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ABSTRACT 

       Plant detritus is the primary source of energy in freshwater benthic food webs, and 

the flow of energy from detritus to consumers is largely a function of detritus quality.  

Theory suggests that invasions by nonnative plants can impact consumers by changing 

the quality of the detrital pool, but empirical evidence for this is limited.  Larval 

anurans, an abundant constituent of wetlands, may be particularly responsive to shifts 

in litter quality, as they feed largely on detrital biofilms.  I conducted two experiments 

to evaluate the impacts of nonnative plant litter on larval anurans.  For each 

experiment, I hypothesized that litter quality, including C:N:P, tannin content and 

lignin content, would determine the number of tadpoles that completed 

metamorphosis, as well as the productivity, or aggregate mass, of those metamorphs.  

First, I conducted a field experiment involving four native and five nonnative plant 

species at five different wetland complexes in central New York.  I installed field 

cages in sites dominated by a single species of each plant and added three tadpole 

species according to their natural phenology.  I monitored cages regularly, collecting 

and weighing all metamorphosed individuals as they became available.  I observed 

unique interactions between plant and amphibian species, largely driven by the 

response of larval anurans to plant traits (e.g. sensitivity to plant phenolics).  

Importantly, my data shows that tadpole performance did not differ in habitats 

dominated by native or nonnative plants, largely because there are no consistent 

differences in native and nonnative litter quality.  However, my findings do show that 

plant traits, irrespective of plant origin, do affect tadpole performance.  For my second 

experiment, I raised tadpoles in experimental mesocosms containing an algal slurry 

and litter from 15 populations of a single nonnative species, Phalaris arundinacea L. 

(reed canarygrass), that varies widely in litter quality.  I observed significant 

differences in tadpole performance among P. arundinacea populations, and found that 



 

 

litter traits explain a significant portion of the observed variation in tadpole 

productivity.  Increases in P. arundinacea C:P had a negative impact on tadpole 

performance, while increases in plant phenolics had a positive effect. Overall, my 

work shows that variation in litter quality, both between and within species, influences 

secondary productivity in these experimental communities.  This suggests that 

functional traits, irrespective of species origin or identity, can have important 

consequences for ecosystem function.   
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CHAPTER 1 

PLANT TRAITS, NOT ORIGIN, PREDICT IMPACTS OF PLANTS ON LARVAL 

AMPHIBIANS 

 

Abstract 

Plant detritus is the dominant basal resource in freshwater benthic food webs.  

The rate of energy flow and nutrient release to consumers is largely a function of 

detritus quality.  It is hypothesized that one way plant invasions could alter native food 

webs is by changing the compositional quality of the detrital pool; however, empirical 

evidence to support this hypothesis is limited and strictly experimental.  Here, I report 

the results of a field study of relationships between nine emergent wetland plant 

species and the performance of a mixed community of three amphibian species.  I 

examined how litter quality (%N, C:N, and phenolic content) of native and nonnative 

plants was related to tadpole performance.  I installed field cages in sites dominated by 

a single species of each plant and added tadpoles of three common species, then 

monitored cages for environmental parameters (temperature, dissolved oxygen, and 

pH) and recorded the number of days that a cage held at least 2 cm of water 

(hydroperiod).  I collected and weighed all metamorphosed individuals as they became 

available.  I used linear and logistical regression analyses to test for the effects of plant 

litter quality and environmental parameters on larval performance, then used Aikaike’s 

information criterion (AIC) to select the top models.  I also used analyses of variance 

to compare larval performance in sites dominated by native and nonnative plants.   

I found that hydroperiod, C:N, phenolic content, and temperature were 

significant in many of our top models for larval performance.   I observed unique 
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interactions between species, largely driven by the response of larval anurans to plant 

traits (e.g. sensitivity to plant phenolics).  Importantly, my data shows that tadpole 

performance did not differ in habitats dominated by native or nonnative plants.  

Rather, my findings suggest that plant traits, irrespective of plant origin, determine 

larval amphibian performance.   

 

Introduction 

Senesced plant matter is the primary source of energy supporting food webs in 

freshwater ecosystems (Wetzel 1995, Wallace et al. 1999).  Detrital subsidies can vary 

greatly in both quality and quantity, influencing the release of energy and nutrients 

and ultimately affecting the performance of aquatic heterotrophs (Cebrian and 

Lartigue 2004, Moore et al. 2004).  Plant invasions have the potential to alter native 

community composition and affect ecosystem processes.  Few studies have identified 

the mechanisms underlying impacts of plant invasions (Levine et al. 2003), 

particularly impacts at higher trophic levels (Gerber et al. 2008).  If plant invasions 

change characteristics of detritus inputs, they may support different heterotroph 

communities (Rubbo and Kiesecker 2004, Levin et al. 2006, Maerz et al., in review) in 

freshwater ecosystems.  Plant traits, including percent nitrogen, C:N ratio, and 

phenolic concentrations predict rates of plant decomposition across a variety of taxa 

(Webster and Benfield 1986, Ostrofsky 1997).  If nonnative plants possess different 

traits than native species they replace, and hence exhibit different rates of 

decomposition, we would expect bottom-up changes to the flow of energy to aquatic 

consumers.     

 Larval amphibians are a dominant group of aquatic consumers in many 

freshwater ecosystems (Alford 1999).  The larvae of anurans in northeastern North 

America are generally opportunistic benthic omnivores, preferentially grazing on 
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detrital biofilms that include algae, fungi, and bacteria.  They will also consume 

detritus itself or filter suspended phytoplankton (Alford 1999).  Until recently, little 

attention was paid to the role of shifts in plant detritus in tadpole development and 

community dynamics (Maerz et al. in review).  Several mesocosm studies show that 

larval amphibian performance is strongly influenced by plant detritus (Schiesari 2006, 

Rubbo et al. 2008, Williams et al. 2008).  In particular, litter species composition 

(Williams et al. 2008) and biomass (Rubbo et al. 2008) determine the strength of 

bottom-up effects on amphibian performance.  The rate of plant decomposition 

influences the flow of energy to the biofilms that tadpoles graze, which in turn affects 

tadpole development rate and mass at metamorphosis (Williams et al. 2008).    

Experimental evidence indicates that specific plant invasions can negatively 

impact tadpoles.  Anaxyrus americanus Holbrook (American toad, formerly Bufo 

americanus) tadpoles raised in mesocosms with nonnative Lythrum salicaria L. 

(purple loosestrife) extract showed reduced survivorship and developmental rates 

compared to conspecifics raised in native Typha latifolia L. (broadleaf cattail) extract 

(Maerz et al. 2005, Brown et al. 2006).  The authors suggest that the high phenolic 

content in L. salicaria leachate damaged tadpole gills.  Maerz et al. (in review) raised 

five species of tadpoles in mesocosms containing litter from three native and three 

nonnative wetland plant species.  They found that total metamorph productivity 

(biomass) and richness were negatively correlated with litter C:N.  Further, they 

observed higher C:N in nonnative plants, suggesting that nonnative plants generally 

have lower litter quality compared to native species.  Each of these experiments 

provides evidence that plant invasions negatively affect tadpoles by altering litter 

quality (phenolics and C:N); however, each was conducted under highly controlled 

conditions.  A field experiment that exposes larval anurans to native and nonnative 

plant species across many sites would allow me to test the hypothesis that plant origin 
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affects habitat quality for these animals.  Specifically, if nonnative plant litter differs 

in phenolic content and C:N compared to native species, I would expect to see changes 

in tadpole development.  

