A Preconditioned Conjugate Gradient Approach to Linear Equality
Constrained Minimization*

Thomas F. Coleman' Arun Verma'

July 1, 1998

Abstract

We propose a new framework for the application of preconditioned conjugate gradients in
the solution of large-scale linear equality constrained minimization problems. This framework
allows for the exploitation of structure and sparsity in the context of solving the reduced Newton
system (despite the fact that the reduced system may be dense).

1 Introduction

We are concerned with large-scale quadratic minimization subject to linear equality constraints:

(T L 7 . _
;Ielgi{c x—I—Ex Hx: Az =10}, (1)
where H is a syminetric matrix of order n, A is a m-by-n matrix of rank m, and ¢ € R™. Of
particular interest is a conjugate gradient (CG) approach to (1) and the issue of preconditioning.

If we remove the equality constraints from (1), and impose a positivity constraint on H, we
are left with the well-studied positive definite linear equation problem; a preconditioned conju-
gate gradient approach (PCG) is given in Figure 1. Algorithm PCG is slightly nonstandard in
that there is a test for negative curvature — if v < 0 return (p, d) — useful in the optimization
setting when the positivity of matrix H is sometimes uncertain. If negative curvature is dis-
covered, i.e., 7 < 0, the PCG output contains a direction of infinite descent. (A good place to
start for references and background on conjugate gradient methods is the proceedings edited by
Adams and Nazareth [1].)

The “art” of PCG is in the preconditioning step, z <« P(r): effective preconditioners are
often tailored to the problem at hand. In the unconstrained case a common strategy is to
approximate H with a sparser symmetric positive definite matrix, C', and then realize z <+ P(r)
by solving C'z = —r using a sparse Cholesky factorization. There are many possible ways to
choose C: most depend on sparsity or structure inherent in H.

For the linearly constrained problem (1), Coleman [2] suggests that algorithm PCG can be
used if the preconditioning step, z «— P(r), is implemented in a special way. Specifically, solve

(i’f)()—@) 2)

where C' is a “suitably sparse” positive definite approximation to the Hessian matrix H.

*Research partially supported by the Applied Mathematical Sciences Research Program (KC-04-02) of the Office
of Energy Research of the U.S. Department of Energy under grant DE-FG02-90ER25013.A000
fComputer Science Department and Cornell Theory Center, Cornell University, Ithaca NY 14850.

1

PCG

Initialize: Choose stopping tolerance tol, start point x,
set B =0,r=—(c+ Hxg),

p=0,d_=0,and z=P(r)

While ||z]| > tol

1.d—z+06d_, v« d'Hd
2. If v <0 return (p, d)
elseoz%?"TTZ, p—pt+ad, r—7r—aHd
3.z« P(r)
4. B« 7"7qusz

Figure 1: PCG algorithm

While this approach can be very effective it suffers from two deficiencies. First, through
accumnulation of roundoff error, feasibility of vector p can be lost. (It is possible to correct for
this with timely application of additional projections.) A second problem is that the 2-by-2
c AT
A 0
be lost. Therefore, this approach is limited to problems where A is quite sparse (or m is small)
so that the block matrix in (2) enjoys a sufficiently sparse (or inexpensive) factorization. Our
new approach overcomes these two deficiencies. The cost is the need for a representation of the
null space of A.

block matrix in (2), M = , requires the full original matrix A, else feasibility will

2 Reduced Preconditioned Conjugate Gradients

In theory a straightforward CG-approach to (1) is to introduce an n-by-(n —m) matrix Z whose
columns form a basis for null(A4), and apply conjugate gradients to the reduced system

Hp=—¢ (3)

where H = ZTHZ,é = Z%c. The full-dimensional (approximate) solution to (1) can then be
recovered, T «— Zp.

The corresponding reduced preconditioned conjugate gradient algorithm (RPCG), applied
to equation (3), is shown in Figure 2.

The preconditioner is applied through z « P(7) which we think of as an easy-to-compute
approximate solution to
Hz = —F. (4)
This is our main challenge. Traditional preconditioning strategies for linear systems depend on
a sparse matrix on the left-hand-side, matrix H = ZTHZ in our case. However, even if the
Hessian matrix H is quite sparse, it is unlikely that the reduced matrix H will be sufficiently
sparse to be of practical use. Of course if m is large enough than this is not really an issue,
since then matrix H will be small. However, for modest values of m the (lack of) sparsity in

RPCG

Initialize: Choose stopping tolerance tol, feasible
starting point xg.

