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The bacterial pathogen Legionella pneumophila is the causative agent of 

Legionnaires’ disease, which is associated with intracellular replication of the bacteria in 

macrophages of the human innate immune system. L. pneumophila enters host cells 

through phagocytosis. Once inside the host cells L. pneumophila manipulates vesicular 

trafficking pathways and establishes Legionella-containing vacuoles (LCV) that serve 

two purposes: to provide a safe niche for intracellular bacterial replication and to prevent 

bacterial degradation by the host’s bactericidal lysosomal compartments. L. 

pneumophila uses a type IV secretion system called “Intracellular 

multiplication/Defective for organelle trafficking” (Icm/Dot), a key virulence factor, to 

inject almost 300 secreted effector proteins into its host cells. The secreted effector 

proteins are believed to play important roles in LCV biogenesis and intracellular 

multiplication of L. pneumophila. Several of these effector proteins are capable of 

interacting with host phosphoinositides (PIs). However, there has been no report to date 

of a L. pneumophila-coded PI- metabolizing enzyme. Given the indispensable role of 

PIs in vesicle trafficking, the main goal of my research was to identify, characterize, and 

study the role of L. pneumophila PI phosphatases in exploiting host PIs and subverting 

host cell vesicular trafficking during infection. 

I was able to show that L. pneumophila encodes an effector protein that we 

named SidP, which functions as a PI-3-phosphatase specifically hydrolyzing PI(3)P and 



PI(3,5)P2 in vitro. The enzymatic activity of SidP rescues the growth phenotype of a 

yeast strain defective in PI(3)P phosphatase activity. My crystal structure of a SidP 

ortholog from Legionella longbeachae reveals that this unique PI-3-phosphatase is 

comprised of three distinct domains: a large catalytic domain, an appendage domain 

inserted into the N-terminal portion of the catalytic domain, and a C-terminal -helical 

domain. SidP has a small catalytic pocket that likely provides substrate specificity by 

limiting the accessibility of bulky PIs with multiple phosphate groups. A unique 

conformation of the conserved arginine residue in the catalytic motif of SidP and the 

presence of a hydrophobic loop that covers the catalytic motif may participate in 

regulating the activity of SidP. Together, my identification of a unique family of 

Legionella PI phosphatases highlights a common scheme of exploiting host PI lipids in 

intracellular bacterial pathogen infections. 
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CHAPTER 1 

Introduction 

In this chapter, I will first discuss the role of phosphoinositides (PIs) in 

regulating vesicular trafficking. Then I will specifically talk about the roles of PIs in 

phagocytosis. I will then discuss how intracellular pathogens utilize and 

modulate their host PI metabolism during infection.  Finally, I will describe the life 

cycle of Legionella pneumophila at the cellular level and the importance of 

exploiting host PI metabolism for subversion of vesicular trafficking in the host 

for the pathogenicity of L. pneumophila. 

1.1 PIs and cellular signaling 

Despite being a minor fraction of total cell phospholipids, PIs play major roles in a 

variety of cellular processes such as cell signaling and survival, membrane trafficking, 

cytoskeleton rearrangement, and organelle identity (Behnia and Munro, 2005; Di Paolo 

and De Camilli, 2006; Lemmon, 2008; Takenawa and Itoh, 2006). PIs are inter-

convertible phosphorylated derivatives of phosphatidylinositol. The reversible 

phosphorylations of phosphatidylinositol on the 3,4, and/or 5 hydroxyl groups of the 

inositol ring by specific kinases yield seven (four in yeast) species of PIs that can be 

rapidly converted to one another by specific PI kinases and phosphatases (Di Paolo and 

De Camilli, 2006). The tightly regulated action of specific kinases and phosphatases in 

each cellular organelle creates different temporal and spatial enrichment of PIs. This 

differential PI enrichment provides markers for organelle identity. For example, the Golgi 

complex is predominantly enriched in PI(4)P. The plasma membrane is enriched in 



 

PI(4,5)P2 and PI(4)P, but PI(3,4,5)P3 accumulates transiently in the plasma membrane 

during signal transduction. Early endosomes are identified with PI(3)P and late 

endosomes are enriched in PI(3,5)P2 (Behnia and Munro, 2005; Di Paolo and De 

Camilli, 2006; Lemmon, 2008; Takenawa and Itoh, 2006). 

PIs are localized in the cytoplasmic leaflet of organelle membranes and can be 

recognized by their cognate effector proteins in a very specific manner. The recognition 

and binding of PIs to their effector proteins is mainly mediated by short protein motifs 

such as PX, ENTH, FYVE, PH-GRAM, FERM, GLUE, and PH domain families (Balla, 

2005; Behnia and Munro, 2005; Di Paolo and De Camilli, 2006; Lemmon, 2008; 

Takenawa and Itoh, 2006). PIs and GTPases cooperatively interact to recruit specific 

downstream effector proteins to the membranes in which they reside and mediate an 

extensive network of signaling events (Botelho et al., 2008). PI metabolizing enzymes 

can control multiple cellular functions simultaneously through regulation of a single PI 

species. Therefore tight control of PI levels by PI kinases and phosphatase is necessary 

in order for cells to orchestrate multiple signaling pathways (Duex et al., 2006). 

1.2 PIs and phagocytosis 

PIs interconvert during phagocytosis and later stages of phagosomal maturation 

into the phagolysosome. The dynamic conversion of PIs has an essential role in 

phagosomal membrane remodeling and phagolysosome biogenesis. Phagocytosis can 

be divided to two steps: 1) phagosome formation, and 2) phagosomal maturation into a 

phagolysosome (Deretic V, 2007). Phagosome formation and pathogen uptake are 

parts of a complicated process that starts with phagocytic cup formation, followed by 

phagosome extension and phagosome closure. 



 

Membrane and cytoskeleton remodeling processes governed by temporal and 

spatially regulated phospholipid interconversions are essential for phagosome formation 

and pathogen uptake. In a newly made phagocytic cup, PI(4)P is converted transiently 

to PI(4,5)P2 by PI(4)P kinase. Then, PI(4,5)P2 is quickly cleaved to diacylglycerol and 

inositol phosphates by phospholipase C (Scott et al., 2005). These PI changes control 

actin polymerization and pseudopod extension. Finally, formation of PI(3,4,5)P3, 

recruitment of Rho GTPases, and activation of their effectors lead to controlled myosin 

contraction and phagosomal completion and closure (Dewitt et al., 2006). 

The second step of phagocytosis is the maturation of the phagosome into the 

phagolysosome. Phagosome maturation starts immediately after phagosome closure. A 

nascent phagosome undergoes serial fusion events with early endosomes, late 

endosomes, and lysosomes (Desjardins et al., 1994). These steps are governed by the 

formation of PI(3)P by type III PI3K on the early phagosomal membrane (Ellson et al., 

2001; Fratti et al., 2001; Vergne et al., 2003b; Vieira et al., 2001). PI(3)P recruits 

effector proteins to the cytosolic face of the phagosome through various binding 

domains such as PX (phox homology), FYVE, Hrs and EEA1 (early endosomal antigen 

1). Remodeling of the phagosome membrane along with changing of the lumen to an 

acidic, oxidative, and degradative environment results in the biogenesis of the 

phagolysosome (Birkeland and Stenmark, 2004; Vieira et al., 2004). Intracellular 

pathogens such as M. tuberculosis and L. pneumophila arrest the trafficking events 

required for phagolysosome biogenesis in the phagocytosis pathway in order to survive 

in the host cell (Horwitz, 1983a; Russell et al., 2002). 