Here, I studied larval performance of three amphibian species in habitats 

dominated by native or nonnative plants at five wetland complexes in central New 

York.  I explored potential mechanisms by which plant invasions impact aquatic 

communities by examining differences between native and nonnative plant chemistry 

and how that relates to water chemistry, algal productivity, and larval amphibian 

performance. I hypothesized that nonnative plant species produce lower quality litter 

compared to native plant species, and would therefore reduce tadpole performance.  

My specific hypotheses were: 

1. As litter %N increases, amphibian performance will increase. 

2. As litter C:N and phenolic content increase, amphibian performance will 

decrease.  

 

Methods 

I established experimental sites in central and western New York at the 

Montezuma, Oak Orchard, and Tonawanda Wildlife Management Areas, the Iroquois 

National Wildlife Refuge, and the Cornell University Experimental Pond facility.  

Each site was dominated by either a single native or nonnative emergent plant.  I 

included the nonnative L. salicaria and the native Decodon verticallatus L. (swamp 

loosestrife), two members of the Lythraceae. I also located sites in native T. latifolia, 

nonnative T. angustifolia L. (narrowleaf cattail), and their hybrid, T. X glauca.  I also 

included the nonnative Phalaris arundinacea L. (reed canary grass) and Phragmites 

australis Type M (common reed), and the native Sparganium eurycarpum Engelm. 
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(broadfruit bur-reed) and Schoenoplectus taebernaemontani Gmel. (soft-stem bulrush) 

in my experiment.   

On 2 May 2007 I collected four Lithobates sylvaticus LeConte (wood frog, 

formerly Rana sylvatica) egg masses at Montezuma.  I placed eggs in plastic bags with 

water, then into coolers, and transported them back to the Resource Ecology and 

Management (REM) Facility at Cornell University.  I placed egg clutches in individual 

10 L plastic containers with coarsely filtered pond water, covered them with mesh, and 

then floated them in a small outdoor pond.  I exchanged water in the containers every 

other day until eggs began to hatch approximately one week later.  Eggs and tadpoles 

remained in floating containers until tadpoles from all clutches reached the free-

swimming stage (stage 25, Gosner 1960).  To homogenize genetic influences, I placed 

eight tadpoles from four different clutches (n = 32) into 250 mL plastic containers 

containing fresh pond water.  I then placed containers in a cooler to be transported to 

the field sites.  From 7-10 May 2007 I collected seven egg clutches of L. palustris 

LeConte (pickerel frog, formerly Rana palustris) eggs at the Arnot Teaching and 

Research Forest in Van Etten, NY and five clutches of A. americanus eggs in 

Richford, NY.  I maintained them as described for the L. sylvaticus tadpoles.    

I installed field cages (Reptarium™ 65 gallon [41 x 75 x 70 cm], Dallas MFG 

Co. Dallas, Texas) in wetland sites between 19 and 20 May 2007.  Cages were made 

of nylon mesh (2 mm) to allow free flow of water, algae, and zooplankton.  I placed 

cages in areas of dense monospecific vegetation in at least 35 cm deep water.  

Occasionally, I manually cleared plants to allow room for cage placement.  I added 

dry senescent vegetation of the focal species (volume filling a 4 L plastic bag) to each 

cage.  I recorded water temperature, dissolved oxygen, and pH using a YSI 556 MPS 

(YSI Environmental, Yellow Springs, OH) before adding all L. sylvaticus tadpoles 
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from a single container to each cage.  Between 5 June and 13 June 2007, I added 32 L. 

palustris and 64 A. americanus tadpoles at Gosner stage 25 to each cage.  

I monitored cages every other week following installation.  At each sampling 

date I measured temperature, conductivity, dissolved oxygen, pH, and salinity.  I also 

measured water depth from the bottom of the cage to the water line at each corner of 

the cage.  I used 10 standardized sweep net samples (using a 15 cm fish net) to tally 

the number of surviving tadpoles of each species.  Water samples (1 L) were taken 

from each cage from 19-23 June and 26-28 August to obtain measurements of algal 

abundance and aqueous phenolics.  Each water sample was immediately passed 

through a 53 µm mesh filter in the field.  The filtrate was preserved on ice, then taken 

back to the lab and passed through a 0.7 µm Whatman GF/F filter to collect 

phytoplankton.  Each filter was placed in a small desiccator and kept frozen for 

analysis of chlorophyll-α (algal abundance).  I also froze 12.5 mL of the filtrate from 

this process to analyze for phenolic concentration.  In December 2007 I extracted 

chlorophyll-α from the filters following Wetzel and Likens (2000).  At this time I also 

performed a colorimeteric analysis of phenolics on the filtrate by adding a Folin 

phenol reagent (Sigma-Aldrich, St Louis, MO, USA) to reduce active phenolics, then 

adding a pre-made Folin-Ciocalteu solution to determine sample concentration 

compared to a phenol standard (Clesceri and Eaton 1998).    

I observed metamorphic tadpoles (legs and arms erupted, stage 42, Gosner 

1960) of A. americanus and L. sylvaticus beginning on 17 June 2007, while L. 

palustris metamorphs first appeared on 25 June.  From this time on I visited each cage 

on a three day rotation and collected all tadpoles Gosner stage 42 and higher and 

transported them back to Cornell University to be weighed.  I placed metamorphs in 

250 mL plastic containers outfitted with several air holes and a moist paper towel.  I 

held metamorphs in these containers until they fully absorbed their tales (1-4 days), at 
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which time I weighed and measured their snout-vent length (SVL).  Roughly 85% of 

metamorphs survived this process.  Those that did not were preserved in ethanol in 50 

mL plastic tubes and their SVL measured.  I used the SVL of each preserved 

metamorph to estimate mass at metamorphosis by taking the mean mass of all live 

conspecifics with the same SVL.  These estimates were then factored into our 

comparisons of total metamorph productivity per cage and proportion surviving to 

metamorphosis in each cage.   I calculated metamorph productivity for each cage by 

summing the mass of all metamorphs produced by that cage. 

From 20 October through 11 November 2007 I returned to cage locations and 

randomly sampled all emergent biomass within three replicate 30 x 30 cm quadrats.  

By this date all plants at my sites had senesced.  I then stored the material in paper 

bags in a greenhouse for several weeks to dry.  Some samples were lost during a flood 

of our storage facility; however, the loss was random across plant species and sites, so 

it did not significantly impact my analyses.  In December 2007 I created aqueous 

extracts, or ‘tea’ from senescent leaves from each sample to measure leaf phenolics.  

To make tea, I submerged 2 g of leaf litter in 1 L of distilled water for 48 hours, 

stirring occasionally to ensure that leaf material remained submerged.  I then removed 

leaf material and measured aqueous phenolics as outlined above.  The remaining leaf 

litter was ground to less than 1mm thickness using a ball mill in December 2007.   I 

then weighed out 3 mg of material for each sample and submitted it to the University 

of Georgia Institute of Ecology Soil, Water, and Plant Stable Isotope Facility for 

analysis of total C, total N, and C:N.   

