation.   

 A recent study of Drosophila HSF has mapped all genomic locations of 

HSF binding both before and after heat shock through high-throughput ChIP 

sequencing.  These ChIP seq results indicate that HSF binds to 20 locations 

before heat shock and 464 sites following a 20 minute heat shock (Guertin et 

al., 2010).  Of these 464 sites, 442 contained an underlying consensus Heat 

Shock Element (HSE), and 422 of these were inducibly bound upon heat 

shock.  Of these 422, 364 (82%) fall within the promoter or the gene body and 

make them prime candidate sites for being able to initiate changes in 

chromatin structure to facilitate transcript elongation upon heat shock. 

 With this data set, it is possible to probe the chromatin structure at 

different loci surrounding HSF binding sites to answer specific questions of 

how or if HSF binding is able to affect changes in chromatin structure.  First, is 

HSF binding sufficient to bring about localized changes in chromatin structure 
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that was not detectable from polytene chromosome staining that lacks the 

resolution to resolve changes in individual nucleosomes?  Second, are 

changes in nucleosomes only detected from those 9 major heat shock sites?  

Third, does the distance of HSF binding from the gene affect HSF’s ability to 

bring about changes in nucleosomes at nearby genes upon heat shock?  

Fourth, do changes in nucleosomes occur only at those genes that are 

upregulated transcriptionally upon heat shock?  Last, does the presence or 

amount of paused polymerase correlate with those sites that undergo changes 

in chromatin structure, as it does with Hsp70?   

 To begin to answer some of these questions, with the help of three 

separate rotation students, I designed primer sets to 12 additional sites to map 

changes in nucleosomes by my MNase protection assay on genes nearby a 

characterized HSF binding site.  These sites were selected to represent a 

variety of different aspects from being both within and outside of known sites 

of chromatin decondensation, containing different strengths of HSF binding, 

having an HSF binding site at a variety of distances away from the gene, and 

also HSF binding nearby to genes containing different amounts of paused 

polymerase.  In addition to characterizing these 12 additional sites, I tested 

those sites that did show changes in their MNase protection patterns upon 

heat shock for their dependence on HSF as well as PARP and Tip60 to 

determine if these sites additionally used a similar mechanism to nucleosome 

loss as determined with Hsp70.  
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4.2 Results 

4.2.1 Major Heat Shock Sites Contain Genes that Exhibit Nucleosome 

Loss upon Heat Shock 

 To broaden the current understanding of what genes undergo changes 

in chromatin structure following heat shock at the resolution of individual 

nucleosomes, I identified genes within previously characterized major heat 

shock puff sites that contained an HSF binding site nearby.  The major heat 

shock puff sites are found at the cytological loci indentified from polytene 

chromosome staining after heat shock, and these include 33B, 48E, 63B, 

64EF, 67B, 87A, 87C, 93D, and 95D (Ashburner, 1967; Westwood et al., 

1991).  Although reported, no outright visible HSF binding site was observed 

near the annotated 33B locus.  87A and 87C contain multiple copies of the 

Hsp70 gene, already extensively characterized, and 63B contains the 

constitutively active Hsp83 (homologous to Hsp90) with HSF already bound 

before heat shock.  To the additional 6 loci, we used previously genome-wide 

NHS H3 ChIP-chip (Mito et al., 2005) and MNase-seq profiles of 

mononucleosomes (Gilchrist et al., 2010) to choose a region at each gene that 

contained the first well-occupied nucleosome after the nucleosome free region 

near the transcription start site to design primer sets for my MNase protection 

assay.   

 The first genes tested were Hsp22 and Hsp27, which are found within 

the 67B locus.  This locus contains multiple HSF binding sites and multiple  
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Figure 39 Nucleosome Loss Occurs at Hsp22 after Two Minutes of Heat 
Shock 
 
(A) A UCSC genome browser shows a 6 kb region on chromosome 3L 
highlighting Hsp22 with the black arrow at the bottom indicating the 
transcription start site and direction of transcription and surrounding RefSeq 
genes in blue.  The top track shows a NHS Rpb3 ChIP seq experiment (from 
(Gilchrist et al., 2010)) that detects Pol II signal in the region (dark red).  The 
middle two tracks show a NHS GRO-seq experiment (unpublished data) that 
maps the position, amount, and orientation of transcriptionally engaged 
polymerases across the region moving left to right (to track in red, +) or right to 
left (bottom track in blue,  -).  The site of HSF binding after 20 minutes of heat 
shock is shown below in green (from (Guertin et al., 2010)). The last track 
shows the NHS nucleosome landscape from an MNase-seq experiment (from 
(Gilchrist et al., 2010)).  This track was used to design primer sets to the 
closest occupied nucleosome to the HSF binding site (highlighted in the 
orange box). 
 
(B) A NHS (blue) and 2’HS (red) MNase protection assay as in Figure 4 plots 
the relative level of protection (y axis) versus the center of the amplified primer 
set’s distance from the TSS of Hsp22 (x axis). The error bars represent the 
SEM from 3 independent experiments. 
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Figure 40 Nucleosome Loss Occurs at Hsp27 after Two Minutes of Heat 
Shock 
 
(A) A UCSC genome browser shows a 6 kb region on chromosome 3L 
highlighting Hsp27 as in Figure 39.  
 
(B) A NHS (blue) and 2’HS (red) MNase protection assay as in Figure 4 plots 
the relative level of protection (y axis) versus the center of the amplified primer 
set’s distance from the TSS of Hsp27. The error bars represent the SEM from 
3 independent experiments. 
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major heat shock genes, including the previously mapped Hsp26 gene 

(Figures 7 and 10).  These two genes both contain HSF binding to a promoter-

proximal HSE following a 20 min heat shock (less than 500 bp upstream of the 

annotated TSS), and paused polymerases as detected by Rpb3 ChIP-seq and 

GRO-seq before heat shock (Figures 39A and 40A), but at mild and moderate 

levels.  These two genes are also known to be highly transcriptionally 

activated after heat shock (Guertin et al., 2010).  As seen by the MNase-seq 

profiles and from our MNase protection assay of these regions before heat 

shock, a nucleosome occupies the 5’ end of these genes.  As expected, these 

regions also show a hypersensitivity to MNase digestion following heat shock 

(Figures 39B and 40B), as observed with other major heat shock genes Hsp70 

and Hsp26.  These results corroborate those results showing the 67B locus 

undergoes significant puffing after heat shock. 

The next genes to be tested are found within the 95D and 93D loci 

which also show significant puffing following heat shock.  Hsp68 is at the 95D 

locus and contains an HSF that binds to a promoter-proximal HSE after heat 

shock and is transcriptionally upregulated following heat shock (Guertin et al., 

2010).  Hsp68 contains a paused polymerase before heat shock (Figure 41A), 

although at moderate levels.  Again, as expected, a nucleosome that occupies 

Hsp68 before heat shock is lost following a two minute heat shock (Figure 

41B).  The 93D locus contained two separate genes, that each contained an 

HSF binding a promoter-proximal HSE, Hsrω and mod(mdg4).  Hsrω is a non 

coding RNA that is upregulated upon heat shock and contains multiple  
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Figure 41 Nucleosome Loss Occurs at Hsp68 after Two Minutes of Heat 
Shock 
 
(A) A UCSC genome browser shows a 6 kb region on chromosome 3L 
highlighting Hsp68 as in Figure 39.  
 
(B) A NHS (blue) and 2’HS (red) MNase protection assay as in Figure 4 plots 
the relative level of protection (y axis) versus the center of the amplified primer 
set’s distance from the TSS of Hsp68. The error bars represent the SEM from 
3 independent experiments. 
 

 



 

150 

Figure 42 Nucleosome Loss Occurs at Hsrω after Two Minutes of Heat 
Shock 
 
(A) A UCSC genome browser shows an 8 kb region on chromosome 3R 
highlighting Hsrω as in Figure 39. Note, there are 3 separate HSF binding 
sites both upstream and within the gene body of Hsrω. 
 
(B) A NHS (blue) and 2’HS (red) MNase protection assay as in Figure 4 plots 
the relative level of protection (y axis) versus the center of the amplified primer 
set’s distance from the TSS of Hsrω. The error bars represent the SEM from 3 
independent experiments. 
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Figure 43 Nucleosome Loss Does Not Occur at Mod(mdg4) after Two 
Minutes of Heat Shock 
 
(A) A UCSC genome browser shows a 20 kb region on chromosome 3R 
highlighting Mod(mdg4) as in Figure 39.  
 
(B) A NHS (blue) and 2’HS (red) MNase protection assay as in Figure 4 plots 
the relative level of protection (y axis) versus the center of the amplified primer 
set’s distance from the TSS of Mod(mdg4). The error bars represent the SEM 
from 3 independent experiments. 
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promoter-proximal HSEs and one downstream of the gene that bind HSF after 

heat shock (Bendena et al., 1989).  mod(mdg4) contains just one HSE that 

binds HSF but is located 200 bp downstream of the TSS and, unlike Hsrω, is 

not known to be upregulated after heat shock.  Both genes have high levels of 

polymerase and show some transcriptional activity before heat shock; 

however, only Hsrω is considered to have a paused polymerase (Figure 42A 

versus 43A).  Interestingly, although both genes are found to be within the 

same cytological locus, changes in nucleosomes are observed only at Hsrω 

after a heat shock and not at mod(mdg4) 80 kb away (Figure 42B versus 43B).  

These results are not surprising though as the changes observed at the 87A 

Hsp70 locus were contained within the scs/scs´ region (~12.5 kb) and did not 

spread into other regions still contained within the 87A locus (Figure 11).   

