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Abstract 

Martin T. Wells t 

The roles of conditioning in inference are almost too varied to be sum­
marized in one paper. Professor Reid has done a wonderful job of explain­
ing and illustrating some of these roles. We expand on a number of her 
points, with particular attention to the practical uses and implementation 
of the methods. We also discuss some overall goals of conditional inference 
and alternative ways of achieving them. 

1 Introduction 

The techniques of conditional inference are a collection of extremely powerful 
tools. They allow for the construction of procedures with extraordinarily good 
properties, especially in terms of frequentist asymptotic behavior. In fact, in 
many cases these procedures are so good that one begins to wonder why they 
are not more widely used. That is, although statistics methodology journals 
often contain articles on conditional inference, such techniques have not really 
found their way into the arsenal of the applied statistician, and thus into the 
subject matter journals. There are, we feel, two reasons for this. One is that, 
unfortunately, the procedures are fairly complex in their derivation, and hence 
in their implementation, and for that reason alone they may not have gotten 
a thorough consideration. The second reason is somewhat more subtle, but 

*Research Supported by NSF Grant DMS 9305547. This is paper BU-1283-M in the 
Biometrics Unit, Cornell University, Ithaca, NY 14853. 

tResearch supported by NIH Grant No. R01-CA61120 

1 



perhaps more important. If an experimenter uses conditional inference tech­
niques, the goal of the analysis, and the exact type of ultimate inference to be 
made, is not at all clear. In Section 1, Reid recounts four roles of conditional 
inference that are identified by Cox(1988). But to a prospective user of these 
techniques, these goals are vague, and the effort needed to actually implement 
these solutions can be prohibitive. For example, consider Example 3.3, used to 
illustrate conditional inference techniques in the estimation of the gamma shape 
parameter when the scale parameter is unknown. The density given by (3.3) 
and (3.5), which contain components that are "difficult to calculate," is offered 
as a conditional inference solution to the problem. This density can be used to 
test an hypothesis, or, with some difficulty, to calculate a confidence interval. 
But the details of carrying out these procedures are quite complex. Moreover, 
if one is interested in a point estimate, and evaluation of the performance of 
the estimate, this density will not suffice. Rather, one might use a saddlepoint 
approximation (Reid 1988) for the density of the maximum likelihood estimate, 
yielding a density proportional to 

rn(~)rn(1/>){~~,(~)- 1} 112exp[n{(~ -1/>)~(~) + ~ -1/Jln~}], 
where~(·) is the digamma function. Although the approximation is remarkably 
accurate, computation of the normalizing constant (which involves integrating 
this function with respect to ~) is quite demanding, limiting the use of the 
formula. Thus, the "naive" user is shortchanged. Rather than the accurate 
approximations and, hence, more precise inference, the user gets only halfway 
there, and can be faced with calculations of prohibitive complexity. The failing 
is that conditional inference has been developed by the cognoscenti for their use, 
and to these experts the problems of this paragraph are easy to surmount. 

We are not presented with any unifying idea or goal that is the core of 
conditional inference. Instead, presented are "techniques" of conditional infer­
ence, but not a comprehensive" theory" of conditional inference. Such a theory, 
of course, exists. Indeed, there is a rich theory. But, to the advancement of 
powerful problem solving techniques, this development has been neglected. For 
example, referring to Cox's four roles, we are not guided as to what probability 
calculations are relevant. How does one measure the lost information in order to 
know how much has been recovered? How does one measure the influence of the 
nuisance parameters, so that a reasonable factorization can be decided upon? 
Lastly, and most importantly, what should we do with that extremely accurate 
density approximation? These comments are not meant to be adversarial or 
confrontational, but rather they are meant to highlight areas that we believe 
need to be developed in order for the theory of conditional inference to obtain 
the widespread use it deserves. 

In our discussion we will focus on three main topics, which are all aimed at 
clarifying understanding and aiding practical applications of theory and meth­
ods of conditional inference and allied techniques. We first discuss the elimi­
nation of nuisance parameters and different options for obtaining a reasonable 
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density on which to base inference. We then consider some more practical as­
pects and discuss methods that aid implementation of conditional solutions. 
Lastly, we describe a Bayesian/frequentist synthesis, first illustrating Bayesian 
methods for computation and inference with conditional techniques and then 
showing how conditional inference techniques are useful in the construction of 
Bayes procedures having good frequentist properties. 

