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In this paper, we seek to classify the nonstandard models of the weak (monadic)

second order theory of one successor (WS1S), the theory of the two-typed struc-

ture consisting of natural numbers and finite sets of natural number equipped

with a successor (+1) operation, and membership relation between the two

types. This will require an automata-theoretic approach. Chapter 1 will pro-

vide an introductory background to the intersection of automata theory and

model theory. In chapter 2, we use the Krohn-Rhodes Theorem and an ob-

servation about the powerset determinization construction to prove what will

be essentially be a quantifier-elimination type result for our theory, although

since the result is of independent interest, it will be presented in a more general

automata-theoretic context as a generating set for the regular functions under

composition. In chapter 3, we provide an axiomatization for WS1S. In chap-

ter 4, we apply this axiomatization to prove a number of key theorems regard-

ing nonstandard models of WS1S. This includes a classification of the possible

first order types, tools for completely classifying nonstandard models, an explo-

ration of countable nonstandard models with the simplest nontrivial first order

type, and a tool for producing new nonstandard models given old nonstandard

models.



BIOGRAPHICAL SKETCH

Thomas Kern received a Bachelor of Arts from Dartmouth College in 2009.

There he served in various leadership positions for the Dartmouth Math Soci-

ety. He participated in the Budapest Semesters in Mathematics program in Fall

of 2007. This thesis represents his efforts towards obtaining a Ph.D. in Mathe-

matics from Cornell University in May 2016. He will additionally be receiving

a Masters in Computer Science from Cornell University in May 2016.

iii



To those who helped me along my journey,

and to those who kept me company along the way.

iv



ACKNOWLEDGEMENTS

This material is based upon work supported by the National Science Founda-

tion Graduate Research Fellowship under Grants No. DMS-0852811 and DMS-

1161175. This work would not have been possible without encouragement and

guidance from my advisor, Anil Nerode. I would also like to thank Scott Mes-

sick for valuable discussions on the theory of finite automata.

v



TABLE OF CONTENTS

Biographical Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction 1

2 Generating the Regular Functions and Krohn-Rhodes 3
2.1 Moore Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Regular Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Determinization and Harvesting . . . . . . . . . . . . . . . . . . . 13
2.4 Length Modification . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 The Krohn-Rhodes Theorem . . . . . . . . . . . . . . . . . . . . . . 24
2.6 A Further Breaking Down . . . . . . . . . . . . . . . . . . . . . . . 36
2.7 Reverse Moore Machines . . . . . . . . . . . . . . . . . . . . . . . . 40
2.8 Removing RASn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.9 Further Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Axiomatizing the Weak Second Order Theory of One Successor 48
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Axiomatizing (ω,<) . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3 Basic Set Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4 Logical Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5 Basic Consequences of Our Axioms . . . . . . . . . . . . . . . . . . 61
3.6 Determinization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.7 Complementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.8 Conjunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.9 Bounding and Unbounding . . . . . . . . . . . . . . . . . . . . . . 73
3.10 Permutation and Introduction of Variables . . . . . . . . . . . . . 78
3.11 Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.12 Base Case Automata . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.13 The Weak Exclusively Second Order Theory of One Successor . . 84
3.14 0-ary Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.15 Finitely Many Axioms Do Not Suffice . . . . . . . . . . . . . . . . 88
3.16 Conclusion and Future Research . . . . . . . . . . . . . . . . . . . 92

4 Regarding Nonstandard Models of the Weak Second Order Theory of
One Successor 94
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.2 Recalling our Axiomatization . . . . . . . . . . . . . . . . . . . . . 96

vi



4.3 L-Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.4 Minimal L-Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.5 The Tail-Head Lemma . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.6 Countable 1-Models . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.7 Cut-And-Paste Models . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.8 Conclusion and Further Research . . . . . . . . . . . . . . . . . . . 134

A Appendix A: List of Axioms 137

Bibliography 138

vii



LIST OF TABLES

2.1 Sample Application of an Ordinal Removal Sequence . . . . . . . 32
2.2 Comparing ASn and RASn on Sample Input . . . . . . . . . . . . 43
2.3 The Action of RTrunc on Cwpair(Mask(w), ASn(w)) . . . . . . . . . 44
2.4 Producing RASTrunc

n on Sample Input . . . . . . . . . . . . . . . . 45

3.1 Transition Diagram for the Determinization and Harvester Near
the Dummy State . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2 Transition Table for ASub . . . . . . . . . . . . . . . . . . . . . . . . 83
3.3 Transition Table for ASuc . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1 Transition Table for Bit . . . . . . . . . . . . . . . . . . . . . . . . 119
4.2 Transition Table for RBit . . . . . . . . . . . . . . . . . . . . . . . . 119

viii



LIST OF FIGURES

2.1 Alignment Convention for Moore Machines . . . . . . . . . . . . 5
2.2 Behavior of Tuplefy on Sample Input . . . . . . . . . . . . . . . . 10
2.3 Alignment Convention for Reverse Moore Machines . . . . . . . 15
2.4 Transition Diagram for the Automaton Mj in our Cascade . . . . 34

ix



CHAPTER 1

INTRODUCTION

In this series of papers, we utilize the Büchi Theorem, which formalizes the

expressive equivalence between finite state automata and weak monadic second

order logic, to explore model theoretic properties of the weak (monadic1) second

order theory of one successor. Specifically, we will try to answer a number of

questions about the nonstandard models of this theory.

The study of finite automata began in the 1950s with Stephen Kleene’s work

on Nerve Nets[6], an early form of neural network. Their connection to monadic

second order logics was pointed out by Büchi[1] in the 1960s.

Since that time, four key equivalence theorems have been proved. Respec-

tively, finite automata, Büchi automata, finite tree automata, and Rabin au-

tomata are expressively equivalent to the weak second order theory of one suc-

cessor, the second order theory of one successor, the weak second order theory

of two successors, and the second order theory of two successors. The theory of

one successor has first order part ω, the natural numbers, with the one successor

operation +1. The theory of two successors has first order part {0, 1}∗, the set of

finite strings of 0s and 1s, with operations S0 and S1 which respectively tack a

0 and a 1 onto the end of a word. A weak second order theory has, in addition

to quantification over first order objects, quantification over finite sets of first

order objects. The (full) second order theory has quantification over arbitrary

sets of first order objects.

Automata theory is particularly fruitful in terms of equivalence theorems:

1Throughout this Dissertation, we will only consider monadic second order theories, so the
term monadic will be omitted.
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notions of regular expression exist for these classes, various modifications of

these automata are known to be expressively equivalent, and we have the

Myhill-Nerode Theorem, which provides an abstract characterization of these

languages.
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CHAPTER 2

GENERATING THE REGULAR FUNCTIONS AND KROHN-RHODES

In this chapter we seek to produce a small generating set for the regular func-

tions, those functions of words which can be expressed in the regular word

logic. The main result is that essentially any regular function can be computed

by a two-pass process: first scanning the input from left to right, leaving behind

some data, and then scanning the input and data left behind from right to left,

outputting the value of the function as we go. We then provide an interpretation

of the Krohn-Rhodes theorem which allows us to break up our generating set

even further. For the convenience of the reader, a simplified version of the proof

of the Krohn-Rhodes Theorem from Ginzburg [5] is also presented.

2.1 Moore Machines

The Krohn-Rhodes Theorem concerns itself with finite state transducers, an ab-

straction of systems that:

• Accept inputs from a discrete set at discrete times,

• Retain some memory about previous inputs, which updates whenever an

input is read,

• For each input read, produce some output from a discrete set based on the

input and memory.

This provides us with an abstraction of synchronous (as opposed to those that

update continuously), digital (as opposed to those that deal with analog values)

3



systems.

Originally proved in [7], the Krohn-Rhodes theorem itself allows us to de-

compose arbitrary finite state transducers into a cascade of transducers from

a small generating set. Computational implementations of this decomposition

are available [3]. The Krohn-Rhodes Theorem can be used to analyze the rough

behavior of automata, providing applications to Artificial Intelligence [4].

We formalize finite state transducers as follows:

Definition. A Moore Machine is a tuple: (Σ, Q, q0,Γ, δ, ε).

• Σ is a finite set of input characters (alphabet).

• Q is a finite set of states.

• q0 ∈ Q is the initial state.

• Γ is a finite set of output characters.

• δ : Q× Σ→ Q is the transition function.

• ε : Σ→ Γ is the output function.

For convenience, we denote the map x 7→ δ(a, x) by δa.

Given an input word w ∈ Σ∗, we construct a run r and output o such that:

• r[0] = q0.

• r[i+ 1] = δ(r[i], w[i]) for 0 ≤ i < |w|.

• o[i] = ε(r[i]), for 0 ≤ i ≤ |w|.

Where our indexing notation is such that:

w = w[0], . . . , w[|w| − 1].
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The correct way of thinking about Moore Machines is that each input acts as

a transition between one state and the next, or that each state is the state between

inputs. A proper representation would have input characters half a step offset

from states. Outputs are simply a product of the state the automaton is in and

so should be in step with the states. However, representing the sequences of

input characters and states as words requires a choice of direction to shift half

a step. A considerable effort has been made to pick the option to result in the

cleanest presentation. In this paper, the input character w[i] tells the device how

to transition from state r[i] to state r[i+ 1] 1.

Example 1. Here we show below how inputs, states, and outputs, respectively, line up

according to our notation.

a b b b a

q0 q1 q2 q1 q2 q3

o0 o1 o0 o1 o0 o2

Figure 2.1: Alignment Convention for Moore Machines

We will typically consider Moore Machines that simply output their states:

Definition. A Moore Machine is said to be transparent if Γ = Q and ε is the identity.

In this case, we present our Moore Machine as a tuple: (Σ, Q, q0, δ).

We can interpret Moore Machines as functions from input words to output

words:

Definition. Given a Moore Machine M = (Σ, Q, q0,Γ, δ, ε), and word w ∈ Σ∗, we

denote by M(w) the output of M on input w, in Γ∗.
1This is as opposed to the input character w[i] telling the device how to transition from state

r[i− 1] to state r[i]. This alternative is not uncommon.
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Moore Machines, however, represent only a small subset of those functions

on words which we can reason about using finite automata.

Definition. Given two alphabets, Σ,Γ, a function on words f : Σ∗ → Γ∗ is said to be:

• length-preserving if for any word w, |f(w)| = |w|.

• causal if f(w)[i] depends only on w[0], . . . , w[i].

• strictly causal if f(w)[i] depends only on w[0], . . . , w[i− 1].

• character-wise if f(w)[i] depends only on w[i].

Definition. Define the following useful functions for dealing with words:

• Let Sa denote the successor-a function which appends the character a to the end

of a word.

• Let Trunc denote the function which removes the last character of a word.

• Let Rest denote the function which removes the first character of a word.

Proposition 1. Given a Moore MachineM , the functionM computes is strictly causal,

and increases length by 1.

We may find it more convenient to deal with length preserving versions of

this function:

Definition. Given a Moore Machine M = (Σ, Q, q0,Γ, δ, ε), and word w ∈ Σ∗, we

denote by:

• MTrunc(w) the output of M on input w with the last state removed.

• MRest(w) the output ofM on inputw with the first state (the start state) removed.

6



Proposition 2. Given a Moore Machine M , the function MTrunc is strictly causal and

length preserving, and the function MRest is causal and length preserving.

In the next section, we will explore other kinds of functions of which can be

reasoned about using finite automata.

2.2 Regular Functions

The notion of finite automaton, or finite state recognizer, is more commonly

studied than the finite state transducer. Finite state automata are an abstraction

of systems that:

• Accept inputs from a discrete set at discrete times,

• Retain some memory about previous inputs, which updates whenever an

input is read,

• Having finished reading a sequence of inputs, either accepts or rejects.

Just as finite state transducers can be interpreted as functions on words, finite

state automata can be interpreted as predicates on words, returning a boolean

value after having read in a word. Their predicative nature means that finite

state automata are more convenient to use in applications to formal logic. On

the other hand, real world systems are more often interested in transforming

inputs, and so are better represented by finite state transducers.

Finite automata give us a notion of a regular set or regular event, a collec-

tion of words or sequences of inputs which are exactly those which some finite

7



automaton accepts. Once we define what it means to represent a function of

words with an automaton, this will give us a notion of regular function.

We formalize finite state recognizers as follows:

Definition. A finite state automaton is a tuple: (Σ, Q, I, δ, F ).

• Σ is a finite set of input characters (alphabet).

• Q is a finite set of states.

• I ⊆ Q is the set of initial states.

• δ : Q× Σ→ Q is the transition relation.

• F ⊆ Q is the set of final states.

Given an input word w ∈ Σ∗, we say that r ∈ Q∗ is a run on input w if:

• r[0] ∈ I .

• δ(r[i], w[i], r[i+ 1]) for 0 ≤ i < |w|.

We say that w is accepted if there is a run r on input w such that r[|w|] ∈ F .

Definition. A finite state automaton A = (Σ, Q, I, δ, F ) is deterministic if:

• I is a singleton.

• δ is a function from Q × Σ → Q, that is, given a q ∈ Q, and a ∈ Σ, there is a

unique q′ ∈ Q such that δ(q, a, q′).

By default, we say that A is nondeterministic.

8



A well known theorem of finite automata is that:

Proposition 3. If R is the set of accepted inputs of some automaton, then it is also the

set of accepted inputs of some deterministic automaton.

In either case, we say that R is regular.

A common convention in logic is to identify a function f with the relation

Rf which consists of all pairs of the form (x, f(x)), or, for n-ary functions,

(x0, . . . , xn−1, f(x0, . . . , xn−1)),

for x in the domain of f . As such, we will be able to define a regular function

as a relation which is regular and also a function. The question now is how to

input multiple words, especially multiple words of different lengths, to a finite

automaton.

We introduce the Tuplefy map to merge words together in parallel so they

can be read by an automaton. For words of different lengths, we add a dummy

character #.

Definition. Define the map

Tuplefy : Σ∗0 × · · · × Σ∗n−1 → ((Σ0 ∪ {#})× · · · × (Σn−1 ∪ {#}))∗,

Which satisfies:

Tuplefy(w0, . . . , wn−1)[i]j =


wj[i] it exists

# otherwise

and |Tuplefy(w0, . . . , wn−1)| = maxi |wi|.

Example 2. Here we show below how Tuplefy combines words together to one word:

9



w0 a b b a
w1 a b
w2

w3 b b b
w4 a a a a a

Tuplefy(w0, w1, w2, w3, w4)


a
a
#
b
a



b
b
#
b
a



b
#
#
b
a



a
#
#
#
a




#
#
#
#
a


Figure 2.2: Behavior of Tuplefy on Sample Input

Now we can define the notion of regular relation and regular function:

Definition. An n-ary relation R ⊆ Σ∗0 × · · · × Σ∗n−1 is regular if there is a finite

automaton A with input alphabet (Σ0 ∪ {#})× · · · × (Σn−1 ∪ {#}) such that:

R(w0, . . . , wn−1) ⇐⇒ A accepts Tuplefy(w0, . . . , wn−1).

An n-ary function f : Σ∗0×· · ·×Σ∗n−1 → Σ∗n is regular if there is a finite automaton

A with input alphabet (Σ0 ∪ {#})× · · · × (Σn ∪ {#}) such that:

f(w0, . . . , wn−1) = wn ⇐⇒ A accepts Tuplefy(w0, . . . , wn).

Regular relations and functions are a key part of the analysis of various au-

tomaton logics. For instance:

Definition. Given a finite alphabet Σ, letWΣ = (Σ∗,≤,=el, Sa|a∈Σ) where:

• ≤ is the prefix relation on words,

• =el is the equal length relation on words,
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• Sa is the Successor-a unary operation, which appends an a onto the end of a

word.

We callWΣ the regular word logic over Σ.

Proposition 4. If R is a relation on Σ∗, the following are equivalent:

• R is regular,

• R is given by a formula φ in the language ofWΣ.

Hence our interest in regular functions. If φ(x0, . . . , xn) is a formula in the

language ofWΣ such that:

∀x0, . . . , xn−1∃xn : φ(x0, . . . , xn),

Then, since lexicographic ordering <L is regular and well-founded, we can re-

strict to the regular relation:

ψ(x0, . . . , xn) ⇐⇒ φ(x0, . . . , xn) ∧ @y : [y <L xn ∧ φ(x0, . . . , y)] ,

Which is also a function. Such a restriction is called a Skolem function.

Finally, in this section, we connect Moore Machines and Finite Automata:

Proposition 5. Given a Moore Machine M = (Σ, Q, q0,Γ, δ, ε), the functions

M,MTrunc, and MRest are regular.

Proof. We can construct a deterministic finite automaton that keeps track of two

pieces of information: the state we expect the Moore Machine to be in at any

particular point, and a boolean value to keep track of whether the proposed

output has so far been correct, additionally, in the case of M , we should expect

11



a final element of the form

#

o

 and a small amount of information must be

kept track of to handle this correctly.

For example, for MTrunc, let:

A = (Σ× Γ, Q× {0, 1}, (q0, 0), δ′, Q× {0}),

Where:

δ′((q, i), (a, o)) =

δ(q, a),


0 i = 0 ∧ ε(q) = o

1 otherwise

 .

Proposition 6. Every strictly causal, length-preserving, regular function is given by

MTrunc for some Moore Machine M . Every causal, length-preserving function is given

by MRest for some Moore Machine M .

Proof. We prove this for a binary, strictly causal, length-preserving, regular func-

tion f . The proof is nearly identical in the general case. Let f : Σ→ Γ be given.

By our equivalence theorem above, there is a formula φ(w0, w1) in the language

WΣ∪Γ such that

φ(w0, w1) ⇐⇒ f(w0) = w1.

Since f is a strictly causal function, the first n − 1 characters of the input

determine the nth character of the output. By simple tricks in WΣ∪Γ, we can

construct a formula φu for each u ∈ Γ such that φu is true of exactly those se-

quences of characters that produce an output of u in the next place. These φu

describe a collection of regular sets which partition all of Σ∗. Let Au be a finite

automaton that recognizes the corresponding collection.

12



Now we construct our Moore Machine M . It should run each of the Au in

parallel to determine its state. Since theAu recognize disjoint collections, exactly

one of the Au will be in an accept state at any time. The ε function for our Moore

Machine will take in the tuple of states for the Au and output the one which was

in an accept state. It suffices now to check that MTrunc is identically f .

The proof for MRest is similar.

Of course, there are plenty of other regular functions. Take for instance, the

Rest function, which removes the first character of a string, shifting to the left.

Alternately, a function which outputs 00 or 01 depending on whether there are

an even or odd number of 0s in the input. Moore Machines allow us to construct

functions which transmit information only to the right (towards the end of the

inputs), but we will need a new method to transmit information to the left as in

these examples.

2.3 Determinization and Harvesting

In this section, we introduce a notion of a Reverse Moore Machine, and provide

a technique for decomposing a length-preserving regular function as a multi-

variable composition of a Moore Machine function, a Reverse Moore Machine

function, and character-wise maps to connect them. This will require several

stages. First, we will briefly discuss some notation for discussing character-wise

functions. Second, we will introduce the notion of a Reverse Moore Machine

similar to the Moore Machines introduced in section 1. Third, we will present

the decomposition. This decomposition is based on the classical powerset deter-

13



minization construction, viewed from a novel perspective. In the next section,

we will discuss handling general regular functions.

First, some notation for functions which operate character-wise:

Definition. Given two finite alphabets Σ,Γ, and a function f : Σ → Γ, we call the

function Cwf : Σ∗ → Γ∗ which applies f to each character of the input, the character-

wise f map.

If f is an n-ary function for n > 1, we can also make sense of Cwf . Let

f : Σ0 × · · · × Σn−1 → Γ.

Then we define the partial function

Cwf : Σ∗0 × · · · × Σ∗n−1 → Γ∗,

which takes in inputs of all the same lengths and produces an output of the same length,

where:

Cwf (w0, . . . , wn−1) = Cwf (Tuplefy(w0, . . . , wn−1)).

Noting that Tuplefy does not produce characters with # in them for equal-length in-

puts.

Of course, Cwf is causal and length preserving (and reverse-causal, when we

define the notion). Every Moore Machine function can be written as the corre-

sponding function for the corresponding transparent Moore Machine composed

with a bitwise application of its ε function.

We now define some notation for dealing with Reverse Moore Machines,

analogous to our notation established previously.

Definition. A Reverse Moore Machine is a tuple: (Σ, Q, qf ,Γ, δ, ε).

14



• Σ is a finite set of input characters (alphabet).

• Q is a finite set of states.

• qf ∈ Q is the final state.

• Γ is a finite set of output characters.

• δ : Q× Σ→ Q is the reverse transition function.

• ε : Σ→ Γ is the output function.

Given an input word w ∈ Σ∗, we construct a run r and output o such that:

• r[|w|] = qf .

• r[i] = δ(r[i+ 1], w[i]) for 0 ≤ i < |w|.

• o[i] = ε(r[i]), for 0 ≤ i ≤ |w|.

Example 3. Here we show below how inputs, states, and outputs, respectively, line up

according to our notation.

a b b b a

q0 q1 q2 q1 q2 qf

o0 o1 o0 o1 o0 o2

Figure 2.3: Alignment Convention for Reverse Moore Machines

To prevent type mismatches, we will denote a Reverse Moore Machine with

letters R,P as opposed to letters M,N for Moore Machines.

Definition. A Reverse Moore Machine is said to be transparent if Γ = Q and ε is the

identity. In this case, we present our Reverse Moore Machine as a tuple: (Σ, Q, qf , δ).
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As before, we can interpret Reverse Moore Machines as functions from input

words to output words:

Definition. Given a Reverse Moore MachineR = (Σ, Q, qf ,Γ, δ, ε), and wordw ∈ Σ∗,

we denote by:

• R(w) the output of R on input w.

• RTrunc(w) the output of R on input w with the last state removed.

• RRest(w) the output of R on input w with the first state (the start state) removed.

Analogous to our notions of causal and strictly causal, we have notions of

reverse causal and strictly reverse causal:

Definition. Given two alphabets, Σ,Γ, a function on words f : Σ∗ → Γ∗ is said to be:

• reverse causal if f(w)[i] depends only on w[i], w[i+ 1], . . ..

• strictly reverse causal if f(w)[i] depends only on w[i+ 1], w[i+ 2], . . ..

Of course, a function is character-wise iff it is causal and reverse causal.

We also have a notion of reverse deterministic automaton:

Definition. A finite automaton A = (Σ, Q, I, δ, F ) is reverse deterministic if:

• F is a singleton.

• For each q, a, there is a unique q′ such that (q′, a, q) ∈ δ.

A reverse deterministic automaton can also be viewed as a transparent Re-

verse Moore Machine.

We now have the notation to state our Theorem:
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Theorem 1. Any length-preserving regular function can be written as a multivariable

composition of the form:

f(w) = RTrunc(CwPair(w,M
Trunc(w))).

It’s worth noting that CwPair has the same action here as Tuplefy. We’ve

chosen to use CwPair here to indicate that we’re not using the length-padding

features of Tuplefy.

We need to prove a few lemmas first.

Lemma 1. Given a length-preserving regular function f : Σ∗ → Γ, there is an au-

tomaton B with state set Q and map ε : Q→ Γ such that f(w) is Trunc ◦ Cwε applied

to any run of B on input w.