 



 

1.3 Modulation of host PI metabolism by intracellular pathogens 

After uptake by their host cells, intracellular pathogens use various strategies to 

manipulate the host cellular pathways and escape lysosomal degradation(Hilbi, 2006a). 

Adaptation to the acidic environment of the host lysosome is a survival strategy that has 

only been evolved by Coxiella burnetii (Voth and Heinzen, 2007). Lysing the 

phagosomal membrane in order to escape to the host cytoplasm and multiply is the 

method chosen by Shigella spp. and Listeria monocytogenes (Cossart and Sansonetti, 

2004). Some intracellular pathogens form a specialized pathogen-containing vacuole 

that can avoid fusion with the host lysosomes and provide a safe niche for bacterial 

replication. These pathogen-containing compartments are derived from a variety of 

endocytic compartments. For example, Mycobacterium tuberculosis amplifies and 

survives in early endosome-like organelles (Vergne et al., 2004). Salmonella 

enterica resides in a compartment that has characteristics of late endosome (Steele-

Mortimer, 2008). L. pneumophila forms a Legionella-containing vacuole (LCV) that 

resembles the rough ER membrane (Roy, 2002; Roy and Tilney, 2002). 

Regardless of the strategy that a pathogen uses, bacterial pathogens employ 

their virulent factors to subvert the host cellular machinery in targeted ways that support 

their survival and replication in host cells. Intracellular gram-negative bacteria use type 

II, III, or IV secretion systems to directly inject and translocate virulence effector proteins 

into host cells. These effector proteins play significant roles in targeting key molecules 

in host cellular processes including immune response, cell proliferation and cell death, 

cytoskeleton and membrane rearrangement, and vesicular trafficking. Ultimately, these 

effector proteins serve to subvert the host cellular machinery during infection for the 



 

benefit of the infecting bacteria (Amer and Swanson, 2002; Backert and Meyer, 2006; 

Coburn et al., 2007; Cossart and Sansonetti, 2004; Rosenberger and Finlay, 2003). 

Recently, lipid signaling, and in particular, PI signaling, as well as metabolism 

have been shown to be important targets for bacterial virulence factors (DeVinney R, 

2000; Hilbi, 2006b; Pizarro-Cerdà J, 2004). Considering the pivotal roles of PIs in 

almost every cellular signaling and vesicular trafficking event, it is not surprising that 

many intracellular pathogens exploit host PI metabolism as a common strategy to infect 

their host cells (DeVinney R, 2000; Hilbi, 2006b; Pizarro-Cerdà J, 2004). 

Intracellular pathogens can exploit the host PI signaling using different strategies. 

They can encode PI metabolizing enzymes that directly affect host cell PIs levels. They 

can make proteins or lipids that affect host PI metabolizing enzymes and by extension, 

host cells PI levels. They can generate PI-binding effector proteins that attach to PIs on 

the surface of pathogen-containing vacuole (PCV). Using these strategies, intracellular 

pathogens modulate PI levels on various compartments in the endocytic/phagocytic 

pathway, which ultimately results in their transformation into PCV and prevents their 

fusion with host lysosomes (Pizarro-Cerda and Cossart, 2004). 

1.3.1 Salmonella enterica infection and PI metabolism 

Salmonella enterica is a facultative intracellular pathogen that can infect a variety 

of eukaryotic cells and causes foodborne gastroenteritis and typhoid fever in humans. 

Salmonella is an invasive bacterium that can induce phagocytosis in non-phagocytic 

host cells and promote its own internalization through inducing cytoskeleton and 



 

membrane rearrangements. These changes can be observed as membrane ruffles on 

the host cell surface. 

Once inside the host, Salmonella resides and replicates in Salmonella-containing 

vacuoles (SCVs), which are late endosome-like vesicles that avoid fusion with 

lysosomes by exploiting host vesicular trafficking and the endocytic pathway (Cossart 

and Sansonetti, 2004). The SCV is a dynamic structure that first acquires markers of 

early endosomes such as Rab5 and EEA1, followed by acquisition of late endosomes 

molecules such as Rab7 and LAMP1. It excludes the mannose 6-phosphate receptor 

(M6PR) and cathepsin that are normally found in a mature phagosome (Knodler and 

Steele-Mortimer, 2003). Salmonella pathogenicity, SCV formation, and regulation of 

SCV trafficking are dependent on an array of bacterial effector proteins that are 

translocated to the host cell cytosol. Two different type III secretion systems are used to 

inject about 30 effector proteins into the host cells in order to secure S. enterica’s 

internalization and replication in the host cells (Steele-Mortimer, 2008). 

Among other effector proteins, S. enterica translocates a PI phosphatase to the 

host cells. SopB, also called SigD, has 4-phosphatase motifs and a synaptojanin-like 5-

phosphatase domain (Marcus et al., 2001). SopB hydrolyzes PI(4,5)P2 to generate 

PI(5)P at the plasma membrane of host cells (Marcus et al., 2001; Niebuhr et al., 2002; 

Norris et al., 1998). SopB uses its PI phosphatase activity to enhance pathogenicity at 

several stages in the bacterial life cycle. SopB is involved in S. enterica uptake, 

biogenesis and maturation of the SCV, and S. enterica intracellular survival in host cells. 

SopB contributes to bacterial uptake and host cell invasion by activating Rho GTPases 

such as RhoG, leading to actin rearrangements (Patel and Galan, 2006). It also 



 

activates the Rho/Rho kinase/myosin II pathway that promotes actomyosin-mediated 

contractility (Hanisch et al., 2011). Overall, SopB modulates host plasma membrane PI 

composition to promote the formation of SCVs (Hernandez et al., 2004; Mallo et al., 

2008; Mason et al., 2007; Terebiznik et al., 2002). 

SopB promotes SCV maturation through several potential pathways. First SopB 

recruits Rab5 and its effector Vps34 PI3kinase to nascent SCVs (Mallo et al., 2008). 

Second it recruits sorting nexins-1 and sorting nexins-3 to nascent SCVs (Braun et al., 

2010; Bujny et al., 2008). Finally, SopB may inhibit SCV fusion with lysosomes 

(Bakowski et al., 2010). 

SopB can also activate the PI 3-kinase/Akt survival pathway to avoid host cell 

death through apoptosis by increasing of PI(5)P levels generated from PI(4,5)P2 

dephosphorylation. Although the molecular mechanism of how cell survival signals can 

be triggered by PI5P is not completely understood yet, it seems that the action of PI5P 

is connected to growth factor receptor signaling in the host cells. Epidermal growth 

factor receptor (EGFR) is activated during infection through an unknown mechanism. 

And, it has been proposed that PI5P can modify EGFR signaling and trafficking by 

preventing activated EGFR degradation. Accumulation of EGFR and its downstream 

effectors in endosomes then triggers “endosome-specific” signaling of activated EGFR. 

This specific EGFR signaling has been suggested to promote the PI3K and Akt pathway 

and sustain cell survival (Ramel et al., 2009; Ramel et al., 2011; Steele-Mortimer et al., 

2000).In addition, SopB may play a role in fluid loss during Salmonella infection by 

hydrolyzing PI(4,5)P2, which disrupts the host cell’s tight junctions and inhibition of the 

Na+/H+ exchange activity, as well as rearrange the actin cytoskeleton and plasma 



 

membrane (Mason et al., 2007). Thus, SopB contributes in various ways to Salmonella 

infection from the early stages of invasion to the intracellular phase of Salmonella 

survival. 