2 Elimination of Nuisance Parameters 

It seems to us that a major, and extremely desirable, goal of conditional in­
ference can be stated as the accurate approximation of a likelihood function of 
the parameter of interest, free of nuisance parameters. Such likelihoods can be 
obtained through the modified profile likelihood of Barndorff-Nielsen (1983), or 
the conditional profile likelihood of Cox and Reid (1987). 

These likelihoods are often obtained through delicate expansions and sub­
stitutions, sometimes resulting in formulas that are extremely difficult to un­
derstand and interpret. Moreover, the exact implementation of these methods 
is not straightforward as there does not seem to be an overall "recipe". For 
example, the exact degree of nuisance parameter elimination is tied to the type 
of density factorization possible, such as (3.1), (3.2) or (3.6). Although such 
factorizations can be often recognized, what concerns us is that the implemen­
tation of nuisance parameter elimination is hard to characterize. Example 3.1 
uses a factorization that conditions one part of a sufficient statistic on another; 
Example 3.3 is similar, but uses a different form of the of the sufficient statis­
tic. Example 3.6 (see also Example 5.3) seems to take advantage of the pivotal 
structure of the problem, and its implementation is also equivalent to integra­
tion of the parameters according to a Haar measure prior. Thus, there is a great 
opportunity for a naive user to be bewildered about implementation. 

To us, this is a perfect illustration of the need for synthesis in statistics. The 
Bayesian paradigm is perfectly suited for elimination of nuisance parameters, 
and can leave one with a density (actually a posterior density) that only de­
pends on the parameters of interest. The methodology is straightforward and 
completely general. One merely specifies a prior for the nuisance parameter and 
then integrates to get the desired density (similar to Example 3.6, where the 
location/scale structure naturally suggests a Haar measure prior). The actual 
choice of the prior, while often of concern in theory, is somewhat less of a con­
cern in practice, as typical" fiat" or" default" priors (Berger and Bernardo 1992, 
Clarke and Wasserman 1993) will lead to reasonable frequentist inferences (as 
illustrated in Strawderman et al. 1995). Indeed, working a little harder on the 
prior can often yield extremely interesting results. 
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3 Practical Inference 

We are somewhat disappointed in the examples in Professor Reid's paper, as 
they tend to be more stylized than practical. This is particularly unfortunate 
since these methods can be extremely useful in practical situations, and it is 
important to highlight this point. 

Perhaps this stylization of examples reflects what can be perceived as a mis­
placed emphasis in the development of the conditional inference theory. The 
development of approximations of densities, distribution functions, and likeli­
hoods has been for models derived from statistical theory rather than models 
derived from the concerns of experimenters. The somewhat related topic of 
saddlepoint approximations has been more successful in making headway into 
practical solutions. 

3.1 The Saddlepoint Alternative 

Although there is a fundamental difference in the inference from the saddle­
point approach to that from the conditional inference approach, many of the 
mechanics are so similar that a comparison is almost required. Moreover, in 
many important exponential family models, the marginal inferences that result 
from saddlepoint approximations are equivalent to conditional inferences. 

There is, however, a distinct difference between the saddlepoint and p* ap­
proaches in their implementation, resulting in an advantage to the saddlepoint 
approach. A role of the ancillary statistic in the p* -formula (2.1) is to sepa­
rate the data in to the maximum likelihood estimate and the ancillary, so the 
p*-formula can actually be used as a density for the maximum likelihood esti­
mate. (The more fundamental role of the ancillary is to reduce the dimension of 
the sufficient statistic to that of the parameter of interest, putting the problem 
more in the form of an exponential family. But the "separation" role is quite 
important in the mechanics of the implementation.) For example, getting from 
(2.1) to (2.2) uses the identity 

x- J-L = (jL- J-L) + (x- jL) = jL- J-L +a, 

where jL is the maximum likelihood estimator and a is an ancillary statistic. 
Such a decomposition is transparent in the location/scale case, but becomes 
less so in other cases, where implementation of the p*-formula can necessitate 
involved calculations of approximate ancillaries. 

