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This research evaluates the length-dependence of a number of space environmental 

accelerations, both orbital and angular.  Many non-gravitational effects accelerate a 

smaller body more than a larger body, thanks to ratios such as area-to-mass that vary 

inversely with characteristic length.  This research studies these accelerations, and the 

corresponding dynamics, with an interest in applying the results to methods of 

propellant-free spacecraft propulsion.  After surveying space environmental 

accelerations, the analysis focuses on three particular cases: solar radiation pressure, 

aerodynamic drag, and the Lorentz force.  Each of these accelerations has an explicit 

dependence on length-scaling, such that millimeter-scale bodies experience 

characteristically larger magnitudes of acceleration than typical spacecraft.   

For the case of solar-radiation pressure, a flat integrated circuit is considered as a 

low-cost, feasible solar sail with passive, locally and/or globally stable attitude 

control.  The modified orbital and attitude dynamics are considered for heliocentric, 

geocentric, and three-body orbits.   

For aerodynamic drag, a similar thin-plate integrated circuit bus is considered for 

atmospheric re-entry.  Here, the spacecraft’s cross-sectional area-to-mass ratio drives 

the magnitude of drag. So, small bodies can remove orbital kinetic energy very 

efficiently.  Further, length-scaling laws for thermodynamics and fluid mechanics 

show that a very small spacecraft can even survive the intense re-entry thermal 

environment without burning-up or requiring active control.   



 

Research on the Lorentz force has found that an orbiting body with an electrostatic 

charge can interact with a planetary magnetic field and experience a force.  In this 

case, the driving parameter is the electrostatic charge-to-mass ratio, a quantity that 

depends on the inverse square of characteristic length.  This analysis presents a 

proposal for a small spacecraft that can demonstrate the Lorentz force in Earth orbit.  

A sample low charge-to-mass mission is proposed, wherein the Lorentz force is 

considered for Jovian capture and orbit circularization.  The Lorentz force is also 

evaluated in relation to the so-called Earth Flyby Anomaly, in which an unknown 

acceleration affected the orbit of six spacecraft as they were executing Earth gravity 

assists.  This research finds that the Lorentz force cannot be associated with the 

unknown acceleration, in spite of having similar characteristics.  
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 CHAPTER 1 

 INTRODUCTION 
 

 

This research investigates some important subtleties in natural orbital dynamics—

subtleties that are typically neglected in spacecraft design.  It seeks to find new 

equilibria and new means for transferring a spacecraft between them, all using 

environmental accelerations.  The space environment offers a variety of well-

characterized accelerations, but they are not typically useful for spacecraft missions 

because they act on extremely slow time-scales.  If one could capitalize on these 

accelerations though, a spacecraft could be capable of propellant-free propulsion.   

Eliminating the traditional dependence on propellant offers a spacecraft some 

important advantages.  Propellantless propulsion not only enables a longer (or perhaps 

even unlimited) mission lifetime, it also enables qualitatively different orbits, orbits 

that do not obey Kepler’s laws.  These orbits can represent new equilibria that are not 

defined by gravity alone.  Alternatively, these orbits can be designed to change with 

time in meaningful ways: adding inclination, offering new interplanetary trajectories, 

and introducing new synchronous solutions.  

The surprising thing is that these behaviors have already been observed for 

decades.  They occur naturally in the orbits of interplanetary dust.  Interplanetary dust 

particles are small solid matter thought to have originated from the solar system’s 

birth, released from comets, or ejected from planets.  They range in size from a 

molecule to about 100 microns and can consist of a variety of materials.  What makes 

the orbital behavior of dust particles unique is the characteristically small length scale.  

The same environmental forces act on dust particles as act on spacecraft, but the 

length scale of dust results in the forces having a much greater effect.  This research is 
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aimed at understanding the importance of length-scale and seeking new mission 

architectures that capitalize on the findings. 

The approach to this task is two-fold.  First, taking inspiration from the natural 

world, the analysis surveys what behavior has been observed by interplanetary dust 

and seeks to reproduce that behavior or engineer new systems based on it.  This 

research then considers common proposals for propellantless propulsion, and seeks to 

understand how they might benefit from length scaling.  That is, this research does not 

specifically offer new propellantless propulsion technologies so much as it considers 

current concepts in a new light.   

A small number of propellant-free technologies have been proposed and tested, 

though none are yet commonly employed.  Examples include solar sails, 

electrodynamic tethers, and Lorentz spacecraft.  It turns out that each technology has 

its limitations, and these challenges have proven difficult to overcome.  Though they 

each offer unlimited Δv with no requirement for fuel, they come at the cost of other 

expenses: 

 slow maneuver rates, 

 indirect trajectories, 

 limited payload mass, 

 large or awkward spacecraft architectures,  

 difficulty in ground testing, or 

 challenging deployment scenarios.   

These non-trivial issues have delayed or stopped any of these propellantless 

techniques from being utilized to date.  One promising outcome of this research is an 

architecture that can mitigate many of these challenges.   

In fact, it was in the context of considering these costs that the idea for this research 

was first proposed.  One promising method of propellantless propulsion relies on the 
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Lorentz force, an electrodynamic interaction between a moving charge and a magnetic 

field.  This force requires that a spacecraft achieve a non-zero electrostatic charge 

while orbiting near a planet with a magnetic field.  The effect is based on familiar 

principles and has been observed as a naturally occurring perturbation for orbiting dust 

grains in the rings of Jupiter and Saturn.  Because the basic physics is well understood, 

the challenges are primarily technological. 

The figure-of-merit for a Lorentz craft is its ratio of electrostatic charge-to-mass.  

This is the quantity that engineers must maximize in order to optimize the propulsive 

capability.  Unfortunately, it is not clear how to produce arbitrarily high values of 

charge-to-mass on a typical spacecraft.  Charge-to-mass depends on geometry, 

material selection, available charging mechanisms, and even the local plasma 

environment.  Early proposals for Lorentz craft architectures involved highly charged 

kilometers of thin filaments extending out into space.  This class of architectures is not 

ideal because it involves such large components and complicated deployments.  So, 

the question arose: how do dust grains naturally achieve measurable values of charge-

to-mass if it is so difficult to produce using a typical spacecraft architecture?  The 

answer, of course, is length scale.   

It turns out that the charge-to-mass ratio scales inversely with the square of the 

body’s characteristic length.  As the size of a body is reduced, its maximum charge-to-

mass ratio increases dramatically.  So, dust grains with characteristic lengths on the 

order of microns naturally charge up through plasma and solar phenomena and 

consequently experience large accelerations associated with the Lorentz force.  These 

accelerations can have a profound impact, even ejecting or capturing the dust into 

orbits at Jupiter. 

This initial insight motivates the research herein, a study of length scaling in 

spacecraft dynamics.  What specific dynamical parameters scale with length, and what 
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opportunities do they afford?  Can a spacecraft be designed with length scaling in 

mind, such that its size enables new missions?  This dissertation offers eight chapters 

that address these questions.   

Chapter 2, “A Survey of Length Scaling in Spacecraft Dynamics” is an exhaustive 

study and overview of the dynamical parameters that scale with length.  It addresses 

and models orbital and rigid-body accelerations associated with gravity, relativity, 

radiation, particle collisions, and electromagnetic fields.  The analysis focuses on 

order-of-magnitude trends and considers simple spacecraft shapes in orbit near Earth.  

The research offers metrics for comparing small spacecraft and presents length scales 

that small spacecraft must attain for sample missions.  It identifies regimes within 

which the dynamics of a very small body are dominated by particular non-

gravitational accelerations.  These regimes present opportunities for near-Earth 

propellantless propulsion, specifically via solar-radiation pressure, aerodynamic drag, 

and the Lorentz force.  These results also offer guidelines for spacecraft environmental 

modeling, identifying which accelerations can neglected for a spacecraft of a given 

size in a given environment.  The remaining chapters evaluate these mechanisms for a 

candidate spacecraft design.  

Chapter 3, “A Passive, Sun-Pointing, Millimeter-Scale Solar Sail” considers a very 

small solid-state solar sail architecture.  This analysis is the first directed at a 

millimeter-scale spacecraft design that, by virtue of its size, performs as a solar sail.  

That is, the spacecraft is propelled using photon pressure from the sun.  This design 

represents a near-term, low-cost testbed for solar-sail demonstrations.  The analysis 

focuses on mission opportunities for such a sail and evaluates the orbital and attitude 

dynamics for a passive sail in heliocentric, geocentric, and three-body orbits.  Among 

the outcomes of this study is a passive, microfabricated attitude-control system that 

keeps the sail pointing towards the sun.   
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Chapter 4, “Microscale Atmospheric Re-Entry Sensors” focuses on aerodynamic 

drag and lift as means of achieving passive ablation-free atmospheric entry, descent, 

and landing.  This study treats the spacecraft-on-chip architecture as a wing with a 

high area-to-mass ratio.  At very small length scales, the design is capable of both 

decelerating and radiating heat rapidly enough to survive and even operate throughout 

atmospheric entry.  The analysis offers a monte-carlo simulation for the orbital and 

thermodynamic equations of motion that identifies ideal spacecraft-on-chip 

dimensions.  This research has many potential applications for study of the 

mesospheric and space weather.  

Chapters 5, 6, and 7 consider the Lorentz force.  Chapter 5, “A Millimeter-Scale 

Lorentz-Propelled Spacecraft” gives an overview of Lorentz applications for a small 

spacecraft.  This study identifies the trend that charge-to-mass scales with a body’s 

characteristic length.  A small spacecraft-on-chip likely represents the most feasible 

means for studying and testing Lorentz augmented orbits.  This analysis describes a 

candidate architecture and mission, accounting for near-Earth plasma properties and 

spacecraft power requirements.  

Chapter 6, “Lorentz Augmented Jovian Orbit Insertion” explores a candidate 

mission to Jupiter that proposes a low charge-to-mass Lorentz force orbit insertion.  

Jupiter’s strong magnetic field and fast rate of rotation make it an ideal place to use 

the Lorentz force.  This study assesses the required charge-to-mass ratio to capture and 

circularize a spacecraft’s transfer orbit once it reaches Jupiter’s sphere of influence.  

The Lorentz force architecture is then compared against a competing technology, 

electrodynamic tethers.  

Chapter 7, “Lorentz Accelerations in the Earth Flyby Anomaly” asks whether the 

Lorentz force has already been experienced by traditional spacecraft in the so-called 

Earth Flyby Anomaly.  Here six spacecraft experienced anomalous accelerations while 
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executing gravity assists at Earth.  Many features of the anomalous acceleration 

suggest that it may be associated with the Lorentz force, including that it is physical, 

non-conservative, bi-directional, altitude-dependent, and declination-dependent.  The 

study focuses on the Near Earth Asteroid Rendezvous spacecraft’s flyby, which 

demonstrated the highest anomalous change in energy with the least uncertainty.  This 

analysis is the first of its kind to evaluate the anomaly in terms of a full six-state 

change, addressing the vector mechanics of the problem rather than resorting to simple 

scalar analyses.  The study offers an algorithm for solving for the nonlinear charge-to-

mass time history required to reproduce the anomaly.  After showing that the anomaly 

cannot be caused by an impulse and that continuous solutions exist, the algorithm 

suggests that the anomaly also cannot be fully associated with the Lorentz force.  The 

analysis concludes that the Lorentz force can be eliminated from the list of possible 

sources of the anomaly.  

Finally, Chapter 8 summarizes this research’s contributions to the field of 

spacecraft dynamics and offers a discussion of open questions and future directions.  

The outcome of this research is a picture of length-scale as a design parameter that can 

enable new mission opportunities and new approaches to exploring our universe. 
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 CHAPTER 2 

 A SURVEY OF LENGTH SCALING IN SPACECRAFT DYNAMICS* 
 

2.1 Abstract 

Length scaling represents a new degree of freedom for spacecraft mission design.  

This paper presents a method for comparing the length scales of arbitrary spacecraft 

and uses this approach to evaluate the relevance of 12 environmental forces and 

torques.  Three sample spacecraft geometries are considered: a sphere, a cube, and a 

thin square plate, at three near-Earth altitudes: 500 km, 1,000 km, and 10,000 km.  

This analysis offers a guide for orbit and attitude simulations of small bodies, by 

suggesting which effects can and cannot be neglected for a given environment and 

error tolerance.  This approach to length-scaling may enable extremely small 

spacecraft to exploit unfamiliar dynamical behaviors that result in solar-sail 

maneuvers, atmospheric re-entry, and Lorentz propulsion.    

 

 

 

 

 

 

 

                                                 
* Accepted with revision to the Journal of Guidance, Control, and Dynamics, March 
20, 2010.  Printed with permission. 
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2.2 List of Symbols 

a = translational acceleration  

α = angular acceleration  

AC = cross-sectional area  

AS = surface area  

B = magnetic field 

bi = one of a set of body-fixed orthogonal axes 

βSP  = solar pressure lightness number 

βAD  = ballistic coefficient 

C  = self-capacitance 

c = speed of light in a vacuum 

cp = specific heat 

χ = electrical resistance 

d = thickness 

δcm = position vector of an expected mass center from actual mass center 

δcp = position vector of a center-of-pressure relative to a body’s mass center 

δF = position vector to the point of a force’s application, measured relative to a 

body’s mass center 

ε0 = permittivity of free space 

F = force acting on a body 

φ = electric potential 

Gp = gravitational defocusing factor 

Γ = universal gas constant 

γ  = single-axis attitude (angle of a body-fixed vector relative to fixed reference) 

η  = optical coefficient for simpler reflection/absorption model 
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ηab = optical coefficient associated with absorption 

ηdr = optical coefficient associated with diffuse reflection 

ηn,t = normal and tangential momentum accommodation coefficients 

ηp  = planetary Bond albedo 

ηsr = optical coefficient associated with specular reflection 

I = mass moment of inertia for a body’s mass center 

i = electrical current 

Kn = Knudsen number 

κ = dimensionless scale factor associated with geometry 

L̂  = direction of aerodynamic lift 

lM = conductor length 

λ = characteristic length of a body 

M = magnetic dipole moment 

m = mass 

μ = a central body’s gravitational constant  

n = surface normal vector 

nM = number of coils in an electromagnet 

Ω = magnetization 

ω  = angular-velocity vector 

ξ = material non-directional emissivity  

Ps = pressure associated with solar flux 

Q = thermal energy 

q = electrostatic charge 

Rp = planetary radius 

Re = Reynolds number 

r = position vector from the barycenter to the spacecraft mass center 
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P = pressure 

ρ = mass density 

ρA = atmosphere density 

σ = material resistivity 

T = temperature  

t = time 

τ = torque acting on a body 

v = orbital velocity, time derivative of r 

vw = surface-normal velocity of molecule 

W0 = solar energy flux at distance r0 from the sun 

ζ = mean free path 

 

Subscripts 

AD = aerodynamic drag  

AL = aerodynamic lift 

EC = Eddy current 

G = gravity 

LZ = Lorentz Force 

M = magnetic attraction or repulsion 

p = planetary 

PA = planetary albedo 

PC = particle collisions 

PR = Poynting-Robertson drag 

SP = solar radiation pressure 

SW = solar wind 

TE = thermal emission 
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2.3 Introduction 

Length determines the magnitude of many accelerations for which the space 

environment is responsible.  For spacecraft designers and mission engineers, this 

length scaling drives common mission concerns, such as orienting a spacecraft to 

minimize aerodynamic drag effects or determining the magnitude of disturbance 

accelerations.  Instead of neglecting these effects or merely accommodating them, this 

research seeks to exploit length scaling to achieve novel mission opportunities.  The 

following analysis surveys most near-Earth environmental accelerations and describes 

a spacecraft architecture whose length scale maximizes their benefits.   

This work is inspired by research in interplanetary-dust dynamics as well as 

advances in microfabrication techniques. Continually shrinking electronics and 

sensors have created a “smaller is better” paradigm.  Naturally, smaller size tends to 

reduce weight and power, which benefits any aerospace system.  While such advances 

enable the fabrication of an extremely small spacecraft, results from the 

interplanetary-dust community justify such activity.  Dust particles, by virtue of a 

characteristic size on the order of tens of microns, experience highly non-Keplerian 

orbit dynamics.  Solar-radiation pressure has been found to eject dust from the solar 

system [1,2,3], electromagnetic effects capture and eject dust in planet-centered orbits 

[4,5], and aerodynamic drag captures and lands dust without the bright hypersonic 

ablation characteristic of larger meteors [6,7].  Such effects are passive.  This research 

is aimed at exploiting such small-body effects actively in new operations concepts.   

There are other compelling reasons to develop extremely small spacecraft: 

economies of production, reduced launch mass, and distributed sensing opportunities.  

Some research has focused on developing technologies to enable a monolithic 

integrated-circuit (IC) silicon spacecraft design [8-15].  This architecture, sometimes 
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called a “spacecraft-on-a-chip,” capitalizes on advances in IC and 

microelectrochemical systems (MEMS) technologies.  Barnhart [8] provides an 

historical summary of these efforts.   

The present work seeks to qualify and quantify the dependence of length-scale on 

the orbital and angular accelerations experienced by a spacecraft in Earth orbit.  A 

framework of scaling is introduced that considers spacecraft geometry using a set of 

non-dimensional coefficients.  Using this framework, 12 environmental perturbations 

are modeled for the near-Earth space environment.  This modeling follows Longuski, 

Todd, and König’s survey of nongravitational accelerations on the Galileo spacecraft, 

which focuses on order-of-magnitude calculations [16].  The sources of these 

perturbations are associated with gravity, particle collisions, radiation, and magnetic 

fields.  The environmental accelerations are considered for three simple and applicable 

geometries: a sphere, a cube, and a thin square plate.  Using these test cases, the 

analysis relates the relative importance of each acceleration on spacecraft orbital and 

angular dynamics, across a range of length-scales.  These results suggest sample 

mission applications for an IC spacecraft-on-a-chip, including solar-sailing, 

atmospheric reentry, and Lorentz propulsion.  

2.4 Geometric and Kinematic Scaling 

The geometry of a body of interest can be decoupled into dimensional and 

dimensionless scale factors.  Here, units of length are generalized into a single variable 

λ, the characteristic length of the spacecraft.  For example, the volume V of a sample 

spacecraft is taken as the characteristic volume λ3 scaled by a dimensionless factor κV 

 3
VV κ λ= . (2.1) 
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The spacecraft’s mass m is the product of its volume and mean mass density ρ  

 3
Vm κ ρ λ= . (2.2) 

The density and scale factor are taken to be constant properties of the spacecraft, while 

λ is an independent variable.  The cross-sectional area and total surface area can be 

defined using κC and κS respectively 

 2
C CA κ λ=  (2.3) 

 2
S SA κ λ= . (2.4) 

Likewise, a mass moment of inertia I about the spacecraft’s mass center can be treated 

as the product of the density and λ5, scaled by an appropriate coefficient κI. 

 5
II κ ρ λ=  (2.5) 

Table 1 gives the dimensionless scale factors κi for three geometries of interest: a 

sphere, a cube, and a thin square plate.  Figure 2.1 shows these shapes with body-fixed 

basis vectors bi.  For a sphere, a shape that resembles many dust particles [2], the 

characteristic length is taken to be the diameter.  For a cube-shaped body (e.g. the 

aptly named CubeSat [17]) λ is taken to be the side length.  Finally, for a thin square 

plate that evokes spacecraft-on-chip architectures, λ is the length of a side.  While the 

descriptions of the sphere and cube are one-dimensional, two parameters fully 

describe the square plate: the side length and the thickness.  These two parameters are 

related by the constant aspect ratio κε, the ratio of the thickness of the plate d to the 

side length λ of the square 

 
d

εκ λ
≡ , 1εκ << .  
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Previous studies [10,11] have suggested an IC spacecraft-on-chip architecture with a 

side-length of 1 cm and a thickness of 25 μm.  This size selection yields a value of  εκ  

= 0.0025. 

A ratio that appears in many environmental accelerations is the cross-sectional 

area-to-mass ratio 

 1C C

V

A
m

κ λ
κ ρ

−= . (2.6) 

The ratio depends on length-scale indirectly and geometry via κC/κV.  For a sphere and 

cube, κC/κV reduces to a constant value of 1.5 and 1.0 respectively.  For a thin square 

plate, κC/(κVλ) reduces to the plate’s thickness d = κԖ λ.  That is, AC/m is dependent 

only on thickness for a thin square plate geometry. 

The sphere are cube have triaxial symmetry; mass moments of inertia of such a 

body are equal for any axis passing through the mass center.  The inertia tensor I for a 

triaxially symmetric body can be expressed as a scalar multiple of the identity matrix 

 5
3 3I xκ ρ λ=I 1  . (2.7) 

The thin square plate has biaxial symmetry.  In bi axes, which are chosen to align with 

the principal axes of the plate, the inertia about the mass center is  

 [ ]( )5 1 1 2plate I diagκ ρ λ=I  . (2.8) 
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 F= ×τ δ F , (2.10) 

 T Fτ κ λ= . (2.11) 

Here, the scale factor κT is defined to account for both the location and orientation of 

the force’s application.  Angular acceleration is related to torque according to Euler’s 

equation of motion for a rigid body [18] 

 ⋅ + × ⋅ =I ω ω I ω τ . (2.12) 

For triaxially symmetric geometries, as in the sphere and cube, × ⋅ω I ω  reduces to 0.  

Alternatively, for non-symmetric geometries, one can consider the case of slow spin, 

Iω2اτ, with nutation damping.  These cases simplify the analysis, such that angular 

acceleration α ω≡  is proportional to I 

 4T

I

F
I

κτα λ
κ ρ

−= = . (2.13) 

α can be thought of as the ratio of torque to inertia, or roughly as the angular 

acceleration.  With this framework of dimensionless constants, a spacecraft’s 

sensitivity to characteristic length can be explored in terms of each environmental 

force and torque model. 

2.5 Gravity 

The following analysis verifies that gravitational accelerations are uniquely length-

independent and suggests that the opportunities and challenges associated with gravity 

gradient torques, n-body maneuvers, and planetary oblateness effects are present at 

any length scale.  
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2.5.1 Two-Body Orbits 

Newton’s Law of Universal Gravitation gives the force acting between two bodies  

 2
ˆm

r
μ

= −GF r  (2.14) 

where the substitution pGmμ = is the product of the universal gravitational constant G 

and the opposing body’s mass mp.  The magnitude of this force scales with the 

spacecraft’s mass and thus with λ3  

 3
2G VF

r
μκ ρ λ= . (2.15) 

The acceleration is the familiar, length-independent right-hand side of the two-body 

equation of motion 

 2
ˆ

r
μ

= −Ga r . (2.16) 

As long as mاmp, the characteristic size of the orbiting body is unimportant.   

 Gravitational force is said to act at a body’s center of gravity, a point that can 

differ from a body’s center-of-mass because gravity depends on distance from the 

central body.  As a result, the force due to gravity can apply the familiar gravity-

gradient torque.  This torque is related to the body’s inertia tensor and the direction of 

the gravitational acceleration ˆ−r  [19] 

 ( )3

3 ˆ ˆ
r
μ

= × ⋅Gτ r I r . (2.17) 

 For a sphere or cube, triaxial symmetry reduces the vector product ˆ ˆ× ⋅r I r to 0 

for any attitude, indicating that there is no applied torque.  For the thin square plate, 

rotation about any axis perpendicular to b3, as illustrated in Figure 2.2, reduces this 



term to ˆ|| ×r

2G k πγ = , wh

even values

tend to orien

 

Figure 2.2.  

A mass 

deviation δc

gives the ine

 

This results 

to zero as δ

plane, the 

equilibria at

2.5.2 High

Gravity i

bodies [20],

1ˆ || cosI γ× ⋅ =I r

here k is an i

s of k repres

nt a square p

Angle of ro

imbalance 

cm of the m

ertia Iδ abou

in a gravity

ˆ||cmδ r .  For a

magnitude 

t  ˆ ⊥ 3r b  and 

her Order G

is also respo

, central-bod

sinG Gγ γ  wh

integer.  Odd

ent unstable

plate such th

tation associ

can introdu

mass from th

ut the shifted

= +δI I

 gradient tor

a plate geom

of the res

ˆ||cmδ r . 

Gravitationa

onsible effec

dy non-spher

 

18 
 

ere cos Gγ = r

d values of k

e equilibria. 

at ˆ ⊥ 3r b .  

iated with gr

uce unexpe

e expected 

d mass-center

( 2
3 3cm xm δ+ 1

rque proport

metry with a

sultant torqu

al Accelerat

cts such as a

rical mass d

ˆ ⋅ 3r b .  The z

k represent m

 More simp

ravity gradie

ected gravity

mass center

r [18] 

)3 − cm cmδ δ .

tional to ( ˆm r

a mass-cente

ue goes wi

tions 

accelerations

distribution [

zero-torque e

marginally st

ly, gravity g

 

ent torques. 

y-gradient t

r, the paralle

)ˆ ˆ× ⋅cm cmr δ δ r , a

er displacem

ith 3 2
V cmκ λ δ

s associated 

[19], general

equilibria ar

table equilib

gradient torq

torque.  Fo

el axis theor

(2

a term that g

ment in the b

cos sinG Gγ γ w

with second

l relativity [2

e at 

bria; 

ques 

or a 

rem 

.18) 

goes 

1-b2 

with 

dary 

21], 



 

19 
 

Lense-Thirring frame-dragging [21,22], and ocean and planetary tides [23].  In each of 

these cases, the accelerations are still length-independent.  Any maneuver based on 

these physics, such as a low-energy transfer orbit, is equally possible for a small or 

large spacecraft.   

2.6 Particle Collisions 

 Spacecraft experience accelerations due to collisions with very small particles. 

These particles are associated with atmospheres, interplanetary dust, and solar wind.  

The accelerations that these collisions produce scale with AC/m, implying that the 

associated acceleration depends on λ-1.  

 
1CAa

m λ
∝ ∝ . (2.19) 

A smaller body is more sensitive than a large body to particle-collision accelerations. 

Given a spacecraft that is much larger than the mean distance between particles, 

collision forces can be modeled as a pressure that acts at an effective center of 

pressure δCP.  For the regular shapes considered here, this force acts through the center 

of mass.  Therefore, these three shapes experience torque-free particle collisions.  In 

practice, an arbitrarily small dislocation of δCP produces a torque of the form in Eq. 

2.10.  This torque scales with λ3, resulting in an angular acceleration that scales with 
2λ− .   

 2CA
I
τκ λα λ−∝ ∝ . (2.20) 

If the spacecraft is sufficiently small (e.g. at the length-scale of the particles 

themselves), particle collisions are more rare and can no longer accurately be modeled 

as a pressure. 
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2.6.1 Aerodynamic Forces 

Bodies traveling through an atmosphere experience aerodynamic forces.  In the 

rarified upper atmosphere that Low Earth Orbits (LEO) experience, aerodynamic drag 

often dominates the non-gravitational accelerations.  This drag acts in the direction 

opposite velocity, removing kinetic energy and angular momentum from the orbit 

[23].  Here, drag is evaluated in a model with simplified, hyperthermal, free-molecular 

flow that neglects spinning and tumbling body effects.  The force’s magnitude is 

proportional to the body’s cross-sectional area, a quantity that scales with λ2
 due to 

area dependence [23] 

 21 ˆ
2 AD C AA vκ ρ= −ADF v . (2.21) 

The local atmospheric density is given by ρa, a quantity that encapsulates the force’s 

strong dependence on altitude and solar activity.  Some shapes also experience 

aerodynamic lift, which takes a form similar to that of aerodynamic drag [23] 

 21 ˆ
2 AL C AA vκ ρ=ALF L . (2.22) 

This force is directed along L̂ , a vector perpendicular to v̂  and in the plane of FAD and 

b3, as illustrated in Figure 2.3.   

 The coefficients of drag κAD and lift κAL account for the surface interactions 

associated with diffuse and specular reflection, as well as molecular accommodation, 

the proportion of momentum imparted by the impacting molecules [26].  Table 2.2 

gives characteristic values these coefficients.  A flat plate behaves like an airfoil in 

that it has coefficients that vary with attitude.  Here, the so-called angle of attack is 

referenced to b3, ˆcos Aγ = ⋅3b v .  Storch gives equations for κAD and κAL for a flat plate in 

hyperthermal free-molecular flow.  These equations, in terms of γA are  [26] 
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Table 2.2. Coefficients of Drag and Lift  for 
Geometries of Interest 

 Sphere 
[24,25] 

Cube 
[24,25] 

Thin Square  
Plate [26] 

ADκ  2.2 2.2 Eq 2.23 

ALκ  0 0 Eq 2.24 

 

 

Figure 2.4. Drag and lift coefficients vs. angle-of-attack for a flat plate in hyperther-
mal free-molecular flow with ηn = ηt = 0.7 and vw/v = 0.05 [26].   

Aerodynamic accelerations scale with the critical ratio of AC /m 

 2 2 11
2 2

C AD C
AD AD A A

V

Aa v v
m

κ κκ ρ ρ λ
κ ρ

−= = . (2.26) 

2.6.2 Micrometeoroid Collisions 

The solar system is populated by small dust and meteoroid particles orbiting the 

sun and planets.  As these particles collide with a body, they impart momentum, 
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similar to the mechanism of aerodynamic forces.  The force associated with these 

impacts can be modeled by [16] 

 P Cm A=P PCF v , (2.27) 

where Pm  is the mass flux rate of particles with velocity vPC relative to the impacted 

body.  Near Earth, the mean particle velocity is roughly directed Earthward  

 ( )ˆ20P
kmG
s

⎡ ⎤= × −⎢ ⎥⎣ ⎦
PC Ev r , (2.28) 

and is a function of the gravitational defocusing factor GP [27,19] 

 0.57 0.43 E
P

E

RG
r

= + , (2.29) 

where RE is the radius of the Earth.   
 

2.6.3 Solar Wind 

The sun ejects ionized protons and electrons from its upper atmosphere.  Like 

micrometeoroids, these particles impart energy and momentum when they impact a 

body.  This interaction can be modeled with an effective momentum flux SWp that 

varies with the solar distance rs
2 [16] 

 
2

0 ˆSW c
s

rp A
r

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
SW sF r , (2.30) 

where r0 is a reference distance.  Most are rejected by Earth’s magnetopause, so SWp

can be thought to represent an upper-limit in the near-Earth environment [28].   
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2.7 Radiation 

Photons have both energy and momentum, which both are related to wavelength.  

When a photon is absorbed or reflected, momentum is exchanged.  The sources of 

photons considered here include solar radiation, planetary albedo reflection, and 

thermal radiation.  These can be modeled as pressures, whose resultant force is a 

function of the exposed area Ac and the surface characteristics, which determine how 

the incoming photons are specularly reflected, diffusely reflected, or absorbed.  The 

dimensionless fractions ηsr, ηdr, and ηab account for each of these respective effects for 

a given wavelength, 1=++ abdrsr ηηη .  Accelerations associated with radiation scale 

with the familiar ratio Ac/m. 

For a radiation pressure P, the force acting on a sphere is [19] 

 41
9C drA η⎡ ⎤= +⎢ ⎥⎣ ⎦

F P   , (2.31) 

and for a flat surface with normal n̂  as illustrated in Figure 2.5 [19] 

 ( ) ( ) ( )2ˆ ˆ ˆˆ ˆ ˆ2
3C sr dr ab drPA η η η η⎡ ⎤⎛ ⎞= ⋅ ⋅ + + +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

SF P n P n n P . (2.32) 

For the sake of added intuition, this analysis assumes that a cube experiences radiation 

forces similar to those that a sphere experiences (given Eq 2.31), and adopts a simple 

specular reflection model for the flat plate, taking ( )ˆ ˆcos sγ = ⋅P n  as the pitch angle [29] 

 2 ˆ2 cosS C sPAη γ=SF n . (2.33) 

Here, the surface properties are captured in the single coefficient ηS.  The direction 

of these accelerations acting on a plate is a function of the orientation of the surface-

normal vector.  Thus the orbital and attitude dynamics can be highly coupled. The 
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originating from the planet’s center.  Blanco and McCuskey give a model that 

estimates a maximum radiation pressure from a diffusely reflecting planet at a distance 

rp [30] 

 
2

2

2 ˆ
3

p
s p

p

R
P

r
η

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
PA pP r , (2.35) 

where Rp is the planet’s radius and and ηp is the planet’s Bond albedo, the fraction of 

incident solar power that is reflected.   