To test the hypothesis that cages in wetlands dominated by nonnative plants 

supported less amphibian metamorph productivity and a lower percentage of larvae 

reaching metamorphosis, I used nested analyses of variance (ANOVA) with plant 

species nested within plant origin (native or nonnative).   To understand the 
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environmental parameters impacting the performance of each amphibian species I 

used a two stage analysis.  I used an information theoretic approach to determine (1) 

which logistic regression models best explained whether an anuran species could 

metamorphose within a cage, (2) which linear regression models best explained the 

percentage of larvae that metamorphosed at sites where species successfully 

metamorphosed, and (3) which linear regression models best explained the 

productivity of anuran metamorphs produced at a site. I used Akaike’s Information 

Criterion (AIC) to compare potential models.  I used mean substitution to handle 

missing data, and data were log transformed when necessary to meet the assumption 

of normality. 

Variables of interest included environmental parameters known to impact 

larval amphibian performance, including hydroperiod (number of days after cage 

installation a site held water), mean June water temperature, mean July water 

temperature, mean June dissolved oxygen (%) and mean July dissolved oxygen (%).  I 

also included variables suspected to influence performance, such as reactive phenolic 

concentration in June water samples, chlorophyll-α  content in June water samples, 

plant biomass (detrital inputs g/m
2
), senescent leaf C:N, % senescent leaf phenolics 

(log transformed), N inputs from plant litter (g/m
2
, log transformed), and soluble 

reactive phenolic inputs from plant litter (g/m
2
, log transformed). 

 

Results 

There was no measurable difference in metamorph productivity (total g 

metamorphs) between habitats dominated by native or nonnative plant species (Origin: 

F1, 52= 0.173, P = 0.679), nor was there significant variation in metamorph 

productivity among native or nonnative plant species (plant species [nested within 

origin]: F7, 52= 0.902, P = 0.512).  There were 17 linear regression models predicting 
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metamorph productivity within 2 AIC that warranted consideration as the possible best 

model (Burnham and Anderson 2002).  All 17 top models included hydroperiod and 

mean July dissolved oxygen level as factors.  Sixteen models also included mean June 

water temperature.  Twelve top models included the amount of plant biomass, eight 

included detrital phenolic inputs, seven included plant phenolic concentrations, six 

included plant C:N, and six included detrital N inputs as variables.  Eleven top models 

included phenolic concentrations in June water samples, and four included 

chlorophyll-α concentration in June water samples as variables.  The number of days 

with water, leaf phenolic concentrations, mean June water temperature, and mean July 

dissolved oxygen level were significant variables, based on Wald’s statistic (α = 0.05).  

Plant C:N and detrital phenolic inputs were also marginally significant based on 

Wald’s statistic, (α = 0.1).  

The top model for predicting total metamorph productivity included 

hydroperiod, phenolic concentration in June water sample, plant detrital biomass, 

mean June water temperature, and mean July dissolved oxygen level.  This model 

explained ~47% of the variation in total metamorph productivity (multiple regression: 

adjusted r
2
 = 0.472, SE of estimate = 0.939).  Only hydroperiod, June water 

temperature and July dissolved oxygen levels were significantly correlated with 

anuran metamorph productivity.  Hydroperiod was positively correlated with 

metamorph productivity, as was June water temperature.  July dissolved oxygen levels 

were negatively correlated with metamorph productivity.  Hydroperiod was significant 

in all top linear regression models of metamorph productivity.   

There was a significant difference in the composition of metamorph 

communities between habitats dominated by native and nonnative plants (Origin, 

Table 1-1, P = 0.002).  The effect of plant origin was mostly driven by the 
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Table 1-1. Wilk’s tests for the effect of origin (native or nonnative) on amphibian 

larval communities in habitats dominated by either nonnative or native plants.  

  

 

Value F Effect df 
Error 

df 
P 

Intercept 
0.289 40.950 3.000 50.000 0.000 

Plant (Origin) 
0.590 1.387 21.000 144.123 0.134 

Origin 
0.750 5.565 3.000 50.000 0.002 
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Figure. 1-1.  The percentage of larval amphibians of each species that survived to 

metamorphosis in cages in wetlands dominated by five nonnative and four native plant 

species. Plant codes: Paus=Phragmites australis (M); Tang=Typha angustifolia; 

Tgla=Typha glauca; Paru=Phalaris arundinacea; Lsal=Lythrum salicaria; Tlat=Typha 

latifolia; Dver=Decodon verticillatus; Seur=Sparganium eurycarpum; 

Stab=Schoenoplectus tabernaemontani. 
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number of metamorphosing L. palustris in habitats dominated by nonnative plants.  

Otherwise, there was no measurable difference in the percent metamorphosed of any 

species among native or nonnative plant species (plant species term nested within 

origin, Table 1, P = 0.134, Figure. 1-1). 

The differences in percentage of metamorphs produced for each species 

indicated that there were two questions that needed to be addressed: (1) what factors 

predict whether a species can metamorphose in a particular habitat, and (2) among 

sites where metamorphosis was possible, what factors explain the variation in percent 

metamorphosed?  There were 17 models within two AIC for predicting whether A. 

americanus metamorphosed at a site.  All top models included the concentration of 

phenolics in June water samples, concentration of soluble phenolics in plant leaves, 

and mean July water temperature as variables.  Ten models included June dissolved 

oxygen as a variable, and 12 and six models also included detrital inputs of N and 

phenolics as variables, respectively.  Few other variables were regular constituents of 

top models.  The top model for A. americanus, which included June aqueous 

phenolics, plant litter phenolic concentrations, plant litter N inputs, mean July water 

temperature and mean June dissolved oxygen levels, explained 28% of the variation in 

whether A. americanus metamorphosed.  June water phenolics and mean July water 

temperature were significant variables in the model, and were positively correlated 

with the probability that A. americanus would metamorphose.  Leaf phenolic 

concentration was also a significant variable and negatively correlated with whether A. 

americanus would metamorphose (Figure. 1-2). 

There were 26 and 9 models within two AIC for predicting whether a habitat 

produced a L. sylvaticus or L. palustris metamorph, respectively.  For both species, all 

top models included hydroperiod as a variable.  Using Wald statistics I determined 

that the number of days with water was the only variable significantly, independently  
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Figure. 1-2.   The probability that a cage produced at least one A. americanus 

metamorph as a function of leaf phenolics in the plant surrounding the cage. 
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correlated with the probability that L. sylvaticus or L. palustris would metamorphose 

at a site.  For both species, hydroperiod explained ~80% of the variation whether the 

species metamorphosed at a site.  For L. sylvaticus the effect of hydroperiod was more 

graded (Figure. 1-3).  That is, L. sylvaticus tadpoles required ~ 40 days of water 

minimum to metamorphose, but beyond 40 days, there was still variation in whether 

the site would support metamorphosis even if the site never dried.  This suggests other 

factors also affect whether L. sylvaticus tadpoles metamorphosed at a site.  In contrast, 

L. palustris tadpoles did not metamorphose at any site that held water for less than 50 

days; however, nearly all sites that held water longer than 50 days produced L. 

palustris metamorphs.  For both species, all top models also included leaf phenolic 

concentrations as a variable.  For L. sylvaticus 25 of 26 top models also included plant 

C:N, 18 included mean July water temperature, 10 included detrital phenolic inputs, 

six included June chlorophyll-α  concentration, five included water phenolic 

concentration in June, three included mean July dissolved oxygen, two included plant 

litter biomass, two included June dissolved oxygen, and one included mean June water 

temperature.  For L. palustris, nine of nine top models included phenolic 

concentrations in June water samples, plant litter biomass, and mean July dissolved 

oxygen level.  Eight models included June chlorophyll-α concentration and mean June 

water temperature.  Few other variables were regular constituents of top models. 