Proof. Given our length-preserving function f : Σ∗ → Γ∗, let:

C = ((Σ ∪ {#})× (Γ ∪ {#}), Q, I, δ, F )

Witness the regularity of f . Since C automatically rejects any inputs with a # in

them, we can restrict it to:

A = (Σ× Γ, Q, I, δ, F )

Recognizing the same set of inputs.

Construct an automaton:

B = (Σ, Q× Γ, I × Γ, δ′, F × Γ),

Where:

((q, o), a, (q′, o′)) ∈ δ′ ⇐⇒ (q, (a, o), q′) ∈ δ
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B is nondeterministic. I assert that runs of B on input w will necessarily have

Γ component So(f(w)), for some o ∈ Γ. Firstly, it should be clear that if r is

an accepting run of A on input Tuplefy(w, f(w)), then Tuplefy(r, So(f(w))) is an

accepting run of B on input w for any o ∈ Γ.

Now, suppose Tuplefy(r′, g) is an accepting run of B on input w. Then it is

easy to check that r′ is an accepting run ofA on input Tuplefy(w,Trunc(g)). Since

A witnessed f being a regular function, Trunc(g) must be f(w). This completes

the proof for ε taking the Γ component of the states of B.

Definition. Given a nondeterministic automatonA = (Σ, Q, I, δ, F ), define its deter-

minization:

det(A) = (Σ,P(Q), {I}, δ′, {E ⊂ Q : E ∩ F 6= ∅}),

Where:

δ′(K, a) = {q′ ∈ Q|∃q ∈ K : δ(q, a, q′)}.

Typically throughout this chapter we will be concerned with the deter-

minization as a transparent Moore Machine, so the set of final states doesn’t

matter much.

Definition. Given a nondeterministic automaton A = (Σ, Q, Iδ, F ), define its har-

vester:

harv(A) = (Σ× P(Q), Q ∪ {qF}, Q ∪ {qF}, δ′, {qF}),

Where:

• The q such that δ′(q, (a,K), q′) (for q′ ∈ Q) is given by the least q′′ ∈ K such

that δ(q′′, a, q′) or qF if none exist.
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• The q such that δ′(q, (a,K), qF ) is given by finding the least q′ ∈ F such that

there is a q′′ ∈ K such that δ(q′′, a, q′) and then having q be the least q′′ ∈ K such

that δ(q′′, a, q′). If no such q′ ∈ F exists, then q is given by qF .

The powerset determinization of an automaton A produces an automaton

that keeps track of, at every position, the set of states of A which are reachable

through some sequence of transitions, having read the input up to that point.

However, not every one of these reachable states necessarily shows up in some

accepting run: it may be that being in one state now means later on having to

be in another state which we cannot transition out of, or that being in a state

now dooms us to being in a reject state once we have finished reading the in-

put. In order to use our determinization to find an accepting run of the original

automaton, provided there is an accepting run, we need to start at the end and

work our way backwards, all the while staying within states that we know can

be traced through a sequence of transitions back to a start state at the beginning.

Specifically, if we know we’re in a state q which is reachable through some

sequence of transitions after having read Sa(w), then there must be at least one

state q′ which is reachable through some sequence of transitions after having

read w such that reading a takes us from state q′ to state q.

It is necessary to introduce an additional dummy state qF to start out in to

make sure our harvester automaton is reverse-deterministic. Although our ap-

plication of the harvester automaton will see only pairs of the form (a,K) for

a some symbol being read by our original automaton and K the set of states

reachable immediately prior to reading that specific a, our automaton should

be prepared to read in arbitrary input pairs. An invalid input will cause the

reverse deterministic automaton to go into the dummy qF state. Additionally,
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a cheap fix is necessary to account for the fact that we don’t know what state

the run we’re trying to produce ends on and we need a single “final” state for

our reverse deterministic automaton to “start out” in. The dummy qF state rep-

resents all final states which are reachable. Truncating the run will remove this

dummy state.

Lemma 2. Suppose we have a nondeterministic automaton A, and valid input w. Let p

be the run of det(A) on input w. I claim that harv(A) on input Tuplefy(w,Trunc(p))

will have run r, an accepting run of A on input w.

Proof. It suffices to show that the only occurrence of qF in r is as the final charac-

ter. By construction, harv(A) will satisfy the transition relations. As mentioned

before the construction of harv(A) also prevents backwards transitioning into

the qF state for this particular input, since a reachable state can always be traced

back to a reachable state.

Combining our two lemmas, given a regular, length-preserving function f ,

we have a nondeterministic automaton B which takes in a word w and has a

run r which projects to f(w). By our second lemma:

r = harv(B)Trunc(CwPair(w, det(B)Trunc))

By modifying the outer Reverse Moore Machine, we can throw in the appropri-

ate projection to its output map to produce f(w). This completes the proof.

This is a remarkable result. Every length-preserving regular function can be

computed in a two-step process: one pass forwards through the input leaving

behind some information as we do, then a pass backwards through the input

with this additional information to directly produce the output. Two passes

suffice; having more passes doesn’t increase our expressive power.
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2.4 Length Modification

We’re very close to generating all the regular functions, but we’re not quite

there. The only functions we have dealt with so far were length-preserving. In

this section, we see that most of the interesting behavior was already captured

in the length-preserving case.

Proposition 7. Suppose f : Σ→ Γ is a regular function. Then there is a fixed constant

c associated to f such that f(w) is no longer than c+ |w| for every w.

The proof is based on the pumping lemma.

Proof. Let A be a deterministic automaton with c states accepting exactly words

of the form Tuplefy(w, f(w)). Choose a specific w and suppose f(w) is longer

than c+ |w|. Imagine what happens as A reads in Tuplefy(w, f(w)), specifically,

after w is finished, and A is reading in characters of the form

#

o

 for some

o ∈ Γ. Because there are more positions like this than there are states of A, by

the pigeonhole principle some two positions will have the same state, say at po-

sitions i and j. Note however that if we remove all positions in Tuplefy(w, f(w))

between i and j (including i, excluding j) we still have an accepting run, of the

form Tuplefy(w, g) for some g strictly shorter than f(w). This contradicts our

assumption that A accepted exactly words of the form Tuplefy(w, f(w)).

From this, we can also show that for any n-ary regular function f , there is

a fixed constant c associated to f such that f(w0, . . . , wn−1) is no longer than c

plus the length of the maximum input.
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Note that the automatonA in our proof never encounters the input character#

#

. As such, we may assume that this character acts as the identity on the

states of A and still have an automaton witnessing the regularity of f . This

automaton recognizes all pairs of the form Tuplefy(Sc#(w), f(w)). (Sc# simply

represents a c-fold composition of the S# function).

As such, the function which takes Sc#(w) to Sd#(f(w)) for d = |f(w)| − |w| is

a length-preserving regular function g, and thus can be written as a composi-

tion of character-wise maps, truncated Moore Machines, and truncated Reverse

Moore Machines as in Theorem 1. Since f can be written as:

f(w) = Unpad(g(Sc#(w))),

Where Unpad removes final # characters. Note that we do not know how many

final # characters there will be. For functions which reduce length, the number

will be more than c and could be as much as c + |w|. One might be tempted

to try to replace Unpad with some function like S−1
# (or, even less suited to the

task, Trunc), which either removes a single final # or leaves the word alone if

it cannot. However, since there are regular functions which take words of arbi-

trary length and reduce them to length 1, we need a generator that can produce

unbounded shortening as well.

Note that if f is n-ary for n > 1, we can use what we’ve already shown to

see that:

f(w0, . . . , wn−1) = Unpad(g(Sc#n(w))),

For some regular, length-preserving function g.

As such, we have the following theorem:

22



Theorem 2. Any regular function can be written as a multivariable composition of:

• Truncated Moore Machines,

• Truncated Reverse Moore Machines,

• Character-wise maps,

• Tuplefy (allowing us to generate multiary character-wise maps),

• Sa for various a,

• Unpad.

It’s worth noting here that our generating set is infinite. Specifically, there

are an infinite number of Moore Machines and Reverse Moore Machines. There

are also an infinite number of Character-wise maps, but this isn’t essential –

one could use encoding methods to work purely with a single two-character

alphabet (plus, optionally, the dummy character #).

The infinitude of our generating set, however, is essential. The easiest way

to see this is to talk about period introduction. Provided the input to a regular

function has a sufficiently long periodic portion in the middle, the output of the

regular function will also have a long periodic portion in the middle (it suffices

to verify this of the generators above). What’s more, the period of the periodic

portion of the output can only have prime factors which show up either in the

periods of the periodic portions of the inputs or which are smaller than the

number of states of the associated automaton to the regular function. However,

one can easily build regular functions which introduce any prime factor into

the periodicity of their inputs, so we must not allow any bound on the sizes of

associated automata to regular functions in our generating set. We summarize

this result as follows:
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Proposition 8. Any set of regular functions which generates all regular functions un-

der multivariable composition must be infinite.

We conclude this chapter with a discussion of the Krohn-Rhodes Theorem.

First, we will provide a proof of the Krohn-Rhodes Theorem adapted from

Ginzburg [5]. Then we will use the Krohn-Rhodes Theorem to decompose our

Moore Machine and Reverse Moore Machine generators into smaller, simpler

generators. A final short discussion will clean up our set of generators, followed

by proposed future research.

2.5 The Krohn-Rhodes Theorem

In this section, we present the Krohn-Rhodes Theorem as adapted to the con-

text of multivariate composition of regular functions. The original proof of the

Krohn-Rhodes Theorem, in [7], was presented in terms of wreath products of

semigroups. More modern presentations of the Krohn-Rhodes Theorem typi-

cally present it in terms of the cascade product of finite state transducers.

The cascade product of two transducers M1,M2 is a system consisting of

both machines. First, machine M2 reads in both the input to the system and

the current state of M1 to update its state. When it has finished, machine M1

updates its state based only on the input to the system. Finally, an output is

produced based on the states of M1 and M2. This reflects the reality of systems

where updating the states of our machines takes a small but appreciable amount

of time. In a well designed system, M2 should not have to wait for M1 to finish

its update before it can update its state. As such, M2 uses the state of M1 prior

to reading the input to update.
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The Krohn-Rhodes Theorem separates out two extremes of behavior for fi-

nite automata. In general, reading in an input character induces a function on

the states of the automaton. This function may map two states to the same state

or to separate states. At one extreme, it may act as a permutation in which case it

maps all states to separate states. In this case, it is possible to undo this action.

We can recover the state before reading a character which acts as a permutation,

provided we know which character the automaton read. At the other extreme,

an input character may act as a reset in which case it maps all states to the same

state. In this case all information about the previous state is lost.

Definition. A Moore Machine or deterministic automaton is said to be:

• A permutation automaton if each of its inputs acts as a permutation on its

states,

• A reset automaton if each of its inputs acts as a reset or the identity on its states,

• A permutation-reset automaton if each of its inputs acts as a permutation or a

reset on its states.

We now state the Krohn-Rhodes theorem, in a bit of an unusual fashion:

Theorem 3 (Krohn-Rhodes). Given a transparent Moore Machine M , we can write

its truncated action MTrunc as a multivariable composition of truncated actions of

permutation-reset Moore Machines M0, . . . ,Mn−1 for n the number of states of M ,

and a final character-wise map f . What’s more, this composition takes on a fairly simple
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form. Let:

w0 =MTrunc
0 (w),

w1 =MTrunc
1 (Tuplefy(w,w0)),

w2 =MTrunc
2 (Tuplefy(w,w0, w1)),

...

wn−1 =MTrunc
n−1 (Tuplefy(w,w0, . . . , wn−2)),

Then:

MTrunc(w) = Cwf (w0, . . . , wn−1).

Every map in this composition is length-preserving. Of course we can write

this as simply one large multivariable composition of a character-wise map and

truncated actions of permutation-reset transparent Moore Machines, but this is

unwieldy to write down. The above also presents an efficient way of computing

the composition, although readers concerned with efficiency are encouraged to

look into the Holonomy decomposition [3].

Our proof is inductive: we show that for every transparent Moore Machine

M , there’s another transparent Moore Machine M ′ that keeps track of a state M

is not in in a permutation-reset way. This reduces the amount of information we

need to keep track of by one state, and we can keep doing this until we’ve kept

track of all the information to know what state M is in.

The proof in [5] allows for the possibility that we can keep track of several

states our automaton M is not in in a permutation-reset way at the same time,

as opposed to one at a time in the proof below. This is more efficient, but adds

needless complexity to the proof.
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The key piece of our construction is the Permutation-Reset Lemma, below.

Lemma 3 (Permutation-Reset Lemma). Given two finite ordered sets of the same

size I, J , and map between them f , there is a map g : I → J such that:

• g either acts as:

– A bijection from I to J (a permutation on the position indices),

– Or has singleton image (a reset on position indices),

• And for x, y ∈ I , with x 6= y, we have f(x) 6= g(y).

• For any x ∈ I , we have f maps elements of I \ {x} to J \ {g(x)}.

Proof. Suppose f does act as a bijection. Then g = f is a permutation and satis-

fies the inequality condition.

Suppose f does not act as a bijection. Then g which maps everything to the

smallest element of J which is not in the image of f has singleton image and

satisfies the inequality condition.

The third condition is just a rephrasing of the second, but will come in handy

later on.

A specific application of the Permutation-Reset Lemma is that we can have a

transparent Moore Machine that keeps track of a state our original transparent

Moore Machine is not in:

Lemma 4. Given a transparent Moore Machine M = (Σ, Q, q0, δ), there is a

permutation-reset transparent Moore Machine M with the same state set such that

on input w, the state of M at any one time is not the state of M .
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Proof. Assign a natural ordering to Q. Define

M = (Σ, Q, q0, δ),

Where q0 is the smallest element in Q which is not q0, and δ(q, a) is given by:

• δ(q, a) if a acts as a permutation.

• Otherwise, the smallest q′ ∈ Qwhich is not in the image of any state under

the action of a.

If the action of awas a permutation originally, it is still a permutation in our new

automaton. This permutation not only takes us from the state our automaton is

in before reading a to the state afterwards, but also from a state our automaton

is not in before reading a to a state our automaton is not in afterwards. In the

second case, note that the choice of q′ does not depend on q, so this action is a

reset. Obviously, it takes us from a state our original automaton is not in before

reading a to a state our automaton is not in after reading a.

Lemma 5. Given transparent Moore Machines M,M as above with state sets Q, there

is a third transparent Moore Machine:

M̂ = (Σ×Q, {0, . . . , |Q| − 2}, ı̂0, δ̂),

Such that for any input w, if M on reading w winds up in state q, and M on reading w

winds up in state q then M̂ on reading Tuplefy(w,M
Trunc

(w)) will wind up in state ı̂,

where q is the element in position2 ı̂ of Q \ {q}.
2To maintain notational consistency within this paper, where ordered collections are indexed

starting with 0, we refer to the first element of a set as being in position 0, and generally the i+1st
element of a set as being in position i. To avoid confusion, we will endeavor to avoid using the
notation “ith element”, instead using notation “the element in position i”.
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Proof. Let M̂ = (Σ×Q, {0, . . . , |Q|−2}, ı̂0, δ̂) where ı̂0 is the index of q0 inQ\{q0}

and δ̂(i, (a, q)) is computed by:

• Computing q′ = δ(q, a). This is the state M says that M is not in after

reading a.

• Computing q, the ith element of Q \ {q}. This is the state of M prior to

reading a.

• Return j, the index of δ(q, a) in Q \ q′.

The above construction is designed specifically to satisfy the conclusion.

As such, we have that

MTrunc(w) = Cwp(M
Trunc

(w), M̂Trunc(Tuplefy(w,M
Trunc

(w))))

Where p(q, i) is the ith element of Q \ {q}.

Finally, we prove the Krohn-Rhodes Theorem:

Proof. By induction on the number of states of M .

Base Case: If M has one state, then f in the composition is 0-ary, and we can

have it just output that constant state.

Inductive Case: Given our M , we can write:

MTrunc(w) = Cwp(M
Trunc

(w), M̂Trunc(Tuplefy(w,M
Trunc

(w)))),

With M permutation-reset. By our inductive hypothesis, we can write

M̂Trunc(w), which has one fewer state than M , as:

M̂Trunc(w) = Cwf (w1, . . . , wn−1),
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Where:

w1 =MTrunc
1 (w)

w2 =MTrunc
2 (Tuplefy(w,w1)))

w3 =MTrunc
3 (Tuplefy(w,w1, w2)

...

wn−1 =MTrunc
n−1 (Tuplefy(w,w1, . . . , wn−2))

As such, M̂Trunc(Tuplefy(w, M̂Trunc(w))) is given by just plugging in:

M̂Trunc(Tuplefy(w,M
Trunc

(w))) = Cwf (w1, . . . , wn−1),

Where:

w1 =MTrunc
1 (Tuplefy(w,M

Trunc
(w))),

w2 =MTrunc
2 (Tuplefy(Tuplefy(w,M

Trunc
(w)), w1)),

w3 =MTrunc
3 (Tuplefy(Tuplefy(w,M

Trunc
(w)), w1, w2)),

...

wn−1 =MTrunc
n−1 (Tuplefy(Tuplefy(w,M

Trunc
(w)), w1, . . . , wn−2)).

Alternately, fiddling with some parentheses in the definitions of our au-

tomata:

M̂Trunc(Tuplefy(w,M
Trunc

(w))) = Cwf (w1, . . . , wn−1, )
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Where:

w0 =M
Trunc

(w),

w1 =MTrunc
1 (Tuplefy(w,w0)),

w2 =MTrunc
2 (Tuplefy(w,w0, w1)),

w3 =MTrunc
3 (Tuplefy(w,w0, w1, w2)),

...

wn−1 =MTrunc
n−1 (Tuplefy(w,w0, . . . , wn−2)).

In which case:

MTrunc(w) = Cwp(M
Trunc

(w)︸ ︷︷ ︸
w0

,Cwf (w1, . . . , wn−1)).

We can combine p and f to get a single character-wise function on w0, . . . , wn−1,

thus completing the induction.

The proof is still straightforward if we unwind the induction. In our con-

struction, w0 is keeping track of a stateM is not in, but it may as well be keeping

track of an index for a state M is not in. w1 is keeping track of an index of a state

M is not in once we’ve removed the state in position w0 from Q. w2 is keeping

track of an index of a state M is not in once we’ve removed the states w1 and w2

are keeping track of from Q. And so forth. We formalize this indexed removal

process as follows:

Definition. Given a positive integer n, an ordinal removal sequence for n is a (pos-

sibly empty) sequence of positive integers (k0, . . . , ki) satisfying:

i <n,

0 ≤ kj <n− j.
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We interpret an ordinal removal sequence for n as a series of commands

operating on an ordered set of size n of the form “remove the i+ 1st smallest el-

ement remaining.” Note that as elements are removed, there are fewer elements

remaining, hence the decreasing upper limit on kj in the second constraint. Con-

sistent with the rest of this paper, we begin our indexing with 0, so a 0 means

remove the smallest element.

Definition. Given an ordered set L, and an ordinal removal sequence for |L|,k =

(k0, . . . , ki−1), define Remove(L,k) recursively:

• Remove(L, ()) = L,

• Remove(L, (k0, . . . , ki−1)) is given removing the element in position ki (with

order inherited from L, and 0 means remove the smallest element) of

Remove(L, (k0, . . . , ki−2)).

Let Ok,n denote the set of ordinal removal sequences for n of length k.

Recall that _ is used for concatenation, so:

(k0, . . . , ki−1)_j = (k1, . . . , ki−1, j).

Example 4. Consider the ordinal removal sequence for 5: (0, 1, 2, 1) acting on the or-

dered set (A,B,C,D,E):

Start: (A,B,C,D,E)
Remove at position 0: (B,C,D,E)
Remove at position 1: (B,D,E)
Remove at position 2: (B,D)
Remove at position 1: (B)

Table 2.1: Sample Application of an Ordinal Removal Sequence

32



We now state the lemma formally that allows us to construct the Mj in the

Krohn-Rhodes decomposition.

Lemma 6. Given a transparent Moore Machine M = (Σ, Q, q0, δ), and 0 ≤ j <

|Q| − 1, there is a permutation-reset transparent Moore Machine

Mj = (Σ×Oj,|Q|, {0, . . . , |Q| − j}, k0, δ
′),

Such that if κ is a word of ordinal removal sequences for |Q| of length j, that is, κ ∈

(Oj,|Q|)∗, satisfying:

• At any point i, κ[i] does not remove M(w)[i] from Q. That is, M(w)[i] ∈

Remove(Q, κ[i]).

• κ[i+ 1] is determined by κ[i] and w[i], specifically such that:

• The map δa (from M ) maps states in Remove(Q, κ[i]) to states in

Remove(Q, κ[i+ 1]).

Then o = Mj(Tuplefy(w, κ)) satisfies:

• At any point i, κ[i]_o[i] does not remove M(w)[i] from Q. That is, M(w)[i]

is not in position o[i] of Remove(Q, κ[i]), and in particular M(w)[i] ∈

Remove(Q, κ[i]_o[i]).

Proof. The idea here is that each Mj should keep track of a single entry in an

ordinal removal sequence that will remove all elements of Q except the state of

our original automaton M at any one particular time. These will be the Mj in

our multivariate composition, so they will be reading in both the original input

(a single character a from w), and a single index from each of M0, . . . ,Mj−1,

together forming an ordinal removal sequence (κ[i]) of length j. Each Mj then

33



keeps track of an index, which, when added on to the end of the ordinal removal

sequence does not remove the one state we must not remove, the state of M at

that point.

For reference, a picture of the situation is drawn below:

a w[i] w[i+ 1]

w0[i] w0[i+ 1]

w1[i] w1[i+ 1]

κ[i] w2[i] w2[i+ 1]
...

...
wj−1[i] wj−1[i+ 1]

wj[i] wj[i+ 1]

Figure 2.4: Transition Diagram for the Automaton Mj in our Cascade

As we can see in the diagram, Mj will be reading in w[i], the character that

takes our automaton M from M(w)[i] to M(w)[i + 1], and κ[i], the ordinal re-

moval sequence within which we interpret its current state wj[i]. Specifically,

wj[i] will be a position in Remove(Q, κ[i]) where we don’t find the current state

of M , M(w)[i]. This will transition Mj into the state wj[i + 1], which must be a

position in Remove(Q, κ[i+ 1]) where we don’t find the next state of M , M(w)[i].

Note thatMj does not get direct access to κ[i+1], but of course we need access

to κ[i+1] in order to determine the index forM(w)[i+1] in Remove(Q, κ[i+1]) so

that we can avoid it. Fortunately, if the previous automata, M0, . . . ,Mj−1 work

in canonical fashions, knowing a and κ[i] is enough to determine κ[i+ 1].

To start with, we need to pick the starting state for Mj , k0, such that k0 is not

an index for the start state of M in Remove(Q, κ[0]). Let it be the smallest such
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index.

By hypothesis, the transition map induced by the character a on the automa-

ton M , δa, maps states in Remove(Q, κ[i]) to states in Remove(Q, κ[i+ 1]). By the

Permutation-Reset Lemma, we can define the transition map for Mj , δ′, with

δ′(w[i],κ[i]) a permutation-reset map for any particular w[i] and κ[i] that does the

avoiding we require of it.