2.7.3 Thermal Emission 

Energy and momentum are also associated with thermal emission.  The Stephan-

Boltzmann law gives the thermal power emitted from an area surface element at a 

temperature T with emissivity ξ 

 4dE T dA
dt

σξ= . (2.36) 

The force associated with this thermal radiation is then [31] 

 
4T

c
σξ

=TEdF dA . (2.37) 

Taking the surface to be isothermal, one can integrate Eq. 2.37 and find that regular 

shapes experience no net force or torque.  However, if the temperature is non-uniform, 

a net force results opposite the direction of the temperature gradient.  The temperature 

gradient and consequent force for a spinning body are known as the Yarkovsky force 

[2], an effect neglected in the present analysis.   
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2.7.4 Planetary Thermal Emission 

Secondary bodies near an emitter can intercept the radiated power and experience a 

pressure. For a planet with radius Rp, temperature Tp, and emissivity ξp, the effective 

pressure goes with distance rp squared [16] 

 
24

ˆp p p

p

T R
c r

σξ ⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
TE pP r . (2.38) 

2.7.5 Poynting-Robertson Drag 

If thermal radiation is anisotropic in an inertial frame, a secondary effect known as 

Poynting-Robertson drag results.  This effect is associated with the motion of a 

radiating body.  Here, the difference in the Doppler shifts between the thermal energy 

radiated in the velocity and anti-velocity directions produces a force [32].  As a hot 

body orbits, heat radiated forward (along v̂ ) is blueshifted by the orbital velocity, 

implying a higher energy level than the radiation associated with a static body.  

Alternatively, heat that is radiated backwards is redshifted by the orbital velocity.  The 

result of this effect is a force acting in the drag direction ( ˆ−v ) that removes energy 

from the orbit.  This drag is given by [23] 

 
4

2PR C
T A

c
σξ

= −F v , (2.39) 

a quantity that is generally small owing to the c-2 term.   
 



 

28 
 

2.8  Magnetic Fields 

Magnetic fields in the space environment can affect a spacecraft’s orbit and attitude 

through a variety of mechanisms.   

2.8.1 Magnetic Attraction and Repulsion 

Magnetic fields are commonly considered in the design of spacecraft attitude 

subsystems as either actuators (e.g. torque rods) or disturbances.  However, magnetic 

fields can be produced on a spacecraft both intentionally and unintentionally.  In both 

cases, a dipole-field model is generally sufficient for evaluating the force and torque.   

The interaction between a spacecraft-fixed and local environmental magnetic field 

produces a force according to [33] 

 ( )=∇ ⋅M scF M B  (2.40) 

where Msc is the magnetic moment of the spacecraft and B is the local environmental 

magnetic field.  For the case of a dipole approximation of the spacecraft and planetary 

magnetic fields (given dipole moment MP), this equation can be approximated by [34] 

 
( ) ( ) ( )

( ) ( )( )
0

4

ˆ ˆ ˆ23
ˆ ˆ ˆ4 5Mr

μ
π

× × + × × −⎛ ⎞⋅
= ⎜ ⎟

⎜ ⎟+ × ⋅ ×⎝ ⎠

M P M P M P
M

M M M P

r M M r M M r M M
F

r r M r M
 (2.41) 

where μ0 is the permeability of free space and rM is the vector separating the planet 

and spacecraft centers. Experience suggests that this force tends to be negligibly small, 

even for powerful magnets located at the Earth’s surface.  However, the torque applied 

between the two magnetic fields can be significant [19] 

 = ×M scτ M B . (2.42) 
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This “compass torque” is the magnetic effect that is most often an issue for spacecraft. 

For a permanent magnet, the magnetic moment is a function of the geometry and 

magnetization Ω, the dipole moment strength per unit volume, roughly [35] 

 3
Vκ λ=scM Ω . (2.43) 

The direction of magnetization points from the magnet’s south pole to north pole.  The 

magnetic dipole moment of a permanent magnet goes with λ3.  As a consequence, 

angular acceleration due to magnetic torques is proportional to λ-2. 

For an electromagnet with nM coils of conductor with current i, the dipole moment 

is given by [39] 

 Mi dA n iA= =∫scM  (2.44) 

where A is the area effectively enclosed by each coil, e.g. AC.  Electrical resistance χ is 

the product of the conductor’s material resistivity σM and the ratio of the conductor’s 

length lM to its cross-sectional area AM [35] 

 M
M

M

l
A

χ σ= . (2.45) 

As the current or number of coils increases, a larger conductor cross section is 

required to maintain the same i2χ power losses.  Consequently, the dipole magnetic 

moment of an electromagnet goes also with λ3 [35].  The magnetization model in Eq. 

2.43 can therefore be applied to both permanent magnets and current-carrying coils.  

Table 2.3 gives an estimate for the magnetization of three cases: a rare Earth 

permanent magnet, a non-spinning spacecraft with an unintentional residual magnetic 

field, and commercially available magnetic torquers.  According to this model, 

magnetic orbital acceleration is length-independent, and angular acceleration scales 

with λ-2.   
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Table 2.3. Magnetization Estimates 

Source  Ω, A/m Ref. 

Rare Earth Permanent Magnets 8 x 105 [36] 

ΩR, Unintentional Residual 
Spacecraft Magnetization 0.1-1.0 [37] 

ΩT, Magnetic Torquers 200-6400 [38]  

2.8.2 Eddy Current Damping 

A conductive body moving through a magnetic field experiences a damping effect 

associated with eddy currents.  The changing magnetic field within the conductor 

drives electrons, which set up current loops.  Resistance in the material dissipates 

these currents as heat, removing energy from the system.  The net effect is a force and 

torque opposite the direction of motion.   

Accurately modeling eddy currents is challenging [39].  As in the case of magnetic 

attractive and repulsive forces, the magnitude of the eddy current force is exceedingly 

small.  Eddy current torque, however, can significantly affect spacecraft attitude [37] 

 ( )ECε= − × ×ECτ B ω B . (2.46) 

The torque is a source of damping because it acts opposite and proportional to angular 

velocity.  The constant εEC is associated with the body’s geometry and resistivity [37] 

 5EC
EC

κε λ
σ

= . (2.47) 

Expressions for εEC have been calculated for thin-shelled spheres and cylinders, as 

well as a circular loop of wire.  Here, the sphere and cube are both treated as thin-

shelled spheres with thickness κελ, while the plate is treated as a circle of wire.  The 
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corresponding coefficients κEC are given in Table 2.4. Since torque is proportional to 

λ5, angular acceleration is length-independent [40].  
 

 

Table 2.4. Dimensionless Eddy Current Scale Factors  

 
Sphere 

[40] 
Cube 
[40]    

Thin Square Plate [37] 

ECκ  
24 ε
π κ  

24 ε
π κ  

32 CS
π κ  

2.8.3 The Lorentz Force 

A charged body traveling through a rotating magnetic field experiences the Lorentz 

force.  Here, electrostatic charge can transfer orbital energy and momentum to and 

from a planet through its co-rotating magnetic field via the Lorentz force.  The Lorentz 

force FLZ acting on an orbiting body with electrostatic charge q is [41,42] 

 q= ×LZ BF v B . (2.48) 

where vB is the velocity relative to a magnetic field B.  For a magnetic field rotating 

with an angular velocity ωB the relative velocity is [42] 

 = − ×B B Bv v ω r  (2.49) 

where rB is the body’s position with respect to the magnetic field’s center, usually 

taken to be a planet’s center-of-mass.  The direction of this force is dictated by the 

body’s orbit and the local magnetic field; q can only modulate the force’s magnitude 

along this direction.  Figure 2.6 illustrates a sample equatorial, retrograde, elliptical 

orbit around Earth.  The arrows indicate the direction and relative magnitude of the 

Lorentz force at various positions for a positively charged body.  The force is largest 
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 04CAPC κ πε λ= , (2.52) 

where 0ε is the permittivity of free space and κCAP is a dimensionless coefficient given 

in   Table 2.5 for each shape.  These models suggest that q/m and the 

consequent Lorentz acceleration scales with λ-2 

 204 CAP

V

q
m

πε κ φ λ
κ ρ

−= . (2.53) 

The environment around a planetary magnetic field generally consists of rarefied 

plasma whose presence increases the effective self-capacitance.   As a result, these 

values can be treated as lower bounds.   

  Table 2.5. Dimensionless Self-Capacitance Scale Factors 

 Sphere 
Cube     

[43,44] 
Thin Square  
Plate [44] 

CAPκ  0.5 0.66 0.36 

 

The Lorentz force acts at a body’s effective center-of-charge δq.  The force 

therefore applies a torque of the form in Eq. 2.10 when the center-of-mass and center-

of-charge are not collocated.  This torque has been proposed as an attitude actuator for 

spacecraft capable of controllable charges [45].  For the regular geometries presented 

here, δq = 0.  However, an arbitrarily small deviation in the local charge distribution 

will produce a torque of the form in Eq. 2.10.  In a vacuum environment, the resulting 

angular acceleration scales with λ-3. 

2.9 Results 

The acceleration scaling from the above models are summarized in Table 2.6.  

Here, the magnitude of each acceleration is presented along with the appropriate scale 



 

34 
 

factors.  With the exception of gravitational accelerations, magnetic attraction, and 

eddy current damping, each acceleration is somehow dependent on λ.  In each case, 

the accelerations increase in magnitude as λ decreases.  
 

Table 2.6. Acceleration Dependence on λ and Geo-
metric Scale Factors 
Source Orbital Angular 

Gravity  0
Vκ λ  0

Iκ λ  

Particle Collisions   

Aerodynamic Forces 
1AD C

V

κ κ λ
κ

−

 

2AD C

I

κ κ λ
κ

−  

Solar Wind 
Micrometeoroid Collisions 

1C

V

κ λ
κ

−  2C

I

κ λ
κ

−  

Radiation   
Solar Radiation Pressure 
Planetary Albedo 
Thermal Emission 

1C

V

κ λ
κ

−  2C

I

κ λ
κ

−  

Poynting-Robertson Drag 1C

V

κ λ
κ

−  - 

Magnetic Fields   
 Magnetic Attraction                
(Dipole Interactions) 

0
Vκ λ  2V

I

κ λ
κ

−  

Eddy Current Damping - 0EC

I

κ λ
κ

 

Lorentz Force           
(Vacuum Environment) 

2CAP

V

κ λ
κ

−  3CAP

I

κ λ
κ

−  

 

Simulations are used to associate these scaling laws with realistic values for the 

near-Earth environment.  The simulations use the Earth Gravity Model (EGM96) [46], 

the International Geomagnetic Reference Field (IGRF95) [47], and the 1976 Standard 

Atmosphere Model [48].  Table 2.7 and Table 2.8 give the environmental and 

spacecraft-specific constants used in the simulations, as well as their references.  The 

spacecraft density is taken to be 79 kg/m3, the rule-of-thumb density for typical 
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spacecraft [49].  The reflective efficiency η is taken to be characteristic of a very 

reflective surface [29].  Two magnetic fields are considered, residual and intentional, 

denoted by the magnetization term ΩR and ΩT respectively.  The conductivity σEC is 

taken to be characteristic of gold traces.  The Lorentz force is evaluated for a 

spacecraft in a retrograde orbit, such that vB is maximized. 

 

 
Table 2.7. Environmental Constants Used in 
Simulations 
Parameter Value Ref. 

Pm  6.13 × 10-16 kg/m2s [16,27] 

ηp 0.306 [50] 

SWp  2.3× 10-9 kg/m s2 [28] 

r0 1 AU [23] 

Tp 255 K [51] 

W0 1368 J/m2s [23] 

ξp 1  
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Table 2.8. Spacecraft Constants Used in Simulations 
Parameter Value Ref. 

η 0.85 [29] 

ηab 0.1  

ηdr 0.1  

ηn 0.70 [26] 

η t 0.70 [26] 

κε 0.0025  

ΩR 0.5 A/m Table 2.3 

ΩT 1000 A/m Table 2.3 

ω 0.1 rad/s  

ρ 79 kg/m3 [49] 

σEC 4.2 x 107 (ohm-m)-1 [52] 

ξ 0.85  

Ԅ  1000 V  
 

Table 2.9 is the legend for Figures 2.7 through 2.12.  These figures give the 

magnitude of each of the 14 modeled accelerations as a function of λ.  The 

accelerations are normalized by the magnitude of Earth’s point-mass attraction, and 

plotted on a log-log scale.  Figures 2.7 through 2.9 show each acceleration at altitudes 

of 500, 1,000, and 10,000 km.  In these three figures, the accelerations are unscaled in 

that each of the unitless scale factors κi (with the exception of κεሻ in Table 2.6 is set to 

unity.  These plots can be used to provide results specific to any shape of interest. 

Figures 2.10 through 2.12 give the scaled accelerations for the three geometries of 

interest in this analysis.  These figures include accelerations due to solar pressure, 

aerodynamic drag, and the Lorentz force.  Each can dominate the non-gravitational 

dynamics at particular length scales and altitudes.  Aerodynamic drag, for example, is 
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the largest acceleration at 500 km, while solar pressure is largest at 10,000 km.  With a 

λ-3 dependence, the Lorentz force becomes the largest as the characteristic length 

approaches the sub-millimeter scale.  Figures 2.10-2.12 suggest that the plate 

geometry, when aligned for maximum area, experiences the largest effects from non-

gravitational accelerations, owing to its high A/m ratio: κC/κV.  
 

Table 2.9. Acceleration Legend for Figures 2.7 
through 2.18. 

Initials Acceleration  
AD Aerodynamic Drag 
EC Eddy Current Drag 
GG Gravity Gradient 
GR General Relativity 
LZ Lorentz Force 
M Magnetism 

MT Magnetism - Torquer 
MR Magnetism – Residual Field 

Moon Lunar Gravity 
OB Earth Oblateness  
PA Planetary Albedo 
PC Particle Collisions 
PL Solar System Planetary Gravity 
PR Poynting-Robertson Drag 
SP Solar Pressure 
SR Special Relativity 
SW Solar Wind 
Sun Solar Gravity 
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Figure 2.7.  Unscaled accelerations at 500 
km altitude as a function of characteristic 
length, normalized to Earth’s two-body 
gravity. 

Figure 2.8.  Unscaled accelerations at 
1,000 km altitude as a function of charac-
teristic length, normalized to Earth’s two-
body gravity.   

 

 
 

Figure 2.9.  Unscaled accelerations at 
10,000 km altitude as a function of cha-
racteristic length, normalized to Earth’s 
two-body gravity.   

Figure 2.10.  Accelerations for a sphere, 
cube, and plate at 500 km altitude as a 
function of characteristic length, norma-
lized to Earth’s two-body gravity.   
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Figure 2.11.  Accelerations for a sphere, 
cube, and plate at 1,000 km altitude as a 
function of characteristic length, norma-
lized to Earth’s two-body gravity.   

 

Figure 2.12.  Accelerations for a sphere, 
cube, and plate at 10,000 km altitude as a 
function of characteristic length, norma-
lized to Earth’s two-body gravity.   

 

 

Simulations are also used to find the relative magnitudes of angular accelerations.  

Here, the environmental torques are modeled for the near-Earth environment.  Except 

for gravity gradient, magnetism, and eddy-current torques, all of the environmental 

torques are a product of an environmental force along a line of action offset from the 

body’s mass center.  That is, these torque models take the form of Eq. 2.10, where δ is 

taken to be the offset from the mass center.  This analysis focuses on the maximum 

relative magnitude a torque achieves.  To this end, Eq. 2.11 is used with κT taken to be 

a constant, implying that the offset δ varies with size.  For example, given  κT = 0.01, 

the torques’ moment-arm is 1% of the characteristic length.  This assumption may best 

model manufacturing errors.  Two magnetic torques are considered: disturbance 
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torques associated with unintentional residual fields (denoted MR) and actuator 

torques associated with a magnetic torquer (denoted MT).   

Many of the forces or torques are dependent on AC.  These tend to rotate the plate 

about a minor axis since the area perpendicular to the major axis b3 is negligible.  The 

simulations therefore use the minor moment of inertia.   

Figure 2.13 through Figure 2.15 show the unscaled (κi = 1) angular accelerations as 

a function of characteristic length at altitudes of 500, 1,000, and 10,000 kms.  Eddy-

current damping accelerations for ω = 0.1 rad/s are length-independent and relatively 

large.  Gravity-gradient accelerations--here due to a displacement of the mass-center 

by δ--are also length independent.  Of the accelerations that scale with λ, magnetic 

actuators predictably dominate; after all, this simulation models the entire unscaled 

body as a single magnetic torquer.  As in the orbital-acceleration case, the relative 

importance of the remaining accelerations can depend on altitude. 

Figure 2.16 through Figure 2.18 show the dominant accelerations applied to sphere, 

cube, and plate geometries.  Again, the plate geometry experiences the highest of the 

non-gravitational accelerations.  At LEO altitudes, aerodynamic drag can dominate the 

angular accelerations for small bodies.  At higher altitudes, solar pressure and residual 

magnetic interactions become increasingly important.  The Lorentz force, despite 

having a λ-3 dependence, does not overcome these accelerations until submillimeter 

scales.  
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Figure 2.13.  Unscaled angular accelera-
tions at 500 km altitude as a function of 
characteristic length.   

 

Figure 2.14.  Unscaled angular accelera-
tions at 1,000 km altitude as a function of 
characteristic length. 

 

 

  

Figure 2.15.  Unscaled angular accelera-
tions at 10,000 km altitude as a function 
of characteristic length.   

Figure 2.16.  Angular accelerations for a 
sphere, cube, and plate at 500 km altitude 
as a function of characteristic length.  
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Figure 2.17.  Angular accelerations for a 
sphere, cube, and plate at 1,000 km alti-
tude as a function of characteristic length. 
 

Figure 2.18.  Angular accelerations for a 
sphere, cube, and plate at 10,000 km alti-
tude as a function of characteristic length. 
 

 

Previous studies [10,11] have introduced a prototype IC spacecraft-on-chip 

architecture intended to demonstrate functionality at small λ.  The design consists of a 

silicon plate with λ = 1 cm and κε = 0.0025.  Taking δ = 1 mm, Figure 2.19 and Figure 

2.20 show simulations of this architecture in the near-Earth environment.  Each of the 

variables is plotted as a function of altitude.    
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Figure 2.19.  Accelerations acting on a 
candidate spacecraft-on-chip architecture, 
normalized to Earth’s two-body gravity, 
and given as a function of altitude. 

Figure 2.20.  Angular accelerations acting 
on a candidate spacecraft-on-chip archi-
tecture as a function of altitude. 

2.10 Discussion 

These results have implications for small spacecraft design, though there are 

obvious limits in their interpretation.  Specifically, constant spacecraft density likely 

does not apply across all length scales.  It also may not be realistic to model a plate as 

having a constant κε across all λ.  Despite these limitations, this analysis inspires 

relevant applications.  The candidate spacecraft-on-chip used in the above analysis is 

designed with a 1 cm characteristic length in order to enable new mission 

opportunities based on non-gravitational accelerations.  This discussion briefly 

considers three such opportunities for the candidate bus: solar sailing, aerodynamic 

reentry, and Lorentz propulsion.   

In each of these scenarios, the orbit of an extremely small spacecraft bus is 

sensitive to a particular non-gravitational acceleration.  In terms of functionality, it 
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may be that the limitations of a single spacecraft-on-chip can be overcome by 

deploying large numbers of spacecraft.  Individually, each unit would experience non-

Keplerian dynamics and offer low bandwidth sensor data.  As a single swarm, the 

combined collection of sensors would offer a spatially rich dataset that couldn’t be 

reproduced by a single larger spacecraft.  In this scenario, forces or interactions 

between the spacecraft-on-chips are negligible compared to the environmental forces 

considered in this research. 

2.10.1 Solar Sail 

A solar sail provides a means to utilize solar radiation pressure as a means of 

propellantless propulsion.  This analysis suggests that solar pressure can be achieved 

with small, thin plate-like structures.  In fact, there are additional benefits to small size 

when considering solar sail architectures.  Typical sail designs are extremely large and 

challenging to construct, deploy, and actuate.  Greschik [53] suggests that dimensional 

challenges are primarily responsible for the as yet unsuccessful solar-sail tests, despite 

thirty years of attempts.  The range of magnitudes involved in solar sails make 

structural analyses intractable, fabrication demanding, and ground testing extremely 

challenging.  These issues have motivated the development of small sized 

architectures including solar kites [54], microsolar sails [55], and nanosails [56].   

For interplanetary dust, solar radiation pressure can exceed gravity. Here, the 

critical radius of a particle is roughly a tenth of a micron, below which the particle can 

be too small to absorb or reflect the photon [10].  Highly reflective interplanetary dust 

particles of this size can escape solar gravity if released from a comet near the sun [2].  

These so-called β meteoroids were most recently detected by the Ulysses [57] and 

Galileo [58] spacecraft. 
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This analysis indicates that the candidate spacecraft-on-chip architecture can 

capitalize on length scaling to achieve significant solar pressure acceleration.  That is, 

the bus itself, by virtue of its geometry, behaves as a solar sail.  The millimeter-scale 

design can be fabricated using integrated-circuit techniques and can be readily tested 

in a 1G environment.  Further, by capitalizing on natural dynamics, it may be capable 

of avoiding the nontrivial challenges associated with solar-sail control and actuation.  

Previous research [10] has evaluated this concept, accounting for passive attitude 

control mechanisms and proposing sample missions concepts.  

A common metric for solar sail designs is the lightness number βSP, which 

compares the solar pressure acceleration to solar gravitation [29] 

 
2

10 02S C
SP

G V

a W r
a c

ηκβ λ
μρ κ

−≡ = . (2.54) 

This metric accurately describes the acceleration’s dependence on body size for 

lengths above the wavelength of visible light.  The candidate silicon spacecraft-on-

chip bus achieves a lightness number of 0.01, meaning that the magnitude of solar 

pressure is 1% of solar gravity.  Though this value is smaller than many proposed 

solar sail designs, there are a number of possible applications for it in geocentric, 

heliocentric, or three-body orbits as explored in previous research [10].  Even thinner 

bodies retain the advantages of stiffness and ready deployment, and they would better 

compete with the lightness number of larger sails. 

2.10.2 Reentry Dynamics 

Like most of the non-gravitational orbital accelerations, atmospheric drag depends 

on the area-to-mass ratio AC/m.  The inverse of this ratio appears in the commonly 

used ballistic coefficient, defined to be a ratio of inertia to aerodynamic drag [59] 
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AD

AD C AD C

m
A

κ ρβ λ
κ κ κ

≡ = . (2.55) 

This ratio determines a body’s drag-limited lifetime in LEO.  Low values of βAD 

correspond to satellites whose orbits are highly affected by atmospheric drag, and 

consequently deorbit more quickly than bodies with high βAD.  Typical spacecraft have 

ballistic coefficients on the order of 10 to 100 kg/m2 [60].  When face-on to the flow 

(γA = π/2), the candidate spacecraft-on-chip bus has a ballistic coefficient of 0.023 

kg/m2. 

Figure 2.20 shows that acceleration associated with magnetic actuator torque is 

greater than those associated with atmospheric drag.  This feature suggests that a 

magnetic torquer could align the attitude of a plate with the magnetic field when 

commanded, enabling a form of controlled aerobraking or reentry.    

A primary challenge for spacecraft reentry maneuvers is heat management, where 

both the rate and total load of heat can cause catastrophic failure.  Essentially, 

aerodynamic drag converts the spacecraft’s kinetic energy to thermal energy.  A 

spacecraft must be capable of both decelerating and shedding heat rapidly enough to 

survive reentry.  In their assessment of the survivability of small orbital debris, 

Koppenwallner, Fritsche, and Lips [59] develop model for reentry that explicitly 

considers λ.  Characteristic length enters the model through two of the three 

aerodynamic similarity parameters: Reynolds number and Knudsen number [59]:  

 AD

AD

vRe ρ λ
μ

=  (2.56) 

 Kn ς
λ

=  (2.57) 

where μAD is the local atmospheric fluid viscosity and ζ is the mean free path of the 

atmospheric gases.  The third similarity parameter, the Mach number, depends on only 
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velocity and local fluid properties.  These three parameters define the flow 

environment and heat transfer regime of the reentering body.  Free-molecular flow is 

defined by Kn > 10, and hypersonic continuum flow is defined by Kn < 0.1.  

Intermediate values are characterized as transitional flow and are approximated with 

some choice of bridging function.  The heat imparted to the reentry body is modeled 

by [59] 

 31
2aero AD CQ St v Aρ= , (2.58) 

where the Stanton number St varies according to the flow regime.  The heat input is 

therefore a function of λ2 explicitly, with an additional, though less clear, dependence 

on λ through the fluid similarity parameters.  Further, the back half of the spacecraft 

can radiate heat Qሶrad to and from the surrounding planet (with temperature Tp) 

according to the Stephan-Boltzmann law given by Eq. 2.36.  As before, this radiation 

term is a function of λ2. 

Given these models for heat transfer, the temperature of a spacecraft with specific 

heat capacity cp follows the first-order differential equation [59] 

 aero rad

p

Q QT
m c
+

= . (2.59) 

Thus the ratio of A/m also appears in the heat transfer equation, which suggests that 

the temperature of small bodies is more sensitive to heat rates.  It turns out that dust 

particles can survive re-entry at low temperatures thanks to their small size [6,7].  

Aerodynamic drag decelerates the dust particles to subsonic velocities in the upper 

atmosphere where the density is low and aerothermal heat rates are very low.  Each 

year, thousands of metric tons of small interplanetary dust particles reach the Earth’s 

surface unaffected while larger meteoroids energetically ablate as meteorites [61]. 
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This drag and thermal model was simulated for a proposed spacecraft-on-chip 

architecture (a square flat plate with λ = 1 cm and κε = 0.0025) from an altitude of 350 

km. The results of this simulation are given in Figure 2.21.  For the first orbit, the thin 

square plate is kept edge-on to the flow and drag is minimal.   Once commanded, the 

attitude is taken to be face-on to the velocity, such that drag is maximized.  The 

altitude rapidly drops and the temperature increases to a peak value of only about 105o 

C during maximum deceleration, after which it settles to a steady state temperature 

driven by the Earth’s thermal radiation.  This peak heating occurs in the free-

molecular flow regime and results in temperatures low enough to suggest that an IC 

could operate throughout reentry.  There may be meaningful mission opportunities for 

a small sensor that can sample many altitudes of the atmosphere continuously 

throughout the reentry process, and one that furthermore would not experience the 

plasma-related communications dropout of hotter reentering spacecraft. 

 

Figure 2.21.  Time-history of altitude and temperature for a simulated reentry ma-
neuver of a candidate spacecraft-on-chip spacecraft. 
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2.10.3 Lorentz Force Spacecraft 

The Lorentz force is responsible for capturing and ejecting electrostatically charged 

dust particles in the rings of Jupiter [62,63,64] and Saturn [65,66].  The dust particles 

attain time-varying charges that produce non-Keplerian orbits with altered orbital 

energy.  If charge can be artificially generated on a spacecraft, it could serve as a 

means of propulsion.  Previous research has explored the novel spacecraft maneuvers 

such a technology could enable [42,67,68,69].   Though a few architectures have been 

proposed to accommodate the self-capacitance and potential required for meaningful 

maneuvers, they require relatively large structures, such as groups of kilometer-long 

filaments.  Based on this analysis and previous research [11], the λ-3 scaling of q/m 

implies that Lorentz force may instead be most easily achieved using a very small 

spacecraft. 

 Power represents a design challenge for equipping a spacecraft to propel itself 

via the Lorentz force.  The spacecraft must produce enough power to maintain a net 

charge in spite of the near-Earth plasma environment that tends to discharge charge 

imbalances.  The plasma environment discharges the spacecraft through so-called 

thermal and ram currents.  These currents are functions of plasma characteristics, as 

well as the area of the charged spacecraft.  That is, power requirements reduce 

according to an area-to-mass scaling.  At small enough characteristic lengths, the 

discharge currents are characterized by the orbital-motion-limited regime, which 

reduces the power requirements even further. 

 A promising architecture proposed by Hoyt and Minor [70] requires only a 

power source and two plasma contactors to achieve a net charge.  The following 

thought experiment, illustrated in Figure 2.22, explains the concept.  In a vacuum, if 

two conductive wires are connected to the terminals of a potential source (e.g. a 
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2.11 Conclusion 

The magnitude of orbital and angular accelerations in the near-Earth space 

environment can be highly dependent on the characteristic length λ of the affected 

body.  Most near-Earth perturbations can be modeled as pressures, in which case the 

critical ratio is the area-to-mass, which is dependent on λ-1.  The Lorentz force is 

dependent on the charge-to-mass ratio, which scales with λ-2 in a vacuum.  As λ is 

reduced, these orbital and attitude accelerations become increasingly large, while 

gravitational accelerations remain unaffected.  This understanding suggests which 

environmental forces and torques can and cannot be neglected for a given simulation 

and error tolerance.   There are regimes of characteristic length and altitude, within 

which different accelerations dominate the dynamics of a spacecraft. 

If λ is sufficiently small, non-gravitational accelerations may reach magnitudes 

sufficient to enable new mission opportunities.  By designing a spacecraft to have a 

very small λ, mission designers can potentially achieve novel spacecraft maneuvers 

passively and without the requirement of on-board fuel.   

A second design parameter is choice of geometry.  This research offers a 

framework for considering a spacecraft geometry using non-dimensional scale factors.  

Of the geometries considered here, a sphere and cube have fixed scale factors, while 

the scale factors for a square flat plate depend on thickness. 

A 1 cm scale candidate spacecraft-on-chip bus is considered as a solar sail, a 

reentry vehicle, and a Lorentz propelled spacecraft.  In each case, the magnitude of 

nongravitational acceleration suggests the potential for meaningful propellantless 

maneuvers.  Swarms of small spacecraft could conceivably offer new mission 

opportunities, with each individual unit experiencing large non-gravitational 

accelerations. 
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CHAPTER 3 

 A PASSIVE, SUN-POINTING, MILLIMETER-SCALE SOLAR SAIL* 

3.1 Abstract 

 Taking inspiration from the orbital dynamics of dust, we find that spacecraft length 

scaling is a means of enabling infinite-impulse orbits that require no feedback control.   

Our candidate spacecraft is a 25 μm thick, 1 cm square silicon chip equipped with 

signal transmitting circuitry.  This design reduces the total mass to less than 7.5 mg 

and enables the spacecraft bus itself to serve as a solar sail with characteristic 

acceleration on the order of 0.1 mm/s2.  It is passive in that it maneuvers with no 

closed-loop actuation of orbital or attitude states. The unforced dynamics that result 

from an insertion orbit and a launch-vehicle separation determine its subsequent state 

evolution.  We have developed a system architecture that uses solar radiation torques 

to maintain a sun-pointing heading and can be fabricated with standard 

microfabrication processes.  This architecture has potential applications in 

heliocentric, geocentric, and three-body orbits.   

 

 

 

                                                 

* Reproduced with permission from Acta Astronautica.  

  Originally published in Vol. 67, 2010, pp. 108-121. 
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3.2 List of Symbols 

A = area of solar sail, m2 

a0  = acceleration due to solar radiation pressure using efficiency η, m s-2 

a = acceleration, m s-2 

C = constant relating solar radiation pressure and central planet effects 

c = speed of light, m/s2 

d = thickness of solar sail, m 

E = orbital energy, J 

e = orbital eccentricity 

se  = direction of solar radiation pressure 

F = force, N 

I = moment of inertia about a spacecraft axis, kg m2 

k = stiffness constant associated with linearized restoring torque, N m rad-1 

l  = side length of square solar sail, m 

m  = mass of spacecraft, kg 

n  = solar sail normal direction 

n = mean motion of solar sail, rad s-1 

P = solar radiation pressure, N m-2 

r = orbital position vector from system barycenter with magnitude r and 

direction , m  

rp = orbital position vector from a planet, m  

r0 = reference orbital radius, m  

s  = radius of spherical body, m 

t  = time, s 

v  = orbital velocity, m s-1 
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W0 = solar energy flux at distance r0 from the sun, J m-2 s-1 

z  = longitudinal variable in a cylindrical coordinate system, m 

α  = solar sail pitch angle, angle between sun direction and sail normal, rad 

β   = lightness number 

Δv = change in orbital velocity, m s-1 

Δve = change in orbital velocity required to achieve an eccentricity change, m s-1 

Δvs = Δv savings, m s-1 

δcp = position of the center of pressure measured from a body’s center-of-mass, m  

δ   = angular coordinate about a body’s axis of rotation, rad 

η  = effective solar sail efficiency 

ηab  = solar sail coefficient of absorption 

ηdr  = solar sail coefficient of diffuse reflection 

ηsr  = solar sail coefficient of specular reflection 

θ   = azimuthal coordinate in a circular orbit, rad 

κ  = mass density, kg m-3 

μ   = gravitational constant, m3 s-2 

ρ  = radial position variable in a cylindrical coordinate system, m 

ω  = orbital circular angular velocity, rad s-1 

 

Subscripts 

G  = gravitational 

SRP  = body acted on by solar radiation pressure 
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3.3 Introduction  

Dust particles in space vary in size from a few molecules to 100 μm and have a 

mass smaller than a few μg.  At these length scales, the dust’s orbit is significantly 

affected by many orbital perturbations that are typically irrelevant in spacecraft 

trajectories.  Length scale influences the relative importance of these effects through a 

combination of area- or length-dependent force and volume-dependent mass, for a 

more-or-less fixed material density.  These accelerations can compete with gravity to 

produce trajectories sufficiently different from their Keplerian analogues to serve as 

new mission opportunities.  For example, solar radiation pressure (SRP) ejects dust 

from the solar system; electromagnetic effects capture and eject dust in planet-

centered orbits; and aerodynamic drag captures and lands dust without the high-

temperature ablation that larger meteors typically experience.  This research is aimed 

at harnessing these natural, small-body dynamics in order to enable new propulsion 

techniques and missions based on them.   