This problem is not shared by the saddlepoint approximation, and the rea­
son is, perhaps, most evident from the exponential-tilting derivation of the sad­
dlepoint. The auxiliary random variable used to center the approximation is 
added to the mix, and hence is always separate from the statistics of interest. 
Thus, no separation or factorization is required to obtain the desired density 
approximation, making the saddlepoint somewhat more accessible as an approx­
imation technique in complicated problems. Alternatively, and equivalently, the 
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saddlepoint approximation can also start from an estimating equation, derived 
from the experimenter's model of interest. To illustrate the differences in these 
approaches, consider the important practical case of logistic regression, in par­
ticular, logistic regression with one covariate and an unknown intercept, 

From a conditional inference point of view, estimation of the coefficient density 
was considered by Barndorff-Nielsen and Cox (1979) and Davison (1988), who 
used double-saddlepoint (numerator and denominator) approximations to ap­
proximate the conditional density of the regression coefficients. Their delicate 
approximations eliminate nuisance parameters by conditioning, and result in an­
swers that are quite difficult to compute. The logistic model can also be directly 
attacked with saddlepoints starting from estimating equations (see, for example, 
Field and Ronchetti 1990), as done in Strawderman, Casella, and Wells (1995). 
(Note that we are now invoking the discussant's privilege: Talk about your own 
work.) The cumulant generating function for n independent observations from 
(1) is 

n 

Kn(tis, B)= I: log [1- Pi(B) + Pi(B) exp t' zi]- t' ZiPi(s), 
i=1 

where t, s and B are 2 x 1 vectors, and Zi = (1, xi)', the two-dimensional 
saddlepoint is W0 = n - 1 (s- B), and the approximate density of fJ is given by 

( I ) IL~- 1 ZiZ~Pi(s)(1- Pi(s))l 112 K ( _ Bl B) (2) 
g0 s B = 27r exp n s s, , 

where 1·1 denotes the determinant. A similar formula holds for parameter vectors 
of fixed but arbitrary dimension. The approximation (2) has been shown to be 
extremely accurate, even for samples as small a n = 20. Note that (2) is a 
marginal, not a conditional density, which illustrates an essential difference in 
the saddlepoint versus conditional inference methodologies. However, as we 
shall see in Section 4.1, we can use some simple computing techniques (such as 
the Gibbs sampler) to allow us derive conditional-type inferences from (2). 

In the case of exponential families, in which ordinary logistic regression falls, 
the saddlepoint and conditional inference (double saddlepoint) approaches yield 
equivalent answers. Moreover, the estimating equation approach is somewhat 
more general, allowing us to apply approximations such as (2) to more general 
situations. 

3.2 Computing the Conditional Solution 

Professor Reid mentions that computing methods, such as Monte Carlo Markov 
chain, have exploited the fact that conditional solutions are often easier to cal­
culate than marginal densities. However, the conditional solutions from the p* 
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formula or a saddlepoint approximation can, themselves, be extremely compli­
cated. This becomes particularly apparent in the problem of confidence interval 
construction, which often necessitates many evaluations of the target density 
(and its constant), with each evaluation at a different parameter points. 

This suggests another synthesis. Rather than just note that conditional 
densities can make techniques such as Monte Carlo Markov chain easier to im­
plement, it is also the case that these computing techniques can eliminate much 
of the delicate approximation needed to use either the p*-formula or a sad­
dlepoint approximation. For example, consider the linear models in Examples 
3. 7 and 5.3, perhaps still the most common models in statistics. They can be 
analyzed easily and effectively using computational methods. 

The special structure of these linear regression examples, which results in the 
existence of a useful pivot, makes it easy to apply some now-standard computing 
methods. The general expression for the density of the pivot statistics t = 
(t1, · · ·, tp) and v, where 

conditional on the ancillary statistics ai(Y) = (Yi- X ;ii)/ a has the specific form 
(Fraser 1979, Chapter 6; Fraser, Lee and Reid 1990) 

I I fo[(Xt + a)v]vn-liX' Xl 112dtdv · 
(3) 

For any density fo, we can draw samples from (3) using a method such as the 
Accept-Reject or Metropolis Algorithms, or perhaps the Gibbs sampler (see 
Tanner 1993 or Robert 1994). For example, if interest is in the marginal distri­

bution of tk, we draw m realization from (3), say { (t~), t~k), v(j)}J!=1. Then we 
can calculate a Monte Carlo approximation to the marginal density of tk 

A 1 m -+-(/j)lt(j) v(j))f(t t(j) vU)) 
f() = -~'I' k -k' , -k' 

t m ~ f(t(j) t(j) v<n) ' 
J=l k ' -k' 

(4) 

where ¢(·1·) is any conditional density. If f(t) is the true marginal, then for any 
such density ¢(·1·) we have f(t) -+ f(t) at a geometric rate as m -+ oo, and 
the convergence will be faster the closer ¢ resembles the true conditional den­
sity. This type of computing is a quite viable alternative to the marginalization 
asymptotics of Section 4.3, as expression (4) is exact to any degree of accuracy 
desired. 

