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ABSTRACT 

 

The present study was conducted to investigate 1) how the presence and 

attractiveness of a human model along with a product influences the attractiveness 

ratings of the image; 2) whether pupil area can be used as an objective measure of 

image attractiveness; 3) whether image complexity systematically affects eye 

movements; and 4) whether there are gender or designer status differences in viewing 

patterns. In this study, eye tracking software was utilized to capture pupillary 

responses, fixation durations, number of fixations, and areas of focus represented by 

heatmaps and lookzones.  Results showed that the presence of a human model 

increased perceived overall image attractiveness. Image model attractiveness increased 

linearly with model attractiveness. Pupils dilated when viewing images with human 

models present, and decreased when viewing images without human models. 

However, changes in pupil area were not significantly associated with image 

attractiveness.  Results also confirmed that fixation duration increased and the 

number of fixations decreased as image complexity increase with the presence of a 

human model. There were significant designer status differences in average fixation 

time, number of fixations, and areas of focus. Designers had more, shorter fixations 

when viewing simple images and fewer, longer fixations when viewing moderately 

complex images compared to non-designers. Additionally, there were significant 

gender differences in image attractiveness ratings and number of fixations when a 
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human model was present. Females rated images without a model more attractive and 

had fewer fixations compared to males, whereas males rated images with a model 

more attractive and had fewer fixations compared to females.



	
   III	
  
	
  

BIOGRAPHICAL SKETCH 

 

Jordan Licero is a graduate student in Cornell University’s department  

of Design and Environmental Analysis, concentrating in Human Factors and 

Ergonomics. Jordan completed her high school education in 2008 from Darien High 

School (Darien, CT). She graduated with a Bachelors of Science with Honors from 

Cornell University in 2012.  

  



	
   IV	
  
	
  

 

 

 

 

 

 

For my family, who provides infinite support, motivation, and encouragement.  

Thank you for always believing in me and ensuring I never give up on my passion. 

 

 



	
   V	
  
	
  

ACKNOWLEDGEMENTS 

 First and foremost, I would like to thank my adviser, Professor Alan Hedge, 

for his support and treasured guidance during my undergraduate and graduate years 

at Cornell University. The numerous opportunities that he provided for research, 

projects, and internships were essential to the gradual development of my interests 

and skills. I would like to thank Professor James Cutting for his valuable input and 

direction. I would also like to thank Jay Barry for his statistical consulting throughout 

the year, and Katerina Stanton for her editing skills, which truly improved this thesis. 

Additionally, I would like to thank all of the participants and models, who made this 

study possible. Finally, I would like to thank the College of Human Ecology, 

especially the department of Design and Environmental Analysis, for their generous 

funding of my graduate studies. To each of these, I extend my deepest appreciation.  

 



	
   VI	
  
	
  

TABLE OF CONTENTS 

 
BIOGRAPHICAL SKETCH ……………………………………………….. III 

DEDICATION ……………………………………………………………... IV 

ACKNOWLEDGEMENTS …………………………………………….…... V 

TABLE OF CONTENTS ………………………….……………………...… VI 

LIST OF FIGURES …………………..………………………………….…... X 

LIST OF TABLES ……………………………………....………………......... XIII 

1. LITERATURE REVIEW………………………………………………… 1 

1.1 Introduction……………………………………………………….... 1 

1.2 Attraction……..…………………………………………………...... 1 

 1.2.1 Attractiveness and the Human Face    2 

1.2.2 Reward Regions of the Brain and Facial Attractiveness 3 

1.2.3 Attractiveness and Aesthetics     5 

1.2.4 Berlyne’s Aesthetics Theory     6 

1.2.5 Advertising and Attractiveness     8 

 1.3 Physiology of the Human Eye………….. …………………………. 11 

  1.3.1 Human Eye Structure      11 

  1.3.2 Visual Processing       14 

  1.3.3 Peripheral, Parafoveal, and Foveal Vision   16 

  1.3.4 Extraocular Muscles       17 

  1.3.5 Vergence and Accommodation     19 

  1.3.6 Eye Movements: Fixations and Saccades    20 



	
   VII	
  
	
  

  1.3.7 Iris Muscles        21 

 1.4 Pupillometry and Pupillary Reactions ……...………….……….….... 23 

  1.4.1 Emotional Valence and Interest     24 

  1.4.2 Luminance        27 

  1.4.3 Memory        29 

  1.4.4 Cognitive Effort       31 

 1.5 Eye Movement Tracking Technology.…………….....…………....… 33 

  1.5.1 Heatmaps        35 

  1.5.2 Lookzones        36 

 1.6 Complexity…………………………………………………………. 37 

  1.6.1 Simple vs. Complex Images     39 

 1.7 Male vs. Female Differences…………...…………………………… 43 

1.8 Designer vs. Non-Designer Differences……………….…………… 45 

 1.9 Summary of Proposed Research…………………………………..... 47 

1.10 Research Hypotheses……..….…………………………………..... 48 

2. METHODS…………………………………………………………...….. 52 

 2.1 Apparatus…..………………………………………………………. 52 

  2.1.1 Chairs         52 

  2.1.2 Human Models       52 

  2.1.3 Stimuli         53 

  2.1.4 Eye Tracking Software      53 

  2.1.5 Luminance Contrast Meter      54 

 2.2 Participants……..…………………………………………………... 55 

 2.3 Measures…..………………………………………………………... 56 

  2.3.1. Designer Status       56 

  2.3.2. Attractiveness Ratings      57 

  2.3.3. Pupil Area        57 



	
   VIII	
  
	
  

  2.3.4. Number of Fixations and Fixation Duration   58 

  2.3.5. Complexity        58 

  2.3.6. Heatmaps         58 

2.3.7 Lookzones            59 

 2.4 Procedure…………………………………………………….....…... 59 

2.5 Data Analysis…...…………………………………………….....…... 61 

3. RESULTS………………………………………………….…………....... 64 

 3.1 Image Complexity and Image Attractiveness..…………..………........ 64 

 3.2 Image Attractiveness and Model Attractiveness..……………….….... 59 

 3.3 Image Attractiveness and Pupil Area Change……………...…..…...... 65 

 3.4 Pupil Area Change and Stimulus Luminance…………………...….... 66 

 3.5 Pupil Area Change and Model Face Luminance…..….……….....…... 67 

 3.6 Model Attractiveness and Model Face Luminance.……...………....... 68 

 3.7 Pupil Area Change and Number of Fixations.……………..….....….. 69 

 3.8 Pupil Area Change and Average Fixation Time…………...….........… 69 

 3.9 Model Attractiveness and Pupil Area Change…….……..…….…….. 70 

 3.10 Image Complexity and Pupil Area Change….…………..……......… 71 

 3.11 Image Complexity and Number of Fixations…..………..……….… 72 

 3.12 Image Complexity and Average Fixation Time……………………. 72 

 3.13 Average Fixation Time and Image Attractiveness.………………..... 73 

 3.14 Image Complexity and Areas of Focus……….…………...……….. 74 

  3.14.1 Heatmaps        74 

  3.14.2 Lookzones        75 

 3.15 Gender Differences in Viewing Patterns…………..………………. 75 

 3.16 Designer Status Differences in Viewing Patterns…………....…..…. 78 

 3.17 Summary of Results…………………………………………….…. 83 

4. DISCUSSION…………………………………………………..…..…...... 84 



	
   IX	
  
	
  

 4.1 Image Complexity and Image Attractiveness………………..…..…. 84 

4.2 Image Attractiveness and Model Attractiveness…………………… 85 

4.3 Image Attractiveness and Pupil Area Change……………………… 86 

 4.4 Image Complexity and Eye Movements..………………...……....… 100 

 4.5 Gender Differences in Viewing Patterns……………….……..……. 103 

 4.6 Designer Status Differences in Viewing Patterns…………………... 106 

5. CONCLUSION……………………………….…………………………. 109 

6. REFERENCES………………………………….…………………….… 114 

APPENDIX A: FIGURES…………………………………………........…… 125 

APPENDIX B: TABLES…………………………………………………….. 182 

 



	
   X	
  
	
  	
  

 LIST OF FIGURES 

 

Figure 1.1.1. Bertoia Chair by Knoll………………………………………………… 125 

Figure 1.1.2. Bertoia Chair by Knoll with Model…………………………………….... 125 

Figure 1.2.1. Audio Chair by Bernhardt……………………………….…………….. 126 

Figure 1.2.2. Audio Chair by Bernhardt with Model…………………………..………. 126 

Figure 1.3.1. Risom Lounge Chair by Knoll……………………………………..…… 127 

Figure 1.3.2. Risom Lounge Chair by Knoll with Model……………………………….. 127 

Figure 1.4.1. Arm Navy Chair by EMECO………………………………….……... 128 

Figure 1.4.2. Arm Navy Chair by EMECO with Model……………………….…...… 128 

Figure 1.5.1. Shell Chair by Herman Miller…………………………………….……. 129 

Figure 1.5.2. Shell Chair by Herman Miller with Model…………………………..…… 129 

Figure 1.6.1. Coalesse Chair by Steelcase………………………………………..……. 130 

Figure 1.6.2. Coalesse Chair by Steelcase with Model……………………………..……. 130 

Figure 1.7.1. Aeron Chair by Herman Miller………………………………….……... 131 

Figure 1.7.2. Aeron Chair by Herman Miller with Model…………………………....… 131 

Figure 1.8.1. Setu Chair by Herman Miller………………………………………….. 132 

Figure 1.8.2 Setu Chair by Herman Miller with Model……………………………...… 132 

Figure 1.9.1. Panton “S” Chair by Knoll…………………………………………….. 133 

Figure 1.9.2. Panton “S” Chair by Knoll with Model………………………………….. 133 

Figure 1.10.1. Series 7 Chair by ICF……………………………………………...… 134 

Figure 1.10.2. Series 7 Chair by ICF with Model…………………………………….. 134 

Figure 1.11.1.  Gubi 5 Chair by Gubi…………………………………………….… 135 

Figure 1.11.2. Gubi 5 Chair by Gubi with Model…………………………………….. 135 

Figure 1.12.1. Ultimate Executive Highback with Dual-Flex Chair by Lifeform…………. 136 

Figure 1.12.2. Ultimate Executive Highback with Dual-Flex Chair by Lifeform with Model. 136 

Figure 1.13.1. Saarinen Executive Chair by Knoll……………………………...……... 137 



	
   XI	
  
	
  

Figure 1.13.2. Saarinen Executive Chair by Knoll with Model………………………….. 137 

Figure 1.14.1. Freedom Chair by Humanscale……………………………………...… 138 

Figure 1.14.2. Freedom Chair by Humanscale with Model…………………………...… 138 

Figure 1.15.1. World Chair by Humanscale………………………………………….. 139 

Figure 1.15.2. World Chair by Humanscale with Model……………………………….. 139 

Figure 1.16.1. Mirra Chair by Herman Miller……………………………………….. 140 

Figure 1.16.2. Mirra Chair by Herman Miller with Model…………………………..… 140 

Figure 2.1.1. Headshot of Model in Images with Arm Navy Chair & Risom Lounge Chair.. 141 

Figure 2.2.1. Headshot of Model in Images with Panton “S” Chair & Gubi 5 Chair.…….. 141 

Figure 2.3.1. Headshot of Model in Images with Setu Chair & Series 7 Chair…………… 142 

Figure 2.4.1. Headshot of Model in Images with Saarinen Executive Chair & Mirra Chair.. 142 

Figure 2.5.1. Headshot of Model in Images with Aeron Chair & Freedom Chair………… 143 

Figure 2.6.1. Headshot of Model in Images with Ultimate Executive Highback Dual-Flex  

Chair & World Chair……………………………………………………………... 143 

Figure 2.7.1. Headshot of Model in Images with Bertoia Chair & Audio Chair………….. 144 

Figure 2.8.1. Headshot of Model in Images with Shell Chair & Coalesse Chair…….…….. 144 

Figure 3.1.1. Change in Average Pupil Area No Outliers Histogram………………....…. 145 

Figure 3.1.2. Image Attractiveness Ratings Histogram………………...……………….. 146 

Figure 3.1.3. Model Attractiveness Ratings Histogram…………………………....……. 147 

Figure 3.1.4. Number of Fixations Histogram…………………………...…………… 148 

Figure 3.1.5. Log Average Fixation Time Histogram………………………………….. 149 

Figure 4.1.1. Heatmaps: Bertoia Chair by Knoll……………………....………………. 150 

Figure 4.1.2. Heatmaps: Bertoia Chair by Knoll with Models……………………...…… 151 

Figure 4.2.1. Heatmaps: Audio Chair by Bernhardt…………………………………... 152 

Figure 4.2.2. Heatmaps: Audio Chair by Bernhardt with Models……………………….. 153 

Figure 4.3.1. Heatmaps: Risom Lounge Chair by Knoll…………………………...…… 154 

Figure 4.3.2. Heatmaps: Risom Lounge Chair by Knoll with Model…………………….. 155 



	
   XII	
  
	
  

Figure 4.4.1. Heatmaps: Arm Navy Chair by EMECO…………………………….... 156 

Figure 4.4.2. Heatmaps: Arm Navy Chair by EMECO with Model…………………… 157 

Figure 4.5.1. Heatmaps: Shell Chair by Herman Miller……………………………….. 158 

Figure 4.5.2. Heatmaps: Shell Chair by Herman Miller with Model…………………..… 159 

Figure 4.6.1 Heatmaps: Coalesse by Steelcase……………………………...………….. 160 

Figure 4.6.2. Heatmaps: Coalesse by Steelcase with Model………………...……………. 161 

Figure 4.7.1. Heatmaps: Aeron Chair by Herman Miller……………………...………. 162 

Figure 4.7.2. Heatmaps: Aeron Chair by Herman Miller with Model………………….... 163 

Figure 4.8.1. Heatmaps: Setu Chair by Herman Miller……………………………...… 164 

Figure 4.8.2. Heatmaps: Setu Chair by Herman Miller with Model…………………...… 165 

Figure 4.9.1. Heatmaps: Panton “S” Chair by Knoll……………………………..…… 166 

Figure 4.9.2. Heatmaps: Panton “S” Chair by Knoll with Model……………………..… 167 

Figure 4.10.1. Heatmaps: Series 7 Chair by ICF…………………………………...… 168 

Figure 4.10.2. Heatmaps: Series 7 Chair by ICF with Models……………………….… 169 

Figure 4.11.1. Heatmaps: Gubi 5 Chair by Gubi…………………………………….. 170 

Figure 4.11.2. Heatmaps: Gubi 5 Chair by Gubi with Model………………………….. 171 

Figure 4.12.1 Heatmaps: Ultimate Executive Highback with Dual-Flex by Lifeform…...… 172 

Figure 4.12.2. Heatmaps: Ultimate Executive Highback with Dual-Flex by Lifeform  

with Model……………………………………………………………………...… 173 

Figure 4.13.1. Heatmaps: Saarinen Executive Chair by Knoll………………………….. 174 

Figure 4.13.2. Heatmaps: Saarinen Executive Chair by Knoll with Model……………….. 175 

Figure 4.14.1. Heatmaps: Freedom Chair by Humanscale…………………………….... 176 

Figure 4.14.2. Heatmaps: Freedom Chair by Humanscale with Model……...……………. 177 

Figure 4.15.1. Heatmaps: World Chair by Humanscale……………………………..… 178 

Figure 4.15.2. Heatmaps: Freedom Chair by Humanscale with Model………………….... 179 

Figure 4.16.1. Heatmaps: Mirra Chair by Herman Miller…………………………...… 180 

Figure 4.16.2. Heatmaps: Mirra Chair by Herman Miller with Model………………..… 181 



	
   XIII	
  
	
  

LIST OF TABLES 

 

Table 1.1.1. Chair Table….……………………………………………………….. 182 

Table 2.1.1. Skewness and Kurtosis…………………………………………………. 183 

Table 3.1.1. Random Effects of Image Attractiveness Ratings………………………….... 185 

Table 3.2.1. Comparison of Means: Image Attractiveness and Image Complexity………….. 185 

Table 3.2.2. Comparison of Means: Image Attractiveness and Image Complexity………….. 186	
  

Table 3.3.1. Estimated Marginal Means: Image Attractiveness and Image Complexity…….. 186 

Table 3.4.1. Image Attractiveness: Image Complexity by Gender……………………….... 187 

Table 3.4.2. Image Attractiveness: Image Complexity by Gender Pairwise Comparisons……. 187 

Table 3.4.3. Image Attractiveness: Image Complexity by Gender……………………....… 188 

Table 3.4.4. Image Attractiveness: Image Complexity by Gender Univariate Test………...... 188 

Table 3.5.1. Image Attractiveness: Image Complexity by Designer Status……………….... 189 

Table 3.5.2. Image Attractiveness: Image Complexity by Designer Status  
Pairwise Comparisons……………………………………………………………… 189 

Table 4.1.1. Random Effects of Image Attractiveness Differences………....……………… 190 

Table 4.2.1. Comparison of Means: Image Attractiveness Differences  
and Model Attractiveness……………………………………………...……………. 190 

Table 4.2.2. Comparison of Means: Image Attractiveness Differences  
and Model Attractiveness………………………………………………………….... 190 

Table 4.3.1. Comparison of Means: Image Attractiveness Differences  
and Model Attractiveness………………………………………………………....… 191 

Table 4.3.2. Comparison of Means: Image Attractiveness Differences  
and Model Attractiveness………………………………………………………........ 191 

Table 4.4.1. Random Effects of Image Attractiveness Differences……………………...… 193 

Table 4.5.1. Estimated Marginal Means: Image Attractiveness Differences  
and Model Attractiveness…………………………………………………....……… 193 



	
   XIV	
  
	
  

Table 4.6.1. Image Attractiveness Differences: Model Attractiveness by Gender………...….. 194 

Table 4.6.2. Image Attractiveness Differences: Model Attractiveness by Gender  
Pairwise Comparisons……………………………………………………………… 195 

Table 4.7.1. Image Attractiveness Differences: Model Attractiveness by Designer Status……. 196	
  
Table 4.7.2. Image Attractiveness Differences: Model Attractiveness by Designer Status  
Pairwise Comparisons………………………………………………………..…… 197 

Table 5.1.1. Random Effects of Change in Average Pupil Area…………………..…….. 198 

Table 5.2.1. Comparison of Means: Image Attractiveness and Change in Average  
Pupil Area……………………………………………………………………….. 198 

Table 5.2.2. Comparison of Means: Image Attractiveness and Change in Average  
Pupil Area……………………………………………………………………….. 199 

Table 5.3.1. Estimated Marginal Means: Change in Average Pupil Area and  
Image Attractiveness……………………………………………………………….. 200 

Table 5.4.1. Change in Average Pupil Area: Image Attractiveness by Gender…………….. 201 

Table 5.4.2. Change in Average Pupil Area: Image Attractiveness by Gender  
Pairwise Comparisons……………………………………………………….............. 202 

Table 5.5.1. Change in Average Pupil Area: Image Attractiveness by Designer Status……... 204 

Table 5.5.2. Change in Average Pupil Area: Image Attractiveness by Designer Status  
Pairwise Comparisons………………………………………………………....…… 205 

Table 6.1.1. Random Effects of Average Pupil Area……………………………….….. 207 

Table 6.2.1. Comparison of Means: Change in Average Pupil Area and Image Luminance… 207 

Table 6.2.2. Comparison of Means: Change in Average Pupil Area and Luminance………. 208 

Table 7.1.1. Random Effects of Change in Average Pupil Area………………………..... 209 

Table 7.2.1. Comparison of Means: Change in Average Pupil Area and Face Luminance….. 209 

Table 7.2.2. Comparison of Means: Average Pupil Area and Face Luminance…………..... 210 

Table 8.1.1. Random Effects of Subject ID………………………………………...…. 211 

Table 8.2.1. Comparison of Means: Facial Luminance and Model Attractiveness…………. 211 



	
   XV	
  
	
  

Table 8.2.2. Comparison of Means: Facial Luminance and Model Attractiveness…………. 212 

Table 9.1.1. Random Effects of Number of Fixations…………………………………. 213 

Table 9.2.1. Comparison of Means: Change in Average Pupil Area and  
Number of Fixations………………………………………………………………. 213 

Table 9.2.2. Comparison of Means: Change in Average Pupil Area and  
Number of Fixations……………………………………………………...……….. 214 

Table 10.1.1. Random Effects of Change in Average Pupil Area…………………….….. 215 

Table 10.2.1. Comparison of Means: Change in Average Pupil Area and Log  
Average Fixation Time…………………………………………………………….. 215 

Table 10.2.2. Comparison of Means: Change in Average Pupil Area and Log  
Average Fixation Time…………………………………………………………….. 216 

Table 11.1.1. Random Effects of Change in Average Pupil Area……………………...… 217 

Table 11.2.1. Comparison of Means: Change in Average Pupil Area and  
Model Attractiveness……………………………………………………..………… 217 

Table 11.2.2. Comparison of Means: Change in Average Pupil Area and  
Model Attractiveness……………………………………………………………….. 218 

Table 12.1.1. Random Effect of Change in Average Pupil Area…………....…………… 219 

Table 12.2.1. Comparison of Means: Image Complexity and Change in Average Pupil Area.. 219 

Table 12.2.2. Comparison of Means: Image Complexity and Change in Average Pupil Area.. 220 

Table 12.3.1. Estimated Marginal Means: Change in Average Pupil Area and  
Image Complexity……….………………………………………………………… 221  

Table 13.1.1. Random Effects of Number of Fixations……………………………...… 222 

Table 13.2.1. Comparison of Means: Average Number of Fixations and Image Complexity... 222 

Table 13.2.2. Comparison of Means: Average Number of Fixations and Image Complexity... 223 

Table 13.3.1. Average Number of Fixations and Complexity…………………...……… 224 

Table 13.3.2. Average Number of Fixations and Complexity Pairwise Comparisons...….…. 224 

Table 13.4.1. Average Number of Fixations: Image Complexity by Gender……………..... 225 

Table 13.4.2. Average Number of Fixations: Image Complexity by Gender Univariate Test... 225 



	
   XVI	
  
	
  

Table 13.4.3. Average Number of Fixations: Gender by Image Complexity……………..... 226 

Table 13.4.4. Average Number of Fixations: Gender by Image Complexity Univariate Test... 227 

Table 13.5.1. Average Number of Fixations: Image Complexity by Designer Status………. 227 

Table 13.5.2. Average Number of Fixations: Image Complexity by Designer Status  
Pairwise Comparisons……………………………………………………………… 228 

Table 13.5.3. Average Number of Fixations: Image Complexity by Designer Status  
Univariate Test…………………………………………………………………..... 228 

Table 13.5.4. Average Number of Fixations: Designer Status by Image Complexity……...... 229 

Table 13.5.5. Average Number of Fixations: Designer Status by Image Complexity  
Univariate Test…………………………………………………………………..... 229 

Table 14.1.1. Random Effects of Log Average Fixation Time………………………….. 230 

Table 14.2.1. Comparison of Means: Log Average Fixation Time and Image Complexity….. 230 

Table 14.2.2. Comparison of Means: Log Average Fixation Time and Image Complexity….. 231	
  

Table 14.3.1. Estimated Marginal Means: Log Average Fixation Time and  
Image Complexity……………………………………………………………….… 231 

Table 14.4.1. Log Average Fixation Time: Image Complexity by Gender………………... 232 

Table 14.4.2. Log Average Fixation Time: Image Complexity by Gender  
Pairwise Comparisons……………………………………………………………… 232	
  

Table 14.5.1. Log Average Fixation Time: Designer Status by Image Complexity………… 233 

Table 14.5.2. Log Average Fixation Time: Designer Status by Image Complexity  
Univariate Test…………………………………………………………………… 233 

Table 14.5.3. Log Average Fixation Time: Image Complexity by Designer Status………… 234 

Table 14.5.4. Log Average Fixation Time: Image Complexity by Designer Status  
Univariate 
Test………………………………………………………...……………………. 235 

Table 15.1.1. Random Effects of Image Attractiveness…………………………………. 236 

Table 15.2.1. Comparison of Means: Log Average Fixation Time and Image Attractiveness.. 236  

Table 15.2.2. Comparison of Means: Average Fixation Time and Image Attractiveness…… 237 



	
   1	
   	
  

CHAPTER 1: LITERATURE REVIEW 

 

1.1  Introduction 

Ergonomic, design, and architecture magazines and advertisements seldom use 

images of products or interior spaces with human models (Dion, Berscheid, & 

Walster, 1972; Petroshius & Croker, 1972). Yet the presence of a human face or a 

human model in an image has been shown to be more attractive to the viewer than 

those without (Nielsen & Pernice, 2010). The present study extends on previous work 

by investigating whether the presence of a human model used to increase image 

complexity and the attractiveness of the human model beside a product creates an 

even more attractive image. It also assesses the value of eye movements and 

pupillometry as objective measures of attractiveness. 

1.2  Attraction 

Although the concept that beauty sells has directed some advertisers to hire 

attractive spokespeople and human models to represent their products in print and 

television advertisements, evidence of their impact has been inconclusive (Caballero & 

Pride, 1984; Caballero & Solomon, 1984; Dion et al., 1972).  While some previous 

studies have found that attractiveness of a human model in an image along with a 

product increases product sales (Caballero & Pride, 1984; Dion et al., 1972), other 
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studies have found no effect of an attractive human model on product sales 

(Caballero & Solomon, 1984).  However, there is no empirical evidence yet that 

directly found that an attractive human model increases overall image attractiveness. 

Prior studies have only analyzed product sales, rather than evaluating the 

attractiveness of the image itself or the human model itself. In order to determine 

whether a human model impacts the perceived attractiveness of an overall image, it is 

first necessary to understand what is considered attractive and why.  

1.2.1 Attractiveness and the Human Face 

Research has identified specific characteristics associated with the attractiveness 

of human models (Nielsen & Pernice, 2010). Smiling faces have been shown to be 

attractive to babies, and they continue to be attractive to people throughout 

adulthood (Nielsen & Pernice, 2010). Images of people with their faces looking 

directly into the camera have been shown to draw more attention compared to people 

looking in other directions, and those who are genuinely attractive, attract more 

viewers, compared to unattractive or fake-looking people (Nielsen & Pernice, 2010).  

Human brains have evolved to be sensitive towards facial attractiveness, and 

the human brain possesses regions responsible for processing facial attractiveness 

(Blackburn & Schirillo, 2012; Winston, O’Doherty, Kilner, Perrett, & Dolan, 2007; 

Aharon et al., 2001; Kowner, 1995).  Kowner (1995) proposed the right-hemisphere 

hypothesis, which suggests the right hemisphere of the brain dominates in the 
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perception and expression of emotions, regardless of the valence of emotions. In 

Kowner’s (1995) study, when left and right sides of the face were simultaneously 

compared, the left side of the face showed greater activity when participants viewed 

smiling faces, but not when participants viewed neutral faces. A study by Blackburn 

and Schirillo (2012) investigated this hypothesis and found that regardless of whether 

the visual stimulus was an original image or mirror-reversed image, left-sided portraits, 

which are processed by the right hemisphere, were preferred over right-sided 

portraits, which are processed by the left hemisphere (Blackburn & Schirillo, 2012).  

Further affirming the left-side preference, a study analyzing 1,474 Western European 

portraits found that the majority of posers (~64%) exposed their left cheeks while 

only approximately 33% exposed their right cheeks (McManus, 2005). Therefore, in 

general, people prefer to look at visual images of a person’s left side of the face to the 

right side (Blackburn & Schirillo, 2012; Kowner, 1995). 

1.2.2 Reward Regions of the Brain and Facial Attractiveness 

 Facial attractiveness is an important variable in mate choice in that it denotes 

biological advantages such as mating success, earning potential, and longevity 

(Winston et al., 2007). A study by Aharon et al. (2001) used functional magnetic 

resonance images (fMRI) to obtain detailed anatomical information of each 

participant while viewing stimuli of human faces. Functional magnetic resonance 

images measure brain activity by detecting associated changes in blood flow. 
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Behavioral data from Aharon et al.’s (2001) study showed that heterosexual males 

make an effort to observe attractive female faces, but not to observe unattractive 

female faces or any male face.  In addition, behavioral evidence from heterosexual 

male participants indicated viewing attractive faces activated five brain rewards 

regions: the nucleus accumbens, sublenticular extended amygdala of the basal 

forebrain, amygdala, orbitofrontal cortex, and the ventral tegmentum of the midbrain 

(Aharon et al., 2001).  