 The final two regions that have been identified to be within regions 

identified to undergo heat shock puffing upon heat shock are at 64EF and 

48E, although along with 33B, these are considered to be only minor heat 

shock puffs in comparison to the other 6 loci.  At 64EF the best candidate 

gene identified was DnaJ-1.   DnaJ-1 is known to be upregulated following 

heat shock (Leemans et al., 2000), although not to the extent as the previously 

identified genes.  DnaJ-1 contains two HSEs, one promoter-proximal and 

another one downstream of its polyA site, that each binds HSF after a 20 

minute heat shock.  DnaJ-1 contains a moderately paused polymerase (Figure 

44A) at a moderate total level.  Surprisingly, DnaJ-1 does not show any 

change in chromatin structure by 2 minutes of heat shock (Figure 44B).  At  
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Figure 44 Nucleosome Loss Does Not Occur at DnaJ-1 after Two Minutes 
of Heat Shock 
 
(A) A UCSC genome browser shows a 7 kb region on chromosome 3L 
highlighting Dm as in Figure 39.  Note, there are 2 HSF binding sites just 
upstream and downstream of DnaJ-1.  
 
(B) A NHS (blue) and 2’HS (red) MNase protection assay as in Figure 4 plots 
the relative level of protection (y axis) versus the center of the amplified primer 
set’s distance from the TSS of DnaJ-1. The error bars represent the SEM from 
3 independent experiments. 
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Figure 45 Nucleosome Loss Does Not Occur at Cct5 after Two Minutes of 
Heat Shock 
 
(A) A UCSC genome browser shows a 6 kb region on chromosome 2R 
highlighting Cct5 as in Figure 39.  
 
(B) A NHS (blue) and 2’HS (red) MNase protection assay as in Figure 4 plots 
the relative level of protection (y axis) versus the center of the amplified primer 
set’s distance from the TSS of Cct5. The error bars represent the SEM from 3 
independent experiments. 
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48E, the gene with the highest level of HSF binding after a 20 minute heat 

shock was Cct5, which contains an HSE 200 bp downstream of its annotated 

TSS.  Unlike the previously analyzed genes, before heat shock, Cct5 had only 

minimally detected polymerase and no observable signs of a paused 

polymerase (Figure 45A).  Just like with DnaJ-1, Cct5 did not have any 

observable change in the mapped nucleosome by two minutes of heat shock 

(Figure 45B).  These results indicate that although HSF is locally recruited to 

promoter-proximal sites that are within minor sites of heat shock puffing, HSF 

is not sufficient to bring about changes in nucleosomes at these sites.   

4.2.2 Additional Non Heat Shock Puff Sites that Recruit HSF Do Not 

Exhibit Nucleosome Loss upon Heat Shock 

 In addition to designing primer sets to the known major and minor heat 

shock sites, I also chose additional sites outside these regions that HSF 

bound.  These HSF binding sites, as measured by ChIP-seq all showed similar 

binding strength to the variety displayed from the major heat shock genes 

(moderate to high levels).  However, we were able to chose sites where, like 

the major heat shock genes, HSF bound in or near the promoter as well as 

greater the 500 bp, 5000 bp, and 15,000 bp from the nearest gene to 

determine if HSF could act at greater distances.  Also, since HSF’s ability to 

bring about changes in chromatin structure can be decoupled from 

transcriptional activation of the gene through PARP activation (Petesch and 

Lis, 2012a), we also chose additional sites that had varying degrees of the 
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amount of polymerase at the gene (from transcriptionally silent to active) and 

amount of paused polymerase (from low to extremely high) to determine if 

HSF could initiate changes in chromatin structure independent of the 

transcriptional level of the gene.  The differences between the 12 sites chosen 

are summarized in Table 11. 

 

Table 11 Summary of Analyzed Genes with Proximal HSF Binding After 
Heat Shock, their Pol II and Transcriptional Status, and if they Lose 
Nucleosomes   

Gene Regio
n 

HS 
Puff 

NHS 
Pol II 

NHS 
transcri-
ption 

HS 
upregulated 

HSF 
distance 
(bp) 

Nucleo-
some 
loss 

Hsp70 87A/C +++ ++ - Yes <500 Yes 

Hsp26 67B ++ ++ - Yes <500 Yes 

Hsp22 67B ++ + - Yes <500 Yes 

Hsp27 67B ++ ++ - Yes <500 Yes 

Hsp68 95D ++ + + Yes <500 Yes 

Hsrω 93D ++ ++ ++ Yes <500 Yes 

Mod(mdg4) 93D ++ ++ ++ No <200 down No 

DnaJ-1 64EF + ++ + Yes <500 No 

Cct5 48E + - - n.d. <200 down No 

CG3884 49E - + - n.d. <500 No 

CG9705 73C - + + n.d. <500 No 

CG33111 95BC - ++ + n.d. <500 No 

CG9837 85B - - - n.d. <5000 No 

Dm 3D - +++ + n.d. <20000 No 

The number of + indicates the relative measured level by GRO-seq or 
polytene staining heat shock puff size. n.d.= not determined by the literature 
 
 

 The first analyzed gene outside annotated heat shock puffs is CG3884 

located at 49E.  HSF binds to a promoter-proximal HSE after heat shock at 

similar levels to many of the major heat shock puff loci genes, but unlike them, 

CG3884 contains little polymerase before heat shock, mainly at its pause site  
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(Figure 46A).  Although there is little polymerase present before heat shock, 

HSF binding proximally to this gene is unable to incite changes in a 

nucleosome that was mapped just downstream of its TSS following a two 

minute heat shock (Figure 46B). 

 The second analyzed region is similar to many sites in that HSF is 

recruited to the locus at moderate levels after heat shock, except it is betwixt 

two divergent genes, CG9705 and CG13025.  HSF binds proximally to 

CG9705 and just outside the 500 bp promoter region of the upstream 

CG13025 gene.  The CG9705 gene has a low level of transcription across its 

gene before heat shock, whereas CG13025 is almost transcriptionally silent 

before heat shock as measured by GRO-seq (Figure 47A).  HSF theoretically 

could potentially induces changes in chromatin structure in either a uni or 

bidirectional manner, and this was the rational for choosing a site that could be 

easily measured for this property.  Unfortunately, no detectable changes in 

either nucleosome at CG9705 or CG13025 could be observed after a two 

minute heat shock (Figure 47B).   

 The next three analyzed regions were chosen for their differing 

distances in which HSF bound from the closest TSS.  The three genes, 

CG33111, CG9837, and Dm, contain an HSE that binds HSF within the 

promoter-proximal region of the gene, within 5 kb, and within 15 kb of the gene 

respectively.  There is no indication that the binding of HSF to these intergenic 

regions can actually affect a gene from such a distance, but these rare binding 

events so far from a nearby gene are interesting natural cases worth including.    
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Figure 46 Nucleosome Loss Does Not Occur at CG3884 after Two 
Minutes of Heat Shock 
 
(A) A UCSC genome browser shows a 7 kb region on chromosome 3R 
highlighting Cct5 as in Figure 39.  
 
(B) A NHS (blue) and 2’HS (red) MNase protection assay as in Figure 4 plots 
the relative level of protection (y axis) versus the center of the amplified primer 
set’s distance from the TSS of Cct5. The error bars represent the SEM from 3 
independent experiments. 
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Figure 47 Nucleosome Loss Does Not Occur at CG130125 or CG9705 
after Two Minutes of Heat Shock 
 
(A) A UCSC genome browser shows an 8 kb region on chromosome 3L 
highlighting divergent CG13025 and CG9705 as in Figure 39.  
 
(B) A NHS (blue) and 2’HS (red) MNase protection assay as in Figure 4 plots 
the relative level of protection (y axis) versus the center of the amplified primer 
set’s distance from the TSS of either CG13025 or CG9705. The error bars 
represent the SEM from 3 independent experiments. 
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The first gene, CG33111, has a moderate level of paused polymerase at the 

gene and mild transcription before heat shock (Figure 48A).   Additionally, it 

has a fairly high level of HSF detected by ChIP-seq and appears a likely 

candidate for nucleosome loss upon heat shock; however, no detectable 

changes were observed at the mapped nucleosome following heat shock 

(Figure 48B).  The second gene, CG9837, appears to have HSF that binds an 

HSE approximately 5 kb upstream of its gene at a moderate level, in the 

middle of what appears to be post polyA transcription from the nearest 

upstream gene, transcribed in the same orientation (Figure 49A).  CG9837, 

like CG3884, contains very little polymerase at its gene before heat shock as 

detected by GRO-seq.  After heat shock, HSF is unable to affect changes in 

the mapped nucleosome at CG9837 from such a considerable distance 

(Figure 49B).  The final gene, Dm, is a very unusual case in which HSF 

moderately binds to two separate HSEs, approximately 2 kb apart, after heat 

shock in a gene poor region that is not transcribed before heat shock (Figure 

50A).  The closest gene promoter, almost 20 kb away, is the Dm gene (the 

homolog of c-myc), which contains an extremely high level of paused 

polymerase.  Heat shock does not induce significant changes in nucleosomes 

across the Dm 5’ end of the gene after a two minute heat shock (Figure 50B), 

as this distance from the HSE is larger than the entire scs/scs´ region.   
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Figure 48 Nucleosome Loss Does Not Occur at CG33111 after Two 
Minutes of Heat Shock 
 
(A) A UCSC genome browser shows a 30 kb region on chromosome 3R 
highlighting CG33111 as in Figure 39.  
 
(B) A NHS (blue) and 2’HS (red) MNase protection assay as in Figure 4 plots 
the relative level of protection (y axis) versus the center of the amplified primer 
set’s distance from the TSS of CG33111. The error bars represent the SEM 
from 3 independent experiments. 
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Figure 49 Nucleosome Loss Does Not Occur at CG9837 after Two 
Minutes of Heat Shock 
 
(A) A UCSC genome browser shows an 8 kb region on chromosome 3R 
highlighting CG9837 as in Figure 39.  
 
(B) A NHS (blue) and 2’HS (red) MNase protection assay as in Figure 4 plots 
the relative level of protection (y axis) versus the center of the amplified primer 
set’s distance from the TSS of CG9837. The error bars represent the SEM 
from 3 independent experiments. 
  