Finally, it’s worth noting that κ[i]_wj[i], κ[i+ 1]_wj[i+ 1] satisfy the require-

ments on κ[i] and κ[i+ 1] in the hypothesis of our lemma. Specifically:

• Our new w[0] and wj[i + 1] were chosen to avoid removing M(w)[0] and

M(w)[i+ 1] from Q.

• wj[i+ 1] is determined by wj[i], κ[i], and w[i].

• The map δa maps states in Remove(Q, κ[i]_wj[i]) to states in Remove(Q, κ[i+

1]_wj[i+1]). This is immediate, looking at the third condition on the func-

tion the Permutation-Reset Lemma constructs.

As such the Mj in our proof are the same as the Mj in our multivariate com-

position for the action of M , and Tuplefy(w1, . . . , wj−1) is a word of ordinal re-

moval sequences κ as above for each suitable j. As such the final character-wise

map f is simply the map mapping an ordinal removal sequence k of length

|Q| − 1 to the single element of Remove(Q,k).

Hopefully, this particular proof will shed some light on the multivariate

composition we are using to determine MTrunc(w): why it is shaped the way it

is shaped, and what each piece of the composition is keeping track of. Utilizing
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the Krohn-Rhodes Theorem, we currently have the following set of generators

for the regular functions:

Theorem 4. Any regular function can be written as a multivariable composition of:

• Truncated Permutation-Reset Transparent Moore Machine maps,

• Truncated Reverse Moore Machine maps,

• Character-wise maps,

• Tuplefy (allowing us to generate multiary character-wise maps),

• Sa for various a,

• Unpad.

It may seem like we haven’t gained much, but in the next section we will

see that there isn’t actually that much to Permutation-Reset Transparent Moore

Machines. Then we will handle the reverse Moore Machine case.

2.6 A Further Breaking Down

In this section we prove that truncated permutation-reset transparent Moore

Machine maps can be written as the composition of a single truncated permu-

tation transparent Moore Machine map and a single truncated reset transparent

Moore Machine map. Then we see that permutation transparent Moore Ma-

chines and reset transparent Moore Machines are actually quite familiar objects.

As before, these proofs are adapted from [5], which uses vastly different nota-

tion.
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Lemma 7. Given a permutation-reset transparent Moore Machine M = (Σ, Q, q0, δ),

there is a permutation transparent Moore Machine M̃ , reset transparent Moore Ma-

chine ~M , and function F such that:

MTrunc(w) = CwF ( ~MTrunc(Tuplefy(w, M̃Trunc(w))), M̃Trunc(w))

Proof. Let M̃ = (Σ, SQ, id, δ̃) and ~M = (Σ × SQ, Q, q0, ~δ), where SQ is the set of

all permutations on Q, and:

If δa is a permutation of the states of M :

δ̃(f, a) = δa ◦ f,

~δ(q, (a, f)) = q.

If δa is a reset on the states of M with image {qa}:

δ̃(f, a) = f,

~δ(q, (a, f)) = f−1(qa).

As desired M̃ is a permutation automaton and ~M is a reset automaton (notice

that the identity action is necessary in case δa is a permutation).

Let F : SQ ×Q→ Q with F (f, q) = f(q). I now claim that

MTrunc(w) = CwF ( ~MTrunc(Tuplefy(w, M̃Trunc(w))), M̃Trunc(w)),

As desired. This is easy to verify in terms of their transition relations. The intu-

ition behind this construction is that M̃ keeps track of the action of each of the

permutations and ~M handles resets by storing them in terms of what state one

would have to start in such that after being acted on by just the permutations

one winds up in the current state of M .
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We now define a couple of transparent Moore Machines in order to refine

our decomposition further.

Definition. For each n, define the Accumulator on Sn transparent Moore Machine

ASn:

ASn = (Sn, Sn, id, δ),

Where:

δg(h) = h · g,

Where Sn is the symmetric group on n elements with composition operation (h ·g)(i) =

h(g(i)).

Definition. Define the bit-storage automaton:

Bit = ({−, 0, 1}, {0, 1}, 0, δ),

Where δ− acts as the identity, δ0 is a reset to state 0, and δ1 is a reset to state 1.

Since every collection of permutations can be viewed as a subset of the sym-

metric group Sn for some n:

Proposition 9. Every truncated permutation transparent Moore Machine mapMTrunc

can be written as:

MTrunc(w) = Cwf (AS
Trunc
n (Cwg(w))),

For some functions f and g.

What’s more:

Proposition 10. Every truncated reset transparent Moore Machine map MTrunc can

be written as:

Cwf (Bit
Trunc(Cwg0(w)), . . . , BitTrunc(Cwgn−1(w))),

For suitable n, f , and g0, . . . , gn−1.
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Proof. SupposeM = (Σ, Q, q0, δ). Choose an n such that 2n ≥ |Q|. For every state

q ∈ Q, associate a unique bitstring b(q) ∈ 2n, where bk(q) is the bit in position k

of b(q), such that the start state q0 ∈ Q is given by the all 0s bitstring. Let f = b−1.

Suppose δa acts as a reset to the state qa. Then let gk(a) = bk(qa).

As such:

Proposition 11. Every truncated Moore Machine map MTrunc can be written as a

multivariable composition of:

• ASTrunc
n for various n,

• BitTrunc,

• Character-wise maps.

Now we have a much smaller generating set for our regular functions.

Theorem 5. Any regular function can be written as a multivariable composition of:

• ASTrunc
n for various n,

• BitTrunc,

• Truncated Reverse Moore Machine maps,

• Character-wise maps,

• Tuplefy (allowing us to generate multiary character-wise maps),

• Sa for various a,

• Unpad.
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2.7 Reverse Moore Machines

Just as in previous sections, we broke down the truncated Moore Machine maps

into compositions involving the accumulator on Sn, the Bit automaton, and

character-wise maps (note that uses of Tuplefy are length-preserving, and thus

actually character-wise applications of a tuple-construction map), in this sec-

tion, we break down truncated reverse Moore Machine maps similarly. To save

ourselves work, we will simply introduce a reversal map Rev (which is not reg-

ular) to connect truncated reverse Moore Machine maps and truncated Moore

Machine Maps.

Definition. Given a word w ∈ Σ∗ define Rev(w) to be the reversal of w.

Given a Moore Machine M = (Σ, Q, q0,Γ, δ, ε), define its reversal:

Rev(M) = (Σ, Q, q0,Γ, δ, ε).

And similarly define the reversal of a reverse Moore Machine.

Proposition 12. Given a Moore Machine M , and word w:

Rev(M)(w) = Rev(M(Rev(w))).

What’s more:

Rev(M)Trunc(w) = Rev(MRest(Rev(w))).

Functions that are related in this way we say are related by conjugation by

Rev. This relation is reflexive and symmetric. What’s more since Rev is its

own inverse, if f and f ′ are related by conjugation and g and g′ are related by

conjugation, then f ◦ g and f ′ ◦ g′ will be related by conjugation. Indeed this

works for multiary functions as well:
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Definition. Given an n-ary function f , we say that

(x0, . . . , xn−1) 7→ f(x0, . . . , xn−1)

And

(x0, . . . , xn−1) 7→ Rev(f(Rev(x0), . . . ,Rev(xn−1)))

Are related by conjugation by Rev.

Proposition 13. Given a multi-ary composition of functions, if you replace each func-

tion by its conjugation by Rev, the overall composition is related to the original compo-

sition by conjugation by Rev.

Proof. It suffices to note that in the resulting composition, whenever the out-

put of a function is fed into the input of another function, it is reversed twice,

effectively doing nothing to it.

Additionally, conjugation by Rev does not alter character-wise functions.

Finally, we prove a final breakdown:

Proposition 14. Given a transparent Moore Machine M = (Σ, Q, q0, δ), we can write

MRest as a composition of character-wise maps and MTrunc.

Proof. It is easy to verify that:

MRest(w) = Cwδ(M
Trunc(w), w).

It follows from this that for any Moore Machine M , MRest can be written as

a composition of character-wise maps and MTrunc.
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Proposition 15. Any truncated reverse Moore Machine map can be written as the

multivariate composition of:

• RASTrunc
n , where RASn is the reversal of ASn, for various n,

• RBitTrunc, where RBit is the reversal of Bit,

• Character-wise maps.

Proof. Every reverse Moore Machine is Rev(M) for some M . As such, we can

write Rev(M)Trunc as:

Rev ◦MRest ◦ Rev.

As we’ve seen, we can writeMRest as a multiary composition ofASTrunc
n for vari-

ous n, BitTrunc, and character-wise maps, so by our conjugation of compositions

lemma, we can write Rev(M)Trunc as a multiary composition of the conjugations

of those components, which is what we were trying to prove.

While we’re at it, note that:

Proposition 16. Given a Moore Machine M , we can write M(w) as the multivariable

composition of a truncated Moore Machine map and S#.

Proof. Augment M to M ′ by allowing it to interpret the input # (it may do so in

any way it likes). Then:

M(w) = MTrunc(S#(w)).

As one final refinement of our generating set, we show that RASn is unnec-

essary as a generator.
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2.8 Removing RASn

Note that ASn and RASn are very similar automata. For ASn, one interprets

the input character w[i] as a permutation relating ASn(w)[i] and ASn(w)[i + 1].

For RASn, one interprets the input character w[i] as a permutation relating

RASn(w)[i + 1] and RASn(w)[i]. Since every permutation has an inverse,

shouldn’t these two automata be the same up to a suitable character-wise map

on the inputs? Certainly not! For there is another constraint on the runs of ASn

andRASn we must account for. ForASn, the first character of its run is specified

to be id. For RASn, the last character of its run is specified to be id.

Let’s compare ASn(w) and RASn(Cwinverse(w)) on some generic five charac-

ter input w = abcde:

w a b c d e
ASn(w) id a ab abc abcd abcde

RASn(Cwinverse(w)) (abcde)−1 (bcde)−1 (cde)−1 (de)−1 e−1 id

Table 2.2: Comparing ASn and RASn on Sample Input

In addition to applying a suitable transformation to the inputs of ASn, we

must also apply a suitable transformation to the outputs of ASn if we want to

produce the output of RASn. Specifically, if we multiply every character in the

output of ASn on the left by the inverse of the last character of the output, it

will ensure that the new last character of the output is id, but still maintain

the transition relationships. This requires passing the information of the last

character of ASn to every other position.
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First, we must introduce the mask of our word w, a word Mask(w) which is

all 0s up to the length of w, followed by a 1. This is computed simply by taking

S1(Cw0(w)) where 0 is the constant 0 map. Despite its simplicity, this word will

be key to performing our computation.

Consider the reverse reset Transparent Moore Machine R = ({0, 1} ×

Sn, Sn, id, δ) with:

δ(q, a) =


b a = (1, b)

q a = (0, b)

This is a reverse reset transparent Moore Machine, and so RTrunc can be written

in terms of character-wise maps and RBitTrunc.

Consider the action of RTrunc on Cwpair(Mask(w), ASn(w)):

w a b c d e
Mask(w) 0 0 0 0 0 1
ASn(w) id a ab abc abcd abcde

RTrunc(Cwpair(“)) abcde abcde abcde abcde abcde abcde

Table 2.3: The Action of RTrunc on Cwpair(Mask(w), ASn(w))

We now have a word which we can combine with ASn(w) via the ap-

propriate bitwise map (multiplying by the inverse on the left) to produce

RASn(Cwinverse(w)).

However, what we wanted was RASTrunc
n (Cwinverse(w)). We can attain that

by combining RASn(Cwinverse(w)) with Mask(w) bitwise to replace the last char-

acter of RASn(Cwinverse(w)) with a # and then using Unpad to remove it.

Letting f map pairs of the form (0, a) to a and pairs of the form (1, a) to #:
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w a b c d e
Mask(w) 0 0 0 0 0 1

RASn(Cwinverse(w)) (abcde)−1 (bcde)−1 (cde)−1 (de)−1 e−1 id
Cwf (“) (abcde)−1 (bcde)−1 (cde)−1 (de)−1 e−1 #

Unpad(“) (abcde)−1 (bcde)−1 (cde)−1 (de)−1 e−1

Table 2.4: Producing RASTrunc
n on Sample Input

This composition produces the desired output and works in general. As

such, we have the following, final form, of our theorem:

Theorem 6. Any regular function can be written as a multivariable composition of:

• ASTrunc
n for various n,

• BitTrunc,

• RBitTrunc,

• Character-wise maps,

• Tuplefy,

• Sa for various a,

• Unpad.

2.9 Further Research

We may think of a regular function as a function whose output can be verified

to be correct by a deterministic finite automaton, and in this chapter we have

spelled out exactly how one might go about finding that appropriate output.
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This should feel very similar to the class of NP problems or recursive enumer-

ability, in that once one has an answer one can verify it quickly. In these more

advanced cases, the issue of finding that answer is significantly more difficult.

In the case of finite automata, one can get by mostly with just a two-pass system.

While thinking about automata as transducers instead of acceptors takes us

away from the underlying logic, it takes us closer to real-world applications

of automata. One is then lead to ask similar questions about functions whose

graphs are recognized by Büchi automata, Tree automata, and Rabin automata.

The determinization-harvester decomposition can be adapted to trees, but is

there an analog to the Krohn-Rhodes theorem for trees in this context? What

about in the case of Büchi automata or Rabin automata, for which there is no end

of the input to start the harvester running backwards from? Can nice generators

still be found?

There is still much work to be done in establishing a Büchi-Elgot-

Trakhtenbrot theorem for graphs. There are several nice candidates for a

monadic second-order logic of graphs, and some nice notions of automata oper-

ating on graphs, but no full correspondence between them. The current state of

the art is Courcelle’s Theorem (see, e.g. [2]), which allows us to translate ques-

tions in a graph logic to tree automata operating on a tree decomposition of the

original graph, but not back. Fortunately, this is the direction most of interest to

applications. But perhaps an approach which instead of trying to connect for-

mulas and acceptors, connected describable functions and transducers would

shed light on the problem?

Finally, we also note that it is not possible to break down our ASn generators

much further. Of course for large enough n one may decompose the symmetric
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group Sn as a semidirect product of the alternating group An and S2, and use

this decomposition to guide a slight decomposition ofASn, but this doesn’t gain

anything. It is likely no further decomposition is possible. One would then like

a proof that, for instance, accumulators on the cyclic groups do not suffice, in a

way that hopefully sheds some light on what behavior symmetric groups cap-

ture that cyclic groups cannot. Alternately, a decomposition of the accumulators

on the symmetric groups in terms of accumulators on the cyclic groups would

be a remarkable result.
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CHAPTER 3

AXIOMATIZING THE WEAK SECOND ORDER THEORY OF ONE

SUCCESSOR

In this chapter we present an axiomatization of the theory of the Weak Sec-

ond Order Theory of One Successor (WS1S), and show that it is complete. Fur-

thermore, we will prove that no such axiomatization can be finite. This is in

preparation for chapter 4 which will explore the nonstandard models of WS1S.

3.1 Introduction

The weak second order theory of one successor, WS1S, is the theory of the two-typed

structureG := (ω,F(ω),∈, S), whereF(ω) is the set of finite subsets of ω, ∈ is the

binary relation between types (membership), and S is the successor operation

on ω. We will use lower case variables a, b, `, x, y, z to denote elements of the

first type, and upper case variables A,B,X, Y, Z, . . . to represent elements of

the second type. Boldface variables x,y,X,Y will indicate shorthand for finite

or infinite sequences of elements of the corresponding type indexed by natural

numbers. This structure is particularly interesting not only for being an actually

decidable second order theory of ω (the addition of + or weak dyadic second

order types makes it undecidable), but also for the correspondence between its

theory and the theory of finite state automata which allows it to be decidable in

the first place.

Previously an axiomatization of the Weak Second Order Theory of Two Suc-

cessors (WS2S), whose techniques and results can be reduced to the WS1S case,

was completed by Siefkes [10]. However this axiomatization focused on in-
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ductive axiom schema, suggesting an analogy between WS1S and, e.g. Peano

Arithmetic. This paper provides an axiomatization that stresses the weakness

of WS1S and the interconnection between WS1S and finite automata.

As it happens, a finite axiomatization is too much to hope for, but we will be

able to provide an axiomatization with simple statements that are self-evident

of G, along with a schema of axioms which can be interpreted as asserting that

finite automata of a certain class have a run on any input. These schema will be

fairly complex and only self-evident in the presence of this interpretation. We

will not aim in this paper to have our axiomatization be minimal. Instead, the

axiomatization presented in this chapter has been chosen specifically to moti-

vate and set the foundation for chapter 4, investigating the nonstandard models

of WS1S.

Closely resembling the approach in [10], our approach to proving the com-

pleteness of our axiomatization is as follows: given a formula φ in the language

of WS1S, we will inductively define a finite automaton Aφ which is expected to

be equivalent to the formula φ1. And given a finite automaton A, we will define

a formula ΦA which is expected to be equivalent to the automaton A2. This will

serve as a canonical form for formulas in WS1S. We will then prove that our

axioms suffice to show that every formula is equivalent to its canonical form.

These steps will resemble the proof of the Büchi-Elgot-Trakhtenbrot Theorem,

the equivalence of formulas in WS1S and finite automata, with every step being

shown to follow from our presented axioms. Finally, we will prove that every

true sentence in canonical form can be proved from our axioms.

1That is, Aφ will accept a suitable encoding of X0, . . . , Xn−1 if and only if φ(X0, . . . , Xn−1).
2That is, ΦA(X0, . . . , Xn−1) will hold if and only if A accepts a suitable encoding of

X0, . . . , Xn−1.
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Proving that WS1S cannot be finitely axiomatized will then be a fairly

straightforward matter. Suppose we have a finite complete axiomatization,

which we can by taking a conjunction reduce to a single axiom φ. This formula

will follow from our axiomatization, and thus follow from some finite subset

of our axiomatization. We will then produce a model H of this subset of our

axiomatization which does not satisfy all of our axioms. φ will be true of H ,

contradicting our assumption that φ was a complete axiomatization (and thus

only true of models that satisfied the entire theory of WS1S).

3.2 Axiomatizing (ω,<)

One might wonder how the first and second order parts of WS1S interact with

each other. More formally, are there relations on first order elements which

require the use of second order quantification in their definition? One such re-

lation is the ordering < on ω.3 It will be convenient to refer to it in our axiomati-

zation, and each of its appearances will stand in as shorthand for the definition

below:

Definition. A set X is said to be downward closed if:

dc(A) :≡ ∀X : S(x) ∈ A =⇒ x ∈ A

We define a linear ordering on the first order elements by:

x ≤ y :≡ ∀X : dc(X) ∧ y ∈ X =⇒ x ∈ X

As such it will be useful to throw in a complete axiomatization of (ω,<) to

our axiom system. One such axiomatization is provided in Chapter 13 of [9],
3Another is modular equivalence for any fixed modulus.
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which is adapted below to use the already-present notation for the successor

operation.

Axiom 1. < forms a Linear Ordering with Smallest Element and with Successor Op-

eration S which is All But Onto. That is:

(1.1) ∀x, y, z : x < y ∧ x < z =⇒ x < z (< is transitive)

(1.2) ∀x, y : x < y =⇒ ¬(y < x) (< is antisymmetric)

(1.3) ∀x, y : x < y ∨ x = y ∨ y < x (< is total)

(1.4) ∀x : S(x) > x (S is strictly increasing)

(1.5) ∀x : @y : x < y < S(x) (S is a successor operation)

(1.6) ∃o : ∀x : o ≤ x (< has minimal element)

(1.7) ∃o : ∀x : x 6= o =⇒ ∃y : S(y) = x (S has image ω \ {o})

Note that it follows from (1.1) and (1.7) that the o in (1.6) and (1.7) are unique,

and from (1.4) that the o in (1.6) and (1.7) are the same. We denote this element

with the shorthand 0.

It is worth noting that this axiomatization does not define (ω,<) uniquely. It

is simply a base from which all other first order facts about (ω,<) can be proved.

As mentioned in [9], this set of axioms characterizes the linear orderings of the

form ω followed by Z× L ordered lexicographically (ω + ζ · L), for some linear

ordering L. These linear orderings all have the same first order theory.

Together, all of these axioms set up the foundation upon which we will de-

velop the second order part of our axiomatization.
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3.3 Basic Set Axioms

In this section, we introduce some basic axioms for the second order elements

of WS1S. These first few have been intentionally chosen to resemble axioms of

ZFC. We will also define a notion of bitwise operation and show that our axioms

suffice to show that the second order elements of WS1S are closed under all the

bitwise operations we could expect them to be closed under.

Axiom (Extensionality). Sets are equal if and only if they contain the same elements.

Axiom (Singleton). For any x, there is a set, denoted {x}, containing only x.

Definition. Given two sets A,B, we write:

C = A ∪B :≡ ∀x : x ∈ C ⇐⇒ x ∈ A ∨ x ∈ B

C = A ∩B :≡ ∀x : x ∈ C ⇐⇒ x ∈ A ∧ x ∈ B

C = A \B :≡ ∀x : x ∈ C ⇐⇒ x ∈ A ∧ x /∈ B

A ⊆ B :≡ ∀x : x ∈ A =⇒ x ∈ B

Axiom (Closure Under Boolean Operations). The sets are closed under the boolean

operations ∪ and \.

We can interpret second order elements of WS1S with strings of 0s and 1s via

their characteristic functions, that is, given a setX , we can produce the sequence

s where sn = 1 iff n ∈ X . Via this interpretation, we can define a notion of

bitwise map, where the membership of a number in the output depends only

on which of the inputs it is a member of. Obviously the set of finite sets of

natural numbers is not closed under all bitwise maps. Bitwise negation, that is,

complementation, takes a finite set to a cofinite set. However, this is essentially

the only obstruction.
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Definition. We say that an n-ary boolean function f : {0, 1}n → {0, 1} is bounded

if it takes (0, . . . , 0) to 0.

Definition. Given an n-ary boolean function f : {0, 1}n → {0, 1}, we define the

bitwise-f map Bwf :

Bwf : (P(X))n → P(X),

Such that:

k ∈ Bwf (X0, . . . , Xn−1) ⇐⇒ f(δk∈X0 , . . . , δk∈Xn−1) = 1,

Where of course:

δk∈X =


0 k /∈ X,

1 k ∈ X.

Definition. Given an indexed collection X of sets X0, . . . , Xn−1 we denote by X[k] the

set of positions i such that k ∈ Xi:

(X[k])i := {i|k ∈ Xi}.

Given a tuple s ∈ {0, 1}n and indexed collection of sets X0, . . . , Xn, we denote

by Xs the set of positions k where the set of indices i such that k ∈ Xi is exactly the

positions of 1s in s:

Xs := {k|k ∈ Xi ⇐⇒ si = 1}.

Lemma 8. Given a tuple s ∈ {0, 1}n, if s 6= (0, . . . , 0), then Xs can be written as a

combination of X0, . . . , Xn−1 using only ∪ and \.

Proof. First, we note that intersection, ∩, can be written using only \:

A ∩B = A \ (A \B).
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From this, we can use associativity to write arbitrary intersections in terms of ∪

and \.

Next, note that for any s ∈ {0, 1}n,⋃
j|sj=1

Xj

Is the set of positions k where X[k] contains as a subset all the positions of 1s in

s.

Next, note that ⋃
i

Xi

Is the set of positions k where X[k] is nonempty.