Set 3=0,r=—-Z"(c+ Hzxg),
p=0,d_=0,and z =P(r)

While [[z]| > tol

l.d—z+pd_, 'y_HJTHJ
2. If v < 0 return (p, d)
elsea<—’_":—5, pe—ptad, T 7 aHd
3. z— P(7)
_T =
e

Figure 2: RPCG algorithm

H is a serious problem. Moreover, most traditional preconditioning strategies also require the
explicit formulation of matrix A — this can be a non-trivial expense. (Nash and Sofers [10] have
proposed an approach based on an approximation to (4).)

Our proposed method fits within the RPCG framework defined above. The output includes
a vector p, an approximate solution to (3) or a feasible direction of negative curvature. The
full-dimensional representation can be computed, given p, as ¢ « zg + Zp. The defining
features of our new approach are the use of a fundamental basis for null(A), and the form of the
preconditioner z = P(r).

A fundamental basis for the null space of matrix A, where A is m-by-n of rank m has the

form .
Z:P(_}1177;42) (5)

where P is a permutation matrix and AP = (43, Az), A is nonsingular. For additional discus-
sions on fundamental bases, and alternatives, see [3, 4, 7]. For simplicity of this presentation we
assume P = I, in (5).

We define, implicitly, the preconditioning operation z = P(7) by an equation of the form

(5 4) ()= (o

where A= (/Nll, Az) and A; is a nonsingular approximation to A, A, is an approximation to
Az, H is a sparse symmetric positive definite approximation to H, and z = Zz, where Z is the
corresponding fundamental basis for A. That is,

~ J— ~71 A
7= < Ay Az) . (7)
Inm

It is now easy to see that solving for z via (6) is equivalent to solving

(ZTHZ)z = —F, (8)

where z = Zz. Clearly the inverse matrix (ZTI;T Z)~! can be viewed as an approximate inverse
of ZT HZ; therefore, system (6) preconditions (4).

A key observation is that it is not necessary to compute Z in order to obtain z or 3 (in
RPCG). This is because Z is a fundamental basis for null(A) and therefore z = (0, I,)z,
where z is computed using (6). Note that Z does not appear on the right-hand-side of equation

(6)-

3 Constructing a Tilde Matrix, M

The framework developed above allows for many possible ways to choose the “tilde matrix” M,

M—(g ff) 9)

in order to specify the preconditioning operation (6). Here we describe one possibility, with nu-
merical results given in §4. We focus on the construction of A since choosing a sparse symmetric
positive definite approximation to H, H, is a well-studied problem with many possibilities. In
our experiments we choose H to be a positive diagonal matrix with H (i,1) equal to the norm
of column i, for i = 1,...n.

The method we investigate uses the notion of a “drop tolerance”, droptl. There are two
basic steps to obtain A:

1. All rows of A are temporarily normalized to have unit norm.

2. The normalized matrix A is considered in two separate pieces, A = (A1, A3), where 4 is
the leading nonsingular submatrix of A. Small nonzeroes of Ay are “dropped”, or set to
zero, based on a tolerance. A similar approach is used on A; except that if the structural
rank of A; decreases after dropping then the “zero tolerance” , droptl, for A; is increased
and this process is repeated on A;. The resulting matrix is A.

The MATLAB program which implements the above scheme is shown in Figure 3.

4 Computational Results

In this section we report on a number of computational experiments. All experiments are based
on the “Brown” objective function [9], using a variety of linear constraint systems. In particular,
our test problems have the form

1
min{cTz + §xTHx : Az =b} (10)

with different choices for A € R™*™ b € R™; ¢ and H were chosen to be the gradient and the
Hessian matrix for the “Brown” function,

n—1
y= Y (@@ (i 1))
i=1
at a given point, » = (1,1, ..., 1)T. Note that H is tridiagonal for all . In our experiments we

choose H to be a positive diagonal matrix with H (4,1) equal to the norm of column i of H, for
i =1,..n.

The matrices A were chosen from public collections of matrices (see http://www.netlib.org/lp/data/).
The CG tolerance was tol = 1075,

function A = gangstr(M,tol)

% Sparsify A
[m,n] = size(M);
if nargin < 2, droptl = 1le-2; end

%

% Normalize M
Msqr=M.*M; X=sum(Msqr');
X(find(X==0))=ones(length(find(X==0)),1); X=X(:);
M=spdiags(1./sqrt(X),0,m,m)*M;
A; = M(;,1:m); A2 = M(:,m+1:n);

% Remove nonzeros from As first
[I2, J2, Va]=find(A2); absAs=abs(As);
maxvec=full(dropt*max(absAz));
tobekept=find(abs(V2) > maxvec(J2));
Ag=sparse(I2(tobekept), Jo(tobekept), Vao(tobekept),m,n-m);