1.3.2 Shigella flexneri infection and PI metabolism  

The facultative intracellular gram-negative enterobacterium Shigella is the 

causative agent of shigellosis or bacillary dysentery, an invasive infection in the human 

colonic epithelium. Shigellosis manifests as a spectrum of clinical symptoms from a 

short lasting diarrhea to acute inflammatory bowel disease (Schroeder and Hilbi, 2008). 

Among other effector proteins, Shigella flexneri encodes a PI phosphatase 

effector, IpgD, which is a homolog of SopB (Marcus et al., 2001). IpgD can hydrolyze a 

wide range of PIs in vitro, but it functions as a PI-4 phosphatase during infection and 

hydrolyzes PI(4,5)P2 at the plasma membrane of host cells to generate PI(5)P (Niebuhr 

et al., 2002). 

The PI phosphatase activity of IpgD contributes to Shigella flexneri uptake and its 

intracellular survival in the host cells. Hydrolysis of PI(4,5)P2 at the host plasma 

membrane by IpgD disrupts the interaction between PI(4,5)P2-binding cytoskeleton 

proteins and the plasma membrane, resulting in reorganization of the actin cytoskeleton 

and destabilization of the membrane/cytoskeleton interaction. This weakened 

interaction facilitates membrane ruffles and filopodia formation, which are required for 

bacterial uptake (Niebuhr et al., 2002). Furthermore, the IpgD-dependent increase in 

PI(5)P at the bacterial entry foci at the host plasma membrane activates the host class 

IA PI 3-kinase (PI3KIA), which results in over production of PI(3,4)P2 and PI (3,4,5)P3. 



 

Elevated levels of these PIs activate the serine/threonine kinase Akt/PKBa survival 

pathway. In the meantime, PI(5)P induces PP2A phosphatase inhibition and prevents 

Akt from dephosphorylation, therefore keeping the Akt activated and preventing host 

cell death through apoptosis (Ramel et al., 2009). 

1.3.3 Mycobacterium tuberculosis infection and PI metabolism  

Mycobacterium tuberculosis is the causative agent of the chronic pulmonary 

disease tuberculosis. M. tuberculosis resides and replicates in Mycobacterium-

containing vacuoles (MCVs). Similar to other intracellular pathogens, MCVs avoid fusion 

with lysosomes. MCVs are early endosome-like compartments and contain the small 

GTPase Rab5, a marker for early endosomes. MCVs do not contain late endosomal 

markers (Rab7) and lysosomal proteins like the vacuolar proton pump, V-ATPase, and 

hydrolases (Russell et al., 2002). 

M. tuberculosis blocks phagosome maturation partly by modulating the host PI 

metabolism. M. tuberculosis encodes two translocated PI phosphatases, SapM and 

MptpB, which can both hydrolyze PI(3)P on the MCV to prevent the endocytic pathway 

from progressing by keeping levels of PI(3)P on the MCV low (Beresford et al., 2007; 

Vergne et al., 2005). SapM is an acid phosphatase present in mycobacterium 

phagosomes and shows PI-phosphatase activity specifically for PI(3)P in vitro. Its 

enzymatic activity is required for inhibition of phagosome maturation (Vergne et al., 

2005). MptpB is a dual-specificity protein phosphatase and PI phosphatase that 

preferentially hydrolyzes PI(3)P and PI(3,5)P2 in vitro (Beresford et al., 2007). MptpB is 

an essential secreted virulence factor for maintaining mycobacterial infection (Singh et 



 

al., 2003). Thus, two M. tuberculosis PI(3)P phosphatases, SapM and MptpB, most 

likely work synergistically to deplete PI(3)P from MCVs. 

Another strategy used by M. tuberculosis to exploit the host PI metabolism is to 

encode molecules that mimic the PIs. M. tuberculosis secretes glycosylated 

phosphoinositide analogue lipoarabinomannan (LAM), a toxin that also contributes to 

PI(3)P depletion on the MCV and phagosome maturation arrest (Fratti et al., 2001). This 

PI analog inhibits activation of the Ca2+/calmodulin PI-3 kinase hVPS34 cascade, which 

is necessary for PI(3)P production on phagosomes (Vergne et al., 2003b). M. 

tuberculosis also produces another PI analog: phosphatidylinositol mannoside (PIM). 

PIM is the precursor of LAM and promotes fusion between early endosomes and 

phagosomes in a PI3K-independent fashion. Therefore, PIM supports the 

communication between MCVs and endosomes and ensures M. tuberculosis access to 

nutrients despite the inhibition in trafficking resulting from PI(3)P depletion (Vergne et 

al., 2004). M. tuberculosis has evolved two different strategies to keep the MCV low in 

PI(3)P during its tenancy in the infected macrophages, by blocking PI(3)P synthesis 

using LAM, and by hydrolyzing PI(3)P using PI-3-phosphatases (SapM and MptpB). 

1.4 Legionella pneumophila is the causative agent of Legionnaires' disease  

The causative agent of Legionnaires' disease, L. pneumophila, is a Gram-

negative bacterium found in freshwater reservoirs. The primary natural host of L. 

pneumophila are freshwater amoebae (Rowbotham, 1980). When humans aspirate 

bacteria-containing water or accidentally inhale water aerosols containing L. 



 

pneumophila, the bacterium can infect alveolar macrophages and cause respiratory 

disease (Fraser et al., 1977; Horwitz, 1983b; McDade et al., 1977). 

L. pneumophila enters host cells through phagocytosis. Once inside the cell, it 

resides in a modified phagosome that does not follow nor complete the phagocytosis 

pathway, thereby avoiding lysosomal fusion. This transformed phagosome is called a 

Legionella-containing vacuole (LCV), which morphologically resembles the host cell’s 

rough endoplasmic reticulum (ER) (Roy, 2002; Roy and Tilney, 2002) and provides a 

safe niche for bacterial replication. L. pneumophila establishes the LCV by hijacking 

host vesicles and manipulating host intracellular trafficking. Several small GTPases that 

are involved in endosomal or late secretory pathways are anchored on the LCV during 

infection and assist in L. pneumophila’s pathogenesis. LCVs go through maturation 

through their interactions with the ER-derived vesicles, mitochondria, and with the ER 

(Isberg et al., 2009; Kagan and Roy, 2002). 

Establishment and maturation of the LCV is dependent on a type IV bacterial 

secretion system (T4BSS) called Intracellular multiplication/Defective for organelle 

trafficking (Icm/Dot). Using this secretion system, L. pneumophila injects almost 300 

secreted effector proteins into its host cells to facilitate LCV formation and maturation 

(Berger and Isberg, 1993; Horwitz, 1987; Hubber and Roy, 2010; Zhu et al., 2011). 

Although the Icm/Dot T4BSS is an important virulence factor, the function and host cell 

targets of the majority of the Icm/Dot–translocated effectors are unclear. Only very 

small fractions of these effector proteins have known molecular functions, but as a 

whole, they are believed to play important roles in the LCV biogenesis and intracellular 

multiplication of L. pneumophila. 