Next, note that for any j,

(
⋃
i

Xi) \Xj

Is the set of positions k where X[k] is nonempty and does not contain j.

As such, for any s ∈ {0, 1}n (with s 6= (0, . . . , 0)),⋂
j|sj=0

((
⋃
i

Xi) \Xj)

Is the set of positions k where X[k] is nonempty and does not contain any posi-

tions of 0s in s.

Thus it is that

Xs =

 ⋃
j|sj=1

Xj

 ∩
 ⋂
j|sj=0

((
⋃
i

Xi) \Xj)

 .

Proposition 17. Any bitwise bounded boolean function can be written as a combina-

tion of ∪ and \.
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Proof. We can simply write:

Bwf (X0, . . . , Xn−1) =
⋃

s|f(s)=1

Xs.

As such, closure under union and difference is enough make sure that the

second order objects are closed under all bitwise bounded boolean functions.

Finally, we provide an axiom to ensure that all of the second order objects

are bounded. There’s a subtlety here: not even our monadic second order logic

can say directly that every set has (arbitrarily) finitely many elements, but it is

possible to say that every set has an upper bound, which in (ω,<), is equivalent.

Axiom. Every nonempty second order element has a <-maximal element. We denote

the maximal element of a set X by max(X)

We note that it follows from this axiom and the S is a successor axiom that

every set has a downwards closure.

Definition. Given a set X , we denote by its downward closure, dcl(X), the ⊆-least

downwards closed set containing X as a subset.

Proposition 18. It follows from our axioms that every set has a downwards closure.

Proof. Given a setX ,X has a<-maximal element, denote it by x. Since S(x) > x,

there must be a downwards closed set Y containing x which does not contain

x (otherwise we would have x ≥ S(x). I claim that Y contains all of X , since

any other element z ∈ X satisfies z < x, and thus since Y contains x and is

downwards closed, this means Y contains z as well by the definition of <.
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I also claim that Y is ⊆-minimal, in that any other downwards closed set

containing x must also contain something strictly larger than x. Suppose we

have two downwards closed sets containing x, W 6= W ′. Without loss of gener-

ality, we may assume there is some w ∈ W with w /∈ W ′. Since w is not in W ′, a

downwards closed set containing x. Thus we have that w � x, and so w > x (by

totality). So there cannot be two downwards closed sets containing x as their

maximal element.

Finally, we note that atoms under ⊆ are actually singletons.

Proposition 19 (No spurious singletons). A nonempty set X contains only itself

and the emptyset as subsets iff it is a singleton {x} for some x.

Proof. (⇒): Suppose we have a nonempty set X containing only itself and the

emptyset as subsets. Since X is nonempty, it contains an element, say x. Sup-

pose X also contains an element y 6= x. Then X \ {x} is neither X nor empty,

contradicting our hypothesis. So X = {x}.

(⇐): Suppose Y ⊆ {x} and Y is nonempty. Then Y must contain an element

y. However, in order to be a subset, y ∈ {x}, hence y = x. Y cannot contain any

other elements, as {x} doesn’t contain any other elements.

A simple result, but a critical one later, since we will need to represent first

order elements as singletons, and to do that we will need to be certain that

singletons are describable in terms of their ⊆ behaviour alone.

We summarize and number these axioms as follows:

Axiom 2. The second order objects are defined by their elements, closed under bounded

bitwise operations, closed under finite modification, and bounded.
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(2.1) ∀X, Y : (∀x : x ∈ X ⇔ x ∈ Y )⇒ X = Y (Extensionality)

(2.2) ∀x : ∃X : ∀y : y ∈ X ⇔ y = x (Singleton)

(2.3) ∀X, Y : ∃Z : ∀x : x ∈ Z ⇔ (x ∈ X ∨ x ∈ Y ) (Union Closure)

(2.4) ∀X, Y : ∃Z : ∀x : x ∈ Z ⇔ (x ∈ X ∧ x /∈ Y ) (Difference Closure)

(2.5) ∀X : ∃x : x ∈ X ∧ ∀y : y ∈ X ⇒ y ≤ x (Bounding)

3.4 Logical Automata

In this section we will introduce a notion of logical automata, automata which

have been modified to operate within WS1S. Alternately, we can think of this in

terms of canonical forms for formula. WS1S has a very nice canonical form for

formulas, and logical automata will provide a semantically transparent param-

eterization of these canonical forms.

Recall that if X is an indexed collection with finite set of indices K, and

s ∈ {0, 1}K , then we use the shorthand Xs to stand for {x|∀k ∈ K : sk = 1 ⇐⇒

x ∈ Xk}. Thus, we write x ∈ Xs as shorthand for:

x ∈ Xs :≡

 ∧
k|sk=1

x ∈ Xk

 ∧
 ∧
k|sk=0

x /∈ Xk

 .
We also use the shorthand n for the set {0, . . . , n − 1}, but never in reference to

the second order element of a model of WS1S.

Definition. A logical automaton is a 5-tuple A = (n,Q, I, δ, F ) where:

• n is the number of inputs, potentially 0.

• Q is a finite set of states. We will refer to the elements of Q via some canonical

ordering as 0, . . . , |Q| − 1, but often the states will retain additional information,
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for instance they may be pairs of states of other automata. We will also refer to

the number of states of an automaton A as |A|. Often we will prove results for

automata with state set m where this suffices to prove the result in general.

• I ⊆ Q is the set of initial states.

• δ ⊆ Q× 2n ×Q is the transition relation.

• F ⊆ Q is the set of final states.

These automata are specifically designed to accept n-tuples of second order elements

of a model of WS1S. Given an n-tuple of second order objects X = (X0, . . . , Xn−1),

we say that a first order-object ` and a |Q|-tuple of second order objects Y =

(Y0, . . . , Y|Q|−1) is a run of A on input X if:

• ` is strictly larger than anything in any Xi (particularly, the least strict upper

bound to the Xi).

• Yi form a partition of dcl(`), that is, they have pairwise empty intersection and

together their union is all of dcl(`).

• 0 ∈ Yq for some q ∈ I .

• For any 0 < x < `, if x ∈ Yq and x ∈ Xs and S(x) ∈ Yq′ then (q, s, q′) ∈ δ.

We say that such a run is accepting if additionally:

• ` ∈ Yq for some q ∈ F .

We interpret the definition of a run as follows: first order elements represent

instances of time. If x ∈ Yq for some state q (and since the Yq form a partition of

dcl({`}), this happens for exactly one state provided x ≤ `) we interpret this as
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the automaton being in state q at time x. Of course, we require the automaton

to be in exactly one state at any time, and we require the automaton to be in

a start state at time 0. Then we require that if the automaton is in a state q at

time x and it reads input s (the input being read at any one time is just a binary

sequence representing whether x is in each of the inputs.) at time x, then at time

S(x), the automaton should be in a state q′ such that q, s, and q′ are related by

the transition relation. We also require that the automaton stop at some time

`, after having read all the input. Note that at time max(
⋃
i∈nXi), the state of

the automaton has not yet been updated to take into account the input at time

max(
⋃
i∈nXi) which by construction is nontrivial, so we require that ` be strictly

larger than this.

A design choice has been made as to whether the state at time x should be

the state of the automaton before reading the input at time x or after. There

are advantages and disadvantages to both, and both give equivalent notions of

automata, but it seems like the former option is preferable, due to saving steps

on many inductive proofs throughout this chapter.

Next, given an automaton A = (n,Q, I, δ, F ), we construct a formula

ΦA(X0, . . . , Xn−1) which formalizes the above.

Definition. Define the formula R(n,Q,I,δ,F )(X0, . . . , Xn−1, `, Y0, . . . , Y|Q|−1) in WS1S

as the conjunction of:

• ∀x :
∨
i∈Q

∧
j∈Q[x ∈ Yj ⇐⇒ (i = j ∧ 0 ≤ x ≤ `)]

•
∨
i∈I 0 ∈ Yi

• ∀x : 0 ≤ x < ` =⇒
[∨

(i,s,k)∈δ(x ∈ Yi ∧ x ∈ Xs ∧ S(x) ∈ Yk)
]
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This formalizes the notion of (`, Y0, . . . , Y|Q|−1) being a run of (n,Q, I, δ, F ) on

input X0, . . . , Xn−1.

Definition. Define the formula Φ(n,Q,I,δ,F )(X0, . . . , Xn−1) in WS1S as:

∃` : ∃Y0, . . . , Y|Q|−1 :` = LSUB(
⋃

X)

∧R(n,Q,I,δ,F )(X0, . . . , Xn−1, `, Y0, . . . , Y|Q|−1)

∧
∨
i∈F

` ∈ Yi.

Where LSUB(X) is shorthand for the least strict upper bound for a set, either 0 for the

emptyset or S(max(X)) for a nonempty set.

This formalizes the notion of there being an accepting run of (n,Q, I, δ, F ) on

input X0, . . . , Xn−1.

We are now prepared to introduce our axiom schema for finite automata. It

suffices in this case to simply specify that automata have runs on any input. We

will be able to prove later theorems involving whether automata have accepting

runs or not. Of course, not every automaton has a run on any input, but there

are simple things we can check to ensure that every automaton has a run on any

input.

Definition. An automaton (n,Q, I, δ, F ) is said to be runnable if:

• |I| > 0,

• ∀q, s ∈ 2n : ∃q′ : δ(q, s, q′).

Definition. An automaton (n,Q, I, δ, F ) is said to be reverse-runnable if:

• |F | > 0,
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• ∀q, s ∈ 2n : ∃q′ : δ(q′, s, q).

Note that these are assertions about the internal structure of the automaton:

nothing about the runs or acceptance of the automaton. As such, the following

axiom schema is nontrivial:

Axiom. (3.A) If A = (n,Q, I, δ, F ) is a runnable automaton, for any sequence of

inputs X0, . . . , Xn−1,

Φ(n,Q,I,δ,Q)(X0, . . . , Xn−1).

Axiom. (4.A) If A = (n,Q, I, δ, F ) is a reverse-runnable automaton, for any sequence

of inputs X0, . . . , Xn−1,

Φ(n,Q,Q,δ,F )(X0, . . . , Xn−1).

This is a very specific sort of inductive axiom: if we can start constructing a

run of our automaton and at any point if we have a partial run, we can find a

state to transition to next, then we can construct the whole run of our automa-

ton. In the runnable case we construct our run from start to end, and in the

reverse-runnable case, we construct a run from end to start. Note that in the

runnable case, we don’t have to worry about our run being accepting, and in

the reverse-runnable case, we don’t have to worry about our run having the

right start state, since we’ve replaced F and I respectively with all of Q. This

completes our axiomatization.

3.5 Basic Consequences of Our Axioms

In this section we collect some of the basic consequences of our axioms, in prepa-

ration for future sections.
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First, we define a predecessor operation P which is meant as an inverse to S,

and define the operations S ′′, P ′′ on second order elements which are meant to

apply their respective operations to each element in the set.

Definition. Define

P (x) :=


0 x = 0,

y x = S(y).

Given a second order element X , define S ′′(X) and P ′′(X) such that:

S(x) ∈ S ′′(X) ⇐⇒ x ∈ X,

and 0 /∈ S ′′(X), and:

x ∈ P ′′(X) ⇐⇒ S(x) ∈ X.

Proposition 20. It follows from our axioms that the second order objects are closed

under S ′′.

Proof. Construct the automaton

B := (1, {0, 1}, {0}, δ, {0, 1}),

Where:

δ = {(i, j, j)|i, j ∈ {0, 1}}.

Let Y be a run of B on input X . Then it is easy to check that Y1 is S ′′(X) by

looking at the transition relation.

Proposition 21. It follows from our axioms that the second order objects are closed

under P ′′.
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Proof. Construct the automaton

B = (1, {0, 1} × {0, 1}, {0, 1} × {0, 1}, δ, {(0, 0)}),

Where:

δ = {((i, j), k, (j, k))|i, j, k ∈ {0, 1}}.

Let Y be a run of B on input X (this uses (4.A)). Then it is easy to check by

looking at the transition relation that Y(1,0) ∪ Y(1,1) is just X , and from this that

Y(0,1) ∪ Y(1,1) is P ′′(X).

Secondly, I assert that every set has a <-least element. This is a key result

that allows us to perform inductive proofs: if we want to show that something

always happens for any first order element, ∀x : P (x), then it suffices to prove

three things:

1. P (0),

2. P (x) =⇒ P (S(x)),

3. The set of x such that ¬P (x) is a second order element of our model4.

I claim it will then follow that ∀x : P (x). Let Y be the set of x such that ¬P (x).

Then Y will have a least element. This least element cannot be 0 or the successor

of anything, contradicting (1.7). Typically, we will prove (3) by application of the

closure axioms (2.2), (2.3), (2.4), (3.A), and (4.A).

We can even show that a particular run satisfies the transition relation of an

automaton using induction. In order to use induction, we need to be able to talk

about the set of positions where, given an automatonA and input X, a proposed

4Or, at least, for any y, the set {x|x < y ∧ ¬P (x)} is a second order element of our model.
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run Y fails to satisfy the transition relation δ for A. These positions are given

by: ⋃
(a,s,b)/∈δ

[Ya ∩Xs ∩ P ′′(Yb)].

Typically, though, there will be a more direct proof: if X,Y are defined in such

a way as to satisfy a particular transition relation, then it will usually follow

directly that they satisfy the transition relation for our automaton A.

Proposition 22. It follows from our axioms that every nonempty set has a <-least

element.

Proof. Begin with a set X . Consider the following automaton:

Bit := (1, {0, 1}, {0}, δ, {0, 1}),

Where:

δ := {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1)}.

Now, let `, Y0, Y1 be the run of Bit on input X . ` will be the successor of the

largest element of X . Y0 will be the set of positions up to and including the first

appearance of an element of the input, and Y1 will be all positions afterwards

up to and one past the last appearance of an element of the input.

First, I assert that if z ∈ Y0 and w < z then w ∈ Y0. Suppose not. Then there

is a largest w with w < z and w ∈ Y1, the largest element of Y1 ∩ dcl({z}). This

w cannot be z, since z ∈ Y0, so it must be that S(w) ≤ z. But since w was the

largest element of Y1 ∩ dcl({z}), it must be that S(w) ∈ Y0, contradicting the

construction of our transition relation.

Y0 is nonempty since 0 is the starting state. Thus, By (2.5), Y0 has a largest

element y. Since {Y0, Y1} is a partition of dcl({`}), S(y) is either in Y1 or not in

dcl({`}) at all, that is, S(y) > ` (by totality).
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Case 1: suppose that S(y) is in Y1. Since y ∈ Y0 and S(y) ∈ Y1, it must be by

the transition relation that y ∈ X . Furthermore, I assert that there is no z < y

such that z ∈ X , since otherwise by the transition relation, S(z) would be in

Y1, contradicting our earlier proved downward closure of Y0. So this y is the

smallest element of X .

Case 2: suppose that S(y) > `. Since y ∈ dcl({`}), it must be that y ≤ `, thus

since S is a successor operation, y = `. By the downward closure of Y0, it must

be that Y0 = dcl({`}). I claim in this case that X is empty, since if it contained

an element w, then S(w) would be in Y1 and Y1 must be empty, since {Y0, Y1} is

a partition of dcl({`}).

3.6 Determinization

One goal in this chapter is to prove that the standard Büchi-Elgot-Trakhtenbrot

result, equivalence of finite automata and WS1S formulas, holds for our logical

automata, and that this equivalence is a consequence of our axioms. Specifically,

given a formula φ, we wish to prove that there is an automaton A such that:

φ(X0, . . . , Xn−1) ⇐⇒ ΦA(X0, . . . , Xn−1).

We will denote this automaton Aφ. As such, much of the next few sections

is dedicated to reproving classical results of automata theory, from the given

axioms.

Critical to the importance of finite automata is the expressive equivalence

of deterministic and non-deterministic automata. While non-deterministic au-

tomata are much more natural from an atemporal, relational, formal logic stand-
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point, being as they are simply a specific case of a much more general class of

local constraint systems5, deterministic automata are much more natural from

a temporal automaton perspective. Additionally, it is clear how to complement

them, a critical problem in the theory of general local constraint systems.

Definition. An automaton A = (n,Q, I, δ, F ) is deterministic if:

• |I| = 1,

• ∀q, s ∈ 2n : ∃!q′ : δ(q, s, q′).

An automaton A = (n,Q, I, δ, F ) is reverse-deterministic if:

• |F | = 1,

• ∀q, s ∈ 2n : ∃!q′ : δ(q′, s, q).

Proposition 23. It follows from our axioms that every deterministic automaton A =

(n,Q, I, δ, F ) has exactly one run on input X0, . . . , Xn−1 of length ` = LSUB(
⋃
X).

Proof. Since A is runnable, it follows from (3.A) that A has at least one such run.

Suppose there are two runs Y and Y′. Consider the set

K =
⋃

q 6=q′∈Q

[Yq ∩ Y ′q′ ],

The set of positions where Y and Y′ differ. I assert thatK is empty. Suppose not,

then it must have a least element. This least element cannot be 0, since |I| = 1.

5Here we refer to systems with a notion of labelling and locality where we distinguish those
labellings which can be augmented to ones that in every local region satisfy some constraint
versus those that cannot. A wide variety of automata are of this form, including cellular au-
tomata, but a particularly enlightening example may be unranked tree automata, whose local
regions are not bounded in size. Additionally, differential equations and operations are of this
form: there is a sense in which they are a special case of continuous automata.
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Then it is S(x) for some x. Then we know the state of our runs at time x agree,

but at time S(x) disagree, contradicting δ being a function fromQ×2n → Q.

Definition. Given an automaton A = (n,Q, I, δ, F ), define the determinization of

A, denoted det(A), as the automaton:

det(A) = (n,P(Q), {I}, δ′, {K ⊂ n|K ∩ F 6= ∅}),

Where:

δ′(R, s, T ) :⇐⇒ T = {q′|∃q ∈ R : δ(q, s, q′)}.

Of course det(A) is deterministic.

Proposition 24. From our axioms, we can conclude that given an automaton A =

(n,m, I, δ, F ) and an input X0, . . . , Xn−1,

ΦA(X) ⇐⇒ Φdet(A)(X)

To summarize the proof: I will assert that at any point x, the state of det(A)

will be the set of states for which there is a run of A on the same input with that

state at point x. Showing that this follows from our axioms is a bit tricky: we

can show that there is no specific point x where this stops happening, but our

level of induction is not strong enough for this to suffice.

In order to show that states don’t disappear in the run of det(A), that is, it

isn’t the case that there’s a state which is reachable, but doesn’t appear in the

run of det(A), one simply has to compare a run containing the state in question

at the position in question to the run of det(A). Bitwise operations will give us

the set of positions where states of our run do not appear in the run of det(A)

and this set cannot have a smallest element, so it’s empty.
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To show that states don’t spuriously appear in the run of det(A), that is, it

isn’t the case that there’s a state which isn’t reachable, but does appear in the run

of det(A) is trickier: given a state at a position in the run of det(A), we construct

a run of A backwards, starting at this state, and using the run of det(A) as a

guide to make sure that we stay within states that can be traced back to the

starting state and not wind up in some dead-end branch. This construction is

performed by an automaton H . We expect H to be reverse-runnable, but only

because of our choice of input, so we need to add in a dummy state to ensure

that H has a transition relation that makes it reverse-runnable, and then argue

that for this particular input, the dummy state is never used.

So if there is an accepting run of A, it must be the case that the run of det(A)

ends in a state containing the final state of our accepting run ofA, hence this run

of det(A) is accepting. If there is an accepting run of det(A) then it must be the

case that some accept state appears in the final state of this run, and so there’s a

run of A such that this state appears as the final state.

It is also worth noting that this is the essential use of axiom schema (3.A) and

(4.A): asserting that the determinization has a run at all and then asserting that

the auxiliary automaton H has a reverse run. Other uses of these axioms could

be made into their own axioms with significantly less semantic content, but this

case seems to use the full power of our schema.

Proof. det(A) is deterministic, so we may consider the unique run Z on in-

put X. I assert the following. Suppose x ∈ ZJ for J ∈ P(m). Then J is

exactly the set of all states q such that there is a run Y0, . . . , Ym−1 satisfying

RA(X0, . . . , Xn−1, x, Y0, . . . , Ym−1) with x ∈ Yq. Informally, the state of det(A)

at any one time x is the set of states for which there is some run of A with that
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state at time x.

It should be clear that if this statement is true for x then it’s true for S(x).

Suppose it’s the case that x ∈ ZJ and J is exactly the set of states q that show up

at position x in some run Y of A on input X. Then by construction of δ′, S(x) is

in some ZK for K the set of states which potentially show up as the next states

after reading the input at position x. One may construct an appropriate run

by augmenting the runs Y by combining the singleton and boolean operation

axioms.

Now suppose it’s the case that there’s a run Y0, . . . , Ym−1 with state q appear-

ing at position x but x ∈ ZJ for some J with q /∈ J . Then consider the set:

U := {x|∃i, J : x ∈ Yi ∧ x ∈ ZJ ∧ i /∈ J} =
⋃
i∈m

[
Yi \

⋃
J3i

ZJ

]
.

This set exists by closure properties. By our assumption, this set is nonempty,

and hence has a smallest element y. By construction of det(A), this y 6= 0. What

this means is that there is an S−1(y) which is not in U but y is in U . But again,

one can easily check that if S−1(y) /∈ U then by construction of det(A), neither is

y.

So the only thing that could go wrong was if there were a state q and a posi-

tion x such that x ∈ ZJ for some J 3 q, but there was no run Y of A with x ∈ Yq.

That is, some state mysteriously appeared in the run of det(A) that didn’t belong

there. Suppose this is the case. Consider the following automaton6:

H := (n+m,m ∪ {qd},m ∪ {qd}, δ′′, {q}).

Where (p, s_t, p′) ∈ δ′′ if (p, s, p′) ∈ δ ∧ tp = 1 or if p = qd and there is no a such

that (a, s, p′) ∈ δ and ta = 1.
6This automaton is based on the Harvester Automaton for A used in Generating the Regular

Functions and Krohn-Rhodes.
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By construction, H is reverse-runnable, and we refer to qd as the dummy state.

Since H is reverse-runnable, there is a run W such that:

RB(X0, . . . , Xn−1, U0, . . . , Um−1, x,W0, . . . ,Wm,Wqd),

Where:

Ui := {x|∃J 3 i : x ∈ ZJ} =
⋃
J3i

ZJ .

I assert that Wqd = ∅. Suppose not, then Wqd has a maximal element w. This

element is not x, since we’re in state q at that point.

Label our situation as follows: let J be the state of det(A) at position w and

J ′ be the state of det(A) at position S(w) (note that this even makes sense if

S(w) = x). Let s be the input at time w. So, specifically, w ∈ Xs, w ∈ ZJ ,

w ∈ Wqd , S(w) ∈ ZJ ′ , and S(w) ∈ Wr. Here’s a diagram to keep track of the

situation. Recall that X was the original input to our automaton A, Z was the

run of det(A) on input X, and W was the run of H on input (X,U) where U

was a representation of Z.

w S(w)
X s
Z J J ′

W qd r (r′)

Table 3.1: Transition Diagram for the Determinization and Harvester Near
the Dummy State

On the one hand, because w ∈ Wqd , it must be the case that there is no state

a such that (a, s, r) ∈ δ with a ∈ J .