To further explore how attractive faces activate reward regions, Winston et al. 

(2007) asked participants to rate stimuli of human faces as either highly attractive, 

medium, or highly unattractive. Similar to Aharon et al.’s (2001) study, Winston et al. 

(2007) used fMRI scans to study the relationship of brain response and facial 

attractiveness. The results showed a response to facial attractiveness in the 

orbitofrontal cortex, which is involved in cognitive processing of decision-making, 

including emotion and reward in decision-making. Additionally, the right amygdala, an 

area in the medial temporal lobes that processes memory and emotional reactions, 

showed a predicted non-linear response with greater responses to highly attractive and 

highly unattractive faces compared to faces ranked as middle attractiveness. 

Furthermore, findings suggested the medial prefrontal cortex, insula, and superior 

temporal sulcus were activated during attractiveness judgments. These findings 

suggest that neural responses to facial attractiveness are automatically engaged and 
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that reward regions are activated when judging highly attractive human faces (Winston 

et al., 2007).  

Given that both studies indicated an activation of the reward regions of the 

brain when participants viewed attractive faces, it is possible that images that include 

attractive faces elicit more positive reactions and higher attractiveness ratings of 

overall image attractiveness.  

1.2.3 Attractiveness and Aesthetics 

 Helander (2010) explored the relationship between the aesthetic qualities of an 

object, and perceived attractiveness. Specifically, he found that the perceived comfort 

of a chair in an image was independent of its ergonomic features, but dependent on 

ratings of the attractiveness of its aesthetic design (Helander, 2010).   

 Nagamachi (2001) studied consumers’ perceptions of aesthetics in order to 

develop highly sought-after products. Consumers’ psychological feelings and 

perceptions of aesthetics were derived from questionnaires about expectations, 

desires, and current attitudes towards similar products or prototypes. When the 

consumers’ feelings of the aesthetics of a product were integrated into the design, the 

products were deemed more attractive, which led to greater success of the new 

products on the market (Nagamachi, 2001).  
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 The aesthetic design of a product strongly contributes to the consumer’s 

pleasure derived from the product (Jordan, 1997). Users self-reported that both style 

and color are important aesthetics factors.  A product provided with the user’s choice 

of color and style often made that product more attractive and pleasurable to the user; 

while the lack of aesthetic appeal often contributed to making a product less attractive 

and displeasurable to the user (Jordan, 1997).  

1.2.4 Berlyne’s Aesthetic Theory 

Based on viewers’ self-evaluated judgments of pleasure and the relation to the 

arousal potential of a stimulus, Berlyne (1974) developed his aesthetic theory, which 

predicts that aesthetics play a significant role in the arousal potential and pleasingness 

of an image. The relationship between aesthetics and pleasure is represented by an 

inverted U-shaped curve, intersected by a linearly increasing line for arousal potential 

of stimuli. Berlyne suggested moderate arousal stimuli are pleasurable, while low 

arousal stimuli are boring and high arousal stimuli are unlikable (Berlyne, 1974). 

 

Figure 1.2.1: The relationship between image arousal and aesthetic judgments (Berlyne, 1974) 
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Image complexity has also been suggested to significantly influence judgments 

of interest and pleasure derived from the visual image (Berlyne, Ogilvie, & Parham, 

1968).  In Berlyne et al.’s study (1968), participants were asked to rate the complexity, 

pleasingness, and interestingness of a series of images. Results showed that interest 

and pleasure are significantly related to image complexity, and image complexity is a 

function of the number of objects in the image (Berlyne et al., 1968). Therefore, the 

addition of a human model in a product image increases complexity, and thus, should 

increase attractiveness ratings. However, it is still unclear how the presence of a 

human model used to modify image complexity and how the attractiveness of a 

human model affects overall perceived image attractiveness.  

Geissler, Zinkhan, and Watson (2006) examined the influence of the perceived 

homepage complexity on communication effectiveness, measured by attention to the 

homepage, attitude towards the homepage and company, and intent to purchase from 

the homepage. Results indicated that homepage complexity did influence 

communication: moderate complexity was the most effective in maintaining consumer 

attention and eliciting the most positive first impression from viewers (Tuch, Bargas-

Avila, Opwis, & Wilhelm, 2009; Geissler et al., 2006; Berlyne, 1974). Therefore, 

further understanding of how increased image complexity through the presence of an 

additional person in a visual image alters eye movement patterns and perceived 
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attractiveness may lead to an even more positive first impression from the viewer 

(Olivia, Mack, Shrestha, & Pepper, 2004; Berlyne et al., 1968). 

1.2.5 Advertising and Attractiveness 

Some studies found the presence of a physically attractive human model 

increases the effectiveness of an advertisement (Petroshius & Croker, 1989; Caballero 

& Pride, 1984), another study has found the influence of a physically attractive human 

model on an advertisement depends on the product being advertised (Trampem, 

Stapel, Siero, & Mulder, 2010), while others have found unattractive human models 

influence the effectiveness of an advertisement more positively than attractive human 

models (Caballero & Solomon, 1984).  

Petroshius and Croker (1989) assessed the impact of the physical attractiveness, 

sex and race of a spokesperson on television, the sex of the respondent, and finally 

the respondent’s perception of the advertised product. Results showed physical 

attractiveness of the spokesperson increased advertisement ratings in terms of interest 

and eye-catching, but not in measures of product quality or product information, such 

as believable or informative (Petroshius & Croker, 1989). 

Caballero and Pride (1984) used direct mail advertisements to study whether 

sex and attractiveness of a human model influenced the receiver’s decision to 

purchase the advertised product. Direct mail advertisements were found to sell more 
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products when the advertisements featured a highly attractive female model 

(Caballero & Pride, 1984).  

Trampe, Stapel, Siero, and Mulder (2010) showed that the relevance of the 

attractive human model for an advertised product determine the effectiveness of the 

advertisement. For example, when advertising a diet product, which is a product 

where attractiveness was deemed relevant, an attractive human model had a greater 

impact on the advertisement effectiveness. However, when human model 

attractiveness is less relevant to a product, such as deodorant, the impact of an 

attractive human model did not affect attitudes toward the product. Therefore, the 

product was a confounding factor of the impact of an attractive human model on the 

advertisement effectiveness (Trampe et al., 2010).  

In contrast, Caballero and Solomon (1984) failed to show any significant 

impact of physical attractiveness on advertising effectiveness. Pictures of attractive 

male and female models using either facial tissues or holding a beer were positioned 

near the advertised product in a store. Results suggested that for beer, there was no 

difference in consumer’s purchases due to the human model’s attractiveness. 

However, for facial tissues, the presence of the low attractive human model sold 

significantly more facial tissues than other human models with higher attractiveness 

levels (Caballero & Solomon, 1984). These opposing results may also be due to a 

product difference. The items chosen for this study were items consumers likely 
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already intended to purchase when visiting the store; thus, they may have bought the 

items regardless of the advertisement (Caballero & Solomon, 1984).  Furthermore, it 

is unclear whether consumers viewed the advertisement of the product with the 

human model at all. 

The inconsistent findings from these four studies may have arisen because they 

utilized different advertisement delivery methods, promoted different products, and 

utilized different measures for capturing the influence of an attractive spokesperson 

or attractive human model on advertisement attractiveness or product sales. Given the 

lack of various controls and the dissimilar findings of these studies, further research is 

needed to determine the power of human presence and attractiveness over image 

attractiveness and product sales.  

Studies evaluating the attractiveness of the human model have been limited to 

print and television advertisements, not web advertisements. Unlike print and 

television advertisements, web advertisements can allow the user to directly click the 

visual image to further explore the product being promoted; thus, capturing the 

consumer’s attention is perhaps even more important for product sales and 

promotion. Additionally, understanding how to capture the consumer’s attention on 

the web is becoming increasingly important as we expend more of our time each day 

to web-use (Nielsen & Pernice, 2010). 
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1.3 Physiology of the Human Eye 

Finding an objective measurement of the perceived attractiveness of human 

models in an image may allow for a better way to select appropriate human models, in 

order to more effectively promote an ergonomic product or indoor space (Laeng, 

Sirois & Gredeback, 2012; Watson & Yellott, 2012). Research has shown that patterns 

of eye movements are affected by both the aesthetic properties of the visual image 

being scanned as well as by cognitive processes such as expectations (Laeng et al., 

2012; Watson & Yellott, 2012; Harper, Michailidou, & Stevens, 2009). However, to 

understand how eye measurements can be used to derive information about visual 

processing, first it is important to understand the physiology of the human eye. 

1.3.1 Human Eye Structure 

The human eye is a slightly asymmetrical sphere (~24 to 25 mm diameter) that 

allows us to capture external visual information by processing the light reflected or 

emitted by the external visual stimulus being viewed (Cunningham, 2011). The human 

eye comprises three major layers of tissues and three fluid chambers  (Saladin, 2012; 

Cunningham, 2011). Refer to Figure 1.3.1 below for a visual of an adult human eye 

with labels for the individual parts of these three major layers of tissues. The 

outermost layer comprises the cornea and the sclera (Saladin, 2012). The sclera is the 

white of the eye, which is roughly 5/6th of the eye surface, while the cornea is the clear 

dome located over the colored part of the eye, the iris, and it comprises the other 
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1/6th of the external surface of the eye (Saladin, 2012).  The sclera and cornea serve to 

protect the inner parts of the eye from the exterior environment (van de Pol, 2009). 

The cornea is also used to focus light entering the eye (Saladin, 2012; van de Pol, 

2009).  

 
 

Figure 1.3.1: Sagittal Section of the Adult Human Eye (van de Pol, 2009) 

The middle tissue layer is divided into two parts: anterior (iris and ciliary body) 

and posterior (choroid) (Saladin, 2012). The ciliary body protects the lens and helps to 

change the lens shape to modify the eye’s focus point (Cunningham, 2011). The iris is 

the colored part of the eye, which may be a shade of blue, brown, green, grey, or 

some mix of those colors (Laeng & Endestad, 2011). The iris absorbs light and 

protects the retina, which is the sensitive part in the back of the eye, from excessive 

light (Laeng & Endestad, 2011). In the center of the iris, which is a muscle, is an 
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opening: the pupil (Cunningham, 2011). Iris muscles make the pupil constrict or 

dilate, which allows the pupil to vary in diameter typically between 1.5-9 mm, which 

happens in response to changes in light level and the emotional state of the person 

(Andreassi, 2007).  The choroid is the thin fibrous connective tissue layer that is 

located beneath the sclera (Cunningham, 2011). This layer consists of many blood 

vessels that are used to transfer nutrients and oxygen to the innermost layer in the 

back of the eye (Cunningham, 2011).  

The innermost layer consists of the retina, which is the highly specialized 

sensory tissue of the eye, where the initial processing of visual information occurs 

(van de Pol, 2009). Light entering the eye strikes the macula, the furthest region of the 

retina. Vision is sharpest when light is focused in the fovea, which is a small retinal 

region at the center of the macula with the greatest density of photoreceptors (van de 

Pol, 2009).  There are two types of receptors in the retina: rods and cones, which are 

so called for their shape (Cunningham, 2011). There are approximately 5 million 

cones and 92 million rods in the normal adult retina (van de Pol, 2009). Cones enable 

the eye to discern color and see fine detail in daylight, while rods are mainly 

responsible for vision in low light conditions (Cunningham, 2011; van de Pol, 2009). 

Three fluid chambers affect the shape of the eye. There is an anterior chamber 

between the cornea and iris, a posterior chamber between the iris and lens, and the 

vitreous chamber between the lens and the retina (Cunningham, 2011). The anterior 
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and posterior chambers are filled with a watery aqueous humor, while the vitreous 

chamber is filled with a more viscous fluid, the vitreous humor (Saladin, 2012). The 

aqueous humor is fortified blood plasma and is responsible for providing nutrients to 

the cornea, as well as playing a role in the optical pathway of the eye (van de Pol, 

2009). The vitreous humor is a clear gel that is loosely attached to the retina around 

the optic nerve and macula in order to maintain the shape of the eye; it makes up 80% 

of the volume of the eye (Cunningham, 2011; van de Pol, 2009). These structures and 

fluids of the eye all work together to produce an image of incident light that can 

ultimately be interpreted in the brain (Saladin, 2012).  

1.3.2 Visual Processing 

The visual process starts when light waves from an object enter the eye through 

the cornea. As light passes through the cornea the light waves converge due to the 

curvature of the cornea and the change in refractive index. The light then progresses 

through the pupil, which determines how much light enters the eye by constricting or 

dilating (Laeng & Endestad, 2011).  

 Further convergence is achieved by the crystalline lens, which changes shape, a 

process called accommodation, to focus the light on the macula (Saladin, 2012). This 

process inverts and reverses the visual image (Saladin, 2012). Within the macula, the 

highest resolution occurs when light is focused on the fovea (van de Pol, 2009).  

Photons arriving at the photoreceptors in the retina initiate a biochemical process that 
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causes membrane depolarization, which results in an electrical signal to intraretinal 

processing cells, the retinal ganglion cells, and these cells project axons to the optic 

nerve (Cunningham, 2011).  The optic nerve of each eye consists of approximately 1 

million retinal ganglion cell axons, which continue posteriorly and meet at the optic 

chiasm (van de Pol, 2009). It is at the optic chiasm that axons of neurons from the 

nasal retina (temporal visual field) cross to the contralateral optic tract, so axons from 

the right eye temporal visual field cross to the optic tract on the left side of the brain. 

However, axons of neurons from the temporal retina (nasal visual field) continue 

along the ipsilateral optic tract (van de Pol, 2009). Each optic tract projects signals to 

its lateral geniculate nucleus (LGN) in the dorsal thalamus (van de Pol, 2009). From 

the LGN, signals continue to the primary visual cortex, where further visual 

processing occurs (Cunningham, 2011).  Once the electrical impulses make it to the 

occipital cortex, the signals are interpreted as a visual image (Saladin, 2012).  

There are six separate areas in the visual cortex that are responsible for the final 

processing of the neural signals from the retina: V1, V2, V3, V3a, V4, and V5 (van de 

Pol, 2009). The primary visual cortex (V1) is where neural signals are interpreted in 

terms of visual space, such as form, color, and orientation of objects (van de Pol, 

2009). The signals then pass through to V2, which is where color perception occurs 

and form is further interpreted. As the neural signals travel to other areas of the visual 

cortex, more processes take place to interpret the visual image. In the parietal visual 
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cortical areas, motion of objects, motion of self with respect to object, and spatial 

reasoning are interpreted and perceived. In the temporal visual cortical area, including 

V5, recognition of objects through processing and interpretation of complex forms 

and patterns occurs (van de Pol, 2009). The final stage of processing a visual image is 

based on the psychological and perceptual experience of visual image, such as 

memory and expectations, conducted by non-visual areas of the brain (Nielsen & 

Pernice, 2010; van de Pol, 2009; Maw & Poplun, 2004).   

Cognitive processing is required to interpret a visual stimulus, and the brain 

allows humans to “see” a visual image (Saladin, 2012; Cunningham, 2011; van de Pol, 

2009).  

1.3.3 Peripheral, Parafoveal, and Foveal Vision 

There are three zones of human visual field: foveal, parafoveal, and peripheral 

vision. All three types work together to produce an entire visual image of objects in 

the field of vision of each eye (Nielsen & Pernice, 2010; Calvo & Lang, 2005). Visual 

acuity is maximal in the fovea, which is the central retinal area from 0 to 2 degrees and 

consists of only cone photoreceptors and no rods (Calvo & Lang, 2005). The high 

cone density enables the eye to discern color and to see fine detail (van de Pol, 2009). 

Foveal vision draws the highest level of attention (Calvo & Lang, 2005).  
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The parafovea is the region surrounding the fovea, extending 2 to 10 degrees 

from the fovea (Cunningham, 2011; Nielsen & Pernice, 2010). Parafoveal vision has 

lower acuity than foveal vision (Cunningham, 2011). This area of the retina has both 

cone and rod photoreceptors present, enabling color and grayscale to be seen (Calvo 

& Lang, 2005).  

Peripheral vision, which extends beyond the parafoveal boundaries, is of even 

lower resolution and acuity than foveal or parafoveal vision (Calvo & Lang, 2005). 

The periphery of the retina has a low density of cones and a high density of rods, 

which allows humans to see in dim lighting (Calvo & Lang, 2005). 

1.3.4 Extraocular Muscles 

 The extraocular muscles are responsible for controlling movements of the eye 

(Cunningham, 2011). There are three antagonistic pairs of muscles (6 muscles total) 

that control eye movements: the lateral and medial rectus muscles, the superior and 

inferior rectus muscles, and the superior and inferior oblique muscles (Saladin, 2012). 

The medial and lateral rectus muscles control all horizontal eye movements (left and 

right movements); the medial rectus muscle is responsible for adduction, while the 

lateral rectus muscle is responsible for abduction. Vertical eye movements (up and 

down movements) involve a coordination of the superior and inferior rectus muscles 

(as well as the oblique muscles). The relative contribution of the rectus and oblique 

muscle groups depends on the horizontal positioning of the eye (Saladin, 2012). For 
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example, if the eyes are looking straight ahead, both the rectus and oblique muscle 

groups contribute to the vertical movements. When the eye is abducted, the rectus 

muscles play a primary role in vertical movements and when the eye is adducted, the 

oblique muscles play a primary role in vertical movements (Saladin, 2012). 

Additionally, the oblique muscles are primarily responsible for torsional movements, 

which are inward and outward movements to counteract head movements 

(Cunningham, 2011). These six muscles work in unison to move the eye. As one 

muscle from a pair contracts, the opposing muscle relaxes, creating smooth eye 

movements (Cunningham, 2011). In addition to the muscles of one eye working in 

unison, the muscles of both eyes work together in a coordinated effort so that the 

eyes are always aligned (Cunningham, 2011; Nielsen & Pernice, 2010). 

 

Figure 1.3.2: Extraocular Muscles of the Human Eye (Kolb, Fernandez, & Nelson, 2012) 



	
   19	
   	
  

1.3.5 Vergence and Accommodation  

The simultaneous movement of both eyes in opposite directions is referred to 

as a vergence (Cunningham, 2011). For example, to look at an object closer to the 

viewer, the eyes rotate towards each other (convergence), while the eyes rotate away 

from each other (divergence) when the object is farther from the viewer 

(Cunningham, 2011; Cutting, 1997). Vergence movements automatically occur when a 

change the focus of the eyes is needed to look at an object at a difference distance 

(Cunningham, 2011; Cutting, 1997).  

Similar to vergence movements, accommodation of the eye occurs 

automatically and instantaneously to refocus the visual image of an external object on 

the retina (Cunningham, 2011). The eye accommodates for close vision by contracting 

the ciliary muscles, allowing the pliable crystalline lens to thicken and increase in 

convexity (Saladin, 2012). This increase in convexity reduces the focal length of the 

lens, which allows the lens to focus on objects near and keep the retinal image sharp, 

while objects at other distances become blurred (Cunningham, 2011; Cutting, 1997). 

Humans vary the degree to which the lens can converge or diverge (optical power up 

to 15 diopters) light rays by changing its form (Saladin, 2012). The lens is suspended 

by ligaments, called zonule fibers, which are attached to the anterior portion of the 

ciliary body (van de Pol, 2009). The contraction or relaxation of the ciliary muscle 
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tightens or loosens these ligaments, which in turn changes the shape of the lens, 

allowing the image to be focused on the fovea (van de Pol, 2009). 

1.3.6 Eye Movements: Fixations and Saccades 

Because of the small foveal field, in order to scan a large visual field the eyes 

have to move around the scene; for very large scenes, the head also moves. As the 

eyes scan a scene, the eye movements are composed of both fixations and saccades 

(Buscher, Cutrell, & Morris, 2009). A fixation is defined as a relatively motionless gaze 

at a specific area on a visual display and lasts about 200-300 milliseconds (ms) 

(Rayner, 1998).  Saccades are continuous, rapid movements between fixation points 

that direct an individual’s eye to a specific area, where the fixation is taking place 

(Smith, Levin, & Cutting, 2012; Rayner, 1998).  Visual information is generally only 

perceived during fixation periods, not during saccades (Buscher et al., 2009). In a 

number of studies, fixation points have been associated with cognitive processing 

(Cutrell & Guan, 2007; Pan et al., 2004; Petersen & Nielsen, 2002).  According to 

Viviani (1998), at least three processes take place during a fixation: encoding of a 

visual stimulus, skimming the peripheral field, and preparing for the next saccade to 

take place. 

Many studies have also been conducted to examine where and when users will 

fixate on an image (Buscher et al., 2009; Pan et al., 2004; Rayner, 1998). A study by 

Rayner (1998) showed that eyes are attracted to specific areas that are generally 
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physically distinctive or informative.  Fixation frequency is dependent on the degree 

of importance or attraction, whereas fixation duration depends on the complexity 

(based on number of objects in a visual image) and difficulty of the visual display 

(Buscher et al., 2009; Pan et al., 2004; Olivia et al., 2004; Rayner, 1998;). 

Longer and/or more fixations indicate the viewer spends more time to analyze 

the image and form an opinion on it.  Additionally, fixations are associated with 

cognitive processing (Cutrell & Guan, 2007; Pan et al., 2004; Petersen & Nielsen, 

2002; Viviani, 1998; Berlyne et al., 1968) and therefore, understanding eye 

movements, including the number, duration, and location of fixations, can indicate 

how the image was viewed and cognitively processed.  

1.3.7 Iris Muscles 

Two muscles in the iris are used to increase or decrease the size of the pupil: 

the sphincter pupillae (circular muscle fibers) and the dilator pupillae (radial muscle 

fibers) (Watson & Yellott, 2012; van de Pol, 2009).  When the sphincter pupillae are 

activated, the iris increases in size and the pupil constricts to restrict light entering the 

eye (Cunningham, 2011). The sphincter response is activated by the parasympathetic 

nervous system, which is the system that regulates our autonomic physical processes 

when at rest (Laeng & Endestad, 2011). The Edinger-Westphal nucleus, which is an 

area in the midbrain responsible for constricting the pupil, contains the 

parasympathetic fibers (Kozicz et al., 2011). The parasympathetic fibers project along 
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the oculomotor nerve to the ciliary ganglion near the eyeball, and finally to the 

smooth sphincter pupillae surrounding the pupil (Andreassi, 2007).  On the other 

hand, the dilator pupillae are stimulated by the sympathetic nervous system in order to 

enlarge the pupil size to let more light into the eye (Cunningham, 2011; Laeng & 

Endestad, 2011). The sympathetic fibers in the hypothalamus region of the brain are 

projected downward to the spinal cord and leave the cord to synapse the superior 

cervical ganglion, which projects the sympathetic influence to the dilator pupillae of 

the iris (Andreassi, 2007).   

Given that the autonomic nervous system is involved in emotional behavior, 

and that pupillary responses are partially under autonomic nervous system control, 

pupillary responses have been suggested to reflect emotional reactions to an image 

being viewed (Laeng et al., 2012; Watson & Yellott, 2012; Andreassi, 2007). These 

pupillary reactions to a visual image can occur in as little as 0.2 seconds, with the 

response peaking from 0.5 to 1.0 seconds (Andreassi, 2007; Lowenstein & 

Loewenfeld, 1962). The pupil can constrict to a diameter of 1.5 and can dilate to a 

diameter of approximately 8 to 9 mm; however, the average pupil area varies across 

individuals (Watson & Yellott, 2012; Andreassi, 2007; Lowenstein & Loewenfeld, 

1962).  
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1.4 Pupillometry & Pupillary Reactions 

Pupillometry is the measurement of the pupil’s diameter as it reacts to various 

stimuli (Andreassi, 2007). Though pupillometry is typically a measure of the pupil’s 

diameter, software often calculates pupil area, both of which have been measures used 

to determine pupillary dilations or constrictions (Andreassi, 2007). Vertical pupil 

diameter has been found to be only slightly larger than horizontal pupil diameter in 

most people (Khanani, Archer, & Brown, 2004). However, the difference is such a 

small fraction of the total pupil diameter that either can be used for pupillometry. 

Additionally, only the diameter or area of one pupil is necessary to determine these 

pupillary responses because the changes in pupil size occur simultaneously in both 

eyes (Andreassi, 2007).  

Given that the pupillary reactions to a visual image occur in as little as 0.2 

seconds and have a peak response anywhere from 0.5 seconds to 1 second, pupillary 

measures are often taken for greater than 1 second time periods to ensure the peak 

pupillary reaction measurement is captured (Andreassi, 2007; Lowenstein & 

Loewenfeld, 1962).  These measurements are typically averaged over the length of 

time to prevent bias and provide more accurate pupillary measurements (Lehman, 

O’Rourke, Hatcher & Stepanski, 2013). The peak of the pupillary reaction may vary 

based on a number of different factors such as blinks or positioning of the camera 

(Gagl et al., 2011; Privitera, Renninger, Carney, Klein, & Aguilar, 2008). However, it is 
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impossible for humans to suppress a pupillary dilation or constriction at will, 

regardless of whether the pupil area change was evoked by an external factor or 

mental events (Loewenfeld, 1993). Pupillometry provides a “window to the 

preconscious” (Laeng et al., 2012, p. 18), as it captures a person’s initial, objective 

reaction to a particular visual stimulus (Andreassi, 2007).  Pupillometry is now being 

used to obtain objective measures of emotional responses to given images (Laeng et 

al., 2012).   

1.4.1 Emotional Valence and Interest 

The idea that larger pupils indicate attraction to whatever is being viewed dates 

back thousands of years (Swaminathan, 2008). In the Middle Ages, Italian males 

viewed dilated pupils as more feminine and more attractive. Thus, Italian females used 

belladonna, a drug prepared from the roots and leaves of the deadly herb nightshade, 

to draw back the irides and increase pupil area (Swaminathan, 2008); bella donna 

means “beautiful woman” in Italian.  

In 1965, Hess asked males to compare the attractiveness of images of females 

with average pupil size to drawings where the female’s pupils were enhanced. 

Consistently, males rated females with enhanced pupils as more attractive compared 

to females with average pupil size (Hess, 1995).  Tombs and Silverman (2002) 

demonstrated that, unlike males, females preferred medium-size pupils to dilated 

pupils in males; the study concluded this was because medium-size pupils indicated 
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interest but not blinding lust. Males, on the other hand, preferred females with dilated 

pupils, because large pupils were an indication of sexual attraction on the female’s part 

(Tombs & Silverman, 2002).  

One of the most influential studies using pupillometry was conducted by Hess 

and Polt in 1960. Although this study was not the first to indicate the possibility of 

the relationship between pupil area and emotional valence, their work led to increased 

activity in this area by psychologists and researchers (Andreassi, 2007). When viewing 

pictures of a nude male and of a baby, female participants showed larger pupil dilation 

responses than males. However, males showed larger pupil dilation responses 

compared to females when viewing a picture of a nude female (Andreassi, 2007).  

These results showed that pupil area increased when viewing an emotionally toned or 

interesting visual stimulus. However, the visual stimuli used in Hess and Polt’s (1960) 

study were primarily people; hence, the results cannot necessarily be extrapolated to 

images of inanimate products. Also, there were only a few subjects (n=6), who viewed 

images for 10 seconds, which goes beyond the period of time needed to capture the 

pupils’ initial reaction to the image (Hess & Polt, 1960). To measure pupil size, Hess 

and Polt (1960) used a Percepto-scope, which is a device that consists of a 16-mm 

camera to film the pupil, a projector and screen to magnify the image, and a ruler to 

measure the vertical pupil diameter by hand. Because these pupillary changes were 



	
   26	
   	
  

measured by hand, it is likely that there was measurement error in the data 

(Lowenfeld, 1999).  

More recently, Blackburn and Schirillo (2012) found that pupil dilation 

occurred when viewing the left-side of the face compared to the right-side of the face. 