 

163 

 
 
Figure 50 Nucleosome Loss Does Not Occur Across Dm after Two 
Minutes of Heat Shock 
 
(A) A UCSC genome browser shows a 60 kb region on chromosome X 
highlighting Dm as in Figure 39.  Note, there are 2 HSF binding sites almost 
20 kb from upstream of the gene.  The nearest upstream gene, is oriented in 
the same direction as Dm.  
 
(B) A NHS (blue) and 2’HS (red) MNase protection assay as in Figure 4 plots 
the relative level of protection (y axis) versus the center of the amplified primer 
set’s distance from the TSS of Dm. The error bars represent the SEM from 3 
independent experiments. Only a significant difference was found from the first 
primer set (+508, p<0.05, student T-test). 
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4.2.3 Major Heat Shock Puff Sites Require HSF, PARP, and Tip60 to Lose 

Nucleosomes following Heat Shock 

 Although HSF is unable to bring about changes at every site that it 

binds to locally within the genome, regardless of the strength of HSF binding, 

its distance, or the relative amount of polymerase at the gene before heat 

shock, I did discover that nucleosomes are lost at four additional major heat 

shock sites following heat shock in a similar rapid manner to Hsp70 and 

Hsp26.  To determine if a similar mechanism that is utilized at Hsp70 following 

heat shock, I preformed RNAi depleted HSF, PARP, and Tip60 as previously 

performed to determine if the same factors were utilized at these other sites 

that do lose chromatin structure following a short heat shock. 

 The results for all four genes that were found from this study to lose 

nucleosomes upon heat shock, Hsp22, Hsp27, Hsp68, and Hsrω, are shown 

in comparison for each primer set with control LacZ RNAi samples in dark blue 

and dark red for NHS and heat shock samples and the corresponding RNAi 

NHS in light blue and heat shock in pink.  As expected, all four genes were 

completely dependent on HSF for their ability to lose their chromatin structure 

following heat shock (Figures 51 A-D).  Additionally, all these genes were 

dependent on the presence of PARP (Figures 52 A-D) and Tip60 (Figures 53 

A-D) in order to undergo changes in nucleosomes near the 5’ end of their 

genes after two minutes of heat shock.   
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Figure 51 Nucleosome Loss at Hsp22, Hsp27, Hsp68, and Hsrω after Two 
Minutes of Heat Shock is Dependent on HSF 
 
The nucleosome protection profile for LacZ control RNAi for NHS (dark blue) 
and 2’ HS (dark red) is plotted along with HSF RNAi knockdown for NHS (light 
blue) and 2’HS (pink) as in Figures 39-42 with the relative level of protection (y 
axis) versus the center of the amplified primer set’s distance from the TSS for 
Hsp22 (A), Hsp68 (B), Hsp27 (C), and Hsrω (D).  The error bars represent the 
SEM from 3 independent experiments.  
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Figure 52 Figure 51 Nucleosome Loss at Hsp22, Hsp27, Hsp68, and Hsrω 
after Two Minutes of Heat Shock is Dependent on PARP 
 
The nucleosome protection profile for LacZ control RNAi for NHS (dark blue) 
and 2’ HS (dark red) is plotted along with HSF RNAi knockdown for NHS (light 
blue) and 2’HS (pink) as in Figures 39-42 with the relative level of protection (y 
axis) versus the center of the amplified primer set’s distance from the TSS for 
Hsp22 (A), Hsp68 (B), Hsp27 (C), and Hsrω (D).  The error bars represent the 
SEM from 3 independent experiments.  
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Figure 53 Figure 51 Nucleosome Loss at Hsp22, Hsp27, Hsp68, and Hsrω 
after Two Minutes of Heat Shock is Dependent on Tip60 
 
The nucleosome protection profile for LacZ control RNAi for NHS (dark blue) 
and 2’ HS (dark red) is plotted along with HSF RNAi knockdown for NHS (light 
blue) and 2’HS (pink) as in Figures 39-42 with the relative level of protection (y 
axis) versus the center of the amplified primer set’s distance from the TSS for 
Hsp22 (A), Hsp68 (B), Hsp27 (C), and Hsrω (D).  The error bars represent the 
SEM from 3 independent experiments. 
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4.3 Conclusions 

These results reinforce the generality of the findings from a detailed 

study of Hsp70 whereby an ordered mechanism leads to changes in chromatin 

structure at many heat shock genes in Drosophila first through HSF 

recruitment to a promoter-proximal region, followed by Tip60 induced 

activation of PARP followed by PAR destabilization of the underlying 

chromatin structure of the locus.  Although this survey of selected regions in 

the genome is by no means representative of the entirety of the genome it 

expands our current knowledge of what is likely to be sufficient to bring about 

the rapid changes in nucleosomes on gene bodies from a PARP-dependent 

mechanism. 

The first general finding from these results confirms the many years of 

research into heat shock genes from polytene chromosomes.   Whereas by 

both immunological staining of HSF on polytene chromosomes (Westwood et 

al., 1991) and more sophisticated ChIP-seq analysis (Guertin et al., 2010) 

demonstrates that HSF binds to hundreds of locations following heat shock, 

not every site that HSF binds to induces changes in the underlying chromatin 

structure.  From my small survey of selected regions, the findings that the 6 

major heat shock puff sites are also regions of the genome where HSF binds 

and induces local changes in the chromatin structure through a rapid 

mechanism by just two minutes of heat shock.  Although the other three minor 

heat shock puff sites did not either have significant HSF ChIP-seq signal or 

changes in chromatin structure following a two minute heat shock, this does 
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not discount the fact that there might be other genes within this region that is 

undergoing some sort of chromatin decondensation or that the changes might 

occur later in heat shock.  A longer heat shock might be needed for the 

kinetics of HSF or Tip60 recruitment or PARP activation.  Additionally, these 

minor heat shock sites might rely on a separate method for chromatin 

decondensation after a longer heat shock when polymerase density has built 

up and transcription-dependent factors have remodeled the nucleosomes, 

which occurs at Hsp70 following the first minute of heat shock when 

polymerase indeed builds up on the gene. 

The second important finding from these results is that HSF recruitment 

to a gene promoter is not sufficient to elicit local changes in nucleosomes 

upon heat shock.  The genes selected for these 12 additional sites all 

contained moderate to high levels of HSF binding, as observed at Hsp70 and 

Hsp26 after heat shock.  The majority of the genes contain an HSE within 200 

bp of the TSS, as with Hsp70 and Hsp26, however, this proximity alone is not 

enough to bring about changes in nearby well-occupied nucleosomes 

following heat shock at all sites.  Even though those genes with HSF binding 

at a distance did not have changes in their underlying chromatin structure after 

heat shock, it does not discount the fact that HSF could locally change the 

intergenic chromatin structure locally.  It also does not discount the possibility 

that it may take more time to form a higher order chromatin structure in which 

HSF can reach over such large distances.  It is just as likely, however, that 

HSF can only act over short distances through the limitations of Tip60’s ability 
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to locally acetylate its targets.   

The final finding from this survey is that although not predictive, the 

sites that did change its nucleosome protection pattern upon heat shock also 

contained paused polymerase before heat shock.  These results might speak 

to another correlation that exists between the presence Pol II at the 5’ of a 

gene and PARP occupancy at that gene (Krishnakumar et al., 2008).  It is not 

clear at this point what is unique about the sites that do observe losses in 

nucleosome protection following heat shock as opposed to genes like DnaJ-1 

and CG33111 which like the major heat shock genes also contain paused 

polymerase before heat shock and recruit HSF to its promoter.  Results from a 

ChIP seq of PARP (Appendix B) are likely to draw more distinctions between 

the regions that are capable of undergoing changes in chromatin structure in a 

rapid fashion following heat shock and HSF recruitment.  

4.4 Experimental Procedures 

 All of the experimental procedures for this chapter follow those outlined 

in sections 2.4.2, 2.4.3, 2.4.5, and 2.4.6.  The following table lists the primer 

sets used in this chapter to the additional 12 sites that were designed.   

Table 12 Primer Sets Used in Survey of Additional 12 Loci 

Gene: Hsp22 

Center of Amplicon Forward Primer 

276 CTACAATGCGTTCCTTACCGATG 

395 TACCGAGGAACTGGCAGCAGATT 

415 TTTGGAGTGTGGCGCTACCGA 

492 ACGTCAAGGACTACAGCGAGCTAA 

504 TAAAGGTCAAGGTGCTGGACGAGA 

Center of Amplicon Reverse Primer 
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276 GCTCGTGGAAGAAGGCGTGAAA 

395 TTGACGTCCAGGGTGAGTTTGT 

415 TGTAGCCATCCTTGTTGACGGT 

492 GGCTTCCTATTTCAATCTTTCAAAA 

504 TGCCTGGAGCTATAGCCACCTT 

  Gene: Hsp27 

Center of Amplicon Forward Primer 

254 TACTGCCCAACACCCTGGGACT 

337 AGCCATGGCCACCACAATCAAA 

378 CAAAGATGGCTTCCAGGTGTGCAT 

428 ATGTGTCGCAGTTCAAGCCCAA 

467 TGGACAACACCGTGGTGGTAGA 

Center of Amplicon Reverse Primer 

254 ACGCGCGACGTGACATTTGATT 

337 AACTGCGACACATCCATGCACA 

378 TCTACCACCACGGTGTTGTCCA 

428 TGGATCATTCCATGGCCGTCCT 

467 AAAGCCCTTGGGCAGGGTATACTT 

  Gene: Hsp68 

Center of Amplicon Forward Primer 

394 TACTTCTCCGCCTCACTGAGCAT 

441 ACGACCCTTGTCGTTCTTGATGGT 

511 TCCTTGGCGGTCACATTCAGGATA 

541 AGTAACGTCGATCTTGGGCACT 

620 ACATTGTTGTCCTTGGTCAGAGCC 

Center of Amplicon Reverse Primer 

394 TACTTCTCCGCCTCACTGAGCAT 

441 TTGGACGCAAACGGTATCCTGA 

511 ATTCGATCTCACTGGCGTTCCA 

541 AGGGCTCTGACCAAGGACAACAAT 

620 TGCAAGCAGTCCAAGACCTTCA 

  Gene: Hsrω 

Center of Amplicon Forward Primer 

288 GGAAACAATGAAACCATACGCAAACCC 

339 TTTGCTGGTCAGCGTCGGG 

370 TTCGCAATGCAGCAGGCAGTTT 

391 TTGGCTAGAAAGTGACCCACTAGG 
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430 CCAGGATGTAAGGATGTGTGCAGT 

Center of Amplicon Reverse Primer 

288 AAACTGCCTGCTGCATTGCGAA 

339 TAACTGCCTCAGACTGCCTAGT 

370 TCGACACAGAGAGTACTGCACA 

391 GCCATCGCCATTCGACACAGA 

430 GCTGTGTATGTATACCTGGCTTCC 

  Gene: mod(mdg4) 