% Remove nonzeros from A; making sure it has full structural rank
dim = sprank(A4;);
sprA; = 0;
[L1,J1,Vi]=find(A1); absA;=abs(A;);
while sprA; < dim
maxvec=full(dropt*max(absA1));
tobekept=find(abs(V1) > maxvec(J1));
Ay =sparse(I; (tobekept), J; (tobekept), V7 (tobekept),m, m);
sprAy = sprank(A1);
droptl = droptl-0.025;
end

% Denormalize
A=spdiags(sqrt(X),0,mm)*[A; As];

Figure 3: Matlab Code to compute A given A = (A;, A3), A1 nonsingular

Figure 4 illustrates the dependence of our method for choosing A on the drop tolerance,
droptl. We consider a particular example, test matrix qpleq7 with n = 900, m = 358. However,
the dependence illustrated is typical over our test set. Efficiency, space and time, improve as
droptl is increased from zero up to a point and then overall computing time begins to increase
as the quality of the preconditoner degrades.

Plot (1,1) records the number of nonzeros in the preconditioner as a function of droptl. Plot
(2,1) shows the combined sum of nonzeros in the LU factors of the preconditioner M, as a
function of droptl. Note that while there is a general decrease in the number of nonzeroes in
the LU factors, as droptl increases, the decrease is not monotone.

Plot (1,2) illustrates the dependence of the number of required CG-iterations as droptl
is increased. As expected the number of iterations increases os droptl increases — consistent
with the fact that the quality of the preconditioner correspondingly decreases. The increase in
iterations is not monotone. Finally, and most interestingly, plot (2,2) shows the dependence
of the overall computing time versus droptl. The behaviour illustrated is typical: as droptl
increases from zero we observe a general decrease in computing time; a minimum is reached
for some positive value of droptl, droptl,, and a overall increase in computing time is observed
beyond this point. (The increased sparsity of A no longer compensates for the increasing number
of required CG-iterations.)

8000 16

7500 14

O 7000 = 12
a s
E o)

Z 6500 Z10

6000 8

5500 6

0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
droptl droptl
x 10°

1.6 18

15 17

1.4 16

213 w 15
5 2

£12 14

1.1 13

1 12

0.9 11

0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
droptl droptl

Figure 4: A sample preconditioner result

4.1 Observations on a Set of Constraint Matrices

The illustrative example above suggests that, for a given problem, there will be an optimal
value of droptl, droptl,, with respect to overall computing time to achieve a given accuracy.
Unfortunately, the optimal value is not known a priori and it is far from clear how to efficiently
compute the optimal value.

In our next experiment, in which we use a total of 39 different constraint matrices, we
experimentally determine the “optimal” value of droptl for each problem and then compare
our approach to the alternatives of using a sparse direct solve (“backslash”), or, staying within
the RPCG setting, choosing droptl = 0, i.e., A = A. The “optimal” value of droptl, for each
problem (with given accuracy request tol = .001,) is determnined by applying RPCG using a
discrete set of values for droptl: droptl = 0,.025,...,.5, and chose the value of droptl = droptl.
that corresponds to the best observed time.

Table 2 records the results: A is m x n, nnz(A) records the number of nonzeros in A,
“backslash” denotes the time to directly solve the system(4). The next two columns record
the CG timings for the two extremes, droptl = 0 and droptl = droptl,. Finally we also record
droptl,, and the number of nonzeros in the optimal A.

On this test set the average value of droptl, is about 0.15. There is no case where droptl, is
more than 0.45, and rarely is droptl. above 0.3.

A few cases are particularily noteworthy. For example, consider problem beaconfd where
nnz(A(droptl,)) is less than one-tenth of nnz(A); typically, the reduction of nonzeroes is about
25%. Other examples of significant decrease in the number of nonzeroes include: growl5, grow?7,
and grow22.

Problem | nnz(H) | Time(H) | Backslash | Total CG | Ratiol | Ratio2
qpleq7 293762 30.07 41.97 72.04 | 36.09 2.55 3.23
qpleq6 499623 28.45 68.52 96.97 | 40.57 3.36 3.43
pilot4 590179 31.55 87.21 | 118.76 | 63.62 3.76 13.04
fitld 1050623 20.16 181.74 | 201.90 | 89.28 15.82 12.70
fleq2 739900 20.35 95.84 | 116.19 | 35.52 9.39 14.50

Table 1: Reduced system results

The typical improvement in timing between droptl = 0 and droptl = droptl, is about 25%.
However, there are dramatic exceptions. Counsider, for example, agg3, pilot4, boeingl, and
etamarco.