In pursuit of this goal, we are working to develop a self-contained spacecraft bus 

dubbed “sprite”, whose length scale enables it to demonstrate useful propellantless 

propulsion.  Inspired by the 1957 Sputnik mission, we focus on a simple, passive, 

mission design that achieves Sputnik’s rudimentary demonstration of spaceflight 

capability.  For three weeks, the 23 inch diameter Sputnik I broadcasted its internal 

temperature and pressure as it orbited.  A half century later, we anticipate duplicating 

Sputnik’s achievement using less than one ten-millionth of its mass.  This design 

rethinks and integrates the traditional subsystems (power, propulsion, 

communications, etc) into a single silicon microchip spacecraft capable of unlimited 

Δv.  The sprite bus is a 25 μm thick, 1 cm square, 7.5 mg silicon microchip with 

integrated solar cells and signal-transmitting circuitry, as illustrated in Figure 3.1 and 
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described in Section V.  The spacecraft is passive in that it has no sensor feedback or 

feedback-based actuation.  In place of traditional thrusters and attitude-control 

actuators, it exploits small-body dynamics to accomplish maneuvering. 

 

 

Figure 3.1.  Sprite bus layout 

Several other groups are actively and successfully developing monolithic 

integrated-circuit (IC) silicon spacecraft (sometimes called a “spacecraft-on-a-chip”), 

notably the Surrey Space Centre [1,2], the Aerospace Corporation [3,4,5], and the Jet 

Propulsion Laboratory[6].  Barnhart [1] provides an historical summary of these 

efforts.  The primary incentives for these research programs are persuasive: economies 

of production, reduced launch mass, and distributed sensing opportunities.  However, 

these objectives generally differ from the primary goal of this work: capitalizing on 

length scaling to achieve feasible orbit control.  These programs envision spacecraft 

with masses on the order of grams, which are certainly unusually small by any 

traditional standard but are still thousands of times larger than our target.   

This paper focuses on the efficacy of SRP as a means of propellantless propulsion 

for a millimeter-scale spacecraft.  In this context, the millimeter-scale spacecraft is a 

solar sail [7].  SRP can greatly influence, if not dominate, the orbital behavior of dust.  

Centerfed dipole 

Integrated solar 

Temperature dependant analog 
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Energy storage 
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For example, dust detectors on Pioneers 8 and 9 discovered streams of dust on 

outbound hyperbolic orbits.  These streams originate from comets, which shed the dust 

throughout their orbit.  When released near the sun, some of this dust experiences a 

sudden change in acceleration due to solar radiation pressure that sends them on 

escape trajectories [8,9,10].   

Solar-sail scale has implications not only for performance but also in hardware 

design and implementation.  Typical sail designs are extremely large and combine 

physical principals that span many orders of magnitude.  Greschik [11] suggests that 

dimensional challenges are primarily responsible for the as yet unsuccessful solar-sail 

tests, despite thirty years of attempts.  The range of magnitudes involved in solar sails 

make structural analyses intractable, fabrication demanding, and ground testing nearly 

impossible.  These challenges have motivated some to propose and develop so-called 

solar kites [12], microsolar sails [13], and nanosails that minimize some of these 

scaling challenges.  In August 2008, NASA’s NanoSail-D would have been the first 

spacecraft to demonstrate solar sailing, were it not for the launch-vehicle failure.  Like 

these small solar sail concepts, the millimeter-scale design avoids many of these 

dimensional issues.  It can be fabricated using integrated-circuit techniques and can be 

readily tested in a 1G environment.  However, the millimeter scale offers additional 

benefits.  As this paper argues, it enables more subtle passive behaviors and seeks to 

capitalize on natural dynamics, avoiding the nontrivial challenges associated with 

solar-sail control and actuation. 

McInnes [8] recognizes the promise of propellantless spacecraft designs that 

approach centimeter and millimeter scales.  He envisions smart, compact sails that use 

microelectromechanical systems (MEMS) to navigate the solar system autonomously.  

We pursue that shared vision here by surveying a variety of solar sail maneuvers using 
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passive and feasible attitude control methods and by addressing design and fabrication 

progress for a candidate spacecraft. 

3.4 Solar Radiation Pressure 

SRP results when sunlight strikes a surface.  A photons carries with it energy and 

momentum related to its wavelength.  When a photon is absorbed or reflected by a 

body, momentum is exchanged.  This momentum exchange can have a significant, 

measurable effect on the attitude and orbit of a body illuminated by the sun. 

3.4.1 SRP Acceleration  

The pressure P from the sun due to this photon momentum transfer is 

 
r̂

2
00 ⎟
⎠

⎞
⎜
⎝

⎛
=

r
r

c
W

P
, (3.1) 

where c is the speed of light, W0 is the energy flux from the sun taken at a distance r0 

from the sun, and r̂  is the direction of the position vector r with magnitude r.  The 

force FSRP due to this pressure acting on an opaque body depends on the surface 

characteristics, which determine how incoming light is specularly reflected, diffusely 

reflected, or absorbed.  The dimensionless constants ηsr, ηdr, and ηab account for each 

of these respective effects: 
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where A is the area of the body exposed to photons when facing sunward, α is the sail 

pitch angle defined by the body’s surface-normal unit vector n̂  and the direction sê of 

the incoming photons [14].  The acceleration is then  

 m
SRP

SRP
F

a =
, (3.4) 

a term that is proportional to the ratio of the body’s area to mass m.  A simplified 

scalar acceleration a0 is useful when comparing solar sail designs 

 m
APa η20 =

. (3.5) 

This scalar result is appropriate only for a case in which the sail is facing the sun at a 

distance of r0.  Here, the more precise model that is based on the coefficients ηsr, ηdr, 

and ηab is replaced by a single efficiency η, henceforth taken to be 0.85 [8].  The ratio 

of this simplified acceleration to the acceleration due to solar gravity, aG, is the 

lightness number β 

 Ga
a0=β

. (3.6) 

A body’s A/m is related to its geometry.  In the case of a sphere, a common model 

for interplanetary dust [15,16], the ratio A/m varies inversely with the body’s radius s 

and mass density κ   

 
ss

s
m
A

κπκ

π 1
4
3

3
4 3

2

==

. (3.7) 

The acceleration due to SRP is inversely proportional to characteristic length.  This 

ratio accurately describes the acceleration’s dependence on body size for lengths 

above the wavelength of the sun’s spectrum.  At length scales below the wavelength of 
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visible light, the particles are simply too small to absorb or scatter the photons.  For 

most materials exposed to sunlight, the critical size is a tenth of a micron [10].  Highly 

reflective particles of this size can achieve β > 1 and escape solar gravity. 

Treating characteristic size as a design parameter, we seek to minimize the size of 

the sprite spacecraft and replicate the behavior demonstrated by small dust particles.  

Like most solar sails, the sprite design resembles a flat plate.  For such a shape, with 

its maximum area normal to the sun, A/m simplifies to 
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where l is the plate’s side length and d is the plate’s thickness.  Reducing the thickness 

of the plate or uniformly scaling down all lengths increases the SRP acceleration.  This 

observation motivates the use of ultra-thin 25 μm thick silicon, the thinnest 

conceivable substrate for an IC.  With this thickness, the candidate architecture 

achieves a0 = 0.10 mm/s and β = 0.0175.  To achieve β > 1, the thickness would need 

to be reduced to 0.3 μm.  Figure 3.2 relates sample values of area and mass for dust 

and a selection of typical solar sail and nanosail designs.  Diagonal lines of constant 

A/m illustrate that all solar sail designs fall within a comparable A/m ratio.  The two 

designs, described throughout this work, are located along these same contours, 

suggesting that this approach achieves comparable performance to traditional designs.   

  



69 

 

Figure 3.2.  Sample values of exposed area to mass for dust and solar sails.  Diagonal 
lines show constant A/m contours [8,10,14,17]. 

As bodies absorb solar energy, they experience the so-called Poynting-Robertson 

drag [17,10].  This drag is associated with a difference in the relativistic Doppler shift 

between the energy received forwards and backwards with respect to the body’s 

motion.  For dust on bounded heliocentric orbits, this weak drag determines the long-

term orbital evolution and eventually collapses these orbits into the sun after 

thousands of years.  The Yarkovsky force is associated with a similar effect: 

differential thermal radiation of rotating bodies [5].  These effects are weak, even for 

dust, so we neglect them in this study. 
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3.4.2 Coupled Attitude and Orbital Dynamics 

SRP accelerations are a function of the orientation of the surface normal vector.  

Thus the orbital and attitude dynamics of solar sails are coupled in general. The 

surface of dust is often modeled as homogeneous and spherical for the purposes of 

calculating β and establishing a normal vector [10].  In this case the normal vector is 

taken to be constantly sun-pointing.  This particular geometry decouples the attitude 

dynamics from the orbital dynamics [18].  

Observations of the mass distribution of dust in the solar system lead some to 

believe that most dust is spinning very rapidly.  Particles that spin rapidly enough may 

disintegrate via rotational bursting [10].  The spin is thought to be generated by 

“windmill” [19] or “paddlewheel” [20] torques that result from SRP acting on dust’s 

anisotropic surface.  These spin rates suggest that the dust particles have non-

negligible angular momenta and therefore manifest attitude stiffness.  Rather than 

chaotically tumbling throughout their orbit, the particles may be rapidly spinning with 

inertially fixed angular momentum vectors.  There may be passive dynamical 

applications for a spinning solar sail, though this paper does not pursue them. 

Planning a solar-sail maneuver requires a stable and known heading in the presence 

of disturbance torques such as free molecular flow, magnetic fields, and gravity-

gradient effects.  For a plate geometry, however, SRP induced torques likely dominate 

these effects.  An SRP disturbance torque τ is produced if the center of pressure δcp, 

where the effective SRP force F acts, does not coincide with the spacecraft’s center of 

mass [21] 

 SRPδ= ×cpτ F . (3.9) 
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This torque vanishes only when || SRPδcp F or δ =cp 0 .  The first case represents a 

marginally stable equilibrium heading where the center of pressure is located along the 

line between the sun and the center of mass.  In this orientation, the sail is said to be 

statically balanced [22,22].  The second case represents an unstable equilibrium that is 

not practically realizable.  An arbitrarily small magnitude of δcp results in a non-zero 

torque until the spacecraft reorients and becomes statically balanced.  Careful design 

can minimize the offset, but the required precision is nontrivial.  Errors on the order of 

100 μm can result in a near 90o “edge-on” equilibrium pitch angle.  Therefore, with no 

access to SRP or solar cell power, this heading is undesirable.  Any architecture must 

therefore account for the likelihood of this disturbance torque.   

In the following analysis, we consider an attitude that replicates dust dynamics.  

We develop methods for achieving a passive sun-pointing attitude.  This decouples the 

attitude and orbital dynamics and offers maximum solar-cell power.  The attitude also 

maximizes the magnitude of SRP by fixing α = 0.  However, the direction of aSRP lies 

always along the sun line, limiting its use.  

3.5 Applications 

This section evaluates orbit opportunities for the given architecture: a passive, sun-

pointing solar sail.  With these restrictions, the effects of SRP are considered for 

heliocentric, geocentric, and three-body orbits.  

3.5.1 Two-Body Heliocentric Orbits 

The Infrared Astronomical Satellite (IRAS) observed several groupings of dust 

clearly originating from comets.  These groupings follow elliptical heliocentric orbits 

with non-Keperian parameters which can be explained by SRP [23,24,25].  In a 
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heliocentric orbit, the sun line is parallel to the orbit-radial direction, se||r ˆˆ .  In this 

orientation, SRP effectively reduces the heliocentric gravitational constant μ by the 

fraction β, which yields a modified two-body equation of motion [26]   
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For β < 1, this equation produces conic-section orbits with increased orbital energies, 

as IRAS observed.   

As dust particles are released, SRP immediately alters their orbits.  While it is still 

part of the comet, the particle’s orbit is negligibly affected by SRP.  After release, the 

particle’s new energy ESRP is increased 
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If ESRP is positive, the dust escapes on a hyperbolic orbit [9,10,11].  Streams of these 

so-called β-meteoroids were detected by both the Galileo [27] and Ulysses [28] 

missions.  In this application, SRP can be thought of as adding an effective Δv to the 

particle.  For a particle released at perihelion, the required β for escape is based on the 

initial eccentricity e prior to ejection [10]  
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One can imagine a similar maneuver for a sun-pointing solar sail.  Taking a circular 

heliocentric orbit at radius r0, the minimum impulsive Δve required for a spacecraft to 

achieve a given eccentricity is 
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The solar sail escape therefore offers a Δv savings of  
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For the proposed sprite design at 1 AU, Eq. 14 predicts a modest savings of 0.37 km/s, 

only 3% of the direct escape requirement.   

Alternative applications for the modified two-body heliocentric equation of motion 

have been proposed by the solar-sail community.  For example, novel satellite 

formations can be produced using the modified angular velocity ω of a sun-pointing 

solar sail in a circular orbit  
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The radially directed SRP allows two satellites to orbit with the same angular velocity 

at unique radii [8].  Alternatively, two spacecraft can orbit at the same radius, but with 

unique angular velocities, perhaps to spread out azimuthally along an orbit.  In the first 

application, a sprite spacecraft at 1 AU could orbit at a radial distance of 877,000 km 

from a spacecraft that experiences negligible SRP effects, such as a point-mass 

satellite.  In the second application, a sprite spacecraft at 1 AU could be induced to 

drift at a rate of 31 arcseconds per day (1.3 million km per day) along track from a 

point-mass spacecraft.   
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Figure 3.3.  Simple circular maneuvers enabled by constant sun-pointing attitudes:         
a.) constant anomaly formation and b.) along-track separation 

Passive halo or displaced formations are attractive and have been the subject of 

research [29,30,31] but require a non-sun-pointing attitude. Here, the sail follows a 

zero-inclination orbit that is displaced from the ecliptic.  McInnes [30] finds that the 

required pitch angle is a function of the vertical displacement z, the planar radius ρ, 

the modified angular velocity ω, and the circular Keplerian angular velocity 
3/ rω μ=  
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This term can be made small but is zero (i.e. sun-pointing) only in the impractical 

or non-displaced cases of z, ρ, or SRPω set to zero.  The only out-of-plane motion a sun-

a.)                                                 b.) 
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pointing solar sail experiences must be associated with inclination.  This result is 

intuitive—a reduction in the magnitude of an attractive r-2 field does not affect the 

morphology of the available orbits. 

3.5.2 Two-Body Geocentric Orbits 

The effects of SRP on dust in planetary orbits have been well researched, often in 

conjunction with the rings of Saturn and Jupiter [10,32,33].  SRP is the dominant 

perturbation at the outer rings, where magnetic fields and tidal forces are weak [34].  

Long-term orbit evolution has been evaluated with orbit-averaged perturbation 

methods that describe the effects of planetary motion about the sun by averaging short 

term orbit-period effects.  After neglecting shadow effects, the orbit-averaged 

perturbation equations show that semimajor axis is constant and that the remaining 

elements vary synchronously with the planet’s period (see for example, Ref [10], Eqs 

34-38).  The change in inclination is proportional to inclination Δi  -i, so equatorial 

orbits are in a stable equilibrium.  These effects were first observed on the Echo I [35] 

and Vanguard I [36] satellites.  Echo I was a communications satellite consisting 

primarily of a reflective 100 ft diameter mylar balloon [37] (A/m ≈ 0.1 kg/m2).  It 

demonstrated large-amplitude periodic eccentricity changes, resulting in a perigee 

altitude that varied annually between 1500 and 930 km [38].  Van der Ha and Modi 

were the first to consider sun-pointing solar sail maneuvers in a geocentric orbit.  They 

demonstrated secular changes in semimajor axis and semilatus rectum using simple 

bang-bang control laws [39].  A variety of Earth escape maneuvers have since been 

analyzed that suppose a solar sail with full attitude control [8]. 

The prospect of SRP induced periodic change in orbital elements suggests 

applications for distributed sensing.  It is as though a single spacecraft can take 
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measurements from a multitude of traditional orbits.  The periodic behavior of 

inclination for example, enables a spacecraft to sample throughout a range of 

inclinations annually.  For multiple spacecraft, these variations also present a means of 

gradual propellantless separation.   

Hamilton and Krivov [35] offer a special solution for the periodic motion of 

planetary dust.  This solution describes an equatorial, constant-eccentricity orbit 

whose longitude of pericenter rotates with the planet-sun line (i.e. the periapsis is sun-

pointing).  This unique orbit is thought to have been identified in Saturn’s “charming 

ringlet” [40].  The orbit’s eccentricity is related to lightness number  
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where np and n are the mean motions of the central planet and spacecraft respectively, 

and aGP is the magnitude of the planet’s two-body gravitational acceleration.  Figure 

3.4 and Figure 3.5 show the numerical integration of a sample orbit at Earth for β = 

0.0175 in both the planet-fixed and sun-planet fixed frames.  These figures illustrate 

two potential applications.  In the planet-fixed frame, the spacecraft sweeps through an 

annulus of space over the course of a year.  In this simulation, the apogee of the 

spacecraft corresponds to geostationary orbit (GEO), so that the spacecraft encounters 

most or all GEO orbital slots as it is annually precessed.  In the sun-planet fixed frame, 

the orbit stays aligned with Earth’s magnetotail.  This orbit may offer scientific 

sensing applications or applications related to communications satellites.  

 



77 

 

 

Figure 3.4.  Earth fixed time history of a geocentric spacecraft with SRP over one-
year. 

 

Figure 3.5.  Sun-Earth fixed time history of a geocentric spacecraft with SRP over one 
year.  The sun (not shown) is located along the –X axis. 
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3.5.3 Three-Body Orbits 

SRP acting on the orbits of dust in three-body orbits is thought to be observed in 

the interplanetary dust complex.  This is a cloud of dust centered on the ecliptic that 

causes zodiacal light by bending the sun’s light back towards Earth [41].  Some of the 

asymmetries in this cloud are associated with SRP, which groups the dust in regions 

near modified Lagrange points [42] and in planetary wakes [42,43].  This section 

evaluates these dynamics and offers potential applications for a spacecraft orbiting in 

the Sun-Earth system.   

The five classical Lagrange points (L1 – L5) are shifted for a test particle with 

radially oriented SRP acceleration with 0 < β < 1.  The addition of β causes these 

equilibria to shift along simple paths [43,45,8].  The three collinear points move along 

towards the sun along the Earth-Sun line.  The triangular points follow an arc of 

constant radius rp towards the sun, as illustrated in Figure 3.6.   

 

 

Figure 3.6.  Motion of the Lagrange points in a corotating reference frame for a sun-
pointing spacecraft with increasing β, (0 ≤ β ≤ 1). [42] 
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The Lagrange points are attractive to trajectory designers because they are fixed 

with respect to the Earth-Sun line.  The three collinear points are unstable, so a 

spacecraft located at those points must expend some energy to maintain its position, 

albeit a potentially small amount.  The triangular points are stable, so bodies 

(including dust) tend to asymptotically migrate to those locations when nearby.  Using 

a linear analysis, Schuerman [43] shows that the instability of the collinear points is 

unchanged by the addition of SRP.  The triangular points have an added constraint for 

stability that remains satisfied in the solar system with β < 1.   

In solar sail literature, three-body orbital analyses are common, particularly because 

many applications are suited to low β sails.  A prominent application uses a solar sail 

with feedback control to both move and stabilize the collinear L1 point for solar 

observation [44].  The propellantless nature of solar sails ensures a long lifetime in the 

presence of disturbance accelerations.   

The SRP induced motion of the L1 point offers applications for solar weather 

observation.  In some cases, the proximity of a spacecraft to the sun is related to the 

warning time at Earth.  For example, coronal mass ejections have characteristic 

velocities on the order of 500 km/s [45].  As illustrated in Figure 3.7, the distance 

gained at L1 using SRP can correspond to a significant increase in the warning time at 

Earth.  The lines correspond to maximum, mean, and minimum warning times using 

280 km/s, 470 km/s, and 1000 km/s solar wind speeds [47].  The candidate spacecraft 

offers approximately 65 minutes of warning time—an improvement of 13 minutes 

over the mass-only case.  With enough sprite spacecraft, the sum of these observations 

could both predict and depict the wave front of earthbound solar phenomena.  Though 

the spacecraft could not stabilize their location, they may experience sufficiently long 

lifetimes in unstable quasi-periodic orbits to be useful. 
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Figure 3.7.  Estimated CME warning time from L1 for a spacecraft with increasing β, 
(0 ≤ β ≤ 1). 

3.6 Passive Sun-Pointing Attitude Control 

These maneuvers require the design of a suitable attitude architecture that can 

maintain a sun-pointing heading.  As early as 1959, SRP disturbance torques were 

proposed as a means of attitude actuation [23].  If properly designed, a spacecraft can 

exploit these torques to produce a stable sun-pointing attitude [46].  Rather than 

approach this task from a control actuation perspective, we seek geometries that 

passively align themselves in the presence of SRP.  A sphere, for example, decouples 

the attitude and orbit mechanics in that it experiences only a radial force, regardless of 

its orientation [19].  Indeed, one of the first solar sail designs was a spherical balloon 

proposed by Kraft Ehricke [19,47].  These designs are simple, but suffer from low β 

and limited access for solar cells.  Rather than a sphere, the first design we consider 

bears a resemblance to a sun-pointing cone.  Using three of the plate-like sprite 

spacecraft, we propose forming the corner of a cube, as shown in Figure 3.8.  
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Kirpichnikov et al. [48] and van de Kolk and Flandro [49]  have demonstrated that this 

geometry creates a global, marginally stable (about two of three axes) sun-pointing 

attitude whose nonradial force components cancel in both 2D and 3D orientations.  

SRP torques orient the composite body such that the three plates’ common corner 

reaches an equilibrium angle with respect to the sun line.  For uniform, equal-length 

plates contemplated here, the axis from the center of mass to the common corner 

points directly at the sun.  The off-axis components of the SRP force and torques 

cancel each other, yielding a net force that is directed sunward. 

 

 

Figure 3.8.  Stable, sun-pointing corner-cube architecture. 

One may be tempted to reorient the spacecraft such that it forms a concave corner-

cube retroreflector.  This geometry reflects light directly back towards the sun, 

maximizing the solar pressure’s effect for the given area, and cancelling one of the 

cos(α) terms in Equation 2.  However, this equilibrium orientation is naturally unstable 

[50].   

The disadvantage of the stable architecture is a less effective A/m ratio: 
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An architecture that uses three of the candidate sprite spacecraft yields a lightness 

number of 0.010.  This architecture has the added benefits of redundancy and 

increased antenna transmission coverage.  Some differentiation among the chips may 

also improve functionality. 

A similar concept uses the orientation of surface elements or “facets” to stabilize a 

sun-pointing plate spacecraft [50,51,52].  Each facet produces a torque according to its 

orientation and surface coating.  By strategically placing these facets, the net optical 

properties can be made to vary with pitch angle.  Harris and Wehner designed a 

radially symmetric pattern of such facets using primary reflection and absorption 

models.  This demonstrated that locally stable orientations can be achieved by coating 

the faces of half of the facets with either reflective or absorptive material.  A 

rectangular example is shown in Figure 3.9.  The surface is symmetric when viewed 

from the top and asymmetric when viewed from other angles.  When placed in an 

initially sun-pointing attitude, it will tend maintain that heading in spite of 

disturbances. 

 

 

Figure 3.9.  Faceted surface viewed from top and isometric viewpoints. 

Earlier treatments considered geometries in which primary reflection adequately 

described the path of impinging light [53,54].  In the geometry under consideration 

here, secondary reflection cannot be neglected.  Even at zero pitch angle, light that is 



83 

specularly reflected from one facet impinges on the adjacent facet, causing a 

secondary force.  A ray-tracing code captures these effects.  The force on each surface 

or facet is evaluated in terms of that facet’s reflective and absorptive properties, 

according to Eq. 2.  Light that is specularly reflected is propagated to the adjacent 

facets where this equation is applied a second time.  This analysis depends on 

relatively small pitch angles to avoid the need to represent shadowing effects.   In 

recognition of the likelihood that the surface properties are not ideal, ηsr = 0.80 and ηab 

= 0.20 characterize reflective surfaces, and ηab = 1.0 absorptive surfaces.   

The geometry of the spacecraft in this model resembles the spacecraft shown in 

Figure 3.9.  The outer millimeter that borders the sail’s surface is etched with 32 and 

64 10 μm deep trenches with 35o and 54o side walls respectively.  These angles are 

dictated by the fabrication method described below.  The inner walls are coated to be 

absorptive, while the outer walls are reflective.  Figure 3.10 shows the resultant torque 

about both body aligned axes as the pitch angle is varied.  The results indicate that the 

facets produce a net restoring torque around the sun-pointing equilibrium.   

Figure 3.11 shows the simulated attitude time history for the spacecraft that begins 

with a non-equilibrium heading.  The numerical results suggest that there is negligible 

loss of net SRP force due to the surface facets.  Therefore the effective lightness 

number remains constant.  However, this simulation illustrates two limitations that 

affect both of these architectures.  First, the sun-pointing equilibrium is only 

marginally stable [23].  Any perturbation tends to produce oscillations about the sun 

line, as seen in the x and y axes of Figure 3.11.  These oscillations have a period that 

can be estimated with a small-angle approximation.  The linearized equation of motion 

about each axis’s equilibrium position is 

 0I kδ δ+ = ,   (3.20) 
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where I is the moment of inertia about the axis and k is a stiffness constant 

responsible for a linear restoring torque.  The familiar natural frequencies for this 

second order system are the square roots of I/k.  For a numerically predicted value of k 

= 1.76 x 10-13 Nm/rad, we calculate and observe a simulated oscillation period of 120 

seconds.  Added structural damping would eliminate these oscillations, perhaps in the 

form of flexible MEMS beams or thin wire antennas.  The second challenge of this 

architecture is that the attitude motion about the major axis of inertia, here parallel to 

the sun line, is unregulated, This behavior is evident in the z-axis plot of Figure 3.11.  

Though the magnitude of the pitch angle may be fixed, the orientation of the 

transverse axes about the sun line is free.  A force cannot produce a torque along its 

direction; so, there is no straightforward architecture that causes SRP to generate a 

restoring torque about the sun line.  Gravity gradient cannot be used to constrain this 

remaining degree of freedom, since it too is radial.  Likewise, any active control 

system requires a sensor input observing a direction other than the sun line.  This 

deficiency prohibits energy-change maneuvers that use a fixed pitch angle, such as 

simple spiral trajectories [51].  It is possible to use a facetted surface to produce spin-

up “windmill” torques about the z-axis.  However, with low damping, these torques 

could ultimately destroy the spacecraft via rotational bursting, as is posited for dust 

particles.  
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Figure 3.10.  SRP induced torque as a function of pitch angle for a faceted surface. 

 
Figure 3.11.  Attitude time-history for facetted surface with an initial deviation from 
the sun line.  

A surface profile like this one can be fabricated at the microscale with common 

microfabrication techniques.  One straightforward process uses KOH to chemically 

etch out material along the crystal faces of the silicon substrate.  This process produces 

consistent 54.48o triangular cuts into the exposed surface of a <100> aligned silicon 
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plane [53].  This method can produce features in two orthogonal directions along the 

wafer’s surface as dictated by silicon’s crystal structure.  The fabrication process is 

outlined in Figure 3.12, which shows a profile of the substrate through six steps.  

Working at the Cornell NanoScale Science & Technology Facility, we demonstrated 

this process.  Figure 3.13 shows a Scanning Electron Microscope (SEM) image of our 

sample wafer with a set of 10μm wide by 7μm deep trenches.  This figure shows the 

end of a trench, where the triangular three-dimensional structure is most visible.  

Figure 3.14 shows the set of trenches after depositing slightly oxidized chrome at a 60o 

angle from the surface.   

 

 

 
Figure 3.12.  Anisotropic etching and coating process to produce faceted silicon 
surface. 
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Figure 3.13.  SEM image of the end of a sample trench in Si coated with Si3N4. 

 

 
Figure 3.14.  SEM image of a Cr/Cr2O3

 coated sample trench.  A.) Si3N4 coated with 
Cr/Cr2O3.   B.) Si coated with Cr/Cr2O3.   C.) Bare Si.   
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3.7 Candidate Microscale Infinite-Impulse Spacecraft Bus 

Having motivated length scaling of spacecraft, we now explore how small a 

functional spacecraft can be feasibly produced.  Others have asked this same question 

of spacecraft subsystems and have developed “systems-on-chip,” which integrate 

traditionally separate components into a single IC package.  The result is a low-cost, 

light-weight, easily-reproducible chip that accomplishes the same tasks as its 

conventional, large-scale counterpart.  Extrapolation suggests that the next step for this 

technology is to apply the same techniques to an entire spacecraft to create a 

“spacecraft-on-a-chip.”   

We approach this task from a feasibility standpoint, intending to demonstrate 

functionality at the scales of interest to the dynamic analyses.  Thus, we approach the 

design space with an emphasis on simplicity, achievability, and scalability, rather than 

with an interest in advancing the state of the art in microfabrication.  The goal is to 

design an extremely small demonstration spacecraft bus, in which we can incorporate 

the SRP propulsion and attitude control architectures described above.  In keeping 

with spacecraft-design convention, we describe this candidate spacecraft bus in terms 

of eight traditional subsystems.   

3.7.1 Propulsion 

Traditional propulsion technologies, such as chemical combustion and ion thrust, 

cannot be easily scaled to the IC level.  An exception is so-called “digital propulsion.” 

Lewis  et al. have successfully fabricated and demonstrated a device that delivers 

discrete thrust impulses using micron-sized chambers filled with chemical propellant 

[54].  Though digital propulsion may prove relevant for this research in the long run, 

the current research is motivated primarily by propellantless propulsion, in hopes of 
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enabling otherwise impossible missions and orbits.  SRP, as described above, is 

among the potential propellantless-propulsion approaches.  Future work will include 

evaluating electromagnetic effects [55] and aerodynamic drag.  

3.7.2 Attitude Determination and Control 

The task of determining and controlling a small spacecraft is perhaps best 

approached with scaling in mind.  Some environmental disturbances may be well 

suited to producing a known heading.  This paper has surveyed methods of achieving 

locally and globally stable attitude orientations using passive SRP.  Torques due to 

atmospheric drag, outgassing, and magnetism also may prove useful.  Future research 

will also consider active control, perhaps with MEMS as proposed by McInnes [8].   

3.7.3 Structure 

The structure of the spacecraft consists of the volume of semiconductive substrate 

on which the other subsystems are fabricated.  A gallium-arsenide substrate offers 

improved radiation hardness and the opportunity to produce high-efficiency solar 

cells.  However, the cost of fabricating subsystems on gallium arsenide may 

discourage its use.  We therefore focus on the more common, silicon substrate.  At 

2300 kg/m3, solid silicon is significantly denser than 79 kg/m3, the “rule of thumb” 

density of a typical spacecraft [56].  Nevertheless, the silicon substrate offers the most 

near-term opportunity to decrease total mass.  As a result, we are exploring methods to 

work with ultra-thin substrates. 

Like a traditional structural subsystem, the substrate must support and mechanically 

interface the other subsystems, facilitate ground handling, and withstand quasistatic 

loads during transportation and launch.  The sprite design is less concerned with 
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vibrations due to resonances with either launch or attitude-control inputs because the 

natural frequencies of such a structure are far higher than the likely attitude-control 

bandwidth of any launch vehicle and the sprite itself.  Instead, the design is based on 

the lightest structure on which components can be fabricated: the thinnest possible 

substrate for a required surface area.  For polished silicon wafers, this limit is 

approximately 200 μm.  Silicon-on-Insulator (SOI) wafers are an alternative.  Such 

wafers consist of an ultra-thin layer of silicon on top of a silicon-oxide layer.  This 

substrate offers structural rigidity and handling during fabrication, after which the 

silicon-oxide layer can be removed to leave the processed device.  Then, arbitrarily 

thin silicon devices can be produced, although the thickness in this paper is restricted 

to no less than 25 μm for conservatism.   

We estimate that sufficient functionality can be achieved in 1 cm2.  Of primary 

interest is the placement of solar cells on both sides of the chip to ensure that power is 

always available, regardless of attitude.  The mass of such a 1 cm2 silicon substrate is 

5.75 mg.  For conservatism, the mass budget includes 30% margin, yielding a total 

mass of 7.5 mg, which is used in this paper’s calculations.  The silicon fabrication 

process consists of additive and subtractive processes, which add or remove material 

from the substrate to form a device.  The net contribution of these processes is 

assumed to be negligible.   