Center of Amplicon Forward Primer 

447 GTGGCTGACGTTGTTCAGGAAT 

464 ACTGCAAGATAGGCGAAGAGAG 

546 GGCACAAACTCACCGATAGCGT 

615 ATAACACCAATCGGTGGGCCTTCA 

627 TTCACTATTTGGCCCTCGGCG 

Center of Amplicon Reverse Primer 

447 ACGCTATCGGTGAGTTTGTGCC 

464 ACCCACGCTATCGGTGAGTTTGT 

546 AAGGCCCACCGATTGGTGTTAT 

615 AACACGAATTTGTCGGCCGGCTT 

627 GTGCTGGAACAACTTCAACACG 

  Gene: DnaJ-1 

Center of Amplicon Forward Primer 

868 AAACATATCGTCGCCGCCAATG 

947 AAGATCTCGTTGGTATTGCCGC 

982 TGTTATCGCCGCCGGTAAAGAA 

1012 ATCGCCGTGGAACTGGTAAGTGTA 

Center of Amplicon Reverse Primer 

868 ATCCGTTTGGCGCGTTCTTTAC 

947 GGCCACATTTGCCCAGTTCTTT 

982 TACACTTACCAGTTCCACGGCGAT 

1012 AGAAGCGCGACATCTTCGACAA 

  Gene: Cct5 

Center of Amplicon Forward Primer 

472 ACCCGAAGAACAAGGAGCCACTTA 

505 TGGGCAGCAAGATCGTGAACAA 

582 TGGCCGACATTGAGAAGAAGGA 

597 AGGACGTGAACTTCGAGCTCATCA 
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635 ATGGAGGACTCGATGCTGGTGAA 

Center of Amplicon Reverse Primer 

472 AGCACAGCATCCACAGCCATTT 

505 TCCTTCTTCTCAATGTCGGCCA 

582 TCAACGATGACACCCTTCACCA 

597 ATGGCTGAGGGTCTTGTCAACGAT 

635 AATGGCCAGCTTGACGTTCCTT 

  Gene: CG3884 

Center of Amplicon Forward Primer 

1281 TAAATGGGAGTACGGTCGGAGT 

1328 ACTGCGCCCGGAGGAGTGTAA 

1378 ACGTCGTGCTGCTGCTTGATGA 

1387 CTGGCCGCCAAATGGAATGTAT 

Center of Amplicon Reverse Primer 

1281 ACACCTACGAGGTGCTCATCAA 

1328 TCAACACCTACGAGGTGCTCATCA 

1378 AAAGTTCATCCATCGCACGGCT 

1387 TCTATGTGGGACGCGGACATCA 

  Gene: CG9705 

Center of Amplicon Forward Primer 

1297 CCATGCGCATCCTCCATTGATT 

1370 AAACGCAAACACGCGCAAACTC 

1398 AAACATAGCTCCGCTCGGGCCTT 

1449 TGAAATCCTTCAGCCGCACCAA 

Center of Amplicon Reverse Primer 

1297 GAGTTTGCGCGTGTTTGCGTTT 

1370 TGCGGCTGAAGGATTTCACCAT 

1398 AATGAAGCCGTGTCCTTTGGTG 

1449 TCACTTACTCGGAAACGTGGCA 

  Gene: CG13025 

Center of Amplicon Forward Primer 

779 TGGGGAAAGCTGCATTCGGCGGTG 

799 CGGCGGTGGTTAAACGAAAGCCAT 

840 CAGTGCAAGACGAAGGCCACATTTAG 

885 TCATCTGTATGCGAAGCGCATTCAG 

Center of Amplicon Reverse Primer 

779 CGGATATCTCTAAATGTGGCCTTC 
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799 TGAATGCGCTTCGCATACAGATGACG 

840 CAGCTGCTCCCTAATATCCGTGTCC 

885 GCTTCGCGGTAGCCAGCTCTGTTGTTAG 

  Gene: CG33111 

Center of Amplicon Forward Primer 

831 TACCGCTTCCTGTGCTTCGATT 

858 AGGTAGACCTGCCTTTAAGCCT 

890 TTCCCTTGACACCTGGTCAAGCTCTA 

957 CTCCTCCTGCTGCTGCTTATTT 

Center of Amplicon Reverse Primer 

831 AAGCCGGATAGGCTTAAAGGCA 

858 ACGGAGGAGCAAATAAGCAGCA 

890 AGACGAGGAGTTTCCACGAGAA 

957 TTCCGGATAGAGCCAACAACCA 

  Gene: CG9837 

Center of Amplicon Forward Primer 

119 AGCCTTAGTAGTCGCTCCTTCGTT 

143 AATGGTCTTGTCGATGGTGTCGGA 

184 GCTGCTGTACGTGAAAGTCCAA 

221 AAGTGAAACCGCATGCTACCCT 

Center of Amplicon Reverse Primer 

119 AGCCTTAGTAGTCGCTCCTTCGTT 

143 AGGGTAGCATGCGGTTTCACTT 

184 TTGTGCAAGCCTGCTGGATGTT 

221 TTTGGTCCAGGCATGTTTCCGA 

  Gene: Dm 

Center of Amplicon Forward Primer 

508 CTGGAAAGCAAAGGAAGCTAACTAA 

561 ACGGAAACTATGTTCAGCGAGGTG 

642 TCGGAACGCAACGACTTCAA 

644 AAATCGCGCCACTACGGG 

Center of Amplicon Reverse Primer 

508 TTTGCACTCACCTCGCTGAACA 

561 TTGAAGTCGTTGCGTTCCGA 

642 TGTGTGTGAGAGCACCGTTA 

644 TCATTGTGTGTGAGAGCACCGT 
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CHAPTER 5 POTENTIAL FUTURE DIRECTIONS OF THE PROJECT 

 The purpose of this chapter is to provide any additional future member’s 

of the Lis lab potential future areas to pursue given the results of this project.   

5.1 Determining if the Components and Mechanism Used by Hsp70 is 

General for Sites that Undergo Chromatin Decondensation Following 

Heat Shock 

 My preliminary results looking at various sites throughout the genome 

where HSF binds following heat shock have identified other sites that rely on 

HSF, Tip60, and PARP to disrupt a gene’s nearby chromatin structure, just as 

with Hsp70.  The most logical next step to extend these results in an unbiased 

genome-wide method is to follow up on the non heat shock PARP ChIP-seq 

results with an additional Tip60 ChIP-seq (or H2AK5Ac ChIP-seq) following 

heat shock.  It is likely that an entire constellation of factors need to assemble 

locally, like at Hsp70, to bring about a rapid, transcription-independent loss of 

nucleosomes, and this is the limiting factor in determine which sites within the 

genome undergo changes in chromatin decondensation.  If the purposed 

model in Figure 3 is correct, HSF needs to be able to bind locally to a site that 

already has PARP deposited before heat shock and then additionally recruit 

Tip60 to the same region.  If the additional results obtained from the Tulin lab 

are correct there may be additional factors that need to be present at this 

locus, including the histone variant H2Av and the unknown kinase that 
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specifically phosphorylates S137 at this site (Kotova et al., 2011).  As HSF 

limits the potential for a genome-wide decondensation event to just 464 sites 

scattered throughout the genome, it is not surprising that perhaps an overlap 

of many of these additional factors may provide an even limited set within this 

464 sites to perhaps just the 9 first observed in polytene heat shock puffs.   

 One additional very interesting and largely outstanding question is what 

determines the sites of PARP deposition before heat shock.  Although PARP 

binds to many different DNA structures as well as nucleosomes, it is likely that 

there is an additional factor that helps specify where PARP will bind 

throughout the genome.  The non heat shock PARP ChIP-seq data will easily 

be correlated with ModEncode ChIP-chip data to help illuminate this point.   

5.2 Determining How the Tip60 Complex is Capable of Activating PARP 

in vivo 

 My results indicate that the Tip60 complex is necessary for the 

activation of PARP at Hsp70, and likely other sites that lose their nucleosome 

structure upon heat shcok, but the exact method with which this occurs is 

unknown.  The dTip60 complex is able to interact directly with HSF (personal 

communication with Tom Kusch) but there is no evidence that it interacts with 

PARP.  It is unclear if the acetylation activity is actually required for this 

process.  Although mammalian PARP-1 is activated by acetylation by other 

histone acetyltransferases (Hassa et al., 2005), there is no indication that it 

can be acetylated by Tip60, and those sites that are acetylated in the 
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mammalian PARP-1 are poorly conserved in dPARP.  There also is not a well 

defined and specific inhibitor of the MYST family of acetylases, which would 

be helpful to determine if the acetylation activity of Tip60 is necessary or if 

some additional method is used.   

 The most likely working hypothesis is that the Tip60 complex contains 

the homolog of the SWR1 remodeler, and is capable of exchanging H2Av-H2B 

dimers into nucleosomes that have H2A-H2B or H2AvK5AcS137P-H2B 

dimers.  The most logical test of this hypothesis is to in vitro assemble 

chromatin with PARP and see if PARP activity is stimulated by addition of the 

dTip60 complex, or just a SWR1 chromatin remodeler.  These experiments 

would speak to a general method with which to regulate PARP activity while it 

is still bound to nucleosomes genome-wide.  It does not seem to be a 

coincidence that different variants of H2A, H2Av in Drosophila (Kotova et al., 

2011) and macroH2A (Nusinow et al., 2007; Ouararhni et al., 2006) in 

mammals, each seem to be able to regulate PARP activity. 