In order to determine whether there were differences in the perception of left and 

right sides of the face, real-life photographs were taken of 10 males and 10 females 

from both sides of their faces. The images were then shown as originals as well as 

mirror-reversed. Results indicated that regardless of the images being original or 

mirror-reversed, the left-side portraits were strongly preferred over the right-side; the 

left hemifaces elicited both higher aesthetic ratings and increased vertical pupil 

diameter. Vertical pupil diameter was linearly related to the pleasantness of the image 

regardless of whether the human models were male or female or whether the images 

were originals or mirror-reversed (Blackburn & Schirillo, 2012). These findings 

support the idea that the pupil dilation occurs when viewing pleasant images and pupil 

constriction occurs when viewing unpleasant images.  

Rieger and Savin-Williams (2012) found that pupil area is a robust indicator of 

sexual orientation. Participants viewed thirty-second videos showing a neutral 

stimulus followed by a naked male or female engaging in a sexual activity.  On a scale 

of 1-7, participants were asked to rate how sexually attractive they perceived the 

person, how sexually appealing they found the person, and how much they would like 
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to date that person. Pupil area was computed as the number of the tracker’s camera 

pixels occluded by the pupil. Results from the self-reported sexual orientation and the 

pupil data indicated the self-reported sexual orientation corresponded with pupil 

dilation to males and females.  Specifically, bisexually-identified participants generally 

had substantial pupil dilation to stimuli of both sexes, whereas heterosexual males 

showed substantial dilation to stimuli of females compared to stimuli of males (Rieger 

& Savin-Williams, 2012).  Their study shows that changes in the pupil area occur 

when a spectator experiences attraction to a stimulus. Both vertical pupil diameter and 

pupil area, which are measures of pupil dilation or constriction, can each be effective 

as objective measures of attractiveness (Rieger & Savin-Williams, 2012; Hess & Polt, 

1960).   

1.4.2 Luminance 

In addition to emotional valence, pupillary responses occur automatically by 

either dilating or constricting the pupil in response to the changes in light intensity of 

the viewed scene (Laeng et al., 2012; Laeng & Endestad, 2011; Berman et al., 1996).  

According to Laeng and Endestad (2011), pupillary responses to light reflect 

the perceived brightness or lightness of a visual illusion stimulus, not just the amount 

of physical light energy entering the eye. They used images of visual brightness 

illusions to see if peoples’ pupillary responses reflected the physical luminance of the 

visual illusions or the perception of the visual illusions’ luminance, where the two 
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luminance levels did not match.  They found that pupillary responses reflect the 

perceived brightness or lightness of a visual stimulus, not simply the physical amount 

of light reflected from a stimulus. Therefore, pupil area also indicates the subjective 

perception of light rather than the actual amount of light (Laeng & Endestad, 2011). 

Berman et al. (1996) examined the relationship between horizontal pupil 

diameter and the text size acuity under two different luminance conditions: high and 

low luminance levels. Seven female and two male participants were asked to read 

words in Times-Roman font, of all different type-sizes, presented on 24 charts.  Each 

participant read the words under two levels of surround luminance (indirect IL 

luminance of the room) and three levels of task luminance (direct luminance of task 

screen) (Berman et al., 1996). While reading these charts, eye-tracking software 

recorded participants’ focus areas and horizontal pupil diameter. Results showed that 

an increase in task or surround luminance caused constriction of the pupils. 

Furthermore, smaller horizontal pupil diameters were found to improve visual 

performance regardless of task retinal illuminance or glare caused by the higher 

luminance of surround conditions (Berman et al., 1996).  

As mentioned above, there are some individual characteristics that influence 

peoples’ pupillary reactions (Watson & Yellott, 2012; Bergamin, Schoetzau, Sugimoto, 

& Zulauf, 1998). According to Bergamin et al. (1998), iris color is one of those 

differences.  When comparing blue and brown eyes of 50 healthy volunteers, they 
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found several differences between iris color and pupillary light reflexes. Iris color was 

found to significantly influence amplitude, contraction time, contraction velocity, and 

redilation velocity. Amplitude was measured as the difference between initial vertical 

pupil diameter and the vertical pupil diameter after pupillary light reflex. Contraction 

velocity is the pupil’s rate of contraction (mm2/s). Both amplitude and contraction 

velocity were greater in brown irides compared to blue irides. Similarly, redilation 

velocity (measured as the velocity of the pupil to dilate again after pupillary light 

reflex) and contraction time (measured as the time when the pupil contracts) were 

greater in brown irides compared to blue irides (Bergamin et al., 1998). However, iris 

color did not influence initial vertical pupil diameter, which was measured before the 

onset of the pupillary light reflex, or latency time, which was the time between the 

beginning of the stimulus presentation and the onset of pupillary light reflex. These 

findings suggest that iris color of the viewer also has an effect on the pupillary light 

reflex in normal healthy eyes. 

1.4.3 Memory 

Previous research has clearly indicated a significant relationship between pupil 

area and memory (Otero, Weekes, & Hutton, 2011; Kuchinke, Vo, Hofmann, & 

Jacobs, 2007; Otero, Weekes, & Hutton, 2006; Maw & Poplun, 2004). Otero et al. 

(2011) explored how pupil area changes during recognition memory.  A 

remember/know procedure was utilized by asking participants to state whether they 
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had remembered or knew a word that they may or may not have been previously 

shown in the study. In this study, pupil area was measured by an eye tracker and 

calculated as the number of camera pixels occluded by the pupil.  Results indicated 

that pupil’s dilated most when participants viewed items remembered from the study 

or seen prior to the study (old items) compared to items not previously shown during 

the study or known prior to the study (new items) during these recognition memory 

tests (Otero et al., 2011).  

In a similar study, Maw and Poplun (2004) focused on how pupil area changed 

when viewing famous faces compared to non-famous faces. A temporary increase in 

pupil area was observed when viewing famous faces, which were known to 

participants, compared to non-famous faces, which were unknown to participants 

(Maw & Poplun, 2004). Additionally, Otero et al. (2006) conducted a study that 

presented participants with words or pictures during a learning phase, and found 

participants’ pupil area increased more when viewing old items compared to new 

items.   

Further confirming this idea that pupil area fluctuates with memory strength, 

Kuchinke et al. (2007) studied pupillary responses during lexical decision tasks, which 

required participants to judge whether a letter string was a word or not a word. Pupil 

data from the eye tracker indicated that in visual tasks, words that were less frequently 

seen evoked a stronger pupillary dilation compared to words that frequently appeared 
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during a lexical decision task. Thus, results once again confirmed the dilation of pupils 

when short-term memory was activated (Kuchinke et al., 2007).  

1.4.4 Cognitive Effort 

From the 1960s on, there has been literature on the relationship between 

cognitive processes and pupil area, most of which focuses on the effects of cognitive 

effort (Granholm et al., 1997; Just & Carpenter, 1993; Hess & Polt, 1964).  There is a 

considerable amount of evidence that suggests cognitive effort is associated with 

increased pupil area.  Pupil area has been found to increase with arithmetic difficulty 

(Hess & Polt, 1964), sentence complexity during a comprehension task (Just & 

Carpenter, 1993), and also working memory load (Granholm et al., 1997).  

Hess and Polt (1964) were the first to show that the size of pupillary response 

during mental activity is a function of how hard an individual has to work. They asked 

participants to do mental multiplication and as the level of difficulty gradually 

increased from 7 X 8 to 16 X 23, pupil size gradually increased. The increases in pupil 

size ranged from 4% to 30% of the vertical diameter from the period directly before 

the question was asked to the period directly before the question was answered, with 

vertical pupil diameter decreasing immediately after an answer to the question was 

given. Therefore, the pupillary response seems to reflect the information-processing 

load that is placed on the central nervous system by cognitive tasks. However, the 

sample size was too small (n=5) to claim any significant associations. There is also a 
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greater margin of error, given pupil measurements were obtained, once again, from a 

Percepto-Scope and measured by hand using a millimeter ruler (Hess & Polt, 1964).  

More recently, Just and Carpenter (1993) explored the intensity of cognitive 

processing during sentence comprehension by measuring pupillary response during 

reading tasks. Simple and complex sentences were presented separately to 

participants, while their pupil area and durations of focus areas were recorded using 

eye-tracking software (Iscan Model RK-426). The results indicated that more complex 

sentences increased horizontal pupil diameter; which they attributed to an increased 

intensity of mental processing.  Similarly, Granholm et al. (1997) examined the 

relationship between pupillary responses and working memory.  When giving 

participants a verbal working memory task that involved digital recall, horizontal pupil 

diameter was recorded by an infrared eye-tracking system (Micromeasurements 

System 1200). Results suggested horizontal pupil diameter increased with increased 

processing load, which was determined by the number of digits asked to recall. After 

what was considered overload (exceeding available cognitive resources), the pupil area 

started to decrease again. They concluded that horizontal pupil diameter increases 

with increased cognitive effort until cognitive overload, when the pupil diameter starts 

to decrease.  

Although there is extensive research that pupil size is affected by mental 

activity and mental states, research on the relationship between pupil size and image 
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attractiveness has been inconclusive to date. Given that positive emotions and pupil 

dilation have been found to occur simultaneously, then images that have been rated as 

attractive should increase pupil dilation; however, prior research looking specifically at 

positive ratings and pupil dilation has only been conducted with sexually arousing 

stimuli. Thus, further investigation of pupillary responses is necessary to evaluate a 

broader scope of whether pupil dilation is an automatic response to the perceived 

attractiveness of all images, not just sexually arousing images.  

1.5 Eye Movement Tracking Technology 

Eye movement tracking technology provides an objective way of measuring the 

impact of a visual image. Researchers have found eye movement tracking is useful in 

determining how users view, search, and process a visual image and enables the 

capturing of pupil area measurements (Andreassi, 2007; Cowen, Ball, & Delin, 2002).  

An infrared light source is used to illuminate the eye, which creates highly 

detectable reflections from the cornea and in the pupil that can be detected by IR 

cameras. The cornea and the pupil absorb visible light but reflect infrared light better 

than the rest of the body, and these reflections can be detected and used to indicate 

the direction of gaze (Nielsen & Pernice, 2010). When an IR LED light is reflected in 

the human eye the reflection from the cornea makes a bright spot, known as the glint, 

in an image of the eye. This reflection serves as a reference point for which we are 

able to calculate the center of the pupil and cornea center. Gaze direction can be 
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calculated using the relative position between the glint that is made by reflection of 

the light and a center of the iris in the image (Yoo, Kim, Lee, & Chung, 2002). These 

two points enable the computation of a vector to yield intersections against regions of 

interest, which gives an x,y coordinate intersection on the screen (Nielsen & Pernice, 

2010).  For example, if the user saw the IR LED directly, then the glint would be near 

the center of the iris; on the other hand, the farther the eye’s fixation is from the IR 

LED, the longer the distance between the glint and the center of the iris (Yoo et al., 

2002).   

In the early 1900s, when eye tracking technology was first developed, eye 

tracking devices were invasive and did not provide very accurate measurements 

(Pavlas, Lum, & Salas, 2010). Some of the earlier devices required participants to strap 

on a helmet with goggles, to put on contact lenses with a hole for the pupil, or to 

attach electrodes around the eyes (Andreassi, 2007). Today, eye tracking devices 

include standalone infrared cameras that can be positioned beneath a standalone 

computer screen. Additionally, the physical tracking of eye movements and the data 

recording capabilities of today’s eye tracking devices are faster and more accurate than 

previous tools. The ability to accurately capture measurements of eye movements, 

pupil area, areas of focus, and other characteristics of one or both eyes while a user is 

engaging in a given task allows researchers to observe exactly subconscious reactions 

to an image displayed on a screen (Nielsen & Pernice, 2010; Rayner, 1998).  
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There are several ways to analyze data collected from an eye tracking system. 

Software processes the raw data of fixation points and saccades, to provide different 

visual displays that summarize the data. Two ways of looking at eye tracking data are 

heatmaps and lookzones.  

1.5.1 Heatmaps 

 According to Nielsen and Pernice (2010), heatmaps are the best-known 

visualization technique for eye tracking studies. In a heatmap, a screenshot of the 

interface is taken and color-coded according to the number of times a person viewed 

an area and the duration of focus on those areas (Nielsen & Pernice, 2010).  

Heatmaps can represent either the number of fixations or the duration of fixations 

depending on the setting chosen by the analyst. They give a quick summary of what 

areas participants were focusing on and what they were ignoring.  Heat maps can be 

relative, because researchers can change the duration of gaze time that defines a 

fixation, giving a different number of fixations or fixation durations, and different 

heatmaps. Color settings can also be altered to generate heatmaps of different 

intensities in order to concentrate on specific areas. These settings may be altered in 

order to allow researchers to concentrate on specific areas and control the number 

and/or duration of fixations.  Figure 1.6.1 below shows an example of a heatmap of a 

website with text from Nielsen and Pernice’s study (2010). In this figure, the areas of 

red are the areas where a participant spent the most time viewing, yellow areas are 
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where a participant spent less time viewing, blue areas are where a participant spent 

even less time viewing, and gray areas are where participants did not even focus on.  

 

 
Figure 1.5.1: Heatmap of website (Nielsen & Pernice, 2010) 

 

1.5.2 Lookzones 

 Lookzones are regions of interest that are determined by the analyst. 

Lookzones may be any size or shape. There is no limit to the number of lookzones 

that can be made on a single image. Lookzones are created to provide statistics about 

regions of interest on the image presented. Once specific lookzones are created, 

statistics of how long a participant spent viewing the lookzone area in percentages of 

time or by number of seconds. Figure 1.6.3 shows an example of lookzones created 

on an image of the Amazon website (Pan et al., 2004). In the image, each area 
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enclosed in a black box is a different lookzone that has been created by the 

researchers in order to determine the specific percentage of time spent looking at that 

area. For example, the “amazon.com” logo, which is highlighted in yellow, has been 

created as a lookzone to determine how much time participants spent looking 

specifically at the logo (See Figure 1.6.3. below).  

 

Figure 1.5.2: Lookzones on Amazon website (Pan et al., 2004) 

1.6 Complexity 

Research suggests visual complexity depends on the objects, textures, and 

colors in a scene, all of which can all be arranged in a variety of spatial layouts to form 

a visual image (Olivia et al., 2004; Rayner, 1998). According to Heylighen (1997), the 

perception of complexity is correlated with the variety in the visual stimulus, which 
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can be altered in two ways. First, the perceived visual complexity can increase when 

the background remains constant but the number of objects increases. Second, 

perceived visual complexity can increase with an increasing dissimilarity of objects or 

variety of materials, while the number of objects itself remains constant (Heylighen, 

1997). Furthermore, Olivia et al. (2004) found that visual complexity, measured as a 

rating of perceived complexity of an image, depends on the viewer’s ability, the 

amount of grouping of objects or areas, the quality of perceived parts within the 

scene, familiarity with the scene, and existing knowledge of objects within the scene. 

Thus, when a human model is added to a visual image, the image complexity 

increases from simple to moderately complex (Geissler et al., 2006; Olivia et al., 2004; 

Berlyne et al., 1968). The level of complexity can greatly influence a viewer’s first 

impression and the attractiveness rating of a visual image (Tuch et al., 2009; Olivia et 

al., 2004; Berlyne et al., 1968). A moderately complex visual image has been found to 

elicit a more positive first impression and a higher attractiveness rating compared to 

either a simple or an overly complex visual image (Tuch et al., 2009; Berlyne, 1974). 

Prior research indicates moderately complex images elicit longer viewing times and 

increased perceived image attractiveness; while simple stimuli are rated boring and 

overly complex stimuli are rated confusing, and both elicit shorter viewing times 

(Nielsen & Pernice, 2010).  It is possible that the increase in image complexity with 

the addition of a human model might foster a more positive first impression, entice 
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the viewer to process the image more thoroughly, and judge it to be more attractive 

(Bradley, Houbova, Miccoli, Costa, & Lang, 2011; Tuch et al., 2009; Giessler et al., 

2006; Olivia et al., 2004; Berlyne, 1974). 

1.6.1 Simple vs. Complex Images 

Previous research has found that fixations are associated with cognitive 

processing and forming a perception of a visual stimulus (Cutrell & Guan, 2007; Pan 

et al., 2004; Petersen & Nielsen, 2002; Viviani, 1998).  During saccades, when the eye 

is not focusing on a specific area and visual information is not being perceived, the 

stimulus is merely being scanned without the brain retaining any visual information 

(Viviani, 1998). Previous research has indicated that fixation frequency is dependent 

on the degree of importance, while fixation duration is dependent on the complexity 

and difficulty of a visual display (Buscher et al., 2009; Pan et al., 2004; Rayner, 1998). 

More specifically, a greater number of and/or longer fixations have been associated 

with increased detail and complex images, while fewer and/or shorter fixations have 

been associated with simple images (Bradley et al., 2011; Guo, Mahmoodi, Robertson, 

& Young, 2006; Weizmann, 1979; Wolf, 1970). 

A study by Weizmann (1979) looked specifically at the effect of complexity on 

infant attention. In this study, forty-one 8-, 10-, and 12-week-old infants viewed three 

stimuli differing in complexity. Results indicated infants fixated for longer periods of 

time on more complex stimuli compared to simple stimuli. Additionally, males and 
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females differed in fixation duration over time; specifically, overall fixation times 

declined with age for males but not for females (Weizmann, 1979).  

Wolf (1970) found that increased complexity led to an increase in the number 

of fixations, but only to a point. In this study, subjects from grades 6, 8 and 11 were 

asked to view four 19-minute motion picture films (Wolf, 1970). During the viewing, 

areas of focus on the screen were analyzed, but fixation durations were not. A density 

analysis showed that subjects looked at few well-defined areas of the screen. As the 

visual complexity increased, the number of areas of focus increased until the visual 

image became too difficult for the subject to comprehend. When the stimulus became 

extremely complex, the subjects tended to avoid the stimulus or to focus centrally on 

the screen (Wolf, 1970). Although these results were based on a film, rather than a 

static image, they provide evidence that with increased complexity, the number of 

areas of focus (fixations) increase, but only to the point of overload. 

Bradley et al. (2011) further explored the relationship between complexity and 

eye movements. More specifically, they compared eye movements of 24 college 

students while viewing 192 images that were either simple figure-ground compositions 

or complex scenes, which included multiple objects and a varied background. Results 

indicated a significant effect of complexity on the number of fixations: images of 

complex scenes were found to provoke more fixations and a broader scanning of the 

visual image array compared to simple figure-ground compositions.  
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Nielsen and Pernice (2010) examined the relationship between complexity and 

eye movement patterns, but found different results from research described above 

(Bradley et al., 2011; Weizmann, 1979; Wolf, 1970). Their study explored whether 

there were a greater number of fixations on objects against a simple versus a crowded 

background, and whether more attention was paid to single or multiple objects.  

Results showed that objects with simple backgrounds received more attention from 

users. When looking at a website, 28% of participants focused on objects in a simple 

setting or a simple background; however, only 14% of participants focused on objects 

with a crowded background or busy setting.  In the same study, participants looked at 

websites with either single or multiple objects on them.  Results showed that single 

objects received more attention: 26% of participants focused on a single object, while 

only 20% of participants focused on multiple objects. Similarly, 20% of users looked 

at images with a single person, while only 17% of users looked at images with two or 

more people. These findings further indicate the presence of a single person in an 

image increases focus and prompts more fixations compared to images with multiple 

people (Nielsen & Pernice, 2010). 

Faces prompt fixations because they provide visual information about an 

individual’s gender, age, and familiarity; facial expressions offer cues to the 

individual’s state of mind (Guo et al., 2006).  In their study, the eye movements 

(measured using CED1401) of three male adult rhesus monkeys were recorded while 
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the monkeys viewed four types of images: neutral monkey face images, natural scene 

images, familiar natural scene images taken from the monkeys’ daily environment, and 

scrambled images of monkey faces. Results indicated a similar number of fixations on 

face images and natural scene images; however, fixation duration was longer on face 

images compared to natural scene images. Additionally, fixation durations decreased 

when face images were scrambled. The extended fixation duration on faces was 

hypothesized to be due to the increased detail of facial features.  

Barton, Radcliffe, Cherkasova, Edelman, and Intriligator (2006) also explored 

fixations while viewing images of human faces. In their study, 8 human participants 

viewed images of either famous or novel faces that were upright or inverted. Inverted 

images were more difficult to recognize and required more cognitive effort. Results 

indicated fewer fixations when participants viewed images of famous faces compared 

to images of novel faces.  Additionally, the number of fixations on inverted novel 

images was significantly higher than the number of fixations on upright novel images.  

However, there was no difference in the duration of fixations for either images of 

famous faces compared to images of novel faces or upright images compared to 

inverted images (Barton et al., 2006).  

In summary, there appears to be evidence that more fixations will occur in the 

more informative areas of an image; and different types of images will prompt 

different fixation behaviors.  From an abundance of eye tracking studies, it is clear 
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that eye movements are driven by properties of the visual environment and by 

cognitive processes (Tuch et al., 2009; Barton et al., 2006; Geissler et al., 2006; 

Berlyne, 1974; Berlyne et al., 1968); however, it is still unclear how image complexity 

effects the eye movement patterns and areas of focus when viewing a product with or 

without a human model present.  

1.7 Male vs. Female Differences 

 Prior research has found that gender influences fixation frequency and duration 

when viewing human faces (Rennels & Cummings, 2013; Nummenmaa, Hietanen, 

Santtila, & Hyona, 2012). In Rennels and Cummings’ (2013) study, male and female 

participants viewed faces of male and female human models, who posed with neutral 

expressions. Results showed adult females made more, shorter fixations compared to 

adult males. (Rennels & Cummings, 2013). Furthermore, Nummenmaa et al. (2012) 

found the gender of the human model present in a stimulus influences male and 

female fixation durations. More specifically, males were found to fixate on female 

models longer than females, while females fixated longer on male models. These 

findings indicate the content of the stimuli impacts male and female fixations 

(Nummenmaa et al., 2012). 

Extending beyond stimuli of human faces, the gender differences in fixations 

are inconclusive (Andersen, Dahmani, Konishi, & Bohbot, 2012; Pan et al., 2004; 

Miyahira, Morita, Yamaguchi, Morita & Maeda, 2000).  In one eye tracking study by 
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Pan et al. (2004), male and female participants viewed 22 popular webpages. Female 

participants had significantly shorter mean fixation durations compared to males; 

however, males and females did not differ significantly in fixation times or saccade 

rates (Pan et al., 2004). This suggests gender does have an effect on viewing patterns.  

More recently, Andersen et al. (2012) found gender differences in viewing 

patterns for seven participants who were asked to navigate a virtual maze. Results 

indicated that females took longer to complete the virtual maze and made more errors 

compared to men. Additionally, females had a significantly greater number of 

fixations and longer fixations compared to men. However, the sample size was small 

(n=7), so while suggesting the influence of gender on eye movement, this needs to be 

further studied, considering that Andersen and colleagues’ (2012) results suggested the 

opposite effect of gender on fixation duration compared to Pan and colleagues’ (2004) 

results.   

Additionally, Miyahira and colleagues (2000) found the opposite effect of 

gender differences on the number of fixations from findings of Andersen et al.’s 

(2012) study.  In this study, participants were asked to view simple black and white 

geometric shapes. Results indicated males elicited a greater number of fixations 

compared to females (Miyahira et al., 2000). Given that there have been studies 

indicating opposite effects on gender differences in fixation duration and the number 

of fixations while viewing stimuli without human faces (Andersen et al., 2012; 
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Miyahira et al., 2000; Pan et al., 2004), the effect of gender these eye movement 

patterns needs to be further assessed. 

1.8 Designer vs. Non-Designer Differences 

 In 1993, Nodine, Locher, and Krupinski studied how artists and non-artists 

differ in their viewing patterns for paintings. Each participant viewed six pairs 

(original and slightly altered) of paintings for twelve-second viewing periods per pair, 

while an eye tracking system captured eye positions (Nodine et al., 1993).  Eye 

movement data suggested non-artists focused more on individual objects and had 

fewer but longer fixations, while trained artists focused on the relationship among 

compositional elements (lines, colors, shapes, space) and had a greater number of 

shorter fixations. However only descriptive eye-movement findings reported, and no 

statistical analysis was conducted. Furthermore, the paintings used in the study were 

famous, so the paintings were well known to the group of artists, but not to the non-

artist group, which may have influenced eye movements (Nodine et al., 1993). As 

mentioned above, recognition of an object in a visual image increases pupil size (Maw 

& Poplun, 2004). Additionally, recognition has been found to decrease the number of 

fixations and reduce scanning duration (Barton et al., 2006). Given the impact of 

recognition and memory, it is possible that these famous paintings were a 

confounding variable on eye movements for artists who had recognized the stimuli. 

Although this study does not provide significant evidence and may have had 
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confounding variables, the observed eye movements suggested a difference between 

artists and non-artists.  

Vogt and Magnussen (2007) were intrigued by Nodine et al.’s (1993) study, and 

further explored the difference between artists and non-artists eye movements. 

Trained artists and non-artistic psychologists were asked to free scan 16 images and 

then asked to remember the 16 images, while an eye tracking system captured 

fixations, gaze trails, and saccades. When viewing and memorizing the images, non-

artists spent significantly more time looking at main objects or elements in	
  the image, 

while artists were more scattered in their viewing patterns. A verbal test of memory 

recall showed no overall difference in the number of images remembered, but artists 

remembered more details from the images compared to non-artists. Results indicated 

non-artists had fewer, longer fixations with repeated viewing, while trained artists had 

more, shorter fixations with repeated viewing.  

Although both Nodine et al.’s (1993) study and Vogt and Magnussen’s (2007) 

study indicated artistic backgrounds influence eye movement patterns, further 

exploration is required to validate the relationship in order to understand systematic 

eye movement differences amongst those with and those without artistic 

backgrounds.  
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1.9 Summary of Proposed Research 

This study further investigates whether increased image complexity through the 

presence of a human model and the attractiveness of a human model influences the 

perceived attractiveness of an image of an ergonomic product. It also investigates 

whether pupillometry can be used as an objective measure of overall perceived image 

attractiveness. Furthermore, this study explores how the increased in image 

complexity resulting from adding a human model systematically affects eye movement 

patterns in terms of number of fixations, duration of fixations, and location of 

fixations on visual stimuli. Finally, it will compare differences, if any, between male 

and female participants and between designers and non-designers.  

A better understanding of how image complexity through the use of a human 

model and how the attractiveness of a human model influences perceived 

attractiveness, how pupil area responds to any changes in attractiveness, and how eye 

movements are affected by image complexity will be useful in the design and 

marketing worlds, where ergonomic products are expected to be displayed in the most 

flattering way. Additionally, knowing gender or designer status differences will allow 

designers and advertisers to promote ergonomics products in a way that captures 

more attention and appeals to a targeted clientele. 
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1.10 Research Hypotheses 

Based on the literature that has been reviewed, eight hypotheses were 

developed and tested in this study. The first two hypotheses were formed based off of 

prior studies that have tested the impact of an attractive human model on 

advertisements and the impact of image complexity on self-reported judgments of 

images. Given that a human model attract viewers (Nielsen & Pernice, 2010), that an 

attractive human model increases product sales (Caballero & Pride, 1984; Dion et al., 

1972) and promote positive attitudes (Nielsen & Pernice, 2010), that the addition of a 

human model to an image alongside a product moderately increases the complexity of 

an image (Tuch et al., 2009; Olivia et al., 2004), and that moderately complex images 

elicit the most positive aesthetic judgment from viewers (Tuch et al., 2009; Geissler et 

al., 2006; Berlyne, 1974), the image complexity and the attractiveness of a human 

model in an image may affect overall image attractiveness ratings.   

Hypothesis 1: Moderately complex images will receive higher perceived 

attractiveness ratings compared to simple images.  

 

Hypothesis 2: The higher the perceived attractiveness rating of the human 

model, the greater the difference between the attractiveness 

ratings of the moderately complex image and the simple image. 
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The third and fourth hypotheses were formed off of prior pupillary response 

studies, which have found pupils dilate with increased interest (Rieger & Savin-

Williams, 2012; Hess & Polt, 1960) and cognitive effort (Granholm et al., 1997; Just & 

Carpenter, 1993; Hess & Polt, 1964). Although prior research has utilized stimuli of 

naked human models to explore the effect of interest on pupillary responses, there is 

no clear relationship between interest and pupil dilation when viewing stimuli of fully 

clothed human models. The factor of attractiveness of a fully clothed human model in 

an image may affect pupillary responses.  