Logistic regression showed that the top model for predicting whether L. 

sylvaticus metamorphosed, which included number of days with water, litter C:N and 

phenolic concentrations, and July water temperature, explained 48 % of the variation.  

Two variables, days with water and plant C:N, were significant in that model. Beta (β) 

values for the two variables show that days with water was positively correlated with 

the probability of producing a metamorph, and plant C:N was negatively correlated.  

The top model for L. palustris, which included number of days with water, phenolic  
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Figure. 1-3.   The probability that a cage produced at least one A. americanus, L. 

sylvaticus, and L. palustris  metamorph as a function of hydroperiod.  The size of the 

circle represents the variance around the estimate.   
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and chlorophyll-α  concentrations in June water samples, plant litter biomass, mean 

July water temperature and mean June dissolved oxygen levels, explained 57% of the 

variation in whether the species metamorphosed at a site.  Days with water, June water 

phenolics, and plant litter biomass were all significant variables.  Days with water and 

plant litter biomass were positively correlated with the probability that L. palustris 

would metamorphose, and June water phenolics were negatively correlated. 

For A. americanus, there were five linear regression models for predicting the 

percentage of larvae that metamorphosed within 2 AIC, all of which included June 

chlorophyll-α  levels, plant litter phenolic concentration, plant litter C:N, plant litter 

biomass, N and phenolic inputs from litter, and mean June and July water 

temperatures as variables.  The top model explained 48% of the variation in percent of 

A. americanus larvae that metamorphosed.  June chlorophyll-α, plant litter C:N, plant 

litter biomass, nitrogen inputs from litter, and mean June and July water temperatures 

were all significant variables in that model.  Plant litter biomass and mean June 

temperature were positively correlated with percentage of A. americanus tadpoles that 

metamorphosed, while plant litter C:N, detrital nitrogen inputs, and June chlorophyll-α  

levels were negatively correlated with the percentage of A. americanus tadpoles that 

metamorphosed.  Leaf phenolic concentrations were not significantly correlated with 

the percentage of A. americanus tadpoles that metamorphosed, but this variable was 

positively correlated with N inputs.  The negative relationship between A. americanus 

survival and N inputs may have reflected the negative effects of phenolics. 

For L. sylvaticus there were 17 models within 2 AIC, all of which included 

June chlorophyll-α  levels and mean July water temperature as variables.  Thirteen of 

the top models also included plant litter C:N, 12 models included N, and four included 

phenolic inputs from litter  as variables.  A few other variables appeared in one of the 

top models.  The top model, which included June chlorophyll-α , plant C:N, estimated 
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N input from plant litter, and mean July temperature as variables, explained only 16% 

of the variation in percent of L. sylvaticus larvae that metamorphosed.  Plant litter C:N 

and mean July water temperatures were the only  significant variables in that model, 

and both were negatively correlated with the percentage of L. sylvaticus tadpoles that 

metamorphosed. 

For L. palustris there were 27 models within 2 AIC.  Twenty-three models 

included mean July water temperature as a variable, and 22 models included the 

amount of plant litter biomass as a variable, or the amount of phenolic inputs from 

plant litter as variables.   Several other variables included mean July dissolved oxygen 

level, June chlorophyll-α  levels, days with water, and June water phenolic levels all 

frequently (x < 25%) appeared in the top models.  The top model, which included June 

chlorophyll-α, plant litter biomass, estimated phenolic inputs from litter, and mean 

July water temperature, explained only 25% of the variation in percent of L. palustris 

larvae that metamorphosed.  Plant litter and estimated phenolic inputs from plant litter 

were the only two significant variables in that model.  Plant litter biomass was 

negatively correlated and phenolic inputs from litter were positively correlated with 

the percent of L. palustris tadpoles that metamorphosed. 

 

Discussion 

My results indicate that plant traits, rather than plant origin, are useful for 

predicting larval amphibian survival and development in freshwater habitats.  I 

predicted that nonnative plants would show reduced litter quality (higher C:N and 

phenolic content) and would support reduced algal productivity, with associated 

decreases in larval amphibian performance.  There is no measurable difference in plant 

chemistry or tadpole performance in habitats dominated by native versus nonnative 

plants; however, variation in plant traits, including biomass production, C:N, and 
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phenolics, are associated with altered tadpole performance.  For example, increased 

plant biomass tends to improve larval performance for A. americanus and L. 

sylvaticus, while increased C:N and phenolic concentrations reduced larval 

performance for those species.  

Hydrology was the most significant predictor of whether L. sylvaticus and L. 

palustris would successfully metamorphose at a site; however, hydrology was not 

generally important for determining A. americanus success.  Anaxyrus americanus 

tadpoles are known for their rapid development and exploitation of ephemeral 

breeding sites (Alford 1999).  Lithobates sylvaticus take longer to develop than A. 

americanus, but exhibit more rapid development that L. palustris.  Therefore L. 

sylvaticus were affected by hydroperiod, but less so than L. palustris.  The effects of 

hydroperiod were not even across plant species.  For example, 75% of P. arundinacea 

cages dried out, while none of the T. angustifolia cages were lost.   Our experimental 

design does not allow us to evaluate whether plant species cause water levels to recede 

(e.g. by taking water up into plant tissues) or whether those species simply occupy 

areas where water recedes rapidly.   

Several results from this study are consistent with previous research.  The 

percent N and C:N of litter influenced the performance of A. americanus and L. 

sylvaticus tadpoles.  Generally, as percent N increased, or C:N decreased, larval 

amphibian performance increased.  This supports my hypothesis that as litter quality 

increased larval amphibian production and survival would improve.  It also agrees 

with work by Schiesari (2006) and Maerz et al. (in review), who demonstrated that 

food nutritional quality (C:N) substantially increased growth in tadpoles.   Similar to 

Maerz et al (2005) and Brown et al (2006), I observed that A. americanus performance 

in nonnative  L. salicaria was very poor (mean % metamorphosed < 5%).   It is 

important to note that A. americanus also performed very poorly in habitat dominated 
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by the native D. verticillatus.  Both L. salicaria and D. verticillatus were very high in 

soluble phenolics, and my results show that leaf phenolic concentration was a 

significant predictor of whether A. americanus larvae could survive to metamorphosis.  

My results demonstrate that the case study with L. salicaria was not generally 

indicative of all nonnative plants.  Rather, it was a result of choosing a plant species 

rich in phenolics, which have a demonstrated negative effect on A. americanus 

performance.  I observed the same result with a native loosestrife with similar traits.  

Our results underscore the importance of understanding the mechanisms behind the 

ecological impacts of nonnative species. 