3.7.4 Communications 

Following Sputnik’s example, we conceive the communications subsystem as a 

transmit-only beacon.  The data consists of a single beep at a single frequency—a 

binary output based on the presence or absence of the carrier.  There is no signal per 

se carried on that frequency.  For this simple transmission to be tracked from a ground 
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station, it must be powerful enough to overcome free-space loss, atmospheric 

attenuation, and other noise sources.  The communication link’s carrier-to-noise-ratio 

C/N is therefore a useful measure of goodness.  This ratio is influenced by the signal’s 

frequency, the orbit’s altitude, the transmitter’s losses and power, atmospheric 

conditions, and antenna efficiency.  Table 3.1 baselines a downlink communications 

budget at 433 MHz, an amateur satellite band.  A single chip can accomplish only so 

much.  A simple way to close the link budget is to select a ground station with very 

high gain.  For example, a 12m parabolic dish with a standard figure-of-merit of 0.55 

offers 32 dB of gain at 433 MHz [57].  Using such a ground station, the link budget 

estimates that a C/N ratio of 10 requires approximately 10 mW from 500 km. Barnhart 

[3] notes that it is infeasible to track such a small spacecraft using radar.  By contrast, 

the proposed architecture features a beacon that transmits continuously, and it 

therefore serves as means for operators to tune the receiver during the first few passes. 

 

 Table 3.1. Estimated Communications Link Budget 
Parameter Value Units 

Frequency 433 Mhz 
Carrier-to-Noise Ratio 10  
Altitude 500 km 
Free Space Loss -139 dB 
Atmospheric Attenuation -2.5 dB 
Total Transmitter Attenuation -2.0 dB 
Receiver System Noise 
Temperature 

250 K 

Noise Power -145 dBW 
Receiver Gain 32 dB 
Bandwidth 1 MHz 
Margin 2 dB 
Required Power to Transmitter 10 mW 
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The carrier frequency would likely be generated by a crystal oscillator.  The 

frequency stability of crystal oscillators depends on temperature.  This dependence can 

be characterized and used to infer temperature from the beacon’s center frequency.  

The carrier signal would then be impedance matched to a center-fed half-wave dipole 

antenna.  This antenna consists of two very thin 17 cm stiff filaments radiating from 

the chip.  The chief advantage of this antenna is excellent performance in the absence 

of a ground-plane, a characteristic not available with smaller microstrip or chip 

antennas.  This antenna also offers a large beamwidth, which is favorable since the 

attitude won’t typically be Earth-pointing.  Impedance matching can be achieved with 

microfabricated capacitors and inductors.  In an effort to evaluate these practices, we 

have fabricated candidate capacitors and inductors in the Cornell NanoScale Science 

& Technology Facility.  For a three layer capacitor with silicon-dioxide as a dielectric, 

we achieved a capacitance density of 10 nF/cm2.  Figure 3.15 shows a photograph of 

the most recent inductor that we’ve produced at 20x magnification.  This design is 

based on a three-layer octagonal design by Craninckx and Steyaert [58].   

 

 
Figure 3.15.  A 6 loop, 240 μm wide octagonal inductor for the RLC oscillator is 
shown at 20x magnification. 
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3.7.5 Power 

Photovoltaic energy harvesting is both passive and based in semiconductor physics, 

making it a natural choice for power generation in this application.  This study 

baselines silicon-based, first-generation solar cells, which use a single-layer p-n 

junction diode to pass photovoltaic currents.  With strings of individual cells 

strategically connected in parallel or series, an array can be designed with required 

voltage and current characteristics to accommodate propulsive, attitude control, or 

payload requirements.  This principle applies equally well to millimeter-scale and 

macroscopic spacecraft.  Commercially available, high-efficiency cells commonly 

achieve specific power on the order of 200 W/kg.  Integrated solar cells are much less 

efficient [1].  This inefficiency drives the design to devote most of the available silicon 

surface to photovoltaics.  Likewise, electrochemical batteries are difficult to integrate.  

It may be that a sprite spacecraft simply ought to be powerless in eclipse.  Solar cells 

produce electric power roughly in proportion to the cosine of the pitch angle.  For this 

reason, sun-pointing attitude solutions offer an important advantage over other 

attitudes. 

The power requirements of the communications downlink exceed the available 

surface area of the chip.  Instead, a simple RC-tank charging circuit can produce 

periodic bursts of power.  Solar power charges a capacitor until a critical voltage is 

reached, at which point a transistor is activated and the stored energy is released to the 

communications subsystem.  By designing the solar cells in series and parallel 

combinations, we propose a bus voltage of 50 V.  This has the advantage of increasing 

the energy stored in a capacitor, which goes with voltage squared, and can be 

accommodated with commonly designed high-voltage transistors.  This proposed 

“bursty” operation has a current-limited charging time of roughly 100 ms when fully 
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illuminated by the sun.  It then delivers 10 mW to the communications subsystem for 

12.5 ms.  Table 3.2 gives relevant power subsystem parameters. 

 

 Table 3.2. Power Budget 
Parameter Value Units 
Solar Cell    

Efficiency  mW/cm2 
Area 0.6 cm2 
Voltage 50 V 
Current 50 μA 

Capacitor    
Charge Density 500 nF/cm2 
Area 0.2 cm2 
Capacitance 100 nF 

Stored Energy 125 μJ 
Pulse Length 12.5 ms 
Available Power 10 mW 

3.7.6 Payload 

In keeping with this simple, feasible, highly integrated design, the one-way 

communications beacon serves as a means of transmitting spacecraft position and 

temperature.  The orbit may be estimated by incorporating multiple pulses and an 

orbit-dynamics model into an orbit-determination filter.  Position time histories then 

allow operators to evaluate the effectiveness of the solar sail.  The RF carrier 

frequency indicates the temperature of the crystal oscillator in the communications 

circuit.  We emphasize that this early phase demo may be followed by other 

applications, with considerably more sophisticated payloads.  

We speculate that simple binary signals could be accommodated easily by 

modulating the carrier frequency with additional capacitance.  For example, with a 

rudimentary Geiger counter, the transmitter could shift to 434 MHz at times when the 
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local impinging radiation exceeded some predefined threshold.  Many such signals in 

a region would depict a time-varying structure within the radiation environment.   

3.7.7 Thermal Control 

In orbit, this spacecraft’s low thermal mass results in temperatures between -130oC 

and 100oC.  Temperature changes across this range can occur in tens of seconds [59].  

Thermal stresses associated with eclipses may fatigue the chip where dissimilar metals 

contact.  These risks, along with possible mitigation strategies such as microfabricated 

radiator fins or silicon carbide circuit technologies [60], have yet to be evaluated.  An 

active means of remediation might be achieved by spinning the bus: tilting the attitude 

so that the face points toward or away from the sun or the earth at an angle that 

optimizes combined power and thermal performance.  

3.8 Conclusions 

This paper presents motivation, analytical evaluation, supporting simulation, and 

sample designs for a millimeter-scale spacecraft with sufficiently low mass to enable 

solar sailing.  The candidate bus is a 1cm x 1cm x 25 μm silicon IC that conservatively 

weighs less than 7.5 mg.  Each conventional spacecraft subsystem is accounted for and 

described in the context of a Sputnik-inspired temperature-sensing mission.  

Applications to formation and sensing are discussed in the context a sun-pointing 

spacecraft in heliocentric, Earth, and three-body orbits.  If paired with two other 

millimeter-scale spacecraft to form a corner cube, this design can passively point 

towards the sun with global attitude stability and use SRP to reduce the effect of 

gravity by 1.0%.  This is sufficient to enabling unique formation opportunities.  If the 
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design uses microfabricated surface facets instead to produce a locally stable sun-

pointing attitude, this acceleration can be improved to 1.75% of gravity.   

Dramatically reducing a spacecraft’s mass by replacing the system with a single 

integrated circuit enables us to capitalize on these perturbations and feasibly 

accomplish infinite-impulse missions.  We are currently working to complete the 

demonstration chip and begin evaluating its performance in a terrestrial testbed 

environment.  
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 CHAPTER 4 

 MICROSCALE ATMOSPHERIC RE-ENTRY SENSORS* 

4.1 Abstract 

The area-to-mass dependence of the forces and torques caused by aerodynamic drag 

implies that aerodynamic accelerations are a function of a body’s characteristic length.  

As characteristic length is reduced, the orbital and angular accelerations increase 

according to an inverse power law.  This suggests that an extremely small body can 

efficiently aerobrake and aerocapture in the presence of an atmosphere.  Likewise, 

aerothermal and radiative heat transfer scales according to characteristic length, such 

that sufficiently small bodies maintain lower quasi-equilibrium temperatures throughout 

an entry maneuver.  The combination of these effects enables tens of thousands of 

metric tons of interplanetary dust to passively enter Earth’s atmosphere each year 

instead of energetically ablating as meteorites.   

Seeking to exploit this unique feature of length scaling, the Space Systems Design 

Studio at Cornell University is developing an extremely small spacecraft dubbed 

“Sprite.” The spacecraft’s small size makes this spacecraft extremely sensitive to 

aerodynamic drag accelerations and therefore able to demonstrate new mission 

opportunities, such as ablation-free atmospheric entry.  The current printed circuit board 

prototype captures all of the intended functionality in the target application-specific 

integrated circuit.  Recent tests suggest that this prototype can close a communications 

link over 500 km with a low power transmitter thanks to matched filter signal 

processing techniques.  Simulations suggest that these low-cost spacecraft can re-enter 

Earth’s atmosphere from a LEO orbit while maintaining a low enough temperature to 

continuously transmit data.   

                                                 
* Reproduced with permission from the Preceedings of the 7th International Planetary 

Probe Workshop, 12-18 June 2010, Barcelona Spain.  
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4.2 Introduction 

Extremely small bodies in space sometimes experience qualitatively different orbits 

than larger bodies.  It turns out that two-body Keplerian orbital mechanics can fail to 

describe many recent observations of interplanetary dust particles, whose characteristic 

sizes are on the order of tens of microns.  Dust can be ejected from our solar system by 

solar radiation pressure [1,2,3], captured or ejected from Jupiter’s and Saturn’s rings by 

electromagnetic effects [4,5], and aerocaptured onto Earth’s surface without the bright 

hypersonic ablation characteristic of larger meteors [6,7].  These effects occur because 

of an inherent length-dependence for many environmental phenomena.  This paper asks 

whether systems designers can exploit such small-body effects to enable ablation-free 

aerobraking, aerocapture, and re-entry.  A swarm of such spacecraft could offer 

distributed sensing applications, including real-time global studies of the atmosphere.   

In pursuit of this and similar questions, Cornell University’s Space Systems Design 

Studio is actively developing an extremely small spacecraft prototype dubbed Sprite.  

Sprite could roughly be called a “spacecraft-on-a-chip”.  This architecture reproduces 

all of the traditional spacecraft hardware on a single semiconducting substrate that is 

packaged for deployment into the space environment.  The expected dimensions for the 

target application specific integrated circuit package are 1 cm x 1 cm x 25 μm. 

A number of organizations have focused on developing these technologies 

[8,9,10,11,12,13,14,15].  Barnhart [8] provides an historical summary of these efforts.  

The motivation for these research efforts follows from the observation that small 

components and systems on spacecraft offer significant savings in size, mass, and 

power—three budgets that are particularly expensive on a spacecraft.  The trend 

towards incorporating more and more microfabricated components in spacecraft has 

already had important impacts in the community: increased accessibility to space, faster 

development and deployment cycles, the potential for highly distributed sensing 

missions, and a reduced emphasis on survivability.   
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This paper considers an additional benefit of smaller spacecraft size, unique re-entry 

dynamics.  In the context of length-scaling, it addresses the Earth re-entry problem for a 

small silicon rectangular chip and offer designs and technologies that enable survivable 

and operational descent.  Finally, it describes the Sprite design and offer current 

fabrication progress. 

4.3 System Modeling 

This section derives the equations of motion for a spacecraft-on-a-chip orbiting in an 

atmosphere.  It considers translational motion, rigid-body motion, as well as 

thermodynamics.   

4.3.1 Spacecraft-on-a-Chip Geometry 

The spacecraft-on-chip architecture is taken to be a thin, square, flat plate as 

illustrated in Figure 4.1.  A set of right-handed, plate-fixed, orthogonal axes ( ), ,1 2 3b b b  

are shown in figure, with b3 oriented normal to the plate’s surface.  The base of the plate 

is a semi-conductor with thin deposited layers of metals and metal-oxides.  The 

thickness d is taken to be much smaller than the side-length l 

 d l . 

The cross-sectional area is then 2
CA l= , and the surface area is 22SA l= .  Given a 

material density ρm, the plate’s mass is 2
mm l dρ= .  The inertia is biaxial and can be 

represented in b axes with  

 
12

12

3

0 0
0 0
0 0

b

I
I I

I

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (4.1) 

where 2 4
12

1 1
12 12 mI ml l dρ= =  and 2 4

3
1 1
6 6 mI ml l dρ= = . 
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Figure 4.1.  Spacecraft-on-a-Chip square flat plate geometry. 

4.3.2 Aerodynamic Drag and Lift Forces 

Aerodynamic drag and lift result from the cumulative molecular interactions between 

the plate and the atmosphere.  Each of these interactions involves an exchange of 

momentum, and therefore can be modeled as a net force.  The standard model for the 

drag FD and lift FL components of these forces are given by [16] 

  21 ˆ
2 D C AA vκ ρ= −DF v  (4.2) 

 21 ˆ
2 L C AA vκ ρ=LF L . (4.3) 

The magnitude of each force is a function of a the cross-sectional area; the local 

atmospheric density ρA, which encapsulates a strong dependence on altitude; the plate’s 

velocity v squared; and a dimensionless coefficient ( ),D Lκ κ .  Aerodynamic drag acts 

opposite the direction of motion ( )v̂− , removing kinetic energy and angular momentum 

from the plate’s motion.  By convention, aerodynamic lift is taken to act along L̂ , a 

vector perpendicular to v̂  and in the plane of FD and b3, as illustrated in Figure 4.2.  The 

simpler two dimensional case shown in Figure 4.3 is considered in this paper. 
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Figure 4.2.  Three dimensional orientation of lift and drag forces on a flat plate in a fluid 
flow 

 

Figure 4.3. Two dimensional orientation of lift and drag forces on a flat plate in a fluid 
flow 

The coefficients of drag κD and lift κL account for the surface interactions between 

the plate and the atmospheric molecules.  To describe these interactions, this research 

adopts a simple hyperthermal free-molecular flow model given by Storch [17], which 

ignores spinning and tumbling body effects.  In free-molecular flow, the atmosphere is 

treated as a grouping of individual molecules with statistical properties, rather than as a 

continuum.  As individual molecules impact the plate, they exchange a portion of their 

momentum (a process called molecular accommodation) before being reflected 

diffusely or specularly away from the surface.   

A flat plate can be thought of as an airfoil because its drag and lift coefficients vary 

with attitude.  Here, the so-called angle-of-attack γA is referenced to b3, ˆcos Aγ = ⋅3b v .  In 

terms of this angle, Storch’s equations for κD and κL are  [17] 
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 ( ) ( ) ( ) ( )22 cos 2 cos cosw
D t n A n t A A

v
v

κ η η γ η η γ γ⎡ ⎤= + + − −⎢ ⎥⎣ ⎦
 (4.4) 

 ( ) ( ) ( )2 cos sin 2w
L n n t A A

v
v

κ η η η γ γ⎡ ⎤= + − −⎢ ⎥⎣ ⎦
. (4.5) 

The dimensionless coefficients ηn and ηt model the molecular accommodation in the 

plate’s normal and tangential directions.  These coefficients vary with both the surface 

properties and the atmospheric properties.  The normal component of the thermal 

velocity of molecules escaping the plate’s surface vw is given by [17] 

 
2w

Tv πΓ
= , (4.6) 

where Γ is the local specific gas constant and T is the surface temperature of the plate.  

Taking T as the local atmospheric temperature and using circular LEO velocities yields 

characteristic values for vw/v of roughly 0.05.  Figure 4.4 plots Eq. (4.4) and (4.5) over 

angle-of-attack for these sample conditions.  Positive lift is associated with 

( )ˆ ˆcos 0⋅ >LF r .  Both coefficients go to zero at ˆ ⊥ 3v b , the equilibrium attitude.  At ˆ ⊥ 3v b  

there is no lift, and drag is maximized, especially since the full square area is leading.  

Ballistic re-entry is characterized by zero lift throughout the maneuver.  As seen in 

Figure 4.4, lift is zero in the face-on (γA = 0) and edge-on (γA = ±90o) plate attitudes.   

Storch’s model assumes the thickness of the plate is negligible, such that there is 

negligible lift or drag force in the equilibrium edge-on attitude.  Here, the model is 

augmented to include the small drag force associated with the thin leading edge.  This 

special case uses κD(γA = 0) and AC = ld.  
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Figure 4.4. Drag and lift coefficients vs. angle-of-attack for a flat plate in hyperthermal 
free-molecular flow with ηn = ηt = 0.7 and vw/v = 0.05 [17].   

Finally, the orbital equation of motion for the plate throughout atmospheric entry is  

 ( )2

1ˆ
r m
μ

= − + +D Lr r F F  (4.7) 

where μ is the planetary gravitational constant and r is the position vector with 

magnitude r and direction r̂ .  By Newton’s third law, the aerodynamic forces are 

divided by the plate’s mass to produce the relevant accelerations. 

4.3.3 Aerodynamic Drag and Lift Moments 

Given that the plate is much larger than the mean distance between the atmospheric 

molecules, the net collisions forces (F = FD + FL) can be modeled as a pressure.  This 

pressure can be said to act at a point, the center of pressure δCP 

  
( )⋅

= ∫
∫

CP

F δ dδ
δ

δdδ
 (4.8) 

where δ is a measurement of position taken with respect to the plate’s center-of-mass.  

For a plate geometry, the net force acts through the center of mass.  That is, the force 
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should be torque-free.  In practice however, any arbitrarily small dislocation of δCP 

causes a torque of the form 

 CPτ = δ × F . (4.9) 

This dislocation could result from imprecision in manufacturing processes, uneven 

surface corrosion, or uneven flow properties.  It could even be intentionally added to 

produce a known stable equilibrium.  In equilibrium τ = 0, a case that is satisfied if F = 

0 or δCP || F.  The latter case offers the flight realizable situation.  This solution is stable 

if ( )ˆ ˆ⋅ <CPδ v 0 , which implies that the center-of-mass is “upwind” of the center-of-

pressure.  Figure 4.5 illustrates this situation with an edge-on attitude.  The center-of-

pressure is the geometric center of the plate.  In this figure, the center-of-mass has been 

moved left of this point, so that the center-of-mass is “upwind”.  Small deviations about 

this equilibrium are stable, as shown in the cases where the plate is pitched clockwise 

and counterclockwise.  In both of these cases, the restoring torque acts opposite the 

pitch.   

 

Figure 4.5.  Stable equilibrium with center-of-mass “upwind” of center-of-pressure. 
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Euler’s equation gives the attitude equation of motion in terms of angular velocity ω  

 ( )d
dt

= ⋅τ I ω , (4.10) 

where d/dt is the time derivative in an inertial frame.  For a plate with constant inertia, 

the equation of motion becomes  

 ⋅ = × ⋅ −I ω ω I ω τ . (4.11) 

Here, the torque is a function of attitude as modeled in Eq. (4.9).  Taken in terms of the 

one dimensional attitude depicted in Figure 4.5, the first order, single variable equation 

of motion is 

 12I θ τ= . (4.12) 

4.3.4 Thermodynamic Model 

As atmospheric molecules impact the plate, they exchange energy as well as 

momentum.  The plate’s kinetic energy is essentially converted to thermal energy 

through this interaction.  A spacecraft maneuver, particularly re-entry, must consider 

this heat, because the heat rate or the total heat load can destroy components.   

This analysis adopts a simple aerothermodynamic model that treats the plate as a 

single thermal element subjected to convection and radiation.  The convection model 

based off of the seminal convection model by Allen and Eggers [18], but also 

incorporates aspects of a model by Koppenwallner, Fritsche, and Lips [19] developed 

for the re-entry of small orbital debris.  It also assumes the so-called Reynolds analogy 

[20], which poses restrictions on its validity at especially high speeds.  Despite these 

restrictions, the simple model adopted here is useful for developing intuition about re-

entry thermal loading and its dependence on length scales. 

Aerothermal convection is assumed to take the form [18] 

 31
2c C AQ C A vρ=  (4.13) 
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The heat imparted by convection Qc (in units of J/s) is a function of the skin friction 

coefficient C.  This coefficient is a function of the local fluid flow properties, which 

here are accounted for using two aerodynamic similarity parameters: the Knudsen 

number Kn and the Reynolds number Re.   

The Knudsen number relates the length scale of the plate to the length scale of the 

local atmospheric molecules.  It determines whether the flow can be described best with 

continuum mechanics or statistical mechanics of the local atmospheric molecules [21] 

 AKn
l
ς

= . (4.14) 

where ζA is the local mean free path.  The Reynolds number relates inertial and viscous 

forces and assesses turbulence [22]  

 A

A

vlRe ρ
μ

=  (4.15) 

where μA is the local atmospheric fluid viscosity.   

The adopted model then solves for the local skin friction coefficient using the 

following algorithm: 

 

10Kn >  Free Molecular Flow [19] 

    2FMC =  

10 0.1Kn> >  Transitional Flow [19] 

    2

1

FM
T

C

FM

CC
C

C

=
⎛ ⎞

+ ⎜ ⎟
⎝ ⎠

 

0.1 Kn>  Hypersonic Continuum Flow [21] 

    2300Re >  Turbulent Flow  
0.20.0592CC Re−=  

2300Re <  Laminar Flow 
0.50.664CC Re−=  
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At each time point, the local flow is characterized, first by Knudsen number and second 

by Reynolds number.  The appropriate model of skin friction coefficient is then 

evaluated and used to determine the convection heat flow Qc. 

The plate is also modelled as being capable of radiating heat Qrad to and from its 

surroundings.  The Stephan-Boltzmann law gives the thermal power emitted from the 

plate’s surface at temperature T to its surroundings at temperature TS [23] 

 ( )4
rad S SQ A T Tσξ= − − . (4.16) 

The emissivity ξ describes the radiation efficiency of the plate’s geometry and material.   

Given these models for heat transfer, the temperature of the plate with specific heat 

capacity cp follows the first-order differential equation 

 c rad

p

Q QdT
dt m c

+
= . (4.17) 

This equation can be integrated along the flight path of the plate to give a temperature 

time-history and assess survivability. 

4.4 Length Scaling 

The square plate geometry design has only two degrees of freedom: length and 

thickness.  In an effort to identify each dimension’s impact on performance and 

survivability, this section considers length-scaling in the above aerodynamic and 

thermodynamic models.   

4.4.1 Length Scaling in Translational Equations of Motion 

The value of interest, aerodynamic acceleration, depends on the plate’s cross-

sectional area-to-mass ratio AC/m 

 
2

2

1C

m m

A l
m dl dρ ρ

= = . (4.18) 
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As the product ( )m dρ  is reduced, the AC/m ratio increases with an inverse-power law.  

Therefore, for a fixed material density, the plate’s thickness is the critical parameter for 

determining the acceleration associated with aerodynamic forces.  The inverse of this 

ratio appears in the commonly used ballistic coefficient, defined to be a ratio of inertia 

to aerodynamic drag [19] 

 m

D C D

dm
A

ρβ
κ κ

≡ = . (4.19) 

This ratio determines a body’s drag-limited lifetime in LEO.  Low values of β 

correspond to satellites whose orbits are highly affected by atmospheric drag, and 

consequently de-orbit more quickly than bodies with high β.  Typical spacecraft have 

ballistic coefficients on the order of 10 to 100 kg/m2 [24].  The ballistic coefficient also 

drives a body’s terminal velocity 
 

 2
T

A

gv
ρ β

= . (20) 

4.4.2 Length Scaling in Rotational Equations of Motion 

The attitude or rigid-body equation of motion gives aerodynamic angular 

accelerations as 1−I τ .   The torque, given in Eq. (4.9) is roughly a function of ACl.  The 

magnitude of the angular accelerations are then proportional to ( ) 1
m l dρ − .  As the length 

and thickness of the plate are reduced, the angular accelerations associated with 

aerodynamic torques increase in magnitude.   

4.4.3 Length Scaling in Thermodynamics 

The heat models Qc and Qrad are both a function of area explicitly.  In terms of the 

quantity of interest, the temperature, the heat transfer rates are divided by mass.  So in 

the case of radiation, Qrad depends on the plate’s surface-area-to-mass AS/m 
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2

2

2 2S

m m

A l
m dl dρ ρ

= = . (4.21) 

In the case of forced convection, the length-dependence is a function of the flow regime 

as well.  The flow regime is determined by the Knudsen number, which is proportional 

to l-1.  In free molecular flow, Qc depends on AC/m and therefore d-1.  In continuum 

flow, the skin friction coefficient depends on powers of Re.  Laminar flow results in 
1.5

cQ l∝  and  

0.5

1

m

dT
dt dlρ

∝ . 

Turbulent flow results in 1.8
cQ l∝  and  

0.2

1

m

dT
dt dlρ

∝ . 

Recognizing that t l , both thickness and side-length are relevant design parameters 

when considering thermal survivability in continuum flow.  When considering radiation 

or free molecular flow, thickness is the only critical parameter.    

4.4.4 Survivability of Dust Grains 

If a body is small enough, it may be capable of decelerating and radiating heat 

efficiently enough to maintain a survivable temperature.  Indeed, this phenomenon is 

observed in nature [6,7].  Each year, thousands of metric tons of small interplanetary 

dust particles reach the Earth’s surface unaffected while larger meteoroids ablate as 

meteorites [25]. 
 

The key to a dust grain’s low-temperature entry is the altitude range in which its 

entry velocity is primarily reduced.  Thanks to a high sensitivity to aerodynamic drag, 

some dust grains decelerate in the upper atmosphere where free-molecular flow heating 

occurs.  Here, the atmospheric density is low enough that the product of ρv3, which 

occurs in the aerothermal heating model, doesn’t reach ablative values [26].  By the 
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time that the dust grain reaches the thicker continuum atmosphere, its velocity is at or 

near terminal velocity, a value that typically low for dust.   
 

The chip architecture is similar to a dust grain, in that it achieves high A/m.  

However, one key difference is that dust grains have a small characteristic length in the 

fluid flow properties, specifically the Knudsen number.  For a flat plate in the flow, the 

side-length is the applicable characteristic length.  This means that the plate enters 

continuum flow much sooner than a dust grain, for the same altitude and velocity 

profile. 

4.5 Results 

The three equations of motion (Eqs (4.7), (4.12) and (4.17)) have been simulated for 

a variety of cases.  Each simulation uses the US 1976 Standard Atmosphere Model [27] 

for local atmospheric properties.  Other parameters are listed in Table 4.1.  The material 

of the plate is taken to be silicon.  The initial orbit is taken to be a circular orbit in the 

plane of Earth’s equator, with an altitude of 350 km.  The end condition is taken to be 

an altitude of 10 km above Earth’s surface.  Many electronic components can survive 

and operate at temperatures up to 100oC, so this is taken to be the survivability limit. 

 
 

Table 4.1. Parameters used in Simulations 
Parameter Value  

ρ 2330 kg/m3 [28]

ζ 0.85  

cp 678 J/(kg K) [28]

h0 350 km  

v0 7697.0 km/s  

TS 255 K [23]

μ 398658.366 km3/s2  
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4.5.1 Parametric Search 

Two numerical parametric searches were employed in an effort to assess the design 

space of survivable plate dimensions for ballistic re-entry.  The simulations each assume 

that the plate maintains a fixed attitude, γA =  90o or 0o.  These attitudes represent edge-

on and face-on ballistic re-entries respectively, and represent bounding conditions.  That 

is, Section 4.3.3 argues that the edge-on heading is stable, and therefore the face-on 

heading represents an unlikely but possible worst-case heading.  The simulations each 

test a different choice of side length, thickness, and orientation.  Side length l is varied 

between 0.5cm and 10cm and the thickness d is varied between 25 μm and 1 mm, for a 

total of 286 simulations. 

Figure 4.6 and Figure 4.7 give the results of the maximum temperature that each 

simulation reaches for the face-on and edge-on attitudes.  The maximum temperature is 

dependent strongly on both side length and thickness.  The simulations using a face-on 

heading do not yield survivable maximum temperatures.  Simulations for the edge-on 

heading show much lower temperatures, with large dimensioned plates maintaining an 

equilibrium temperature of Ts  due to thermal radiation from the Earth.   

 

Figure 4.6. Maximum temperature during 
re-entry maneuver for the face-on attitude. 

 

Figure 4.7. Maximum temperature during 
re-entry maneuver for the edge-on attitude.
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4.5.2 Sprite Re-Entry Simulations 

The Monte Carlo simulations suggest that the target Sprite architecture of l = 1 cm 

and d = 25 μm can survive an edge-on re-entry, though larger dimensions are possible 

and even beneficial.  Focusing on this choice of dimensions, the face-on and edge-on 

cases are evaluated more carefully in an effort to describe the key differences between 

the two headings.   

Figure 4.8 through Figure 4.11 give relevant results for the face-on heading.  This 

heading yields AC/m = 17.2, AS/m = 34.3, and β = 0.02.  The total re-entry process takes 

only 5 hr.  Immediately after beginning the simulation, the plate’s altitude rapidly drops, 

reaching a peak drag acceleration of about 100 m/s2.  The peak temperature of 300oC 

occurs with the peak drag acceleration at an altitude of approximately 150 km.  At other 

times, the thermal radiation of the Earth keeps the steady state temperature at the 

assumed value of Ts = -18oC.  The Knudsen number time-history shows that peak 

heating occurs during the free molecular flow regime and transitional flow regime. The 

Reynolds number time-history suggests that the continuum flow stays laminar.   

Figure 4.12 to Figure 4.17 give time histories for the edge-on re-entry maneuver.  

This heading yields AC/m = 0.043, AS/m = 34.3and β = 9.0.  The lower value of AC/m 

causes the re-entry to take 322 hours, during which time it reaches a peak temperature 

of only 28oC.  The magnitude of drag acceleration is reaches almost 100 m/s2, but 

occurs during turbulent continuum flow conditions, when the heat transfer is lower than 

the free molecular flow case.  The key difference between the two orientations appears 

to be the flow condition at which maximum deceleration occurs.   

This essentially depicts the difference between the entry of dust and the entry of 

typical spacecraft systems.  The face-on attitude re-enters in the free-molecular flow 

regime, as dust does.  As a result, it only heats to a few hundred degrees Celsius, rather 

than the thousands of degrees typical for re-entry systems.  The edge-on attitude enters 

more slowly, during which time it experiences maximum heating in the continuum 
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regime.  The edge-on attitude experiences low temperatures because it is decelerates at 

lower rates.   

The assumption that the Sprite can be treated as single thermal element may give 

unreasonable results for the edge-on architecture.  The leading edge will likely be 

subjected to the vast majority of the aerothermal heat input, and this could lead to 

localized temperatures exceeding the results presented here.   

Figure 4.8.  Altitude time-history for a 
face-on re-entry of the target Sprite 
architecture. 

Figure 4.9. Drag acceleration and velocity 
time-histories for a face-on re-entry of the 
target Sprite architecture. 
 

Figure 4.10. Temperature time-history for 
a face-on re-entry of the target Sprite 
architecture. 

Figure 4.11. Knudsen number and 
Reynolds number time-histories for a face-
on re-entry of the target Sprite 
architecture. 
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Figure 4.12. Altitude time-history for an 
edge-on re-entry of the target Sprite 
architecture. 

Figure 4.13. Velocity time-history for an 
edge-on re-entry of the target Sprite 
architecture. 
 

Figure 4.14. Drag acceleration time-
history for an edge-on re-entry of the 
target Sprite architecture. 

 

Figure 4.15. Temperature time-history for 
an edge-on re-entry of the target Sprite 
architecture. 
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Figure 4.16. Knudsen number time history 
for an edge-on re-entry of the target Sprite 
architecture. 

 

Figure 4.17. Reynolds number time history 
for an edge-on re-entry of the target Sprite 
architecture. 

 

4.6 Sprite Spacecraft Design 

The earliest Sprite prototypes have focused on three primary subsystems: structure, 

power, and communications.  The current printed-circuit-board (PCB) version 

reproduces the desired functionality using commercial off-the-shelf components.  Each 

aspect of this first design, shown in Figure 4.18, is traceable to a smaller target size of 1 

cm x 1cm x 25 μm.   
 

 

Figure 4.18.  Current large-scale PCB prototype  
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4.6.1 Structure 

The structure must mechanically support the functional components within the target 

form factor.  The PCB prototype measures 3.8 cm x 3.8 cm and has been manufactured 

using standard PCB techniques onto a 1.5mm thick FR-4 substrate.  The back side of 

the structure serves as a ground plane for the electronics and antenna.  The total mass is 

8 grams, resulting in a maximum cross sectional AC/m of 0.18 m2/kg.  The objective 

Sprite is a thin ASIC architecture.  Table 4.2 gives the relevant parameters for the 

current PCB and objective ASIC Sprite structures.    
 