• In case S(w) = x, r must be the final state of H which we chose to be q,

which we know is in J ′.
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• Otherwise, r must have been obtained going backwards from another

state, r′, which by the transition relation for H tells us that r ∈ J ′.

Either way, we get that r ∈ J ′.

By construction of Z, we know that any state showing up in J ′ can be traced

back to a state in J . Specifically, there is some state a such that (a, s, r) ∈ δ with

a ∈ J , a contradiction.

This proves our assertion that Wqd is empty, which means that W is a valid

run of A on input X up to point x (part of the definition of H was that its out-

put would have to satisfy the transition relation for A or have a qd show up

somewhere).

This completes the proof of our earlier assertion, that the state of det(A) at

any one time x is the set of states for which there is some run of A up to that

point with that state.

So, as stated earlier, if there is an accepting run of A, it must be the case that

the run of det(A) ends in a state containing the final state of our accepting run

of A, hence this run of det(A) is accepting. If there is an accepting run of det(A)

then it must be the case that some accept state appears in the final state of this

run, and so there’s a run of A such that this state appears as the final state.

We will see in the next section that this means that it follows from our ax-

ioms that the standard complementation procedure of determinizing and then

complementing the set of accept states works correctly.
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3.7 Complementation

Definition. Given a deterministic automaton A = (n,Q, I, δ, F ), define Swap(A) =

(n,Q, I, δ,Q \ F ).

Proposition 25. It follows from our axioms that if A is deterministic, and X a suitable

input, then:

¬ΦA(X) ⇐⇒ ΦSwap(A)(X).

Proof. It follows from determinization that there is a unique run Y ofA on input

X. One can determine the last state of this run by taking the maximum of
⋃

Y,

and determining where it came from. Either it came from F in which case ΦA(X)

or it came from Q \ F , in which case ΦA(X), but not both.

Definition. Given a general automaton A = (n,Q, I, δ, F ), define Comp(A) =

Swap(det(A)).

Proposition 26. It follows from our axioms that for any A and suitable input X:

¬ΦA(X) ⇐⇒ ΦComp(A)(X).

3.8 Conjunction

In this section we show that if we have automata A and A′ which correspond

to formulas φ, φ′, then we can construct an automaton Conj(A,A′) which corre-

sponds to the formula φ ∧ φ′.

Definition. Given two n-ary automata A = (n,Q, I, δ, F ) and A′ = (n,Q′, I ′, δ′, F ′)

define their conjunction:

Conj(A,A′) := (n,Q×Q′, I × I ′, δ′′, F × F ′),
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Where:

δ′′ = {((a, b), s, (c, d))|(a, s, c) ∈ δ ∧ (b, s, c) ∈ δ′},

Proposition 27. It follows from our axioms that, given n-ary A,A′ and suitable X,

then:

[ΦA(X) ∧ ΦA′(X)] ⇐⇒ ΦConj(A,A′)(X).

Proof. (⇒): Suppose we have runs Y witnessing ΦA(X) and Y′ witnessing

ΦA′(X). Construct run W where:

W(q,q′) = Yq ∩ Y ′q′ .

It’s easy to check that W witnesses ΦConj(A,A′)(X).

(⇐): Suppose we have run Y witnessing ΦConj(A,A′)(X). Then let:

Wq =
⋃
q′∈Q′

Y(q,q′),

And:

W ′
q′ =

⋃
q∈Q

Y(q,q′).

Then it’s easy to check that W witnesses ΦA(X) and W′ witnesses ΦA′(X).

3.9 Bounding and Unbounding

Just as important as the expressive equivalence between deterministic and non-

deterministic automata is the expressive equivalence between bounded au-

tomata, those automata, like our implementation of logical automata, whose

runs terminate immediately after reading the last nontrivial input, and un-

bounded automata, those automata which are allowed to continue running after
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reading the last nontrivial input. In this section, we will define an analog of Φ

for running logical automata unboundedly, and provide constructions for an

equivalence between bounded and unbounded automata.

Definition. Recall that we constructed a formula

RA(X0, . . . , Xn−1, `, Y0, . . . , Y|Q|−1)

to indicate that Y0, . . . , Y|Q|−1 was a run of length ` of A on input X0, . . . , Xn−1.

Define the formula Ψ(n,Q,I,δ,F )(X0, . . . , Xn−1) in WS1S as:

∃` : ∃Y0, . . . , Y|Q|−1 :` ≥ LSUB(
⋃

X)

∧R(n,Q,I,δ,F )(X0, . . . , Xn−1, `, Y0, . . . , Y|Q|−1)

∧
∨
i∈F

` ∈ Yi.

We now define a notion of unbounding a logical automaton:

Definition. Given an automaton A = (n,Q, I, δ, F ), define its unbounding:

UBd(A) := (n,Q×Q, {(i, i)|i ∈ I}, δ′, Q× F ),

Where:

δ′((a, b), s, (c, d)) :⇐⇒ (s = 0 ∧ d = b ∧ δ(a, s, c))

∧(s 6= 0 ∧ d = c ∧ δ(a, s, c))

This automaton keeps track of two things: the state of the original automaton

A and the last state the automaton went into when it saw a nonempty input.

Proposition 28. Given an automaton A = (n,m, I, δ, F ), and suitable input X, it is

provable from our axioms that the following are equivalent:
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1. ΦA(X),

2. ΦUBd(A)(X),

3. ΨUBd(A)(X).

Proof. (1)⇒ (2): Let Y be the accepting run as given in (1).

Given our accepting run Y of A, our goal is to construct two runs, which we

will then combine together to produce an accepting run of UBd(A). This first is

our run Y. The second is the run above, but delayed in the case of inputs which

are 0.

Define the automaton D:

D := (|Q|+ 1, Q, I, δ′, Q),

Where:

δ′(a, r_t, b) :⇐⇒ [(t = 1 ∧ rb = 1) ∨ (t = 0 ∧ b = a)] .

Let V be the run of D on input P ′′(Y0), . . . , P ′′(Y|Q|−1),
⋃
iXi.

One then checks that, by construction, W where:

W(q,q′) = Yq ∩ Vq′ ,

Is an accepting run of UBd(A) on input X.

(2) ⇒ (3): This is trivial. A bounded run of UBd(A) is also an unbounded

run of UBd(A).

(3) ⇒ (1): Given an accepting unbounded run Y of UBd(A), let ` =

LSUB(
⋃
iXi). Then our desired run of A is W, where:

Wq =
⋃
q′

Y(q,q′) ∩ dcl({`}).
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One can show inductively that everywhere beyond finishing reading the input

X, the second coordinate of the state UBd(A) is in is a particular accept state

of A. One then argues that at position max(
⋃
iXi), UBd(A) read a nontrivial

input, and so updated the second coordinate of its state to agree with the first

coordinate of its state (ie, that particular accept state). If
⋃
iXi is empty, then

the second coordinate of the state cannot change, so we must have started in an

accept state. Hence, the run W is accepting.

We now define a notion of bounding a logical automaton:

Definition. Given an automaton A = (n,Q, I, δ, F ), define its bounding:

Bd(A) := (n,Q, I, δ, F ′),

Where:

F ′ = {q ∈ Q|∃i, q0, . . . , qi−1 :q = q0

∧qi−1 ∈ F

∧∀j : δ(qj,0, qj+1)

Proposition 29. It follows from our axioms that, given an automaton A =

(n,Q, I, δ, F ), and input X, the following are equivalent:

1. ΨA(X),

2. ΨBd(A)(X),

3. ΦBd(A)(X),

Proof. (1)⇒ (2): This is clear. Any witnessing run in (1) is also a witnessing run

in (2).
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(3)⇒ (1): One simply takes the witnessing run in (3) and augments it with

the finite series of states which lead the final state of such a run to a final state

of A. This augmented run is in our model by closure under finite modifications,

and of course is an accepting unbounded run of A.

(2) ⇒ (3): Consider an accepting run in (2). I asset that this run is all ac-

cept states from the end of reading the input. Specifically, suppose we have

`, Y0, . . . , Y|Q|−1 with ` ≥ LSUB(
⋃
X),RBd(A)(X, `,Y), and ` ∈ Yf for some f ∈ F .

Define the set:

U :=
⋃
i/∈F ′

Yi \ dcl(
⋃

X),

Where F ′ is the set of accept states of Bd(A).

I assert that U , the set of all positions beyond reading the input where the

state is not an accept state of Bd(A), is empty, and thus that LSUB(
⋃
X) ∈ Yi for

some i ∈ F , which would mean that the appropriate prefix of Y is the desired

run in (3). Suppose U is nonempty. Then let u be the maximal element of U . u

cannot be max(
⋃
Y ), since we know that max(

⋃
Y ) ∈ Yf for some f ∈ F ′ by

hypothesis. So it must be the case that S(u) is in Yf for some f ∈ F ′. In this case

one may augment the sequence witnessing that f ∈ F ′ to verify that whatever i

gives us u ∈ Yi must also be in F ′, contradicting our choice of u.

In the next sections, we will take advantage of our new equivalence to han-

dle a small detail regarding free variables and existential quantification (projec-

tion).
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3.10 Permutation and Introduction of Variables

Our project so far has been to show that if we have a formula φ with free second

order variables X0, . . . , Xn−1, then there is an automaton A with n inputs such

that:

∀X0, . . . , Xn−1 : φ(X0, . . . , Xn−1) ⇐⇒ ΦA(X0, . . . , Xn−1).

However, this isn’t quite all that we need to show. Consider the example of

taking the conjunction of two formulas φ and φ′, where φ has free variables

X0, X1 and φ′ has free variablesX1, X2. We construct inductively, automataA,A′

such that

φ(X0, X1) ⇐⇒ ΦA(X0, X1)

and

φ′(X1, X2) ⇐⇒ ΦA(X1, X2).

Before we can take our conjunctions, we must first construct automataB,B′ that

take in 3 inputs, such that

φ(X0, X1) ⇐⇒ ΦB(X0, X1, X2)

and

φ′(X0, X1, X2) ⇐⇒ ΦB(X0, X1, X2).

Then we may use our main proposition from our section on conjunction to pro-

duce an automaton C such that

φ(X0, X1) ∧ φ′(X1, X2) ⇐⇒ ΦC(X0, X1, X2).

A small detail, certainly, but one we cannot brush over if we wish to prove that

our equivalence holds from our axioms. There are many ways to handle this

issue indirectly, but in this section we will address the issue directly with a pair

of results.
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Definition. Given an automaton A = (n,Q, I, δ, F ), define the automaton Aug(A):

Aug(A) := (n+ 1, Q, I, δ′, F ),

Where:

δ′ := {(a, s_t, b)|(a, s, b) ∈ δ}.

Proposition 30. Given an n-ary deterministic automatonA, for which an empty input

takes accepting states to accepting states, the following are equivalent:

1. ΨA(X0, . . . , Xn−1),

2. ΨAug(A)(X0, . . . , Xn−1, Xn).

Proof. (2)⇒ (1) is immediate. The accepting run for (2) is the accepting run for

(1).

(1)⇒ (2): The only difficult case here is if the accepting run for (1) is shorter

than the new input Xn. Otherwise the accepting run for (1) is the accepting

run for (2). Suppose now that we need to extend the accepting run for (1) to

be longer, while still being accepting. We will prove that ΦAug(A)(X0, . . . , Xn),

from which (2) will follow. Since A is deterministic, so is Aug(A). By axiom

(3.A), there is a bounded run Y of Aug(A) on input X0, . . . , Xn. Since runs of

deterministic automata are unique, Y is just an extension of the accepting run

for (1). One then can prove by induction that since the accepting run for (1)

ended in an accept state, and since the transition relation for Aug(A) on empty

input takes accepting states to accepting states, Y must end in an accepting

state.

Corollary 1. Given an n-ary automaton A, the following are equivalent, for all

X0, . . . , Xn:
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1. ΦA(X0, . . . , Xn−1),

2. Φdet(A)(X0, . . . , Xn−1),

3. ΨUBd(det(A))(X0, . . . , Xn−1),

4. ΨAug(UBd(det(A)))(X0, . . . , Xn−1, Xn),

5. ΦBd(Aug(UBd(det(A))))(X0, . . . , Xn).

Proof. All of the steps above are equivalences we’ve previously shown. It sim-

ply suffices for (3) ⇐⇒ (4) to note that any automaton in the image of UBd will

take accept states to accept states, and that the unbounding of a deterministic

automaton will be itself deterministic.

Finally, note that in our original motivating example, we had a formula

φ′(X1, X2), and we wanted to, given an automaton A′ such that:

φ′(X1, X2) ⇐⇒ ΦA(X1, X2),

construct an automata B′ such that:

φ′(X1, X2) ⇐⇒ ΦB(X0, X1, X2).

In order to obtain such an automaton in addition to our introduction of vari-

ables construction, we also need a permutation of variables construction. Sim-

ply note that the obvious construction of appropriately permuting the transition

relations works correctly: one can show that the run of one automaton, by virtue

of satisfying its transition relation, satisfies the transition relation of the other on

suitably permuted inputs.

Having shown we can handle them, henceforth in this paper we will ignore

issues of introduction and permutation of variables. In the next section, we
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apply our unbounding construction to prove that projected automata behave

correctly, provably from our axioms.

3.11 Projection

In this section we seek to prove that the traditional construction for projecting

the language accepted by an automaton works correctly in our axiom system.

That is, we wish to show that given an automaton A, there is an automaton

Proj(A) such that:

∃Xn : ΦA(X0, . . . , Xn−1, Xn) ⇐⇒ ΦProj(A)(X0, . . . , Xn−1).

Definition. Given an automaton A = (n + 1, Q, I, δ, F ), define the unbounded pro-

jection: UProj(A):

UProj(A) = (n,Q× {0, 1}, I × {0, 1}, δ′, F × {0, 1}),

Where:

δ′ := {((a, i), s, (b, j))|i, j ∈ {0, 1}, (a, s_i, b) ∈ δ}.

Proposition 31. Given suitable input X0, . . . , Xn−1, the following are equivalent:

1. ∃Xn : ΨA(X0, . . . , Xn),

2. ΨUProj(A)(X0, . . . , Xn−1).

Proof. (1) ⇒ (2): Suppose Xn is such that ΦA has accepting run Y on input

X0, . . . , Xn. Then construct run:

W(i,0) =Yi ∩ (dcl(Xn ∪
⋃
i

Yi) \Xn),

W(i,1) =Yi ∩Xn.
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I assert that this is an accepting run for ΨUProj(A). One can check that the transi-

tion relation holds.

(2)⇒ (1): Suppose ΨUProj(A) has accepting run Y on inputX0, . . . , Xn−1. Then

construct:

Wi =Y(i,0) ∩ Y(i,1)

Xn =
⋃
i

Y(i,1)

Then I assert that Xn is such that ΨA has accepting run W on input X0, . . . , Xn.

Finally, we construct the projection operation for bounded automata:

Proposition 32. Given automaton A, the following are equivalent:

1. ∃Xn : ΦA(X0, . . . , Xn),

2. ∃Xn : ΨUBd(A)(X0, . . . , Xn),

3. ΨUProj(UBd(A))(X0, . . . , Xn−1),

4. ΦBd(UProj(UBd(A)))(X0, . . . , Xn−1).

As such, we refer to Bd(UProj(UBd(A))) as Proj(A).

This completes our collection of inductive constructions. We now need to

provide, for various possible atomic formulae, base case automata that are prov-

ably equivalent to them.
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3.12 Base Case Automata

While we’ve developed a lot of tools for constructing new automata from old,

we haven’t yet constructed many automata to start with.

Definition. Define the deterministic automaton ASub:

ASub := (2, {s, f}, {s}, δ, {s}),

Where the b such that δ(a, s, b) is given by the table below:

s\a s f
00 s f
01 s f
10 f f
11 s f

Table 3.2: Transition Table for ASub

Proposition 33. It is provable from our axioms that X ⊆ Y iff ASub accepts the pair

X, Y .

Proof. (⇒): Suppose that X ⊆ Y . Then one may prove that ASub, on reading

X, Y , is always in the state s, since by the transition relation, there can be no <-

least position when ASub switches from state s to state f . Hence it is accepting.

(⇐): (by contrapositive) Suppose that X * Y . Then there is some x ∈ X \ Y .

After this position,ASub will be in the f state, and by the transition relation there

cannot be a <-least position when it returns to the s state, hence it will finish in

the f state.

Definition. Define the deterministic automaton ASuc:

ASuc := (2, {s0, s1, f}, {s0}, δ, {s0}),

83



Where the b such that δ(a, s, b) is given by the table below:

s\a s0 s1 f
00 s0 f f
01 s1 f f
10 f s0 f
11 f s1 f

Table 3.3: Transition Table for ASuc

Proposition 34. It is provable from our axioms that S ′′(X) = Y iff ASuc accepts the

pair X, Y .

Proof. (⇒): Suppose that S ′′(X) = Y . Then I assert that an accepting run of ASuc

is Zs0 = dcl(Y ) \ Y , Zs1 = Y and Zf = ∅. One can easily check that this satisfies

the transition relation, and ends with an accept state.

(⇐): Now suppose that S ′′(X) 6= Y , that is, there is some x ∈ X such that

S(x) /∈ Y or some x /∈ X such that S(x) ∈ Y . In either case, ASuc will transition

into state f after stage S(x), and remain there until the end of the run. It can also

be the case that there is no stage S(x), that is, x is the largest element of X ∪ Y ,

in which case our run will end on a s1 state, which is not accepting.

3.13 The Weak Exclusively Second Order Theory of One Suc-

cessor

We are now prepared to present automata Aφ for each formula φ with just sec-

ond order free variables, such that

φ(X0, . . . , Xn−1) ⇐⇒ ΦAφ(X0, . . . , Xn−1).
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This construction will take place in two steps: first we will reduce φ to include

only second order variables, and those logical atoms and connectives that we

know how to deal with (⊆, S ′′,∧,¬,∃) and then translate, inductively, to the

automaton Aφ.

Definition. Define the Weak Exclusively Second Order Theory of One Successor

(W!S1S) as WS1S, augmented with the additional relations: S ′(X, Y ) which indicates

that S ′′(X) = Y , and ⊆, without:

• First order variables and quantification,

• ∈ and S,

• Disjunction,

• Universal quantification.

Proposition 35. Any formula φ in WS1S with only second order free variables has an

equivalent in W!S1S.

Proof. Our first step will be to replace first order variables with second order

ones, representing the singletons of their first order parts. Let Sing(X) be short-

hand for:

∀Y : Y ⊆ X =⇒ [(X ⊆ Y ) ∨ (∀Z : Y ⊆ Z)].

• Replace first order variables x with X ,

• Replace atomic formulas of the form x ∈ Y with X ⊆ Y ,

• Replace terms of the form S(x) with S ′′(X),

• For nested uses of S ′′, introduce new variables to represent intermediate

terms. e.g.:

Y = S ′′(S ′′(X)) ∃Z : Y = S ′′(Z) ∧ Z = S ′′(X),
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• Relationalize S ′′, replacing instances of the form S ′′(X) = Y with S ′(X, Y ),

• Replace equality with ⊆:

X = Y  X ⊆ Y ∧ Y ⊆ X,

• Replace universal quantifiers with conjugated existential quantifiers,

• Replace first order existential quantifiers:

∃x : φ ∃X : Sing(X) ∧ φ,

• Replace disjunctions with conjugated conjunctions:

φ ∨ ψ  ¬((¬φ) ∧ (¬ψ)).

The resulting formula will be equivalent to the original. Note that the lack

of spurious singletons is critical to the success of this equivalence.

Definition. Given a formula φ in W!S1S, define the automaton Aφ inductively:

• If φ := S ′(X, Y ), then Aφ = ASuc.

• If φ := X ⊆ Y , then Aφ = ASub.

• If φ := ψ ∧ τ , then augment and permute Aψ and Aτ appropriately so their free

variables match, and take the conjunction of the resulting automata.

• If φ := ¬ψ, then let Aφ = Comp(Aψ).

• If φ := ∃X : ψ then, modulo suitable variable permutations, let Aφ = Proj(Aψ).

Combining all of our theorems from before, we can prove inductively that:

φ(X0, . . . , Xn−1) ⇐⇒ ΦAφ(X0, . . . , Xn−1).
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Definition. For formulas φ of WS1S with only free second order variables, we produce

Aφ by first producing φ′ in W!S1S which is equivalent, then computing Aφ′ .

In the next section, we will finally prove that our axiomatization is complete:

3.14 0-ary Automata

Up to this point, we have provided a canonical form for formulas of WS1S with

only free second order variables (namely, for a formula φ its canonical form is

ΦAφ), and shown that it follows from our axiom system that every such formula

is equivalent to its canonical form. Now, in order to prove that our axiom system

is complete, we must show that if a sentence φ is true (in the theory WS1S), then

its canonical form is provable.

First, we must examine what the canonical form of a sentence can look like.

Specifically, it looks like a 0-ary automaton, an automaton that takes in no input.

What’s more, because none of its inputs contain elements, the length ` of any

run of this 0-ary automaton is LSUB(∅) = 0. So a run starts and ends in the

same state. If we unpack the definitions, we find that our 0-ary automaton is

accepting iff it has a start state which is also an accept state.

Proposition 36. Given 0-ary automaton A = (0, Q, I, δ, F ),

ΦA ⇐⇒ I ∩ F 6= ∅.

What’s more, this follows from our axiomatization.

Proof. (⇒): Given an accepting run Y of A, we note that by definition, Y is a

partition of {0}. Let q ∈ Q be such that 0 ∈ Yq. Then by construction, q ∈ I ∩ F .
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(⇐): Given a q in I ∩ F , then I claim that Y where Yq = {0} and all other Yq′

are empty is an accepting run.

As such, any sentence in canonical form which is true is provable. And thus,

any sentence which is true is provably equivalent to a sentence in canonical

form, which is provable. Hence any sentence in WS1S which is true is provable

from our axiom system. One can also verify the soundness of our axiom system.

We summarize this in the following theorem:

Theorem 7. Our proposed axiom system is sound and complete for WS1S.

3.15 Finitely Many Axioms Do Not Suffice

Our axiom system is fairly small and simple. A significant improvement, how-

ever, would be to be able to produce a finite axiomatization of WS1S. In this

section, we prove that no such axiomatization is possible, by providing a struc-

ture Hp which satisfies all of our axioms up to a point, but does not satisfy all of

our axioms.

Definition. Let ω+ ζ refer to the collection of elements of the form n ∈ ω or∞+z|z ∈

Z, with natural ordering such that every element of the form∞+ z (elements in the ζ-

part) is > every element of the form n ∈ ω (elements in the ω-part). We also introduce

the natural S operation which takes elements of the form n to n+ 1 and elements of the

form∞+ z to∞+ z + 1.

Definition. A subset X of ω + ζ is said to be internally periodic of period m if there

is some a ∈ ω and b ∈ Z and some set P ⊆ {0, . . . ,m − 1}, such that an element of
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ω + ζ between a and∞+ b is in X iff it is of the form c or∞+ c for some c congruent

to an element of P modulo m.

Definition. Let p be an odd prime. Let Wp denote the collection of bounded subsets

of ω + ζ , which are internally periodic of some period not divisible by p. Then let Hp

denote the two-typed structure:

Hp := (ω + ζ,Wp,∈, S).