Understanding the ecological impacts of plant traits, not just plant species, will 

improve our ability to predict community responses to invasions and can better inform 

management decisions.   Managers concerned with preserving amphibian habitat could 

use the information from this study to make decisions about where to allocate 

resources for managing plant invasions.  Consider the current scenario at Montezuma, 

where populations of nonnative T. angustifolia are invading stands of native T. 

latifolia (B. Blossey, pers. obs.).  My research suggests that these species are 

equivalent habitat for amphibian larvae, so we would not expect changes to amphibian 

populations.  In other areas of the refuge, nonnative P. australis Type M is replacing 

T. angustifolia (B. Blossey, pers. obs).  Here we would anticipate reduced 

performance of A. americanus and L. sylvatica, since P. australis Type M litter is off 

lesser quality than T. angustifolia.   If managers relied on origin to predict which 

invasion was harmful to amphibians, they would devote resources to the first case, 

where a nonnative plant is replacing a native species, rather than the second case, 

where a nonnative plant is replacing another nonnative species.  However, based on 

my trait data, I would recommend that managers focus their attention on the second 

case and prevent the spread of P. australis Type M.  This trait-based framework can 
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help managers reconcile the desire to control nonnative plants with other goals, such 

as protecting wildlife habitat.   

I observed unique species-specific interactions between amphibians and plants, 

suggesting that wetlands characterized by a ‘mosaic’ of plant species with different 

traits will host the greatest amphibian diversity and productivity.  Plant traits created 

habitats that favored certain species over others.  For example, L. palustris showed 

high survival in habitats dominated by phenolic-rich species, such as the native and 

nonnative loosestrife, while A. americanus and L. sylvaticus had much lower survival 

at those sites.  Conversely, both A. americanus and L. sylvaticus fared better than L. 

palustris in species with low phenolic content, such as S. taebernaemontani and T. 

latifolia.  While the origin of a plant matters less than the traits it exhibits, plant 

invasions still have the potential to impact amphibian populations.  A plant invasion 

could replace the desired mosaic pattern of plant species with a monoculture, reducing 

not just species diversity, but more importantly, reducing ‘trait’ diversity.
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CHAPTER 2 

 

INTRASPECIFIC VARIATION IN PLANT LITTER CHEMISTRY DRIVES 

AMPHIBIAN PRODUCTIVITY IN EXPERIMENTAL MESOCOSMS 

 

Abstract 

Functional traits link individuals to ecosystem processes.  Functional traits of 

live plants influence direct plant-animal interactions, particularly the productivity of 

insect herbivores.  However, many plant-animal interactions are indirect, as when 

senesced plant material supports animal productivity by sustaining the primary 

producers that animals feed on.  Experimental evidence for a link between functional 

traits of senesced plants and animal productivity is lacking.   I raised tadpoles in 

experimental mesocosms containing an algal slurry and litter from 15 populations of a 

single species, Phalaris arundinacea L. (reed canarygrass), that varied widely in litter 

chemistry.  Tadpoles are dominant consumers in many freshwater ecosystems, feeding 

largely on detritus, detrital biofilms, and suspended algae.  I hypothesized that litter 

functional traits, including C:N:P, tannin, and lignin content, would determine the 

flow of energy to, and hence productivity of, tadpoles in this simplified community.   

I find that litter traits, including C:N:P and tannin content, explain a significant 

portion of the variation I observed in tadpole productivity.  Increases in tannin content 

and N:P were associated with improved larval performance, while increases in C:P 

had negative impacts.   I observed no association between litter lignin content or 

phytoplankton abundance and tadpole productivity.  This study demonstrates the 

influence of litter functional traits on secondary productivity in detritus-based food 

webs.  My work adds to a growing body of evidence that intraspecific variation in 

functional traits can have important consequences for ecosystem function, and that 
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functional traits, rather than species per se, are useful for understanding ecosystem 

processes.   

 

Introduction 

Plants display immense genetic variability and phenotypic plasticity in their 

elemental composition (Aerts & Chapin 2000) and defense chemistry (Poelman, van 

Loon & Dicke 2008), resulting in dynamic interactions of plants with their herbivores 

and higher trophic levels (Kessler & Baldwin 2001; Halitschke et al. 2008). The 

nutritional quality of plants is generally expressed as the ratio of C:N:P in plant tissue 

(Sterner & Elser 2002), with lower C:N:P tissues considered higher quality resources 

for consumers.  While increases in N and P in plant tissues may positively impact 

plant function, it also increases their attractiveness to herbivores, resulting in the 

development of mechanical and chemical defense mechanisms (Herms & Mattson 

1992; Stamp 2003; Stamp 2004). Concentrations of nutrients (Thompson et al. 1997; 

Aerts & Chapin 2000) and secondary compounds (Castells et al. 2002; Kraus, Zasoski 

& Dahlgren 2004; Nyman et al. 2005; Kaplan et al. 2008; Lacerf & Chauvet 2008) 

can vary greatly within a species.  This variation may be driven by abiotic factors, 

such as soil pH (Kraus, Zasoski & Dahlgren 2004), or biotic factors, such as the 

intensity of insect herbivory (Kaplan et al. 2008).   

The same traits that determine palatability to herbivores are also recognized as 

the principal determinant of how quickly decomposer organisms consume senesced 

plant tissues (Webster & Benfield 1986; Enriquez et al. 1993; Ostrofsky 1997; 

Cornwell et al. 2008).  Not surprisingly, correlations have been observed between leaf 

palatability and decomposition rate in a variety of ecosystems (Schadler et al. 2003; 

Chapman et al. 2003, Cornelissen et al. 2004; Kurokawa &Nakashizuka 2008; 

Palkova & Leps 2008). Further, experimental evidence shows that intraspecific 
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variation in C:N:P, tannins, and lignin causes variation in decomposition rate 

comparable to the variation observed between species (Epps et al. 2007; Meir & 

Bowman 2008).  Thus intraspecific variation in plant chemistry directly affects 

organisms that consume plant tissue, regardless of whether tissues are green or 

senesced.   

Effects of intraspecific variation in litter chemistry have received relatively 

little attention (Moore et al. 2004), despite their major importance for energy flows, 

particularly in freshwater benthic communities (Hairston & Hairston 1993; Wetzel 

1995; Wallace et al. 1999). Given the strong relationship between senesced leaf 

chemistry and decomposition rate, variations in litter chemistry are expected to 

cascade through detritus-based food webs.  For example, decreases in litter tannin 

concentrations are expected to increase the rate of litter decomposition, thereby 

increasing decomposer productivity, resulting in increased food availability for species 

feeding on decomposers.  Despite strong theoretical evidence for such multitrophic 

impacts of litter chemistry, experimental evidence for these effects is lacking (Moore 

et al. 2004).   

Benthic tadpoles, as generalist ‘biofilm grazers’ that consume fungi, bacteria 

and algae that colonize plant litter, the plant litter itself, as well as phytoplankton in 

the water column (Alford 1999), are ideally suited to assess the role of litter chemistry 

in structuring aquatic communities.  Laboratory and field experiments to assess the 

influence of different native and introduced plant species on tadpole performance 

(Cohen Chapter 1, Maerz et al. in review), demonstrated that specific plant qualities 

were important factors determining tadpole performance in aquatic habitats. In 

addition to the differences among plant species, our experiments revealed large 

intraspecific variation in litter chemistry of Phalaris arundinacea L. (reed 

canarygrass), which resulted in variable tadpole performance (Cohen Chapter 1). 



 

27 

Tadpole performance was positively correlated with N, and negatively correlated with 

tannins and lignin concentrations of P. arundinacea.   