Table 4.2. Sprite Structural Parameters 

 Current 
PCB Objective Units 

l 3.8 1 cm 
m 8 0.0075 gm 
d 1.5 0.025 mm 
I12 1.925 x 10-5 1.25 x 10-10 kg·m2 
I3 9.627 x 10-6 6.25 x 10-11 kg·m2 

4.6.2 Power  

Power is sourced using a total of seven solar cells for operation.  The power 

requirements of the communications hardware would require too many cells to maintain 

the required form factor; so, the design uses “bursty” operation.  Six of the solar cells 

charge a 20 μF storage capacitor.  When this capacitor is charged to roughly 30 V, the 

energy discharges through a filtered DC-DC power converter.  This operation is 

controlled by a comparator sourced by the seventh solar cell.  The output of this power 

converter is a 3.3V square wave made available to the communications subsystem.  This 

power is sufficient to boot up the communications hardware and transmit a beacon 

signal.   
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Figure 4.19 and Figure 4.20 give voltage time-histories for the power subsystem’s 

operation under a sun simulator.  Figure 4.19 shows the voltage across the energy-

storage capacitor and the filtered voltage from the DC-DC power converter.  “In” 

denotes the voltage time history across the energy-storage capacitor.  “Out” denotes the 

voltage from the filtered DC-DC converter.  The capacitor requires 1 s to charge up to 

29V, after which it is discharged down to 17V.  This high voltage operation offer 

increased energy storage for a given capacitor, since capacitance goes with voltage-

squared.  Figure 4.20 is a close-up of the filtered voltage output.  The pulse lasts a total 

of 18 ms, 2 ms of which are used to boot up the transmitter. The remainder of the power 

is used for continuous operation of the communications subsystem.  After the pulse 

stops, the remaining power dissipates slowly until the next pulse.  Given that the 

transmitter is powered for 18 ms every 1 s, power subsystem offers a duty cycle of 

1.8%.  Table 4.3 gives the relevant power subsystem parameters.   
 

  

Figure 4.19.  Power subsystem performance in a 
sun-simulator.  

Figure 4.20.  Filtered DC power subsystem 
output. 
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Table 4.3. Sprite Power Subsystem Parameters 

Parameter Value Units 
Solar Cells  6  

Voltage 32 V 
Current 50 μA 

Capacitor  20 μF 
Min/Max Voltage 18 / 30 V 
Charge Time 1.0 s 
Released Energy 6.4 mJ 

Pulse Length 18 ms 
DC-DC Efficiency  80 % 
Filtered DC Output   

Supply Voltage 3.3 V 
Supply Current 86 mA 

Power Consumption   
Microcontroller Power -0.6 mA 
Transmitter Power -29 mA 

Margin 56 mA 

4.6.3 Communications 

When activated, a low-power microcontroller powers up a transmitter IC and sends 

instructions to transmit a predetermined 16 ms signal at 900 MHz.  The signal is 

clocked using an external quartz oscillator and impedance matched to a centerfed half-

wave dipole.  The chief advantage of the dipole antenna selection is performance in 

spite of having a negligible ground plane.   

Using minimum shift keyed pseudo-random noise (PRN) encoding, the system 

achieves an effective matched filter gain of roughly 22 dB.  The transmitted signal (a 

160 bit PRN sequence) is known by both the transmitter and receiver in advance.  This 

scheme enables the receiving station to search for the specific binary sequence below 

the noise floor, as in the case of a standard global positioning system signal.  A second 

advantage is the ability for multiple chips to transmit at the same frequency.  The cost of 

this scheme is a very slow datarate.   
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Table 4.3 gives the communications subsystem parameters. The subsystem transmits 

a linearly polarized signal with 10 mW of effective isotropic radiated power.  For a 500 

km altitude transmitting to a ground station with 18 dB of antenna gain, the 

communications link closes with a 5 dB margin.  The carrier-to-noise ratio is 0.07, 

suggesting that the encoded signal is well below the noise floor.  The encoded signal 

has a ratio of received energy-per-bit to noise-density (Eb/N0) of 10, implying that the 

160 bit sequence can be inferred by the ground station, and thus it can achieve the 22 

dB matched filtering scheme. 

 
Table 4.4. Sprite Communications Subsystem Parameters 

Parameter Value Units 

Transmitter   
Power -20 dBW 
Antenna Gain 0 dB 
Frequency 900 MHz 
Bandwidth 1 MHz 
Pulse Length 16 ms 
Chip Rate 10 kHz 

Orbit   
Altitude 500 km 
Overhead Arc-Length +/- 20 deg 
Free Space Loss -146 dB 
Atmospheric Attenuation -2 dB 

Receiver   
Receiver Gain  18 dB 
Noise Temperature 300 K 
Noise Power -142 dBW 
Polarization Loss 3 dB 

Margin 2 dB 
Received Power -154 dBW 
Carrier to Noise Ratio 0.07  
Matched Filter Gain 22 dB 
Eb/N0 10  
Signal to Noise Ratio 11  
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4.7 Conclusions 

This research considers length-scaling in the atmospheric re-entry problem.  It 

focuses on a geometry relevant to spacecraft-on-chip research, a thin square plate.  

Simulations of the equations of motion and the aerothermal heating environment 

suggest that certain choices of side-length, thickness, and plate orientation may survive 

the re-entry without reaching high temperatures and ablation.  By considering both the 

stable edge-on plate heading and unstable face-on heading, the simulations can roughly 

bound the plate’s dynamic and thermal behavior.  Results suggest that the plate may 

stay cool enough such that on-board electronics could continuously operate through the 

maneuver.  This possibility offers new missions concepts with applications for high 

altitude atmospheric study.   

In pursuit of these types of opportunities, Cornell University is developing an 

extremely small solid-state spacecraft architecture known as Sprite.  The program is 

currently prototyping the functionality in a printed circuit board package and 

collaborating with experts in microfabrication to move forward with an application 

specific integrated circuit package.  The driving design goal is to achieve data 

transmission over LEO distances using Sprite’s low power transmitter.  The solution 

demonstrated here incorporates matched filter signal processing techniques to close the 

link. 

This research suggests that small chip-scale spacecraft may experience low 

temperature re-entry by virtue of their size only.  Aside from continuing to develop the 

Sprite bus, future efforts will be focused on evaluating passive lifting re-entries, refining 

the aerothermal heating model, and considering other planetary atmospheres.       

 

 

 

 



127 
 

REFERENCES 

                                                 
[1] Harwit, M., “Origins of the Zodiacal Dust Cloud,” Journal of Geophysical Research, 

Vol. 68, No. 8, 1963, pp. 2171-2180. 

[2] Burns, J., Lamy, P., and Soter, S., "Radiation Forces on Small Particles in the Solar 
System," Icarus, Vol. 40, 1979, pp. 1-48.  

[3] Kresak, L., "Orbital Evolution of the Dust Streams Released from Comets," 
Astronomical Institutes of Czechoslovakia Bulletin, Vol. 27, No. 1, 1976, pp. 35-
46. 

[4] Colwell, J.E., Horanyi, M., and Grun, E., “Capture of Interplanetary and Interstellar 
Dust by the Jovian Magnetosphere,” Science, Vol. 280, April 1998, pp. 88‐91. 

[5] Hamilton, D.P. and Burns, J.A., “Ejection of Dust from Jupiter’s Gossamer Ring,” 
Nature, Vol. 364, August 1993, pp. 695‐699. 

[6] Whipple, F.L., “Theory of micro-meteorites. I. In an isothermal atmosphere,” 
Proceedings of the National Academy of Sciences USA, Vol. 86, 1950, pp. 687–
695. 

[7] Beech, M.,  “Finite-size Corrections to the Atmospheric Heating of 
Micrometeorites,” Monthly Notices of the Royal Astronomical Society, Vol. 402, 
No. 2, 2010, pp. 1208-1212.   

[8] Barnhart, D., Vladimirova, T., Sweeting, M., "Very-Small-Satellite Design for 
Distributed Space Missions," Journal of Spacecraft and Rockets, Vol. 44, No. 6, 
2007, pp. 1294-1306. 

[9] Barnhart, D., Vladimirova, T., Sweeting, M., “Satellite Miniaturization Techniques 
for Space Sensor Networks,” Journal of Spacecraft and Rockets, Vol. 46, No. 2, 
2009, pp. 469-472. 

[10] Atchison, J.A., and Peck, M.A., “A Passive, Sun-Pointing, Millimeter-Scale Solar 
Sail,” Acta Astronautica, Vol. 67, No. 1-2, 2010, pp. 108-121.  

[11] Atchison, J.A., and M.A. Peck, “A Millimeter-Scale Lorentz-Propelled 
Spacecraft,” AIAA Guidance, Navigation, and Control Conference and Exhibit, 
AIAA-2007-6847, South Carolina, August 20-23, 2007. 

[12] Janson, S.W., "Mass-Producible Silicon Spacecraft for 21st Century Missions," 
AIAA Space Technology Conference & Exposition, Albuquerque, NM, 1999. 



128 
 

                                                                                                                                               
[13] Janson, S.W., Helvajian, H., Breuer, K., “MEMS, Microengineering and Aerospace 

Systems,” 30th AIAA Fluid Dynamics Conference, AIAA A99-33749, Norfolk, 
VA, 1999, pp. 1-12. 

[14] Janson, S.W., “Micro/Nanotechnology for Micro/Nano/Picosatellites,” Space 2003, 
AIAA 2003-6269, Long Beach, CA, 2003, pp. 1-11. 

[15] Miller, L.M., "MEMS for space applications," Proceedings of Society of 
Photographic Instrumentation Engineers (SPIE), Vol. 3680, Paris, April 1999, pp. 
1-13. 

[16] Vallado, D. A., “Chapter 8.6: Disturbing Forces,” Fundamentals of Astrodynamics 
and Applications, 2nd Ed., Microcosm Press, El Segundo, CA, 2004, pp. 550-551. 

[17] Storch, J.A., “Aerodynamic Disturbances on Spacecraft in Free-Molecular Flow,” 
The Aerospace Corporation, Report No TR-2003(3397)-1, October 2002, pp. 1-
70. 

[18] Allen, H.J., and Eggers, A.J., “A Study of the Motion and Aerodynamic Heating of 
Missiles Entering the Earth’s Atmosphere at High Supersonic Speeds,” NASA 
Technical Report #1381, 1958.   

[19] Koppenwallner, G., Fritsche, B., and T. Lips, “Survivability and Ground Risk 
Potential of Screws and Bolts of Disintegrating Spacecraft during Uncontrolled re-
entry,” Proceedings of the Third European Conference on Space Debris, 19 - 21 
March 2001, Darmstadt, Germany. Ed.: Huguette Sawaya-Lacoste. ESA SP-473, 
Vol. 2, Noordwijk, Netherlands: ESA Publications Division, pp. 533 – 539. 

[20] Regan, F.J., and S.M. Anandakrishnan, “Chapter 7.5 Heat Transfer and 
Dynamics,” Dynamics of Atmospheric re-entry, 1st Ed, American Institute of 
Aeronautics and Astronautics, 1993, pp. 216-222. 

[21] Hirshcel, E.H., Basics of Aerothermodynamics, 1st Ed, Springer-Verlag, Berlin, 
2005. 

[22] Griffin, M.D., and J.R. French, “Atmospheric Entry,” Space Vehicle Design, 2nd 
Ed., AIAA Education Series, 2004, pp. 273-320. 

[23] Gilmore, D.G., Hardt, B.E., Prager, R.C., Grob, E.W., and Ousley, W., “Spacecraft 
Subsystems - Thermal,” Space Mission Analysis and Design, Kluwer Academic 
Pub, 1999, pp. 428-458. 

[24] Griffin, M.D., and J.R. French, “Chapter 11 Atmospheric Entry,” Space Vehicle 
Design, 2nd Ed., AIAA, Reston VA, pp. 305-320.  

[25] Love, S.G., and D.E. Brownlee, "A Direct Measurement of the Terrestrial Mass 



129 
 

                                                                                                                                               
Accretion Rate of Cosmic Dust,” Science, Vol. 262, No. 5133, October 1993, pp. 
550-553.  

 
[26]  Brownlee, D.E., “Cosmic Dust: Collection and Research,” Annual Review of Earth 

Planetary Science, Vol. 13, 1985, pp. 147-173. 

[27] NASA, “U.S. Standard Atmosphere 1976,” NASA Technical Report, TM-X-74335, 
October 1976. 

[28] Bauccio, M., “Physical Properties of the Elements,” ASM Metals Reference Book, 
3rd Ed, ASM International, Materials Park, OH, 1993, pp. 142-147. 



 

130 
 

 CHAPTER 5 

 A MILLIMETER-SCALE LORENTZ PROPELLED SPACECRAFT* 

5.1 Abstract 

We evaluate Lorentz force actuation as a means of propellantless propulsion for 

millimeter-scale spacecraft by examining the acceleration and plasma-charging 

benefits associated with small length scales.  A fully integrated “spacecraft on a chip” 

is described in terms of each of the traditional spacecraft subsystems, incorporating 

relevant research in microfabrication.  Our candidate spacecraft design periodically 

pulses a RF beacon for ground-based orbit determination and powers a microchip 

payload.  The spacecraft develops a net negative charge for Lorentz orbit 

augmentation by using solar power to differentially charge the surfaces of a sphere and 

filament.  Having generated a multidimensional fit of plasma-sheath data generated 

through NASA’s Charging Analyzer Program (NASCAP), we size and optimize these 

two charge-carrying geometries, accounting for plasma capacitance and power 

requirements.  In a circular orbit at 350 km, our design achieves a charge-to-mass ratio 

of -2.5 μC/kg resulting in a daily deviation of 18 m from a Keplerian orbit.  We 

conclude that the Lorentz force can indeed serve as a low-mass means of infinite 

specific-impulse propulsion for extremely small spacecraft.   

                                                 
* Reproduced with permission from the American Institute of Aeronautics and Astro-

nautics (AIAA).  Originally presented at the AIAA Guidance, Navigation, and Con-

trols Conference, Hilton Head SC, Aug 20-23 2007 as paper number: 2007-6847. 
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5.2 Introduction 

System-level optimization is fundamental to successful spacecraft engineering.  

“Systems-on-chip” can accomplish the same tasks as a traditional system at a fraction 

of the mass and cost.  We explore the limits of spacecraft systems engineering by 

proposing the design and fabrication of an entire spacecraft’s functions onto a single 

chip.  This pursuit is motivated by a variety of unique advantages.  Economically, 

reduced satellite mass and volume correspond directly to savings in rocket fuel.  

Further, the manufacturing processes associated with silicon technology allow for 

high-volume, low-cost production.  Operationally, miniaturization may enable swarms 

of small satellites to perform large-scale distributed sensing with high redundancy.  

Physically, forces typically dismissed as slow-acting perturbations can be used as a 

source of infinite impulse at this scale.  It is this last principle that has led us to study 

spacecraft miniaturization as a complement to our Lorentz Augmented Orbit research, 

which investigates an electromagnetic means of transferring energy and momentum to 

a spacecraft’s orbit via a rotating planetary magnetic field. 

It is interesting that miniaturization could be the key to demonstrating useful 

propellantless propulsion, when a significant portion of current research in the field 

focuses on the challenges associated with the extremely large structures necessitated 

by the characteristically weak perturbation forces.  Kilometers-long tethers and 

square-kilometer-sized sails have been proposed as means of collecting sufficient 

impulse from the space environment for useful orbital adjustment. 

The intent of this work is to create the first fully self-sustaining “Spacecraft-on-

Chip” (SOC) capable of demonstrating observable propulsion via the Lorentz force.  

Inspired by the success of the first Sputnik launch in 1957, our design is intended to be 

as simple as possible.  For three weeks, the small sphere of Sputnik I “beeped” down 
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to Earth its internal temperature as it orbited overhead as the first demonstration of 

artificial satellites.  A half century later, we attempt to repeat this achievement using 

less than a hundred-thousandth of its mass.  Our design packages the traditional 

spacecraft subsystems (power, attitude control, communications, etc) onto a single 

silicon microchip capable of traveling in a non-Keplerian orbit.  This paper outlines 

our general design methodology, describes the nonlinear dynamics, discusses 

applicable technologies, and proposes a candidate design.   
 

5.3 Mission Overview 

Our proof-of-concept goals suggest as simple a mission as possible.  In order to 

validate Lorentz propulsion, we propose simultaneously launching two identical SOCs 

(or many pairs of identical SOCs), with one’s Lorentz actuation disabled.  Because the 

two spacecraft would be identical in every respect, differential drag and related effects 

would be minimized.  Then, deviation of one’s orbit from the other would be due 

primarily to the Lorentz force.  If the two systems are identical, this demonstration is 

single-fault tolerant at a high level.  A four-phase operational sequence of events 

supports these measurements: 
 

5.3.1 Launch / Separation  

A circular LEO injection serves as the baseline launch.  A likely deployment device 

would eject the SOCs from a parent spacecraft using adhesive that degrades in UV, a 

release of localized compressive load on the chip due to thermal expansion in sunlight, 

or perhaps a simple spring mechanism. Once separated from the upper stage or the 

primary satellite, the pair of SOC spacecraft would separate from one another in a way 
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that minimizes unpredictable relative ΔV (e.g. the degradable UV binder approach).  

Lorentz-induced perturbations of the Keplerian injection orbit are measured and 

provide the mission-demonstration data we seek.  Section B discusses the range of 

orbits that can that can lead to useful measurements.  This versatility, coupled with a 

robust, extremely low-mass design, enables a wide range of secondary launch 

opportunities.   
 

5.3.2 Charge / Maneuver 

After separation the spacecraft establishes an electrostatic charge such that it 

experiences the Lorentz force as it moves with respect to Earth’s magnetic field.  

Among the various means of producing and holding this charge that this paper 

considers, our preferred architecture uses solar power and differential plasma-charging 

effects.  Such architecture offers several benefits: it maximizes the total charge-to-

mass ratio, lends itself well to microscale fabrication, and requires no active means of 

expelling charged particles. 
 

5.3.3 Transmit / Sense 

The spacecraft communicate their position and temperature in a Sputnik-inspired 

fashion by periodically releasing a burst of electromagnetic energy.  The frequency of 

these pulses is determined by the temperature of the on-board oscillator and the delay 

between pulses is determined by the available power. This design is one of many 

subsystem architectures that exploits unique benefits of the integrated circuit SOC 

concept. The ground segment of this project depends on appropriate ground stations to 

detect the beeps and infer range from data including acquisition-of-signal time, signal 



 

134 
 

gain, and transmission frequency.  The ranging data are assembled to reconstruct the 

orbit time history, demonstrating the effectiveness of the Lorentz propulsion by 

comparing the orbital element estimates of the uncharged SOC spacecraft to those of 

the charged one.   
 

5.3.4 End of Life 

Because of its propellantless architecture, an SOC spacecraft could continue to 

orbit and maneuver indefinitely without concern for station keeping propellant.  

Therefore, the end-of-life phase is characterized by the growth of distance between the 

two spacecraft to a point where the Lorentz force no longer constitutes most of the 

perturbation.  Likely, radiation effects or thermal stress fatigue will degrade the SOC 

over time and will also limit the useful life. 

5.4 Lorentz Augmented Orbit Mechanics 

Our spacecraft design is driven by our proposed means of electrostatic propulsion.  

The spacecraft’s Lorentz-augmented orbit (LAO) arises because a charged spacecraft 

traveling through a body’s rotating magnetic field can transfer energy and momentum 

to and from the central body via the Lorentz force.  This phenomenon is most clearly 

observed in the charged dust orbiting Jupiter, where Lorentz perturbations generate 

unique structures in the rings.  Though thorough derivations have been presented 

elsewhere [1,2], we briefly overview the relevant concepts here. 

Let q represent the net biased electric charge and vr the velocity relative to a 

magnetic field B.  Then, the Lorentz force FL experienced by a charged spacecraft is 

 BvF rL ×= q . (5.1) 
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For a rotating magnetic field 

 rωrv Br ×−= , (5.2) 

where r  is the vector time derivative of the spacecraft’s position r (with magnitude r 

and direction r̂ ) relative to the system’s barycenter in a Newtonian frame, and ωB is 

the angular velocity of the magnetic field.   Based on a two-body Newtonian gravity 

model, the equation of motion for a charged orbiting spacecraft is 

 ( ) Brωrrr B ××−+−= q
r

mm ˆ
2

μ , (5.3) 

where μ = MG, with parent body mass M and universal gravitational constant G.  

Dividing through by the spacecraft mass m, we find that Lorentz acceleration is driven 

by the parameter q/m, the spacecraft’s charge-to-mass ratio.  The magnetic field at 

Earth is approximated by its dominant mode, a dipole with magnetic induction B0 

measured at a reference distance r0 is 

 ( )δrB ˆsinˆcos2
3

0
0 δδ +⎟

⎠
⎞

⎜
⎝
⎛−=

r
rB , (5.4) 

expressed in right-handed spherical coordinates defined by radial r̂ , azimuthal θ̂ , and 

polar δ̂  directions.  We simplify the field by aligning its spin with its parent body 

(neglecting the dipole tilt).  Previous work has demonstrated that this simplification 

captures the governing physics with little loss of accuracy [2].   

Though LAO has many potential applications, we focus our work on its simplest 

demonstration: non-Keplerian LAO effects in a circular orbit at the magnetic field’s 

equator.  Figure 5.1 indicates the directions of the Lorentz force vectors for a charged 

body in a prograde orbit subject to these conditions.  Here, the directions of the central 

body’s spin axis and magnetic field vector are defined by the right-hand rule.  Earth’s 
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geographic North Pole corresponds to its magnetic south pole; hence the magnetic 

field’s direction is shown as roughly opposite to its spin direction.  The spacecraft’s 

inertial and relative velocities lie perpendicular to its position vector and the magnetic 

field vector, constraining the Lorentz force’s line of action along the radial direction ˆ.r

These constraints imply that the Lorentz force cannot do work on the orbit ( 0=⋅ rFL ) 

or alter its angular momentum ( 0=× LFr ).  Therefore, the Lorentz force can alter only 

the spacecraft’s potential energy, effectively changing the magnitude of gravity.  The 

ratio of the magnitudes of Lorentz and gravitational accelerations is given by the 

dimensionless parameter β: 

 ⎥
⎦

⎤
⎢
⎣

⎡
±= r

rr
rB

m
q

Bωμ
μ

β
3

00 , (5.5) 

where the plus sign denotes a retrograde circular orbit, and the minus sign denotes a 

prograde circular orbit.  For the sake of compatibility with secondary-launch 

opportunities, we focus on prograde orbits.  Figure 5.2 plots the prograde acceleration 

ratio β for a charged spacecraft orbiting Earth as a function of radial distance for a unit 

positive charge-to-mass ratio (1 C/kg).  As illustrated in the figure, the Lorentz force 

approaches zero as the spacecraft approaches geostationary orbit, where the 

spacecraft’s relative velocity approaches zero rωr B ×= .  In view of β’s steep 

reduction with increasing altitude, we concentrate on LEO to maximize the 

perturbation. 
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Figure 5.1.  Vector depiction of the Lorentz force at various locations in a prograde, 
circular, magnetic-equatorial orbit.   

 

Figure 5.2.  Magnitude of acceleration due to Lorentz force relative to gravitational 
acceleration for a charged body with a unit charge-to-mass ratio (1 C/kg) in a circular 
orbit from LEO to geostationary orbit. 

From force balance in the radial direction, similar to Kepler’s third law but 

augmented with the Lorentz effect, the following result relates the magnitude of a 

charged spacecraft’s angular velocity ω to its orbital radius [1]: 

  ( ) μωωω =+− 323
00 rrB

m
q

B . (5.6) 
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In terms of radius as the dependent variable, the equation becomes 

  ( )3
3

002

1
⎟
⎠
⎞

⎜
⎝
⎛ −−= rB

m
qr Bωωμ

ω
. (5.7) 

Alternatively, the angular velocity expressed in terms of radius yields two solutions 
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where addition is associated with a prograde orbit and subtraction with a retrograde 

orbit. 

These results represent two LAO maneuvers that can be easily accomplished with a 

charged spacecraft.  Figure 5.3a shows a circular formation that is impossible with 

purely Keplerian orbits: charged spacecraft with the same angular velocity as 

uncharged spacecraft at separate altitudes.  Alternatively, Figure 5.3b illustrates a 

charged spacecraft in a circular orbit of the same radius as an uncharged spacecraft, 

but with a different angular velocity.  For the second case, the along-track separation 

Δθ per day between the two spacecraft is evaluated with Earth conditions at an altitude 

of 350 km and plotted in Figure 5.4 on a log scale.  For a prograde orbit, a positive 

charge-to-mass ratio causes the spacecraft to lag behind an uncharged spacecraft, and 

a negative charge-to-mass ratio leads an uncharged spacecraft.  This figure suggests 

types of LAO-driven deviations from a Keplerian orbit that may be observable, even 

for relatively low charge-to-mass ratios.  To avoid the subtle sequence of DV 

maneuvers necessary to create the formation in Figure 5.3a, our candidate mission is 

therefore to release a charged spacecraft-on-a-chip at about 350 km altitude and to 

measure its daily deviation from an uncharged orbit.   
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Figure 5.3.  Deviations from Keplerian orbits by charged spacecraft in circular mag-
netic-equatorial orbits.  a.) constant-radius formation flying and b.) along-track separa-
tion.  

 
Figure 5.4.  Arc separation rate between a charged and uncharged spacecraft in a pro-
grade circular orbit at 350 km altitude.   

5.5 Space Plasma Effects 

Charge allows the spacecraft to interact with a planet’s magnetic field and transfer 

energy from the planet’s rotation into the spacecraft’s orbit. In a perfect vacuum, 

orbital adjustment via the Lorentz Force is essentially power-free because the charge 
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remains on the spacecraft indefinitely.  However, charging interactions with the LEO 

plasma environment leads to some leakage of charge.  This leakage rate, or plasma 

current, dictates the power requirement.  However, maintaining this spacecraft charge 

is the only aspect of an LAO that demands power.  Indeed, coupling between the 

Earth’s magnetic field and plasma necessitate an optimization between the 

effectiveness of LAO and the power demands associated with the local plasma 

density.  Though it is unreasonable to adequately discuss the physics of spacecraft 

plasma charging, we attempt to offer a cursory overview of the most relevant 

mechanisms.   

A conductive body orbiting in a plasma attains a non-zero equilibrium potential φs, 

determined by the incident currents associated with processes such as local plasma 

attraction, photoelectric emissions, and artificial (e.g. electron-beam) currents.  

Accounting for a body’s self-capacitance C (roughly, its ability to hold charge on its 

surface), this equilibrium potential corresponds to an equilibrium charge: 

 sCq φ= . (5.9) 

For a desired charge to be established, a biased potential must be generated on a 

body with sufficiently large self-capacitance.  To maintain this potential, current must 

be provided to negate the natural charging mechanisms, motivating our research into 

spacecraft charging models.  As for self-capacitance, our design focuses on the most 

well-understood charging geometries: a sphere and a thin wire.   

The LEO environment is treated as a plasma consisting of an equal number-density 

of electrons and positive ions (i.e. a quasi-neutral plasma).  An initially neutral body in 

a static quasi-neutral plasma will maintain a near-zero floating potential.  However, 

LEO spacecraft traverse the local plasma with mesosonic velocities.  That is to say, 

their velocity is much greater than the thermal velocity of the massive positive ions 
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(primarily O+ within our region of interest), but much less than the thermal velocity of 

electrons.  For this reason the spacecraft interacts with the two polarities of particles 

differently.   

Electron velocities exceed that of the spacecraft, meaning that electrons can all but 

instantaneously collect or evacuate a region around the spacecraft.  As they approach a 

positively biased body, their charge cancels a portion of the electric field, reducing the 

net attraction experienced by other electrons.  The result is a steady-state electron 

distribution around the charged body known as a plasma sheath.  A sample plasma 

potential profile associated with a sheath is illustrated in Figure 5.5.  The potential of 

the plasma decreases with distance from the body until it reaches the quasi-neutral 

plasma potential at its outer sheath edge, the point at which the electric field associated 

with the body is cancelled (or shielded) by the distribution of oppositely charged 

particles around it.   

 The current associated with these electrons is defined as the electron thermal 

current 

 
e

SOeth m
TAqnI
π2

=  (5.10) 

where n is the unperturbed electron number density, qe is the charge of an electron, 

ASO is the surface area defined by the outer sheath edge, T is the quasi-neutral 

temperature of the plasma reported in eV, and me is the mass of an electron.  Though 

not explicitly shown, thermal current has a strong dependence on the body’s potential 

through the sheath surface area which will be discussed below. 

 With respect to positive ions, LEO spacecraft velocities are supersonic.  

Positive ions within the outer sheath edge are attracted to the negatively charged body, 

but are unable to react quickly enough to collect around the body.  Only the ions that 
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are directly impacted by the area enclosed by the outer sheath edge can react with the 

spacecraft.  Of these, a portion ηram contact the spacecraft and impart their charge.  

This mechanism is known as ram current 

 ramriramram AvqnI η= , (5.11) 

where n is the unperturbed ion number density, and qi is the charge of the ion species.  

Aram is related to the frontal area (normal to vr) of the spacecraft’s outer sheath edge 

[3].  A ram efficiency of 0.7 has been suggested as an estimate [4], which we adopt 

here.  The inability of positive ions to collect around a negatively charged spacecraft 

generates a region with an absence of elections.  That is to say, electrons are repelled 

from the spacecraft, while positive ion densities remain essentially unaffected.  The 

result is a positive charge distribution surrounding the spacecraft comparable to Figure 

5.5. 

 

Figure 5.5.  Illustration of plasma potential as a function of distance from the surface 
of a spacecraft. 
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5.5.1 Sphere Charging 

 For a sphere, the potential distribution outside the body (as depicted in Figure 

5.5) is  

 ( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
=

D

s

s
s

rx
r
xx

λ
φφ exp , (5.12) 

where φs is the potential of the sphere, rs is the radius of the sphere, and x is the 

distance from the surface of the sphere [5].  The coefficient in the exponent is a 

characteristic dimension of the plasma, the Debye length  

 
2

0

e
D qn

Tε
λ =  , (5.13) 

where ε0 is the permittivity of free space.  For low sphere potentials, the effective ram 

area is defined by a circle with a radius of a few Debye lengths.  However, as the 

body’s potential increases, the outer sheath edge increases as well.  A survey of space 

plasma literature resulted in two models used to estimate the outer sheath edge for a 

charged sphere. 

The first model used to predict this increased outer sheath size SO for a sphere with 

a high potential in a plasma environment is the Child-Langmuir Law 
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The second model, by Blackwell et al, consists of an analytic fit to the numerical 

results of Laframboise, incorporating the sphere’s radius [6,7] 
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The differences in thermal and ram charging mechanisms suggest that power 

requirements are affected by the polarity of the charge on the body as well as the 

magnitude.  A comparison of Eqs 10 and 11 indicates that the thermal current 

associated with a positively charged body exceeds the ram current for an oppositely 

charged body for  

 
e

r m
Tv π8

<  (5.16) 

Indeed, LEO plasma satisfies this condition, and sample values suggest that a 

positively charged body requires as much as a hundred times more power than a 

negatively charged body. 

A second pertinent sheath parameter is the equivalent sheath radius.  The 

oppositely charged body of particles (or lack thereof, as discussed for a negatively 

charged body), forms a concentric shell that increases the available self-capacitance of 

the spacecraft.  That is, the capacitance of a conductive sphere is  

 ss rC 04πε= , (5.17) 

while two oppositely charged concentric spheres separated by a distance SE give  

 
( )

E

Es
sSI S

Sr
rC

+
= 04πε . (5.18) 

This approximation treats the surrounding plasma’s total charge as a single spherical 

shell at an equivalent distance.  This distance is indicated in Figure 5.5 and marks the 

area centroid of the potential profile.  A small equivalent sheath radius can 

significantly increase a body’s self-capacitance and therefore its charge.   
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Noting that the two models discussed above (Eqs 14 – 15) estimate the outer sheath 

edge only, and are based on a relatively limited range of potentials, we turn to 

NASA’s Charging Analyzer Program (NASCAP) for further insight. 

NASCAP is an industry-standard finite-element modeling toolkit that simulates the 

spacecraft and plasma interactions spatially and temporally.  After validating our 

method with a 40 kV, 1 m radius conductive sphere studied by Parker [8], we 

evaluated a range sphere sizes and potentials in a static LEO environment, with the 

constants given in  Table 5.1.  A sample of the graphical results from a NASCAP 

simulation for a 1 cm sphere held at 10 kV potential is shown in Figure 5.6. 
 

 Table 5.1.  NASCAP Simulation Parameters 
Environment LEO 
Space Charge Model Analytic, Non-Linear 
Average RMS Error, V 1E-3 
Plasma Density, m-3 1E12 
Plasma Temperature, eV 0.10 
Corresponding Debye Length, m 2.351E-3 
Sphere Material Aluminum 
Sphere Approximation 80 Element Triangle Mesh 

 
 

Each simulation produces a radial plasma potential distribution around the sphere.  