 

L. pneumophila can infect a broad range of hosts, including many amoeba 

species, ciliate protozoa and various macrophage-like mammalian cells, as well as 

epithelial cells (Fields, 1996; Lau and Ashbolt, 2009). In the 1980s, Horwitz et al. 

defined the life cycle of L. pneumophila in human phagocytic cells (Horwitz, 

1983a)(Figure 1.1). Rowbotham was the first to show that L. pneumophila infects 

amoebae and also was the first to characterize the life cycle of the bacterium in 

amoebae (Rowbotham, 1980, 1986) (Figure 2.1). Besides a few observable differences, 

the L. pneumophila infection cycle is highly similar between amoeba and macrophages 

at the cellular and microscopic levels (Fields et al., 2002). L. pneumophila enters both 

hosts through phagocytosis and resides in the LCV to avoid lysosomal fusion. During 

infection in both hosts, the establishment of the LCV involves recruiting ER vesicles, 

ribosomes and mitochondria (Escoll et al., 2013; Isberg et al., 2009). 

The common strategies used by L. pneumophila to infect both amoeba and 

macrophages suggest that the ability of L. pneumophila to infect macrophages may 

have evolved during co-evolution of L. pneumophila and amoeba. The mutual 

interactions between L. pneumophila and amoeba may have provided the bacteria with 

the necessary molecular strategies to infect and survive in mammalian macrophages 

(Al-Quadan et al., 2012; Cianciotto and Fields, 1992; Franco et al., 2009; Newsome et 

al., 1985). 

1.5 L. pneumophila uses the Icm/Dot T4BSS to inject effector proteins into its 
host 

The Icm/Dot T4BSS is essential for LCV formation and L. pneumophila 

replication in both amoeba and macrophages (Segal and Shuman, 1999). This 



 

 

Figure 1.1 Morphology of L. pneumophila-containing vacuoles in monocytes 1 
hour after infection. Monocytes in monolayer culture were infected with L. 
pneumophila. After 15 minutes incubation with the bacteria, the monocyte monolayer 
were washed to remove non-monocyte-associated bacteria, incubated for an additional 
45 minutes, and fixed for electron microscopy. (A) L. pneumophila vacuole with a single 
mitochondria (arrow) closely apposed to the vacuolar membrane. A few smooth vesicles 
also surrounded the vacuole. ×78000. (B) Two L. pneumophila vacuoles, one of which 
is located within an invagination of the nuclear envelope. ×41700 (C) L. pneumophila 
vacuoles surrounded by smooth vesicles and a mitochondria ×33000. (D) L. 
pneumophila vacuoles surrounded by a very large number smooth vesicles and at least 
one mitochondria (arrow). ×32400. (E) L. pneumophila vacuole surrounded by 5 
mitochondria (arrows) and a few vesicles. × 54000 . Figure and the figure legend are 
taken from (Horwitz, 1983a). 



 

 

 

Figure 1.2 The life cycle of L. pneumophila. The cycle begins with the attachment to, 
and the invasion of an amoebal host. Post-internalization events include inhibition of 
phagosome-lysosome fusion and alteration of organelle traffic. L. pneumophila 
replicates in a ribosome-decorated vacuole that associates with the ER and acquires 
ER markers. After replication is finished the progeny exit the wasted amoeba to 
reinitiate the cycle. The life cycle of L. pneumophila is associated with bacterial 
differentiation. The two main morphological forms are the mature intracellular form, or 
MIF, and the replicative form, or RF, which differentiate into each other via 
intermediates. MIFs play a central role in the infection of amoeba and are the potential 
agents that spread Legionnaires’s disease to humans, either free or packaged into 
vesicles. MIF-laden vesicles may be directly released by amoebae or indirectly by 
ciliates via an additional packaging step. Figure and the figure legend are taken from 
(Rowbotham, 1986). 

 

   



 

indispensable virulence apparatus is a multi-protein system encoded by a set of highly 

conserved genes among Legionella species (Berger and Isberg, 1993; Brand et al., 

1994; Marra et al., 1992). Most of the 27 Icm/Dot genes are required for establishment 

of the LCV and intracellular growth of L. pneumophila. Mutations in many of these 

genes disrupt ER-derived vesicle recruitment to the LCV and acquisition of late 

endosomal markers by the LCV (Berger et al., 1994; Isberg et al., 2009; Tilney et al., 

2001). 

The Icm/Dot T4BSS translocates an exceptionally high number of effector 

proteins into the host cell cytosol (Segal et al., 1998; Vogel et al., 1998). These 

translocated proteins modulate several host cell processes such as organelle trafficking, 

and contribute to the biogenesis of a “replication permissive” LCV (Shin and Roy, 2008; 

Vogel and Isberg, 1999). 

Almost 300 protein substrates of the Icm/Dot translocation system have been 

identified (Altman and Segal, 2008; Burstein et al., 2009; Campodonico et al., 2005; 

Conover et al., 2003; de Felipe et al., 2008; Lifshitz et al., 2013; Luo and Isberg, 2004; 

Ninio and Roy, 2007; Shohdy et al., 2005; Zusman et al., 2007). The function of the 

majority of these translocated proteins is not yet known, but they are believed to 

modulate host cell vesicular trafficking, apoptosis, and immune responses to support 

LCV formation and L. pneumophila intracellular multiplication (de Felipe et al., 2008; 

Derre and Isberg, 2005; Hubber and Roy, 2010; Ingmundson et al., 2007; Machner and 

Isberg, 2006; Murata et al., 2006; Nagai et al., 2002; Shohdy et al., 2005). The majority 

of effector proteins are non-essential due to high functional redundancy, making 

function determination for each Icm/Dot substrate complicated. In fact, concurrent 



 

deletion of more than 30% of Icm/Dot substrates only affects L. pneumophila in subtle 

ways in a mouse macrophage system (O'Connor et al., 2011). In addition to the 

redundancy among bacterial effector proteins, multiple host vesicular trafficking 

pathways may contribute to LCV formation. This may explain why virulence is preserved 

upon deletion of many bacterial effector genes (Dorer et al., 2006). 

1.6 The life cycle of L. pneumophila 

1.6.1 Attachment of L. pneumophila to host cells 

The first step in L. pneumophila infection is attachment to the host cell surface. 

Both bacterial and host factors are involved in this attachment. Several L. pneumophila 

proteins including RtxA, PilEL, EnhC, MOMP, LadC, and Lcl have been implicated in 

the binding of L. pneumophila to host cells. RtxA and PilEL are involved in the 

attachment of the bacteria to both human macrophages and amoeba (Cirillo et al., 

2002; Stone and Abu Kwaik, 1998). L. pneumophila rtxA and pilEL single mutants are 

defective in attachment to and entry into human epithelial and monocytic cell lines 

(Cirillo et al., 2002). Moreover, the major outer membrane protein (MOMP), a L. 

pneumophila collagen like protein (Lcl), and a putative L. pneumophila-specific 

adenylate cyclase in the bacterial inner membrane (LadC) are involved in the adhesion 

L. pneumophila to macrophages (Bellinger-Kawahara and Horwitz, 1990; Krinos et al., 

1999; Newton et al., 2008; Vandersmissen et al., 2010). 

On the other hand, L. pneumophila exploits different host factors to attach to their 

cell surface in a host specific manner. This is true even when L. pneumophila infects 

different species of amoeba. In Hartmannella vermiformis infection, the host surface 

lectin galactose/N-acetylgalactosamine (Gal/GalNAc) acts as a receptor for L. 