Finally, the experiments confirm that if modest accuracy is required, i.e., tol = .001, then
PCG is usually much faster than using the direct sparse solve (backslash). This difference clearly
becomes more noticeable when droptl = droptl.. Of course while our approach does allow for
approximate solutions with respect to the reduced gradient, through the use of tol, high feasiblity
accuracy is maintained (due to the use of Z).

We conclude this section with a brief comment on the comparison of our approach to the more
straightforward technique of explicitly forming the reduced Hessian matrix and then solving the
reduced Newton system, either directly or indirectly, via PCG. Table 1 shows some typical
results using five of the constraint matrices from our collection.

Column “Time” indicates the time to actually form the reduced matrix whereas “Backslash”
records the time to execute the MATLAB solve on the reduced system. “Total” is the sum of
these two columns. “CG” records the time to obtain accuracy of tol = .001 using PCG on the
reduced system with diagonal preconditioning. “Ratiol” is the total time to do the direct solve
on the reduced system divided by the direct solve time on the extended system

Cc AT s\ _ [—c
(5 5)0)-(0)
“Ratio2” records the total time for applying PCG to the reduced system divided by the
RPCG time with “optimal” choice of droptl.
Clearly the straightforward reduced approach does not appear to be competitive. Indeed,
this small sample is consistent, with our experiments on the entire test data set.
Finally we remark that feasibility is not an issue since RPCG works in the reduced space:

on completion the full-space feasible solution is recovered, = « zg + Zp. In our experiments
|Az — bl|]2 < 10712 over the complete test set.

5 Concluding Remarks.

Our proposed method is an attractive framework for implementing a preconditioned conjugate
gradient approach to linearly constrained minimization. While the driving CG process is the
reduced Newton system, often rather dense, the preconditioning step is based on the sparse (or
structured) extended system. In this manner original structure or sparsity can be exploited in the
design of the preconditioner. The special form of the right-hand-side of (6), and the restriction
to the use of a fundamental basis, eliminates the need for a representation for null(A).

The most obvious setting where our techniques will be of value is when H is sparse (and
m << n). However, there are many practical contexts where H is structured, and not sparse,
and this framework can still be of use. To illustrate, suppose that the Hessian matrix H has the
form, H = GE~'GT, where E is sparse, symmetric, and positive definite; matrix G is sparse
and of full row rank. This structure is common, e.g., [5, 6]. Clearly matrix H is dense due to the

Problem Timing Optim al parms
Problem m n | nnz(A) | backslash | droptl = 0 | droptl=droptl, | droptl. | nnz(Agropti,)
agg 488 | 615 2862 9.70 3.42 1.08 0.200 1250
agg?2 516 758 4740 24.13 8.94 1.47 0.425 1252
agg3 516 | 758 4756 25.33 5.92 1.42 0.450 1241
bandm 305 | 472 2494 5.92 2.64 2.09 0.050 1966
beaconfd 173 | 295 3408 2.49 1.78 0.70 0.375 330
boeingl 351 | 726 3827 22.87 11.49 11.49 0.000 3827
capri 271 496 1965 4.31 2.05 1.94 0.025 1530
etamacro | 400 | 816 2537 16.26 6.99 2.95 0.100 1977
finnis 497 | 1064 2760 17.77 5.45 4.81 0.025 2519
fitld 24 | 1049 13427 12.76 8.69 7.03 0.025 13089
fleql 20 | 1000 3480 15.41 3.35 2.78 0.150 2939
fleq2 50 | 1000 3617 12.37 2.91 2.45 0.025 3525
fleq2a 1217 | 2736 7887 83.89 17.21 12.89 0.300 6566
fleq6 20 920 3214 20.34 4.16 2.47 0.100 2886
fleq8 50 | 1000 2343 8.77 1.97 1.78 0.050 2305
fleq9 358 | 1000 3941 32.72 18.71 15.09 0.100 3564
forplan 161 492 4634 3.48 7.00 2.83 0.100 4167
ganges 1309 | 1706 6937 30.30 11.72 8.59 0.350 3469
growlh 300 | 645 5620 5.56 3.05 1.67 0.175 1119
grow22 440 946 8252 8.57 9.82 2.71 0.400 1387
grow7 140 301 2612 1.61 1.47 0.77 0.125 558
lotfi 153 | 366 1136 2.57 1.84 1.50 0.175 791
pilot4 410 | 1211 7342 31.58 15.66 4.88 0.200 2511
qpleql 50 | 400 1442 2.06 0.98 0.88 0.100 1305
qpleq2a 10 900 2310 5.33 3.22 1.94 0.325 1646
qpleq2b 50 900 3221 11.53 2.00 1.98 0.125 2818
qpleq2c 300 900 4112 10.52 5.34 5.11 0.150 3449
qpleq3 100 | 512 2347 3.99 1.76 1.60 0.100 2077
qpleq6 193 | 900 5779 28.84 15.60 11.83 0.150 3464
qpleq7 358 | 900 3471 28.23 12.82 11.18 0.150 3003
qpleq8 50 | 900 1951 6.81 1.92 1.43 0.150 1899
recipe 91 | 204 687 0.66 0.54 0.43 0.275 568
scagr? 129 | 185 465 0.53 0.50 0.41 0.150 435
scfxm1 330 | 600 2732 4.04 2.61 2.03 0.075 2249
scfxm?2 660 | 1200 5469 11.62 5.07 4.42 0.100 4244
scsdl 77 | 760 2388 6.60 2.06 1.91 0.250 2380
seba 515 | 1036 4360 21.92 5.61 4.85 0.050 4358
sharelb 117 253 1179 1.21 0.94 0.85 0.050 1146
stair 356 620 4021 8.27 4.94 2.23 0.325 1174