Lemma 9. InHp, the downward closed sets are exactly those sets of the form {x|x < `}

for some ` ∈ ω + ζ .

Proof. It is clear that sets of this form are downward closed. It suffices to show

that if a second order object of Hp is downward closed, then it is of this form.

Suppose the set X ∈ Wp is downward closed. Then it must be internally pe-

riodic of period 1. Since it’s in Wp it must also be bounded above by some

x ∈ ω + ζ . Suppose X contains any element of the ζ part. Then by properties of

Z, we can find a largest element in its ζ part, and thus a largest element w ∈ X .

By downward closure this set must contain all elements of the ζ part up to w. By

internal periodicity, X must contain a final segment of elements of the ω part.

And by downward closure again, X must contain all elements of the ω part.

Thus X is of the desired form.

Suppose instead that X does not contain any element of the ζ part. By in-

ternal periodicity, it must thus be bounded above in the ω part. One can then

reason that any downwards closed subset of ω which is bounded above must be

of the desired form.

Proposition 37. Hp is a model of axioms (1.1) through (2.5)
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Proof. Recall that our axioms (1.1) through (1.7) classified those linear orderings

which were elementarily equivalent to (ω,<). As mentioned in [9], these are the

linear orderings of the form (ω + ζ · L), in particular, this includes ω + ζ , the

structure we’re working in now. It suffices to prove that the construction of <

in terms of downward closed sets gives us the same < as the natural ordering

on ω + ζ , which follows immediately from the above lemma.

One then routinely checks axioms (2.1) through (2.5):

(2.1): Second order elements in Hp are sets and thus satisfy extensionality.

(2.2): Singletons are bounded and internally periodic of period 1.

(2.3): The union of two bounded internally periodic sets of periods a, b is

bounded and internally periodic of period ab. If p - a, b then p - ab.

(2.4): The difference of two bounded internally periodic sets of periods a, b

is bounded and internally periodic of period ab.

(2.5): By definition, all second order elements in Hp are bounded above.

Proposition 38. Hp is a model of (3.A) for any A with fewer than p states.

Proof. Given a runnable automaton A, first, restrict to an automaton A′ which is

runnable and deterministic by removing terms from its transition relation. Any

accepting run of A′ on suitable input X0, . . . , Xn−1 will also be a run of A. Let

X0, . . . , Xn−1 be from Wp, and let us construct run Y0, . . . , Y|Q|−1. If none of the

X0, . . . , Xn−1 actually intersect the ζ part, just use the theorem for the standard

model of WS1S, so we may assume at least one of theXi has an element from the

ζ part. First let us construct the run restricted to the ω part. By runnability and

induction on ω, we can construct the unique run restricted to the ω part. I claim
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that this run is eventually periodic of a period not divisible by p. Since each of

the inputs X0, . . . , Xn−1 restricted to their ω parts are eventually periodic of a

period not divisible by p, then beyond some point x ∈ ω, all of the X0, . . . , Xn−1

will together be periodic of a period m which is a factor of the product of the

periods of each of the Xi, hence also not divisible by p. Since A′ is deterministic,

its run on this input will eventually be periodic of period k times m for some k

less than or equal to the number of states of A, which is less than p. Hence, this

run will have period not divisible by p.

Now we need to continue the run of A into the ζ part. The Xi will together

be initially periodic of period m up to some point ∞ + z where one of them

first diverges from its periodic behavior. Continue the Yi up to this point by

throwing ∞ + w into Yi iff elements of the periodic portion of the ω part of

the Yi are congruent to w modulo the collective period of the Yi. I claim that

this still satisfies the transition relation, because the identical periods in the ω

part satisfied the transition relation. After the point ∞ + z, continue the run

inductively just following the transition function up until the end of the input.

Proposition 39. Hp is a model of (4.A) for any A with fewer than p states.

The proof is similar to the above, but in reverse.

Proposition 40. Hp is not a model of WS1S.

Proof. One can write a formula τp(X) which says:

τp(X) := 0 ∈ X∧
p−1∧
i=1

Si(0) /∈ X

∧∀x : Sp(x) ∈ X =⇒ x ∈ X.
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That is, X contains 0 and exactly every pth element, up to some point. It is a fact

of WS1S that

∀x : ∃y > x : ∃X : τp(X) ∧ y ∈ X.

That is, for any x, we can always find such a periodic set containing an element

larger than x. However, this is clearly not true of Hp for x in the ζ part.

As such, we can find models of arbitrary finite subsets of our axiom system

which are not models of the whole thing.

Theorem 8. WS1S is not finitely axiomatizable.

Proof. Suppose we have a finite axiomatization of WS1S. Take its conjunction to

produce a single axiom φ for WS1S. Since our axiom system is complete, φ must

follow from some finite subset of it. For some large enough p, Hp will satisfy

this finite set of axioms. So φ is true of Hp. This contradicts our assumption that

φ was an axiomatization for WS1S, since it is true of a structure which is not a

model of WS1S.

3.16 Conclusion and Future Research

As we can see from this example, this axiom system is well suited for proving

that Hp is nearly a model of WS1S. Compare with an axiom system similar to

that in [10], which would require proving induction for every WS1S formula.

In chapter 4, we will use this axiom system to investigate what nonstandard

models WS1S has.
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It should be clear from our discussion in section 2 that we could just as easily

be studying the weak second order theory of (ω,<). One may then ask about the

weak second order theories, or just the second order theories in general, of other

linear orderings. Is there, for instance, a notion of automaton that takes inputs

which instead of being labeled finite segments of ω, were labeled intervals of

Q as a linear ordering? Do such automata provide a canonical form for weak

second order formulas of (Q, <)? Perhaps such automata, if they exist, would

be related to continuous automata.

One may also ask whether this axiomatization is minimal. An effort has been

made to avoid redundancy among axioms (1.1) through (2.5), although whether

there is some residual redundancy and how many of these axioms follow from

axioms (3.A) or (4.A) are still matters for study. A proof of minimality would

require producing a large number of structures which satisfy various subsets of

our axiomatization.

Finally, we saw some examples of relations on first order elements of WS1S

that essentially required the use of second order quantification in their defini-

tions. Specifically, < which played a critical role in our axiomatization, and

modular congruence modulo a fixed natural number, which played a critical

role in the construction of our nearly-models Hp. One may then ask if there are

any more which cannot be expressed in terms of these two.

Although WS1S is not nearly as expressive as larger axiomatized theories

such as Peano Arithmetic or ZFC, it is easily decidable and its nonstandard

models are tractable (yet still, as we will see in the next chapter, interesting).
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CHAPTER 4

REGARDING NONSTANDARD MODELS OF THE WEAK SECOND

ORDER THEORY OF ONE SUCCESSOR

In this chapter, we answer two key questions about nonstandard models of

the weak second order theory of one successor (WS1S): What can their first-

order parts look like, and what can their second order parts look like for a par-

ticularly interesting case (when the first order part is ω+ζ). We will also provide

some tools for constructing nonstandard models of WS1S from already known

nonstandard models. This will go a long way towards establishing a complete

classification of the nonstandard models of WS1S.

4.1 Introduction

Recall that the weak second order theory of one successor, WS1S, is the theory of

the two-typed structure G := (ω,F(ω),∈, S), where F(ω) is the set of finite sub-

sets of ω, ∈ is containment, and S is the successor operation on ω. As usual,

lowercase variables will denote elements of the first type, uppercase variables

will represent elements of the second type, and boldface variables will indicate

shorthand for finite or infinite sequences of elements of the corresponding type

indexed by natural numbers. Crucially, these will not be indexed by first or-

der elements from the current model of WS1S, but standard natural numbers.

This theory is of interest because it is a decidable second order theory of ω, and

equally expressive to finite automata.

Recall that in the previous chapter, we proved that WS1S was not finitely

axiomatizable, and provided an axiomatization with schema indexed by finite
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automata. This axiomatization is well suited to verifying that various structures

satisfy it and thus are nonstandard models of WS1S.

A nonstandard model of WS1S is simply a structure which satisfies all of

the same sentences as the standard (or ground) model G as defined above, but

which is not the standard model. Nonstandard models are a useful tool for un-

derstanding the limits of the expressiveness of a language. Our nonstandard

models will clearly differ from our ground model G, but not in the WS1S for-

mulas they satisfy. That is, the ways that our nonstandard models differ from G

or from each other will not be expressible in the language of WS1S.

We expect to find a large number of nonstandard models of WS1S. The

Löwenheim-Skolem Theorem says that if a countable first-order theory has an

infinite model, then it has one of every infinite cardinality. Since we can view

WS1S as the first-order theory of the two-typed structure G, this gives us non-

standard models of WS1S of every infinite cardinality.

A priori, studying nonstandard models of second order theories seems like

a hefty task: in a nonstandard model H , even if one has a grasp on the collec-

tion of first order objects, the second order objects are some nebulous collection

related to the first order objects viaH’s interpretation of∈, ∈H . Fortunately, non-

standard models of second order theories satisfy extensionality, so the second

order elements are determined by which first order elements they ∈H-contain.

This allows us to identify second order elements with the collection of their ∈H-

elements. So up to isomorphism, a nonstandard model of WS1S will be of the

form (M1,M2,∈, S) where M2 is a collection of subsets of M1, ∈ is genuine con-

tainment, and S is some interpretation of S on M1. Combined with our under-

standing of nonstandard models of (ω,<), this will give us a very constructive

95



representative for every isomorphism class of nonstandard model of WS1S.

Once we have this constructive form for representatives of isomorphism

classes of nonstandard models of WS1S, we need to decide which structures of

this constructive form actually are nonstandard models of WS1S. We will prove

that for every nonstandard model L of (ω,<), there is a nonstandard model of

WS1S whose first order elements, ordered by that model’s interpretation of <

form the linear ordering L. Then we will examine what second order parts are

available in the simplest nonstandard case: where the first order part is the lin-

ear ordering ω + ζ .

Finally, we will provide tools for cutting apart nonstandard models of WS1S

and gluing them back together to produce other nonstandard models.

4.2 Recalling our Axiomatization

Recall that our axiomatization from Axiomatizing the Weak Second Order Theory

of One Successor made heavy use of shorthand. In this section, we reintroduce

this shorthand, and present a compact list of our axioms.

Definition. A set X is said to be downward closed if:

dc(A) :≡ ∀X : S(x) ∈ A =⇒ x ∈ A

We define a linear ordering on the first order elements by:

x ≤ y :≡ ∀X : dc(X) ∧ y ∈ X =⇒ x ∈ X
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Definition. Given two sets A,B, we write:

C = A ∪B :≡ ∀x : x ∈ C ⇐⇒ x ∈ A ∨ x ∈ B

C = A ∩B :≡ ∀x : x ∈ C ⇐⇒ x ∈ A ∧ x ∈ B

C = A \B :≡ ∀x : x ∈ C ⇐⇒ x ∈ A ∧ x /∈ B

A ⊆ B :≡ ∀x : x ∈ A =⇒ x ∈ B

Recall that we had a notion of automaton:

Definition. A logical automaton is a 5-tuple A = (n,Q, I, δ, F ) where:

• n is the number of inputs, potentially 0.

• Q is a finite set of states. We may occasionally refer to the elements of Q via some

canonical ordering as 0, . . . , |Q| − 1, but more often we will let the elements of Q

retain some additional structure. We will also refer to the number of states of an

automaton A as |A|. Often we will prove results for automata with state set m

where this suffices to prove the result in general.

• I ⊆ Q is the set of initial states.

• δ ⊆ Q× 2n ×Q is the transition relation.

• F ⊆ Q is the set of final states.

Definition. Define the formula R(n,Q,I,δ,F )(X0, . . . , Xn−1, `, Y0, . . . , Y|Q|−1) in WS1S

as the conjunction of:

• ∀x :
∨
i∈Q

∧
j∈Q[x ∈ Yj ⇐⇒ (i = j ∧ 0 ≤ x ≤ `)]

•
∨
i∈I 0 ∈ Yi

• ∀x : 0 ≤ x < ` =⇒
[∨

(i,s,k)∈δ(x ∈ Yi ∧ x ∈ Xs ∧ S(x) ∈ Yk)
]
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This formalizes the notion of (`, Y0, . . . , Y|Q|−1) being a run of (n,Q, I, δ, F ) on

input X0, . . . , Xn−1.

Definition. Define the formula Φ(n,Q,I,δ,F )(X0, . . . , Xn−1) in WS1S as:

∃` : ∃Y0, . . . , Y|Q|−1 :` = LSUB(
⋃

X)

∧R(n,Q,I,δ,F )(X0, . . . , Xn−1, `, Y0, . . . , Y|Q|−1)

∧
∨
i∈F

` ∈ Yi.

Where LSUB(X) is shorthand for the least strict upper bound for a set, either 0 for the

emptyset or S(max(X)) for a nonempty set.

This formalizes the notion of the automaton (n,Q, I, δ, F ) accepting inputs

X0, . . . , Xn−1. Of course, not every automaton will have an accepting run on

every input, but we can expect certain classes of automata to at least have runs

on every input:

Definition. An automaton (n,Q, I, δ, F ) is said to be runnable if:

• |I| > 0,

• ∀q, s ∈ 2n : ∃q′ : δ(q, s, q′).

Definition. An automaton (n,Q, I, δ, F ) is said to be reverse-runnable if:

• |F | > 0,

• ∀q, s ∈ 2n : ∃q′ : δ(q′, s, q).

Finally, we can present our axiom system:
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(1.1) ∀x, y, z : x < y ∧ x < z =⇒ x < z (< is transitive)

(1.2) ∀x, y : x < y =⇒ ¬(y < x) (< is antisymmetric)

(1.3) ∀x, y : x < y ∨ x = y ∨ y < x (< is total)

(1.4) ∀x : S(x) > x (S is strictly increasing)

(1.5) ∀x : @y : x < y < S(x) (S is a successor)

(1.6) ∃o : ∀x : o ≤ x (< has minimal element)

(1.7) ∃o : ∀x : x 6= o =⇒ ∃y : S(y) = x (S has image ω \ {0})

(2.1) ∀X, Y : (∀x : x ∈ X ⇔ x ∈ Y )⇒ X = Y (Extensionality)

(2.2) ∀x : ∃X : ∀y : y ∈ X ⇔ y = x (Singleton)

(2.3) ∀X, Y : ∃Z : ∀x : x ∈ Z ⇔ (x ∈ X ∨ x ∈ Y ) (Union Closure)

(2.4) ∀X, Y : ∃Z : ∀x : x ∈ Z ⇔ (x ∈ X ∧ x /∈ Y ) (Difference Closure)

(2.5) ∀X 6= ∅ : ∃x : x ∈ X ∧ ∀y : y ∈ X ⇒ y ≤ x (Maximal Element)

(3.A) ∀X0, . . . , Xn−1 : Φ(n,Q,I,δ,Q)(X0, . . . , Xn−1) (A Runnable)

(4.A) ∀X0, . . . , Xn−1 : Φ(n,Q,Q,δ,F )(X0, . . . , Xn−1) (A Reverse-Runnable)

4.3 L-Models

In this section, we introduce the notion of an L-model, a very constructive form

of nonstandard model of WS1S that we will use as representatives for isomor-

phism classes of our nonstandard models. Recall that nonstandard models of

(ω,<) are of the form ω+ζ ·L [9]. An L-model will be one whose first order part

is ω + ζ · L.

Definition. A two-typed structure (M1,M2,∈, S) is said to be an L-model if:

M1 = ω + ζ · L

Where ζ = (Z, <), the linear ordering of the integers, L is a linear ordering, and · is the
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lexicographic product, so:

ω + ζ · L = ω + ζ + · · ·+ ζ︸ ︷︷ ︸
L

,

Specifically, M1 contains elements of the form n ∈ ω, and elements of the form (a, b)

with a ∈ Z and b ∈ L, with elements from ω ordered naturally, being less than elements

of the form (a, b). Elements of the form (a, b) are ordered first by second coordinate and

then by first coordinate. And:

1. M2 ⊆ P(M1), and ∈ is ordinary containment between M1 and M2,

2. S is ordinary successor on ω and takes (a, b) ∈ ζ × L to (a+ 1, b),

3. Every set of the form {x|x < `} is in M2.

4. The only sets X in M2 which, when intersected with each ω or ζ part form an

initial (possibly empty) interval of that part are of the form {x|x < `}.

Proposition 41. In every L-model, < as defined on M1 agrees with < as defined in

terms of downwards (predecessor) closed elements.

Proof. Suppose that x ≤ y ∈ ω + ζ · L, and we have a predecessor closed set

X containing y. Since X is predecessor closed, when intersected with any ω or

ζ part, it will form a (possibly empty) initial interval. Hence X is of the form

{w|w < `}. By transitivity of <, x must also be in this set.

Suppose now that every predecessor closed set X containing y contains x.

Since our model contains {w|w ≤ x} and this is a predecessor closed set con-

taining x it must also contain y. Hence y ≤ x.

If a structure is an L-model, that represents a significant start towards prov-

ing that it satisfies all of our axioms.
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Proposition 42. Every L-model satisfies axioms (1.1) through (1.7), and (2.1).

Proof. Our condition that < as defined in terms of downward (predecessor)

closed sets agrees with ≤ as the linear ordering on ω + ζ · L will go a long way.

By virtue of being a linear ordering < will satisfy axioms (1.1), (1.2), and (1.3).

One checks that when we interpret < as the linear ordering on ω + ζ · L and

S as the natural successor operation on ω + ζ · L, axioms (1.4) through (1.7) are

satisfied. Thus, when we interpret< as the equivalent linear ordering defined in

terms of predecessor closed collections, and S as the natural successor operation

on ω + ζ · L, axioms (1.4) through (1.7) are satisfied.

Finally, (2.1) is satisfied by virtue of condition (1) and the fact that sets satisfy

extensionality.

Proposition 43. G is the unique 0-model of WS1S. (We use natural numbers n for the

linear order of size n whose elements are 0, . . . , n− 1.)

Proof. G clearly is a 0-model (one whose first order type is ω) which models

WS1S. Suppose there is another 0-model G′ which is a model of WS1S. Any

second order element of G will be a finite set of natural numbers, so one may

construct a formula of WS1S explicitly stating that that second order element is

an element of our model. As such the second order elements of G′ must contain

as a subset the second order elements of G. Furthermore, G′ cannot contain

any second order elements which are infinite subsets of ω, since these aren’t

bounded, violating our maximal element axiom. As such, G′ = G.

Proposition 44. Every model of WS1S is isomorphic to an L-model for some L.
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Proof. Given a model (M1,M2,∈, S), define an equivalence relation ∼ on M1

where:

x ∼ y :≡ ∃n,m : Sn(x) = Sm(y).

Note that ≤, as defined in terms of downward closed (ie, predecessor closed)

elements of M2, respects these equivalence classes. That is, if x ≤ y and s′ ∼ x

and y′ ∼ y, then x′ ≤ y′ or x′ ∼ y′. Pick a representative of each equivalence

class, including 0 (the unique element not in the image of S) for its equivalence

class, and denote the set of representatives of other equivalence classes by L.

L admits a natural linear ordering inherited by ≤ on M1, as per above. Every

element of M1 is thus Sn(0) or Sn(`) or S−n(`) for some ` ∈ L, which we will

map into in our isomorphism n ∈ ω or (n, `) or (−n, `) respectively. This clearly

respects S.

Condition (3) holds because these sets are definable. Condition (4) is equiv-

alent to saying that all predecessor closed sets are of the form {x|x < `}, which

we can write in the language of WS1S and which is true of our ground model

G, so is in the theory of WS1S.

We will identify any element of M2 with the set of its ∈-elements. This as-

sociation is injective by extensionality. It is not surjective. This clearly respects

∈.

Of course, this isn’t an assurance that there are L-models for every L. In the

case of nonstandard models of the first order theories of (ω,+) and (ω,+, ·), we

can still define <, and there are some very strict restrictions on what sorts of

linear order types < can have. Specifically, nonstandard models of (ω,+) must

have linear order type ω+ζ ·L for some dense L. We will address this restriction

in the next section.
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4.4 Minimal L-Models

Recall that we have a notion of modular congruence in WS1S. Given a natural

number n (not an element of our model), we can construct the formula:

Definition. Given an L-model (M1,M2, S,∈) of WS1S, we write

µm(X, x) :≡ ∀y : Sm(y) ≤ x =⇒ [Sm(y) ∈ X ⇐⇒ y ∈ X] .

And, for n < m,

Mn,m(x) :≡ ∀Y : x ∈ Y ∧ µm(Y, x) =⇒ Sn(0) ∈ Y.

Proposition 45. The following are part of the theory of WS1S:

1. For all Mn,m(x) ⇐⇒ M(n+1 mod m),m(S(x)).

2. For all m ∈ ω, x ∈ ω+ ζ ·L, exactly one of Mi,m(x) is true for i = 0, . . . ,m− 1.

3. For all m,n, exactly one of Mn,m(Si(x)) for i = 0, . . . ,m− 1.

4. For all m,n, Mn,m(x) ⇐⇒ Mn,m(Sm(x)).

In agreement with G, we say that a first order element x in a specific model

is congruent to n modulo m if Mn,m(x). Also, note that in an L-model, specifying

the congruences of the elements of the form (`, 0) is enough to determine the

congruences of all elements.

What’s more, once we’ve specified L and these congruences, we have

enough information to throw in just those second order elements which are ab-

solutely necessary to construct an L-model. But first, we need a language for

specifying our congruences:
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Definition. A sequence {sn}n>2∈ω is said to be a congruence type if:

• sn < n

• if a|b then sb ≡ sa mod a.

We will denote the set of all congruence types K.

Note that the sequence 0 := {0}n>2 is a congruence type, although there are

continuum many other such sequences1.

Once we have a particular association of congruence types to all of our ele-

ments in mind, we can define modular equivalence classes for every element of

ω + ζ · L:

Definition. Given L, k : L→ K, define Mk
n,m:

Mk
n,m(x) :≡


(r ≡ n mod m) x = r ∈ ω

(k(`)m + r ≡ n mod m) x = (r, `)

If Mk
n,m(x), we say that x is congruent to n modulo m.

Alternately, for clarity and when k is given, we write x mod m = n, with the note

that m and n are natural numbers, and not general elements of our models.

Note that:

Mk
k(`)m,m((0, `)),

That is, (0, `) is congruent to k(`)m modulo m.

1One may choose remainders modulo primes arbitrarily, and the congruence type is deter-
mined completely by remainders modulo powers of primes (via the Chinese Remainder Theo-
rem), which must themselves be interconsistent. Remainders modulo pa determine remainders
modulo pb for b < a.
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Definition. Given a linear ordering L, a map k : L → K, a tuple x0, . . . , xn−1 of

elements of ω + ζ · L, a tuple m0, . . . ,mn−2 of natural numbers > 1, and a tuple

p0, . . . , pn−2 of subsets where pi ⊆ {0, . . . ,mi − 1}, define:

Pw(k,x,m,p) :=
⋃
i

: {y ∈ [xi, xi+1)|y mod mi ∈ pi}.

This is a second order element whose behavior is piecewise periodic. Each

piece is an interval of the form [xi, xi+1), the mi and pi specify the periodic be-

havior on each of those intervals, and the map k describes how infinite periodic

behavior which is terminal in one ω or ζ component gets picked up in the next.