 

pneumophila (Venkataraman et al., 1997). However, this molecule does not seem to 

play a role in the attachment of L. pneumophila to Acanthamoeba polyphaga. This 

implies that different mechanisms are involved in the attachment of L. pneumophila to 

different species of amoeba (Harb et al., 1998). L. pneumophila proteins MOMP and Lcl 

and the macrophages complement receptors CR1 (CD35) and CR3 (CD18/CD11b) on 

the macrophage surface participate in complement-mediated attachment of the bacteria 

to macrophages (Payne and Horwitz, 1987). In addition, non-complement-mediated 

attachment of L. pneumophila has also been reported (Elliott and Winn, 1986; Gibson et 

al., 1994; Lau and Ashbolt, 2009; Rodgers and Gibson, 1993). All the available data 

point to L. pneumophila adhesion to the host cell being a host-specific process. 

1.6.2 Phagocytosis of L. pneumophila by host cells 

L. pneumophila uptake is predominantly mediated by host-mediated 

phagocytosis. L. pneumophila is phagocytosed by macrophages through a unique 

process called “coiling phagocytosis” following attachment to the host cell surface 

(Horwitz, 1984) (Figure 3.1). Unlike the conventional symmetrical and circumferential 

(zipper-like) phagocytosis, in coiling phagocytosis, extracellular bacteria are 

asymmetrically engulfed and encircled by unilateral pseudopods (Rittig et al., 1998). 

The functional significance of coiling phagocytosis on the virulence of L. pneumophila is 

not clear, as other Legionella strains and species can be taken up through conventional 

phagocytosis by their host (Al-Quadan et al., 2012; Elliott and Winn, 1986; Molmeret et 

al., 2005; Rechnitzer and Blom, 1989). Uptake of L. pneumophila by amoebae is 

mediated by both coiling and conventional phagocytosis (Abu Kwaik, 1996; Bozue and 

Johnson, 1996). Although L. pneumophila internalization primarily occurs through host- 



 

 



 

Figure 1.3 Phagocytosis of L. pneumophila by Human Phagocytes. L. pneumophila 
were mixed and then sedimented with monocytes (A-D, G, H), alveolar macrophages 
(E), or polymorphonuclear leukocytes (F, I) at 4° C, incubated for 3.5 min at 37 °C to 
allow phagocytosis to proceed, and rapidly fixed and processed for electron microscopy, 
as described in the text. (A) Cross-section through a monocyte showing the monocyte 
ingesting seven L. pneumophila (arrows), six of which are individually enclosed within a 
closed coiled monocyte pseudopod, (8650X). (B) Micrograph showing, at higher 
magnification, a monocyte ingesting a single L. pneumophila. The bacterium is located 
in the center of a coiled monocyte pseudopod. As is frequently the case, the bacterium 
contains a lucent fat vacuole, (28500X). (C) Cross-section of monocyte phagocytosis of 
L. pneumophila from a different perspective than in (A) and (B). The pseudopod coil 
(arrow) is sectioned along its axis so that bacterium is located between finger-like 
projections of monocyte membrane (5700X). (D) Higher magnification micrograph 
showing a monocyte ingesting L. pneumophila from the same perspective as in C. 
(22500X). (E) Cross-section through an alveolar macrophage showing the macrophage 
a L. pneumophila bacterium (large arrow). The alveolar macrophage contains numerous 
cytoplasmic inclusions characteristic of these cells (small arrows, (22500X). (F) Cross-
section through polymorphonuclear leukocyte showing the phagocyte ingesting three L. 
pneumophila in pseudopod coils. (arrow), (7400X). (G) Late stage in monocyte 
phagocytosis of L. pneumophila. The monocyte has enclosed the bacterium in an 
intracellular vacuole. Incomplete fusion of monocyte plasma membrane about the 
bacterium has resulted in the creation of an intracellular sinus (arrow) continuous with 
the phagosome, (43000X). (H) and (I). Late stage in monocyte (H) and 
polymorphonuclear leukocyte (I) phagocytosis of L. pneumophila. The phagosomes 
contain what appear to be tucked-in protrusions of phagocyte membrane (arrow) caught 
in the vacuole during its formation. (H) (43000X), (I) (22500X) Figure and the figure 
legend are taken from (Horwitz, 1984). 

  



 

driven phagocytosis, Icm/Dot translocated effectors such as LaiA/SdeA may mediate 

attachment and uptake of L. pneumophila as well (Bardill et al., 2005; Chang et al., 

2005). L. pneumophila laiA/sdeA mutants are defective in attachment to and infection 

of epithelial cells. However, the biochemical mechanism behind how these effector 

proteins affect L. pneumophila adherence and uptake remains unknown. 

on the host side, coronin and actin are implicated in L. pneumophila 

phagocytosis in both macrophages and amoebae (Escoll et al., 2013). In macrophages, 

the formation of a nascent phagosome is greatly actin-dependent and sensitive to the 

actin polymerization inhibitor drug cytochalasin-D during L. pneumophila uptake 

(Charpentier et al., 2009; Elliott and Winn, 1986; Hayashi et al., 2008; King et al., 1991). 

L. pneumophila uptake by the amoeba Dictyostelium discoideum is also actin-

dependent (Lu and Clarke, 2005; Peracino et al., 2006; Weber et al., 2006). In addition, 

in both U937 macrophage-like cells and D. discoideum transient recruitment of the 

actin-binding protein, coronin, to the phagocytic cup and to the nascent phagosome 

have been shown during L. pneumophila uptake (Hayashi et al., 2008; Lu and Clarke, 

2005). In summary, phagocytosis of L. pneumophila seems to be conserved at the 

molecular level between macrophages and amoebae. 

1.6.3 Endocytic pathway and how L. pneumophila can avoid vacuole acidification 

During phagocytosis, the nascent phagosomes go through an intracellular 

pathway that mirrors the endocytic pathway. The phagosome is transformed to a 

phagolysosome following serial fusion and fission events with endosomes, late 

endosomes, and lysosomes (Desjardins et al., 1994). The phagosome lumen becomes 

acidic and oxidative during the biogenesis of phagolysosomes, which then brings about 



 

bacterial degradation (Birkeland and Stenmark, 2004; Vieira et al., 2004). However, L. 

pneumophila can evade the endocytic pathway and prevent phagosome-lysosome 

fusion after being internalized by the host cells. During infection, especially within 6 

hours after bacterial uptake, the LCV lumen remains neutral (Horwitz, 1983b; Sturgill-

Koszycki and Swanson, 2000; Swanson and Hammer, 2000). Around 18 h post-

infection, the LCVs acquire endosomal markers such as lysosomal-associated 

membrane protein 1 (LAMP-1) and become acidic. Meanwhile, L. pneumophila bacteria 

residing in these late LCVs change from an acid-sensitive state to an acid-resistant one. 

(Sturgill-Koszycki and Swanson, 2000; Swanson and Hammer, 2000). In fact, the fusion 

of late replicative LCVs with the lysosomal compartment promotes L. pneumophila 

growth in macrophages (Swanson and Hammer, 2000). 

Despite the ability of L. pneumophila to tolerate acidification of the LCV in 

macrophages at later stages of infection, maintaining neutral pH and avoiding vacuole 

acidification is necessary for successful infection during the early stages of the L. 

pneumophila life cycle. However, our knowledge of the molecular mechanisms 

governing how the LCV avoids vacuole acidification during early stages of infection is 

limited to a single study (Xu et al. 2010). Lumenal acidification of phagolysosomes is 

mainly mediated by ATP-dependent proton transporters, Vacuolar type H+-ATPases (V-

ATPases) (Forgac, 2007). Interestingly, SidK, a L. pneumophila effector protein, inhibits 

the activity of the v-ATPase proton transporter through direct interaction with VatA, a 

key component of the proton pump that is responsible for ATP hydrolysis of the pump 

(Xu et al., 2010). Since avoidance of v-ATPase recruitment to the LCV is also known to 

be required for amoeba infection, it seems that v-ATPase activity at early stages of 



 

infection is essential for successful L. pneumophila infection in both macrophages and 

amoeba (Escoll et al., 2013). 