5.3 Determining the Target of PARP Activation that Facilitates Chromatin 

Decondensation  

 One of the most troublesome and interesting question that still has yet 

to be definitively answered is what the target of PARP’s catalytic activity upon 

heat shock  is and how does that bring about changes in chromatin structure.  

The biggest hurdle to being able to answer this question is that there are no 

specific reagents available yet to identify specific PARylated targets as there is 
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with other PTMs.  An antibody, or even an RNA aptamer, recognizing 

automodified PARP or even PARylated histones would prove to be an 

invaluable reagent to be able to specifically detect the target of PARP’s activity 

at Hsp70 following heat shock.  Additionally, a targeted mutational approach 

could be used to try and re-express mutant forms of potential targets of 

PARP’s activity that are not able to be PARylated.  Although there is some 

indication of potential sites on both PARP and histones that might be sites that 

can be PARylated it is less clear that mutations in these sites actually ablate 

the ability of PARP to PARylate the target.  A more unbiased method would 

potentially be to identify which proteins are PARylated following heat shock by 

mass spec and further characterize which residues on those proteins that are 

sites of PARylation.   

One tangential question that this also brings up would be to be able to 

show that perhaps just PARylated PARP, as speculated from my results, is the 

likely target upon heat shock and this alone is sufficient to bring about 

chromatin decondensation.  To try and address this question I have 

entertained the idea of trying to deliver an in vitro PARylated PARP back into 

the cell to try and observe if chromatin now decondenses near regions where 

PARylated PARP was reintroduced.  The biggest hurdle to this process is that 

methods such as electroporation or transfection are only able to deliver a 

protein that is the size of PARylated PARP (114 kDa) to the cytoplasm but not 

the nucleus.  It is likely that another sophisticated method needs to be 

developed to be able to reintroduce PARylated PARP into the nucleus of cells. 
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5.4 Establishing the Generality of Transcription Independent 

Nucleosome Loss 

 One of the most shocking observations from my initial study is that the 

nucleosome loss that occurs at Hsp70 following heat shock can be decoupled 

from transcription.  My results also speak to a method whereby this process is 

dependent upon PARP’s catalytic activation.  Thus far, this transcription-

independent nucleosome loss has only been observed at Hsp70 and Hsp26.  

To better understand how general this process is on a more genome-wide 

scale, the most logical first step would be to define regions of the genome that 

undergo chromatin decondensation upon a stimulus like heat shock.  This 

could be done with the increased depth and length of high throughput 

sequencing today with MNase-seq experiments.  In addition to being able to 

provide a large array of data, these results could also be coupled with 

conditions in which transcription was halted genome-wide with such inhibitors 

as DRB or flavorpiridol.  These results would provide data about not only those 

regions with the ability to undergo transcription-independent changes in 

chromatin, but also be able to identify other regions whose nucleosome 

assembly or disassembly is dependent on actively transcribing polymerase.  

Finally, these results would provide a large data set to determine more 

boundaries of nucleosome loss that occurs at other regions beyond just the 

scs/scs´ region.   
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5.5 Determining what Constitutes a Chromatin Insulator and Blocks the 

Progression of Nucleosome Loss from Occurring 

 Another exciting finding from my initial results is that traditional 

chromatin insulators that have been studied for their ability to block enhancer-

promoter interactions as well as block position effect variegation is also able to 

block the spread of nucleosome loss upon heat shock.  A single factor has yet 

to be identified as providing an insulator function as knockdown of either 

insulator protein, Zw5 or BEAF-32, did not result in an increase locus of 

nucleosome loss.  Although other insulator proteins in Drosophila exist or 

could provide redundancy, such as CTCF, CP190, Chriz, Su(Hw), etc., it 

appears unlikely from the literature that just one factor is sufficient to establish 

full chromatin insulator activity.   

 One attractive hypothesis is that gene promoters, or those that contain 

paused polymerases like at scs/scs´, and the many associated factors are 

able to produce the insulating function.  This hypothesis is also consistent with 

other genome-wide chromatin confirmation capture assays that identify active 

promoters as boundary sites that segregate different classes of chromatin 

structure, such as active and inactive.  The structure of active promoters might 

also be in some way able to stop the spread of expanding PAR.  In addition to 

information from MNase-seq data to identify potentially new sites of chromatin 

insulators, one could also make use of the many Hsp70 transgenic constructs 

that have been inserted across the genome.  These insertions could be used 

to identify new sites of chromatin insulation that are typically not used at 
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endogenous heat shock genes.  It is possible that genes flanking this insertion 

site that contain paused polymerase could provide the insulator activity from 

nucleosome loss spreading after heat shock.  Furthermore, this theory could 

be tested by altering a genes activity by knocking down a critical factor in its 

transcriptional regulation or by utilizing different cell types in which a nearby 

gene is differentially expressed. 

5.6 Concluding Remarks 

 The ideas and issues presented as potential avenues for further pursuit 

are by no means comprehensive.  Nor do they begin to address many other 

key unanswered points as to my original, simple question of how Pol II is able 

to overcome the nucleosome barrier during transcription. What is the fate of 

individual remodeled nucleosomes either from Pol II’s traversal or through a 

Pol II independent method that is able to disassemble the nucleosome?  Have 

we identified all the methods that facilitate Pol II’s ability to overcome the 

nucleosome barrier during transcription elongation?  What dictates the extent 

of nucleosome loss at any given transcribed gene?  The answers to these and 

many other questions still need to be addressed to completely understand how 

Pol II is able to achieve efficient transcript elongation. 
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APPENDIX A ADDITIONAL FACTORS SCREENED FOR THEIR ABILITY 

TO FACILITATE TRANSCRIPTIONAL ACTIVATION OF HSP70 AFTER A 

20 MINUTE HEAT SHOCK 

 The purpose of this appendix is to document the additional factors that I 

designed RNAi primer sets for to test if they had positive or negative effects on 

the ability to activate Hsp70 following a heat shock.  The additional RNAi 

screen performed beyond that initiated by Karen Adelman, Behfar Ardehali, 

and Nick Fuda grew out of an initial project looking at the effects upstream 

kinases might have on the heat shock transcriptional response. 

A.1 Introduction 

Cell viability is critically dependent on the ability of cells to adapt to 

external stresses created by their environment.  One prominent stress that 

cells must adjust to is external temperatures elevated above the normal 

physiological level.  Cells have adapted over time to develop a heat shock 

response that produces proteins integral to responding to this immediate 

threat.  This response begins by rapidly transcribing heat shock genes within 

minutes of a heat shock.  One well studied example of this phenomena is the 

transcription of heat shock protein 70 (Hsp70) in the organism Drosophila 

melanogaster.  Upon heat shock, the protein heat shock factor (HSF), usually 

found in a monomeric state prior to heat shock, trimerizes and binds to 

regulatory elements upstream of the Hsp70 gene called heat shock elements 
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(HSEs).  The binding of HSF to HSEs is the key regulatory event that drives 

the transcription of the Hsp70 gene. 

 Many of the ensuing events in the transcription of the Hsp70 gene in D. 

melanogaster have been well characterized.  However, the question remains 

as to how the external stress of heat propagates itself through the cell and 

stimulates these well characterized events in the transcription of D. 

melanogaster heat shock genes, including the trimerization of HSF.  The 

mitogen activated kinase (MAPK) signaling cascade has previously been 

shown to be activated in response to environmental stresses in eukaryotic 

cells.  The MAPK signaling pathways also is conserved from yeast to 

mammals.  Three distinct, major MAPK signaling pathways have been 

identified: extracellular signal-reuglated kinase (ERK), stress-activated protein 

kinase/C-Jun N-terminal kinase (JNK), and p38/MK2 kinase.  It has been 

shown that upon heat shock in D. melanogaster specific MAP2K and MAP3Ks 

upstream of the p38 kinase pathway phosphorylate p38 (Zhuang et al., 2006).  

p38 has been shown to phosphorylate many various transcription factors 

and/or other downstream kinases that can affect transcription.   Likewise, a 

knockout of p38a, a specific isoform of p38 in D. melanogaster, has been 

linked to its ability to tolerate heat shock conditions (Craig et al., 2004).  These 

two pieces of information indicate that the p38 MAPK signaling pathway may 

have either a direct or indirect impact role in the transcription of the Hsp70 

gene in D. melanogaster. 



 

184 

A.2 Results from Selected RNAi Screens  

To answer whether or not the p38 MAPK signaling pathway has an 

effect on the transcription of the Hsp70 gene RNAi was used to knockdown 

p38 and potential upstream kinases to try and disrupt the transcript levels of 

hsp70.  Primers with a 5’ T7 RNA polymerase binding site were designed to 

produce PCR products that could be used for a transient knockdown of a 

specific protein.  These PCR products were transcribed into ssRNA and 

reannealed to produce dsRNA.  Ten micrograms of the dsRNA was added to 3 

mL of 1x106 to D. melanogaster S2-S cells.  The cells were allowed to grow 3-

4 days at room temperature and at which point were split into 4 groups for final 

cell counts, Western blots, non-heat shock control, and heat shock for 30 

minutes at 37 °C.  All experiments included a knockdown of LacZ, which S2-S 

cells do not express, to serve as a negative control.  Total RNA from each of 

the fractions was collected using the QIAgen RNAeasy kit and analyzed using 

gel electrophoresis.  Reverse transcription reactions were performed using 

oligo dT followed by an RNase treatment.  The cDNA products were then 

analyzed and quantified using real time PCR with primers specifically targeted 

for the far 3’ end of Hsp70 and Rp49, a control gene unaffected by heat shock.  

Each sample was run in duplicate to quantify Hsp70 and rp49 transcript levels.  

The hsp70 transcript levels was first normalized to rp49 to control for the 

amount loaded in each PCR reaction and then again normalized to either LacZ 

or untreated cell levels to quantify the decrease in Hsp70 transcript levels. 