Details of the application of this technique, as well as a number of examples, 
are given in Casella, Wells, and Tanner (1994). Bayesian applications of Monte 
Carlo marginalization are given in Gelfand, Smith and Lee (1991) and Chen 
(1994). The general theory of Monte Carlo marginalization is a consequence 
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of the conditional Monte Carlo method, nicely explained in Hammersley and 
Handscomb (1964). Thus, the easy computer implementation that Professor 
Reid mentions in her concluding remarks may already exist in another guise 
within a slightly different inferential framework. 

4 The Bayesian Connection 

4.1 A Bayesian Solution 

In Section 2 we discussed the Bayesian solution to marginalization and how well 
suited it is to general problems. When that is combined with the computational 
techniques described in the previous section, a powerful tool for calculation of 
marginal densities emerges. In particular, the Monte Carlo marginalization (4) 
can be combined with the logistic saddlepoint density (2) to obtain the marginal 
density of interest. This strategy can also circumvent the problem of inference 
with nonorthogonal parameters. 

Specifically from the saddlepoint density (2), or its higher dimensional ana­
log, it is straightforward to marginalize to the univariate density of any one 
coefficient. However, in contrast to a normal approximation, the marginal sad­
dlepoint density for each parameter (obtained by integrating out the remaining 
variables) depends upon the true values of all of the parameters. For example, 
if the parameter vector is (9o, 917 82, 9g), and interest is in making inferences 
about 82, the marginal density for B2 is not immediately useful since will de­
pend upon 82 as well as 9o, 81, and 9g. Thus, simply using numerical integration 
to marginalize the saddlepoint density is not recommended unless it is known 
that there is parameter orthogonality. 

Using a Bayesian approach, a marginal posterior distribution (which is simi­
lar to a conditional density) can be calculated for the parameter of interest, and 
this marginal behaves quite nicely under frequentist evaluations. In the above 
illustration, placing a uniform improper prior on each of 9o, 81, 82, and 9g, yields 
a posterior density of the parameters, given the data, that is proportional to 
the saddlepoint density of the MLE's. To obtain the marginal posterior density 
for each parameter, one can first apply the Gibbs sampler (or other sampling 
scheme) to obtain observations from the joint posterior density, and use Monte 
Carlo marginalization to obtain the desired result. Strawderman et al. (1995) 
has had good success with this method in the logistic regression setting, and 
found that the Bayesian HPD regions maintained reasonable frequentist cover­
age. Indeed, with the use of typical flat priors, adequate frequentist performance 
of Bayes procedures is to be expected. However, one might hope to improve, 
and this leads naturally to the question of the existence of priors that could 
yield even better frequentist performance. 
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4.2 Bayesian/Frequentist Conditional Inference 

The fact that the Bayes intervals of the previous section were also good fre­
quentist intervals is not a coincidence. Underlying the theory of conditional 
inference are structures that are common to both paradigms. As mentioned in 
Section 6.3, and reviewed in Reid (1994), these similarities have been explored 
and exploited previously to understand the types of Bayesian priors that are 
likely to result in good frequentist inference. We would like to further explore 
the connection between conditional and Bayesian inference, in particular us­
ing asymptotic tail probability approximations to help identify noninformative 
priors. 

Suppose that Z is a continuous random variable having probability density 
function of the form 

fz(z) ex b(z) exp{k(z)} = exp{ k(z) + logb(z) }, 

where k(z) and its derivatives are of order O(n), the derivatives of logb(z) are 
of order 0(1), and k(z) is maximized at z, so that Z- z is of order Op(n- 112). 