1.6.4 Remodeling of the LCV 

Although formation of the LCV and avoidance of the endocytic pathway and 

vacuole acidification are essential for bacterial survival, remodeling the nascent LCV to 

a replication-permissive LCV by the host secretory pathway is required for bacterial 

growth in the host cells. In the process of remodeling, the LCV recruits host cell 

mitochondria. The LCV also recruits and fuses with the ER-derived small vesicles and 

rough ER (Horwitz, 1983a; Tilney et al., 2001). In addition, L. pneumophila also hijacks 

host polyubiquitinated (polyUb) proteins and decorates the LCV with them during LCV 

remodeling (Dorer et al., 2006; Lomma et al., 2010; Price et al., 2011). At the molecular 

level, LCV remodeling is very similar between amoeba and macrophages (Escoll et al., 

2013). 

Formation and maturation of the LCV occurs mostly in two phases through its 

interaction with the host secretory pathway. In the first phase, shortly after L. 

pneumophila uptake, the early “legionella-containing phagosome” intercepts vesicles 

exiting the ER and fuses with them. This process is dependent on the function of host 

Sar1 protein (small GTPase of the COPII), COPII protein (coat protein complex II), and 

the L. pneumophila Icm/Dot system. In this early phase, the LCV also recruits host 

mitochondria and polyUb proteins. In the second phase, ER membranes fuse with the 

LCV and deliver their content to the lumen of the LCV in a host Arf1 (ADP-ribosylation 

factor-1)-dependent manner (Kagan and Roy, 2002; Kagan et al., 2004) . Arf1 is a 

member of small guanine nucleotide-binding proteins (G-proteins) or small GTPase Arf 



 

family that play essential roles in vesicular trafficking among different compartments 

(Donaldson and Jackson, 2000). 

The LCV recruits ER-derived vesicles and fuses with them 

Shortly after L. pneumophila uptake, during the early phase of LCV remodeling, 

the LCV interacts with the vesicles exiting the ER to exploit them for its own maturation. 

The host small GTPases Sar1, Arf1, and Rab1 have essential roles for LCV maturation. 

Small GTPases serve as molecular switches for many cellular events. Whether the 

GTPase is turned “on” or “off” depends on whether it is associated with GTP or GDP, 

respectively. While the GDP-bound GTPase is inactive and cytosolic, the active GTP-

bound GTPase is membrane bound and capable of interacting with proteins that mostly 

regulate vesicular and membrane transport. Members of the Arf and Rab families of 

small GTPases play essential roles in eukaryotic vesicular trafficking. Sar1, Arf1, and 

Rab1 also play critical roles in LCV maturation, consistent with L. pneumophila’s ability 

to exploit the host secretory pathway. 

Sar1 regulates COPII-coated vesicles formation. These vesicles are generated in 

ER exit sites (ERES) and facilitate cargo transportation from the ER to the Golgi 

complex (Sato and Nakano, 2007). Knockdown using siRNA, pharmacological 

inhibition, or dominant negative expression of Sar1 all show that Sar1 is essential for 

the formation of a “replication permissive” LCV(Dorer et al., 2006; Kagan and Roy, 

2002). When cells expressing the dominant negative Sar1H79G mutant were infected 

with L. pneumophila, the LCV was not associated with the ER-derived vesicles. These 

results show that Sar1 function is important for recruiting vesicles from the ERES and 

tethering them to the LCV. 



 

The small GTPase Rab1 is another host protein that is required for the early 

stages of LCV maturation. Rab GTPase family members regulate membrane transport 

and fusion in cells by recruiting cellular tethering factors and motor proteins (Stenmark, 

2009). Rab1 is associated with host Golgi membranes and ER-derived vesicles and 

regulates protein transport from the ER to the Golgi apparatus by recruiting tethering 

factors (Moyer et al., 2001). Rab1 is recruited to the LCV in an Icm/Dot system-

dependent manner and contributes to the recruitment of ER-derived vesicles to the LCV 

(Derre and Isberg, 2004; Kagan et al., 2004). The mechanism for this recruitment may 

be via Rab1’s cooperation with L. pneumophila effector proteins that are involved in 

tethering of ER-derived vesicles (Machner and Isberg, 2006). L. pneumophila encodes 

a number of translocated effectors that regulate Rab1 activity and its recruitment to the 

LCV (Ingmundson et al., 2007; Machner and Isberg, 2007; Murata et al., 2006). 

SidM/DrrA has a substantial contribution to Rab1 recruitment to the LCV and its 

activation (Machner and Isberg, 2006; Murata et al., 2006; Nagai et al., 2002). 

SidM/DrrA is able to bind to PI(4)P through a novel 12 kDa C-terminally located P4M 

(PI(4)P-binding of SidM/DrrA) domain, which facilitates SidM/DrrA anchorage on the 

LCV. SidM/DrrA is a L. pneumophila Rab1 guanosine exchange factor (GEF) and a 

GDP dissociation inhibitor displacement factor (GDF) for Rab1. Both the GEF and GDF 

activities of SidM/DrrA are required for activation of Rab1. Thus, L. pneumophila uses a 

single effector protein, SidM/DrrA, to support recruitment of Rab1 and activate Rab1 by 

its GDF and GEF activities (Ingmundson et al., 2007; Machner and Isberg, 2007). 

Moreover, SidM lengthens the activation of Rab1 by functioning as an enzyme that 

catalyzes the covalently attaching of adenosine monophosphate (AMP) to Rab1, a post-



 

translational modification called “AMPylation” that limits GTPase activating proteins 

(GAPs) access to Rab1 (Muller et al., 2010). 

In addition, another L. pneumophila PI-binding effector, LidA, enhances the 

SidM-driven recruitment of Rab1 (Machner and Isberg, 2006; Murata et al., 2006). LidA 

localizes to the cytoplasmic face of the LCV, activates SidM/DrrA, and therefore 

cooperates with SidM/DrrA for Rab1 recruitment to the LCV (Conover et al., 2003; 

Machner and Isberg, 2006). LidA preferentially binds to active Rab1 with an 

exceptionally high affinity and stabilizes this active form of Rab1 by blocking the 

interaction of Rab1 with GAPs. In addition, LidA stabilizes the active Rab1 by preventing 

de-AMPylation and dephosphocholination of Rab1 by two other bacterial effectors: SidD 

and Lem3, likely through steric hindrance (Neunuebel et al., 2012). 

In contrast to SidM/DrrA, the L. pneumophila effector protein LepB, inactivates 

Rab1 by functioning as a GAP and facilitates removal of Rab1 from the LCV 

(Ingmundson et al., 2007). Thus, L. pneumophila encodes effector proteins that 

modulate Rab1 activity on the LCV by either activation or deactivation of Rab1 in 

diverse ways: through Rab1 GDI-displacement (GDF), nucleotide exchange (GEF), 

post-translational modifications (adenylylation, phosphocholination) or GTP hydrolysis 

(GAP). How all these effector proteins temporally coordinate their regulation of Rab1 on 

the LCV is a very interesting open question. 