 Initial experiments knocked down LacZ and HSF as controls along with 
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p38.  Following the initial knockdown of p38 a broader knockdown of other 

kinases potentially involved in the pathway of p38 were then targeted and 

knocked down in the same process to screen for other kinases linked in a 

pathway to p38.  The results from this experiment are seen in Figure 54.  

Knockdown of p38 produced approximately a 30% reduction in Hsp70 

transcript levels, which was consistently obtained in experiments following the 

first.  Other factors that produced significant decreases in hsp70 transcript 

levels consistent with a knockdown of p38 alone were the MAP2K lic and the 

MAP3Ks pk92B and Mekk1.  These results are consistent with those upstream 

kinases previously identified by (Zhuang et al., 2006) as contributing to the 

phosphorylation of p38 upon heat shock.  Double and triple knockdowns must 

be repeated to optimize the amount of total dsRNA to add in order to 

authenticate these preliminary results.  Also, knockdown of MKK4, a MAP2K 

known to be a key stimulator of the JNK pathway in D. melanogaster, 

produced the same amount of hsp70 transcript levels as untreated cells.  This 

indicates that the p38 MAPK and not the JNK MAPK signaling pathway have 

an effect on the transcription of Hsp70. 

 In addition to these upstream MapK related kinases, I designed 

additional primer sets to numerous other factors that were used to compile a 

comprehensive list of additional factors published in (Ardehali et al., 2009). 

The list of complete RNAi primer sets designed is found in Table 13. 
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            MAP2Ks                         MAP3Ks 

Figure 54 RNAi Screen of Kinases Upstream of p38.  Knockdown of p38 
and its known upstream kinases (Lic, pk92B, and Mekk1) all resulted in a 30% 
reduction in Hsp70 transcript levels.  Knockdown of MKK4, a known kinase in 
the JNK pathway did not reduce HSP70 levels. 
 

A.3 Conclusions  

The results from these experiments show that p38 has a significant 

effect on Hsp70 transcript levels, but these effects appear to be mild at best.  

The data indicate that the propagation of the heat shock signal to the nucleus 
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perhaps is not through a linear p38 signaling pathway but may be a result of a 

more sophisticated pathway.  To further study whether a signaling pathway is 

responsible for activation of transcription of Hsp70 in D. melanogaster many 

additional factors can be investigated.  First of which would include looking at 

the basal levels of transcription of each of the factors knocked down.  

Additionally, RT-q-PCR could be used to quantify the knockdown of each of 

these factors to confirm that knockdown is occurring at the RNA level since 

commercial antibodies are not available.  Secondly, an antibody against D. 

melanogaster could be raised to determine if p38 actually localizes itself to 

Hsp70 loci upon heat shock.  This could be determined by both ChIP and also 

by immunofluorescence.  Third, the knockdown of factors could be expanded 

to include the ERK signaling pathway.  Finally, Western blots of HSF both 

before and after heat shock could be used to determine whether or not the 

knockdown of these factors has an effect on the phosphorylation levels of HSF 

as found previously with yeast (Sorger and Pelham, 1988).  Phosphorylation of 

HSF after heat shock could be determined by band migration and also by 

treating whole cell extract with calf intestinal phosphotase both before and 

after heat shock.  This technique if applicable to D. melanogaster HSF could 

identify potential kinases upstream of HSF itself.   

Table 13 RNAi Primer Sets Designed and Incorporated into the RNAi 
Screen Presented in (Ardehali et al., 2009)  
Gene 
Targeted Forward Primer Sequence 

p38a GAATTAATACGACTCACTATAGGGATCCACCGTGATCTTAAGCCCT 

p38b GAATTAATACGACTCACTATAGGGACCATCGTGATCTAAAGCCATCG 

DSOR1 GAATTAATACGACTCACTATAGGGATGCATGGAGTATATGGACGGTGGA 
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LIC GAATTAATACGACTCACTATAGGGAAATTGGCGACCGGACCTTT 

MKK4 GAATTAATACGACTCACTATAGGGACAACCATGTGACCCGCTGTTT 

HEP GAATTAATACGACTCACTATAGGGAGGAGCGTTGTGAATAACGGCA 

MEKK1 GAATTAATACGACTCACTATAGGGAAATCAGCCGCGAACAGGTTGT 

Pk92B GAATTAATACGACTCACTATAGGGATGCTTGAACGGCGAAATTCCCA 

Tak1 GAATTAATACGACTCACTATAGGGATGATGACCAACAATCGCGGCA 

Slpr GAATTAATACGACTCACTATAGGGATAGCTTTGCACTGCCCAACCA 

Dak1 GAATTAATACGACTCACTATAGGGATTTGGCACGAACGACGTTGA 

CG8979 GAATTAATACGACTCACTATAGGGACATTTGGTCGTACGGTGTGGT 

GAGA Factor GAATTAATACGACTCACTATAGGGATGGTTATGTTGGCTGGCGTCAA 

TBP  GAATTAATACGACTCACTATAGGGATGGCGCACAAACAAATGCAG 

Daxx  GAATTAATACGACTCACTATAGGGATAATCGTGATGCAACCGCAGCTT 

Med31  GAATTAATACGACTCACTATAGGGATCCTTGCACAGCGTGGATTT  

Cdk8  GAATTAATACGACTCACTATAGGGATTGCTGCGCGAACTGAAGCAT 

CG3773  GAATTAATACGACTCACTATAGGGATTTGCACCAACTGCCGGACAA 

Elp1  GAATTAATACGACTCACTATAGGGATAACATTGAACGCGGTGCGAAGA 

Elp2  GAATTAATACGACTCACTATAGGGATCAAAGGACACACAAGTGGCGT 

Elp4  GAATTAATACGACTCACTATAGGGATAACAATAGCAGCAGCGTGACCA 

Ell  GAATTAATACGACTCACTATAGGGATAACATGTGGCGTCCAACAGCAA 

ElonginA  GAATTAATACGACTCACTATAGGGATGCACTGCATCACCAAGCTGTT 

ElonginC GAATTAATACGACTCACTATAGGGATAGGTCTGCATGTACTTCACCT 

Pitslre  GAATTAATACGACTCACTATAGGGATTTACCGAGTATCCCGTCTCGCAA 

Eaf3  GAATTAATACGACTCACTATAGGGATACTAACAGCACCGCCAACTCTACA 

Elf1  GAATTAATACGACTCACTATAGGGATGTAGGGTGTGCTTGGAGGATT 

Spt2  GAATTAATACGACTCACTATAGGGATTTTGTTGTCGGCCCGTGAGAAA 

Leo1  GAATTAATACGACTCACTATAGGGATAAGAGCCGCAGTCAAAGCAAGT 

Ctr9 F GAATTAATACGACTCACTATAGGGATAAGGCCACCAACTTGTACACCA 

NelfA F GAATTAATACGACTCACTATAGGGATAAGCAATGCTGGTGACAGCTCA 

NelfD F GAATTAATACGACTCACTATAGGGATTGTGGTGGGAGTTGGTGTCATT 

Acf F GAATTAATACGACTCACTATAGGGATGGAGCAAACAGCAAAGGCCA 

Dom/Swr1  GAATTAATACGACTCACTATAGGGATAATTAATGCTCCAACGCCCGCT 

Nurf38  GAATTAATACGACTCACTATAGGGATACTCAACTCAGGGCTGAAGA   

Nurf55  GAATTAATACGACTCACTATAGGGATGCTTGTGGGACATCAATGCCA 

Osa  GAATTAATACGACTCACTATAGGGATATGGATCGCAGTGGCAAGGA 

Bap111  GAATTAATACGACTCACTATAGGGATCGGTGCCATGTGGAAGTT 

Bap45  GAATTAATACGACTCACTATAGGGATTTGTGCCGGCTATTGCACA 

Bap60  GAATTAATACGACTCACTATAGGGATGAATCCCGCAGTTTGGGT 

Bap55  GAATTAATACGACTCACTATAGGGATCGTGGAATGTCCGCAACAA 

Nap1  GAATTAATACGACTCACTATAGGGATAGCAAATGGTCAAGATGCTGCC 

Hira  GAATTAATACGACTCACTATAGGGATAGCGATTGCTGTTGCCTCAA 
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Asf1  GAATTAATACGACTCACTATAGGGATTTGTGCGAAGACAAGCGGA 