The outer sheath edge can be found by calculating of the distance at which this 

potential is reduced to within the error tolerance of the solver.  Next, the potential 

distribution around the sphere is fit to a curve of the theoretically likely form 

 ( ) ( )[ ]s
s rxa
x
r

ax −= 10 expφ  (5.19) 

by solving for the unknown coefficients a0 and a1.  This function, reminiscent of Eq 

5.12 and Figure 5.5, is used to find the spatial charge density ρ via Poisson’s equation 
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0

2

ε
ρφ −

=∇ . (5.20) 

Assuming spherical symmetry and integrating radially from the body’s surface to 

infinity yields the net charge contained in the local plasma 

  ( )ss
V

raradVq 100
2

0 14 −−=∇−= ∫ πεε φ . (5.21) 

This charge, equal and opposite to the charge contained on the sphere, allows us to 

estimate the improvement to the sphere’s capacitance due to the presence of the local 

plasma. 
 

 
 
Figure 5.6.  Sample NASCAP static plasma potential results for a sphere model 
charged to -10 kV potential at 350 km. 

Table 5.2 gives the inner and outer sheath sizes calculated from these simulations.  

Five sphere sizes were evaluated at potential from 100V to 5.3MV, the potential of the 

alpha particles emitted from radioactive polonium-210 discussed at a later point in this 

paper.  At small size scales (rs = 0.01m and 0.1m) and high potentials (φs > 100kV), 
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the equivalent sheath merges with the outer sheath as a result of the different methods 

of calculating these two parameters.  The implication is that the equivalent sheath is no 

longer effective for adding useful capacitance beyond that potential.  At large size 

scales (rs = 10m and 100m) and low potentials (φs < 100V,  φs < 1kV ), NASCAP’s 

grid format limited our ability to adequately resolve the potential profile.   
 

Table 5.2.  NASCAP Simulation Results 
(Equivalent Sheath in meters / Outer Sheath in meters) 

φs, kV 
 Radius of Sphere, m 
 0.01 0.1 1 10 100 

0.1  0.04 / 0.09 0.12 / 0.22 0.31 / 0.60 - - 
1  0.10 / 0.25 0.28 / 0.60 0.79 / 1.84 1.51 / 3.46 - 
10  0.45 / 0.66 0.60 / 1.88 2.12 / 4.99 3.61 / 9.74 8.06 / 18.08 

100  1.86 4.85 5.87 / 13.27 13.77 / 29.56 22.00 / 60.59 
500  3.24 9.82 11.10 / 24.05 32.65 / 66.20 66.83 / 186.13 

5,300  9.98 23.2 32.65 / 72.67 
117.76 / 
133.06 

228.79 / 
556.88 

 

It should be emphasized that these simulations and their corresponding results are 

intended to describe the plasma parameter-space in an engineering sense, not to 

rigorously quantify or describe the associated physics.  These values were then non-

dimensionalized and fit to second-order logarithmic polynomial surfaces.  For a given 

LEO plasma temperature T in eV and number density n in m-3, the base-ten logarithm 

of the non-dimensionalized sphere radius and potential,  
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can be used to estimate the base-ten logarithm of the non-dimensionalized equivalent 

and outer sheath sizes, 
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according to the second order polynomial surface-fit 

 65
2

432
2

1, cccccc rrrOE +++++= φφφ λλλλλλλ  (5.24) 

with coefficients given in  Table 5.3 below. 
 
 Table 5.3.  Coefficients for Surface Fits Given by Eq. 5.22 

 Equivalent Sheath Outer Sheath 
c1 -0.007934 -0.014351 
c2 -0.010351 0.017511 
c3 0.425960 0.367490 
c4 0.009198 -0.003839 
c5 0.419800 0.446000 
c6 -0.311750 0.020039 

5.5.2 Filament Charging 

For a filament, the charging mechanisms are closely related.  As in the case of a 

sphere, a charged filament attracts or repels electrons such that a sheath develops.  The 

outer edge of this sheath represents the distance at which the electric field of the 

filament is negated by the surrounding plasma’s distribution.  The equivalent sheath 

acts as a concentric cylindrical shell of opposite charge, increasing the geometry’s 

capacitance according to 
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where Lf is the length of a filament with radius rf.  Choinière gives models for 

estimating the equivalent sheath radius based on numerical and experimental work [9]: 
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This model is valid for potentials and filament radii that satisfy the two conditions: 
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Power collection for a filament differs from that of a sphere.  Charged bodies with 

characteristic lengths (the radius for spheres and cylinders) smaller than the local 

Debye length, orbit-motion-limited (OML) current collection dictates the power 

requirements: 
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where Af is the total surface area of the filament and mi,e is the mass of the ions or 

electrons attracted by the filament’s charge.  For positively charged filaments, OML 

dictates the most efficient electron collection current.  Alternatively, OML’s mass 

dependence implies that a negatively charged filament in LEO will collect fewer 

massive ions than ram charging would predict.   

Figure 5.7 gives a plot of the linear charge density and sheath size subject to these 

bounds for a 10 μm radius filament, though it should be noted that the sheath is only 

very weakly dependent on the filament radius (as dictated by the bounds).  The 

filament radius dictates a minimum potential of 300 V to satisfy the conditions of 

applicability.   
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Figure 5.7.  Linear charge density and sheath size as functions of negative potential 
potential for a 10 μm radius filament. 

5.5.3 Differential Charging 

Geometry and polarity can result in different plasma-charging mechanisms.  We 

exploit this difference to enable a net spacecraft charge using a potential source as 

proposed by Hoyt and Minor [4].  This method offers useful and controllable charge, 

as well as the advantage of requiring only a sufficient potential source. 

In a vacuum, if two conductive spheres are connected to the terminals of a perfect 

battery, each sphere reaches a potential equal to half of the battery’s potential and with 

opposing polarities.  However, in a plasma environment, the spheres’ opposite 

polarities generate dissimilar currents, resulting in dissimilar sphere potentials [3].  At 

LEO where thermal charging exceeds ram charging, the positive sphere’s (henceforth 

referred to as the cathode) equilibrium potential can decrease almost to zero.  The 

perfect battery continues to maintain the potential difference between the two spheres, 
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requiring that the negative sphere’s (anode) equilibrium potential consequently 

increase.  The system then may then act as a single body with a net negative charge. 

This system is somewhat inefficient, in that a portion of the net charge is reduced 

by the cathode’s nonzero equilibrium potential.  However, we can improve efficiency 

by varying the cathode’s geometry. The goal is for the capacitance of the anode to far 

exceed the cathode so that at the equilibrium potential, the net charge on the system is 

decidedly negative.  For example, one end can be a large sphere and the other a thin 

filament.  Since OML is the most efficient current collection method, this latter 

example represents a mass-efficient charging architecture.   

5.5.4 Alternative Charging Concepts 

The advantages and capabilities of the differential-charge architecture discussed 

above makes it a clear candidate for our millimeter-scale spacecraft.  However, this 

solution came about after exploring a number of possible charging mechanisms.  For 

completeness, we briefly outline them here.   

5.5.4.1 Passive Charging 

Once inserted into an orbit, the chip experiences currents due to ram charging, 

thermal attraction, photoemission, and secondary interactions.  Differences in these 

mechanisms cause a spacecraft to generally achieve a non-zero potential.  For a 

sufficiently high ratio of capacitance to mass, these potential variations could 

prospectively perturb an orbit in a measurable manner, demonstrating LAO.  Such is 

the case for dust in Jupiter’s orbit, after all.  A body in LEO typically attains an 

equilibrium potential of a few volts positive [5], though the plasma environment and 

thus charging conditions vary significantly both temporally and spatially.  It is 
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conceivable that a spacecraft could achieve novel resonances (again, as observed in 

dust at Jupiter).  However, passive charging seems less desirable than other options 

because LEO equilibrium potentials are generally too low.  Furthermore, the 

uncontrollable and unpredictable nature of this potential severely limits applications.   

5.5.4.2 Photoemission Charging 

One of the natural currents a spacecraft experiences is photoemission charging.  

Current is generated when a photon impacts a spacecraft’s surface and liberates an 

electron.  A continuous ejection of electrons represents a current that depends on the 

energy of the impacting photon (i.e. its frequency), the specific material properties 

(photoemission yield, surface treatment), and the angle of incidence.  Currents 

associated with photoemission are on the order of 10-9 A/cm2 [5].  In an effort to 

maximize this current, a thin film of high-yield material could be deposited onto the 

surface of the charge geometry.  Similar to passive charging, one can conceive of 

resonances incorporating the periodic solar eclipse or even forced by applying 

materials of different yields to different sides of the spacecraft.   

Kasha calculates the floating potential to be 0.6 V for an aluminum 1 m radius 

sphere in a circular orbit at 350 km experiencing photoemission charging [10].  Based 

on this value, it seems unlikely that photoemission current can establish charge-to-

mass ratios sufficient to demonstrate observable orbit modification, let alone serve as a 

useful means of propulsion.   

5.5.4.3 Radioactive Emission   

Another charging concept attempts to use radioactive emission as a current source.  

As radioisotopes naturally decay, they emit energetic particles.  In the case of alpha 
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decay, these particles are helium nuclei with a +2 charge.  For beta decay, electrons or 

positrons are emitted with charge -1 or +1 respectively.  These emissions represent a 

current which would alter the floating potential of a body [5].  Research on SPEAR 

suggests that the potential can reach the emitted particle’s energy given sufficient 

current.  This implies that a spacecraft could achieve a potential on the order of 

megavolts if the current is sufficient to overcome that of the incident plasma.   

This method is not quite propellantless, in that it requires the launch of an initial 

mass of radioisotope that depletes itself over time.  Only the particles that are ejected 

in a direction away from spacecraft contribute to the body’s potential; the others 

remain within the isotope and dissipate their emission energy as heat.  This principle 

suggests that current efficiency can be maximized if the isotope is deposited in a thin 

film onto the outer surface of the body.  This current might also be modulated by 

altering the surface geometry or exposure.  Note that this calculation uses the emission 

of particles to impart a charge, not momentum.   

The following brief analysis of radioactive emissions as a means of thrust shows 

that significant orbital perturbations are not feasible.  A sample of radioactive material 

decays exponentially according to: 
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where N is the number of atoms in the sample with initial value No at time t = 0, and τ 

is the isotope’s mean life given in units of time.  The decay current is determined by 

the product of the decay rate, the charge of the emitted particles qiso, and an efficiency 

term ηiso that accounts for particles unable to escape the spacecraft.  Using the 

isotope’s density ρiso (with units atoms/kg), we find an expression for decay current 
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Equating this current to the incident ram current allows us to solve for the spacecraft’s 

floating potential over time.  The results of these calculations for Polonium-210, a 

highly energetic alpha emitter (5.3 MeV), applied to a centimeter radius sphere, after 

one year’s decay, are shown in Figure 5.8.  It is clear from these figures that the 

polonium is incapable of supplying enough current to attain charge-to-mass ratios 

sufficient for useful LAO maneuvers.  The current associated additional radioactive 

material is not large enough to augment the total charge-to-mass ratio.   
                    

 
 
Figure 5.8.  a.) Equilibrium potential in V as a function of polonium-210 mass and b.) 
Charge-to-mass ratio in C/kg as a function of polonium-210 mass and payload mass 
for a 1 cm radius sphere after 1 yr at 350 km. 

5.5.5 Pyroelectric Emission 

Yet another means of emitting charge from a body is the use of pyroelectric 

crystals.  When subjected to changes in temperature, pyroelectric crystals rapidly 

polarize, generating intense electric fields.  These fields can accelerate ions or 

electrons in a uniform beam, with electron energies on the order of 100 keV.  If the 

temperature reverses, the electric field also reverses, attracting the opposite charge 

[11].   

a.)                   b.) 
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Differences in particle mobility could be instrumental in establishing a biased 

charge for rapid thermal cycles.  That is, the current of ions attracted to the negative 

induced field is less than the electron current when the field reverses.  An alternating 

current applied to a thermocouple could potentially generate extremely high potentials.  

Passively, the small thermal mass and large temperature gradients associated with 

solar eclipses could feasibly enable unique resonant orbits.  Having observed these 

peculiar crystals firsthand, the possibility of incorporating them into a design is 

attractive.  However, at present this technology is too immature to be incorporated in 

our mass estimates with any confidence. 

5.6  Spacecraft Architecture 

We approach the design space with an emphasis on simplicity, feasibility, and 

scalability.  Our goal is to accomplish something unconventional using conventional 

technologies.  The final product is a single densely populated microchip that 

incorporates the eight traditional spacecraft subsystems: propulsion, power, 

telecommunications, attitude determination and control, structure, and thermal control. 

5.6.1 Power 

Solar-cell power generation is both passive and semiconductor based, making it a 

natural selection for power supply.  We focus on silicon-based first-generation solar 

cells, the most well researched and fabricated photovoltaics.  These cells use a single 

layer p-n junction diode to pass photovoltaic currents.  These junctions lend 

themselves well to mass production silicon techniques with high volume-efficiency.  

By strategically connecting sets of individual cells in parallel or series, an array can be 

designed with specific voltage and current characteristics to accommodate LAO or 
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payload requirements.  Commercially, high efficiency cells commonly achieve 

specific power on the order of 200 W/kg.  Presuming inefficiencies associated with 

integration in a MEMS environment, we conservatively model specific power as 100 

W/kg.  The solar array powers the charging mechanism.  Thus, when the spacecraft is 

in eclipse, its charge will return to the local plasma potential, and the spacecraft orbit 

becomes temporarily Keplerian.  In our final design, we calculate our solar array 

requirements for a spacecraft oriented at 45o from the sun vector. 

5.6.2 Propulsion 

With few exceptions [12], traditional propellant mechanisms such as chemical or 

ion thrust subsystems are unreasonable at extremely small scales, and hence 

propulsion discourages extreme spacecraft miniaturization.  We contend that the 

accelerations typically classified as perturbations, namely the Lorentz force, can offer 

useful thrust with relatively little hardware-overhead when incorporated into our 

microchip architecture.  Here we explore and evaluate four capacitive structures to be 

considered for use as the conductive geometries that maintain non-zero equilibrium 

potential.  

5.6.2.1 Spherical Shell 

Aside from being the most well understood geometry regarding plasma 

interactions, a spherical shell architecture offers noteworthy design benefits.  First, it’s 

a natural choice because it distributes charge evenly over the surface, preventing 

charge loss associated with sharp-point field concentrations, and making efficient use 

of the available surface area.  Second, the sphere can act as a Faraday cage, protecting 

the spacecraft within from external electric fields.   
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Solar sail material research suggests that a likely shell candidate is CP1 polyimide 

film.  It offers favorable mechanical properties with extremely low mass, as well as 

proven resistance to high thermal loads and radiation doses [13].  Sheets can be 

manufactured as thin as 5 μm, yielding an area density of 0.009 kg/m2.  The spacecraft 

could be sealed within the deflated shell at launch, and packed efficiently into a 

release mechanism.  At the charge phase of the mission, the shell would then inflate 

itself to full size via electron repulsion on its surface.  A transparent version, perhaps 

kapton coated with ITO for conductivity, can be used for solar-power collection 

through the sphere. 

5.6.2.2 Filament 

An extremely thin filament can efficiently store charge along its length and in the 

large volume of its sheath.  The Lorentz force, acting along the filament, tends to pull 

the filament and thus the spacecraft along its direction.  The Lorentz force will 

facilitate deployment and stabilizes its dynamics, a challenging issue associated with 

tethers in space.  This effect can also be used to constrain the spacecraft attitude in two 

of the three attitude degrees of freedom.   

Though the prospects of long tethers seem challenging, it should be noted that the 

TSS-1R electrodynamic tether mission successfully deployed a 20.7 km filament in 

LEO [14].  We consider commercially available 10 μm radius aluminum filaments 

with a linear density of 0.848 mg/m. 

5.6.2.3 Collection of Filaments 

 This concept considers charge storage on a group of filaments bound together 

to form a sparse structure.  One can conceive of a spherical or cylindrical capacitor 
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built as a mesh of wires, rather than a single solid shell.  Some research suggests that 

filaments grouped with a separation distance much smaller than the outer sheath edge, 

behave comparably to single solid-shell body [9].   

 This architecture offers the advantages of a spherical geometry with a 

significant savings in mass.  The filaments form a Faraday cage that self-inflates with 

charge.  Further, the spacecraft within the cage has superior access to solar power and 

telecommunications than would a spacecraft within a solid shell.  Simple calculations 

indicate that less than 5% of the chip’s surface might be shadowed by a filament 

structure.  Like the sphere, the mesh can be compacted for launch and then passively 

expanded by charging.   

5.6.2.4 Electrets 

For the sake of completeness, we reference a means of volumetric charge storage 

that we have explored but choose not to incorporate into our design: electrets.  

Electrets are insulators that are artificially implanted with ions to create a quasi-

permanent biased charge.  The ions are mechanically bound within the material, 

creating an electric field.   

Applications to integrated circuits have motivated research into silicon-based 

electrets.  Thin films of insulating material are bombarded with high energy ions to 

yield high charge-to-mass ratios.  Teflon variants, for example, suggest charge to mass 

ratios on the order of 10 mC/kg [15].  Concern with electrets stems from their charge 

lifetime.  In laboratory applications, electrets typically maintain their charge integrity 

on the order of years.  However, it remains to evaluate this timeframe in the space 

plasma environment.  Presumably, high energy particle bombardment would reduce it 
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beyond a useful mission life.  However, these materials have yet to be evaluated fully 

for their application to LAO spacecraft. 

5.6.2.5 Solution Space 

Among these four architectures, a spherically shaped mesh anode and a filament 

cathode offer an effective architecture in terms of mass efficiency, charge density, and 

ease of system integration.  The appropriate charging model for the “mesh” anode is 

the source of some uncertainty.  It stands to reason that the filament separation 

distance dictates whether the sphere is “seen” by the plasma as a single entity 

experiencing sheath-related ram charging, or as a set of filaments individually 

charging according to OML theory.  With this in mind, we selected the Debye length 

as the separation distance, evaluated both methods, and count on the more 

conservative of the two results. 

With an architecture selected, we find that the details of the design are dictated by 

the plasma conditions, anode size and potential, and chip mass.  Figure 5.9 shows the 

solution flow-diagram for a system analysis using ram-charging as the defining 

current.  Likewise, Figure 5.10 gives the solution flow-diagram for the OML charging 

model of the mesh sphere anode.  The important resulting design parameters are given 

in bold outline.  In this flow, the anode architecture is used to determine the value of 

the dominant ion current.  A simple current balance demonstrates that this current, 

though driven by the solar cell array, is supplied by the cathode.  The length of the 

filament is then found by setting the ion current equal to the cathode filament’s OML 

current.  This enables the differential charging and leads to the final charge-to-mass 

ratio.   
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 Both ram and OML charging were incorporated into models and used to 

evaluate a large series of anode radii and potentials for a 1 cm square silicon chip in 

plasma at 350 km.  The result of these calculations is a map of the available charge-to-

mass ratio over the anode’s design space.  Figure 5.11 presents these results as 

contours of charge-to-mass in C/kg are given over a logarithmic range of sphere radii 

and potentials.   

An important output of the solution flow-diagram is the required solar cell array 

area, dictated by the required power and the solar cell array’s efficiency.  The shaded 

regions in Figure 5.11 correspond to anode designs that require more surface area than 

is available on one side of the silicon chip.  This requirement restricts the available 

design space to a combination of small radii and low potentials. 

Reviewing the unshaded regions in Figure 5.11, charge-to-mass ratios as high as 7 

μC/kg can be achieved. After considering charge-to-mass ratio, available surface area 

for spacecraft subsystems, and simplicity of use; we select a radius corresponding to 

the corner-distance of the chip ( 2 cm) and a potential of 200 V.  These choices 

enable the chip to be placed within the sphere and attached at the corners, ensuring a 

constant orientation.  With these parameters, the OML current model yields a charge-

to-mass ratio of 2.92 μC/kg and the ram current model yields 2.55 μC/kg. For the sake 

of conservatism, we adopt 2.5 μC/kg in further estimates.  
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Figure 5.9.  Solution flow-diagram for a differentially charged architecture with sheath 
currents associated with ram charging. 

 

Figure 5.10.  Solution flow-diagram for a differentially charged architecture with 
sheath currents associated with OML charging. 
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Figure 5.11.  Contours of charge-to-mass in C/kg for mesh sphere anode over ranges 
of radii and potential for a.) a ram charging dominated model and b.) an OML charg-
ing model.  The shaded region indicates solutions requiring more solar-cell area than 
is available on one side of the chip. 

5.6.3 Communications 

Inspired by Sputnik, the communication system is intended to be a periodic beacon.  

The frequency of each pulse communicates the spacecraft’s temperature.  This section 

reviews relevant topics.  Research in each is currently being pursued. 

To ensure that the signal can be tracked from a ground station, it must be powerful 

enough to overcome atmospheric attenuation and other noise sources. The 

communication link’s carrier-to-noise-ratio C/N is a useful measure of goodness.  This 

ratio is influenced by the signal’s frequency, the orbit’s altitude, the transmitter’s 

losses and power, atmospheric conditions, and antenna efficiency.  We can accomplish 

only so much on this chip.  A simple way to improve the downlink is to select a high-

gain ground station.  We propose to use one of the Deep Space Exploration Society’s 

two 60 foot diameter parabolic dishes located in a radio-quiet region of Colorado.  

a.)              b.) 
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With an antenna gain of 43 dB, this dish represents an extremely sensitive publicly 

accessible receiver. 

A beacon pulse signal is well suited for our mission.  A simple RC charging circuit 

can produce periodic bursts of power via transistor switching as illustrated in Figure 

5.12.  Solar power charges the capacitor until the transistor is opened, releasing the 

stored energy.  This energy is sent through an oscillator and is emitted as RF energy 

via two antennas.  This sequence results in a pulsed oscillating signal as depicted in  

Figure 5.13. 
 

 

Figure 5.12.  Conceptual circuit diagram to generate periodic RF pulses from solar 
flux. 

 

 

Figure 5.13.  Conceptual RF pulsed output signal. 

Thin-film deposition allows the fabrication of multi-layered parallel plate 

capacitors directly alongside other integrated circuit components.  By alternatively 
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depositing layers of metal and dielectric, charge can be stored efficiently over a given 

surface area.  We use area-capacitance density as a metric in allocating the surface 

area of our wafer.  Typical thin film capacitors, such as Metal-Insulator-Metal (MIM) 

achieve area-capacitance densities on the order of 10 nF/cm2.  This performance can 

be improved by treating the surfaces between the plates and incorporating high-

dielectric materials, notably ceramics. 

For the oscillator illustrated in Figure 5.12, the trade space has included an analog 

RLC circuit and a crystal oscillator.  Though RLC circuit production is trivial at 

macroscopic scales, inductors are not well suited for microfabrication techniques.  

Research suggests that inductors on the order of 0.1 H/mm2 can be reliably produced, 

though the process in challenging.  A second order RLC system resonates with a 

natural frequency of 

 
rctc

RLC
CL

1=ω  (5.31) 

where C is capacitance in Farads and L is inductance in Henries.  At the millimeter 

scale, this range of capacitance (1 μF/mm2) and inductance (0.1 μH/mm2) yields a 

natural frequency on the order of 100 kHz.  Alternatively, an RLC circuit can be 

reproduced using a crystal piezoelectric oscillator.  When subjected to an electric field, 

a piezoelectric crystal deforms.  As the field is removed, it mechanically returns to its 

natural state, a process that in turn creates an opposing electric field.  This process 

repeats, resulting in an oscillating electric signal that can be modeled as the RLC 

circuit in Figure 5.14.   
 

 
Figure 5.14.  Piezoelectric crystal equivalent-analog circuit. 
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The carrier frequency of the oscillator is another key parameter.  Beyond dictating 

the necessary signal power and oscillator design, the frequency must conform to 

international law.  The Federal Communications Commission (FCC) restricts 

transmissions to specific frequency ranges and power levels [16].  The influence of the 

frequency choice on signal attenuation is shown in Figure 5.15.  It is difficult to 

imagine that our SOC spacecraft will have sufficient power to exceed the FCC limits 

at any frequency. 
 

 

Figure 5.15.  FCC allocated amateur bands superimposed over a model for one-way 
atmospheric attenuation to sea-level (7.5 g/m3 water vapor).   

Finally, it remains to discuss the antenna, a well researched topic in the 

microfabrication industry.  Since attitude control is limited, directionality cannot be a 

design driver.  If printed directly on the chip, only half of the energy will be radiated 

outward.  Alternatively, one or more antennas could be mechanically attached to the 

circuit in the post-production and packaging fabrication steps.  Though this approach 

would increase the antenna efficiency and enable a greater range of frequencies, it 

conflicts with our mass- and cost-saving goals that inspire a completely integrated 

spacecraft. 
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Two antenna styles seem most practical, having been fabricated and demonstrated 

at our size scales: a linear dipole antenna and a loop dipole antenna.  Dipole antennas 

can be designed for a resonant frequency by sizing the length at full, half, or quarter 

wavelengths.  Using a quarter-wave dipole, a centimeter length limit constrains the 

minimum antenna resonant frequency to approximately 7.5 GHz.  The second option, 

a loop antenna, offers increased gain over a dipole but also has equally restrictive 

frequency limits.  For example, a 1 cm x 1 cm square loop yields a minimum 

resonance of approximately 8 GHz.  Based on frequency allocation, ground-station 

capabilities, and atmospheric attenuation; these minimum frequencies may dictate 

limit the transmitter’s design. 

5.6.4 Attitude Determination and Control 

Our proposed method of LAO via differentially charged bodies offers a passive 

method of attitude control.  Figure 5.16 illustrates a sphere anode and filament cathode 

with center of mass moving at angular velocity ω+.  The two oppositely charged 

geometries experience Lorentz forces in opposite radial directions concentrated at 

their respective centers of charge.  If the spacecraft is perturbed from a radial 

alignment by angle α, these forces apply a restoring torque.  Thus the system behaves 

as a simple harmonic oscillator with an equilibrium at α = 0.  This finding implies that 

the charged spacecraft’s attitude is passively controlled by the same mechanism 

altering its orbit.  Thus our spacecraft achieves a stable orbit-radial attitude with no 

additional mass, power, or system complexity.  Because the orbit is circular, the 

spacecraft’s attitude is constant with respect to nadir, offering the further advantage of 

ensuring the inside face of the chip always points towards Earth.  This alignment 

ensures consistent antenna coverage for telecommunications.  
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Figure 5.16.  Illustration of differentially charged bodies subject to opposite Lorentz 
forces and free to rotate about the center of mass 

For completeness we include discussion of another architecture we considered but 

chose not to pursue in this application: outgassing.  Outgassing is the spontaneous 

evolution of a gas from a solid or liquid in the presence of a low-pressure 

environment.  Spacecraft are built of low-outgassing materials in order to prevent the 

evolving gas cloud from corrupting sensors and payloads, from torquing the 

spacecraft, and from causing materials-related failures.  As particles outgas from the 

surface, momentum is imparted to the spacecraft.  By selectively applying an 

outgassing agent to the corners of the wafer, this momentum can be used to generate a 

torque on the spacecraft.  This mechanism was observed as on the Microwave 

Anisotropy Probe spacecraft.  There it caused undesirable change in angular 

momentum [17].  Once spinning, a SOC can use magnetic torque coils to precess the 

spinning attitude for active pointing.  Such actuators scale well to the SOC and can be 

integrated easily as loop-shaped traces. 
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5.6.5 Structure 

The structure of the spacecraft consists of the single silicon chip.  Though a gallium 

arsenide substrate offers improved radiation resistance and photovoltaic properties, it 

is not as readily used in standard fabrication processes or tools as silicon.  In order to 

maximize use of the available surface area, we propose double-sided printing.  

Alternatively, a flip-chip style of production may be employed.  In this process, two 

chips are manufactured such that their backsides can be mated and both chips face 

outward.  This technique allows us to incorporate devices whose fabrication 

techniques aren’t compatible by producing them separately and integrating them at the 

end of production.  Of primary interest is the incorporation of solar cells on both sides 

of the chip to ensure that power is always available, regardless of attitude. 

5.6.6 Thermal Control 

In orbit, the SOC’s low thermal mass will result in temperatures that range between 

-130oC to 100oC.  This variation can occur within tens of seconds [18].  Thermal 

stresses associated with eclipses may fatigue the chip where dissimilar metals contact. 

These risks, along with possible remediative strategies such as microfabricated 

radiator fins, have yet to be evaluated.  An active means of remediation might be 

achieved for the spinning SOC: tilting the attitude so that the face points toward or 

away from the sun or the earth to might be used to control temperature. 
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5.7 Candidate Design 

Our design features a 1 cm square, 500 μm thick silicon chip surrounded by an 

aluminum mesh sphere and attached to an 8 m aluminum filament, as illustrated in 

Figure 5.17.  Solar cells printed directly onto the chip supply 200 V at 48 μA to the 

sphere and filament when oriented as much as 45o from the sun.  The sphere attains a 

negative potential (-190 V), and the filament’s potential is weakly positive (+10 V).  

The two are separated by an insulated conductor that is longer than their combined 

outer sheath sizes to prevent plasma interactions. The system-level charge-to-mass 

ratio is -2.5 μC/kg (calculated with the more conservative OML solution), sufficient 

for LAO demonstration when released into a circular orbit at 350 km.  The system 

passively orients itself along the Lorentz force’s line-of-action.  The total system mass 

amounts to less than 0.15 g. 

A separate solar array charges a capacitor designed to report the spacecraft’s 

temperature as an RF pulse through a small antenna.  Each side of the spacecraft is 

identical, to reduce solar array shadowing and transmission loss.  Tables 5.4, and 5.5 

give further design budgets and parameters. 
 

 
Figure 5.17.  An illustration of our sample spacecraft architecture. 
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    Table 5.4.  Minimum Mass Budget 
Subsystem Mass, mg Surface Area per Side, mm2 
Propulsion (Anode / Cathode)  8 0, External 
Telecommunications 0, (Printed) Remainder 
Power 0, (Printed) 98 
Attitude Determination and Control 0, Passive 0, Passive 
Structure 115 - 
Total 123 157 
 

Table 5.5.  Selected Power and Propulsion Parameters 
Parameter Selection / Result 
Orbit Circular 

Altitude, km 350 
Quasi-Neutral Number Density, m-3 1E12 
Quasi-Neutral Temperature, eV 0.1 

Charging Method Differential Charging 
Potential Difference, V 200 

Charge Storage Mesh Sphere / Filament 
Material Aluminum 
Filament Radius, m 1E-5 
Length Density, kg/m2 8.48E-7 
Mesh Sphere Anode  

Radius, cm 2  
Number of Filaments in Mesh 40 
Filament Separation at diameter 1 Debye length 
Total Length of Mesh, m 1.8 
Total Mass, mg 1.5 
Outer Sheath Edge, m 0.14 
Equivalent Radius Sheath Size, m 0.070 

Filament Cathode  
Length of Filament, m 8.0 
Mass, mg 6.8 
Outer Sheath Edge, m < 0.1 
Insulated Conductor Length, m 0.25 

Solar Cell Array  
Specific Power 100 W/kg 
Efficiency 10% 

Estimated Floating Potential, V -190 / +10 
Net Charge, C    3.59E-10 
Ram Current, μA 48.5 

Estimated Charge to Mass Ratio, μC/kg 2.5 
Maximum Along-Track Separation, m/day 17.8 
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5.8 Conclusions 

We have motivated research into micro-scale design and fabrication of spacecraft 

components based on orbital dynamics, plasma effects, and propellantless technology.  

The result of these efforts is a candidate architecture for a fully integrated “Spacecraft 

on a Chip” capable of passively altering its orbit via the Lorentz force.  Based on this 

work, we conclude that the concept is indeed viable, and the project is worth pursuing 

both for the sake of spacecraft integration and Lorentz Orbit Augmentation. Our 

current and future work focuses on addressing the telecommunications subsystem 

design, devising a robust procedure for estimating the spacecraft’s orbit, and 

developing microfabrication process-diagrams.  Ultimately, we intend to produce and 

launch the first Lorentz-propelled millimeter-scale spacecraft.  
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 CHAPTER 6 

 LORENTZ AUGMENTED JOVIAN ORBIT INSERTION* 

6.1 Abstract 

The Lorentz force acting on a statically charged body moving with respect to a 

rotating magnetic field is evaluated as a means of capture into a Jovian orbit.  The 

study offers insight into the classes of captures available as a function of the 

spacecraft’s charge-to-mass ratio and approach conditions.  A range of these 

parameters is simulated using low-order magnetosphere and gravity models and a 

bang-off controller.  The results suggest that charge-to-mass ratios on the order of 0.1 

C/kg are required to capture a spacecraft with a hyperbolic, equatorial approach to an 

orbit similar to that of Jupiter’s moon Europa.  The Lorentz Augmented Orbits (LAO) 

architecture is related to a similar technology, electrodynamic tethers (EDT). Using a 

high-order magnetic field and gravity model, we recreate a sample EDT Jovian 

capture mission using LAO with a charge-to-mass ratio of 0.0975 C/kg over 2.5 years.  

We conclude that LAO maneuvers are capable of reducing a spacecraft’s energy and 

eccentricity into a bounded, circular Jovian orbit for typical mission requirements.  A 

simple feasibility study suggests that LAO spacecraft designs capable of LAO Jovian 

orbit insertion are challenging, but likely possible. 