In the experiment described below, I further examined potential bottom-up 

effects of litter chemistry on detrital food webs by assembling experimental outdoor 

mesocosms using 15 P. arundinacea populations that varied in litter chemistry.  While 

site history, predation, hydroperiod, landscape context, and other factors are of 

importance in determining local tadpole performance, creating simplified pond 

communities containing litter, pond slurry, and tadpoles allowed me to focus on the 

effects of litter chemistry.  My work was guided by the following hypotheses: 

 

Hypothesis 1: P. arundinacea populations differ in litter chemistry. 

Hypothesis 2: Tadpole performance will be affected by litter from different P. 

arundinacea populations.  

Hypothesis 3:  Metamorph abundance, individual mass at metamorphosis (g), and 

total amphibian productivity (g) will increase as C:N:P, tannin, and lignin 

concentrations in P. arundinacea litter decrease.  

Hypothesis 4: Length of larval period will decrease as C:N:P, tannin, and lignin 

concentrations in P. arundinacea litter decrease.  

 

Methods 

In early May 2008, I established a ‘common garden’ consisting of 150 

mesocosms (100L tree pots, BFG supply, Lancaster NY) at the Cornell Resource 

Ecology and Management (REM) Facility in Ithaca, NY.  I evenly spaced mesocosms 

in four rows on an open, level area that was covered with wood chips to reduce weed 

growth. I placed two screen-covered overflow pvc pipes (2·5 cm diameter) at the 80 L 

level in each mesocosm to allow excess rainwater to drain.  I labeled each mesocosm 
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and covered it with a screen (5 mm mesh) to prevent colonization by other aquatic 

organisms. I filled each pot with 80 L of tap water on 13 May 2008 and allowed water 

to age for 3 days before adding P. arundinacea litter. 

I collected senesced P. arundinacea litter in February 2008 at 15 different sites 

in New York State (Table 2-1) by clipping emergent material (leaves and stems) from 

several monospecific patches at each site (total approx 5 m
2
). I kept litter from 

different sites in separate mesh bags and air-dried the material in a greenhouse under 

ambient temperature (15-30 °C). For each collection location, I prepared 10 bags of 

litter, each with 65 g (representing a typical amount of P. arundinacea litter produced 

in 0·25 m
2
, the surface area of our mesocosms, in the field. J. Cohen, unpubl data). I 

randomly assigned each bag to one of the 150 different pots.  I also prepared four 

random samples of 3 g of ground material (< 1 mm) from each site.  I submitted three 

samples per population to the Cornell Nutrient Analysis Laboratory for C and N 

analysis, and one to Dairy One, Ithaca, NY for P and lignin analysis.   

I added litter to mesocosms on 13 May 2008.  On 14 May 2008 I collected 100 

L of pond slurry from a shallow pond containing a well-established P. arundinacea 

stand at the Cornell Experimental Pond Facility in Ithaca, NY.  I filtered the pond 

water through 80 µm mesh, removing all organisms except for algae and microbes.  I 

continuously homogenized the resulting slurry and added 0·5 L of the mixture to each 

mesocosm.  

On 9 May 2008, I collected eight Lithobates palustris LeConte (formerly Rana 

palustris, pickerel frog) egg masses (approx. 500-1,000 eggs per mass) from a pond 

largely surrounded by P. arundinacea at the Arnot Teaching and Research Forest in 

Van Etten, NY. I maintained individual egg masses in pond water in 10 L plastic 

containers covered with mesh floating in a small, shaded, outdoor pond.  I changed 

pond water in the containers every other day until eggs began to hatch on 18 May  
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Table 2-1. Phalaris arundinacea collection sites in New York 

 

Population Code Site of collection 

AU 42° 00' N, 79° 06' W 

BE 43° 11' N, 73° 24' W 

DA 44° 08' N, 75° 20' W 

EX 42° 30' N, 76° 27' W 

FI 43° 30' N, 76° 02' W 

FR 44° 24' N, 74° 16' W 

HR 42° 04' N, 79° 05' W 

HS 42° 04' N, 78° 14' W 

HF 44° 11' N, 74° 04' W 

MN 43° 05' N, 76° 42' W 

O1 43° 07' N, 78° 18' W 

O2 43° 07' N, 78° 18' W 

TN 43° 06' N, 78° 29' W 

VF 44° 58' N, 73° 31' W 

WG 42° 20' N, 76° 50' W 
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2008.  I provided dry fish flakes ad libitum until tadpoles from all clutches reached the 

free-swimming stage (stage 25, Gosner 1960).  On 1 June 2008 I placed 40 tadpoles 

(five each from eight different clutches to homogenize potential genetic influences) 

into 250 mL plastic containers containing aged tap water.   I then added the contents of 

one container to each mesocosm, resulting in a density of 0·5 tadpoles L
-1

, a density 

equivalent to previous work with L. palustris (Wilbur & Fauth 1990).   

I checked mesocosms every few days until I noticed metamorphs on 21 July 

2008, and from then on I checked mesocosms daily.  I removed only individuals who 

had fully metamorphosed (Gosner stage 46). I occasionally observed drowned 

metamorphs (Gosner stage 42 or higher), and in such cases I used mean substitution 

from the individual’s mesocosm to estimate mass at metamorphosis.  I collected the 

final metamorph on 1 October 2008 and terminated the experiment before the first 

killing frost on 6 October 2008.  At this time, I euthanized all remaining tadpoles 

(Gosner stage 40 and below) in a bath of 2% buffered MS-222 (tricaine methane 

sulfonate) and disassembled the mesocosms.   

Beginning 29 May 2008, I measured temperature (°C), dissolved oxygen (mg 

L
-1

), and pH in the middle water column of each mesocosm every two weeks using a 

YSI 556 MPS (YSI Environmental, Yellow Springs, OH).  On 9 June and 10 Aug 

2008 I took 1 L water samples from the middle water column of each mesocosm for 

measurements of algal abundance and aqueous tannins.  I immediately passed each 

water sample through a 53 µm mesh filter.  I preserved the filtrate on ice, then took it 

back to the lab and passed it through a 0·7 µm Whatman GF/F filter to collect 

phytoplankton.  I placed each filter in a small dessicator and kept these frozen for later 

analysis of chlorophyll-α (algal abundance).  I also froze 12·5 mL of the filtrate for 

tannin analysis.  In December 2008 I measured chlorophyll-α on filters using a 

fluorometer (Wetzel & Likens 2000).  At this time, I also performed a colorimeteric 
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analysis of tannins on the filtrate by adding a Folin phenol reagent (Sigma-Aldrich, St 

Louis, MO, USA) to reduce active tannins, then adding a pre-made Folin-Ciocalteu 

solution to determine sample concentration compared to a phenol standard (Clesceri & 

Eaton 1998).    

All statistical analyses were performed using R (version 2.7.2, R Development 

Core Team 2008).  I examined residuals to verify that assumptions of normality and 

homogeneity of variance were not violated.  For each statistical test I assumed a 

significance level of 0·05.  To test for differences in litter chemistry between 

populations (hypothesis 1) I conducted two sets of one-way ANOVAS with 

population as a factor and either C:N or aqueous tannin content as the variable.  I 

conducted similar ANOVAS to test for differences in tadpole performance (hypothesis 

2), with either metamorph mass or length of larval period as the variables.  I also used 

Pearson product-moment correlations (r
2
) to examine relationships between litter C 

and lignin content, as well as litter N and P.   