Additionally, the presence of a human model used to increase cognitive effort, 

and thus, increase pupil dilation has not yet been tested. Given that an increase in 

complexity is an increase in cognitive effort (Olivia et al., 2004) and that increased 

cognitive effort affects pupillary responses (Granholm et al., 1997; Just & Carpenter, 

1993; Hess & Polt, 1964), it has been hypothesized that the presence of a human 

model used to increase complexity may also affect pupillary responses.  

 

Hypothesis 3: Pupil dilation will increase as the perceived image attractiveness 

increases and as the perceived model attractiveness increases. 

 

Hypothesis 4: Pupil constriction will occur when viewing simple images and 

dilation will occur when viewing moderately complex images. 

 

The fifth hypothesis was formed from prior research that studied the 

relationship between eye movements and image complexity (Bradley et al., 2011; 

Buscher et al., 2009; Cutrell & Guan, 2007; Guo et al., 2006; Pan et al., 2004; Petersen 

& Nielsen, 2002; Viviani, 1998; Weizmann, 1979; Wolf, 1970). The number of 

fixations has been found to increase with the degree of importance, while the fixation 

duration is dependent on the complexity and difficulty of a visual display (Buscher et 
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al., 2009; Pan et al., 2004; Rayner, 1998). It is hypothesized that an increase in the 

complexity through the presence of a human model will increase the number of 

fixations and decrease fixation duration.  

 

Hypothesis 5:  Increased image complexity will increase the number of fixation 

points and decrease average fixation durations.  

 

The human model has been found to capture attention (Nielsen & Pernice, 

2010). Specifically, human faces have been found to prompt areas of focus and longer 

fixation durations (Guo et al., 2006). However, it is still unclear how the presence of a 

human model will affect focus areas.  Given the evidence that human faces are 

informative areas that draw attention from users (Tuch et al., 2009; Barton et al., 2006; 

Geissler et al., 2006; Berlyne, 1974; Berlyne et al., 1968), it is hypothesized that the 

presence of a human model will attract the most attention.   

Hypothesis 6:  The presence of a human model will attract more attention than 

the object alone. 

Research has shown that differences in viewing patterns exist between males 

and females (Rennels & Cummings, 2013; Andersen et al., 2012; Nummenmaa et al., 

2012; Pan et al.; 2004; Miyahira et al., 2000). The difference is clear that females make 

more, shorter fixations compared to males when viewing images of human faces 

(Rennels & Cummings, 2013; Nummenmaa et al., 2012); however, extending beyond 

images of human faces, the gender differences in viewing patterns are inconclusive 

(Andersen et al., 2012; Miyahira et al., 2000; Pan et al., 2004). Stimuli content may 

impact gender differences in viewing patterns. Based off of prior research findings of 

gender viewing pattern differences the following hypothesis was generated.  
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 Hypothesis 7: Males will have fewer fixations, longer fixation durations, and 

different areas of focus compared to females.  

Prior research has identified a difference in artists’ and non-artists’ viewing 

patterns (Vogt & Magnussen, 2007; Nodine et al., 1993).  Specifically, non-artists had 

fewer, longer fixations, while artists had more, shorter fixations (Vogt & Magnussen, 

2007). Additionally, non-artists focused centrally on an image, while artists focused on 

multiple areas throughout an image (Nodine et al., 1993). Although prior research 

may have had confounding variables on eye movement measures, there appears to be 

a difference in viewing patterns between people with artistic training and people 

without, which has formed the following hypothesis.  

Hypothesis 8:  Designers will have more fixations, shorter fixation durations, 

and different areas of focus compared to non-designers.  
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CHAPTER 2: METHODS 

2.1 Apparatus 

2.1.1 Chairs 

A total of 32 images of 16 different chairs and 8 different female models were 

used. The 16 chairs photographed as stimuli were comprised of 6 ergonomic office 

chairs and 10 designer leisure chairs. The selection of the 16 chairs was based on chair 

height, lack of patterns, and availability of chair. All of the 16 chairs had similar height 

and had solid colors, which provided a simple visual aesthetic. The 16 chairs were 

stationed at the same location for photography within Martha Van Rensselear Hall 

and the Human Ecology Building at Cornell University. Table 1.1.1. in Appendix B 

lists the chairs.  

2.1.2 Human Models 

Eight females sitting in the Cornell Human Ecology Commons, a large atrium 

connecting the Human Ecology Building to Martha Van Rensselear Hall, were chosen 

for their dark color pants, their closeness to the camera and chairs set-up, and their 

willingness to participate as a human model for this study. All of the human models 

were aged between 19 and 22 years old. Each female model was wearing black or navy 

pants and asked to put on a black overcoat provided at the camera and chairs station 

in order to eliminate any possible confounding effect of clothing color differences 
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between stimuli. Human models were asked not move the chair from its original 

angle, which was at a 45° angle to the camera, and to turn their head to face the 

camera and to present a neutral face when the picture was taken. 

2.1.3. Stimuli 

The stimuli consisted of 2 screen images for each of the 16 chairs, one of the 

chair against a white background and one of the chair in the same location against the 

same white background with a person sitting in the chair in a three-quarters pose 

looking directly at the camera, which has previously been found to increase attraction 

(Nielsen & Pernice, 2010). All images were photographed using a digital camera 

(Nikon D3000) on a stationary tripod. Images were all photographed in the same 

location within the same hour, therefore keeping lighting and image angle consistent.  

2.1.4 Eye Tracking System 

Data was collected using a remote infrared (IR) eye tracking system (FaceLAB 

4.5). This system consists of two small IR video cameras that were positioned beneath 

a free-standing liquid crystal display (LCD) computer screen (20” Dell), on which 

visual stimuli were presented for each participant to view. IR sources are mounted 

either side of the LCD screen and below the LCD screen to provide the reflected IR 

light targets for tracking. These IR cameras are high resolution with a frame rate of 

60-Hertz, and optically detect the position of the eyes from IR reflections, which 
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come from the sclera without the participant having to wear any apparatus. Data 

consists of fixation points, fixation duration, saccade duration, pupil diameter 

(horizontal and vertical), pupil area, and eye blinks. Fixation duration is measured in 

milliseconds, pupil diameters are measured in millimeters times 10, and pupil area is 

measured in millimeters squared times 100.  Data was post-processed using the eye 

tracking software (GazeTracker v9.0), which calculated average fixation time, average 

number of fixations, average pupil area, percentage of time viewing a specific area, 

and additionally, creates visuals of where participants look.  

2.1.5 Luminance Contrast Meter 

A Brüel and Kjaer luminance contrast meter (Type 1100) was used to 

determine the luminance of each stimulus on the computer screen. In the central zero 

degree sitting position, the lens of the photometer was aimed at the center of the 

screen image was and positioned approximately 63 centimeters from the screen (see 

Figure 2.1.1 below). This measured the luminance of a 14.14 cm2 area the screen, 

which covered most of the image, but did not include the white background area 

around the image. The white background area was measured separately and had a 

constant luminance of 195 cd/m2, while the center stimulus luminance values ranged 

from 9.9 cd/m2 to 73 cd/m2 (See Figure 1.1.1. in Appendix A). 
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Figure 2.1.1: Luminance contrast meter and eye tracking apparatus 

 

2.2 Participants 

  Subjects (N=32) were recruited through SUSAN, a site created for Cornell 

University’s Department of Psychology to allow students to sign up for available 

studies to receive money or extra credit points in a course currently enrolled in. In this 

study, students were offered either $25 or 1 extra credit point for their participation. 

Out of the 32 total participants, 16 students were male and 16 students were female 

(50% of each gender). Of the 16 females, 8 were classified as designers and 8 were 

classified as non-designers. Similarly, of the 16 males, 8 were classified as designers 

and 8 were classified as non-designers. These classifications were based on each 
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participant’s degree major. Ages ranged from 18 to 25 with a mean age of 20.5 years. 

None of the participants wore glasses, although 6 participants wore contacts to 

correct their vision. None of the participants were cigarette smokers. Of the 32 

participants, 1 male was bisexual, 3 males were homosexual, and 28 male and female 

participants were heterosexual.  Sexual orientation is of importance because 

heterosexuals and homosexuals have been found to rate men and female differently 

(Jankowaik, Hill & Donovan, 1992). Specifically, heterosexual males rate female 

models higher than homosexual males (Jankowaik et al., 1992), and heterosexual 

females rate female models higher than homosexual females (Nash, Fieldman, & 

Hussey, 2005). All of the participants had normal color vision.  Participants were from 

various cultural backgrounds and were all enrolled as full-time students at Cornell 

University. 

2.3 Measures 

2.3.1 Designer Status 

 Each participant was asked to declare his or her area of focus (academic major) 

in order to categorize the participants into designer/non-designer groups. A 

participant was labeled a designer if his or her major was Art, Architecture, Interior 

Design, or Graphic Design. Participants outside of these art-related majors, such as 

Economics, Psychology, Biology, or Engineering, were categorized as non-designers. 

Participants were grouped into one of these two designer/non-designer categories in 
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order to compare the two groups and determine if there were any differences in eye-

movement patterns or attractiveness ratings.  

2.3.2 Attractiveness Ratings 

 Each participant verbally gave an “overall attractiveness of the image” rating 

for each of the 32 stimuli and each of the 8 human models’ headshots. The overall 

attractiveness rating scale was from 1 (very unattractive) to 10 (very attractive). The 

participants were given 2 seconds to rate the overall attractiveness of each image. The 

time period was deliberately short to ensure participants gave the rating derived from 

their initial thought.  

2.3.3 Pupil Area  

 Eye tracking analysis software (GazeTracker v19) was used to measure the 

vertical pupil diameter of the left eye, the vertical pupil diameter of the right eye, and 

calculate the average pupil area from both eyes combined along with their 

corresponding standard deviations for each participant for each stimulus. Vertical 

pupil diameter was measured top to bottom of each the left and right eye 66 times per 

second. The software calculated average pupil area by adding the sum of all left pupil 

diameters divided by 2 and the sum of all right pupil diameters divided by 2 and then 

multiplying that summed number by pi (π). The units for pupil diameter of each eye 

were millimeters times 10, and the units for average pupil area of both eyes were 
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millimeters squared times 100.  The change of pupil area as a response to a stimulus 

was equal to the average pupil area while viewing a stimulus minus average pupil area 

while viewing the preceding white image.  

2.3.4 Number of Fixations and Fixation Duration  

 Eye-tracking software (GazeTracker v9.0) calculated the number of fixation 

points and the average duration of fixation points for each participant for each 

stimulus. 

2.3.5 Complexity 

 Stimuli were categorized as either simple or moderately complex based on the 

absence/presence of the human model.  

2.3.6 Heatmaps  

 Heatmaps were generated by the eye tracking software (GazeTracker v9.0 and 

FaceLAB 4.5), and used to represent the areas of the stimuli where participants were 

focusing. Heatmaps were constructed based off of the number of fixations a user 

spent on an image. The render radius and strength determine different intensities 

within a heatmap. The default settings (render radius and strength are 25 and 96 

respectively) were used for this study. A composite heatmap of each stimulus was 

generated for the combined participants in each gender and each designer status 

group. 
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2.3.7 Lookzones 

 Lookzones were created for each of the 16 moderately complex images. Two 

lookzones were created per stimulus: one for the human model’s face and one for the 

chair. The eye tracking software (GazeTracker v9.0 and FaceLAB 4.5) calculated the 

percentage of time each of the 4 groups (female/male and designer/non-designer) 

spent looking at a specific area (lookzone) on the stimulus.  

2.4 Procedure 

All participants were individually tested in the windowless Cornell Human 

Computer Interaction Usability Laboratory.  Upon arrival to the Laboratory, each 

participant was welcomed, asked to sign a written consent form, and asked if he or 

she had any questions before beginning. For the eye-tracking portion of the study, 

each participant was asked to take a seat centered with the LCD screen, which display 

the stimuli. After the participant was comfortably seated, the height of the electric 

height-adjustable table (Workrite) was adjusted to the height of the seated participant 

in order optimize camera position with respect to both eyes. Following the table 

height adjustment, the cameras were focused and gaze was calibrated for each 

participant. Gaze was calibrated by having the participant focus on each of the nine-

equispaced blinking dots on the computer screen (3 X 3). If needed, the calibration 

process was repeated until the system was accurately calibrated to the participant’s 

eye. Then, each participant began the 30-minute experimental session, in which they 
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viewed a total of 40 images (32 images with chairs, 8 images of human model 

headshots). For each slide, participants were asked to verbally rate the attractiveness 

of the image on a scale from 1 (not attractive) to 10 (very attractive). Each image was 

presented for 2 seconds before switching to a white screen. The white screen was 

shown for 2 seconds before and after each image for 2 seconds in order to stabilize 

pupil area with a standard pre- stimulus luminance.  After the participant viewed all 32 

simple and moderately complex images, the participant was asked to verbally rate the 

attractiveness of each of the 8 female models as the human model headshots were 

sequentially presented on the screen for 2 second periods. This rating was also on a 1 

(not attractive) to 10 (very attractive) scale. The order of the stimuli were randomized 

by the eye tracking software and fixed to be the same randomized sequence for each 

participant.   

During the participants viewing of each of the 32 simple and moderately 

complex stimuli, the eye tracking system recorded the participant’s time, fixation 

points, pupil vertical diameter, saccades, and gaze trail, which were later statistically 

analyzed. This research procedure was reviewed and approved by Cornell University’s 

Institutional Review Board for Human Participants. 
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2.5 Data Analysis 

Image attractiveness ratings and average pupil area, number of fixation points, 

and average fixation duration for each stimulus for each participant were inputted into 

an Excel file and imported to a multivariate statistical package (SPSS v19) for analysis.  

To test whether the difference between the attractiveness rating of the 

moderately complex image minus the attractiveness rating of the simple image 

increases with higher perceived attractiveness of the human model, a mixed model 

analysis of variance was run. The difference of image attractiveness was calculated as 

the attractiveness rating of the moderately complex image – attractiveness rating of 

simple image with the paired chair.  

The distribution of average pupil area, overall image attractiveness ratings, 

model attractiveness ratings, number of fixations, and average fixation time were 

analyzed separately to detect any outliers or non-normal data. For each variable, a 

histogram was graphed and kurtosis and skewness values were calculated to determine 

whether the data was approximately normally distributed. Skewness measures 

Normality, a skewness value of 0 is perfectly normal, and a skewness value of less 

than 2 is assumed approximately normal (Curran, West, & Finch, 1996). Kurtosis is a 

measure of the spread of the distribution relative to a normal distribution. A kurtosis 

level of 3 is perfectly normal, and a kurtosis level less than less than 7 can be assumed 

approximately normal (Curran et al., 1996). Non-normal data were cleaned of outliers 
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and transformed in various ways depending on the variable prior to statistical analysis 

in order to make the data appear to more closely meet the assumptions and improve 

the interpretability. The distribution of the change in average pupil area from the 

white image to the stimulus was skewed. Data points were made positive through the 

addition of 1236 (the highest negative number) to each point, deleting any points 

beyond three standard deviations from the mean, then 1236 was subtracted from all 

data points to revert back to original mean value. Seven outliers were deleted from the 

data. The deleted data points were much too large of a dilation or constriction to be 

anything but a squint or a blink (See Figure 3.1.1. in Appendix A). For the change in 

average pupil area data without the outliers the kurtosis value was 3.581 and the 

skewness value was equal to 0.323 (See Table 2.1.1. in Appendix B). Given that these 

transformed values have a skewness level below 2 and kurtosis level below 7, the 

values indicate the data was approximately normally distributed. 

 The distribution of overall image attractiveness ratings was approximately 

normal (See Figure 3.1.2. in Appendix A). There did not appear to be any outliers. 

The kurtosis value was -0.913 and the skewness value was 0.144 (See Table 2.1.1. in 

Appendix B), which indicate the data is approximately normally distributed. Similarly, 

the distribution of model attractiveness ratings appeared to be approximately normally 

distributed with no outliers present (See Figure 3.1.3. in Appendix A). For model 
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attractiveness ratings, the kurtosis value was -0.864 and the skewness value was -0.056 

(See Table 2.1.1. in Appendix B), which both indicate normality.   

 The distribution of the number of fixation points was approximately normal 

with one outlier, which was deleted from the data (See Figure 3.1.4. in Appendix A). 

For the number of fixation distribution, the kurtosis value was -0.386 and the 

skewness value was equal to -0.061 (See Table 2.1.1. in Appendix B). These values 

suggest the data is approximately normally distributed. 

 The distribution of the average fixation time was skewed. There appeared to be 

an outlier that was very small and 10 that were very large. Any data point that was 

longer than a second was considered an outlier since that indicated a participant was 

fixating on a single point for more than half of the viewing time. The average fixation 

time data was transformed by the natural log to normalize the data. The distribution 

of the natural log average fixation time appeared to be approximately normal (See 

Figure 3.1.5. in Appendix A). For the distribution of log average fixation time, the 

kurtosis value was 2.24 and skewness value was equal to 1.207 (See Table 2.1.1. in 

Appendix B). These skewness and kurtosis values suggest the log average fixation 

time data was approximately normally distributed. Thus, log average fixation time was 

used for statistical analysis. 

Subsequent analyses used a mixed model analysis of variance for the 

transformed data. The significance level was set at p≤0.05. 
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CHAPTER 3: RESULTS 

The results of the statistical analysis are presented in the following 

sections.  

3.1 Image Complexity and Image Attractiveness  

 A mixed model analysis of variance was run to test the first hypothesis, 

which predicted moderately complex images would receive higher 

attractiveness ratings than simple images.  In the mixed model analysis of 

variance, overall image attractiveness tested image complexity, gender and 

designer status as fixed effects, with participant ID and chair as random effects.  

Inter-individual variability accounted for 12% of the total variance for overall 

image attractiveness ratings and 88% was residual variability among participants 

perceived attractiveness ratings (See Table 3.1.1. in Appendix B).  There was a 

significant main effect of image complexity on overall image attractiveness 

(F(1,989)=21.077, p=0.000): moderately complex images received higher 

perceived attractiveness ratings (4.992) compared to simple images (4.385) (See 

Tables 3.2.1. and 3.2.2 in Appendix B), which confirms the hypothesis.  No 

other main effects or interactions were statistically significant.   
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3.2 Image Attractiveness and Model Attractiveness 

 To test the second hypothesis, which predicted the difference between 

attractiveness ratings of the simple image and the moderately complex image of 

the same chair would increase as the human model attractiveness rating 

increased, a mixed model analysis of variance was run.  The mixed model 

analysis of variance for the difference in image attractiveness tested human 

model attractiveness, gender, and designer status as fixed effects, with 

participant ID and chair as random effects.  Of the total variance for image 

attractiveness ratings, inter-individual variability accounted for 10%, chair-to-

chair variability accounted for 13%, and 77% was residual variability (See Table 

4.1.1 in Appendix B).  There was a significant main effect of model 

attractiveness ratings on the difference in overall image attractiveness ratings 

(F(9,465)=4.34, p=0.000) (Table 4.3.1. in Appendix B): as model attractiveness 

ratings increased, the difference in image attractiveness ratings between the 

moderately complex image and the simple image increased (See Table 4.3.2 in 

Appendix B).  No other main effects or interactions were statistically 

significant. 

3.3 Image Attractiveness and Pupil Area Change  

 A mixed model analysis of variance was run to test the first part of the 

third hypothesis, which predicted pupil area increases as the perceived overall 
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image attractiveness increases.  The mixed model analysis of variance for 

average pupil area change tested image attractiveness, gender, and designer 

status as fixed effects, and participant ID as a random effect.  Inter-individual 

variability was not a significant percentage of the total variance for change in 

average pupil area (See Table 5.1.1. in Appendix B).  There was no significant 

main effect of overall image attractiveness (See Tables 5.2.1. and 5.2.2. in 

Appendix B).  Additionally, no other main effects or interactions were 

statistically significant. 

3.4 Pupil Area Change and Stimulus Luminance 

 Given that the results did not confirm the third hypothesis that pupil 

dilation would occur with increased perceived image attractiveness, further 

analysis was conducted to test the effects of possible confounding variables.  

Stimulus luminance and model face luminance were both tested as 

confounding variables on average pupil area change because pupil size is 

affected by target luminance; specifically, low luminance levels cause the pupil 

to dilate and high luminance levels cause the pupil to constrict (Laeng et al., 

2012; Laeng & Endestad, 2011; Berman et al., 1996).  To test whether stimulus 

luminance of the chair was associated with the change in average pupil area, a 

mixed model analysis of variance was run.  The mixed model analysis of 

variance for change in pupil area tested stimulus luminance, overall image 
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attractiveness ratings, gender, and designer status as fixed effects, with 

participant ID as a random effect (See Table 6.1.1. in Appendix B).  Residual 

variability accounted for all of the total variability for change in pupil area.  

There was a significant main effect of stimulus luminance (F(1,1012)=42.287, 

p=0.000) (See Table 6.2.1. and Table 6.2.2. in Appendix B): participants’ pupils 

constricted as stimulus luminance increased.  However, when stimulus 

luminance was included as a covariate in the statistical model, overall image 

attractiveness ratings were still not significantly associated with change in 

average pupil area (See Table 6.2.1. in Appendix B) and no other main effects 

or interactions were statistically significant.	
  

3.5 Pupil Area Change and Model Face Luminance 

Model face luminance was also tested as a possible confounding variable 

of the change in pupil area. The mixed model analysis of variance for the 

change in average pupil area tested model face luminance, overall image 

attractiveness ratings, gender, and designer status as fixed effects, with 

participant ID as a random effect.  Total variance for pupil area change was all 

residual variability (See Table 7.1.1. in Appendix B).  Model face luminance did 

not have a significant main effect on change in average pupil area (See Table 

7.2.1. in Appendix B).  When model face luminance was included as a covariate 

in the statistical model, the association between overall image attractiveness 
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ratings and change in average pupil area still was not significant (See Table 

7.2.1. in Appendix B).  Additionally, no other main effects or interactions were 

statistically significant. 

3.6 Model Attractiveness and Model Face Luminance 

As further analysis of why the results did not confirm the third 

hypothesis, the relationship between model face luminance and model 

attractiveness was tested because previous research has shown both luminance 

levels and attractiveness levels affect the pupil area (Laeng et al., 2012; Rieger & 

Savin-Williams, 2012; Laeng & Endestad, 2011; Berman et al., 1996; Hess & 

Polt, 1960).  A mixed model analysis of variance was run to test whether model 

attractiveness was associated with model face luminance. The mixed model 

analysis of variance for model attractiveness tested model face luminance, 

gender, and designer status as fixed effects, with participant ID as random 

effects.  Inter-individual variability accounted for 32% of the total variance for 

model attractiveness and 68% was residual variability (See Table 8.1.1. in 

Appendix B).  The model face luminance had a significant main effect on 

model attractiveness (F(1,477)=59.432, p=0.000) (See Table 8.2.1. and Table 

8.2.2. in Appendix B): high facial luminance was perceived as more attractive 

compared to low facial luminance. No other main effects or interactions were 

statistically significant. 
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3.7 Pupil Area Change and Number of Fixations  

To further analyze why the results did not confirm the third hypothesis 

that pupil dilation would increase with perceived image attractiveness, the 

number of fixations was tested as a possible confounding variable on the 

change in pupil area.  Previous research has shown that the number of fixations 

and pupil area increase with the degree of interest (Rieger & Savin-Williams, 

2012; Buscher et al., 2009; Pan et al., 2004; Rayner, 1998; Hess & Polt, 1960), 

yet results from the present study indicate that the pupils did not dilate with 

increased interest.  To investigate this difference, a mixed model analysis of 

variance for change in average pupil area tested number of fixations, overall 

image attractiveness ratings, gender, and designer status as fixed effects, with 

participant ID as a random effect.  Residual variability accounted for 100% of 

the total variance for change in average pupil area (See Table 9.1.1. in Appendix 

B). The number of fixations was not a significant main effect on the change in 

average pupil area (See Table 9.2.1. in Appendix B).  There were no significant 

differences between genders, designer status, or the two-way interactions (See 

Table 9.2.1. in Appendix B).  

3.8 Pupil Area Change and Average Fixation Time 

Also to further analyze the results of the third hypothesis, fixation time 

was analyzed as a possible confounding variable of pupil area change because 
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previous research shows that fixation duration and pupil area are dependent on 

the difficulty of an image (Buscher et al., 2009; Pan et al., 2004; Rayner, 1998; 

Granholm et al., 1997; Just & Carpenter, 1993; Hess & Polt, 1964). A mixed 

model analysis of variance was run to test whether ln average fixation time 

affected the change in average pupil area.  The mixed model analysis of 

variance for change in average pupil area tested ln average fixation time, overall 

image attractiveness ratings, gender, and designer status as fixed effects, with 

participant ID as a random effect.  Residual variability accounted for 100% of 

the total variance for change in average pupil area (See Table 10.1.1. in 

Appendix B).  The ln average fixation time did not have a main effect on the 

change in average pupil area (See Table 10.2.1. in Appendix B).  Additionally, 

there were no significant gender or designer status differences in changes in 

average pupil area and ln average fixation time. 

3.9 Model Attractiveness and Pupil Area Change 

 To test the second part of the third hypothesis that pupil area increases  

as model attractiveness increases, a mixed model analysis of variance was run. 

The mixed model analysis of variance for change in average pupil area tested 

model attractiveness, gender, and design status as fixed effects, with participant 

ID as a random effect.  Residual variability accounted for all of the total 

variance for change in average pupil area (See Table 11.1.1. in Appendix B). 
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There was no significant main effect of model attractiveness on change in 

average pupil area (See Table 11.2.1. and Table 11.3.1. in Appendix B), nor 

were there other significant main effects or interactions. 

3.10 Image Complexity and Pupil Area Change  

A mixed model analysis of variance tested the fourth hypothesis, which 

predicted pupil area would decrease when viewing simple images and increase 

when viewing moderately complex images. The mixed model analysis of 

variance for change in average pupil area tested image complexity, gender, and 

designer status as fixed effects, with participant ID as a random effect.  

Residual variability accounted for all of the total variance for change in average 

pupil area (See Table 12.1.1. in Appendix B). There was a significant main 

effect of image complexity on change in average pupil area (F(1,1010)=33.111, 

p=0.000) (See Tables 12.2.1. and 12.2.2. in Appendix B): for moderately 

complex images, the pupils dilated by 2.53% (0.1944 mm2), but for simple 

images the pupils further constricted 2.29% (-0.3119 mm2) compared with 

viewing the white image, which is a total 4.82% difference (See Table 12.3.1. in 

Appendix B). No other main effects or interactions were statistically significant. 
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3.11 Image Complexity and Number of Fixations  

 To test the first part of the fifth hypothesis, which predicted an increase 

in image complexity would increase the number of fixation points, a mixed 

model analysis of variance was run. The mixed model analysis of variance for 

average number of fixations tested image complexity as a fixed effect, with 

participant ID as a random effect.  Inter-individual variability accounted for 

10% of the total variance for the average number of fixations and 90% was 

residual variability (See Table 13.1.1. in Appendix B).  There was a main effect 

for image complexity on average number of fixations (F(1,989)=34.57, 

p=0.000): simple images elicited a significantly greater number of fixations 

(3.686) compared to complex images (3.326) (See Tables 13.2.1. and 13.2.2. in 

Appendix B).  

3.12 Image Complexity and Average Fixation Time  

 The second part of the fifth hypothesis, which stated increased image 

complexity would decrease the average fixation time, was tested using a mixed 

model analysis of variance. The mixed model analysis of variance for ln average 

fixation time tested image complexity as a fixed effect, with participant ID as a 

random effect.  Inter-individual variability accounted for 16% of the total 

variance for ln average fixation time and 84% was residual variability (See Table 

14.1.1. in Appendix B).  As predicted, there was a significant main effect of 
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image complexity (F(1,979)= 25.252, p=0.000) (Tables 14.2.1. and 14.2.2. in 

Appendix B): for moderately complex images the ln average fixation time was 

approximately -1.047, while the ln average fixation time was approximately -

9.56 for simple images.  Therefore, fixations were considerably longer for 

moderately complex images than for simple images.  