After being recruited to the LCV, the vesicles exiting the ER fuse with the LCV by 

exploiting the host protein Sec22b, a soluble NSF attachment protein receptor (SNARE) 

protein localized on the LCV-bound ER-derived vesicles, and syntaxins, which are PM-

SNARES on the cytosolic surface of the LCV. SNARE proteins mediate membrane 



 

fusion at all levels of the secretory pathway. In general, SNARE proteins are present in 

the donor and acceptor membranes and mediate the interaction between these 

membranes through the highly conserved four-helix bundle SNARE motifs that bring the 

membranes together and drive their fusion. The SNARE complex is composed of two 

types of proteins: v-SNAREs and t-SNAREs, which are the proteins, present on the 

donor and the target membranes, respectively (Sollner et al., 1993a; Sollner et al., 

1993b; Weber et al., 1998). SNARE proteins also play a role in promoting ER-derived 

vesicle fusion with Golgi membranes. It is thought that Sec22b on ER-derived vesicles 

may play a role in their fusion with the LCV by non-canonical pairing with plasma 

membrane (PM) syntaxins that are integrated into the LCV during bacterial uptake. 

SidM/ DrrA effector proteins also play a role in this fusion by binding to PM-syntaxin and 

promoting pairing of Sec22b with PM syntaxins, which leads to fusion of ER-derived 

vesicles with LCVs (Arasaki and Roy, 2010; Arasaki et al., 2012). 

Host polyubiquitinated proteins and their recruitment to the LCV 

Host polyubiquitinated (polyUb) proteins are also recruited to the LCV during 

LCV remodeling. PolyUb proteins recruitment happens shortly after L. pneumophila 

infection in an Icm/Dot-dependent manner (Dorer et al., 2006; Lomma et al., 2010; Price 

et al., 2010a). The L. pneumophila effector AnkB plays a role in the recruitment of 

ubiquitinated proteins. AnkB anchors to the LCV through its CaaX motif that is 

farnesylated by the host farnesyltransferase. At the same time, AnkB attaches to host 

polyUb proteins through its ankyrin and an F-box domain, thereby functions as a 

platform onto which host polyUb proteins are recruited (Ivanov et al., 2010; Lomma et 

al., 2010; Price et al., 2010b). Besides remodeling the LCV, polyUb proteins have been 



 

proposed to be proteasomally degraded during infection to increase host cellular levels 

of amino acids that can be used as carbon and energy sources for bacterial replication 

(Price et al., 2011). In both amoebae and macrophages, recruitment of polyUb proteins 

into the LCV by AnkB is required for intracellular multiplication (Al-Quadan and Kwaik, 

2011; Lomma et al., 2010; Price et al., 2011). Thus, L. pneumophila exploitation of the 

host ubiquitination/proteasome machinery seems to be a conserved strategy in its 

infection of macrophages and amoebae. 

Recruitment of host mitochondria to the LCV 

Recruitment of at least one mitochondrion to the vicinity of LCVs has been 

reported in both human cells and amoeba shortly after infection with L. pneumophila 

(Horwitz, 1983a; Newsome et al., 1985). It is not clear why and how L. pneumophila 

recruits mitochondria, although it seems to be a Icm/Dot-dependent process, and 

icm/dot mutants defective in effector protein translocation do not recruit mitochondria in 

mammalian and amoebal hosts (Berger et al., 1994; Chong et al., 2009; Tilney et al., 

2001). Translocated effectors like LncP (Legionella nucleotide carrier Protein) or 

LegS2/Spl have been found to be targeted to mitochondria (Degtyar et al., 2009; 

Dolezal et al., 2012); however, no translocated effector protein responsible for the 

recruitment of mitochondria to LCVs has been identified. Worth noting is that in contrast 

to mammalian and amoebal cells, in Drosophila melanogaster cells the recruitment of 

mitochondria near vacuoles doesn’t seem to be Icm/Dot-dependent. In dotA mutant-

infected cells, mitochondria accumulate around the LCV very similarly to the phenotype 

observed in wild type cells (Sun et al., 2013). Therefore, how L. pneumophila recruits 



 

mitochondria is not yet clear and any functional consequences of the LCV’s interaction 

with host mitochondria have not yet been identified. 

Interaction of the LCV with the ER: the late phase event 

Interaction of the LCV with rough ER and acquisition of ER proteins occur in the 

second phase of the LCV maturation. The fusion events in this phase are dependent on 

the host GTPase Arf1. In general, the regulatory function of Arf proteins is essential for 

vesicular trafficking between the ER and the Golgi. Arf GTPase proteins not only play 

critical roles in vesicular transport by recruiting and assembly of coat proteins that 

facilitate cargo sorting, but they also regulate many other proteins that play roles in the 

organization and trafficking of membrane vesicles. A large family of GEFs activates Arfs 

that all contain a conserved domain of almost 200 amino acids called the Sec7 domain. 

This domain is necessary and sufficient to activate Arf proteins by exchanging the Arf 

GDP to GTP (Donaldson and Jackson, 2000). Knockdown of Arf1 using siRNA, 

pharmacological inhibition of Arf1, and dominant negative expression of Arf1 in host 

cells (Dorer et al., 2006; Kagan and Roy, 2002) block intracellular multiplication of L. 

pneumophila. Thus, formation of a replication permissive LCV is dependent on the host 

Arf1. On the other hand, the L. pneumophila effector protein RalF is required for the 

recruitment of Arf1 to the LCV (Nagai et al., 2002). RalF contains a Sec7 domain at its 

N-terminus that has been shown to have GEF function for Arf proteins in vitro (Nagai et 

al., 2002). The GEF activity of RalF also seems necessary for recruitment of Arf1 to the 

LCV in vivo (Amor et al., 2005). Although inactivating host Arf1 protein inhibits 

intracellular bacterial growth, L. pneumophila mutants in which the RalF gene is deleted 

can still grow and replicate in host cells (Nagai et al., 2002). This suggests that host 



 

Sec7 domain-containing proteins can activate Arf in the absence of RalF (Hubber and 

Roy, 2010). The crystal structure of RalF revealed two domains. The C-terminal domain 

forms a cap on the amino-terminal Sec7 domain and blocks the access of Arf1 to the 

Sec7 domain. Potentially RalF exists in both open and close forms and its interaction 

with membranes could play a role in regulating its activity by triggering a conformational 

switch (Amor et al., 2005). 

The substrate of Icm/Dot transporter C (SidC) effector protein and its paralogue 

SdcA have been reported to anchor to the LCV through binding PI(4)P. SidC interacts 

with PI(4)P through a specific “PI(4)P-binding of SidC” (P4C) domain. P4C is a 20-kDa 

fragment near the C-terminus of SidC, which is unique to L. pneumophila and does not 

show similarity to eukaryotic PI(4)P binding domains. SidC and SidM compete with each 

other for binding on the LCV (Brombacher et al., 2009). SidC can promote ER-derived 

vesicle fusion to the LCV by binding ER vesicles and anchoring them to the LCV (Ragaz 

et al., 2008; Weber et al., 2006). A 70 kDa, N-terminally located predicted coiled-coil 

fragment of SidC is sufficient for binding to ER vesicles. It is also necessary for 

recruitment of ER vesicles to the LCV. SidC may function as a platform for host or other 

L. pneumophila interaction with the LCV. 

The LCV harboring L. pneumophila ΔsidC-sdcA is impaired in acquiring the ER- 

resident protein calnexin, ER retention signal HDEL peptide, and lysosomal markers 

that are found in the wild-type LCV harboring L. pneumophila. Although deletion of 

SidC/SdcA may change organelle marker acquisition by the LCV compared to wild-

typeL. pneumophila, the membrane integrity of the LCV was not affected by deletion of 

SidC/Sdc. L. pneumophila sidC-sdcA deletion mutants do replicate at wild-type levels. 