To address hypotheses 3 and 4, I used a three step approach involving logistic 

and linear regressions.  I used an information theoretic approach, Aikaike’s 

Information Criterion (AIC), at each step to determine which model best predicted our 

measures of amphibian performance.  I also considered models within 2 AIC of the 

top model (Burnham & Anderson 2002).  First, I performed logistic regressions to 

determine what conditions best explained whether a pot produced at least one 

metamorph.  I used metamorph production as a binomial response variable, where 0 

corresponded to pots where no metamorph was produced, and 1 corresponded to pots 

where at least one was metamorph produced.  Predictor variables included dissolved 

oxygen, temperature, pH, algal abundance, aqueous tannin concentration, and 

population (factor).  
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Figure. 2-1. Box-and-whisker plot of C:N for different populations (n = 3).  Each box 

contains data within the 50% quartiles, while lines extend to the maximum and 

minimum value.  The median is represented by a dark line inside each box.  
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Second, using data only from those pots that produced at least one metamorph, I 

conducted multiple linear regressions to evaluate which variables best explained the 

performance of those individuals.  I conducted separate analyses for abundance of 

metamorphs, mean mass at metamorphosis, total biomass of metamorphs, and length 

of larval period, with individual pots as the unit of analysis.  I used the same response 

variables as in the logistic regressions.  In my final step, I pooled data on metamorph 

abundance and biomass from each pot into a population-level mean.  Using these 

pooled values as our response variables, I conducted multiple linear regressions, where 

our predictor variables included the population-level characteristics C:N, C:P, N:P, 

lignin, and mean tannin concentration. 

 

Results 

Across my experiment, the length of larval period ranged from 51 to 127 days 

(mean 90·3), and metamorph mass ranged from 0·328 to 1·812 g (mean 0·7036).  

Overall, only approximately 3% of tadpoles reached metamorphosis by 6 October
 

2008.  Litter C:N differed significantly among P. arundinacea populations (ANOVA 

P < 0·0001, Figure. 1, Table 2-2), as did aqueous tannin concentration (ANOVA P < 

0·0001, Table 2-2).  Similarly, both the mass of metamorphs (ANOVA P < 0·01, 

Table 2-2) and length of larval period (ANOVA P < 0·0001, Table 2-2), were 

significantly different among P. arundinacea populations.  The Pearson’s product 

moment correlation was significant for C and lignin content (r
2
 = 0·579, P < 0·001), 

but not significant for N and P (r
2
 = 0·113, P = 0·169). 

Differences in tadpole survival to metamorphosis were best explained (lowest 

AIC, Table 2-3) by a model that contained tannin content, dissolved oxygen levels, 

and temperature.  All three variables were significant.  An additional model containing  
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Table 2-2: One-way ANOVAs examining variation in RCG population means for 

metamorph mass (g), length of larval period (days), C:N, and aqueous tannins (mg L
-1

) 

 

Source df SS MS F P 

Metamorph mass 14,163 2·0246 0·1446 2·3829 0·00481** 

Length of larval 

period 

14,163 14999 1071 3·8146 P < 0·001*** 

C:N 14,30 7745·6 553·3 5·7274 P < 0·001*** 

Aqueous tannins 14,135 3·2233 0·2302 5·3575 P < 0·001*** 
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Table 2-3. Top logistical regression model on metamorph survival, *P<0·05, ** 

P<0·01, ***P<0·001 

 

Predictor Coefficient SE 

Coefficient 

z P 

Intercept -38·9 19·5 -1·99 0·0461* 

Tannins 2·21 0·791 2·80 0·00513** 

DO -1·01 0·434 -2·34 0·0194* 

pH 5·55 2·76 2·01 0·0442* 

 



 

36 

 

 

 

 

 

 

 

 

Table 2-4. Top multiple regression models for four measures of amphibian 

performance for pots that produced at least one metamorph, *P<0·05, ** P<0·01, 

***P<0·001, 
†
denotes variables coded as factors. Pop = P. arundinacea Population, 

DO = dissolved oxygen, Tan = tannins 

 

 

 
β0 β1 β2 β3 df F adj r

2 
P 

Abun-

dance 
-0.597 

Pop
† 

* 

pH 

0·091 
-- 15,68 2·21 0·182 

0·0147 

* 

Mean 

mass 
-5·17* 

Tan 

0·231* 

 pH 

0·081* 

DO 

0·973 
3,78 3·67 0·090 

0·0157 

* 

Bio-

mass 
-30·8** 

Pop
†
 

*** 

pH 

4·42** 

Tan 

0·948 
16,65 2·87 0·270 

0·0014 

** 

Larval 

period 
319* 

Tan 

-13.0 

pH 

28·1 
-- 2,79 3·63 0·061 

0·0309 

* 
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temperature was within 2 AIC of this top model (Appendix).  A total of 82 out of 150 

pots, or 55%, produced at least one metamorph; these were included in the second step 

of our regression analyses.  The top model for metamorph abundance included pH and 

population, and explained 18·2% of the observed variation (Table 2-4).  Only 

population was significant in this model.  Two models that included temperature and 

one that included tannin content were also within 2 AIC of the top model for 

metamorph abundance (Appendix).  Mean mass at metamorphosis was best explained 

by a model containing tannins, pH, and dissolved oxygen (0·9% of the observed 

variation). An additional model that included temperature was within 2 AIC of the top 

model (Appendix).  Finally, population, pH, and tannins together explained 27·0% of 

the variation in metamorph biomass, both population and pH were significant in the 

model.  Two additional models that included temperature and one containing 

chlorophyll-α were within 2 AIC of the top model for metamorph biomass 

(Appendix).  Tannin levels and pH together explained 6·1% of the variation in the 

length of larval period, however neither was significant.  Two additional models 

containing dissolved oxygen and one containing temperature were within 2 AIC of the 

top model (Appendix).  For the analysis of mean metamorph abundance and biomass 

grouped by P. arundincacea population, both top models included C:P and N:P (Table 

2-5).  In each of these models C:P was the only significant predictor, and for each a 

second model that included C:N was within 2 AIC.  The top models for metamorph 

abundance and biomass explained 30.0% and 38·4% of the observed variation, 

respectively.  The relationship between litter C:P and population biomass is presented 

in Figure. 2-2. 
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Figure. 2-2. Relationship between the mean biomass of metamorphs and C:P for each 

plant population. The Pearson correlation (r
2
) and associated P-value are also shown. 
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Table 2-5. Top multiple regression models for amphibian performance on grouped 

means per population, *P<0·05, ** P<0·01, ***P<0·001 

 

 β0 β1 β2 df F adj r
2 

P 

Metamorph 

abundance 
19·7* 

C:P 

-0·0319* 

N:P 

1·12 
2,12 5·94 0·300 

0·0467 

* 

Metamorph 

biomass 
14·4*** 

C:P 

-

0·0234** 

N:P 

0·802 
2,12 5·37 0·384 

0·0216 

* 
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Discussion 

This study shows that natural within-species variation in litter chemistry can 

alter the strength of bottom-up effects on larval amphibians.  I find that litter 

chemistry, including C:N:P and the concentrations of tannins, varies between  

populations of P. arundinacea, and that this variation impacts larval amphibian 

performance.  All top models in each step of my analysis, except for one (larval 

period, Table 2-4), contained either population, tannin concentration, or litter C:P as a 

significant predictor of amphibian performance.  Therefore, capturing intraspecific 

variation in P. arundinacea significantly improved our ability to predict amphibian 

productivity in this simplified food web.   