3.13 Average Fixation Time and Image Attractiveness  

 Results did not confirm the second part of the fifth hypothesis, which 

predicted increased image complexity would decrease average fixation duration, 

and consequently further analysis was conducted to explore whether image 

attractiveness was a confounding variable.  Previous studies have shown that 

showed that fixation duration is lengthened when viewing a face (Nielsen & 

Pernice, 2010; Guo et al., 2006).  Present results showed that moderately 

complex images, which include a face, are rated as more attractive To test 

whether participants had longer fixations when images were perceived as more 

attractive, a mixed model analysis of variance was run.  The mixed model 

analysis of variance for ln average fixation time tested overall image 

attractiveness ratings, gender, and designer status as fixed effects, with 

participant ID as a random effect.  Inter-individual variability accounted for 

14.8% of the total variance for ln average fixation time and 85.2% was residual 

variability (See Table 15.1.1. in Appendix B).  Ln average fixation time had a 
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significant main effect on overall image attractiveness (F(1,1015)=8.218, 

p=0.004) (See Table 15.2.1. and Table 15.2.2. in Appendix B): images perceived 

as more attractive received longer fixation periods compared to images 

perceived as less attractive. There were no significant associations between 

gender, designer status, or two-way interactions (See Table 15.2.1. in  

Appendix B). 

3.14 Image Complexity and Areas of Focus 

3.14.1 Heatmaps 

To test the sixth hypothesis that participants would primarily focus on 

the human model when viewing moderately complex images, and primarily 

focus on the chair when viewing simple images, heatmaps were generated for 

all 32 stimuli (simple and moderately complex images).  Based on visual 

inspection, there appeared to be a large difference between moderately 

complex images and simple images. From these heatmaps, it was clear that all 

participants spent the largest amount of time fixating on the human model’s 

face in moderately complex images and fixating on the seat of the chair in 

simple images.  For all heatmaps, refer to Appendix A, Figures 4.1.1.  

through 4.16.2.  
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3.14.2 Lookzones 

To further explore the sixth hypothesis, lookzones were generated for 

each of the moderately complex images.  Thus, 64 images with 2 lookzones per 

stimulus (128 total lookzones) were analyzed.  Each lookzone calculated the 

percentage of time spent viewing a specified image area relative to the time 

spent looking at the total image.  For each moderately complex image, two 

lookzones were created to examine the percentage of time spent within each 

area of interest: the face of the human model and the chair.  Lookzone data 

confirmed that the majority of time was spent looking at the human model’s 

face when viewing a moderately complex image.  As predicted, across all 

moderately complex images, participants spent an average of 62.35% of time 

looking at the face of the human model and only 37.65% of time looking 

elsewhere on the stimulus.  In all cases when the human model was present,  

the participant spent less time looking at the chair and more time looking at  

the face of the human model. This also confirms what was observed from  

the heatmaps.  

3.15 Gender Differences in Viewing Patterns 

Heatmaps and a mixed model analysis of variance test run on lookzone 

data were used to test the seventh hypothesis, which predicted males would 

have fewer fixations, longer fixation durations, and different areas of focus 
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compared to females.  The mixed model analysis of variance for average 

number of fixations tested image complexity, gender, and the two-way 

interaction as fixed effects, with participant ID as a random effect. Inter-

individual variability accounted for 10% of the total variance for average 

number of fixations and 90% was residual variability (See Table 13.1.1. in 

Appendix B).  Contrary to the hypothesis there was no significant main effect 

of gender on average number of fixations (See Table 13.2.1. in Appendix B).  

There was a significant image complexity by gender interaction (F(1,989)= 

5.293, p = 0.022) (See Figure 3.15.1 below and Table 13.2.1. in Appendix B).  

Male participants made significantly more fixations for simple images (3.832) 

compared moderately complex images (3.332) (F(1,989)=33.458, p=0.000).  

Female participants also made more fixations for simple images (3.539) 

compared to moderately complex images (3.32) (F(1,989)=6.404, p=0.012)  

(See Table 13.4.4 and 13.4.5. in Appendix B).  However, for simple images 

male participants had a significantly greater number of fixations compared to 

female participants (F(1,41)=4.098, p=0.049) (Table 13.4.1. and Table 13.4.2. in 

Appendix B).  
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Figure 3.15.1: Interaction of Gender and Image Complexity for the  

Average Number of Fixations 

Another mixed model analysis of variance for ln average fixation time 

tested image complexity, gender and the two-way interaction as fixed effects, 

with participant ID as a random effect.  Inter-individual variability accounted 

for 16% of the total variance for ln average fixation time and 84% was residual 

variability (See Table 14.1.1. in Appendix B).  There was no significant main 

effect of gender on ln average fixation time (See Table 14.2.1. in Appendix B).  

Additionally, there was no significant interaction between gender and image 

complexity for ln average fixation time (See Table 14.2.1. in Appendix B).  

Heatmaps and lookzone data were used to determine whether males had 

different areas of focus compared to females.  Based on visual inspection of 
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heatmaps, there did not appear to be a large difference between where males 

and females were focusing on the stimuli (See Figures 4.1.1. through 4.16.2. in 

Appendix A).  Lookzone data confirmed that there was no significant effect of 

gender: males spent on average 63.63% of time looking at the human model’s 

face, while females spent on average 61.08% of time looking at the face of the 

human model when viewing moderately complex images.  

3.16 Designer Status Differences in Viewing Patterns 

Heatmaps, lookzone data and mixed model analysis of variance tests 

were used to test the eighth hypothesis, which predicts designers would have 

more fixations, shorter fixation durations, and different areas of focus 

compared to non-designers.  The mixed model analysis of variance for average 

number of fixations tested image complexity, designer status, and the two-way 

interaction as fixed effects, with participant ID as a random effect.  Inter-

individual variability accounted for 10% of the total variance for average 

number of fixations and 90% was residual variability (See Table 13.1.1. in 

Appendix B).  There was no significant main effect of designer status on the 

number of fixations (See Table 13.2.1. in Appendix B). However, there was a 

significant interaction of designer status by image complexity for the average 

number of fixations (F(1,989)=5.591, p=0.018) (See Figure 3.16.1. below and  

Table 13.2.1. in Appendix B).  Designers made significantly more fixations 
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when viewing simple images (3.707) compared to moderately complex images 

(3.203) (F(1,989)=33.983, p=0.000), whereas non-designers also made 

significantly more fixations on simple images (3.664) compared to moderately 

complex images (3.449) (F(1,989)=6.177, p=0.013) (Table 13.5.2. and Table 

13.5.3. in Appendix B). There were no significant differences in number of 

fixations between the designers and the non-designers for simple images but a 

marginally statistically significant difference (F(1,42)=2.891; p=0.097) for 

moderately complex images (See Figure 3.16.1 below and Table 13.5.4. and 

Table 13.5.5. in Appendix B).  

 

Figure 3.16.1: Interaction of Designer Status and Image Complexity on the  

Average Number of Fixations 
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Another mixed model analysis of variance for ln average fixation time 

tested image complexity, designer status, and the two-way interaction as fixed 

effects, with participant ID as a random effect.  Inter-individual variability 

accounted for 16% of the total variance for ln average fixation time and 84% 

was residual variability (See Table 14.1.1. in Appendix B).  There was no 

significant main effect of designer status on ln average fixation time (See Table 

14.2.1. in Appendix B).  However, there was an interaction between designer 

status and image complexity (F(1,979)=5.036, p= 0.025) (See Table 14.2.1. in 

Appendix B): the ln average fixation time was significantly higher for 

moderately complex images (-0.955) compared to simple images (-1.086) for 

designers (F(1,988)=35.668, p=0.000), but for non-designers, the difference in 

ln average fixation time for moderately complex images (-0.957) compared to 

simple images (-1.008) was not significant (See Figure 3.16.2 below and Table 

14.4.1. and Table 14.5.2. in Appendix B).  The difference between ln average 

fixation time for designers and non-designers was not significant for 

moderately complex images; however, for simple images the difference was 

marginally statistically significant (F(1,36)=2.846; p=0.100) (See Table 14.5.3. 

and Table 14.5.4 in Appendix B).  
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Figure 3.16.2: Interaction of Designer Status and Image Complexity on  

Ln Average Fixation Time 

Heatmaps were used to determine whether designers had different areas 

of focus compared to non-designers. Based on a visual inspection of the 

heatmaps there appeared to be a difference between where designers and non-

designers focused their attention. For simple images, designers appeared to 

view multiple areas of the chair compared to non-designers, who appeared to 

focus mostly on the seat of the chair (See Figures 4.1.1. through 4.16.2. in 

Appendix A).  

Lookzone data also confirmed that designers spent more time looking at 

faces of human models compared to non-designers.  Specifically, designers 

spent on average 57.375% of time looking at the human model’s face, while 
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non-designers spent on average 67.335% of time looking at faces of human 

models when viewing moderately complex images.  Given that designers on 

average spent a smaller percentage of time looking at the human models’ faces 

compared to non-designers, these results suggests that designers spent more 

time looking elsewhere on the image.  Results support the eighth hypothesis 

that designers and non-designers focus on different areas of complex images. 
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3.17 Summary of Results 

 Four of the eight hypotheses were fully confirmed by the results above. 

Hypothesis	
  	
   Confirmed?	
  

1.	
  Moderately	
  complex	
  images	
  will	
  receive	
  higher	
  perceived	
  
attractiveness	
  ratings	
  compared	
  to	
  simple	
  images.	
  	
   Yes	
  

2.	
  The	
  higher	
  the	
  perceived	
  attractiveness	
  rating	
  of	
  the	
  human	
  
model,	
  the	
  greater	
  the	
  difference	
  between	
  the	
  attractiveness	
  ratings	
  
of	
  the	
  moderately	
  complex	
  image	
  and	
  the	
  simple	
  image.	
  

Yes	
  

3.	
  (Part	
  1)	
  Pupil	
  dilation	
  will	
  increase	
  as	
  the	
  perceived	
  image	
  
attractiveness	
  increases.	
   No	
  

3.	
  (Part	
  2)	
  Pupil	
  dilation	
  will	
  increase	
  as	
  the	
  perceived	
  model	
  
attractiveness	
  increases.	
   No	
  

4.	
  Pupil	
  constriction	
  will	
  occur	
  when	
  viewing	
  simple	
  images	
  and	
  
dilation	
  will	
  occur	
  when	
  viewing	
  moderately	
  complex	
  images.	
   Yes	
  

5.	
  (Part	
  1)	
  Increased	
  image	
  complexity	
  will	
  increase	
  the	
  number	
  of	
  
fixation	
  points.	
   No	
  

5.	
  (Part	
  2)	
  Increased	
  image	
  complexity	
  will	
  decrease	
  average	
  fixation	
  
durations.	
   No	
  

6.	
  The	
  presence	
  of	
  a	
  human	
  model	
  will	
  attract	
  more	
  attention	
  than	
  
the	
  object	
  alone.	
   Yes	
  

7.	
  (Part	
  1)	
  Males	
  will	
  have	
  fewer	
  fixations	
  compared	
  to	
  females.	
  	
   No	
  

7.	
  (Part	
  2)	
  Males	
  will	
  have	
  longer	
  fixation	
  durations	
  compared	
  to	
  
females.	
  	
   No	
  

7.	
  (Part	
  3)	
  Males	
  will	
  have	
  different	
  areas	
  of	
  focus	
  compared	
  to	
  
females.	
  	
   No	
  

8.	
  (Part	
  1)	
  Designers	
  will	
  have	
  more	
  fixations	
  compared	
  to	
  non-­‐
designers.	
  	
   No	
  

8.	
  (Part	
  2)	
  Designers	
  will	
  have	
  shorter	
  fixation	
  durations	
  compared	
  to	
  
non-­‐designers.	
   No	
  

8.	
  (Part	
  3)	
  Designers	
  will	
  have	
  different	
  areas	
  of	
  focus	
  compared	
  to	
  
non-­‐designers.	
  	
   Yes	
  

 
Table 3.17.1: Results Summary
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CHAPTER 4: DISCUSSION 

 Selected images of various chairs with or without female human models 

were used to investigate whether the image complexity impacts the 

attractiveness of an image containing an ergonomic product (the chair). The 

effects of human model attractiveness, image complexity through human 

presence, and whether there are gender and designer differences were tested 

and are discussed in the following sections.  

4.1 Image Complexity and Image Attractiveness 

When a human model was present and the human model was looking at 

the camera in moderately complex images, the overall image was perceived to 

be significantly more attractive compared to simple images, which lacked the 

presence of a human model.  This finding agrees with previous research 

showing that attractive faces activate reward regions in the human brain 

(Winston et al., 2007; Aharon et al., 2001); attraction is judged to be greater 

when human faces look directly at the camera (Nielsen & Pernice, 2010); sales 

increase when an attractive spokesperson represents a product (Dion, 

Berscheid, and Walster, 1972); and advertisement effectiveness increases when 

a physically attractive person presents (Petroshius & Croker, 1989; Caballero & 

Pride, 1984). Results from the present research affirmed the positive 
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connection between a human model and attraction. In the current research, the 

only change to the complexity of the image was the addition of a human model 

and regardless of the human model’s attractiveness, the image attractiveness 

increased when participants viewed moderately complex images compared to 

when participants viewed simple images.  

4.2 Image Attractiveness and Model Attractiveness 

Additionally, through the findings of the present study, which show the 

attractiveness of a human model in an image is positively associated with 

overall image attractiveness, the impact of an attractive human model in 

computer display media may be validated. Caballero and Pride’s study (1984) 

used an attractive human model in direct mail advertisements and Petroshius 

and Croker’s (1989) study used an attractive spokesperson on television 

advertisements, whereas the present study used a human model in images 

displayed on a computer screen.  Results of the present research that show a 

positive effect of human model attractiveness on image attractiveness 

supported findings from Caballero and Pride’s study (1984), which exhibited a 

positive impact of an attractive human model on product sales, and Petroshius 

and Croker’s study (1989), which indicated an attractive spokesperson 

increased advertisement attractiveness. Given these numerous findings on the 

effect of human model attractiveness, there appears to be a universal positive 
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effect of human model attractiveness across different media, such as mail, 

television, and computer displays.  

4.3 Image Attractiveness and Pupil Area Change 

The results of the present study show image attractiveness and change in 

average pupil area were not significantly associated, which conflicts with 

previous research that found pupil area was positively correlated with 

attractiveness (Rieger & Savin-Williams, 2012; Hess & Polt, 1960). The reason 

for the contrary findings between prior research and the present study is 

unclear; to understand these discrepancies, several confounding variables were 

considered. First, methodological differences of previous studies compared to 

the present study were explored. Hess & Polt’s (1960) research was the first to 

establish correlation between attractiveness and pupil size based on measures 

of pupil diameter averaged across 20 frames per stimulus.  Rieger & Savin-

Williams (2012) found that pupil area, which is based on the number of the eye 

tracker’s camera pixels occluded by the pupil, can be used as an objective 

measure of sexual attraction.  Both Hess and Polt’s study (1960) and Rieger and 

Savin-Williams’ study (2012) found statistically significant pupil dilation when 

using sexually stimulating stimuli; no measure of sexual attraction was used in 

the present study.  Though the attractiveness rating could be argued as a 

measure of sexual attractiveness, the stimuli used in the present study were less 
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sexually stimulating. Hess and Polt (1960) showed participants a series of naked 

male and naked female images and Rieger and Savin-Williams (2012) showed 

participants a series of thirty-second video clips of either a naked male or a 

naked female performing a sexual act on themself, while the present study 

showed participants a series of images of a chair either alone or with a fully 

clothed human model. Further research comparing the impact of sexual verses 

non-sexual stimuli is warranted to further understand how image complexity 

altered through the presence of a human model affects viewers’ perceived 

attractiveness and attention.  

Another possibility is that contrary results were found because of 

differences in pupil measurement methods.  Hess and Polt’s (1960) study used 

a camera to take 20 photos of a participant’s left eye as the participant viewed 

each stimulus, a projector to increase the size of the photos, and a ruler to 

manually measure pupil diameter, which is different from the automated eye 

tracking software used to calculate pupil area in the present study. Measuring 

fractions of millimeter differences by hand using a ruler may have led to human 

error in reading or recording pupil data, which would have impacted the 

reliability of Hess and Polt’s (1960) findings. Additionally, the pupil data in 

Hess and Polt’s (1960) study was captured at a much slower frame rate 

compared to the present study. While Hess and Polt (1960) captured pupil data 
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2 times per second, the present study captured pupil data 66 times per second, 

which is more accurate in detecting pupillary reactions that can occur within 0.2 

seconds of viewing an image (Andreassi, 2007; Lowenstein & Loewenfeld, 

1962).  Weirda et al. (2012) found that high-temporal-resolution tracking (~10 

Hz) is necessary to accurately capture pupillary responses; therefore Hess and 

Polt’s (1960) technique for measuring pupil size was not fast enough to 

accurately capture pupillary responses. The difference between findings of Hess 

and Polt’s (1960) study and the present study may be due to the differences in 

pupil measurement. The pupillary dilations found in Hess and Polt’s (1960) 

study were measured using an inaccurate pupillometry tool, and may be the 

cause of the differing results between the two studies.  However, both the 

present study and Rieger and Savin-Williams’ (2012) study utilized an eye 

tracker of very high-temporal-resolution (~60 Hz), which allowed slow 

pupillary reactions to be accurately obtained from both eyes and then averaged 

together. Given Rieger and Savin-Williams’ (2012) study and the present study 

used the same measurements but found contrary results, the number of frames 

captured per second is not likely a confounding variable in comparing the two 

studies.  

Different gaze positions may have also been an unaddressed factor 

confounding of pupil measurements.  Prior research has found that changes in 
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gaze position systematically affect the measurement of pupil size (Gagl et al., 

2011). For example, the shape of the measured pupil was elliptical when gaze 

was perpendicular to the screen (3 degrees relative to the center of the screen); 

however, the shape of the measured pupil becomes more circular as the 

viewer’s gaze position changes to the left (toward the camera) (Gagl et al., 

2011).  Given that the position of the camera relative to the eye accounts for 

the particular shape of the pupil response, the present study attempted to 

account for this by adjusting the height of the table; however, the gaze angle 

was not directly measured. In future studies, gaze angle should be directly 

measured in future studies to ensure gaze position does not affect the 

measurement of pupil size. 

Another issue may have been the duration of data collection in capturing 

a participant’s initial reaction to a stimulus. In Rieger and Savin-Williams’ 

(2012) study, pupillary responses to a stimulus were captured over a 30-second 

period, Hess and Polt’s (1960) study captured pupillary responses over a 10-

second timeframe, and in the present study, pupillary responses were captured 

over a 2-second period. Pupillary reactions to a visual image have been found 

to occur in as little as 0.2 seconds, with the pupillary response peaking from 0.5 

to 1.0 seconds (Gagl et al., 2011; Andreassi, 2007; Beatty, 1982; Lowenstein & 

Loewenfeld, 1962). Immediately following the peak of the pupillary response, 
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the pupil has been found to slowly recover back to the size prior to viewing 

stimuli (Privitera et al., 2008).  Given that the pupil recovers back to size prior 

to viewing stimulus after the first second, capturing a pupillary response for an 

extended period of time after the peak pupil reaction may not be accurate in 

representing pupil size in response to a stimulus because the pupil size 

measurement will be averaged over the entire time, not just the peak pupillary 

response. Therefore, the extended duration of pupil data collection in Hess and 

Polt’s (1960) study and Rieger and Savin-Williams’ (2012) study may have been 

a confounding factor of pupil reaction to a stimulus because it is averaging 

pupil size over the entire period of time, not just the duration of the peak 

pupillary response.  Future research may benefit from studying the peak of the 

pupillary response during the first 0.5 to 1 second period in order to capture 

the max dilation or constriction when viewing an image without including the 

time when the pupil constricts or dilates back to the size prior to viewing the 

stimulus. Prior research and the present study took measurements outside of 

this range, which may have lessened the peak pupillary responses to an image 

and been a confounding variable.  

Lack of separation between stimuli has also been found to affect pupil 

size. Pupillary responses to two closely succeeding stimuli are found to overlap, 

because the pupil may not have time to return to the initial size (Weirda et al., 
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2012).  Hess and Polt’s (1960) study failed to temporally separate the viewing of 

one stimuli from another by showing one image directly after another without 

something neutral in between, whereas the present study separated tasks by 

inserting a 2-second white image between each stimulus. The overlap in Hess 

and Polt’s (1960) study may have caused the pupil to have a bigger or smaller 

difference depending on whether the pupil was already dilated or already 

constricted from viewing the prior image, which would not provide accurate 

pupillary responses to a single image. However, the present study used the 

white images as separators to standardize the pupil size in order to prevent 

overlap of constriction or dilation from prior images. Through the use of the 

white images to standardize pupil size, the present study controlled for 

overlapping pupillary responses.  

Another potential confounding variable that was explored through data 

analysis is the stimulus luminance, which was given by the luminance of the 

chair in simple images or the chair plus the human model in moderately 

complex images. Stimulus luminance was significantly negatively associated 

with the change in average pupil area. Extensive research on luminance 

influence on pupillary response has found high luminance levels decrease pupil 

size, while low luminance levels increase pupil size (Laeng et al., 2012; Laeng & 

Endestad, 2011; Berman et al., 1996), and therefore, stimuli luminance should 
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be kept constant when studying additional influences on pupil size.  Although 

the present study attempted to control for stimuli luminance by photographing 

stimuli in a windowless room, asking human models to wear a black coat and 

dark pants, and photographing in the same exact location; there were still 

differences such as the color of the chair that altered the luminance levels 

across images. Hess and Polt (1960) claimed stimulus luminance was “kept 

relatively constant” across images, while Rieger and Savin-Williams’ study 

(2012) and the present study did not completely control for luminance across 

stimuli. The results showed that even when the confounding effect of stimulus 

luminance was included in the statistical analysis of the present study, image 

attractiveness ratings were still not significantly associated with change in 

average pupil area. This may indicate that physical factors, such as stimulus 

luminance, affect pupil size more than emotional factors, such as attractiveness.  

Further research is warranted to explore the significance of the effects of 

physical and emotion factors on pupillary responses.  

Additionally, Laeng and Endestad (2011) found that pupillary responses 

to light reflect how bright or light a person thinks the visual image is, not just 

the amount of physical light energy entering the eye. Given that perceived 

brightness can affect pupillary responses, pupil research should consider this as 

a possible confounding variable. This is a limitation of the present study, which 
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did not account for perceived luminance levels. Future research would benefit 

from asking participants for ratings of the perceived brightness of each image 

to determine whether it was a confounding variable on pupillary responses.   

Facial luminance was also explored through data analysis as a potential 

confounding variable. Facial luminance, which is simply the luminance of the 

human model’s face, is not the same as stimulus luminance, which is given by 

the luminance of the chair in simple images or the chair plus the human model 

in moderately complex images.  Given that participants spent the most time 

viewing and fixating on the human model’s face when the human model was 

present in the image and that high luminance causes pupils to constrict (Laeng 

et al., 2012; Laeng & Endestad, 2011; Berman et al., 1996), it is possible that the 

human model face luminance was a confounding factor on pupillary responses. 

Specifically, higher human model face luminance levels would have caused the 

pupils to constrict; however, the present research found there was no 

significant association between facial luminance and change in average pupil 

area. Although the present study explored whether facial luminance was a 

potential confounding variable through data analysis, it is unclear whether prior 

studies, such as Rieger and Savin-Williams (2012) or Hess and Polt’s (1960), 

explored this potential confounding variable.  
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The side of the human model’s face may have also been a confounding 

variable. Previous research has shown humans prefer to look at visual images 

of a person’s left side of the face to the right side (Blackburn & Schirillo, 2012; 

Kowner, 1995). This preference occurs because the right hemisphere of the 

brain dominates perception and expression of emotions (Kowner, 1995). Given 

that one side of the face is preferred, the side of the face the human model 

shows will likely be a confounding variable on attractiveness ratings. In the 

present study, this left-face preference was not a confounding variable on 

attractiveness ratings because all of the human models showed the left side of 

their faces.  

Additionally, the present study found human model attractiveness was 

positively associated with facial luminance. This finding agrees with prior 

research, which has indicated increased luminance enhances femininity and 

attractiveness in women’s faces (Stephen & McKeegan, 2010). The current 

research adds to the understanding of what humans find attractive and further 

validates the relationship between luminance and human model attractiveness. 

Future research would benefit from knowing the ideal luminance contrast of 

the facial luminance and the luminance of the overall image. Knowing what the 

ideal luminance contrast is will further extend the understanding of what 

humans find attractive. 
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Additional variables, such as time-of-day and image sequence have been 

found to influence pupil size (Naber, et al. 2011; Loving et al., 1996). Over a 

24-hour testing period, Loving et al. (1996) found a significant circadian rhythm 

for resting and maximum pupil diameter, but the pupil acrophases occurred 

randomly throughout the day with the largest portion of peaks occurring 

anywhere between 10:00AM and 10:00PM. Given the indication of circadian 

rhythms of the pupil, time-of-day could be a possible confounding factor. 

However, the present study controlled for this possible confounding variable 

by testing participants at various times throughout the day. Specifically, in order 

to prevent time-of-day from influencing pupillary responses, participants 

partook in the half-hour study at a chosen time of day anywhere between 

9:00AM and 7:00PM. However, whether time-of-day was a confounding 

variable on pupillary responses was not explored in prior research, and 

therefore, may have been the reason for conflicting pupillary response results 

between the present study and prior studies.   

Furthermore, pupil size has been found to increase more when viewing 

familiar images compared to novel images (Naber et al., 2011). Given that the 

stimuli in the present study were similar compositions in terms of the 

placement of a chair with or without a human model, it is possible that 

participants had increased pupil size as the familiarity of each composition 
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became more anticipated. However, in the present study, all participants viewed 

the stimuli that were initially randomized, but then fixed so each participant 

viewed the same randomized sequence. Therefore, all participants would have 

been familiar with the same images in the same order. Whereas in prior 

research, the sequence that stimuli were viewed was a random order that was 

different for each participant; thus, familiarity may have altered pupillary 

responses differently for each participant due to the various stimuli sequence. 

Given that stimuli sequence was not the same for all participants in prior 

studies, familiarity of the images could not be controlled across participants, 

and thus, may have been a confounding variable on pupillary responses (Rieger 

& Savin-Williams, 2012; Hess & Polt, 1960). If the sequence was randomized 

for each subject, then researchers could not be certain that the pupils 

responded a specific way due to overlap of prior images or because of the 

specific image itself. Therefore, image sequence may account for some of the 

discrepancies in pupillary responses between the present study and prior 

studies.    

In the present study, participants had unfamiliar with the human models 

prior to the study; therefore, recognition memory of the human models did not 

influence pupillary responses. However, the human models were shown in two 

different stimuli; this may have caused a novelty effect.  Since familiarity 
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increases pupil size (Otero et al., 2011; Naber et al., 2011; Kuchinke et al., 2007; 

Otero et al., 2006; Maw & Poplun, 2004), viewing the human models for the 

second time may have led to greater pupillary dilation relative to the initial 

viewing of the human model. Yet, in the present study, pupils were not found 

to dilate more for images with human models seen for the second time 

compared to the first time, which indicates there was no novelty effect. It is 

unclear whether prior studies considered a novelty effect when analyzing data 

(Rieger & Savin-Williams, 2012; Hess & Polt, 1960), which could have also 

contributed to the discrepancies in pupillary response measures found between 

studies.  

Another area where there may have been a novelty effect is in the 

familiarity of chairs, as each chair was also shown in two different images. 

Unlike human model recognition, information on whether participants had 

previously seen any of the chairs that were used in the present study was not 

collected, though it was possible since the chairs were taken from a public 

space on campus. Given the extensive research that indicates pupils dilate when 

there is recognition of objects in a stimulus (Otero et al., 2011; Naber et al., 

2011; Kuchinke et al., 2007; Otero et al., 2006; Maw & Poplun, 2004), it is 

likely that participants who had previously seen the chairs would have pupillary 

dilations when viewing those images.  However, in this study, participants’ 
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pupils on average constricted when viewing simple images of chairs and dilated 

when viewing moderately complex images of chairs with human models, not 

when viewing a chair for a second time. Given that moderately complex images 

were not always shown first in the image sequence, it is not likely that the 

pupillary response was affected by recognition of chairs. Additionally, 

designers, who are more frequently see the chairs due to the location on 

campus, did not show increased pupil dilation when viewing chairs compared 

to non-designers when viewing the same chairs.  Future research would benefit 

from testing recognition memory of all objects within the stimuli to ensure 

memory would not be a confounding factor.  