 

                                                 

* Reproduced with permission from Journal of Guidance, Control, and Dynamics.  

Originally published in Vol. 32, No.2, 2009, pp. 418-423. 
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6.2 Introduction 

Dust detectors on Galileo observed a diffuse ring of exogenic material with 

primarily retrograde orbits around Jupiter [1].  Subsequent analysis demonstrated that 

interplanetary and interstellar dust is captured into these stable, bound orbits via time-

varying Lorentz interactions with Jupiter’s magnetic field [2].  This research inspires 

us to ask whether we can exploit this perturbing effect for orbit control by purposely 

generating and modulating electric charge on a spacecraft.    

The purposes of this study are to gain insight into the orbital mechanics of charge-

modulated bodies at Jupiter and to evaluate the feasibility of utilizing the Lorentz 

force for spacecraft capture and orbit circularization.  Jupiter generates both the 

strongest and fastest-rotating magnetic field in the solar system.  With a 9.93 hour spin 

period and a dipole magnetic moment roughly 20,000 times that of Earth [3], Jupiter is 

the most charge-efficient body where such Lorentz effects can be demonstrated.  

Previous work has evaluated Lorentz Augmented Orbits (LAO) [4] as a means of 

gaining energy at Jupiter during fly-by maneuvers [5].  This study addresses the 

inverse problem: using LAO to reduce energy within given time and space constraints.  

The term capture describes a decrease in a satellite’s kinetic energy sufficient to place 

it in a stable orbit within Jupiter’s Hill sphere.  Spacecraft missions to outer planets 

typically rely on a combination of gravity-assist maneuvers and chemical propulsion 

for capture.  The Galileo mission, for example, used a fly-by of Io and a 49 minute 

thruster burn.  Reliance on flybys introduces complexity in mission planning and 

restrictions on launch windows.  Thruster use adds to the spacecraft total mass, in 

Galileo’s case, 371 kg of fuel.  LAO requires only that a spacecraft establish a biased 

electrostatic charge and therefore does not use fuel for orbital maneuvers.  This study 

evaluates whether LAO can produce capture maneuvers comparable to those that 
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traditional propulsion can achieve.  The results include a range of parameters 

associated with the satellite’s charge, lifetime, and approach conditions and compare 

the performance to a related propellantless propulsion technology, electrodynamic 

tethers.  

6.3 Reduced-Model Equations of Motion 

We treat the spacecraft-Jupiter system as a restricted two-body problem.  Spherical 

coordinates provide a set of basis vectors that conveniently describe the 

system, ( )ˆˆ ˆr,φ,θ where r̂  is the unit vector in the radial direction, φ̂ is the unit vector in 

the polar angle direction, and θ̂  is the unit vector in the azimuthal direction.  The 

Lorentz force is given by 

 BvF rL ×= q  (6.1) 

where FL is the Lorentz force experienced by the spacecraft with charge q and velocity 

vr relative to Jupiter’s magnetic field B.  This relative velocity is 

 = − ×r Bv r ω r , (6.2) 

where r is the vector time derivative in a Newtonian frame of r, the position of the 

satellite, and ωB is the angular velocity vector of Jupiter.  The relative velocity is 

maximized in retrograde equatorial orbits.  Dividing by the spacecrafts mass yields 

acceleration aL and identifies a critical parameter: q/m, the satellite’s charge-to-mass 

ratio 

 ( )q
m

= − × ×L Ba r ω r B . (6.3) 
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Eq. 3 makes clear that the direction of the Lorentz force is determined by the 

spacecraft’s orbit and the central body’s magnetic field and rate of rotation.  If only a 

single polarity of charge is possible, the spacecraft can actuate only this scalar 

magnitude, varying the magnitude but not the direction of the resulting Lorentz force.  

If both polarities are possible, the direction is still constrained instantaneously to a 

one-dimensional manifold. 

Jupiter’s magnetosphere is a subtle, time-varying structure featuring a dominant 

tilted-dipole component, an equatorial current disk, and a pronounced magnetotail [6].  

Here, in the interest of clarity, we model this structure simply as a dipole aligned with 

Jupiter’s spin axis.  Simulations show that this approximation captures the essential 

features of the phenomenon [7].  Given a magnetic induction value B0 at a reference 

altitude r0, an axis-aligned dipole magnetic field is 

 ( )φrB ˆsinˆcos2
3

0
0 φφ +⎟

⎠
⎞

⎜
⎝
⎛−=

r
rB . (6.4) 

Where f and r constitute two of three spherical coordinates.  The Lorentz force in 

such a basis is then: 

 ( ) ( )( ) ( )( )θφrFL
ˆsincos2ˆ2sinˆsin2

3
0

0 φφφωθφωθφ rrrr
r
rBq BB −+−+−⎟
⎠
⎞

⎜
⎝
⎛= . (6.5) 

For a restricted two-body, drag-free, system confined to equatorial orbits, the 

equations of motion reduce to 

 ( )Br
rB

m
q

r
rr ωθμθ −+−= 2

3
00

2
2 , (6.6) 

 r
r
rB

m
qrr 3

3
002 −= θθ . (6.7) 
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Higher-order gravitational and magnetic terms, as well as non-zero inclinations, are 

considered in Section IV. 

Figure 6.1 shows the directions of these vectors at three positions (r1, r2, r3) within 

an arbitrary retrograde elliptical, equatorial orbit at Jupiter.  At the magnetic equator, 

the magnetic field lines point southerly and are thus directed into the page.  For each 

of the three positions shown, the Lorentz force acts along Bvr ×  and is shown with an 

arbitrary magnitude. 

 

 

 

 

 

 

 
Figure 6.1.  Vector depiction of the Lorentz force at various locations in an elliptic 
retrograde magnetic-equatorial orbit. 

The Lorentz force is nonzero in an equatorial orbit, except where = ×Br ω r , as in 

GEO.  The change in specific energy E in an inertial reference frame is found by 

projecting the Lorentz force onto the inertial velocity vector, ( )q × ⋅rv B r .  In an 

equatorial orbit, this term is related to the radial component of the velocity [7] 

 ( )0
2

ˆB
BqE

m r
ω= ⋅r r . (6.8) 

This quantity is nonzero except in a circular orbit or at the apsides, where ( )× ⊥rv B r , 

indicating that the Lorentz force can change the energy of an orbit.  However, the 

force’s symmetry across the line of apsides suggests that the cumulative effect over an 

Bvr ×

1rωB ×

1rBvr ×

1r

3rωB ×rv

Bvr ×
3r

2r

2rωB ×

rv

BωB ,

rv

2r3r
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orbit is zero.  To achieve a secular energy gain or loss, the magnitude of the charge 

must exhibit asymmetry about this line.  This issue of symmetry also suggests that a 

given energy maneuver can be accomplished with either polarity of charge.  For 

example, a spacecraft charged positive while approaching perijove sees a reduction in 

its orbital energy similar to that of a spacecraft charged negative while leaving 

perijove.  In prograde orbits however, one must consider the ( )Bωθ −  terms in Eqs. 5 

and 6.  The sign of these terms can vary through an orbit, for example as a spacecraft 

in a near-circular orbit passes the geostationary orbital radius.   

We use MATLAB’s fourth-order Runge-Kutta integrator to solve the set of four 

first-order, coupled equations of motion derived from Eqs. 6 and 7 with a range of 

initial conditions.  The algorithm uses an adaptive time step such that the absolute 

integration error in the radius vector does not exceed 10-5 m.  The simulations are 

confined to regions within Jupiter’s Hill sphere radius RH.  Table 1 gives the constants 

that are used in all of these simulations. 

 

Table 6.1. Jovian constants used in all simulations 

µ 1.2670 x 1017  m3/s2 

r0 RJ, 7.1492 x 107  m 

ωJ 1.7735 x 10-4  rad/s 

B0 -4.26 x 10-4  T 

RH 740 RJ 

 

This LAO spacecraft is assumed to be capable of maintaining a constant charge in 

spite of environmental discharging effects.  We first consider an initially parabolic 

approach.  This choice reduces the orbit to a single parameter, the perijove radius and 

offers useful insights into the orbit-insertion problem.  We select a perijove radius of 4 



 
180 

RJ and initialize the simulation at a distance of 50 RJ.  The conservatism in these 

approach conditions acknowledges the limitations of the model, including 

simplifications to the magnetic field and the absence of an atmospheric-drag model.   

6.4 Constant Charge 

If the charge q is a positive constant, the satellite sheds energy and momentum as it 

approaches perijove, where the radial velocity vector changes direction.  Past perijove, 

the satellite accelerates because the projection of the Lorentz force onto the velocity 

vector results in a positive moment about the barycenter.  

The time histories for a range of six constant-charge approaches are shown in 

Figure 6.2. The results verify the theoretical result that a spacecraft cannot be captured 

if the charge is not modulated.  When charged, the spacecraft exchanges orbital energy 

with the spin of Jupiter.  As predicted, energy is removed while the spacecraft 

approaches perijove and subsequently is returned while the spacecraft approaches 

apojove.  This trend is evident in Figure 6.3, which shows the spacecraft’s total 

specific energy over time.  Likewise, eccentricity has a net zero change over the 

course of an orbit, as shown in Figure 6.4.  The energy transfer occurs most rapidly 

near perijove, where the spacecraft’s relative velocity and the planet’s magnetic-field 

magnitude are maximized.   
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Figure 6.2. Orbit time-histories for constant charge-to-mass spacecraft with parabolic 
approaches. 

0 1 2 3 4 5 6 7 8
-100

-80

-60

-40

-20

0

20

Time, days

E
ne

rg
y,

 M
J/

kg

q/m = 0 C/kg

0.1

0.2

0.4

1.0

2.0

 

Figure 6.3. Energy time-histories for constant (dashed) and bang-bang actuated (solid) 
charge-to-mass spacecraft with parabolic approaches. 
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Figure 6.4. Eccentricity time-histories for constant (dashed) and bang-off actuated 
(solid) charge-to-mass spacecraft with parabolic approaches. 

6.5 Bang-Off Charge-Control 

The principle of Hamilton-Jacobi Bellman optimality inspires a bang-off control 

strategy to actuate the spacecraft’s charge [8, 9].  We neglect the finer points of 

disturbance cancellation and control of dynamics other than those of the two-body 

problem.  The bang-off charge-control method uses the maximum control effort 

throughout the interval of operation, in this case, half of the orbit. That is, the 

spacecraft supplies its maximum charge over half of the orbit in order to produce the 

maximum effect over a given time.   This control method can be expressed with a 

Heaviside step function H that depends on true anomaly f, in this case over the half of 

the orbit approaching apoapsis, 

 ( ) ( )π−⎟
⎠
⎞

⎜
⎝
⎛= fH

m
qf

m
q

max

. (6.9) 

This controller is optimal in terms of time, in that it achieves a desired orbital 

evolution in minimum time [10].  However, this controller is suboptimal in terms of 

power, in that it maintains a charge even when the Lorentz force is insignificant (for 

example, near apojove in a highly eccentric orbit).  Figure 6.5 shows the orbit time-
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histories of six sample cases using this control approach.  The corresponding energy 

and eccentricity time-histories are given in Figs. 6.3 and 6.4 respectively.  The charge 

is applied while the radius is decreasing (approaching the perijove) and removed while 

the radius is increasing (approaching apojove).  

 

Figure 6.5. Orbit time-histories for spacecraft with bang-off actuated charge-to-mass 
ratios. 

To implement this controller, we use true anomaly as an input and incorporate a 10 

second continuous transition time [11].  This charge transition better models the 

physics of the discharge than a step function, improves the numerical integration 

speed, and helps ensure the stability of the closed-loop system which otherwise can 

exhibit high-frequency limit-cycle behaviors.   

6.6 Approach Space 

In an effort to better understand the capture opportunities and responses over a 

large space of approach conditions, we simulate a series of test cases for planar non-

parabolic orbits with varying semimajor axis a and eccentricity e. Using 1280 (a,e) 
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pairs and four q/m  ratios, these simulations numerically explore the effectiveness of 

bang-off charge-control for capture maneuvers.  Here, a “successful capture” 

corresponds to a final orbit of useful size and shape for missions of possible interest: 

semimajor axis less than 10 RJ and an eccentricity less than 0.10.  This near-circular 

orbit is close to that of Europa.  Simulations are initialized at either apojove or 50 RJ 

and are run to a maximum time of five years.  

The result of these simulations is a map of the capture performance for each q/m 

ratio over the approach space, shown in Fig. 6.6 (a-d).  The approach orbit’s 

eccentricity is on the ordinate, and the approach orbit’s semimajor axis is on the 

abscissa.  The figure shows dashed lines of constant perijove to illustrate the 

importance of this parameter’s effect on the charged spacecraft’s behavior.  The 

successfully captured cases are sorted by their time to capture. The unsuccessful cases 

are sorted by four observed behaviors: planetary impact, escape, not captured within 

the five-year limit, and circular orbits. 

The cases resulting in escape are limited to the hyperbolic portion of the plots in 

which applying charge cannot reduce the energy and momentum during the 

spacecraft’s first approach enough to bound its orbit within Jupiter’s Hill sphere.  An 

increased q/m can prevent escape for a given hyperbolic approach.  Likewise, 

increased charge reduces the number of orbits which impact the planet.  Impact cases 

are those that carry the spacecraft closer than two RJ from the barycenter.  Increased 

charge can reduce eccentricity rapidly enough to maintain a sufficient perijove radius.  

The approach conditions and q/m values that lead to neither an impact nor our 

definition of capture within the five-year limit appear in the elliptical portion of the 

low-charge plots.  

Finally, there are many cases identified as circular orbits. These orbits are 

characterized by eccentricities less than 0.005 and semimajor axes greater than 10 RJ.  



 
185 

They represent undesired equilibria.  As the eccentricity decreases, so too does the 

ability to reduce energy.  In a circular orbit, the Lorentz force is purely radial and thus 

cannot do work on the orbit.  In these cases, the spacecraft is trapped and cannot 

achieve capture within any time period.  With a more subtle controller, it may be 

possible to reduce energy and angular momentum in such a way that this result is 

prevented.  Therefore, these cases identified as circular orbits in the plots may 

represent prospective captures.   

 

 

Figure 6.6 (a-d). LAO captures for a range of initial conditions and charge to mass 
ratios.  Contours of constant perijove shown with dashed lines. 

a.)  q/m = 0.005 b.)  q/m = 0.010 

c.)  q/m = 0.10 d.)  q/m = 1.0 
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6.7 Electrodynamic Tether Comparison 

A related technology, electrodynamic tethers (EDT), offers similar mission 

benefits.  An electrodynamic tether is a conductor of length l through which a current I 

is supplied.  In the presence of a magnetic field, the system experiences a force due to 

Lenz’s law  

 BIFT ×= l . (6.10) 

Conversely, motion of a conductor in a magnetic field induces a potential 

difference within the EDT.  When surrounded by plasma, the EDT and plasma act as a 

closed circuit, and the induced potential difference drives a current.  The power driven 

along the tether can then be stored in a battery or dissipated through resistance.  The 

EDT’s orbital energy is effectively converted to electrical energy. 

LAO transfers a spacecraft’s orbital energy to and from the central body’s rotation.  

In the presence of plasma, the spacecraft must counter the currents associated with 

plasma discharging in order to maintain a biased charge.  With respect to power, LAO 

maneuvers are most efficient in the absence of plasma, whereas EDT maneuvers 

prefer dense plasmas to maximize the induced current flow.  

The force on an EDT is a function of the current I, a vector valued quantity.  An 

EDT can therefore alter both the direction and magnitude of its acceleration by 

controlling to the attitude of the tether.  However, this added degree-of-freedom 

introduces complexity: stability and controllability of the resulting librations limit the 

usefulness of tethers in some applications [12]. 

Jupiter is an appealing candidate for EDT capture demonstrations for the same 

reasons we cite.  Early studies illustrated their potential for both capture and thrust at 

the Jovian equator [13, 14].  Gallagher, Johnson, Moore, and Bagenal first extensively 
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evaluated the feasibility and limitations of an EDT Jovian orbit insertion using high 

order models of the magnetic field and plasma environment [15].  A further study in 

2000 extended these results for rotating tethers [16].  We take these two studies as a 

basis for evaluating LAO.  More recently, Sanmartín et al. formally described 

equatorial EDT phased capture maneuvers using more accurate plasma current models 

[17].  These results were then used to design and analyze a complete system 

architecture that accounts for power, thermal, and dynamic loading [18].   

6.8 High-Order Model 

We devise an LAO that reproduces the performance described in Refs [15] and [16] 

by restricting the system to a planar orbit about the magnetic equator.  We infer the 

studies’ initial and final conditions, as presented in Table 2.  These conditions were 

initially inspired by two potential NASA missions, the Radio Science Observer and 

the Auroral Observer [15].  Each simulation starts at the outer edge of Jupiter’s Hill 

sphere.   

 

Table 6.2. Initial and Captured Orbits 

Elements Approach Final 

a   -37.725 RJ  < 86 RJ  

 e 1.027 < 0.988 
 

The model of section II is expanded to include higher-order effects.  Like previous 

studies, we use a magnetic field model from Khurana [19].  This model consists of the 

Goddard Space Flight Center’s O6 internal field model coupled with an Euler potential 
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formulation external field model.  We augment the gravitational field model to include 

dipole and quadrapole terms but neglect other bodies.  

6.9 Results 

Our LAO version of the EDT maneuver uses a bang-off control strategy, which we 

evaluate over a range of q/m.  Figure 6.7 shows the simulated time-to-capture as a 

function of q/m.  A minimum q/m of 0.0975 C/kg is required to complete a capture 

within the bounds of Jupiter’s Hill sphere.  This capture requires 870 days for the 

initial approach and a single subsequent orbit to achieve the target capture.  Increasing 

q/m reduces the time required to complete the capture, but only to a limited extent.  

Above q/m = 0.128 C/kg, the spacecraft is captured within the initial Jovian approach, 

corresponding to 76.5 days.  Given additional time, LAO continues to circularize and 

shrink the orbit as seen in Figure 6.8 where the 0.128 C/kg spacecraft is simulated for 

a total of 211 days.  Figures 6.9 and 6.10 show the resulting radius and eccentricity 

time histories.  The final orbit is defined by a semimajor axis of 3.7 RJ and an 

eccentricity of 0.052 after 211 days.  This performance is competitive with the EDT 

candidate capture which required times on the order of hundreds of days with an 11 

km tether. 
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Figure 6.7. Time-to-capture as a function of charge-to-mass ratio for high-order model 
simulations. 

 

Figure 6.8.  Minimum charge-to-mass ratio to capture on approach (q/m = 0.128 C/kg) 
simulated for 211 days with high-order model. 
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Figure 6.9. Radius time-history for bang-off actuated charge-to-mass spacecraft with 
parabolic approaches. 

 

Figure 6.10. Eccentricity time-history for bang-off actuated charge-to-mass spacecraft 
with parabolic approaches. 
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 q CV= . (6.11) 

Self-capacitance describes the number of electrons that can reside on the surface of a 

conductor in the plasma.   Conductor geometries with high C/m ratios are therefore 

favorable.  This ratio is roughly associated with surface area-per-mass A/m.  Likewise, 

it is favorable to maximize the system’s potential.   However, increasing surface area 

or potential increases the ambient plasma discharge currents.  These currents must be 

countered, for example through the expulsion of charged particles via an ion or 

electron beam. 

One candidate solution uses a negatively charged EDT-like architecture [9].  Here, 

a tether is used as a means of holding charge, rather than conducting current.  Tether 

designs have cross-sectional dimensions that are much smaller than typical plasma 

electron gyroradii.  As a result, they are subject to orbital-motion-limited (OML) 

discharging, which has characteristically lower currents than thermal or ram 

discharging mechanisms [20].  Further, they have a large vacuum C/m ratio.  In 

plasma, their capacitance is improved by the presence of a sheath of oppositely 

charged particles.  Our candidate subsystem consists of a group of charged long, thin 

filaments that are grouped to form a cage-like structure.   

We modify the LAO spacecraft design of Ref. [9] to account for sample Jovian 

plasma parameters near the planet (~1-3 RJ) at the equator: 1 m Debye length, 10 eV 

temperature, and S+ as dominant ion species [21, 15, 16].  Given these values, a 

radioisotope thermal generator can produce sufficient power to achieve an 

approximate q/m of 0.03 C/kg for a 50 kg payload.  The filament cage structure 

consists of 7000 filaments, each 20 km long and charged to 40 kV using 2 kW.  This 

power requirement is orders of magnitude lower than similar EDT maneuvers but 

must be supplied by an on-board power source.   
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This sample q/m value is only one fourth the target for the EDT comparison, and 

the subsystem’s large dimensions present a set of deployment challenges similar to 

those facing an EDT equipped spacecraft.  However, this design does suggest that the 

minimum q/m for Jovian orbit insertion (hundredths of a C/kg) is likely achievable, 

and therefore those captures illustrated in Figure 6.a and 6.b may be possible. 

6.11 Conclusions 

 We conclude that the Lorentz force can be used to capture a spacecraft into an 

orbit about Jupiter and circularize that orbit if the spacecraft can achieve a controllable 

charge-to-mass ratio as low as hundredths of a Coulomb per kilogram.  As the 

available q/m increases, the spacecraft’s ability to capture and circularize the orbit 

improves.  At 0.1 C/kg, the spacecraft can replicate a candidate electrodynamic tether 

maneuver that places the spacecraft in a circular Jovian orbit at Europa with a 

comparable mission duration.  In part due to the dependence of the Lorentz force on 

radial distance, the success of capture attempts depends largely on the orbit's perijove 

altitude.  Our simple feasibility study suggests that spacecraft designs that achieve 

sufficient capture q/m ratios introduce difficult challenges but are likely possible.  
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 CHAPTER 7 

 LORENTZ ACCELERATIONS IN THE EARTH FLYBY ANOMALY* 

7.1 Abstract 

Mission engineers have detected an unexpected anomaly on six spacecraft during 

low-altitude gravity-assist maneuvers around Earth.  This Earth flyby anomaly 

involves an acceleration that, to date, researchers cannot account for based on known 

forces or errors in measurement or modeling.  This paper evaluates Lorentz 

accelerations associated with spacecraft electrostatic charging as a possible 

explanation for the Earth flyby anomaly.  This analysis does not explicitly address 

plasma physics but instead bases its conclusions on fundamental six-state flight 

dynamics.  The analysis focuses on the Near Earth Asteroid Rendezvous (NEAR) 

spacecraft because it exhibited the largest anomalous error with the smallest estimated 

residuals.  The analysis takes the form of a boundary-value problem in which vector-

disturbance time histories are found numerically through nonlinear optimization 

methods.  The analysis identifies the unknown, but required, acceleration based on a 

model of the Lorentz-force interaction.  The algorithm cannot converge on a solution 

that fully reproduces the anomalous error in all six orbital states.  It is unlikely, based 

on this analysis, that Lorentz forces cause the flyby anomaly. 
 

 

 

                                                 
* Reproduced with permission from the Journal of Guidance, Control, and Dynamics  

  To be published Spring 2010. 
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7.2 List of Symbols 

ai = ith cosine coefficient in a Fourier series 

bi = ith sine coefficient in a Fourier series 

B = magnetic field 

δi = declination angle of incoming spacecraft velocity vector 

δo = declination angle of outgoing spacecraft velocity vector 

E = eccentric anomaly 

e = eccentricity 

ε = orbital energy 

FL = Lorentz force 

߶ = colatitudes angle, measured from the +z-axis 

Γ(t) = truncated Fourier series approximation of a function of time 

gi = perturbation accelerations projected onto ଙ̂ 

H(t) = Heaviside step function 

h = orbital angular momentum 

i = inclination 

J = vector cost function 

K = unitless constant  

M = mean anomaly 

m = spacecraft mass 

μ = geocentric gravitational constant 

ν  = true anomaly 

Π(t)  = boxcar shape function 

q = net electrostatic charge 

r = spacecraft position vector with magnitude r and direction r̂  
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ρ0 = observed state errors due to anomaly 

t = time 

τ = time constant of basis function 

θ = azimuthal angle, measured from the +x-axis 

v = spacecraft velocity vector 

vrel = spacecraft velocity relative to B 

vinf = hyperbolic excess velocity 

W = cost function weighting matrix 

Ω = longitude of the ascending node 

ω = argument of perigee 

ωB = vector spin rate of the magnetic field 

X = spacecraft orbital state vector 

X2 = simulated charged spacecraft state after close approach 

X2
0 = predicted spacecraft state after close approach 

X2
* = first observed spacecraft state after close approach 

x,y,z = Cartesian coordinates aligned with a geocentric equatorial inertial 

system 
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7.3 Introduction 

Nearly every deep-space mission of the past thirty years has used a gravity-assist 

maneuver, or flyby, to achieve low-cost Δv.  Gravity assists enabled Voyager I to 

depart the Solar System, Apollo 13 to return to Earth safely from the Moon, Galileo to 

tour the Jovian moon system, and Ulysses to view the Sun’s polar regions.  These 

maneuvers capitalized on the physics of three-body dynamics to transfer energy and 

momentum between a planet and a spacecraft in a heliocentric reference frame.  These 

physics have been understood in terms of the restricted three-body problem for nearly 

two centuries. 

It was therefore surprising when, in 1990, engineers at the Jet Propulsion 

Laboratory observed an energy change in the Galileo spacecraft’s Earth gravity assist 

(EGA) maneuver that could not be explained.[1,2] At the spacecraft’s close approach 

to Earth, radar tracking stations were unable to slew quickly enough to follow 

Galileo’s trajectory.  When the acquisition of radar data resumed, tracking indicated 

that the spacecraft had experienced an unexplained acceleration that resulted in an 

orbit different from what had been predicted.  After detecting this anomaly, 

researchers began a systematic study to identify what has come to be known as the 

flyby anomaly and identify its potential causes. 

Since that initial observation, mission engineers have observed five other 

anomalous EGAs.  Table 7.1 reproduces relevant values for the anomalous EGAs [2]. 

The details vary among these gravity-assist maneuvers, but they all share an 

unexplained acceleration.  Though the anomalous acceleration produces a change in 

all of the orbital states, it is often described as a change in the hyperbolic excess 

velocity vinf.  In the six known cases, vinf has been observed to both increase and 

decrease with magnitudes on the order of mm/s.  Four additional EGAs with high-
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altitude close approaches have not shown anomalous energy changes.  So, some infer 

a correlation with distance.† 

 

Table 7.1. Anomalous Flyby Parameters [2] 

Spacecraft Galileo Galileo NEAR Cassini Rosetta M’GER 

Date of Flyby 12/08/90 12/08/92 01/23/98 08/18/99 03/04/05 08/02/05 

Mass, kg 2497 2497 730 4612 2895 1086 

Altitude of Perigee, km 960 303 539 1175 1956 2347 

Inclination, deg 142.9 138.7 108.0 25.4 144.9 133.1 

Turn Angle, deg 47.7 51.1 66.9 19.7 99.3 94.7 

Velocity at Perigee, km/s 13.740 14.080 12.739 19.026 10.517 10.389 

vinf, km/s 8.949 8.877 6.851 16.010 3.863 4.056 

Anomalous Δvinf, mm/s 3.92 -4.6 13.46 -2 1.80 0.02 

Error Bound Δvinf, mm/s 0.3 1.0 0.01 1 0.03 0.01 

 

Researchers have ruled out measurement errors as a cause of the flyby anomaly and 

have determined that the acceleration is a physical phenomenon: a variety of 

instruments and algorithms have detected the acceleration for the different spacecraft 

and orbits [2].  In addition, radar measurements have confirmed the anomaly using 

both Doppler and time-of-flight range data.  Researchers have proposed and evaluated 

a wide range of possible causes for the flyby anomaly[3,4,5].  Antreasian and Guinn 

have shown that the anomaly cannot be produced by a conservative field only and the 

unknown acceleration may vary in time [6]. 

                                                 
† Personal communication with Dr. John D. Anderson on January 23, 2009. 
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Anderson and his colleagues recently reported that the magnitude of the anomaly 

correlates with the cosine of the declination of the spacecraft’s incoming δi and 

outgoing δo velocity vectors [2]  

 
( )cos cosinf

i o
inf

v
K

v
δ δ

Δ
= −

 (7.1) 

The unitless constant K is empirically calculated to match the known data points, 

though it can be related to known Earth constants.  Two papers explore Eq. 1 as a 

consequence of an unknown force field.  Hasse, Birsin, and Hähnel conclude that any 

candidate force field would contain a dependence on the velocity of the spacecraft [7].  

Lewis finds that a quadrupole scalar potential field could produce this fit, and would 

relate to a coupling of kinetic energies between the Earth and spacecraft [8].   

Since Anderson and his colleague’s finding, a variety of specific explanations have 

been proposed.  These address reassessments of general and special relativity 

[9,10,11,12,13], the number of dimensions of space [14], dark matter somehow bound 

to Earth [15,16], the Casimir effect [17,18], and the concept of privileged frames [19]. 

To date, the research community has not yet accepted any of these studies as an 

adequate explanation for the flyby anomaly.   

Five specific observations motivate evaluation of Lorentz forces associated with 

spacecraft charging as a source of the anomaly.  The Lorentz force is based on well-

understood physics: it has been observed in the orbital dynamics of dust particles at 

Jupiter [20,21,22] and Saturn [23,24]. The Lorentz force is non-conservative, 

transferring energy between the Earth’s rotating magnetic field and the charged 

spacecraft’s orbit25. This transfer can either increase or decrease the energy of a 

spacecraft’s orbit.  The Lorentz force is distance-dependent, varying with r-7/2.  
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Finally, simulated Lorentz maneuvers at Earth show a strong correlation between 

declination and energy change [26]. 

 In their review of a number of unexplained physical phenomena, Lammerzahl, 

Preuss, and Dittus address the problem of the Earth flyby anomaly.  In a brief 

paragraph, the authors dismiss the Lorentz force using simple order-of-magnitude 

estimates [3]:  

 

“In a recent study of charging of the LISA test masses [27] the charging has 

been estimated by 10−10 C.  So, for the whole satellite it might be a conservative 

assumption that the charge is less than Q ≤ 10−7 C.  A satellite of 1 t carrying a 

charge Q and moving with v = 30 km/s in the magnetic field of the Earth which 

is of the order 0.2 G will experience an acceleration 10−8 m/s2 far below the 

observed effect.”  

 

Their analysis rules out the Lorentz force on the basis of a priori estimates of 

spacecraft charge.  In contrast, the objective of the present work is to investigate the 

problem without presupposing a certain charge magnitude.  Instead, it is based on a 

full vector-mechanics representation of the physics.  Furthermore, previous research 

has explored the possibility of generating electrostatic charge on spacecraft to achieve 

novel spacecraft maneuvers, [23,24,28,29] including augmented flybys [30].  This 

work has shown that the Lorentz force can generate meaningful acceleration on a 

spacecraft.  The present study begins from first principles to investigate the possibility 

that a spacecraft with any electrostatic charge can recreate these anomalous behaviors, 

regardless of magnitude, sign or variation in time.  Put simply, the spacecraft charge is 

an output of this analysis, not an input. 
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This analysis addresses this question in the context of a test case, the Near Earth 

Asteroid Rendezvous (NEAR) spacecraft, using original data.  This spacecraft 

demonstrated the greatest anomaly with the lowest error residuals of all the examples, 

and it is therefore the best candidate to address.  Demonstrating that Lorentz 

acceleration can explain NEAR’s anomalous orbit time-history is necessary, but not 

sufficient, evidence for explaining the others.  

7.4 Modeling and Analysis 

A spacecraft with an electrostatic charge q, moving with velocity vrel relative to a 

magnetic field B, experiences the Lorentz force FL  

 q= ×L relF v B . (7.2) 

For a rotating magnetic field 

 = − ×rel Bv r ω r , (7.3) 

r  is the vector time derivative of the spacecraft’s position r (with magnitude r and 

direction r̂ ) relative to the system’s barycenter in a Newtonian frame, and ωB is the 

angular velocity of the magnetic field. 

The spacecraft’s orbital state determines the value for every term in these 

expressions except for the scalar q. Thus, the direction of the Lorentz force is confined 

to a one-dimensional manifold corresponding to varying charge magnitude.  Figure 7.1 

shows the line-of-action for the blackout time of NEAR at three-minute increments 

along the orbital path.  The spacecraft approaches Earth from the +z direction and 

makes its closest approach above the Middle East.  The direction of vrel x B is nearly 

constant prior to the close approach and again after the close approach.  At closest 
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approach, vrel x B lies in a predominantly cross-track direction, after which it rotates to 

an along-track direction.  Figure 7.2 shows the magnitude of vrel x B versus time over 

the data blackout period, in which the vector magnitude is normalized by the 

maximum value.  The magnitude is largest near close approach, where both |vrel| and 

|B| are maximized.  This magnitude quickly drops off, leaving only a one-hour 

window in which the Lorentz force can be of any significance.  
 

 

Figure 7.1. The direction of (vrel x B) for the NEAR EGA during the data-blackout 
period shown from a.) the Eastern Hemisphere b.) the Western Hemisphere. 