DiCiccio and Martin (1991) showed 

(5) 

where z- z is assumed to be of order O(n- 112), 

r = sgn(z- z) [2{ k(z)- k(z)} ]112 , v= 
kC 1) (z) b(z) 

{ -kC2) (z)} 1/2 b(z), 

and k(j)(z) = di k(z)/dzi (j = 1,2). Now consider Bayesian inference for 
0 = ('1/J, >.) based on an observed random vector Y = (Yl> ... , Yn) and a prior 
probability density function 1r(O). The Tierney et al. (1989) Laplace approxi­
mation to the marginal posterior density of 'lj; is 

(6) 

where l(O) is the log likelihood function for 0 based on Y and i>.>-.(0) = -l>.>-.(0). 
When approximation (6) is normalized, it has relative error of order O(n - 312). 

An asymptotic expression for posterior tail probabilities of 'lj; can be obtained 
by applying formula (5) to (6). There are two obvious ways to proceed: either 
choose 

(7) 

or else choose 

(8) 

Choices (7) and (8) produce respectively approximations of the "double saddle­
point" and the "sequential saddlepoint" form, which are mentioned in Section 
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4.3 by Professor Reid. Numerical investigations show that (8) generally pro­
duces more accurate approximations than (7); moreover, in practice, numerical 
integration of the Laplace approximation (6) might be feasible and extremely 
accurate. However, choice (7) is preferable for the purpose of identifying non­
informative priors. Using (7) in conjunction with approximation (5) yields, for 
values '1/Jo such that~- '1/Jo is of order O(n- 112 ), the tail probability approxi­
mation 

pr ('1/J ~ '1/JoiY) = <)(r11 ) + cp(r11 )(r; 1 - v; 1) + O(n-312), (9) 

where r11 = sgn(~- 'I/Jo)[2{l(~.~) -l('¢o,~o)}] 112 is the signed root of the 

likelihood ratio statistic, ~o = ~'l/lo• 

I ( A ) 11/2 
_ l (·'· ~ ) i> .. >. '1/Jo, .>..o 1r('¢, .>..) 

Vp - '1/1 o/0, 0 A A 1/2 ( " ) I 

lioo('I/J,>..)I 1r '1/Jo,>..o 

and l'I/!('1/J, >..) = 8l('¢, >..)/ 8'1/J. Thus, the value of '1/Jo satisfying 4>(r11 )+cp(rp) (r; 1 + 
v; 1) = a agrees with the posterior 1- a quantile of '1/J to error of order O(n - 2 ). 

On the other hand, from a frequentist perspective, Barndorff-Nielsen (1986, 
1991) has shown that the standard normal approximation to the conditional 
distribution of r; = rp+r; 1 1og(up/rp), given an exact or approximate ancillary 
statistic t, has error of order O(n- 312 ), where '1/Jo now denotes the true value of 
the parameter of interest, 

l.ij('I/J, >..) is the column vector of partial derivatives of l('I/J, >..; ii, t) taken with re­

;pect to 8, l>.·iJ('I/J, >..)is the matrix of second-order partial derivatives of l('I/J, >..; 8, t) , 
taken with respect to >.. and 8, and u11 takes the same sign as rp. Hence, the 
value of '1/Jo that satisfies ()(r;) = a is an approximate 1 - a confidence limit 
having conditional coverage error of order O(n- 312 ), as is the value of '1/Jo such 
that <)(r11 ) + cp(rp)(r; 1 - u; 1) = o:, since it can be shown that 

(10) 

Approximation (10) generalizes (2.3) to the nuisance parameter case and pro­
duces (4.3) for canonical parameters of linear exponential families. 

One notion of a noninformative prior is that the posterior 1 - a quantile 
of '1/J is, under repeated sampling, an approximate upper 1 - a confidence limit 
having coverage error of order O(n- 1 ). Writing()= (81, ... ,8d), with '1/J = 81, 
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Peers (1965) showed that to be noninformative the prior 1r(O) must satisfy the 
equation 

where iij = E{-a2l(O)jaOiOj} and (iij) is the matrix inverse of (iij)· Tibshi­
rani (1989) noted that when '1/J and .X are orthogonal, (11) reduces to 

( ) -112 a { } a ( ) -112 
it/Jt/J a¢ log1r(O) +a¢ it/Jt/J = 0, 

which has solutions of the form 

(12) 

where g(.X) is arbitrary. DiCiccio and Martin (1993) showed that if 1r(O) is 
noninformative, then vp·= up+ Op(n- 1) in the repeated sampling sense. Thus, 
the Bayesian approximate confidence limits agree with the limits from (10) to 
error of order Op(n- 312), and it follows that the Bayesian limits have conditional 
coverage error of order 0 ( n - 1 ) given exact or approximate ancillary statistics. 