Pupillary response has been found to provide a quantitative index of 

cognitive effort (Beatty and Lucero-Wagoner, 2000). Specifically, pupil size 

increases with cognitive effort, which increases with task difficulty (Granholm 

& Steinhauer, 2004; Granholm et al., 1997; Just & Carpenter, 1993; Hess & 

Polt, 1965). In the present study, rating the attractiveness of a chair may be less 

difficult compared to rating the attractiveness of a chair plus a human model. 

Therefore, task difficulty may also be a confounding variable on pupillary 

responses in the present study. If more cognitive effort was required to rate the 

attractiveness of moderately complex images compared to simple images, 

greater pupil dilation would be expected when viewing moderately complex 
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images. Given that pupils did dilate when viewing moderately complex images 

and constricted when viewing simple images, cognitive effort may be a 

confounding factor in the present study.  

The most probable explanations for the difference in the effect of 

pupillary responses between the present study and prior studies were the 

differences in the content of the stimuli, the differences in timeframe of 

capturing initial pupillary reaction, the inconsistency of luminance across 

stimuli, and the variance in cognitive effort. Although there are several factors 

that affect pupil response, such as memory, time-of-day, viewing sequence, and 

arousal, the present study controlled for these possible confounding factors in 

order to accurately determine the relationship between pupil area and perceived 

image attractiveness. However, the present study did not control for luminance 

across stimuli, which may have confounded the pupil data. Whether pupil area 

can be used as an objective measure of attractiveness of product images should 

be further researched with luminance held constant across all areas of all 

stimuli.  Additionally, the content of the stimuli and the timeframe of data 

collection were two variables that differed between the present study and prior 

research, and may have been confounding variables on pupillary responses.  

Future research in this area would benefit from knowing how content (nude 

models vs. clothed models) of the stimuli affects pupillary responses and how 



	
   	
   	
  100	
   	
  

duration of pupillary data collection impacts analysis of initial reaction to 

stimuli.  

4.4 Image Complexity and Eye Movements 

The addition of a human model to an image alongside a product 

moderately increases the complexity of the image (Tuch et al., 2009; Olivia et 

al., 2004).  Results showed there were systematic differences in eye movement 

patterns on images of different levels of complexity. Given the extensive 

research that suggests eye movements vary by image complexity (Bradley et al., 

2011; Guo et al., 2006; Weizmann, 1979), it was expected that more complex 

images would elicit more fixations.  However, these expectations were only 

partially confirmed by the findings of the present research.  In the present 

study, more complex images did elicit longer fixation durations, however, there 

were fewer fixations compared to simple images. A probable explanation for 

the discrepancy in the effect of image complexity on the number of fixations 

between the present study and previous studies may be due to length of time a 

participant viewed a stimulus. In Bradley et al.’s (2011) study, participants were 

given 6 seconds to freely view the image; in Guo et al.’s (2006) study there were 

20 second viewing times for each image; whereas in the present study, 

participants were only given 2 seconds.  Given that fixation durations typically 

last 200-300 milliseconds (Rayner, 1998), a 2-second timeframe may not have 
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been long enough to determine whether more complex images elicit a 

significantly greater number of fixations. However, a 2-second timeframe was 

necessary to capture accurate initial pupillary responses; thus, future studies 

should test the complexity effect on number of fixations while viewing a 

stimuli and the complexity effect on initial pupillary reactions to a stimuli 

separately in order to utilize proper timeframes.  

Furthermore, the addition of a human model may affect eye movement 

patterns differently than other techniques used to increase image complexity 

such as use of background colors or patterns (Geissler et al., 2006).  Prior 

research that has found humans are drawn to other human faces (Nielsen & 

Pernice, 2010; Kelly et al., 2005; Johnson et al. 1991; Bryant, 1991; Fantz, 

1963), and human faces elicit longer fixations compared to simple scenes (Guo 

et al., 2006; Mantyla & Holm, 2006; Yarbus, 1967). Additionally, fixation 

durations have been found to decrease with increased image complexity when 

viewing variations of computer displays (Goldberg, 2012; Nielsen & Pernice, 

2010).  Given prior research findings, the presence of a human model in images 

may elicit different eye movement patterns, such as fixation durations and areas 

of focus. Heatmaps and lookzones from the present study showed the human 

face in the moderately complex images captivated the majority of time and 

elicited longer fixations compared to simple images without a human model. 
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From the present study it is unclear whether the different eye movement 

patterns seen with the more complex images arose due to the presence of a 

human model or from the increase in complexity because these two factors 

were confounded. Given the present study found the opposite of Goldberg’s 

(2012) findings on the relationship between fixation duration and image 

complexity, but aligned with prior research on the relationship between fixation 

duration and a human presence (Guo et al., 2006; Mantyla & Holm, 2006; 

Yarbus, 1967), it may be an indication the human presence affects fixation 

duration greater than image complexity. Future studies would benefit from 

testing how a human model affects eye movements compared to other 

variations of image complexity, such as the addition of objects or the use of 

patterns and colors, and whether one form of complexity has a greater affect 

on fixation duration. Additionally, future research would benefit from testing 

how a person standing behind or next to a product alters eye movement 

patterns compared to a human model in front of the product. Since visual 

complexity of an image has been found to depend on the viewer’s ability to 

group objects (Olivia et al., 2004), having the human model separated from the 

product, rather than grouped with the product, may elicit different eye 

movements. Additional research is necessary to establish a better understanding 

of how different variations of complexity alter areas of focus.  
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In the present study, average fixation time was also significantly 

positively associated with image attractiveness. With a fixation, a viewer is 

cognitively processing and focusing more closely on details in the image 

(Granholm et al., 1997; Just & Carpenter, 1993; Hess & Polt, 1964).  

Additionally, while learning unfamiliar faces, participants have been found to 

elicit longer fixations in a single central location (Henderson et al., 2005). Given 

that the present study showed stimuli of unfamiliar faces and that results 

indicated participants showed longer fixations on these unfamiliar faces, it can 

be inferred that participants spent more time on the faces to analyze and learn 

the details of the image. Furthermore, the results of the present study indicated 

significantly longer fixations while viewing images deemed attractive, which 

may infer participants spend more time analyzing and viewing images deemed 

attractive.  

4.5 Gender Differences in Viewing Patterns  

Results from the present study showed there were gender differences in 

the perceived attractiveness of images and the number of fixations when 

participants viewed moderately complex images.  Specifically, females rated 

simple images more attractive and had fewer fixations compared to males, 

whereas males rated moderately complex images more attractive and had fewer 

fixations compared to females.   
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Gender differences in image attractiveness ratings may be due to the 

varying impact of the human model used to alter image complexity. Prior 

research has found that females exhibit greater variability in attractiveness 

ratings compared to males (Townsend & Wasserman, 2013; Reis et al., 1980; 

Berscheid and Walster, 1974). Since males are more likely to seek sexual 

relations, they tend to rate females models more leniently compared to females 

(Towsend & Wasserman, 2013). Given that males rate female attractiveness 

higher than females, it is plausible that in this study males rated images with a 

female model present more attractive than females. These findings may indicate 

a difference in the effect of human models on image attractiveness between 

genders. However, it is unclear whether males perceived moderately complex 

images more attractive because of increased complexity or because of the 

presence of a human model, in this case a female who may have been of sexual 

interest. It would be interesting to measure how male and female participants 

differ in attractiveness ratings when viewing images including both male 

models and female models. Additionally, it would be interesting to measure 

how males and females differed in attractiveness ratings when viewing stimuli 

of various complexity levels without the presence of humans.  Future studies 

would benefit from testing how attractiveness ratings of stimuli varying in 

complexity and the effect of the presence of human models of both sexes 

differ amongst male and female participants. 
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Prior research has also indicated the gender of the human model 

influences male and female duration of fixations (Rennels & Cummings, 2013; 

Nummenmaa et al., 2012; Anderson et al., 2012; Pan et al., 2004). More 

specifically, male participants have been found to fixate on female models 

longer than female participants, while female participants have been found to 

fixate longer on male models (Rennels & Cummings, 2013; Nummenmaa et al., 

2012). These findings suggest the gender of a human model may be a 

confounding factor of fixation durations amongst males and females. The 

present study controlled for this potential confounding effect by only including 

female models in the stimuli, and found no fixation duration differences 

between genders.  

Results from the present study may also indicate an influence of image 

complexity on the number of fixations between males and females. Prior 

research has found female models elicit more fixations compared to male 

models from participants viewing images of human faces (Rennels & 

Cummings, 2013). Given that participants focused primarily on the face of the 

human model in moderately complex images, this evidence provides a probable 

explanation as to why the number of fixations differs between genders when 

viewing moderately complex stimuli. The present study was congruent with 
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prior research and further validated the gender difference effect of number of 

fixations on human stimuli.  

In simple images with no human model present, the results of the 

present study found the opposite effect. Specifically, male participants elicited 

more fixations compared to female participants when viewing simple images. 

Prior research exploring the gender effect on number of fixations on simple 

images, such as geometric shapes, has shown females fixate fewer times 

compared to males (Miyahira et al., 2000; Miyahira et al., 1999). The findings 

from the present research are consistent with prior research and further 

validate a gender effect on number of fixations on simple images.  

4.6 Designer Status Differences in Viewing Patterns 

Results showed there were differences in number of fixations, fixation 

durations, and areas of focus between design students and non-design students; 

while change in pupil area and overall image attractiveness ratings were not 

significantly different between designers and non-designers. Prior research 

found that when viewing stimuli, people without an artistic background had a 

greater number of shorter fixations compared with those with an artistic 

background (Vogt & Magnussen, 2007; Nodine et al., 1993).  In the present 

study, results aligned with prior studies when viewing simple images, but not 

when viewing moderately complex images. Specifically, designers had 
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significantly more fixations and shorter fixation durations when viewing simple 

images compared to non-designers, but when viewing moderately complex 

images, designers exhibited fewer, longer fixations compared to non-designers.   

One possible explanation for the discrepancies between prior studies 

and the present study is the difference in time allotted for viewing each 

stimulus. Nodine et al.’s (1993) study allotted 12 seconds and Vogt and 

Magnussen’s (2007) study allotted 40 seconds for each stimulus to be viewed, 

whereas the present study only allotted 2 seconds. As previously discussed in 

the image complexity section above, fixations last approximately 200-300 

milliseconds (Rayner, 1998), therefore, a 2-second timeframe may not be long 

enough to determine significant fixation differences between designers and 

non-designers. Contrarily, the 40-second viewing timeframe for each stimulus 

in Vogt and Magnussen’s (2007) study may be too long of a timeframe, and 

allowing participants to become aware of areas they are viewing, making their 

fixations voluntary rather than being involuntary responses to the image (Smith 

and Henderson, 2009). Given the different effects of time on fixation data, 

future research would benefit from knowledge of what the ideal timeframe is in 

order to obtain accurate involuntary fixation data.  

Prior studies that have utilized gaze trails and heatmaps have found that 

artists have scattered viewing patterns in order to capture the entire visual 
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image, while non-artists focus on specific areas of an image to get the general 

idea (Zangemeister et al., 1995; Nodine et al., 1993).  However, there may be a 

confounding factor of art-emphasized stimuli on eye movement scanning 

patterns, as used in the previous studies.  Nodine et al. (1993) used famous 

paintings and Zangemeister et al. (1995) used abstract and realistic paintings, 

while the present study expanded visual images to photographs of realistic 

items with or without a human model. The present study found designers had 

more scattered viewing patterns on simple images, but non-designers had more 

scattered viewing patterns on moderately complex images. These findings may 

indicate beyond art-emphasized stimuli, designer and non-designer viewing 

patterns may not be as clear-cut. Additionally, prior research does not assess 

the complexity level of each stimulus, which may also have a confounding 

effect on designer status fixations and viewing pattern differences. Though it is 

unclear whether designer status viewing patterns differed due to influence of 

variation in complexity, a human model presence, or art-emphasized stimuli, 

any or all variables may be confounding factors.  Future research would benefit 

from knowing how each of these variables influences designers’ and non-

designers’ viewing patterns in order to further understand how to predict where 

participants will view a stimulus. 
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CHAPTER 5: CONCLUSION 

Building on previous research, the present study is the first to more 

specifically investigate the impact of image complexity through the combined 

presence of a human model with a product on the attractiveness of an image 

overall, and the added impact of the attractiveness of the human model. Prior 

research only analyzed product sales, whereas the present study evaluated the 

attractiveness of the image itself and the human model itself and found the 

actual presence of a human model increased image attractiveness, and also 

more attractive the human model, the more attractive the image was perceived. 

Thus, the presence of a human model used to increase image complexity and 

the attractiveness of a human model can have a positive impact on advertising 

in that a human model increases the perceived attractiveness of the overall 

advertisement.  

This research is also the first to study whether pupil area could be used 

as an objective measure in the determining of the impact of combining a 

human model with a product in an image.  Previous research only saw pupil 

dilation when viewing sexually attractive stimuli, whereas the present study 

used non-sexually arousing stimuli and found no effect of image attractiveness 

on pupil size. Thus, the insignificant association of change in average pupil area 

and image attractiveness indicated pupil area could not be used as an objective 
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measure of attractiveness; however, there were confounding variables, such as 

content of stimuli, stimulus luminance, duration of measurements, and task 

difficulty, that were not accounted for in the present study, which warrants 

further research.  Although luminance of the image influenced pupillary 

reactions while viewing stimuli, the present study may have shown a possible 

greater effect of physical attributes over aesthetic attributes on pupil size.  

Research on pupillary response to image attractiveness thus far has 

predominantly used sexually arousing stimuli, overlooking the broader 

application of pupillary response to images of other stimuli such as ergonomic 

products.  If an attractive human presence increases image attractiveness then 

this could enhance how ergonomic products are displayed. 

In addition, the present study adds to the body of eye movement 

research because image complexity was shown to systematically affect the 

number, duration, and location of fixations. This gives further insight into 

predicting how a spectator will view an image and what elements attract the 

viewer’s attention. Furthermore, the present study provides empirical evidence 

for eye movement differences between genders and designer status. These 

findings will be useful in the design and marketing worlds, where ergonomic 

products are intended to be displayed and viewed in the most attractive way.  
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However, there are several limitations to this study. First, there were 

some limitations with the experimental procedure and design of the study. The 

images used as stimuli in this study were of 16 different designer chairs. A 

broader array of various product categories should be investigated to increase 

the general usability of the results to further explore whether pupil area is a 

universal objective measure of product attractiveness.  Additionally, a broader 

array of human models should be investigated to determine how the gender 

(Nummenmaa et al., 2012), age (Mazis et al., 1992) or ethnicity (Goldinger et 

al., 2010) of the human model plays a role in the effect on attractiveness and 

pupil area.  

The stimuli used in this study were not of constant luminance levels; 

thus, the transition in luminance levels between images may have influenced 

pupillary responses. Future research should use stimuli of equal luminance 

levels to prevent an effect of luminance on pupil area.  

Additionally, to provide further evidence that image complexity effects 

eye movement patterns, a broader array of image complexity levels should be 

further explored. In this study, complexity was increased by existence of the 

human model in the image; however, complexity can be increased by adding 

moving objects, more products and/or text, different sized objects, etc. 



	
   	
   	
  112	
   	
  

(Petersen & Nielsen, 2002). This will provide additional evidence on whether 

image complexity affects eye movement patterns. 

Finally, future studies would benefit from expanding the types of 

participants. The present study used university students as participants, who are 

not representative of the full spectrum of the general population in terms of 

age, ethnicity, occupation, and so on, and this may limit the generalizability of 

the findings. Additionally, pupil reactions may differ between older and 

younger generations, as elderly pupillary reflexes may not occur as quickly 

(Andreassi, 2007; Kasthurirangan & Glasser, 2006; Van Gerven et al., 2004). 

Future studies could investigate possible effects of ethnicity (He et al., 2009), 

iris color (Bradley et al., 2010; Bergamin et al., 1998), or diseases or mental 

imparities (such as Alzheimer’s, Parkinson’s, or Schizophrenia) (Dietz et al., 

2011; Granholm et al., 2003; Zahn et al., 1991) when exploring pupillary 

reactions, attractiveness ratings, or eye movement patterns.   

While there were multiple limitations within the present study, it 

provides a starting point for the exploration of whether pupil area can be an 

objective measure of perceived attractiveness, how image complexity through 

the presence of a human model and how attractiveness of a human model 

affect the perceived attractiveness of a visual image, and how the complexity of 

an image systematically affects eye movement patterns. Results provide initial 
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evidence that pupil area changes do not indicate perceived image attractiveness; 

human model presence in moderately complex images and the attractiveness of 

the human model increase overall image attractiveness; and an increase in 

image complexity lengthens the duration of fixations, decreases the number of 

fixations, and dilates the pupil. Overall, the present study adds to the 

understanding of the significance of image complexity through human 

presence, perceived attractiveness, and eye-tracking research, and broadens the 

platform for creating attractive, effective, and successful promotional designs.  
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APPENDIX A: FIGURES 

 

 
 

 

 
 
 

Figure 1.1.1. Bertoia Chair by Knoll 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1.2. Bertoia Chair by Knoll 
with Model 
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Figure 1.2.1. Audio Chair by  
Bernhardt 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.2.2. Audio Chair by  
Bernhardt with Model  
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Figure 1.3.1. Risom Lounge Chair  
by Knoll 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.3.2. Risom Lounge Chair  
by Knoll with Model 
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Figure 1.4.1. Arm Navy Chair  
by EMECO 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
Figure 1.4.2. Arm Navy Chair by 
EMECO with Model 
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Figure 1.5.1. Shell Chair by Herman 
Miller 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.5.2. Shell Chair by Herman 
Miller with Model 
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Figure 1.6.1. Coalesse Chair by 
Steelcase 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 1.6.2. Coalesse Chair by 
Steelcase with Model 
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Figure 1.7.1. Aeron Chair by  
Herman Miller 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.7.2. Aeron Chair by  
Herman Miller with Model 
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Figure 1.8.1. Setu Chair by Herman 
Miller 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.8.2 Setu Chair by Herman 
Miller with Model 
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Figure 1.9.1. Panton “S” Chair by 
Knoll 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.9.2. Panton “S” Chair by 
Knoll with Model 
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Figure 1.10.1. Series 7 Chair by ICF 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.10.2. Series 7 Chair by ICF 
with Model 
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Figure 1.11.1.  Gubi 5 Chair by Gubi 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.11.2. Gubi 5 Chair by Gubi 
with Model 
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Figure 1.12.1. Ultimate Executive 
Highback with Dual-Flex Chair by 
Lifeform 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.12.2. Ultimate Executive 
Highback with Dual-Flex Chair by 
Lifeform with Model 
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Figure 1.13.1. Saarinen Executive  
Chair by Knoll 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.13.2. Saarinen Executive  
Chair by Knoll with Model 
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Figure 1.14.1. Freedom Chair by 
Humanscale  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.14.2. Freedom Chair by 
Humanscale with Model 
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Figure 1.15.1. World Chair by 
Humanscale 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.15.2. World Chair by 
Humanscale with Model 
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Figure 1.16.1. Mirra Chair by Herman 
Miller 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.16.2. Mirra Chair by Herman 
Miller with Model 
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Figure 2.1.1. Headshot of Model in  
Images with Arm Navy Chair and  
Risom Lounge Chair 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2.1. Headshot of Model in  
Images with Panton “S” Chair and  
Gubi 5 Chair 
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Figure 2.3.1. Headshot of Model  
in Images with Setu Chair and  
Series 7 Chair 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.4.1. Headshot of Model in  
Images with Saarinen Executive  
Chair and Mirra Chair 
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Figure 2.5.1. Headshot of Model  
in Images with Aeron Chair and  
Freedom Chair 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.6.1. Headshot of Model  
in Images with Ultimate Executive 
Highback Dual-Flex Chair and  
World Chair 
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Figure 2.7.1. Headshot of Model  
in Images with Bertoia Chair and  
Audio Chair 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.8.1. Headshot of Model  
in Images with Shell Chair and  
Coalesse Chair
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Figure 3.1.1. Change in Average Pupil Area No Outliers Histogram  
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Figure 3.1.2. Image Attractiveness Ratings Histogram 
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Figure 3.1.3. Model Attractiveness Ratings Histogram 
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Figure 3.1.4. Number of Fixations Histogram 
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Figure 3.1.5. Log Average Fixation Time Histogram  
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 Figure 4.1.1. Heatmaps: Bertoia Chair by Knoll 
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Figure 4.1.2. Heatmaps: Bertoia Chair by Knoll with Models 
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Figure 4.2.1. Heatmaps: Audio Chair by Bernhardt 

 

Female Designers                                              Male Designers   
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Figure 4.2.2. Heatmaps: Audio Chair by Bernhardt with Models
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Figure 4.3.1. Heatmaps: Risom Lounge Chair by Knoll 
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Figure 4.3.2. Heatmaps: Risom Lounge Chair by Knoll with Model 

 

Female Designers            Male Designers 

 

Female Non-Designers            Male Non-Designers 
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Figure 4.4.1. Heatmaps: Arm Navy Chair by EMECO 
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Figure 4.4.2. Heatmaps: Arm Navy Chair by EMECO with Model 
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Figure 4.5.1. Heatmaps: Shell Chair by Herman Miller 
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Figure 4.5.2. Heatmaps: Shell Chair by Herman Miller with Model 
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Figure 4.6.1 Heatmaps: Coalesse by Steelcase 
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Figure 4.6.2. Heatmaps: Coalesse by Steelcase with Model 

 

Female Designers             Male Designers 

 

Female Non-Designers          Male Non-Designers 



	
   	
   	
  162	
   	
  

Figure 4.7.1. Heatmaps: Aeron Chair by Herman Miller 

 

Female Designers               Male Designers 

 

Female Non-Designers              Male Non-Designers 



	
   	
   	
  163	
   	
  

Figure 4.7.2. Heatmaps: Aeron Chair by Herman Miller with Model 
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Figure 4.8.1. Heatmaps: Setu Chair by Herman Miller 
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Figure 4.8.2. Heatmaps: Setu Chair by Herman Miller with Model 
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Figure 4.9.1. Heatmaps: Panton “S” Chair by Knoll 
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Figure 4.9.2. Heatmaps: Panton “S” Chair by Knoll with Model 
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Figure 4.10.1. Heatmaps: Series 7 Chair by ICF 
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Figure 4.10.2. Heatmaps: Series 7 Chair by ICF with Models 
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Figure 4.11.1. Heatmaps: Gubi 5 Chair by Gubi 
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Figure 4.11.2. Heatmaps: Gubi 5 Chair by Gubi with Model 
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Figure 4.12.1 Heatmaps: Ultimate Executive Highback with Dual-Flex 
by Lifeform 
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Figure 4.12.2. Heatmaps: Ultimate Executive Highback with Dual-Flex 
by Lifeform with Model 
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Figure 4.13.1. Heatmaps: Saarinen Executive Chair by Knoll 
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Figure 4.13.2. Heatmaps: Saarinen Executive Chair by Knoll with Model 
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Figure 4.14.1. Heatmaps: Freedom Chair by Humanscale 
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Figure 4.14.2. Heatmaps: Freedom Chair by Humanscale with Model 
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Figure 4.15.1. Heatmaps: World Chair by Humanscale 
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Figure 4.15.2. Heatmaps: Freedom Chair by Humanscale with Model 
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Figure 4.16.1. Heatmaps: Mirra Chair by Herman Miller 
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Figure 4.16.2. Heatmaps: Mirra Chair by Herman Miller with Model 
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APPENDIX B: TABLES 
 

Table 1.1.1. Chair Table  

Chair	
  Table	
  

Chair	
  Make	
   Chair	
  Model	
   Type	
  
Luminance	
  
w/o	
  Model	
  

Luminance	
  w/	
  
Model	
  

Knoll	
   Bertoia	
  
Designer,	
  
Leisure	
   35	
  cd/	
  m2	
   26	
  cd/	
  m2	
  

Bernhardt	
   Audio	
  
Designer,	
  
Leisure	
   29	
  cd/	
  m2	
   15.5	
  cd/	
  m2	
  

Knoll	
   Risom	
  
Designer,	
  
Leisure	
   31	
  cd/	
  m2	
   35	
  cd/	
  m2	
  

EMECO	
   Arm	
  Navy	
  
Designer,	
  
Leisure	
   44	
  cd/	
  m2	
   35	
  cd/	
  m2	
  

Herman	
  Miller	
   Shell	
  
Designer,	
  
Leisure	
   39	
  cd/	
  m2	
   24	
  cd/	
  m2	
  

Herman	
  Miller	
   Setu	
  
Office,	
  
Ergonomic	
   73	
  cd/	
  m2	
   33	
  cd/	
  m2	
  

Steelcase	
   Coalesse	
  
Office,	
  
Ergonomic	
   31	
  cd/	
  m2	
   27	
  cd/	
  m2	
  

Knoll	
   Panton	
  "S"	
  
Designer,	
  
Leisure	
   32	
  cd/	
  m2	
   20	
  cd/	
  m2	
  

ICF	
   Series	
  7	
  
Designer,	
  
Leisure	
   54	
  cd/	
  m2	
   39	
  cd/	
  m2	
  

Gubi!	
   Gubi	
  5	
  
Designer,	
  
Leisure	
   36	
  cd/	
  m2	
   27	
  cd/	
  m2	
  

Lifeform	
  
Ultimate	
  
Executive	
  

Office,	
  
Ergonomic	
   12.1	
  cd/	
  m2	
   14.3	
  cd/	
  m2	
  

Herman	
  Miller	
   Aeron	
  
Designer,	
  
Leisure	
   10.3	
  cd/	
  m2	
   10.8	
  cd/	
  m2	
  

Knoll	
  
Saarinen	
  
Executive	
  

Designer,	
  
Leisure	
  

	
  

26	
  cd/	
  m2	
   30	
  cd/	
  m2	
  

Humanscale	
   World	
  
Office,	
  
Ergonomic	
  

	
  

9.9	
  cd/	
  m2	
   14.6	
  cd/	
  m2	
  

Humanscale	
   Freedom	
  
Office,	
  
Ergonomic	
  

	
  

11.4	
  cd/	
  m2	
   11.8	
  c	
  d/	
  m2	
  

Herman	
  Miller	
   Mirra	
  
Office	
  
Ergonomic	
   37	
  cd/	
  m2	
   24	
  c	
  d/	
  m2	
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Table 2.1.1. Skewness and Kurtosis 

Descriptive Statistics 

 N Minimum Maximum Mean Std. Deviation Skewness 

Statistic Statistic Statistic Statistic Statistic Statistic 

Change in Pupil 

Area with No 

Outliers 

1017 -684.42 744.98 -5.8600 142.36922 .323 

Change in Pupil 

Area 

1022 -860.76 960.63 4.69 2.275 .144 

Image 

Attractiveness 

1024 1 10 4.69 2.275 .144 

Model 

Attractiveness 

512 1.00 10.00 5.3555 2.01623 -.056 

Number of Fixations 1024 1 7 3.51 1.048 -.061 

Average Fixation 

Time 

1023 .20 2.00 .3982 .18228 3.587 

Log Average 

Fixation Time 

1023 -1.59 .69 -.9892 .34343 1.207 

Valid N (listwise) 510      
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Descriptive Statistics 

 Skewness Kurtosis 

Std. Error Statistic Std. Error 

Change in Pupil Area with No Outliers .077 3.581 .153 

Change in Pupil Area .077 6.702 .153 

Image Attractiveness .076 -.913 .153 

Model Attractiveness .108 -.864 .215 

Number of Fixations .076 -.386 .153 

Average Fixation Time .076 21.272 .153 

Log Average Fixation Time .076 2.240 .153 

Valid N (listwise)    
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Table 3.1.1. Random Effects of Image Attractiveness Ratings 

Estimates of Covariance Parametersa 

Parameter Estimate Std. Error 

Residual 4.481378 .201525 

ID Variance .625081 .204585 

a. Dependent Variable: image_att. 