My results agree with previous studies in showing that plant litter is a key 

component of larval amphibian habitat (Skelly et al. 2002, Maerz et al. 2005, Brown 

et al. 2006, Schiesari 2006, Rubbo & Kiesecker 2008, Williams et al. 2008, Maerz et 

al. in review).  Schiesari (2006), Williams et al. (2008), and Maerz et al. (in review) 

suggest that litter C:N influences tadpole development. My study expands on this 

body of work by examining litter quality not only in terms of C:N, but also C:P and 

N:P.  It is noteworthy that in my study system, C:P and N:P had greater explanatory 

power than C:N alone.  Like others, I find that including P in stoichiometric analyses 

improves our understanding of how energy and nutrients cycle through benthic 

communities (Frost, Cross & Benstead 2005, Cross et al. 2005, Cross, Wallace & 

Rosemond 2007).   

Interestingly, lignin concentration and phytoplankton abundance did not appear 

in any of our top models.  Since lignin was correlated to C concentration, it is likely 

that C:P and C:N better explained variation in tadpole performance than lignin 

concentration alone.  Algal abundance was distributed randomly across populations 

and was not significantly related to any of our amphibian performance metrics.  
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However, my methods measured suspended phytoplankton, which is not a preferred 

food for L. palustris.  I did not measure algal abundance or microbial biomass in 

biofilms, each of which is more likely to influence pickerel frog development.  Future 

experiments could investigate the impact of litter chemistry on detrital biofilms and 

explore whether that affects tadpole performance.   

Contrary to my expectation, tannin concentration had a positive impact on the 

probability that a pot would produce an L. palustris metamorph, as well as a positive 

effect on mean mass at metamorphosis.  In addition, increased tannin content was 

associated with a shorter larval period, which is also a positive impact on amphibian 

performance.  Several authors have observed that tannins retard development in 

certain tadpole species, potentially by impairing gills (Maerz et al. 2005, Leonard 

2008).  Lithobates palustris develop lungs early, and I observed tadpoles gulping air 

from the surface throughout the experiment.  This behavior explains why L. palustris 

escaped negative impacts of tannins, but why they would actually benefit from 

increased tannin levels remains unclear.  One possible explanation is that increased 

tannins may have favored algal species that are more nutritious for tadpoles, as studies 

have observed differences in algal communities depending on tannin levels (Pillinger 

et al. 1994).  This represents an important area of future inquiry.   

Plant functional traits explain a range of ecosystem properties, from soil 

carbon sequestration (DeDyne et al. 2008), to patterns of succession (Garnier et al. 

2004) and rates of decomposition (Cornwell et al. 2008).  To date, however, most 

work on the relationship between plant functional traits and ecosystem function has 

operated at the species-level, emphasizing interspecific differences in traits and 

explicitly ignoring variation within species (e.g. Wright et al. 2004; Shipley, Vile & 

Garnier 2006; Cornwell et al. 2008; Hattenschwiler, Tiunov & Scheu 2008).  

Intraspecific variation is considered to be much smaller than variation among species, 



 

42 

making it possible to assign ‘species-specific attributes’ for each trait (e.g. Shipley, 

Vile & Garnier 2006).  

 This study contributes to a growing body of evidence that intraspecific 

variation in plant traits can significantly affect ecosystem function.  Other workers 

have demonstrated that within-species variation in green tissue chemistry impacts 

herbivore productivity and diversity (e.g. Johnson and Agrawal 2005).  My work 

builds on this by demonstrating the significance of intraspecific variation in litter 

chemistry to ecosystem function; specifically, its effect on secondary productivity in 

detritus-based food webs.  Further, given that increases in nitrogen deposition and 

atmospheric CO2 are expected to increase chemical variation within species 

(McDonald, Agrell & Lindroth 1999; Henry et al. 2005; Kasurinen et al. 2007; Knops, 

Naeem & Wright 2007; Xia & Wan 2008), studies such as this, which examine how 

plant chemistry impacts ecosystem processes, will enhance our ability to predict 

ecosystem responses to global change.  My work shows that intraspecific variation in 

litter chemistry is already great, and that changes in litter chemistry can impact plant-

animal interactions in detritus-based communities.    
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APPENDIX 

AIC VALUES FOR LINEAR ANALYSES IN CHAPTER TWO 

 

Response variable: Probability that a cage produced at least one metamorph 

Predictor variables: Tannins + Population (factor) + DO + pH + Temperature + Chla 

Logistic Model AIC  

Tannins +  Population(factor) + DO + 

pH + Temperature + Chla 

210.49 

Tannins +  DO + pH + Temperature + 

Chla 

201.07 

Tannins +  DO + pH + Temperature 199.26 

Tannins + DO + pH 198.96 
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Response variable: Abundance of metamorphs for pots that produced at least one 

metamorph 

Predictor variables: Tannins + Population (factor) + DO + pH + Temperature + Chla 

Linear Model AIC  

Tannins +  Population(factor) + DO + 

pH + Temperature + Chla 

69.82 

Tannins +  Population(factor) + pH + 

Temperature + Chla 

67.88 

Tannins +  Population(factor) + pH + 

Temperature 

65.96 

Population(factor) + pH + Temperature 65.05 

Population(factor) + pH 64.79 

 

Response variable: Mean mass of metamorphs for pots that produced at least one 

metamorph 

Predictor variables: Tannins + Population (factor) + DO + pH + Temperature 

Linear Model AIC  

Tannins +  Population(factor) + DO + 

pH + Temperature + Chla 

-215.98 

Tannins + DO + pH + Temperature + 

Chla 

-225.34 

Tannins +  DO + pH + Temperature -227.01 
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Tannins +  DO + pH -228.31 

 

Response variable: Biomass of metamorphs for pots that produced at least one 

metamorph 

Predictor variables: Tannins + Population (factor) + DO + pH + Temperature 

Linear Model AIC  

Tannins +  Population(factor) + DO + 

pH + Temperature + Chla 

17.11 

Tannins +  Population(factor) + pH + 

Temperature + Chla 

15.45 

Tannins +  Population(factor) + pH + 

Temperature 

14.34 

Tannins +  Population(factor) + pH 13.81 

 

Response variable: Length of larval period of metamorphs for pots that produced at 

least one metamorph 

Predictor variables: Tannins + Population (factor) + DO + pH + Temperature 

Linear Model AIC  

Tannins +  Population(factor) + DO + 

pH + Temperature + Chla 

456.87 

Tannins + DO + pH + Temperature + 

Chla 

452.91 
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Tannins + DO + pH + Temperature 451.01 

Tannins +  DO + pH 449.32 

Tannins + pH 449.15 

 

Response variable: Biomass of metamorphs (population means) 

Predictor variables: C:N, C:P, N:P, Tannins 

Model AIC  

C:N + C:P + N:P + Tannins 46.78 

C:N + C:P + N:P  44.79 

C:N + C:P  42.82 

 

Response variable: Abundance of metamorphs (population means) 

Predictor variables: C:N, C:P, N:P, Tannins 

Model AIC  

C:N + C:P + N:P + Tannins 59.95 

C:N + C:P + N:P  57.97 

C:N + C:P  56.1 

 