Equation (11) does not have a unique solution, and it is natural to ask 
whether solutions can be identified for which the coverage error of the approxi­
mate limits is of order O(n - 312). This improved coverage accuracy holds if the 
prior is such that vp =up+ Op(n- 312), that is, if 1r(1/J, .X) satisfies 

A I A 11/2 
11"('1/Jo,.Xo) =l (·'· ~) i.u('I/Jo,.Xo) ( )_ 1 

( A A) t/J '1'07 0 I A A 11/2 Up ' 
1l" '1/J,.X iee('I/J,.X) 

(13) 

to error of order Op(n - 312). 

The use of (11) can be illustrated in the gamma model discussed in Examples 
3.3 and 5.2. Consider a sample Y1, ... , Yn from the distribution having density 

where 1-£ is the mean, v is the shape parameter, and 1-£ and v are orthogonal. 
Suppose that 1-£ is the parameter of interest and 11 is the nuisance parameter. 
Since ip.p. = n11 / J-£ 2, expression (12) shows that the noninformative priors are of 
the form 

7r(J-t, 11) ex: g(v)/ 1-£, (14) 

where g(11) is arbitrary. For this problem, Barndorff-Nielsen (1986) showed that 

_ 112 (P, -J-to) A112{ ¢C1>(v) } 112 
up- n J-to II ¢(1)(flo) ' 
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where ¢(v) = dlogr(v)jdv -logv and ¢C1l(v) = d2 logr(v)/dv2 - 1/v. In this 
case, expression (13) becomes 

7r(J-Lo, Do) = fl Do { ¢C1l(Do) } 112 

1r(P,, D) J-Lo D ¢C1l(v) ' 

which recommends the prior 7r(J-L, v) = v¢(1) (v )/ J-L, corresponding to the choice 
g(v) = v¢C1l(v) in (11). The situation is not so clear when vis the parameter of 
interest and IL is the nuisance parameter. Since i 1111 = n¢(1) (v ), noninformative 
priors are of the form 

(15) 

where g (J-L) is arbitrary. In this case, 

and by (13), the prior 1r(v,J-L) should be chosen so that, to error of order 
Op(n-3/2), 

7r(vo,flo) 
7r(D,fl) 

Since flo= fl in this case, there is no loss in restricting attention to priors 1r(v, J-L) 
that are functions of v alone. An easy Taylor expansion shows that the choice 

1r(v, IL) oc { ¢C1) (v)} 112 satisfies (16) only to error of order O(n - 1 ). Moreover, the 

reference prior 1r (v, IL) oc J-L { ¢C1) (v)} 112 considered by Liseo (1993) also satisfies 
(16) only to error of order Op(n - 1 ). Expression (16) suggests that it might 
be impossible to find a prior density that produces confidence limits having 
coverage error of order O(n- 312 ); see DiCiccio, Keller, and Martin (1992). 

Many of the likelihood adjustments and distributional corrections discussed 
in the paper can be viewed, at least to error of order Op(n-1), in terms of 
the quantities zo and a that arise in Efron's (1987) BCa confidence limits. 
Efron defined zo = c)- 1 {pr(~ ::; '1/Jo)}, and a is related to the skewness of 
the score function; both zo and a are of order O(n- 112). In the setting of 
Section 4.2, DiCiccio and Efron (1991) and Efron (1993) showed that E(rp) = 

-zo + O(n- 1) and that rp + zo has the standard normal distribution to error 

of order O(n- 1). Moreover, E{l~('l/J)} =(a- zo){-l~('l/!)} 112 + O(n- 1) and 

lc('l/J) = lp('l/J)- (a- zo){-l~('l/!)} 112 + O(n- 1). As many authors have noted, 
adjustment of the log profile likelihood function lp( '1/J) reduces the bias of the 
profile score. Also, E(rc) = -a+ O(n -l/2), and rc +a has the standard normal 
distribution to error of order 0 ( n - 1). Further details are given in DiCiccio and 
Efron (1995). 
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