 

a.) b.) 
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Figure 7.2. The normalized magnitude of (vrel x B) for the NEAR EGA during radar 
blackout. 

The following two-body equations of motion represent the Lorentz force in terms 

of spherical coordinates: 

ሷݎ ൌ ሶߠݎ ଶ sinଶ ߶ ൅ ݎ ߶ሶ ଶ െ
ߤ
ଶݎ ൅ ݃௥ ൅ ൬

ࡸࡲ

݉ ·  ො൰࢘

ሷ߶ݎ  ൌ െ2ݎሶ߶ሶ ൅ ሶߠݎ ଶ sin ߶ cos ߶ ൅ ݃థ ൅ ቀࡸࡲ
௠

· ෡ࣘቁ  (7.4) 

ݎ sin ߶ ሷߠ ൌ െ2ݎሶߠሶ sin ߶ െ ሶ߶ݎ2 ሶߠ cos ߶ ൅ ݃ఏ ൅ ቀࡸࡲ
௠

·  , ෡ቁࣂ

where the coordinates and axes are given in Figure 7.3.  The terms ݃௥, ݃థ, and ݃ఏ are 

perturbation accelerations along each axis.  The model for the present analysis 

includes accelerations due to high-order gravitational terms (100 x 100 EGM96), n-

body direct and indirect effects (Sun, Moon, Jupiter, and Venus), solar radiation 

pressure, relativity (point-mass and Lense-Thirring effects), and atmospheric drag.  

Accelerations associated with Earth albedo, Earth infrared, ocean tides, indirect 

oblateness, moon oblateness, and the remaining planets are negligible. (For a review 

of these effects for the NEAR and Galileo EGAs, see Ref. 5.)  In spite of these 

omissions, the model recreates the published value of anomalous Δvinf to within 
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0.01%.  The magnetic field B is modeled with a 10 x 10 spherical harmonic 

representation of the International Geomagnetic Reference Field for 1995.  In each 

equation (3), ࡸࡲ
௠

  represents the acceleration imparted by the Lorentz force. 
 

 

Figure 7.3. Spherical coordinates and axes. 

The scalar hyperbolic excess energy is  

௜௡௙ݒ 
ଶ ൌ ࢜ · ࢜ െ ଶఓ

௥
. (7.5) 

A complete evaluation of the anomaly addresses the transition of six orbital states X, 

during the flyby rather than simply representing the difference in energy, a mere scalar 

that cannot represent the full subtlety of the problem.  X can be expressed, for 

example, in Cartesian coordinates taken in the Geocentric Equatorial Inertial (GEI) 

frame[ ], , , , ,x y z x y z , spherical coordinates as described in the equations of motion

, , , , ,r rφ θ φ θ⎡ ⎤⎣ ⎦ , or Earth-centered classical orbital elements[ ], , , , ,a e i ω υΩ . Table 

7.2 shows the observed anomalous change in each of these representations of the six 

states. 

Perturbation techniques can map the changes associated with the Lorentz force 

throughout NEAR’s orbit into these various coordinates.  Then, general perturbation 
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equations shown in Equation 9-24 of Ref. 31, transform the change into orbital 

elements.  Figure 7.4 shows the accumulated changes for nine such coordinates for a 

constant positive q/m = +1 mC/kg, an arbitrary example.  (The polarity of q/m appears 

linearly in the calculation of FL, so a negatively charged spacecraft produces the 

opposite of the changes observed in Figure 7.4.)  Three elements (Ω, ω, M) show 

monotonic change throughout the flyby.  Comparing these results with Table 7.2 leads 

to the conclusion that the charge-to-mass ratio of the spacecraft must be negative at 

some point to produce the observed anomaly.  These results offer no further insight 

beyond this single observation; one cannot rule out the Lorentz force solely on the 

basis of a single constant charge.  
 

Table 7.2. Polarity and Magnitude of Anomalous State Change for NEAR 
GEI Cartesian 
Coordinates  GEI Spherical 

Coordinates  Orbital Elements 

x +102 m  r  -102 m  ε +102 J/kg 

y -103 m  φ  -10-7 rad  h +105 m2/s 

z +102 m  θ  +10-6 rad  e +10-6  

x  -10-3 m/s  r  +10-2 m/s  i -10-6 rad 

y  -10-3 m/s  φ  +10-10 rad/s  Ω -10-6 rad 

z  -10-2 m/s  θ  +10-11 rad/s  ω -10-8 rad 

      ν -10-6 rad 

      M +10-5 rad 

      E -10-6 rad 
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Figure 7.4. Accumulated change in orbital elements associated with a constant positive 
charge-to-mass ratio of 1 mC/kg for a one-hour window around closest approach. 

7.5 Numerical Approach 

Since the results of the perturbation analysis are inconclusive, this research turns to 

numerical optimization methods for nonlinear systems.  In this context, the anomaly is 

treated as an optimization problem with known boundary-values; seeking to solve for 

a q(t) that can evolve from the last known state before the radar blackout X1 to the first 

known state after the radar blackout X2
*.  Figure 7.5 illustrates these states with 

exaggerated orbits.  X2
0 is the predicted state, found by propagating X1 forward in time 

without any anomalous acceleration.  The optimizer is meant to find a charge time 
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history using an algorithm that minimizes a cost associated with the anomalous state 

errors.  For this analysis, the cost is the weighted vector difference between the known 

post-encounter state X2
* and the post-encounter state X2, simulated with a non-zero q(t) 

time history: 

ࡶ   ൌ ૛ࢄሾࢃ
כ െ  ૛ሿ,  (7.6)ࢄ

ܬ  ൌ ԡࡶԡ. (7.7) 

The weighting matrix W is diagonal with coefficients consisting of the inverse of the 

absolute value of the errors ρ0 : 

଴ߩ  ൌ ૛ࢄ
כ െ ૛ࢄ

૙, (7.8)  

ࢃ  ൌ ૚
√૟

 ሺdiag|ߩ଴|ሻିଵ.  (7.9) 

This form normalizes the relative magnitudes of the components of J, yielding a 

baseline cost for the uncharged spacecraft J0 of 1.0.  Values for ρ0 are given in three 

coordinate systems in Table 7.2.  Though the three systems—Cartesian, spherical, and 

classical orbital—are equivalent in the sense that the physics is independent of basis, 

X is expressed in a Cartesian-coordinate system for the cost modeling because its 

matrix expressions tend to be better conditioned than corresponding expressions in the 

other two systems.  
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Figure 7.5. Diagram of state definitions.  

A Fourier series serves as a basis to model the unknown acceleration.  With enough 

terms, this basis can represent an arbitrary, continuous time history.  Here, the series is 

truncated to some numerically manageable order, n. The Fourier series of an arbitrary 

function can be expressed as 
 

  Γሺݐሻ ൌ ܽ଴ ൅ ∑ ቂܽ௜ cos ቀଶగ௜
ఛ

ቁݐ ൅ ܾ௜ sin ቀଶగ௜
ఛ

ቁቃ௡ݐ
௜ୀଵ   (7.10) 

ܽ א Թሺ௡ାଵሻ x ଵ 

ܾ א Թ௡ x ଵ. 

The parameters ai and bi describe the shape of Γ(t), and τ sets the length of the longest 

period.  For an order n Fourier series, the algorithm must optimize over 2n+1 

coefficients.  Figure 7.6 shows a sample of four functions that are approximated with a 

sixth order (n = 6) Fourier series.  This shape function captures a line with constant 

slope, a Heaviside step, and a triangular wave, all with accuracy acceptable for this 
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application.  However, it is much less effective at modeling an impulse function.  To 

accommodate this limitation this study also considers a boxcar basis function, which 

describes a single “on” period of a square wave 

  Πሺݐሻ ൌ ܿ଴ሺܪሾݐ െ ଴ሿݐ െ ݐሾܪ െ ሺݐ଴ ൅ Δݐሻሿሻ. (7.11) 

H(t) is the Heaviside step function.  The parameters c0, t0, and Δt set the function’s 

magnitude, start time, and pulse-width respectively.  If Δt is sufficiently small, this 

shape function can approximate a single impulse.  These two shape functions model 

both the unknown acceleration and the proposed q(t) time history. 

MATLAB’s nonlinear least-squares optimization function lsqnonlin offers good 

convergence and repeatability for this application.  This function uses a Levenberg-

Marquardt line search method to estimate a local gradient and march toward a 

minimum cost J by varying the coefficients (ai, bi) that define q(t).  The change in step 

size defines the convergence.  A threshold of 10-14 yields sufficiently accurate 

solutions in this analysis with acceptable computation time.  There are no guarantees 

that the resulting minimum is global rather than simply local.  So, each optimization is 

based on a large and varying set of initial guesses.  
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Figure 7.6. Sample functions (dotted lines) approximated by a 6th order Fourier series 
(solid lines).  

To verify this numerical approach, one can test the algorithm with a known 

acceleration time history.  As an example, the uncharged orbit from X1 through the 

data blackout period is simulated with and without the presence of the Moon’s 

accelerations.  X2
* becomes the post-encounter state accounting for the Moon and X2

0 

the post-encounter state excluding the Moon.  The algorithm then solves for the 

missing known acceleration given only the direction of the Moon and modeling the 

magnitude of the acceleration as an 8th-order Fourier series.  This test mimics the 

proposed Lorentz simulation in which the direction of vrel x B is known and the time-

varying magnitude of q(t) is unknown. 
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The minimized cost J = 10-9 suggests that the algorithm modeled the missing 

acceleration associated with the Moon with an acceptable precision because such a 

cost indicates residual error in all states that is orders of magnitude lower than the 

observational error.  Figure 7.7 shows the true and modeled magnitude of acceleration 

throughout the data blackout period.  The true lunar acceleration is similar to a portion 

of a triangle wave.  The Fourier series approximation oscillates around the actual 

acceleration, with errors that are most noticeable near the two endpoints and the 

inflection point.  However, the fact that the cost is based on an integrated time history 

allows these small errors to occur without significant impact.  A higher-order 

approximation reduces these errors at the cost of computation time.   
 

 

Figure 7.7. Magnitude of acceleration due to the Moon (dotted line), solved for by 
using the optimization algorithm (solid line).  

7.6 Results 

Prior to solving for an optimized q(t) time history, the algorithm is used to test for 

the existence and uniqueness of an arbitrary continuous or impulsive solution to the 

given boundary value problem.  With a well-posed question, the algorithm is then used 

to search for a q(t) time history. 
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7.6.1 Existence and Non-Uniqueness of a Continuous Solution 

For there to be a physical explanation for the anomaly, a continuous solution must 

exist for the boundary-value problem.  With X2
* as the observed post-encounter state 

and X2
0

 as the predicted post-encounter state, the optimization can determine whether 

any physically realizable solution exists (regardless of the cause).  For this analysis, 

three 6th-order Fourier series aligned with the r̂ ,φ̂ , and θ̂ directions model the 

unknown acceleration.  Setting the sum of the cosine terms in the Fourier series to 

zero ensures that the applied force is zero at the boundary points.  This boundary 

condition reflects the fact that the anomaly occurs within the data blackout period and 

that the forces are known both before and after the blackout.  The optimizer solves for 

39 coefficients.  Here, the longest period τ is set to the length of the full data blackout 

period. 

The optimization algorithm converges to a solution with J = 10-5.  This solution, 

shown in Figure 7.8, is not unique.  There are multiple qualitatively different 

acceleration time histories that each reproduces the anomalous orbit change.  

Therefore, a physical explanation may exist.  Furthermore, the direction of this force 

throughout the blackout period cannot be determined exactly from the information 

given.  It is possible that using this technique on other examples of the flyby anomaly 

can identify common trends among multiple spacecraft that may restrict the direction 

of the force.  However, that issue is not pursued further in this study. 
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Figure 7.8. Sample continuous acceleration that reproduces the anomaly, shown in r̂ -,
φ̂ -, and θ̂ -aligned components.  

7.6.2 Possibility of a Single-Impulse Solution 

Using the boxcar basis function instead of the more general Fourier series 

establishes whether or not an impulse can explain the anomaly.  The simulation for 

this case uses three such functions with Δt = 10s to represent components in the r̂ , φ̂ , 

and θ̂ directions.  The optimizer varies three scalar parameters that define the 

magnitude and direction for each coordinate.  The algorithm varies these three 

parameters in an effort to minimize the cost at the final state.  The optimizer also 

includes a fourth parameter, the impulse start time.  The optimizer runs for an array of 

start times spanning the blackout period, each two minutes apart. 

The optimizer settles on impulses whose magnitudes are about 10-4 to 10-3 m/s2.  

The resulting costs, each associated with a single impulse at each time point, are 

shown in Figure 7.9.  They are decidedly nonzero, well above the error in the tracking.  

This result demonstrates that the unknown anomalous acceleration cannot be 
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attributed to a single impulsive event at some time in the blackout period.  As a result 

of this analysis, the evaluation of the Lorentz force can neglect single-impulse q(t) 

time histories and focuses instead on continuous functions that can be approximated 

by the truncated Fourier series. 
 

 

Figure 7.9. Numerical cost at each optimized impulse time-point.  

7.6.3 Optimized Charge Time History 

The optimization routine was initialized with each of the sample functions 

illustrated in Figure 7.6 (units of ± 10 mC/kg) as well as a zero vector.  Each routine 

converges to a solution with similar features, especially near close approach.  The 

solution space was evaluated for 24 parameter variations, including of τ between 1 hr 

and 8 hr and n between 8 and 32.  Each optimization run converged to a solution with 

J = 0.24, suggesting that none fully reproduces the anomaly.  Figure 7.10 shows one 

such optimized q(t)/m time history using both the maximum values of τ and n.  Figure 

7.11 shows the corresponding acceleration in spherical coordinates.  The individual 

state errors are normalized to ρ0
 in Table 7.3, such that each value represents the 

fraction of anomalous error remaining after the charge time history has been applied.  
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The error in zሶ clearly dominates the cost, with the supplied force accounting for only 

50% of the anomalous change.  To date, use of these algorithms and a Fourier basis 

function has not produced a more optimized solution. 
 

 

Figure 7.10. Sample optimized q(t)/m time-history  
 

 

Figure 7.11. Sample optimized Lorentz accelerations, shown in r̂ -,φ̂ -, and θ̂ -aligned 
components.  
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 Table 7.3. Normalized State Errors 

State 
Error 

Normalized 

Error 

x -7.4 m 8.4% 

y -14.5 m 8.5% 

z 0.2 m 0.3% 

x  0.7 mm/s 5.6% 

y  1.5 mm/s 20.7% 

z  24.0 mm/s 54.3% 

7.7 Conclusions 

The Lorentz force satisfies all of the known properties of the Earth flyby anomaly.  

It is physical, non-conservative, bi-directional, distance-dependant, and dependent on 

declination.  This research ignores the specific mechanisms, by which a spacecraft 

could develop significant charge, and instead treats charge as an output of the analysis.  

Focusing on the NEAR spacecraft’s flyby, perturbation methods are employed to 

show that the required charge on the spacecraft would need to achieve both positive 

and negative values to produce the observed trajectory change.   

Continuing with the NEAR flyby, numerical methods are used to search for a 

candidate charge time history.  The solutions produced by this search can account for 

the orbit changes in some directions, but ultimately no more than 75% of the change in 

an overall, vector-magnitude sense.  Though there exist continuous acceleration time 

histories that satisfy the observed state change, they cannot be associated with the 

Lorentz force alone.  The optimized charge time histories cannot account for the state 

error in the z velocity.  Therefore, it is unlikely that the anomaly can be attributed to an 
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interaction of spacecraft charging with the geomagnetic field.  It turns out that vinf can 

be matched arbitrarily well if this single scalar is used as the only cost.  The same is 

true for most other scalar cost functions, such as angular-momentum magnitude and 

energy in various frames.  The reason is that the scalar nature of such a parameter 

obscures the more subtle vector mechanics of the problem.  Therefore, the authors 

recommend that future work on the flyby anomaly consider the full orbital state to 

prevent false positives. 

Although this study focuses on the Lorentz force, it makes at least two other more 

general contributions to the study of the flyby anomaly.  First, the analysis allows one 

to conclude that the anomalous acceleration cannot be associated with a single 

impulse.  Second, the numerical methodology described here is applicable to any 

physical phenomenon that can be represented as a time history for use in a simulation 

environment.  It is likely that an exhaustive reevaluation of the proposed causes of this 

anomaly using such a method, correlated across the many examples, will reveal more 

about the anomaly than is currently known. 

7.8 Acknowledgments 

The authors wish to thank John D. Anderson for providing insight and ephemerides 

throughout this research. 



220 

REFERENCES 

[1] Edwards, C., Anderson, J., Beyer, P., Bhaskaran S., Border, J., DiNardo, S., et al, 
“Tracking Galileo at Earth-2 Perigee Using the Tracking and Data Relay Satellite 
System,” Advances in the Astronautical Sciences, AAS 93-685, Vol. 85, 1993, 
pp. 1609-1620. 

[2] Anderson, J.D., Campbell, J.K., Ekelund, J.E. , Ellis, J., and Jordan, J.F., 
“Anomalous Orbital-Energy Changes Observed during Spacecraft Flybys of 
Earth,” Physical Review Letters, Vol. 100, 7 March 2008, pp. 091102 1-4.    
DOI:10.1103/PhysRevLett.100.091102 

[3]. Anderson, J.D., J.K. Campbell, and M.M. Nieto, “The Energy Transfer Process in 
Planetary Flybys,” New Astronomy, Vol 12, No 5, July 2007, pp. 383-397.  
DOI:10.1016/j.newast.2006.11.004      

[4] Lammerzahl, C., Preuss, O. , and Dittus, H., “Is the Physics within the Solar 
system really understood?”, Lasers, Clocks, and Drag-Free Control, Springer, 
Berlin, 2008, pp. 75-98. 

[5] Turyshev, S.G., and V.T. Toth, “The Puzzle of the Flyby Anomaly” Space Science 
Review, August 2008, pp 1-6.  DOI: 10.1007/s11214-009-9571-0 

[6] Antreasian, P.G., and Guinn, J.R., “Investigations into the Unexpected Delta-V 
Increases During the Earth Gravity Assists of Galileo and NEAR,” AIAA/AAS 
Astrodynamics Specialist Conference and Exhibit, AIAA 98-4287, Boston, 
August 1998. 

[7] Hasse, W., Birsin, E., and P. Hähnel, “On force-field models of the spacecraft 
flyby anomaly”, arXiv:0903.0109v1, February 2009. 

[8] Lewis, R.A., “Field Theory Model of the Flyby Anomaly”, Space Propulsion and 
Energy Sciences International Forum, American Institute of Physics Conference 
Proceedings, Vol. 1103, 2009.  pp. 226-234.  DOI: 10.1063/1.3115499  

[9] Busack, H.J., “Simulation of the Flyby Anomaly by Means of an Empirical 
Asymmetric Gravitational Field with Definite Spatial Orientation,” 
arXiv:0711.2781, November 2007. 



 

221 

[10] Iorio, L., “The Effect of General Relativity on Hyperbolic Orbits and its 
Application to the Flyby Anomaly,” Scholarly Research Exchange, Vol 2009, 
Article ID 807695, 2009, pp. 1-8.  DOI: 10.3814/2009/807695 

[11] Cahill, R.T., “Resolving Spacecraft Earth-Flyby Anomalies with Measured Light 
Speed Anisotropy”, Progress in Physics, Vol. 3, 2008, pp. 9-15.   

[12] Cahill, R.T, “Combining NASA/JPL One-Way Optical-Fiber Light-Speed Data 
with Spacecraft Earth-Flyby Doppler-Shift Data to Characterise 3-Space Flow,” 
Progress in Physics, Vol 4, October 2009, pp. 50-64.   

[13] Mbelek, J.P., “Special Relativity May Account for the Spacecraft Flyby 
Anomalies”, arXiv:0809.1888v2, September 2008. 

[14] Gerrard, M.B., and T.J. Sumner, “Earth Flyby and Pioneer Anomalies,” 
arXiv:0807.3158v2, October 2008. 

[15] Adler, S.L., “Can the Flyby Anomaly be Attributed to Earth-Bound Dark 
Matter?,” Physical Review D, Vol 79, No 2, 2009, pp. 023505-1-10. DOI: 
10.1103/PhysRevD.79.023505 

[16] Adler, S.L., “Modeling the Flyby Anomalies with Dark Matter Scattering”, 
arXiv:0908.2414v2, August 2009. 

[17] McCulloch, M.E., “Modeling the Flyby Anomalies Using a Modification of 
Inertia,” Monthly Notices of the Royal Astronomical Society: Letters, Vol 289, No 
1, July 2008, pp. L57-L60.  DOI:10.1111/j.1745-3933.2008.00523.x 

[18] McCulloch, M.E., “Can the Flyby Anomalies be Explained by a Modification of 
Inertia,” Journal of the British Interplanetary Society, Vol 61, September 2008, 
pp. 373-378. 

[19] Petry, W., “A Possible Exlanation of Anomalous Earth Flybys”, 
arXiv:0806.0334v1, June 2008. 

[20] Grun, E., Kruger, H., Graps, A.L., Hamilton, D.P., Heck, A., et al, “Galileo 
Observes Electromagnetically Coupled Dust in the Jovian Magnetosphere”, 
Journal of Geophysical Research, Vol. 103, No. E9, 1998, pp. 20011-20022.  

[21] Colwell, J.E., Horanyi, M., and Grun, E., “Capture of Interplanetary and 
Interstellar Dust by the Jovian Magnetosphere”, Science, Vol. 280, April 1998, 
pp. 88-91. DOI: 10.1126/science.280.5360.88 



 

222 

[22] Schaffer, L. and Burns, J.A., “The Dynamics of Weakly Charged Dust: Motion 
through Jupiter’s Gravitational and Magnetic Fields,” Journal of Geophysical 
Research, Vol. 92, 1987, pp. 2264–2280. DOI: 10.1029/JA092iA03p02264 

[23] Horanyi, M., “Charged Dust Dynamics in the Solar System,” Annual Reviews- 
Astronomy and Astrophysics, Vol. 34, 1996, pp. 383-418. DOI: 
10.1146/annurev.astro.34.1.383 

[24] Smith, B.A., Soderblom, L.A. , Beebe,  R.F. , Boyce, J., Briggs, G.A., et al., 
1982. “Encounter with Saturn: Voyager 1 Imaging Science Results,” Science, 
Vol. 212, No. 4491, 1982, pp. 163-191. DOI: 10.1126/science.212.4491.163 

[25] Streetman, B. and M. Peck, "New Synchronous Orbits Using the Geomagnetic 
Lorentz Force," Journal of Guidance, Control, and Dynamics, Vol 30, No 6, 
2007, pp. 1677-1690. DOI: 10.2514/1.29080 

[26] Streetman, B. and M. Peck, "A General Bang-Bang Control Method for Lorentz 
Augmented Orbits," AAS 08-111, AAS Spaceflight Mechanics Meeting, 
Galveston, TX, Jan 27-31, 2008, pp. 1-18. 

[27] Sumner, T., Araujo, H., Davidge, D., Howard, A., Lee, C., Rochester, G., Shaul, 
D., and Wass, P., “Description of Charging/ Discharging Process of the LISA 
Sensors”. Classical and Quantum Gravity, Vol. 21, No. 5, March 7 2004, 
pp.S597-S602.DOI: 10.1088/0264-9381/21/5/031 

[28] Atchison, J.A. and Peck, M., “Lorentz Augmented Jovian Orbit Insertion.” 
Journal of Guidance, Control, and Dynamics, Vol. 32, No. 2, March 2009, pp. 
418-423. DOI: 10.2514/1.38406 

[29] Peck, M., Streetman, B., Saaj, C.M., and Lappas, V., "Spacecraft Formation 
Flying Using Lorentz Forces," Journal of the British Interplanetary Society, Vol. 
60, July 2007, pp 263-267. 

[30] Streetman, B. and M. Peck, "Gravity-Assist Maneuvers Augmented by the 
Lorentz Force," Journal of Guidance, Control, and Dynamics, Vol 32, No 5, 
2009, pp. 1639-1647.  DOI: 10.2514/1.35676 

[31] Vallado, D. A., “Chapter 9: General Perturbation Techniques”, Fundamentals of 
Astrodynamics and Applications, 2nd Ed., Microcosm Press, El Segundo, CA, 
2004, pp. 567-669. 



 

223 
 

 CHAPTER 8 

 CONCLUSIONS 

 

8.1 Overview of Length Scaling in Spacecraft Dynamics 

The overarching objective of this research is to identify and characterize the effects 

of characteristic length on spacecraft orbit and attitude dynamics.  The analysis begins 

with a survey of non-gravitational accelerations acting on a spacecraft in the Near 

Earth environment.  After identifying the accelerations’ dependence on length, the 

analysis compares their magnitude across length-scales and altitudes.  This 

investigation offers a number of contributions, including: 

 Connections between the orbital behavior of spacecraft and interplanetary 

dust 

 Guidelines for what a given simulation must include for a given spacecraft 

length scale and altitude 

 Classification of altitude and length-scale “regimes,” within which the 

orbital and attitude dynamics are dominated by a single non-gravitational 

acceleration 

 Identification of spacecraft length scales that offer non-Keplerian dynamics 

 Identification of candidate missions for a millimeter-scale spacecraft 

These findings motivate deeper analysis of specific acceleration models, namely solar 

radiation pressure, aerodynamic drag, and the Lorentz force.  Each of these cases is 

considered in terms of mission concepts and architectures for a millimeter-scale 

spacecraft. 
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8.2 Solar Radiation Pressure 

Photon pressure from the sun dominates the dynamics of small spacecraft at high 

altitudes.  This pressure has been proposed as a means of propellantless propulsion for 

decades.  However, it has yet to be fully employed, due to a number of critical 

challenges.  This research suggests that a millimeter-scale spacecraft architecture 

could overcome these challenges and offer a feasible demonstration.  It presents the 

first-ever design in which the spacecraft bus, in this case an integrated circuit 

microchip, performs as the solar sail with no additional deployments or membranes.  

The research addresses the full orbital and attitude dynamics for this microchip 

architecture, producing a number of key outcomes.  It is the first-ever survey and 

identification of orbital and mission applications for a sun-pointing, passive solar sail.  

It offers two new, passive, sun-pointing attitude architectures, with local and/or global 

stability.  Finally, it develops a set of missions and applications for this candidate solar 

sail, assessing feasibility and performance.  This research suggests that near-term solar 

sailing missions may be more easily achieved by small sails than by typical solar sail 

designs. 

8.3 Atmospheric Drag 

Atmospheric-drag accelerations dominate the orbital and attitude dynamics of a 

small spacecraft at the lowest altitudes.  Drag accelerations act in the anti-velocity 

direction, removing kinetic energy from the orbit.  This behavior has applications in 

passive attitude control, spacecraft de-orbiting, or controlled re-entry.  This research 

focuses on re-entry because of additional heat-transfer benefits associated with length 

scaling.  Hypersonic forced convection typically results in the demise of a re-entering 

spacecraft.  This analysis finds that the same scaling that drives the magnitude of drag 
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acceleration for small spacecraft, area-to-mass, also drives the thermal loading for a 

small spacecraft.  For the right geometry, it may be possible to re-enter a millimeter-

scale spacecraft passively, such that it never attains the high temperatures associated 

with ablation.   In fact, the temperatures may stay low enough to allow on-board 

electronics to continuously operate. 

8.4 The Lorentz Force 

The Lorentz force can dominate the dynamics of a spacecraft with a very high 

charge-to-mass ratio in the near-Earth environment.  This critical quantity is especially 

sensitive to length scale, varying with the inverse of the square of characteristic length.  

This research also finds that plasma charging mechanisms are strongly dependent on 

characteristic size.  The larger a body, the more power is required to offset the currents 

associated with plasma interactions.  These two effects suggest that a millimeter-scale 

spacecraft may be the most feasible Lorentz-propelled system.  The research describes 

an architecture intended to be the first ever demonstration of the effects of the Lorentz 

force on an artificial satellite.  The design includes a mechanism for achieving a net 

electrostatic charge using only solar cells and two filament plasma contactors.  

Additionally, this research focuses on two applications of the Lorentz force, which 

contribute to the general study of Lorentz augmented orbits.  

8.4.1 Jovian Orbit Insertion 

This analysis considers what is thought to be one of the lowest charge-to-mass 

applications for near term Lorentz spacecraft, orbit insertion at Jupiter.  Jupiter’s large 

magnetic field and fast rate of rotation mean that the near Jupiter environment is well 

suited for the Lorentz force.  The analysis considered energy and power in the context 
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of the planetary capture and orbital circularization problem.  The key contribution 

from this research is a numerical analysis that relates the outcome for a spacecraft of a 

given charge-to-mass ratio and initial Jovian approach orbit.  Using a time-optimal 

bang-off charge controller, certain combinations of these parameters yield successful 

captures and circularization, while others result in escape or planetary crashes.  These 

plots therefore offer insight into some of the subtleties of Lorentz propulsion.  They 

also offer guidelines for spacecraft designers interested in incorporating such a 

maneuver into the mission design.  

8.4.2 Lorentz Accelerations in the Earth Fly-by Anomaly 

In the past two decades, six spacecraft have experienced inexplicable accelerations 

while executing Earth gravity assists.  These accelerations have come to be known as 

the Earth fly-by anomaly.  This research explores whether the anomaly is associated 

with the Lorentz force.  It approaches the question in terms of the full six degree-of-

freedom state vector and is the first analysis to do so.  A survey of the available 

literature on the anomaly identifies six key characteristics of the anomaly, all of which 

apply to a modern understanding of the Lorentz force in the orbital mechanics 

problem.  The analysis focuses on the Near Earth Asteroid Rendezvous spacecraft, 

employing both perturbation techniques and numerical methods.  The primary 

outcomes of this research are: 

 Elimination of the possibility of a single impulse as the source the anomaly 

on the NEAR spacecraft  

 Demonstration that there exist continuous acceleration time-histories that 

can reproduce the anomaly  
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 Development of a numerical optimization routine designed to solve for an 

unknown acceleration magnitude time-history, given a known direction 

 Demonstration that the net electrostatic charge on the NEAR spacecraft 

would have to be negative at some point to cause the correct polarity of 

change in the anomaly due to the Lorentz force 

 Finally, elimination of the Lorentz force as a candidate for the source of the 

anomaly. 

The key outcome of this analysis is that the anomaly cannot be associated with the 

Lorentz force.  That is, there does not exist a charge time-history that can reproduce 

the observed anomaly.  This conclusion eliminates a likely candidate for the anomaly, 

and narrows the list of remaining proposed explanations.   

8.5 Millimeter-Scale Spacecraft Design 

Each of these analyses offers a millimeter-scale spacecraft bus design.  This design 

uses a thin square plate of silicon as the standard geometry.  The most recent design, 

dubbed “Sprite,” is discussed in the analysis of aerodynamic drag.  The current 

iteration of Sprite is a printed-circuit board module with all of the expected 

functionality.  The next iteration, being developed in collaboration with Sandia 

National Laboratories is a multi-chip module.  These development efforts justify 

research into small spacecraft dynamics by demonstrating functionality at millimeter-

scales. 

The communications subsystem drives these designs.  The spacecraft must 

complete a long-distance communications link with very low available power.  The 

solution proposed here involves two mechanisms.  First, the circuitry operates in a 

“bursty” mode, in that it transmits only when it has sufficient power.  The remainder 
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of the time is spent collecting power in preparation for the next transmission.  Second, 

the communications protocol incorporates convolutional filtering, which offers a large 

increase in effective link gain, with little additional spacecraft hardware.  This method 

takes advantage of signal processing at the ground station.   

8.6 Future Directions 

This research represents a foundation for future millimeter-scale spacecraft efforts.  

There are a number of relevant directions to focus future efforts:   

 This research has focused solely on environmental accelerations; it could be 

beneficial to consider length-scaling in the context of engineered propulsion 

techniques. 

 Millimeter-scale solar sails would benefit from a form of active attitude 

control.  Such a technology would enable much more effective energy-

change maneuvers and would allow the full benefits of solar radiation 

pressure to be realized. 

 The heliocentric orbital mechanics of a spinning fixed-attitude millimeter-

scale solar sail may offer feasible, meaningful mission opportunities.  Initial 

investigations suggest that such a spacecraft could execute inclination and 

even energy change maneuvers with no active control.   

 Further aerothermal modeling and testing for the millimeter-scale 

architecture may offer greater insight into the re-entry thermal environment 

and approaches to yield more effective sensors.  

 As new results from plasma charging tests become available, the Lorentz-

propelled spacecraft design should be reassessed and optimized.  These 
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efforts appear to be the most direct path to demonstrating Lorentz 

augmented orbital mechanics. 

 The millimeter-scale spacecraft prototype is deserving of future efforts and 

developments.  In particular, initial studies suggest that it could incorporate 

a variety of meaningful sensors, offering new distributed science missions.   

 This research introduces research questions associated with the exfiltration 

of data from large networks of independent, autonomous sensors.  The 

solution must account for irregular or simultaneous transmissions from low-

power sensors distributed across large distances. 