 

 

Table 3.2.1. Comparison of Means: Image Attractiveness and Image 
Complexity  

Type III Tests of Fixed Effectsa 

Source Numerator df Denominator df F Sig. 

Intercept 1 28 919.352 .000 

complex 1 989.000 21.077 .000 

Gender 1 28 .009 .925 

DesignNoDesign 1 28 1.194 .284 

complex * Gender 1 989.000 11.229 .001 

complex * DesignNoDesign 1 989.000 .331 .565 

Gender * DesignNoDesign 1 28 .012 .915 

a. Dependent Variable: image_att. 
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Table 3.2.2. Comparison of Means: Image Attractiveness and Image 
Complexity 	
  

Estimates of Fixed Effects 

Parameter Estimate Std. Error df t Sig. 

Intercept 4.975586 .329802 36.196 15.087 .000 

[complex=.00] -.240234 .229164 989.000 -1.048 .295 

[Gender=1] .447266 .456931 33.352 .979 .335 

[DesignNoDesign=1] -.380859 .456931 33.352 -.834 .410 

[complex=.00] * [Gender=1] -.886719 .264616 989.000 -3.351 .001 

[complex=.00] * 
[DesignNoDesign=1] 

.152344 .264616 989.000 .576 .565 

[Gender=1] * 
[DesignNoDesign=1] 

-.066406 .618516 28 -.107 .915 

  

 

 

Table 3.3.1. Estimated Marginal Means: Image Attractiveness and 
Image Complexity 

1. complexa 

complex Mean Std. Error df 

95% Confidence Interval 

Lower Bound Upper Bound 

simple 4.385 .168 39.151 4.045 4.725 

complex 4.992 .168 39.151 4.652 5.332 

a. Dependent Variable: image_att. 
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Table 3.4.1. Image Attractiveness: Image Complexity by Gender 

Estimatesa 

complex Gender Mean Std. Error df 

95% Confidence Interval 

Lower Bound Upper Bound 

simple male 4.148 .238 39.151 3.667 4.629 

female 4.621 .238 39.151 4.140 5.102 

complex male 5.199 .238 39.151 4.718 5.680 

female 4.785 .238 39.151 4.304 5.266 

a. Dependent Variable: image_att. 

 
 

 

Table 3.4.2. Image Attractiveness: Image Complexity by Gender 
Pairwise Comparisons 

Pairwise Comparisonsb 

complex (I) Gender (J) Gender 

Mean 

Difference (I-J) Std. Error df Sig.a 

simple male female -.473 .336 39.151 .168 

female male .473 .336 39.151 .168 

complex male female .414 .336 39.151 .226 

female male -.414 .336 39.151 .226 
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Table 3.4.3. Image Attractiveness: Image Complexity by Gender 

Estimatesa 

complex Gender Mean Std. Error df 95% Confidence Interval 

Lower Bound Upper Bound 

simple 
male 4.148 .238 39.151 3.667 4.629 

female 4.621 .238 39.151 4.140 5.102 

complex 
male 5.199 .238 39.151 4.718 5.680 

female 4.785 .238 39.151 4.304 5.266 
 

     Pairwise Comparisonsa	
  

complex (I) 

Gender 

(J) 

Gender 

Mean 

Difference 

(I-J) 

Std. 

Error 

df Sig.b  
95% Confidence 

Interval for 
Differenceb 

 
95% Confidence 

Interval for 
Difference 

Lower Bound Upper Bound 

simple 
male female -.473 .336 39.151 .168 -1.153 .208 

female male .473 .336 39.151 .168 -.208 1.153 

complex 
male female .414 .336 39.151 .226 -.266 1.094 

female male -.414 .336 39.151 .226 -1.094 .266 

 
a. Dependent Variable: image_att. 
 

 

Table 3.4.4. Image Attractiveness: Image Complexity by Gender 
Univariate Test 

Univariate Testsa 

Gender Numerator df Denominator df F Sig. 

male 1 989 31.537 .000 

female 1 989 .769 .381 
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Table 3.5.1. Image Attractiveness: Image Complexity by Designer Status 

Estimatesa 

complex DesignNoDesign Mean Std. Error df 

95% Confidence Interval 

Lower Bound Upper Bound 

simple Designer 4.254 .238 39.151 3.773 4.735 

NonDesigner 4.516 .238 39.151 4.035 4.997 

complex Designer 4.785 .238 39.151 4.304 5.266 

NonDesigner 5.199 .238 39.151 4.718 5.680 

a. Dependent Variable: image_att. 

 

 

Table 3.5.2. Image Attractiveness: Image Complexity by Designer Status 
Pairwise Comparisons 

Pairwise Comparisonsb 

complex (I) DesignNoDesign (J) DesignNoDesign 

Mean 

Difference (I-J) Std. Error df 

simple Designer NonDesigner -.262 .336 39.151 

NonDesigner Designer .262 .336 39.151 

complex Designer NonDesigner -.414 .336 39.151 

NonDesigner Designer .414 .336 39.151 
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Table 4.1.1. Random Effects of Image Attractiveness Differences 

Estimates of Covariance Parametersa 

Parameter Estimate Std. Error 

Residual 5.340662 .351326 

Chair Variance .843849 .381619 

ID Variance .813389 .293946 

a. Dependent Variable: Diff_ImageAtt. 

 

 

Table 4.2.1. Comparison of Means: Image Attractiveness Differences and 
Model Attractiveness 

Type III Tests of Fixed Effectsa 

Source Numerator df Denominator df F Sig. 

Intercept 1 91.287 6.354 .013 

ModelAttractive 1 307.057 22.312 .000 

 

 

 

Table 4.2.2. Comparison of Means: Image Attractiveness Differences and 
Model Attractiveness 

Estimates of Fixed Effects 

Parameter Estimate Std. Error df t Sig. 

Intercept 1.238132 .491171 91.287 2.521 .013 

ModelAttractive -.344611 .072957 307.057 -4.724 .000 
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Table 4.3.1. Comparison of Means: Image Attractiveness Differences and 
Model Attractiveness 

Type III Tests of Fixed Effectsa 

Source Numerator df Denominator df F Sig. 

Intercept 1 36.091 5.262 .028 

ModelAttractive 9 464.107 4.344 .000 

Gender 1 29.830 .955 .336 

Design_NonDesign 1 31.279 1.010 .323 

Gender * ModelAttractive 7 464.666 2.788 .008 

Design_NonDesign * 

ModelAttractive 

7 462.489 1.283 .257 

Gender * 

Design_NonDesign 

1 27.182 .334 .568 

a. Dependent Variable: Diff_ImageAtt. 

 

 

Table 4.3.2. Comparison of Means: Image Attractiveness Differences and 
Model Attractiveness 

Estimates of Fixed Effectsb 

Parameter Estimate 
Std. 
Error df t Sig. 

95% Confidence Interval 

Lower 
Bound 

Upper 
Bound 

Intercept -.874542 1.735961 476.720 -.504 .615 -4.285623 2.536538 

[ModelAttractive=1] 3.042667 2.703717 480.289 1.125 .261 -2.269908 8.355242 

[ModelAttractive=2] .524215 1.843815 480.077 .284 .776 -3.098730 4.147159 

[ModelAttractive=3] .665721 1.773544 476.347 .375 .708 -2.819217 4.150659 

[ModelAttractive=4] .697409 1.799232 478.391 .388 .698 -2.837966 4.232784 

[ModelAttractive=5] .722299 1.767360 473.352 .409 .683 -2.750543 4.195140 
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[ModelAttractive=6] 1.153537 1.755125 473.422 .657 .511 -2.295261 4.602335 

[ModelAttractive=7] .158317 1.774062 475.437 .089 .929 -3.327655 3.644288 

[ModelAttractive=8] .593666 1.772880 469.599 .335 .738 -2.890094 4.077426 

[ModelAttractive=9] -
1.945832 

1.814194 467.846 -1.073 .284 -5.510810 1.619146 

[Gender=1] .736701 1.086647 246.332 .678 .498 -1.403603 2.877006 

[Design_NonDesign=1
] 

-
1.897670 

1.202290 300.877 -1.578 .116 -4.263633 .468293 

[Gender=1] * 
[ModelAttractive=2] 

1.286884 1.252101 460.672 1.028 .305 -1.173655 3.747422 

[Gender=1] * 
[ModelAttractive=3] 

-.381876 1.229922 469.646 -.310 .756 -2.798707 2.034955 

[Gender=1] * 
[ModelAttractive=4] 

-.972319 1.176186 467.898 -.827 .409 -3.283580 1.338942 

[Gender=1] * 
[ModelAttractive=5] 

-
1.736223 

1.138904 471.700 -1.524 .128 -3.974176 .501729 

[Gender=1] * 
[ModelAttractive=6] 

-
1.978042 

1.128352 473.244 -1.753 .080 -4.195242 .239158 

[Gender=1] * 
[ModelAttractive=7] 

-
1.178243 

1.131298 473.636 -1.041 .298 -3.401226 1.044740 

[Design_NonDesign=1
] * [ModelAttractive=2] 

2.186572 1.333807 466.882 1.639 .102 -.434436 4.807580 

[Design_NonDesign=1
] * [ModelAttractive=3] 

1.351477 1.293861 475.307 1.045 .297 -1.190917 3.893872 

[Design_NonDesign=1
] * [ModelAttractive=4] 

2.570978 1.257772 473.579 2.044 .041 .099474 5.042482 

[Design_NonDesign=1
] * [ModelAttractive=5] 

2.324287 1.203574 476.277 1.931 .054 -.040685 4.689260 

[Design_NonDesign=1
] * [ModelAttractive=6] 

1.486765 1.207115 475.964 1.232 .219 -.885169 3.858699 

[Design_NonDesign=1
] * [ModelAttractive=7] 

2.617679 1.198463 476.705 2.184 .029 .262756 4.972602 

[Design_NonDesign=1
] * [ModelAttractive=8] 

1.298288 1.286552 477.116 1.009 .313 -1.229721 3.826297 

[Gender=1] * 
[Design_NonDesign=1
] 

-.418385 .723778 27.182 -.578 .568 -1.902989 1.066219 
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Table 4.4.1. Random Effects of Image Attractiveness Differences 

Parameter Estimate Std. Error 

Residual 5.123317 .345868 

Chair Variance .861158 .389963 

ID Variance .693153 .284721 

a. Dependent Variable: Diff_ImageAtt. 

 

 

Table 4.5.1. Estimated Marginal Means: Image Attractiveness 
Differences and Model Attractiveness  

1. Model Attractiveb 

Model Attractive Mean Std. Error df 

95% Confidence Interval 

Lower Bound Upper Bound 

1 .270a 1.753 459.411 -3.175 3.715 

2 .701 .477 102.988 -.244 1.647 

3 -.409 .451 99.791 -1.305 .486 

4 -.063 .403 68.638 -.867 .741 

5 -.543 .382 57.728 -1.307 .221 

6 -.652 .384 60.217 -1.419 .116 

7 -.682 .380 54.596 -1.444 .081 

8 -1.397 .461 94.342 -2.313 -.481 

9 -3.505 .609 214.919 -4.706 -2.305 

10 -.875a 1.736 476.720 -4.286 2.537 

a. Based on modified population marginal mean. 

b. Dependent Variable: Diff_ImageAtt. 
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Table 4.6.1. Image Attractiveness Differences: Model Attractiveness by 
Gender	
  

Estimatesc 

Model Attractive Gender Mean Std. Error df 

95% Confidence Interval 

Lower Bound Upper Bound 

1 1 .a . . . . 

2 .270b 1.753 459.411 -3.175 3.715 

2 1 1.609 .646 194.787 .334 2.883 

2 -.206 .572 135.161 -1.336 .925 

3 1 -.336 .619 214.982 -1.556 .883 

2 -.482 .547 143.361 -1.563 .599 

4 1 -.285 .525 130.636 -1.323 .753 

2 .160 .508 119.257 -.847 1.166 

5 1 -1.148 .446 77.475 -2.035 -.260 

2 .061 .518 127.748 -.964 1.086 

6 1 -1.377 .503 119.360 -2.374 -.380 

2 .074 .475 99.930 -.869 1.016 

7 1 -1.007 .474 93.172 -1.948 -.066 

2 -.356 .485 97.312 -1.320 .607 

8 1 -2.214 .581 166.532 -3.362 -1.066 

2 -.581 .615 165.622 -1.795 .634 

9 1 -3.242 .741 265.304 -4.700 -1.784 

2 -3.769 .863 362.206 -5.466 -2.072 

10 2 -.875b 1.736 476.720 -4.286 2.537 
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Table 4.6.2. Image Attractiveness Differences: Model Attractiveness by 
Gender Pairwise Comparisons 

Pairwise Comparisons 

Model Attractive (I) Gender (J) Gender 
Mean 

Difference (I-J) Std. Error df Sig.c 

1 1 2 .a,b . . . 

2 1 .d,e . . . 

2 1 2 1.814* .761 217.873 .018 

2 1 -1.814* .761 217.873 .018 

3 1 2 .146 .741 263.213 .844 

2 1 -.146 .741 263.213 .844 

4 1 2 -.445 .646 189.481 .492 

2 1 .445 .646 189.481 .492 

5 1 2 -1.209* .593 149.969 .043 

2 1 1.209* .593 149.969 .043 

6 1 2 -1.451* .607 166.328 .018 

2 1 1.451* .607 166.328 .018 

7 1 2 -.651 .584 141.097 .267 

2 1 .651 .584 141.097 .267 

8 1 2 -1.633* .763 243.248 .033 

2 1 1.633* .763 243.248 .033 

9 1 2 .528 1.049 363.881 .615 

2 1 -.528 1.049 363.881 .615 

10 1 2 .a,b . . . 

2 1 .d,e . . . 
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Table 4.7.1. Image Attractiveness Differences: Model Attractiveness by 
Designer Status	
  

Estimatesc 

Model Attractive Design_NonDesign Mean Std. Error df 

95% Confidence Interval 

Lower Bound Upper Bound 

1 1 .270a 1.753 459.411 -3.175 3.715 

2 .b . . . . 

2 1 .741 .525 115.085 -.299 1.781 

2 .661 .699 219.930 -.717 2.040 

3 1 -.787 .620 212.612 -2.009 .436 

2 -.031 .544 143.597 -1.107 1.044 

4 1 .169 .534 137.075 -.886 1.225 

2 -.295 .500 113.676 -1.286 .696 

5 1 -.435 .457 85.235 -1.344 .475 

2 -.652 .503 115.824 -1.647 .343 

6 1 -.962 .502 118.993 -1.957 .033 

2 -.342 .476 100.179 -1.286 .603 

7 1 -.426 .483 95.819 -1.384 .532 

2 -.937 .475 93.987 -1.880 .006 

8 1 -1.802 .602 157.506 -2.991 -.612 

2 -.993 .590 174.920 -2.157 .171 

9 1 -4.559 .959 404.842 -6.445 -2.673 

2 -2.452 .678 214.288 -3.789 -1.115 

10 1 .b . . . . 

2 -.875a 1.736 476.720 -4.286 2.537 

a. Based on modified population marginal mean. 

b. This level combination of factors is not observed, thus the corresponding population marginal mean is 
not estimable. 

c. Dependent Variable: Diff_ImageAtt. 
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Table 4.7.2. Image Attractiveness Differences: Model Attractiveness by 
Designer Status Pairwise Comparisons 

Pairwise Comparisons 

Model Attractive (I) Design_NonDesign (J) Design_NonDesign 
Mean 

Difference (I-J) Std. Error 

1 1 2 .a,b . 

2 1 .d,e . 

2 1 2 .080 .788 

2 1 -.080 .788 

3 1 2 -.755 .739 

2 1 .755 .739 

4 1 2 .464 .649 

2 1 -.464 .649 

5 1 2 .217 .584 

2 1 -.217 .584 

6 1 2 -.620 .607 

2 1 .620 .607 

7 1 2 .511 .582 

2 1 -.511 .582 

8 1 2 -.809 .755 

2 1 .809 .755 

9 1 2 -2.107 1.129 

2 1 2.107 1.129 

10 1 2 .d,e . 

2 1 .a,b . 
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Table 5.1.1. Random Effects of Change in Average Pupil Area 

Estimates of Covariance Parametersa 

Parameter Estimate Std. Error 

Residual 20322.493080 904.339073 

ID Variance .000000b .000000 
 

a. Dependent Variable: Change_PupilArea. 
 

 

 

Table 5.2.1. Comparison of Means: Image Attractiveness and Change in 
Average Pupil Area  

Type III Tests of Fixed Effectsa 

Source Numerator df Denominator df F Sig. 

Intercept 1 1010 .009 .924 

image_att 1 1010 .582 .446 

Gender 1 1010.000 1.588 .208 

DesignNoDesign 1 1010.000 .059 .808 

Gender * image_att 1 1010.000 1.343 .247 

DesignNoDesign * image_att 1 1010.000 .488 .485 

Gender * DesignNoDesign 1 1010 .015 .904 

 

a. Dependent Variable: Change_PupilArea. 
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Table 5.2.2. Comparison of Means: Image Attractiveness and Change in 
Average Pupil Area 	
  

Estimates of Fixed Effectsa 

Parameter Estimate Std. Error df t Sig. 95% 

Confidence 

Interval 

Lower Bound 

Intercept 12.037136 17.919681 1010.000 .672 .502 -23.126932 

image_att -2.427140 3.210781 1010 -.756 .450 -8.727706 

[Gender=1] -27.134509 23.071883 1010.000 -1.176 .240 -72.408823 

[DesignNoDesign=1] 3.935490 22.469891 1010 .175 .861 -40.157526 

[Gender=1] * image_att 4.613675 3.980934 1010.000 1.159 .247 -3.198172 

[DesignNoDesign=1] * 

image_att 

-2.774967 3.970980 1010.000 -.699 .485 -10.567283 

[Gender=1] * 

[DesignNoDesign=1] 

2.161414 17.932415 1010 .121 .904 -33.027643 

 

Estimates of Fixed Effectsa 

Parameter 95% Confidence Interval 

Upper Bound 

Intercept 47.201204 

image_att 3.873425 

[Gender=1] 18.139806 

[DesignNoDesign=1] 48.028506 

[Gender=1] * image_att 12.425523 

[DesignNoDesign=1] * image_att 5.017350 

[Gender=1] * [DesignNoDesign=1] 37.350472 
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Table 5.3.1. Estimated Marginal Means: Change in Average Pupil Area 
and Image Attractiveness	
  
	
  

Estimatesa 

image_att Mean Std. Error df 95% Confidence Interval 

Lower Bound Upper Bound 

1 -12.627 18.250 993.000 -48.440 23.187 

2 .988 14.660 993.000 -27.780 29.756 

3 16.103 14.637 993 -12.620 44.826 

4 -1.941 13.711 993 -28.847 24.964 

5 -30.384 14.263 993 -58.374 -2.395 

6 -7.699 14.056 993.000 -35.281 19.883 

7 -6.175 15.111 993 -35.827 23.478 

8 5.018 18.076 993.000 -30.453 40.489 

9 36.057 27.696 993 -18.293 90.407 

10 -49.598 66.241 993.000 -179.587 80.391 
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Table 5.4.1. Change in Average Pupil Area: Image Attractiveness by 
Gender 

Estimatesa 

image_att Gender Mean Std. Error df 95% Confidence Interval 

Lower Bound Upper Bound 

1 
male -9.274 26.549 993 -61.372 42.825 

female -15.979 26.359 993.000 -67.706 35.747 

2 
male -4.240 21.524 993.000 -46.478 37.999 

female 6.215 19.671 993.000 -32.387 44.817 

3 
male 20.520 20.333 993 -19.382 60.421 

female 11.687 20.415 993 -28.376 51.749 

4 
male -23.640 18.631 993 -60.200 12.920 

female 19.757 20.161 993 -19.807 59.321 

5 
male -30.868 19.538 993 -69.208 7.472 

female -29.900 21.383 993 -71.861 12.060 

6 
male -3.762 20.021 993.000 -43.051 35.527 

female -11.635 19.719 993.000 -50.330 27.060 

7 
male -23.217 20.856 993 -64.143 17.709 

female 10.867 21.682 993 -31.680 53.414 

8 
male 31.917 26.097 993.000 -19.294 83.127 

female -21.881 25.195 993.000 -71.323 27.560 

9 
male 46.122 41.859 993.000 -36.021 128.265 

female 25.992 37.322 993 -47.246 99.231 

10 
male 35.151 116.629 993.000 -193.717 264.019 

female -134.347 62.843 993 -257.666 -11.027 
 

a. Dependent Variable: Change_PupilArea. 
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Table 5.4.2. Change in Average Pupil Area: Image Attractiveness by 
Gender Pairwise Comparisons 

Pairwise Comparisonsa 

image_att (I) Gender (J) Gender Mean 

Difference (I-J) 

Std. Error df Sig.b 95% 

Confidence 

Interval for 

Differenceb 

Lower Bound 

1 
male female 6.706 38.302 993 .861 -68.456 

female male -6.706 38.302 993 .861 -81.868 

2 
male female -10.455 28.997 993.000 .719 -67.357 

female male 10.455 28.997 993.000 .719 -46.448 

3 
male female 8.833 28.346 993 .755 -46.793 

female male -8.833 28.346 993 .755 -64.459 

4 
male female -43.397 27.481 993 .115 -97.325 

female male 43.397 27.481 993 .115 -10.531 

5 
male female -.967 29.396 993 .974 -58.653 

female male .967 29.396 993 .974 -56.718 

6 
male female 7.873 28.091 993.000 .779 -47.252 

female male -7.873 28.091 993.000 .779 -62.997 

7 
male female -34.084 29.946 993.000 .255 -92.848 

female male 34.084 29.946 993.000 .255 -24.680 

8 
male female 53.798 36.396 993.000 .140 -17.625 

female male -53.798 36.396 993.000 .140 -125.220 

9 
male female 20.130 56.762 993.000 .723 -91.257 

female male -20.130 56.762 993.000 .723 -131.517 

10 
male female 169.498 132.482 993.000 .201 -90.480 

female male -169.498 132.482 993.000 .201 -429.475 
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Pairwise Comparisonsa 

image_att (I) Gender (J) Gender 95% Confidence Interval for 

Difference 

Upper Bound 

1 
male female 81.868 

female male 68.456 

2 
male female 46.448 

female male 67.357 

3 
male female 64.459 

female male 46.793 

4 
male female 10.531 

female male 97.325 

5 
male female 56.718 

female male 58.653 

6 
male female 62.997 

female male 47.252 

7 
male female 24.680 

female male 92.848 

8 
male female 125.220 

female male 17.625 

9 
male female 131.517 

female male 91.257 

10 
male female 429.475 

female male 90.480 
 

Based on estimated marginal meansa 
 

 

 

 

 

 

 

 



	
   	
   	
  204	
   	
  

Table 5.5.1. Change in Average Pupil Area: Image Attractiveness by 
Designer Status 

Estimatesa 

image_att DesignNoDesign Mean Std. Error df 95% Confidence Interval 

Lower Bound Upper Bound 

1 
Designer -4.059 27.490 993 -58.004 49.886 

NonDesigner -21.194 25.454 993.000 -71.144 28.756 

2 
Designer 15.724 18.936 993.000 -21.436 52.884 

NonDesigner -13.748 22.330 993.000 -57.568 30.072 

3 
Designer 1.946 17.690 993 -32.769 36.661 

NonDesigner 30.260 23.334 993 -15.530 76.050 

4 
Designer -14.234 19.714 993 -52.919 24.452 

NonDesigner 10.351 19.061 993 -27.054 47.755 

5 
Designer -49.642 20.960 993 -90.772 -8.511 

NonDesigner -11.127 19.938 993.000 -50.253 28.000 

6 
Designer -7.821 20.308 993 -47.672 32.030 

NonDesigner -7.577 19.438 993.000 -45.721 30.568 

7 
Designer -19.570 22.907 993.000 -64.520 25.381 

NonDesigner 7.220 19.714 993.000 -31.465 45.906 

8 
Designer 35.536 27.239 993.000 -17.916 88.987 

NonDesigner -25.500 24.126 993.000 -72.844 21.844 

9 
Designer -11.853 39.008 993 -88.401 64.694 

NonDesigner 83.968 40.054 993.000 5.368 162.567 

10 
Designer -46.418 83.845 993.000 -210.952 118.116 

NonDesigner -52.778 88.913 993.000 -227.257 121.702 
 

a. Dependent Variable: Change_PupilArea. 
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Table 5.5.2. Change in Average Pupil Area: Image Attractiveness by 
Designer Status Pairwise Comparisons 

Pairwise Comparisonsa 

image_att (I) DesignNoDesign (J) DesignNoDesign Mean Difference 

(I-J) 

Std. Error df 

1 
Designer NonDesigner 17.135 38.405 993 

NonDesigner Designer -17.135 38.405 993 

2 
Designer NonDesigner 29.472 29.237 993.000 

NonDesigner Designer -29.472 29.237 993.000 

3 
Designer NonDesigner -28.315 29.290 993 

NonDesigner Designer 28.315 29.290 993 

4 
Designer NonDesigner -24.584 27.422 993 

NonDesigner Designer 24.584 27.422 993 

5 
Designer NonDesigner -38.515 29.325 993.000 

NonDesigner Designer 38.515 29.325 993.000 

6 
Designer NonDesigner -.244 28.111 993 

NonDesigner Designer .244 28.111 993 

7 
Designer NonDesigner -26.790 30.222 993.000 

NonDesigner Designer 26.790 30.222 993.000 

8 
Designer NonDesigner 61.036 36.621 993.000 

NonDesigner Designer -61.036 36.621 993.000 

9 
Designer NonDesigner -95.821 56.423 993.000 

NonDesigner Designer 95.821 56.423 993.000 

10 
Designer NonDesigner 6.360 110.994 993.000 

NonDesigner Designer -6.360 110.994 993.000 
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Pairwise Comparisonsa 

image_att (I) DesignNoDesign (J) DesignNoDesign Sig. 95% Confidence Interval for 

Difference 

Lower Bound Upper Bound 

1 
Designer NonDesigner .656 -58.229 92.500 

NonDesigner Designer .656 -92.500 58.229 

2 
Designer NonDesigner .314 -27.901 86.845 

NonDesigner Designer .314 -86.845 27.901 

3 
Designer NonDesigner .334 -85.792 29.163 

NonDesigner Designer .334 -29.163 85.792 

4 
Designer NonDesigner .370 -78.396 29.227 

NonDesigner Designer .370 -29.227 78.396 

5 
Designer NonDesigner .189 -96.061 19.030 

NonDesigner Designer .189 -19.030 96.061 

6 
Designer NonDesigner .993 -55.408 54.920 

NonDesigner Designer .993 -54.920 55.408 

7 
Designer NonDesigner .376 -86.096 32.516 

NonDesigner Designer .376 -32.516 86.096 

8 
Designer NonDesigner .096 -10.827 132.899 

NonDesigner Designer .096 -132.899 10.827 

9 
Designer NonDesigner .090 -206.542 14.901 

NonDesigner Designer .090 -14.901 206.542 

10 
Designer NonDesigner .954 -211.449 224.169 

NonDesigner Designer .954 -224.169 211.449 
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Table 6.1.1. Random Effects of Average Pupil Area 

Estimates of Covariance Parametersa 

Parameter Estimate Std. Error 

Residual 19500.846875 866.918386 

ID Variance .000000b .000000 
 

a. Dependent Variable: Change_PupilArea. 
 

 

 

Table 6.2.1. Comparison of Means: Change in Average Pupil Area and 
Image Luminance  

Type III Tests of Fixed Effectsa 

Source Numerator df Denominator df F Sig. 