CBP  GAATTAATACGACTCACTATAGGGATGGCAACATTCCAGCACCACT 

PR-Set7  GAATTAATACGACTCACTATAGGGATAGCCACAGCGAACAGCAACAAA 

Ash2  GAATTAATACGACTCACTATAGGGATGGTACTTTGAGGTCACCATCG 

Art1  GAATTAATACGACTCACTATAGGGATGCATCAAGCGCAACGACTT 

Art4  GAATTAATACGACTCACTATAGGGATCCCTGGAGTTTCACATTCTGC 

Art5  GAATTAATACGACTCACTATAGGGATCAAAGGACATGCGGGACTT 

Rpd3  GAATTAATACGACTCACTATAGGGATAGGCTGCTTCAATCTCACCGT 

BCH110  GAATTAATACGACTCACTATAGGGATCCAATCTCGCCTGCCATTT 

JMJD2A  GAATTAATACGACTCACTATAGGGATACGTGCAGCCAAATCCGAAGAA 

UbcD2  GAATTAATACGACTCACTATAGGGATACCTCCAGTGCCACCTCAAAT 

RNF40  GAATTAATACGACTCACTATAGGGATACCCGAAACCAGCTTCAAACGA 

Dsp1  GAATTAATACGACTCACTATAGGGATCAGGTTGGCCAATGTGTGT 

HMG20A  GAATTAATACGACTCACTATAGGGATGCTTACGAACCACATACCTGTGA 

HMGD  GAATTAATACGACTCACTATAGGGATAACCACCCGCAAGCAAACAA 

HMGZ  GAATTAATACGACTCACTATAGGGATAGCCAAGAAGGCCAAGAAGA 

Rl  GAATTAATACGACTCACTATAGGGATCGCTGAAGTGCCATTTCGGATT 

MAPKAPK1  GAATTAATACGACTCACTATAGGGATAGCGATGACATGCCCAAACA 

MAPKAPK3  GAATTAATACGACTCACTATAGGGATTGGCTTCGCCAAGGAGACATT 

PpD3  GAATTAATACGACTCACTATAGGGATGTATGGATTCACTGGCGAGGT 

Wdb  GAATTAATACGACTCACTATAGGGATAGCCGTTGCAGTTGCAGATT 

Rai1  GAATTAATACGACTCACTATAGGGATGCATCGGTGTGTGCAGCATAA 

B52  GAATTAATACGACTCACTATAGGGATGGTTGAGTTCGCCTCGTTGT 

CstF64  GAATTAATACGACTCACTATAGGGATGGATCCCAGGTTAAGGGCA 

CstF77  GAATTAATACGACTCACTATAGGGATGGTGCGAGCTCAGCAAGT 

Cspf30  GAATTAATACGACTCACTATAGGGATAGCAAGGTGAAGGATTGTCCGT 

Cspf160  GAATTAATACGACTCACTATAGGGATAGTGGTTGCCATTTCGGCAT 

Sus1  GAATTAATACGACTCACTATAGGGATAGACGCTGCGAAATCGACAA 

Magoh  GAATTAATACGACTCACTATAGGGATAACTGGAGATCGTCATCGGA 

SSRP1  GAATTAATACGACTCACTATAGGGATAAGAACACCAAGACCGGCAA 

  Gene Targeted Reverse Primer Sequence 

p38a GAATTAATACGACTCACTATAGGGATAGCCTGTCATCTCGTTCTCCGTT 

p38b GAATTAATACGACTCACTATAGGGATCCGGTCATCTCGCTTTCT 

DSOR1 GAATTAATACGACTCACTATAGGGATTGTCGCGCAGATAGCTCAA 

LIC GAATTAATACGACTCACTATAGGGATCGGTTTGCTTATGGCGCA 

MKK4 GAATTAATACGACTCACTATAGGGAAATGCACCGCGTCCAATTTCG 

HEP GAATTAATACGACTCACTATAGGGATTCTTGCGCAGCAATAGCGGT 

MEKK1 GAATTAATACGACTCACTATAGGGAGACGCATGCGCAAGAACTCAT 

Pk92B GAATTAATACGACTCACTATAGGGATTCGTCTAGTGCCAGCACCTT 

Tak1 GAATTAATACGACTCACTATAGGGATTAAAGGGCTGCTTCCTGGACA 
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Slpr GAATTAATACGACTCACTATAGGGAAGAAGCAGTGCCGTGGAAACT 

Dak1 GAATTAATACGACTCACTATAGGGATGGCCTTGGAATGTCGCAAT 

CG8979 GAATTAATACGACTCACTATAGGGAGCTTGAGAGAGTTGTTGCCCA 

GAGA Factor  GAATTAATACGACTCACTATAGGGATCTTTACGCGTGGTTTGCGT 

TBP  GAATTAATACGACTCACTATAGGGATAATCACAGCCGCAAATCGCT 

Daxx  GAATTAATACGACTCACTATAGGGATGCGTCGAAGTCATTGGTGCTT 

Med31  GAATTAATACGACTCACTATAGGGATGCTGAAGCTGCTGTTGTTGCT 

Cdk8  GAATTAATACGACTCACTATAGGGATGCGGAAAGCCCATCACATT 

CG3773  GAATTAATACGACTCACTATAGGGATGTGGACATTGGACTTGGTGGT 

Elp1  GAATTAATACGACTCACTATAGGGATGGCGTTGTCCAGTTTGGCAAT 

Elp2  GAATTAATACGACTCACTATAGGGATACCGATTCCAAGCTCACTGCAT 

Elp4  GAATTAATACGACTCACTATAGGGATAGGCTGTGGCATTGGAATTGCT 

Ell  GAATTAATACGACTCACTATAGGGATAGCTTGGCGTGCAGGTAATCAA 

ElonginA  GAATTAATACGACTCACTATAGGGATACTGCTGCTGGATTTGCTGGAA 

ElonginC  GAATTAATACGACTCACTATAGGGATTCTCGCAGGGACAATCTTCTCGT 

Pitslre  GAATTAATACGACTCACTATAGGGATGCGTTATTCCAGCGTTCAGGA 

Eaf3  GAATTAATACGACTCACTATAGGGATCCAACGCAGAGTAGCTGAGCAT 

Elf1  GAATTAATACGACTCACTATAGGGATCACTCTACGAATCTCCTTTGCG 

Spt2  GAATTAATACGACTCACTATAGGGATGTCTTTGCAGCTGCCGGAATTT 

Leo1  GAATTAATACGACTCACTATAGGGATAATGCCACTGGTCTTGCTGGAT 

Ctr9  GAATTAATACGACTCACTATAGGGATGATTGGCCAGGTGATTGAGCA 

NelfA  GAATTAATACGACTCACTATAGGGATTGCCCACAGTGGTTGTGGTT 

NelfD  GAATTAATACGACTCACTATAGGGATAATTCGGACACGGGATCGTTGT 

Acf  GAATTAATACGACTCACTATAGGGATAATATATGCCCAACGCTGCCGT 

Dom/Swr1  GAATTAATACGACTCACTATAGGGATGATTGGATGCAGCAACGCCA 

Nurf38  GAATTAATACGACTCACTATAGGGATTAGCGCCCTTCTCAACGGTTT 

Nurf55  GAATTAATACGACTCACTATAGGGATAAACATTCTCGGCCATCTGCCA 

Osa  GAATTAATACGACTCACTATAGGGATGAGGAAGCCAACTCCGTT 

Bap111  GAATTAATACGACTCACTATAGGGATTCGCTGCGCTATTCGCATT 

Bap45  GAATTAATACGACTCACTATAGGGATATTGGCCAGTCGTCGCATT 

Bap60  GAATTAATACGACTCACTATAGGGATAACTTCATCCGCTGGCAACT 

Bap55  GAATTAATACGACTCACTATAGGGATTTGAGCAGCAACCCGTTCGT 

Nap1  GAATTAATACGACTCACTATAGGGATATCGATTAGCTTGCGGATGGCG 

Hira  GAATTAATACGACTCACTATAGGGATAAAGGCGCAATGCACTGCAGAA 

Asf1  GAATTAATACGACTCACTATAGGGATAAAGAGGCTTTGTTGGCGGGTT 

CBP  GAATTAATACGACTCACTATAGGGATCTGGACTTGGCCATTTCGT 

PR-Set7  GAATTAATACGACTCACTATAGGGATGCGGCCGCTGTTTGATAA 

Ash2  GAATTAATACGACTCACTATAGGGATAGCACCTCGGGATACTTGAA 

Art1  GAATTAATACGACTCACTATAGGGATACGTGCTGCTGTACAACTTGCT 

Art4  GAATTAATACGACTCACTATAGGGATTGCGTGATCCTTGCGTGT 

Art5  GAATTAATACGACTCACTATAGGGATAGGCGTATGGGTCAGAGGATTGAT  
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Rpd3  GAATTAATACGACTCACTATAGGGATGCGCAGGTTCTCGAACAGA 

BCH110  GAATTAATACGACTCACTATAGGGATTGCTCCCACATCGGCAAT 

JMJD2A  GAATTAATACGACTCACTATAGGGATACGGACAAATTCAGTCTGCCCT 

UbcD2  GAATTAATACGACTCACTATAGGGATAGCAGGGAGCAAATTGACAGCA 

RNF40  GAATTAATACGACTCACTATAGGGATCGCGCACCGTTTCACTTT 

Dsp1  GAATTAATACGACTCACTATAGGGATAGGTTCGCAGACAGTTGAGT 

HMG20A  GAATTAATACGACTCACTATAGGGATGCCTCGATGTAGGGCAACTT 

HMGD  GAATTAATACGACTCACTATAGGGATTTGCCACCCGATCTTCGATCA 

HMGZ  GAATTAATACGACTCACTATAGGGATGACGCGATCGAAAGTTGCT 

Rl  GAATTAATACGACTCACTATAGGGATCACGTTTCTTACATCAGGTAGCC 

MAPKAPK1  GAATTAATACGACTCACTATAGGGATACAAAGCGTAATGCTGCAGGGA 

MAPKAPK3  GAATTAATACGACTCACTATAGGGATGTCCAGCGCCTTGATTTGCAT 

PpD3  GAATTAATACGACTCACTATAGGGATAGTTCGGAGCAGAGAAGACTGT 

Wdb  GAATTAATACGACTCACTATAGGGATTTCTGTAGCGCGAGGAACCTTGA 

Rai1  GAATTAATACGACTCACTATAGGGATTCGGCGCCGTATAGCATCAAA 

B52  GAATTAATACGACTCACTATAGGGATAGCGGGAGCGAGAACGAGACTTGA 

CstF64  GAATTAATACGACTCACTATAGGGATAGTTTCAGCGCTGGGTACTCTT 

CstF77  GAATTAATACGACTCACTATAGGGATAGACCCGACTTGGTTTCCTTCA 

Cspf30  GAATTAATACGACTCACTATAGGGATGCAGACCGCTTTCGACCTTT 

Cspf160  GAATTAATACGACTCACTATAGGGATAAAGCAAGGATTGACGCCGCAT 

Sus1  GAATTAATACGACTCACTATAGGGATACAAATCCAATGACGCTGAG 

Magoh  GAATTAATACGACTCACTATAGGGATGTTGTCTGCTACTACATCG 

SSRP1  GAATTAATACGACTCACTATAGGGATAGCACCTTCATCACTTTGCCCA 
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APPENDIX B: CHIP-SEQ ANALYSIS OF PARP IN DROSOPHILA S2 

CELLS UNDER NON HEAT SHOCK CONDITIONS 

 

 At the time of the submission of this thesis, PARP non heat shock 

ChIP-seq samples have been prepared and sent to be sequenced to 

determine the overlap of sites where HSF binds inducibly after heat shock and 

where PARP is present before heat shock.  This data set will determine if HSF 

binding near a site containing PARP deposited before heat shock is sufficient 

to predict sites where rapid changes in nucleosomes will occur following heat 

shock, like that observed at Hsp70.  The following appendix is to document the 

experimental procedure used to generate the PARP ChIP-seq samples. 