We will construct our model consisting entirely of second order elements of this

form for arbitrary x,m, and p, but for fixed k. It’s necessary that we have a clear

sense of the congruence class of each of our infinite elements: in order to be a

model of WS1S, it is necessary that we are not lead to believe that some infinite

element is congruent to for 0 modulo 2 but 1 modulo 4, since one can write out

the statement:

∀x : M0,2(x) =⇒ ¬M1,4(x).

In the language of WS1S, which is true of G and hence in the theory of WS1S.

Definition. Given a linear ordering L and a map k : L→ K, define PPL,k as:

PPL,k := {Pw(k,x,m,p)}.

And HL,k as the L-model with second order type PPL,k.

There’s a little bit of work showing that HL,k is an L-model, which we will

do in the proposition below.
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As we shall see, since all of these elements are describable in terms of the

endpoints of the intervals x0, . . . , xn−1, they’ll wind up existing in some form

or other in every L-model of WS1S. Once we specify k, we have an exact set

that must appear in our L-model of WS1S. What’s more, the presence of just

these elements is enough to satisfy our axioms, giving us a model of WS1S. This

intuitively makes sense for our runnability schemes: given any deterministic

automaton, on piecewise periodic input, we should expect a piecewise periodic

run. If we have a long segment of periodic behavior of the input, after some

amount of time settling in, the states of the automaton will also be periodic, of

some period a factor of the original period times a number less than the number

of states of our automaton. The time spent settling in is finite, so we just encode

these all as pieces of period one.

Theorem 9. HL,k is an L-model of WS1S.

Proof. First, we need to show that HL,k is an L-model. Specifically, we need to

show that it satisfies conditions (3) and (4). Condition (3) holds by construc-

tion. Suppose now that a set X is piecewise periodic and initial in every ω or

ζ part. Assume there is some piece in the specification of X , [xi, xi+1) such that

[xi, xi+1) ∩X 6= [xi, xi+1) and [xi, xi+1) ∩X 6= ∅. Consider the largest such piece.

Looking in the last two periods of this piece, we can find an element x such that

x /∈ X but S(x) ∈ X , contradicting that X is initial in the ω or ζ part in which

x appears, contradicting our assumptions. As such, every periodic piece of X

is either the complete interval or empty. If an empty interval were followed by

a complete interval, then we would again have an x /∈ X with S(x) ∈ X , so it

must be that X consists of a series of complete intervals followed by a series of

empty intervals. That is, X is an interval of the form {x|x ≤ `} for ` the weak

right endpoint of the largest nonempty interval.
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As such, we’ve already checked axioms (1.1) through (1.7) and (2.1).

(2.2): It is clear that singletons are piecewise periodic.

(2.3), (2.4): Let x0, . . . , xn−1 be a common refinement of the endpoints of the

intervals describing piecewise periodic sets X, Y . Then X and Y can also be de-

scribed as piecewise periodic with pieces [xi, xi+1). On any one particular piece

[xi, xi+1), X and Y will have certain periodic behaviors of periods m,m′. One

can then verify thatX∩Y andX \Y will have periodic behavior of period some

factor of mm′ on that particular piece. Hence, X ∩ Y and X \ Y are piecewise

periodic, and thus in our model.

(2.5) Given a piecewise periodic set X , we can find its largest element by

looking in the last period of the last nonempty piece.

(3.A) Given a runnable automaton A, let A′ be a deterministic automaton

obtained by removing tuples from the transition relation of A. We will show

that A′ has a run on any suitable input X0, . . . , Xn−1, and thus so does A.

Given our inputsX0, . . . , Xn−1 piecewise periodic, we can find a common re-

finement of the endpoints of their pieces y0, . . . , yr−1, and common periodicities

m0, . . . ,mr−2. We can also make sure y0 = 0 by possibly adding in new empty

pieces to the beginning of the specifications of our inputs. Iterating through the

intervals [yi, yi+1), do the following:

Step 1) Let ri : {0, . . . ,mi − 1} → 2n describe the periodic behavior of the

inputs such that for w ∈ [yi, yi+1),

w ∈ Xj ⇐⇒ (ri(w mod mi))j = 1.

Step 2) Consider the state of the automaton A just after entering the region
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[yi, yi+1). If this is the first region, this is the start state. If this is not the first

region, this was computed when we worked through the previous region. Call

this state q. Let m = mi.

Step 3) Consider the operation of one period (m characters) of input on

states, giving us a map f : Q→ Q.

Step 4) Apply f to q repeatedly until a state is encountered that appeared

before. This will give us a sequence of states:

q = q0, q1, . . . , qs, . . . , qt−1, qt = qs.

Note that t cannot be larger than |Q|, since there are only |Q| distinct states.

Step 5a) In case Smt(yi) ≥ yi+1, append to our specification of each element

of the run the interval [yi, yi+1) with period mt and periodic behavior just the

appropriate behavior for a run of an automaton on the input in the interval

[yi, yi+1). If this happens, skip step 6) and go on to the next interval, remember-

ing the state of the automaton after reading the final character.

Step 5b) Otherwise, append to our specification of each element of the run

the interval [yi, S
ms(yi)) with periodms and periodic behavior just the appropri-

ate behavior for the run of an automaton on the input in the interval [yi, S
ms(yi))

starting from state q.

Step 6) Now, append to our specification of each element of the run the inter-

val [Sms(yi), yi+1) with periodm(t−s) and periodic behavior the appropriate be-

havior for the run of an automaton on the input in the interval [Sms(yi), S
mt(yi)),

starting from state qs. Since the state this interval starts in and the state immedi-

ately after the end are the same, this is a valid part of the run of A. Based on the
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remainder of yi+1 modulo m(t − s), determine the state of the automaton after

after reading the final character just before position yi+1.

Repeat from step 2) for each piece [yi, yi+1). This will construct the desired

run of A′ on input X0, . . . , Xn−1.

The proof for (4.A) for reverse-runnable A is identical, but in reverse.

Proposition 46. Every L-model of WS1S contains HL,k as a subset of its second order

objects for the appropriate k.

Proof. Given an L-model of WS1S, we can determine k by looking at the con-

gruence classes of elements of the form (0, `). It then suffices to note that the ele-

ments Pw(k,x,m,p) are describable in terms of the elements x0, . . . , xn−1. Since

such elements exist for every increasing sequence x0, . . . , xn−1 in the ground

model G, they must exist in every nonstandard model as well.

Finally, we must ask the question: how many models have we actually

found? Specifically, when is HL,k isomorphic to HL′,k′?

Definition. Two congruence types s, s′ are said to be shifts if there is some k such that

sn = s′n + k mod n for each n.

Proposition 47. HL,k and HL′,k′ are isomorphic iff there is an isomorphism of linear

orderings f : L→ L′ such that k(`) and k′(f(`)) are shifts for each `.

Proof. (⇒): Suppose HL,k and HL′,k′ are isomorphic. Then there is a bijection

g : ω + ζ · L → ω + ζ · L′ and a bijection h : PPL,k → PPL′,k′ . Recall that we

defined an equivalence relation on ω + ζ · L by:

x ∼ y :≡ ∃n,m : Sn(x) = Sm(y).
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Since g respects S, g respects these equivalence classes, giving us a bijection

g′ : L → L′. g′ must also respect <, since g respects <. This is the isomorphism

f we’re looking for. Suppose f((0, `)) = (z, `′). `′ will be g′(`). By isomorphism,

(0, `) and (z, `′) will have the same modular equivalence classes, so (0, `), and

(0, `′) will have shifted modular equivalence classes, as desired.

(⇐) is a straightforward construction of the isomorphism.

Proposition 48. There are continuum many 1-models.

Proof. Note that there are continuum many congruence types, and that the shift

relation has countable equivalence classes. Hence there are continuum many

congruences types up to shifting. The result then follows by the above proposi-

tion.

Now that we’ve shown that there are nonstandard models of WS1S, we

would like a tool for classifying these nonstandard models.

4.5 The Tail-Head Lemma

Suppose we have a particular 1-modelM of WS1S, and two second order objects

X,X ′ fromM which agree on the ω part. Since the symmetric difference ofX,X ′

is an element of M , it has a least element. This means that there is some point

in the ζ part such that before that point, X and X ′ agree. Put another way, the

behavior of a second order element ofM on the ω part determines an initial part

of its behavior on the ζ part. In this section, we formalize and expand on this

result.

110



Definition. Given a linear ordering L, a cut is just a partition of L into two subsets

(A,B) where A is an initial segment of L and B is a final segment of L. A cut (A,B)

is said to be infinite if A has no greatest element and B has no least element.

Proposition 49. Any infinite cut of ω + ζ · L is of the form (ω + ζ ·A, ζ ·B) for some

cut (A,B) of L.

Proposition 50. Given an L-model (M1,M2,∈, S) of WS1S and an infinite cut (A,B)

of M1, A,B /∈M2.

Proof. Since (M1,M2,∈, S) is an model of WS1S, every second order element

must have a <-least and <-greatest element, which by assumption neither A

nor B has.

Proposition 51. Let (M1,M2,∈, S) be an L-model of WS1S. Let (A,B) be an infinite

cut of M1. Suppose X, Y ∈M2 are second order objects, and x ∈ A and X and Y agree

for all y ∈ A with y ≥ x. Then X and Y agree on some initial segment of B.

Proof. Let X∆Y denote the symmetric difference of X and Y . By closure under

boolean operations, X∆Y ∈ M2. Additionally, X∆Y \ {y|y ≤ x} ∈ M2, as this

later set is the downward closure of the singleton {x}. This set, X∆Y \ {y|y ≤

x} ∈ M2, is either empty or has a <-smallest element. In either case, it doesn’t

contain elements up to some point in B. Put another way, X and Y agree up to

that point in B.

Proposition 52. Let (M1,M2,∈, S) be an L-model of WS1S. Let (A,B) be an infinite

cut of M1. Suppose X, Y ∈M2 are second order objects and x ∈ B and X and Y agree

for all y ∈ B with y ≤ x. Then X and Y agree on some final segment of B.

Proof. The proof is a reverse version of the above.
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Definition. Given an L-model with an infinite cut (A,B) on its first order part, we

define equivalence relations =A
T (tail equivalence) and =B

H (head equivalence) on

M2, and more generally, on P(M1) by:

X =A
T Y :≡ ∃x ∈ A : ∀y ∈ A : y ≥ x =⇒ y /∈ X∆Y,

X =B
H Y :≡ ∃x ∈ B : ∀y ∈ B : y ≤ x =⇒ y /∈ X∆Y.

Where ∆ denotes symmetric difference. Specifically, X and Y are tail equivalent if they

agree on a final interval of A and are head equivalent if they agree on an initial interval

of B.

We can now reinterpret our propositions from before as saying that given an

infinite cut (A,B) the tail equivalence class of a second order object determines

its head equivalence class, and the head equivalence class determines its tail

equivalence class.

Definition. Given an L-model with an infinite cut (A,B) on its first order part, we

define its tail-head function TH(A,B):

TH(A,B) : M2/(=
A
T )→M2/(=

B
H),

Such that, for any X ∈M2,

TH(A,B)([X]=AT ) = [X]=BH .

Additionally, we may wish to view TH(A,B) as a partial function:

TH(A,B) : P(A)/(=A
T )→ P(B)/(=B

H).

Following from our propositions above, we have:

Proposition 53. TH(A,B) is well-defined and 1-1.
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Definition. We say that two sets X, Y are equal or congruent mod finite (written

X =∗ Y ) if their symmetric difference is finite.

Theorem 10. Two second order elements X, Y of an L-model have the same head and

tail equivalence classes for every infinite cut iff they are equal mod finite.

Proof. (⇒): suppose we have two sets X, Y which have the same head and tail

equivalence classes, but which are not equal mod finite. Consider those points

in Z = X∆Y , which must be infinite. As mentioned in [9], every infinite lin-

ear ordering has an infinite ascending sequence or an infinite descending se-

quence. Assume Z with its inherited ordering has an infinite ascending se-

quence x0, . . . , xn, . . . (the argument in the descending case is similar, although

it is important to note that no infinite descending sequence can intersect the ω

part). Split L into two parts, A = {` ∈ L : ∃n : xn > `}, and B = L \ A (which

may be empty, but that isn’t disallowed). It can easily be seen that (A,B) is an

infinite cut. I assert that X and Y do not have the same =A
T equivalence class,

since given any x it’s not the case that X and Y agree on A after x by construc-

tion of A in terms of points where X and Y differ.

(⇐) is immediate for each cut (A,B). There are only finitely many points to

avoid, so one may easily avoid them.

Finally, in this section we present the Tail-Head Lemma, which states that an

L-model is determined by the set of its tail-head functions. But first, in order to

prove this, we need a quick lemma about linear orderings in general:

Definition. Given a linear ordering L, an infinite collection of intervals I is said to be

a cut covering family if it satisfies:
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• For each interior cut (A,B) (ie, A,B 6= ∅) of L, there is an interval I in I such

that I contains some elements of A and some elements of B.

• For the exterior cuts (∅, L) and (L, ∅), there are intervals I in I which are initial

and nonempty and final and nonempty respectively.

In either case, the interval is said to cover the cut.

Proposition 54. For any linear ordering L and cut covering family I for L, there is a

finite subcollection I ′ ⊂ I having union all of L.

Proof. Suppose we have an infinite cut covering family I for L. Consider S as

the set of all x ∈ L such that the interval {y ∈ L|y ≤ x} is a subset of a finite

union of elements of I. This set S is nonempty, as the interval covering the cut

(∅, L) is initial, and thus alone covers a number of intervals of the form {y ∈

L|y ≤ x}. S is also an initial interval of L, since if we can cover {y ∈ L|y ≤ x}

and w < x, then the same set of intervals covers {y ∈ L|y ≤ w}. Suppose S is

not all of L. Consider the cut (S, L \ S). This cut is covered by some interval I ,

which contains an element s ∈ S and t /∈ S. Add this interval to the finite cover

for s and we get get a finite set of intervals covering up to t contradicting that

t /∈ S. Thus, S is all of L.

Finally, consider the final cut (L, ∅). This is covered by a final interval I con-

taining a point x. Thus all of L is covered by the finite set of intervals covering

up to x together with I .

Now we are prepared to prove the Tail-Head Lemma.

Theorem 11 (Tail-Head Lemma). For given L, the set of second order elements of any

L-model is determined by the set of its tail-head functions TH(A,B) for every infinite cut
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(A,B) of ω + ζ · L.

Proof. Suppose we have two L-models H = (ω+ζ ·L,M2,∈, S) and H ′ = (ω+ζ ·

L,M ′
2,∈, S), with the same tail-head functions for every infinite cut. LetX ∈M2.

I claim that X is also in M ′
2. This would suffice to prove the lemma.

For every infinite cut (A,B), consider an element Y in M ′
2 which agrees with

X on its head and tail equivalence classes for that cut. In particular, there’s some

elements a ∈ A and b ∈ B such that X ∩ [a, b] = Y ∩ [a, b]. Note that [a, b] is an

element ofM2 andM ′
2 soX∩ [a, b] is an element shared in common byH andH ′.

We collect these intervals as part of a cut covering family I with [a, b] covering

the cut (A,B).

For every finite cut (A,B), let a be the final element of A and b the initial

element of B. Throw in the interval [a, b] to I to cover (A,B). Note that X ∩ [a, b]

is in both M2 and M ′
2.

For the cut (∅, ω+ζ ·L), we cover it by throwing the interval {0} into I. Note

that X ∩ {0} is in both M2 and M ′
2.

For the cut (ω + ζ · L, ∅), let x be an upper bound for X . Cover our cut by

throwing the interval {y|y > x} into I. Note that X ∩ {y|y > x} = ∅ is in both

M2 and M ′
2.

All together, this gives us a complete cut covering family I. By the proposi-

tion above, there is a finite subcollection I ′ ⊆ I having union all of ω + ζ · L.

Take the union over all intervals I in I ′ of X ∩ I . This is a finite union of

elements of M ′
2, hence an element of M ′

2. However, since all of these intervals

together cover all of ω + ζ · L, this union is X . Thus X is in M ′
2, as desired.
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One necessarily asks the question: what sorts of tail-head functions are avail-

able? Taking the simplest example, one may ask what possible tail-head func-

tions are available for the (ω, ζ) cut for 1-models of WS1S. In the next section,

we propose a partial solution.

4.6 Countable 1-Models

Looking at the L-models HL,k that we constructed previously, we notice that

the possible tail equivalence classes for the cut (ω, ζ · L) are just the periodic

ones. Put another way, the set of all intersections of second order elements with

the ω part is just the set of all eventually periodic subsets of ω. One may then

wonder if, given a particular subset of ω, there is a model of WS1S that has

second order elements, which, when intersected with the ω part, give us that

particular subset. Or, more generally, if one has a suitably closed collection of

subsets of ω, is there a model of WS1S for which that collection is exactly the set

of intersections of second order elements with the ω part?

One can of course get whatever subsets one wants with a compactness argu-

ment:

Proposition 55. Given a collection A of subsets of ω, there is a nonstandard model of

WS1S such that for every A ∈ A, there is a second order element X in the model whose

intersection with ω is A.

Proof. For each element A ∈ A, add the second order constant symbol CA to

the language of WS1S. For each A ∈ A and n ∈ ω, add either the formula

Sn(0) ∈ CA or Sn(0) /∈ CA as appropriate to the theory of WS1S. Together this
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produces a collection of formulas, any finite subset of which is satisfiable (if

one has only finitely many restrictions on CA, one may construct a finite set of

natural numbers satisfying those restrictions). By the compactness theorem, it

follows that there is a model of WS1S with constants CA|A ∈ A for which the

intersection CA ∩ ω = A.

However, the proof of the compactness theorem makes no assurances on the

sort of models being constructed. Following the proof in [8], we first complete

the collection of formulas in question, and then perform a Henkin construction

to get our model. If one of our sets A in A is unbounded, we will need to

introduce a new first order object, call it ∞, to serve as an upper bound for

CA. Due to the arbitrariness of our choices in how we complete our collection of

formulas, it may be the case that we wind up requiring that CA and CA′ agree on

elements of the form S−n(∞) for all n forA andA′ with different tail equivalence

classes. Every time this happens, we are required to add in a genuinely new first

order element∞′ to represent an upper bound for (CA∆CA′) ∩ {x : x ≤ z}, as

well as elements of the form Sz(∞) for integer z. As we can see, the L for these

models can, unchecked, grow very large.

What if we wish to restrict our attention just to 1-Models? In case of count-

able A, we can still find our nonstandard model. For clarity, we will refer to

elements in the ζ portion of a 1-model as∞+ z for appropriate z.

Proposition 56. Any 1-model is determined by its tail-head function TH(ω,ζ).

Proof. ω + ζ only has two infinite cuts, (ω, ζ) and (ω + ζ, ∅). In the later case,

we already know the tail head function. There is only one tail equivalence class,

that of the empty set, since all second order elements are bounded, and it gets
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mapped to the only head equivalence class, which is trivial.

Definition. Given three sets X−, X0, X1 partitioning ω, define:

Bit(X−, X0, X1) = (Y0, Y1),

Such that x ∈ Yi if the largest y ≤ x which is in X0 ∩X1 is in Xi, or 0 if none exist.

Define:

RBit(X−, X0, X1) = (Y0, Y1),

Such that: x ∈ Yi if the smallest y ≥ x which is in X0 ∩X1 is in Xi, or 0 if none exist.

Definition. Given sets Xσ for σ ∈ Sn partitioning ω, define:

Accn(X) = Y,

Where Y is also a collection indexed by elements of Sn, and x ∈ Y∏
i<x σi

where σi is

such that i ∈ Yσi .

Definition. Given a collection of subsets X0, . . . , Xn−1 of the same set L, a configu-

ration is an n-tuple of 0s and 1s. We say that the configuration s appears at ` ∈ L in

X0, . . . , Xn−1 if:

` ∈ Xi ⇐⇒ si = 1.

We use the shorthand write c to X0, . . . , Xn−1 at position ` in L to mean:

• For each i with si = 1, throw ` into Xi,

• For each i with si = 0, remove ` from Xi.

Definition. We adapt the bit storage, reverse bit storage, and accumulator on Sn au-

tomata from Generating the Regular Functions and Krohn-Rhodes:

Bit := (3, {0, 1}, {0}, δ, {0, 1}),
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Where δ is deterministic, with the b such that δ(a, s, b) is given by the following table:

s\a 0 1
100 0 1
010 0 0
001 1 1
o.w. 0 0

Table 4.1: Transition Table for Bit

RBit := (3, {0, 1}, {0, 1}, δ, {0}),

Where the unique a such that δ(a, s, b) is given by the following table:

s\a 0 1
100 0 1
010 0 0
001 1 1
o.w. 0 0

Table 4.2: Transition Table for RBit

Pick an enumeration of Sn.

Accn := (n!, Sn, id, δ, Sn),

Where δ is deterministic, with the b such that δ(a, s, b) is given by:

• a · σ where the only 1 in s is in position corresponding to σ,

• id if there isn’t exactly one 1 in s.

Note that these are meant to correspond to Bit,RBit, and Accn, respectively.

Proposition 57. If an L-model satisfies (1.1) through (2.5) and (3.Bit) and (3.Accn),

then it satisfies (3.A) for arbitrary runnable A.
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Proof. It suffices to show that (3.A) holds for deterministic A. Recall from Gen-

erating the Regular Functions and Krohn-Rhodes that every map that takes a se-

quence of inputs and returns the run of A on those inputs with its last character

removed can be written as a multivariable composition of character-wise maps

and such truncated run maps for automata corresponding to Bit and Accn. One

can check that this is just a statement about transition relations and holds even

when the words being operated on are nonstandard.

As usual, one encodes words as partitions of the set of positions in the word.

Via this encoding, character-wise maps become bitwise applications of bounded

boolean functions. Specifically, if we have f : Σ → Σ′, the translation of the

character-wise application of f becomes:

f ′(Xa|a ∈ Σ) = (Yb|b ∈ Σ′),

Where:

Yb =
⋃

a|f(a)=b

Xa.

The truncated run maps become the maps from inputs to runs for Bit and Accn,

but with the final state removed. Since our L-model is closed under these maps

(simply remove the final character of the runs by closure under finite modifica-

tion), our L-model is closed under any of their multivariable compositions. This

includes the map from inputs to runs for A with the final state removed. We can

add in the final state by closure under finite modification, completing the proof

of (3.A).

Proposition 58. If an L-model satisfies (1.1) through (2.5) and (3.Accn) and (4.RBit)

then it satisfies (4.A) for arbitrary reverse-runnable A.

Proof. Recall that, up to character-wise maps, the transition relations for run-
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ning Accn forward and Accn backwards are the same. The essential difference

between saying that Accn has a forward run and that Accn has a reverse run is

that in the forward run, the first state is specified, and in the backwards run, the

last state is specified. However, by applying a character-wise premultiplication

by the inverse of the last element of the forwards run of Accn, we get the reverse

run of Accn.

The proof then continues similarly to the above proposition.

Definition. Given a countable setW of subsets of ω which:

• Contains ∅, ω,

• Is closed under union and difference (and hence all bitwise maps),

• Is closed under finite modification,

• Is closed under Bit, RBit and Accn for every n.