Intercept 1 1012.000 20.245 .000 

image_att 1 1012.000 .772 .380 

Luminance 1 1012.000 42.287 .000 

Gender 1 1012.000 .217 .641 

DesignNoDesign 1 1012 .852 .356 
 

a. Dependent Variable: Change_PupilArea. 
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Table 6.2.2. Comparison of Means: Change in Average Pupil Area and 
Luminance 

Estimates of Fixed Effectsa 

Parameter Estimate Std. Error df t Sig. 95% 

Confidence 

Interval 

Lower Bound 

Intercept 66.978596 15.077218 1012 4.442 .000 37.392407 

image_att -1.696722 1.930635 1012.000 -.879 .380 -5.485229 

Luminance -2.095479 .322240 1012.000 -6.503 .000 -2.727813 

[Gender=1] -4.080817 8.758187 1012.000 -.466 .641 -21.267103 

[DesignNoDesign=1] -8.104341 8.781933 1012 -.923 .356 -25.337224 
 

Estimates of Fixed Effectsa 

Parameter 95% Confidence Interval 

Upper Bound 

Intercept 96.564785 

image_att 2.091784 

Luminance -1.463144 

[Gender=1] 13.105469 

[DesignNoDesign=1] 9.128542 
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Table 7.1.1. Random Effects of Change in Average Pupil Area 

Estimates of Covariance Parametersa 

Parameter Estimate Std. Error 

Residual 19790.813959 1247.942748 

ID Variance .000000b .000000 
 

a. Dependent Variable: Change_PupilArea. 
 

 

 

Table 7.2.1. Comparison of Means: Change in Average Pupil Area and 
Face Luminance 

Type III Tests of Fixed Effectsa 

Source Numerator df Denominator df F Sig. 

Intercept 1 503 3.275 .071 

image_att 1 503 .695 .405 

Facial_Lum 1 503 1.612 .205 

Gender 1 503 .913 .340 

DesignNoDesign 1 503 1.983 .160 
 

a. Dependent Variable: Change_PupilArea. 
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Table 7.2.2. Comparison of Means: Average Pupil Area and Face 
Luminance 

Estimates of Fixed Effectsa 

Parameter Estimate Std. Error df t Sig. 95% 

Confidence 

Interval 

Lower Bound 

Intercept 116.442960 56.775678 503 2.051 .041 4.896275 

image_att -2.556977 3.067118 503 -.834 .405 -8.582917 

Facial_Lum -1.332375 1.049429 503 -1.270 .205 -3.394179 

[Gender=1] -11.990246 12.547196 503 -.956 .340 -36.641614 

[DesignNoDesign=1] -17.671056 12.550153 503 -1.408 .160 -42.328233 
 

Estimates of Fixed Effectsa 

Parameter 95% Confidence Interval 

Upper Bound 

Intercept 227.989646 

image_att 3.468963 

Facial_Lum .729430 

[Gender=1] 12.661123 

[DesignNoDesign=1] 6.986121 
 

a. Dependent Variable: Change_PupilArea. 
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Table 8.1.1. Random Effects of Subject ID 

Estimates of Covariance Parametersa 

Parameter Estimate Std. Error 

Residual 2.616479 .169423 

ID Variance 1.239167 .368519 
 

a. Dependent Variable: model_att. 
 

 

 

Table 8.2.1. Comparison of Means: Facial Luminance and Model 
Attractiveness  

Type III Tests of Fixed Effectsa 

Source Numerator df Denominator df F Sig. 

Intercept 1 488.867 .659 .417 

Facial_Lum 1 477.000 59.432 .000 

Gender 1 488.867 .121 .728 

DesignNoDesign 1 488.867 .198 .657 

Gender * Facial_Lum 1 477 .273 .601 

DesignNoDesign * 

Facial_Lum 

1 477.000 .562 .454 

 

a. Dependent Variable: model_att. 
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Table 8.2.2. Comparison of Means: Facial Luminance and Model 
Attractiveness  

Estimates of Fixed Effectsa 

Parameter Estimate Std. Error df t Sig. 95% 

Confidence 

Interval 

Lower Bound 

Intercept .471485 1.142037 488.867 .413 .680 -1.772421 

Facial_Lum .095311 .020801 477.000 4.582 .000 .054438 

[Gender=1] -.458267 1.318710 488.867 -.348 .728 -3.049306 

[DesignNoDesign=1] .586119 1.318710 488.867 .444 .657 -2.004920 

[Gender=1] * Facial_Lum .012554 .024019 477 .523 .601 -.034641 

[DesignNoDesign=1] * 

Facial_Lum 

-.018011 .024019 477.000 -.750 .454 -.065206 

 

Estimates of Fixed Effectsa 

Parameter 95% Confidence Interval 

Upper Bound 

Intercept 2.715391 

Facial_Lum .136183 

[Gender=1] 2.132773 

[DesignNoDesign=1] 3.177159 

[Gender=1] * Facial_Lum .059749 

[DesignNoDesign=1] * Facial_Lum .029184 
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Table 9.1.1. Random Effects of Number of Fixations 

Estimates of Covariance Parametersa 

Parameter Estimate Std. Error 

Residual 20369.633349 906.436787 

ID Variance .000000b .000000 
 

a. Dependent Variable: Change_PupilArea. 
 

 

 

Table 9.2.1. Comparison of Means: Change in Average Pupil Area and 
Number of Fixations 

Type III Tests of Fixed Effectsa 

Source Numerator df Denominator df F Sig. 

Intercept 1 1010 .143 .705 

NumberFixations 1 1010 .000 .994 

Gender 1 1010 .035 .852 

DesignNoDesign 1 1010 .152 .697 

Gender * NumberFixations 1 1010.000 .003 .958 

DesignNoDesign * 

NumberFixations 

1 1010.000 .025 .875 

Gender * DesignNoDesign 1 1010 .001 .971 
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Table 9.2.2. Comparison of Means: Change in Average Pupil Area and 
Number of Fixations 

Estimates of Fixed Effectsa 

Parameter Estimate Std. Error df t Sig. 95% 

Confidence 

Interval 

Lower Bound 

Intercept 3.282560 27.518630 1010 .119 .905 -50.717675 

NumberFixations -.872625 7.593630 1010.000 -.115 .909 -15.773724 

[Gender=1] -6.209530 33.159692 1010 -.187 .851 -71.279310 

[DesignNoDesign=1] -12.619337 32.090293 1010 -.393 .694 -75.590617 

[Gender=1] * 

NumberFixations 

.452672 8.625473 1010.000 .052 .958 -16.473228 

[DesignNoDesign=1] * 

NumberFixations 

1.352549 8.605867 1010.000 .157 .875 -15.534878 

[Gender=1] * 

[DesignNoDesign=1] 

.644119 17.991437 1010 .036 .971 -34.660758 

 

Estimates of Fixed Effectsa 

Parameter 95% Confidence Interval 

Upper Bound 

Intercept 57.282796 

NumberFixations 14.028473 

[Gender=1] 58.860249 

[DesignNoDesign=1] 50.351944 

[Gender=1] * NumberFixations 17.378572 

[DesignNoDesign=1] * NumberFixations 18.239976 

[Gender=1] * [DesignNoDesign=1] 35.948996 
 

a. Dependent Variable: Change_PupilArea. 
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Table 10.1.1. Random Effects of Change in Average Pupil Area  

Estimates of Covariance Parametersa 

Parameter Estimate Std. Error 

Residual 20377.889840 907.253443 

ID Variance .000000b .000000 
 

a. Dependent Variable: Change_PupilArea. 
 

 

 

Table 10.2.1. Comparison of Means: Change in Average Pupil Area and 
Log Average Fixation Time  

Type III Tests of Fixed Effectsa 

Source Numerator df Denominator df F Sig. 

Intercept 1 1009 .472 .492 

ln_AveFixTime 1 1009 .087 .768 

Gender 1 1009 .360 .549 

DesignNoDesign 1 1009 .119 .730 

Gender * ln_AveFixTime 1 1009 .208 .649 

DesignNoDesign * 

ln_AveFixTime 

1 1009.000 .412 .521 

Gender * DesignNoDesign 1 1009 .001 .979 
 

a. Dependent Variable: Change_PupilArea. 
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Table 10.2.2. Comparison of Means: Change in Average Pupil Area and 
Log Average Fixation Time 

Estimates of Fixed Effectsa 

Parameter Estimate Std. Error df t Sig. 95% 

Confidence 

Interval 

Lower Bound 

Intercept -5.790833 23.120517 1009.000 -.250 .802 -51.160638 

ln_AveFixTime -6.393043 22.410978 1009 -.285 .776 -50.370507 

[Gender=1] -17.152660 29.086426 1009 -.590 .556 -74.229473 

[DesignNoDesign=1] 9.492413 29.924717 1009.000 .317 .751 -49.229393 

[Gender=1] * 

ln_AveFixTime 

-12.222694 26.818138 1009 -.456 .649 -64.848406 

[DesignNoDesign=1] * 

ln_AveFixTime 

17.219473 26.827210 1009.000 .642 .521 -35.424041 

[Gender=1] * 

[DesignNoDesign=1] 

.472758 18.041221 1009 .026 .979 -34.929853 

 

Estimates of Fixed Effectsa 

Parameter 95% Confidence Interval 

Upper Bound 

Intercept 39.578971 

ln_AveFixTime 37.584420 

[Gender=1] 39.924153 

[DesignNoDesign=1] 68.214220 

[Gender=1] * ln_AveFixTime 40.403018 

[DesignNoDesign=1] * ln_AveFixTime 69.862987 

[Gender=1] * [DesignNoDesign=1] 35.875368 
 

a. Dependent Variable: Change_PupilArea. 
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Table 11.1.1. Random Effects of Change in Average Pupil Area 

Estimates of Covariance Parametersa 

Parameter Estimate Std. Error 

Residual 19930.921215 1259.283484 

ID Variance .000000b .000000 
 

a. Dependent Variable: Change_PupilArea. 
 

 

 

Table 11.2.1. Comparison of Means: Change in Average Pupil Area and 
Model Attractiveness  

Type III Tests of Fixed Effectsa 

Source Numerator df Denominator df F Sig. 

Intercept 1 501 1.358 .244 

model_att 1 501.000 .016 .901 

Gender 1 501 .892 .345 

DesignNoDesign 1 501.000 .015 .902 

Gender * model_att 1 501 .398 .528 

DesignNoDesign * model_att 1 501 .406 .524 

Gender * DesignNoDesign 1 501 .222 .638 
 

a. Dependent Variable: Change_PupilArea. 
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Table 11.2.2. Comparison of Means: Change in Average Pupil Area and 
Model Attractiveness  

 
Estimates of Fixed Effectsa 

Parameter Estimate Std. Error df t Sig. 95% 

Confidence 

Interval 

Lower Bound 

Intercept 38.754933 30.907767 501 1.254 .210 -21.969876 

model_att -.375420 5.126679 501 -.073 .942 -10.447860 

[Gender=1] -40.002663 39.210337 501 -1.020 .308 -117.039617 

[DesignNoDesign=1] -1.516220 37.399364 501 -.041 .968 -74.995137 

[Gender=1] * model_att 3.976992 6.304937 501 .631 .528 -8.410383 

[DesignNoDesign=1] * 

model_att 

-4.007122 6.285552 501 -.638 .524 -16.356410 

[Gender=1] * 

[DesignNoDesign=1] 

11.876653 25.218697 501 .471 .638 -37.670782 

 

Estimates of Fixed Effectsa 

Parameter 95% Confidence Interval 

Upper Bound 

Intercept 99.479742 

model_att 9.697020 

[Gender=1] 37.034292 

[DesignNoDesign=1] 71.962697 

[Gender=1] * model_att 16.364367 

[DesignNoDesign=1] * model_att 8.342167 

[Gender=1] * [DesignNoDesign=1] 61.424089 

 

 

 

 

 

  



	
   	
   	
  219	
   	
  

Table 12.1.1. Random Effect of Change in Average Pupil Area  

Estimates of Covariance Parametersa 

Parameter Estimate Std. Error 

Residual 19682.307537 875.851190 

ID Variance .000000b .000000 
 

a. Dependent Variable: Change_PupilArea. 
 

 

 

Table 12.2.1.  Comparison of Means: Image Complexity and Change in 
Average Pupil Area  

Type III Tests of Fixed Effectsa 

Source Numerator df Denominator df F Sig. 

Intercept 1 1010.000 1.785 .182 

complex 1 1010 33.111 .000 

Gender 1 1010 .220 .639 

DesignNoDesign 1 1010 .734 .392 

Gender * complex 1 1010 1.050 .306 

DesignNoDesign * complex 1 1010 1.074 .300 

Gender * DesignNoDesign 1 1010 .002 .963 
 

a. Dependent Variable: Change_PupilArea. 
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Table 12.2.2. Comparison of Means: Image Complexity and Change in 
Average Pupil Area  

Estimates of Fixed Effectsa 

Parameter Estimate Std. Error df t Sig. 95% 

Confidence 

Interval 

Lower Bound 

Intercept 34.538693 11.605147 1010 2.976 .003 11.765732 

[complex=.00] -68.763687 15.224654 1010 -4.517 .000 -98.639262 

[Gender=1] -13.545905 15.224654 1010 -.890 .374 -43.421480 

[DesignNoDesign=1] -17.067120 15.204661 1010.000 -1.122 .262 -46.903463 

[Gender=1] * 

[complex=.00] 

18.030296 17.597349 1010 1.025 .306 -16.501255 

[DesignNoDesign=1] * 

[complex=.00] 

18.238682 17.597349 1010 1.036 .300 -16.292869 

[Gender=1] * 

[DesignNoDesign=1] 

.816234 17.597418 1010 .046 .963 -33.715453 

 

Estimates of Fixed Effectsa 

Parameter 95% Confidence Interval 

Upper Bound 

Intercept 57.311653 

[complex=.00] -38.888113 

[Gender=1] 16.329669 

[DesignNoDesign=1] 12.769222 

[Gender=1] * [complex=.00] 52.561847 

[DesignNoDesign=1] * [complex=.00] 52.770234 

[Gender=1] * [DesignNoDesign=1] 35.347920 
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Table 12.3.1. Estimated Marginal Means: Change in Average Pupil Area 
and Image Complexity  

complexa 

complex Mean Std. Error df 95% Confidence Interval 

Lower Bound Upper Bound 

simple -31.193 6.218 1010 -43.395 -18.990 

complex 19.436 6.225 1010.000 7.221 31.651 
 

a. Dependent Variable: Change_PupilArea. 
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Table 13.1.1. Random Effects of Number of Fixations 

Estimates of Covariance Parametersa 

Parameter Estimate Std. Error 

Residual .956423 .043010 

ID Variance .107798 .036823 

a. Dependent Variable: NumberFixations. 

 

 

Table 13.2.1. Comparison of Means: Average Number of Fixations and 
Image Complexity 

Type III Tests of Fixed Effectsa 

Source Numerator df Denominator df F Sig. 

Intercept 1 28.000 2856.586 .000 

complex 1 989 34.569 .000 

Gender 1 28.000 1.348 .255 

DesignNoDesign 1 28.000 .599 .445 

complex * Gender 1 989 5.293 .022 

complex * DesignNoDesign 1 989 5.591 .018 

Gender * DesignNoDesign 1 28.000 .599 .445 

 

a. Dependent Variable: NumberFixations. 
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Table 13.2.2. Comparison of Means: Average Number of Fixations and 
Image Complexity 

Estimates of Fixed Effectsa 

Parameter Estimate Std. Error df t Sig. 95% Confidence Interval	
  

Lower 

 Bound 

Upper  

Bound 

Intercept 3.392578 .141467 37.831 23.981 .000 3.106152 3.679005	
  

[complex=.00] .074219 .105868 989 .701 .483 -.133533 .281971	
  

[Gender=1] .113281 .195340 34.396 .580 .566 -.283529 .510091	
  

[DesignNoDesign=1] -.144531 .195340 34.396 -.740 .464 -.541341 .252279	
  

[complex=.00] * 

[Gender=1] 

.281250 .122246 989 2.301 .022 .041358 .521142	
  

[complex=.00] * 

[DesignNoDesign=1] 

.289063 .122246 989 2.365 .018 .049171 .528954	
  

[Gender=1] * 

[DesignNoDesign=1] 

-.203125 .262380 28.000 -.774 .445 -.740586 .334336	
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Table 13.3.1. Average Number of Fixations and Complexity  

Estimatesa 

complex Mean Std. Error df 

95% Confidence Interval 

Lower Bound Upper Bound 

simple 3.686 .072 41.420 3.539 3.832 

complex 3.326 .072 41.420 3.180 3.472 

 

 

 

Table 13.3.2. Average Number of Fixations and Complexity Pairwise 
Comparisons  

Pairwise Comparisonsb 

(I) complex (J) complex 

Mean 

Difference (I-J) Std. Error df Sig.a 

simple complex .359* .061 989.000 .000 

complex simple -.359* .061 989.000 .000 
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Table 13.4.1. Average Number of Fixations: Image Complexity by 
Gender 

Estimatesa 

complex Gender Mean Std. Error df 

95% Confidence Interval 

Lower Bound Upper Bound 

simple male 3.832 .102 41.420 3.625 4.039 

female 3.539 .102 41.420 3.332 3.746 

complex male 3.332 .102 41.420 3.125 3.539 

female 3.320 .102 41.420 3.114 3.527 

Pairwise Comparisons 

complex (I) Gender (J) Gender 

Mean Difference 

(I-J) Std. Error df Sig.a 

simple male female .293* .145 41.420 .049 

female male -.293* .145 41.420 .049 

complex male female .012 .145 41.420 .936 

female male -.012 .145 41.420 .936 

 
 

 

Table 13.4.2. Average Number of Fixations: Image Complexity by 
Gender Univariate Test 

Univariate Testsa 

complex Numerator df Denominator df F Sig. 

simple 1 41.420 4.098 .049 

complex 1 41.420 .007 .936 
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Table 13.4.3. Average Number of Fixations: Gender by Image 
Complexity 

Estimatesa 

complex Gender Mean Std. Error df 95% Confidence Interval 

Lower Bound Upper Bound 

simple 
male 3.832 .102 41.420 3.625 4.039 

female 3.539 .102 41.420 3.332 3.746 

complex 
male 3.332 .102 41.420 3.125 3.539 

female 3.320 .102 41.420 3.114 3.527 

 

Pairwise Comparisonsa 

Gender (I) complex (J) 

complex 

Mean 

Difference (I-

J) 

Std. 

Error 

df Sig.c 95% Confidence 
Interval for Differencec 

Lower 

Bound 

Upper 

Bound 

male 
simple complex .500* .086 989 .000 .330 .670* 

complex simple -.500* .086 989 .000 -.670 -.330* 

female 
simple complex .219* .086 989 .012 .049 .388* 

complex simple -.219* .086 989 .012 -.388 -.049* 
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Table 13.4.4. Average Number of Fixations: Gender by Image 
Complexity Univariate Test 

Univariate Testsa 

Gender Numerator df Denominator df F Sig. 

male 1 989 33.458 .000 

female 1 989 6.404 .012 

 

 

 

Table 13.5.1. Average Number of Fixations: Image Complexity by 
Designer Status 

Estimatesa 

DesignNoDesign complex Mean Std. Error df 

95% Confidence Interval 

Lower Bound Upper Bound 

Designer simple 3.707 .102 41.420 3.500 3.914 

complex 3.203 .102 41.420 2.997 3.410 

NonDesigner simple 3.664 .102 41.420 3.457 3.871 

complex 3.449 .102 41.420 3.243 3.656 

a. Dependent Variable: NumberFixations. 
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Table 13.5.2. Average Number of Fixations: Image Complexity by 
Designer Status Pairwise Comparisons 

Pairwise Comparisons 

DesignNoDesign (I) complex (J) complex 

Mean 

Difference (I-J) Std. Error df Sig.a 

Designer simple complex .504* .086 989.000 .000 

complex simple -.504* .086 989.000 .000 

NonDesigner simple complex .215* .086 989.000 .013 

complex simple -.215* .086 989.000 .013 

 

 

 

Table 13.5.3. Average Number of Fixations: Image Complexity by 
Designer Status Univariate Test 

Univariate Testsa 

DesignNoDesign Numerator df Denominator df F Sig. 

Designer 1 989 33.983 .000 

NonDesigner 1 989 6.177 .013 
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Table 13.5.4. Average Number of Fixations: Designer Status by Image 
Complexity 

Pairwise Comparisonsa 

complex (I) DesignNoDesign (J) DesignNoDesign Sig. 95% Confidence Interval for 

Difference 

Lower Bound Upper Bound 

simple 
Designer NonDesigner .768 -.249 .335 

NonDesigner Designer .768 -.335 .249 

complex 
Designer NonDesigner .097 -.538 .046 

NonDesigner Designer .097 -.046 .538 

 

 

 

Table 13.5.5. Average Number of Fixations: Designer Status by Image 
Complexity Univariate Test 

Univariate Testsa 

complex Numerator df Denominator df F Sig. 

simple 1 41.420 .088 .768 

complex 1 41.420 2.891 .097 
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Table 14.1.1. Random Effects of Log Average Fixation Time 

Estimates of Covariance Parametersa 

Parameter Estimate Std. Error 

Residual .082116 .003713 

ID Variance .015663 .004882 

a. Dependent Variable: ln_AveFixationTime. 

 

 

Table 14.2.1. Comparison of Means: Log Average Fixation Time and 
Image Complexity  

Type III Tests of Fixed Effectsa 

Source Numerator df Denominator df F Sig. 

Intercept 1 27.986 1758.133 .000 

complex 1 978.112 25.252 .000 

Gender 1 27.986 .393 .536 

DesignNoDesign 1 27.986 .638 .431 

complex * Gender 1 978.112 .799 .372 

complex * DesignNoDesign 1 978.112 5.036 .025 

Gender * DesignNoDesign 1 27.986 1.816 .189 

a. Dependent Variable: ln_AveFixationTime. 
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Table 14.2.2. Comparison of Means: Log Average Fixation Time and 
Image Complexity	
  

Estimates of Fixed Effects 

Parameter Estimate Std. Error df t Sig. 

Intercept -.948286 .050201 34.113 -18.890 .000 

[complex=.00] -.033984 .031165 978.117 -1.090 .276 

[Gender=1] -.018303 .069887 32.040 -.262 .795 

[DesignNoDesign=1] -.062111 .069926 32.110 -.888 .381 

[complex=.00] * [Gender=1] -.032207 .036023 978.112 -.894 .372 

[complex=.00] * 
[DesignNoDesign=1] 

-.080842 .036023 978.112 -2.244 .025 

[Gender=1] * 
[DesignNoDesign=1] 

.128740 .095546 27.986 1.347 .189 

 

 

 

Table 14.3.1. Estimated Marginal Means: Log Average Fixation Time 
and Image Complexity 

1. complexa 

complex Mean Std. Error df 

95% Confidence Interval 

Lower Bound Upper Bound 

simple -1.047 .026 36.394 -1.099 -.995 

complex -.956 .026 36.579 -1.008 -.905 

a. Dependent Variable: ln_AveFixationTime. 

 

 

  



	
   	
   	
  232	
   	
  

Table 14.4.1. Log Average Fixation Time: Image Complexity by Gender 

Estimatesa 

complex Gender Mean Std. Error df 

95% Confidence Interval 

Lower Bound Upper Bound 

simple male -1.040 .036 36.357 -1.113 -.967 

female -1.054 .036 36.432 -1.127 -.981 

complex male -.933 .036 36.651 -1.007 -.860 

female -.979 .036 36.505 -1.053 -.906 

a. Dependent Variable: ln_AveFixationTime. 

	
  

	
  

Table 14.4.2. Log Average Fixation Time: Image Complexity by Gender 
Pairwise Comparisons	
  

Pairwise Comparisons 

complex (I) Gender (J) Gender 

Mean 

Difference (I-J) Std. Error df Sig.a 

simple male female .014 .051 36.394 .787 

female male -.014 .051 36.394 .787 

complex male female .046 .051 36.577 .373 

female male -.046 .051 36.577 .373 
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Table 14.5.1. Log Average Fixation Time: Designer Status by Image 
Complexity  

Pairwise Comparisonsa 

DesignNoDesign (I) complex (J) complex Mean 

Difference (I-J) 

Std. Error df Sig.c 

Designer 
simple complex -.164* .027 988.003 .000 

complex simple .164* .027 988.003 .000 

NonDesigner 
simple complex -.034 .027 988.018 .219 

complex simple .034 .027 988.018 .219 

 

Pairwise Comparisonsa 

DesignNoDesign (I) complex (J) complex 95% Confidence Interval for Difference 

Lower Bound Upper Bound 

Designer 
simple complex -.218* -.110 

complex simple .110* .218 

NonDesigner 
simple complex -.088 .020 

complex simple -.020 .088 

 

 

Table 14.5.2. Log Average Fixation Time: Designer Status by Image 
Complexity Univariate Test 

Univariate Testsa 

DesignNoDesign Numerator df Denominator df F Sig. 

Designer 1 988.003 35.668 .000 

NonDesigner 1 988.018 1.514 .219 



	
   	
   	
  234	
   	
  

Table 14.5.3. Log Average Fixation Time: Image Complexity by 
Designer Status 

Pairwise Comparisonsa 

complex (I) DesignNoDesign (J) DesignNoDesign Mean Difference 

(I-J) 

Std. Error df 

simple 
Designer NonDesigner -.095 .056 36.050 

NonDesigner Designer .095 .056 36.050 

complex 
Designer NonDesigner .035 .056 36.084 

NonDesigner Designer -.035 .056 36.084 

 

Pairwise Comparisonsa 

complex (I) DesignNoDesign (J) DesignNoDesign Sig. 95% Confidence Interval for 

Difference 

Lower Bound Upper Bound 

simple 
Designer NonDesigner .100 -.209 .019 

NonDesigner Designer .100 -.019 .209 

complex 
Designer NonDesigner .536 -.079 .149 

NonDesigner Designer .536 -.149 .079 

 

 

 

 

 

 

 



	
   	
   	
  235	
   	
  

Table 14.5.4. Log Average Fixation Time: Image Complexity by 
Designer Status Univariate Test	
  	
  

Univariate Testsa 

complex Numerator df Denominator df F Sig. 

simple 1 36.050 2.846 .100 

complex 1 36.084 .391 .536 
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 Table 15.1.1. Random Effects of Image Attractiveness 

Estimates of Covariance Parametersa 

Parameter Estimate Std. Error 

Residual .099252 .004466 

ID Variance .017199 .005459 
 

a. Dependent Variable: ln_AveFixTime. 
 

 

 

Table 15.2.1. Comparison of Means: Log Average Fixation Time and 
Image Attractiveness  

Type III Tests of Fixed Effectsa 

Source Numerator df Denominator df F Sig. 

Intercept 1 79.864 1000.684 .000 

image_att 1 1015.009 8.218 .004 

Gender 1 81.574 .218 .642 

DesignNoDesign 1 81.354 1.004 .319 

Gender * image_att 1 1015.957 1.874 .171 

DesignNoDesign * image_att 1 1015.985 .904 .342 

Gender * DesignNoDesign 1 27.735 2.104 .158 
 

a. Dependent Variable: ln_AveFixTime. 
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Table 15.2.2. Comparison of Means: Average Fixation Time and Image 
Attractiveness 

Estimates of Fixed Effectsa 

Parameter Estimate Std. Error df t Sig. 95% 

Confidence 

Interval 

Lower Bound 

Intercept -.964805 .061713 61.045 -15.634 .000 -1.088205 

image_att .002354 .007342 1009.598 .321 .749 -.012053 

[Gender=1] -.104370 .084577 53.588 -1.234 .223 -.273967 

[DesignNoDesign=1] -.140113 .083661 51.437 -1.675 .100 -.308036 

[Gender=1] * image_att .012861 .009396 1015.957 1.369 .171 -.005576 

[DesignNoDesign=1] * 

image_att 

.008919 .009378 1015.985 .951 .342 -.009484 

[Gender=1] * 

[DesignNoDesign=1] 

.146205 .100804 27.735 1.450 .158 -.060372 

 

Estimates of Fixed Effectsa 

Parameter 95% Confidence Interval 

Upper Bound 

Intercept -.841405 

image_att .016761 

[Gender=1] .065226 

[DesignNoDesign=1] .027810 

[Gender=1] * image_att .031298 

[DesignNoDesign=1] * image_att .027321 

[Gender=1] * [DesignNoDesign=1] .352782 

 

 

 

 

	
  

 