 Two separate dPARP antibodies raised to separate epitopes, one 

containing the central and C-terminal domain to dPARP as well as one raised 

just to the C-terminal domain of dPARP from Alexei Tulin’s lab (unpublished 

data), were both used to provide a list of high-confidence binding sites through 

the overlap of the two antibody ChIP peaks observed.  In addition to further 

verify a peak detected by ChIP-seq is indeed specific to dPARP and not from 

a common off-target signal shared between the two antibodies, untreated 

PARP ChIP-seq samples will be compared to PARP RNAi PARP ChIP-seq 

samples.  A replicate of each untreated and PARP RNAi PARP ChIP-seq 

sample was used to verify the reproducibility of the experiment for each 
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antibody.   

 The original ChIP-seq libraries inputs were verified using a 1.3% 

agarose gel to image the size of the input DNA to the IPs (Figure 55).  5 

separate IPs using 25 μL of each antibody was used for each replicate and 

each sample (untreated or PARP RNAi) and combined.  The resulting PARP 

ChIP-seq library used ChIP-seq barcodes, with the following 3 bp barcode for 

the following conditions: Untreated #1: ACT, Untreated #2: GGA, PARP RNAi 

#1: TTG, PARP RNAi #2: CAC.  The same barcodes were used for each 

antibody and pooled to be sequenced using two separate lanes.  At the stage  

Figure 55 PARP Non Heat Shock ChIP seq Input DNAs 
 
A 1.3% agarose gel was used to visualize the ChIP input DNA from the 
Untreated #1, PARP RNAi #1, Untreated #2, and PARP RNAi #2 samples 
(shown from left to right).  DNA ladder from Fermentas DNA MassRuler was 
used to verify the average size of the input DNA size, and flank the 4 samples 
with a molecular weight marker’s sizes labeled on the right in kilobases.  The 
average library size was measured using ImageJ and is as follows: Untreated 
#1: 320 bp, PARP RNAi #1: 380 bp, Untreated #2: 360 bp, and PARP RNAi 
#2: 410 bp.   
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of gel extraction, the amplified library was dissected such that only fragments 

from the sizes of 100-300 bp were saved to form the final ChIP-seq libraries.  

The first antibody had a pooled ChIP-seq library with a concentration of 3.1 

ng/μL and the second antibody had a pooled ChIP-seq library with a 

concentration of 4.8 ng/μL.   

 The following is a record of the material and methods used to generate 

the ChIP-seq libraries.  The general ChIP method outlined in section 2.4.1 was 

followed with the following exceptions.  Cells were cross-linked at 2% final 

concentration of formaldehyde for 2 minutes and quenched with 0.25 M 

glycine.   

ChIP IP 

Protein-A-agarose beads were pre-cleared before the IP step in ChIP IP buffer 

for 1 hour at 4 C and then blocked with 1 mg/mL of PVP and 1 mg/mL 

ultrapure BSA (Ambion) in ChIP IP buffer for 1 hour at 4 C.  Samples were 

pre-cleared for each condition (5 IPs worth) for each antibody in 1 15 mL 

conical with 4x55 uL of blocked beads for 1 hour at 4 C.  1 sample was saved 

to check the input size of as usual.  The pre-cleared beads were spun down at 

1,000 rcf for 1 minute and split into 5 IPs (5 epi 1.7 mL tubes) with 55 uL of 

blocked beads with 25 μL of corresponding antibody for each IP for every 

condition and replicate and IPed overnight at 4 °C.  The subsequent washes, 

elutions, reversal of cross-links, phenol:chloroform extraction, and ethanol 

purification the following day was as usual with the ChIP protocol.  At this 

stage 1 IP from 1 condition was resuspended with 34 uL of water and was 
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then used to resuspend each of the other 4 IPs worth from the same condition 

with the same 34 uL of water.  Samples were quantified using the Qubit using 

the high sensitive dsDNA standards.  

End Repair 

To the 34 l of DNA in water the following was added: 5 l 10x END Repair 

Buffer (Epicentre Biotechnologies, #ER0720), 5 l 2.5mM dNTPs, 5 l 10mM 

ATP, 1 l END-IT enzyme mix (Epicentre Biotechnologies, #ER0720).  This 

was incubated at RT for 45 .  This step was stopped using Qiagen’s MinElute 

protocol to purify (minelute kit: Qiagen, #28004) using the manufacturer’s 

protocol but eluted twice, the first time in 20 l EB, and then 13 l EB. 

Klenow Reaction  

To the ~32 l of eluted material with blunt DNA ends the following was added: 

5 l 10xNEB2, 10 l 1mM dATP (Invirogen), and 3 l Klenow (3 -5  exo-) 5U/ml 

(from New England BioLabs).  This was incubated for 30’ at 37 C and stopped 

using Qiagen’s MinElute protocol and eluted with two elutions of 10 l and 12 l 

of buffer EB. 

Ligation: 

To the eluted material 0.5 l of ligated 1 M DNA adapter, 25 l of 2x ligase 

buffer, and 5 l of UltraPure Ligase (Enzymatics T4 DNA Ligase L603-HC-L 

600,000 U/mL) was added an incubated at RT for 1 hour.  The reaction was 

stopped using Qiagen’s MinEluted protocol using two elutions of 15 l and 23 l 

of EB buffer.  
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PCR Amplification 

To the ~37 μl of eluted DNA template 10 μl of 5x Phusion HF buffer, 1.5 μl of 

10 mM dNTP, 0.5 μl  of both the 25 M long and short PCR primers, and 0.5 μl  

of Phusion polymerase from NEB was added.  The following amplification 

conditions were used: 30 seconds at 98°C followed by 13 total cycles of 10 

seconds at 98°C, 30 seconds at 65°C, 30 seconds at 72°C, 5 minutes at 72°C, 

and hold at 4°C. 

The following are the PCR primer sequences: 

5’ AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCT

CTTCCGATCT 3’ (long, PAGE purified by IDT) 

5’ CAAGCAGAAGACGGCATACGAGCTCTTCCGATCT 3’ (short, standard 

desalting IDT) 

PCR Purification 

Use AMPure beads (Agencourt BioSciences Corporation). Transfer the PCR 

reaction to a new 1.7 ml Epi tube and add 90 l of the mixed beads to the PCR 

solution and mix by pipetting up and down about 10 times, followed by brief 

vortexing.  The samples incubated at RT for 5  and were harvested using a 

magnetic stand to pull the beads to the side of the tube for 10 minutes at RT. 

When the solution is clear the solution’s supernatant was removed and the 

beads were washed with 70% EtOH to the beads to cover the beads (500 l), 

incubated for 30  at RT, and pipetted off the EtOH.  Repeat for a total of two 

washes and the beads air dried for 20  at RT.  The DNA was eluted from the 

beads by resuspending them in 20 uL of Qiagen’s EB and then placed back 
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on the magnetic rack and after 5’ the supernatant was pipetted off.  

Gel Purification 

All 20 uL  of the eluted DNA product was resolved on an 8% Native PAGE gel, 

made with fresh 10x TBE, by first prerunning the gel for 20 minutes at 50 V at 

RT, and the samples loaded with loading buffer containing bromophenol blue 

and xylene cyanol and run at 75 V for 5 hours.   

Gel Extraction 

As the gel is running puncture the bottom of a sterile, nuclease-free, 0.5 ml 

microtube 4–5 times with a 21-gauge needle (heat under flame and then 

pierce tube) so that there are 4-5 separate holes at the bottom of the tube.   

Do this for as many gel slices that you’ll have. Place the 0.5 ml microtube into 

a sterile, round-bottom, nuclease-free, 2 ml microtube.  Pry apart the cassette 

and stain the gel with the ethidium bromide in a clean container for 2–3 

minutes. View the gel on a Dark Reader transilluminator and using a clean 

scalpel, cut out the smear in the sample lanes (the gel slice can be wider than 

the smear but make sure the cut is well above the primer dimer around 92 bp, 

so that the bottom cut is just at the base of the visible smear, and upwards to 

about 300 bp in size.  If the smear has smiled while running in the gel, make 

the cut so that it smiles as well and is not just a rectangle). Place the band into 

the 0.5 ml microtube.  Centrifuge the stacked tubes at 10,000 rpm for 2 

minutes at room temperature to shred the gel through the holes into the 2 ml 

tube. Elute from the gel once overnight, and once for four hours at RT or 37 C 

(I prefer 37C). Use 500 ul of elution buffer (TE, 150mM NaCl, 0.1% tween). 
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Transfer the eluates and the gel debris to the top of a Spin-X filter (do this as 

soon as the eluates are collected for each step but save the Spin-X filter and 

reuse for the same sample but seprate eluates.) Centrifuge the filter for 2 

minutes at 10,000 rpm. After removing the eluates and spinning through the 

Spin-X coumns, add 500ul water to the gel pieces with a wide-bore pipet, so 

that you can move the gel pieces to the Spin-x column, and spin the remaining 

eluate through.  Pool the elutions and lyophilize the sample from 1500 l, to 

bring the volume to 500ul (2 hours on the low setting). Add an equal volume of 

phenol/chloroform and extract the eluates, after spinning the eluate through 

the spin-X columns.  Precipitate DNA with 2ul Glycogen (or glyco-blue), 

300mM NaCl (final), and 2.5 volumes ethanol.  Wash pellet with 70% ethanol. 

Resuspended samples in 20 l of water. Use 1ul for Qubit quantification of 

DNA with the high sensitivity dsDNA standards. Finally, the barcoded libraries 

were combined in equimolar amounts in a total volume of 10 uL and sent to be 

sequenced.  
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