Let:

H1
W := (ω + ζ,MW ,∈, S),

Where MW is constructed via the following process:

Step 1) W is countable, so let W0, . . . ,Wn, . . . be an enumeration of its ele-

ments. We will construct sets Zi ⊆ Z with the intention of throwing in sets of

the form Wi ∪Zi into our model. Begin our construction with the sets Zi empty,

and define a variable h, which we think of as the location of a write head as the

integer 0.

Step 2) Iterate through i ∈ ω, completing the following steps:
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Step 3) LetC be the collection of configurations which appear infinitely often

among X0, . . . , Xi. We will iteratively make sure that when beginning this step,

the write head will be located at a configuration c in Zj|j < i such that the

configuration c appears infinitely often among X0, . . . , Xi−1. Note that this is

trivially true in the case of i = 0.

Step 4) Since the configuration c appears infinitely often amongX0, . . . , Xi−1

then either c_0 or c_1 appears infinitely often among X0, . . . , Xi. In the first

case, do nothing. In the second case, add h (the location of the write head) to Zi,

so that either way the write head is now located at a configuration in Zj|j ≤ i

which appears infinitely often among X0, . . . , Xi.

Step 5) Iterating through configurations c in C (note that C must be finite),

complete the following steps:

Step 6) Letting c′ be the configuration at the current write head location,

locate a sequence of configurations

c = c0, . . . , ck−1 = c′,

Such that:

• Each cj is from C,

• The sequence of configurations occurs consecutively within X0, . . . , Xi.

We can find such a configuration by locating an instance of the configuration

c beyond the point in ω where those configurations which appear only finitely

often among X0, . . . , Xi finish appearing, and then locating an instance of the

configuration c′ which appears after that. Our sequence is the sequence of con-

figurations which appear between those instances of c and c′ inclusive.
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Step 7) Write the configurations c0, . . . , ck−1 to locations h − k + 1, . . . , h re-

spectively. Note that configuration ck−1 is already present at position h. Move

the write head to position h− k + 1.

Step 8) If there are still more c ∈ C which we haven’t iterated through, move

on to the next c ∈ C and continue from step 6). Otherwise go on to step 9).

Step 9) Move on to the next i ∈ ω, continuing from step 3). Complete this for

all i ∈ ω, then go on to step 10).

Step 10) Throw into our set MW every set of the form Wi ∪ Z ′i for i ∈ ω and

Z ′i a finite modification of Zi.

This completes our construction.

Proposition 59. When this construction has completed, a configuration appears in-

finitely often within W0, . . . ,Wj iff it appears initially often within Z0, . . . , Zj for any

j

Proof. (⇒): Note that for each a < b, if the configuration c appears infinitely

often within W0, . . . ,Wa then there is an extension of c which appears infinitely

often within W0, . . . ,Wb, by the infinite pigeonhole principle. Thus, for each

iteration referred to in step 2) for i ≥ j, we write c to Z0, . . . , Zj at least once.

Since there are infinitely many such iterations, this completes our proof.

(⇐): Suppose the configuration c appears infinitely often within Z0, . . . , Zj .

Then it must be that for each iteration i referred to in step 2), we write configu-

ration c to Z0, . . . , Zj , which means that some extension of c appears infinitely

often among W0, . . . ,Wi. From this we can conclude that c appears infinitely

often among W0, . . . ,Wi.
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Proposition 60. Let X0, . . . , Xn−1 be arbitrary elements of MW . Then a configuration

appears infinitely often within the ω part of X0, . . . , Xn−1 iff it appears initially often

within the ζ part of X0, . . . , Xn−1.

Proof. (⇒): Note that there is some r such that X0, . . . , Xn−1 all come from sets

of the form Wi ∪ Z ′i for i < r. Suppose a configuration c appears infinitely often

within the ω part of X0, . . . , Xn−1. Then some suitable extension of c appears in-

finitely often withinW0, . . . ,Wr−1. This extension appears infinitely often within

Z0, . . . , Zr−1. Thus it appears infinitely often amongZ ′0, . . . , Z ′r−1. Thus c appears

infinitely often within the ζ part of X0, . . . , Xn−1.

(⇐) is the reverse of (⇒).

Proposition 61. Given two elements X, Y in MW , if X and Y eventually agree on

their ω parts, then they initially agree on their ζ parts.

Proof. Suppose X is Wa ∪ Z ′a and Y is Wb ∪ Z ′b. Wlog, assume a < b. Then

configurations which appear infinitely often among W0, . . . ,Wb agree in their a

and bth coordinates. Hence configurations which appear infinitely often among

Z0, . . . , Zb agree in their a and bth coordinates. Hence Za and Zb agree initially

(only the empty configuration appears after 0 in the ζ part). Hence Z ′a and Z ′b

agree initially.

Proposition 62. MW is closed under finite modification.

Proof. Suppose we have an X in MW and wish to modify whether it contains x

or not. If x is in the ζ part, this holds by construction. Otherwise, X is of the

formWi∪Z ′i. LetWj beWi modified appropriately at x (recall thatW was closed

under finite modifications). Then Y = Wj ∪ Zj is in our model.
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Since X and Y eventually agree on their ω parts, they initially agree on their

ζ parts. Thus Zj is a finite modification of Z ′i so Wj ∪ Z ′i is in our model, which

is the desired modification of X .

Proposition 63. Every set in MW has a largest element.

Proof. Suppose we have an X = Wi ∪Z ′i. Recall that Zi had upper bound∞+ 0.

If Z ′i is empty, one can argue that Wi does not contain infinitely many elements,

and so has a maximal element which is also the maximal element of X . If Z ′i is

nonempty, since it is a finite modification of a set with upper bound ∞ + 0, it

has a maximal element, which is also the maximal element of X .

Proposition 64. Given elements X0, . . . , Xn−1 of MW , if the configurations c, c′ ap-

pear consecutively coinitially in the ζ part among X0, . . . , Xn−1, then they appear con-

secutively in the ω part.

Proof. Using the same sorts of configuration expansion and finite modification

arguments as in previous propositions, it suffices to prove this for Xi = Wi ∪ Zi

for i < n. By construction, anywhere in the ζ part before the position where the

write head was located at the beginning of the iteration for n, any consecutive

pair of configurations among Z0, . . . , Zn−1 will come from the same sequence of

configurations as in step 6), which was copied directly from W0, . . . ,Wn−1.

Theorem 12. Given a countable setW of subsets of ω which:

• Contains ∅, ω,

• Is closed under union and difference (and hence all bitwise maps),

• Is closed under finite modification,
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• Is closed under Bit, RBit and Accn for every n.

It is the case that H1
W is a model of WS1S.

Proof. First, we need to show that H1
W is a 1-model. Specifically, we need to

show that it contains sets of the form {x|x < `}, and we need to show that every

predecessor closed set is of that form.

I claim that MW contains the empty set, sinceW contained the empty set, so

some X in MW has empty ω part. But by a previous proposition, the configu-

ration 0 appears infinitely often in the ζ part of X and the configuration 1 does

not appear infinitely often in the ζ part of X . Thus X is of the form ∅ ∪ Z ′i for

Z ′i a finite set. Since MW is closed under finite modifications, the empty set is in

MW .

Since MW was closed under finite modifications, it contains all sets of the

form {x|x < `} for ` ∈ ω.

I claim theMW also contains the interval [0,∞+0]. Recall thatW contained ω,

so some X in MW has full ω part. By a previous proposition, the configuration

1 appears infinitely often in the ζ part of X and the configuration 0 does not

appear initially often in the ζ part of X . Thus X contains and so is a finite

modification of some interval of the form [0, z + ∞]. By closure under finite

modification, all intervals of the form {x|x < `} are in MW for ` in the ζ part.

Next, we show that the only sets in MW which are predecessor closed are of

the form {x|x < `}. Suppose we have a predecessor-closed set X . If it doesn’t

contain any elements from the ζ part, it is a predecessor closed subset of ω, thus

of the desired form. If it does contain any elements from the ζ part, it contains
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an initial segment of them. Thus, it contains a final segment of ω. By downward

closure, it thus contains all of ω. One can then argue that it is of the desired form

by looking at its maximal element.

As such, H1
W is a 1-model, and so satisfies axioms (1.1) through (1.7) and

(2.1). Now we check the rest:

(2.2) was previously proved.

(2.3) Suppose we have two sets Wi ∪ Z ′i and Wj ∪ Z ′j from MW . SinceW was

closed under boolean operations, it contains some Wk = Wi ∪Wj . The only con-

figurations that show up in the ω part of the tupleWi∪Z ′i,Wj∪Z ′j,Wk∪Zk are of

the form 000,011,101, and 111. Thus these are the only configurations which

show up initially in their ζ parts. By upper bounding, the only the configuration

000 shows up finally in their ζ parts. By finite modification of Zk to get Z ′k, we

can fix those finitely many positions where these configurations do not appear,

thus making sure these are the only configurations which show up in the tuple

Wi ∪ Z ′i,Wj ∪ Z ′j,Wk ∪ Z ′k. That is to say, Wk ∪ Z ′k is the desired union.

(2.4) is similar.

(2.5) was proved in a previous proposition.

In order to prove axiom (3.A) we will first prove (3.Bit) and (3.Accn).

(3.Bit): Suppose we are given a triple of inputsWi∪Z ′i,Wj∪Z ′j,Wk∪Z ′k. Since

W was closed under the Bit map, there is some (Wg,Wh) which has the correct

start state and satisfies the transition relation for Bit at all positions in ω for

inputsWi∪Z ′i,Wj∪Z ′j,Wk∪Z ′k. Now look atZg andZh. By an above proposition,

any consecutive pair of configurations that appear initially in the ζ part among
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Wi ∪Z ′i,Wj ∪Z ′j,Wk ∪Z ′k,Wg ∪Zg,Wh ∪Zh will satisfy the transition relation for

Bit. Thus, by finite modification, we can find Z ′g, Z ′h such that (Wg ∪Z ′g,Wh∪Z ′h)

is the desired run of Bit on input Wi ∪ Z ′i,Wj ∪ Z ′j,Wk ∪ Z ′k.

(3.Accn): Similar to the above but with Accn.

Thus, as proved in an earlier proposition, (3.A) holds for every runnable A.

In order to prove (4.A) we will first prove (4.RBit) (we just proved (3.Accn)).

(4.RBit): Suppose we are given a triple of inputs Wi ∪ Z ′i,Wj ∪ Z ′j,Wk ∪ Z ′k.

We divide the argument up into two cases: one in which Wi ∪ Z ′i has the full

head and tail equivalence classes and one in which it doesn’t.

Case 1) IfWi∪Z ′i has the full head and tail equivalence classes, one can easily

verify that the desired run (Y0, Y1) will have one of Y0 or Y1 in the full head

and tail equivalence classes and one in the empty head and tail equivalence

classes. Thus one is a finite modification of the empty set, and the other is a

finite modification of the interval [0,∞+ 0].

Case 2) Otherwise, since W was closed under the RBit map, there is some

(Wg,Wh) which satisfies the transition relation for RBit at all positions in ω for

inputsWi∪Z ′i,Wj∪Z ′j,Wk∪Z ′k. Now look atZg andZh. By an above proposition,

any consecutive pair of configurations that appear initially in the ζ part among

Wi ∪Z ′i,Wj ∪Z ′j,Wk ∪Z ′k,Wg ∪Zg,Wh ∪Zh will satisfy the transition relation for

RBit. Thus, by finite modification (and we need that either Wj ∪ Z ′j or Wk ∪ Z ′k

make appearances in the ζ part to do this) we can find Z ′g, Z
′
h such that (Wg ∪

Z ′g,Wh ∪ Z ′h) is the desired run with the correct end state of RBit on input Wi ∪

Z ′i,Wj ∪ Z ′j,Wk ∪ Z ′k.
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Thus, as proved in an earlier proposition, (4.A) holds for every reverse-

runnable A.

Now that we have a technique for constructing 1-models with interesting

tail-head functions, we would like a technique for moving these tail-head func-

tions around. In the next section, we describe as simple cut-and-paste technique

for producing new models of WS1S from old.

4.7 Cut-And-Paste Models

In this section, we describe a procedure for gluing together a number of separate

models of WS1S to produce a new model of WS1S.

Proposition 65. In any model of WS1S, if X is a nonempty second order elements of

the model, I is an interval with least element, and X ⊆ I , and:

∀x : S(x) ∈ X =⇒ (x ∈ X ∨ x /∈ I),

Then X is of the form [a, b] for a the minimal element of I and b is some element of I .

When the hypothesis holds, we say that X is nonempty and predecessor closed

within I .

Proof. Let a be the minimal element of I . I claim that X ∪ [0, a) will be predeces-

sor closed, and thus of the form [0, b] for b the maximal element of X . Thus X

will be of the form [a, b].

Proposition 66. In any model of WS1S, if (n,Q, I, δ,Q) is a runnable finite automa-

ton, and X0, . . . , Xn−1 are second order elements of our model, for any ` there is a
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delayed run of our finite automaton, starting at ` and satisfying the transition relation

δ. Specifically, there are Y0, . . . , Y|Q|−1 such that:

• The Yq partition the interval [`, S(max
⋃
X)],

• ` ∈ Yq for some q ∈ I ,

• If ` ≤ x ≤ max
⋃

X, and x ∈ Yq, x ∈ Xs, S(x) ∈ Yq′ , then δ(q, s, q′).

Proof. One can prove this is true of the standard model of WS1S by simple in-

duction. Since we can express this fact in the language of WS1S, it must be true

of any nonstandard model.

Definition. A cut-and-paste scheme is a tuple:

(L, I0, . . . , In−1, H0, . . . , Hn−1, J0, . . . , Jn−1, f0, . . . , fn−1),

Where:

• L is a linear ordering of the form ω + ζ · L′,

• The I0, . . . , In−1 form a partition of L into intervals,

• Hi is an Li-model of WS1S, for some linear order Li,

• Ji for i < n− 1 is an interval in the second order part of Hi,

• Jn−1 is a final interval of the first order part of Hn−1,

• fi : Ii → Ji is an order preserving bijection.

Definition. Given a cut-and-paste scheme (L, I,H,J, f), define the resolution of the

cut-and-paste scheme as the L-model with second order part:

W := {
⋃
i

f−1(Xi)|Xi ⊆ Ji}.

Where the Xi are required to be second order elements of their respective Hi.

130



Theorem 13. Given a cut-and-paste scheme (L, I,H,J, f), its resolution (ω + ζ ·

L,W,∈, S) is an L-model of WS1S.

Proof. For i < n − 1, we note that since the Ji are intervals in the second order

part of Hi, they have least and greatest elements, and thus since fi is an order

preserving bijection, the Ii have least and greatest elements as well. This leaves

In−1 (since I form a partition) to have a least element but no greatest element.

First, we need to show that (ω + ζ · L,W,∈, S) is actually an L-model. As

usual, we just need to check that every interval of the form {x|x < `} is in W

and that the only sets X in W which when intersected with each ω or ζ part

form an initial interval of that part are of the form {x|x < `}.

Given an `, there is some interval Ii in the cut-and-paste scheme containing

`. Since Hi is a model of WS1S, it contains the interval [min(Ji), fi(`)). What’s

more, Hj contains the interval Jj for j < i (since such j cannot be n − 1). One

simply verifies then that:

[0, `) =
⋃
j<i

f−1(Jj) ∪ f−1([min(Ji), fi(`)))

=
⋃
j<i

Ij ∪ [min(Ii), `)

Now, suppose that X ∈ W which when intersected with each ω or ζ part

forms an initial interval of that part. Then I claim that for each i, X ∩ Ii forms

an initial interval of Ii. Note that X must be predecessor closed. Recall that

X ∩ Ii was the image under the order preserving bijection f of some second

order element Xi in Hi, which has to be a subset of Ji. Thus, Xi is predecessor

closed in Ji, and thus by our lemma above, some initial interval of Ji. It then

follows by our bijection that X ∩ Ii forms an initial interval of Ii. Combine
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this with the fact that if X contains the least element of Ii then by predecessor

closure, it contains the greatest element of Ii−1, and we can see that X must be

an interval of the form {x|x < `}.

Thus, the resolution of the cut-and-paste scheme is an L-model, and thus

satisfies (1.1) through (1.7) and (2.1).

(2.2): Suppose we have an x ∈ ω+ ζ ·L. Then it fell into some interval Ii. Let:

Xj =


{f(x)} j = i

∅ j 6= i,

Then I claim that

{x} =
⋃
i

f−1(Xi).

(2.3): Suppose we have two sets A,B, with:

A =
⋃
i

f−1(Ai),

B =
⋃
i

f−1(Bi),

With Ai, Bi second order elements of Hi which are subsets of Ji. Then I claim

that:

A ∪B =
⋃
i

f−1(Ai ∪Bi).

With Ai ∪Bi second order elements of Hi which are subsets of Ji.

(2.4): The proof is the same as the proof for (2.3).

(2.5): Suppose we have a set X with:

X =
⋃
i

f−1(Xi),
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With Xi second order elements of Hi which are subsets of Ji. Let i be the largest

such that Xi is nonempty. Then Xi has a largest element. The image of this

largest element is the largest element ofX within Ii, and thus the largest element

of X overall.

(3.A) Suppose we have runnable automaton A = (m,Q, I, δ,Q), and suitable

input X0, . . . , Xm−1, with:

Xj =
⋃
i

f−1(Xj,i).

With Xj,i second order elements of Hi which are subsets of Ji.

Iterating through possible values of i do the following:

Step 1) Determine the state of A going into the beginning of Ii. If i = 0 this is

the start state. Otherwise, we computed this at the end of the previous iteration.

Step 2) Use the proposition above to find a run of A starting at the minimal

element of Ji on input X0,i, . . . , Xm−1,i, running up to either the largest element

of Ji or the image of the largest element of
⋃
X, whichever is smaller (at least

one will exist).

Step 3) If we ran up to the largest element of
⋃
X, glue together the images

under f−1 of the found runs, I claim that this is the desired run. Otherwise, add

one to i and go back to step 1), remembering the state we wound up in at the

end.

(4.A) The argument is similar to the above. Note that if we’re looking in

a model of WS1S for a run of a reverse-runnable automaton A on an interval

[a, b] which ends in a particular state q, we simply use axiom (4.A) on inputs

X0 ∩ [0, S−1(b)], . . . , Xm−1 ∩ [0, S−1(b)].
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Since all of the axioms are satisfied, the resolution is a model of WS1S.

Note that our initial restrictions on W were necessary of any projection of

the second order part of a model of WS1S to its ω part.

4.8 Conclusion and Further Research

This paper makes significant strides towards the complete classification of non-

standard models of WS1S. In L-models we found a constructive canonical form

for a representative of each isomorphism class of nonstandard model, and

showed that for every linear ordering we could possibly expect as the first or-

der part of a nonstandard model of WS1S (those of the form ω + ζ · L), there

is some nonstandard model of WS1S with that first order part when ordered

by that model’s interpretation of <. Tail-head functions gave us a language for

specifying our L-models precisely, allowing us to completely capture all of the

relevant information about a nonstandard model of WS1S.

Additionally, we provided a technique for producing a large variety of 1-

models, and then a technique for gluing together pieces of nonstandard models

of WS1S to produce new models. Combining these two, we could also produce a

large variety of n-models, where n is the natural linear ordering on {0, . . . , n−1}.

This is a very promising start, but it is missing a few key pieces that will

be necessary for any complete classification of 1-models. First, as we can see

in the example of H1,k for various k, the projection of the second order part

of a 1-model of WS1S to its ω part is not enough to uniquely determine the

model. There may be many ways of completing those projections to a full 1-
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model of WS1S. As such, the question of what sets of bounded subsets of Z

can be completed backwards to produce a 1-model of WS1S is technically open,

although it is likely that by allowing reversal in our cut-and-paste schemes this

question can be resolved quickly.

One would also like to be able to extend this result to study the uncountable

sets of subsets of ω that can be extended to 1-models of WS1S. The construction

in our proof has an iterative building nature that closely resembles what one

gets if one unpacks certain forcing constructions. It is possible that our argu-

ment may be obfuscated by translating it into a forcing proof, which may yield

insights into how to extend it for uncountable collectionsW .

Additionally, we haven’t yet answered the question of what sets of subsets

of ω can be completed to produce an L-model of WS1S for L without initial ele-

ment. If L does have an initial element, we can use cut-and-paste arguments to

turn L-models into 1-models with the same second order projection to their ω

parts and vice versa. We cannot do such a cut-and-paste argument for Lwithout

initial element, although it is likely that a modification of the original construc-

tion would suffice. One gets a sense from how the Henkin construction freely

adds new first-order elements as necessary that perhaps the 1-model case is the

hardest.

If we look at those sets of subsets of ω which can be completed to produce a

1-model of WS1S, we see that there’s some notion of regular function that they

need to be closed under. This leads us to define a partial ordering ≤A on tuples

of subsets of ω (which we can encode as ω sequences of characters from some

finite alphabet) where X ≤A Y if X is the output of some regular function on

input Y. It is suspected that understanding the structure of this partial ordering
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will yield insights into the class of all 1-models of WS1S.

And of course, all of this work can be done over again in at least three other

cases:

• S1S, the theory of ω and arbitrary subsets of ω with ∈ and S,

• WS2S, the theory of finite strings of 0s and 1s and finite sets of such strings,

with ∈ and S0, S1 which tack a 0 or 1 onto the end of a string.

• S2S, the theory of finite strings of 0s and 1s and arbitrary sets of such

strings, with ∈ and S0, S1.

Initial speculation suggests that the S1S case should be fairly easy. The most

technical portion of each proof will likely be showing that the standard con-

struction for complementing automata over these structures works correctly.
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APPENDIX A

APPENDIX A: LIST OF AXIOMS

(1.1) ∀x, y, z : x < y ∧ x < z =⇒ x < z (< is transitive)

(1.2) ∀x, y : x < y =⇒ ¬(y < x) (< is antisymmetric)

(1.3) ∀x, y : x < y ∨ x = y ∨ y < x (< is total)

(1.4) ∀x : S(x) > x (S is strictly increasing)

(1.5) ∀x : @y : x < y < S(x) (S is a successor)

(1.6) ∃o : ∀x : o ≤ x (< has minimal element)

(1.7) ∃o : ∀x : x 6= o =⇒ ∃y : S(y) = x (S has image ω \ {0})

(2.1) ∀X, Y : (∀x : x ∈ X ⇔ x ∈ Y )⇒ X = Y (Extensionality)

(2.2) ∀x : ∃X : ∀y : y ∈ X ⇔ y = x (Singleton)

(2.3) ∀X, Y : ∃Z : ∀x : x ∈ Z ⇔ (x ∈ X ∨ x ∈ Y ) (Union Closure)

(2.4) ∀X, Y : ∃Z : ∀x : x ∈ Z ⇔ (x ∈ X ∧ x /∈ Y ) (Difference Closure)

(2.5) ∀X 6= ∅ : ∃x : x ∈ X ∧ ∀y : y ∈ X ⇒ y ≤ x (Maximal Element)

(3.A) ∀X0, . . . , Xn−1 : Φ(n,Q,I,δ,Q)(X0, . . . , Xn−1) (A Runnable)

(4.A) ∀X0, . . . , Xn−1 : Φ(n,Q,Q,δ,F )(X0, . . . , Xn−1) (A Reverse-Runnable)
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