Table 2: Preconditioner Results

application of E~! (unless E is very special, e.g., diagonal). Direct preconditioning is a challenge
due to the density of H. However, observe that the Newton step for min,{c”z + %xTH x} can
be written as the solution s to the system,

(e ©)(0)=(2) @

Note that under our original assumptions the matrix in (11) is sparse. With respect to the
RPCG approach to problem (1), it is now easy to see to that in this case the preconditioning
step (6) can be modified: solve,

E GT o v 8
G 0 AT s | = (o) : (12)
0 A 0 u o

where E is a sparse symmetric positive definite approximation to F, Gisa sparse (full row-rank)
approximation to G, A is a sparse (full row-rank) approximation to A. Note that under the
positivity assumption on E, s is the solution to a reduced positive definite system of the form
(4).

This is an example of how our proposed framework can be adapted to structured problems.
A similar approach can be used for the general structures discussed in [5, 6].

Finally, we remark that our position in this paper is to consider a framework for the precon-
ditioning of a conjugate gradient approach to (1). Restriction to conjugate gradient processes
has the advantage that feasible descent directions are always generated - this is particularily
important for nonlinear problems. Another iterative approach to (1) is to consider the (symmet-
ric indefinite) system of equations defining the optimality conditions and to apply symmetric
indefinite iterative techniques, e.g., [8]. We have not considered such methods here.

References

[1] L. Adams and J. Nazareth, Linear and Nonlinear Conjugate Gradient-Related Methods,
SIAM, 1996.

[2] T. F. Coleman, Linearly constrained optimization and projected preconditioned conjugate
gradients, in Proceedings of the Fifth STAM Conference on Applied Linear Algebra, STAM,
Philadelphia, 1994, pp. 118-122.

[3] T.F. Coleman and A. Pothen, The null space problem I: Complexity, STAM J. Alg. & Disc.
Meth., 7 (1987), pp. 527-537.

[4] ——, The null space problem II: Algorithms, SIAM J. Alg. & Disc. Meth., 8 (1987),
pp. 544-563.

[5] T. F. Coleman and A. Verma, Structure and efficient Jacobian calculation, in Computa-
tional Differentiation: Techniques, Applications, and Tools, M. Berz, C. Bischof, G. Corliss,
and A. Griewank, eds., STAM, Philadelphia, Penn., 1996, pp. 149-159.

[6] T. F. Coleman and A. Verma, Structure and efficient Hessian calculation, in Advances in
Nonlinear Programming, Proceedings of the 1996 International Conference on Nonlinear
Programming, Y.-X. Yuan, ed., Kluwer Academic Publishers, 1998.

[7] J. R. Gilbert and M. Heath, Computing a sparse basis for the nullspace, STAM J. Alg. &
Disc. Meth., 8 (1987), pp. 446—459.

[8] P. Gill, W. Murray, D. Ponceleon, and M. Saunders, Preconditioners for indefinite systems
arising in optimization, STAM J. Matrix Anal. Appl., 13 (1992), pp. 292 -311.

[9] J.J.Moré, B. S. Garbow, and K. H. Hillstrom, Testing unconstrained optimization software, 10
ACM Trans. on Math. Software, 7 (1981), pp. 17-41.

[10] S. G. Nash and A. Sofer, Preconditioning of reduced matrices, Tech. Rep. 93-01, Dept. of
Operations Research and Engineering, George Mason University, 1993.