 

Therefore, the recruitment of ER is not essential for formation of a replication-

permissive LCV. Alternative trafficking pathways may contribute to the LCV membranes 

acquisition that makes the LCV able to support bacterial replication, at which point they 

become replication-permissive LCVs (Ragaz et al., 2008; Weber et al., 2006). 

L. pneumophila egress from host cells 

After a few rounds of intracellular replication and following completion of the 

infection cycle, the L. pneumophila progeny in LCVs must escape the host cell and start 

a new cycle of infection in non-infected neighboring cells (Molmeret et al., 2004). 

Several L. pneumophila mutants defective in egress from both mammalian and amoebal 

host cells have been reported (Alli et al., 2000). However, the detailed molecular 

mechanisms and the proteins involved in L. pneumophila exit from the host cells are still 

unknown. 

Several egress mechanisms have been proposed. Formation of a 

cytolysin/egress pore has been suggested to play a role in host cell lysis (Molmeret and 

Abu Kwaik, 2002). However, the L. pneumophila proteins that are involved in pore-

forming activity and required for egress have not been identified (Alli et al., 2000; 

Molmeret and Abu Kwaik, 2002) . In addition, a non-lytic egress mechanism has been 

suggested in protozoan hosts. In this process, the intact LCV fuses with the plasma 

membrane of the protozoan host. Bacterial SNARE-like effectors LepA and LepB seem 

to be involved in this non-lytic process (Chen et al., 2004). LepB is a large protein that 

encompasses multiple domains and has Rab1-GAP activity. It has been suggested to 

function at different stages of L. pneumophila infection (Ingmundson et al., 2007). 

Although it is known that LepB associates with the LCV between 2-13 hours post 



 

infection in mouse macrophages, the mechanism that LepA and LepB undertake to 

facilitate bacterial egress from protozoan cells remains to be found. L. pneumophila may 

use multiple egress strategies as a way for it to exit multiple host cell types under 

different conditions (Hubber and Roy, 2010). 

1.7 L. pneumophila infection and PI metabolism 

Similar to the above mentioned intracellular pathogens, L. pneumophila 

modulates host cellular signaling and PI metabolism to avoid degradation by the host 

cell. As exemplified by the pathogens S. enteric, S. flexneri, and M. tuberculosis, 

intracellular pathogens employ different strategies to exploit host PI signaling during 

infection. They encode PI metabolizing enzymes to hydrolyze the host cell PIs. They 

make proteins or lipids that affect host PI metabolizing enzymes. They produce effector 

proteins that bind to host PI kinases or phosphatases and directly recruit them to the 

LCV or take them away from their active site, as well as other effector proteins that 

activate small host GTPases. They generate PI binding effector proteins that bind host 

PIs located on the surface of PCVs or host cellular organelles and trigger or quench 

downstream signaling events that eventually benefit the bacteria (Hilbi, 2006a). 

It seems that, in L. pneumophila, several effectors work together to shift the PI 

composition of the LCV into a PI composition similar to that found in the Golgi/ER 

membranes, which makes the LCV a PI(4)P-rich compartment. It stands to reason that 

the PI composition and lipid identity of the LCV play a significant role in LCV biogenesis 

and maturation to a replication-permissive compartment. Thus, unraveling the molecular 

mechanisms by which PIs are spatially and temporally regulated on the LCV is very 

important for understanding L. pneumophila pathogenicity. Identifying and studying L. 



 

pneumophila effectors that subvert host PI lipid metabolism and the interplay between 

these effector proteins and their targets in the host cells are key to understanding L. 

pneumophila infection. 

L. pneumophila translocates several PI-binding effector proteins to host cells 

during infection. Interestingly these effector proteins do not contain any known 

eukaryotic PI-binding domains. Several L. pneumophila effector proteins that can bind 

PIs and use this binding to anchor on the LCV membrane have been identified. 

‘Substrate of Icm/ Dot transporter C’ (SidC) protein, its paralog SdcA, and the Rab1 

guanine nucleotide exchange factor (GEF) SidM/DrrA all bind to PI(4)P (Brombacher et 

al., 2009; Ragaz et al., 2008; Weber et al., 2006). ‘Lowered viability in the presence of 

dotA’ (LidA) binds to both PI(3)P and PI(4)P (Derre and Isberg, 2005; Machner and 

Isberg, 2006). ‘L. pneumophila entry’ LpnE, ‘subversion of eukaryotic traffic A’ SetA, and 

LtpD bind to PI(3)P (Harding et al., 2013; Heidtman et al., 2009; Newton et al., 2006). It 

is thought that L. pneumophila may use these LCV-anchored translocated effectors as 

facilitators to acquire host secretory vesicles and to promote LCV biogenesis and 

maturation (Brombacher et al., 2009; Ingmundson et al., 2007; Urwyler et al., 2009; 

Weber et al., 2006). Besides the previously described functions of these PI-binding 

bacterial effectors during the L. pneumophila life cycle, I will now discuss several other 

functions of these proteins relating to L. pneumophila’s ability to change the PI identity 

of LCVs. 

SetA is secreted into the host cells and anchors on the cytoplasmic leaflet of the 

LCV through its binding with PI(3)P during infection. Once it binds to LCV, SetA can 



 

glycosylate its substrates, which may be necessary for the early steps of LCV 

maturation (Heidtman et al., 2009; Jank et al., 2012). 

LtpD localizes on the cytoplasmic face of the LCV through its PI(3)P binding 

domain during infection. It has been shown that LtpD is required for optimal intercellular 

L. pneumophila growth. Exogenous expression of LtpD in mammalian cells suggests 

that LtpD may play a role in helping the LCV avoid the endocytic pathway by interfering 

with host endosomal vesicle trafficking. However, LCVs that harbor L. pneumophila 

which lack or overproduce LtpD did not show any detectable differences in endosomal 

marker recruitment. The absence of phenotype may be because of functional 

redundancy by other T4SS effectors. (Harding et al., 2013). LtpD binds to the host cell 

enzyme inositol (myo)-1 (or 4)-monophosphatase IMPA1, an important phosphatase 

involved in the generation of phosphoinositides, as well as second messengers 

myoinositol 1,4,5-trisphosphate and diacylglycerol (McAllister et al., 1992). It seems that 

binding between LtpD and IMPA1 does not have any effect on modulation of IMPA1 

enzymatic activity in vitro. The significance of the interaction between LtpD and IMPA1 

during infection is still an open question, although it can be speculated that LtpD may 

facilitate IMPA1 interaction with other host or bacterial proteins (Harding et al., 2013). 

Host PI metabolizing enzymes have also been shown to contribute to generating 

PI(4)P on the LCV. For example, the phosphatidylinositol 4-kinase (PI4K) PI4KIIIβ 

converts PI into PI(4)P (Brombacher et al., 2009) and human protein phosphatases 

dephosphorylate PI(4,5)P2 to produce PI(4)P (Lowe, 2005). In fact, experiments 

involving depletion of host PI4-kinases by RNA interference suggest that PI4KIII, but 

not PI4KIIIcontributes to the formation of PI(4)P on the LCV (Brombacher et al., 



 

2009). A few L. pneumophila effector proteins may modulate PIs on the LCV membrane 

through indirect interactions with (PI4K) PI4KIIIβ and OCRL1, a PI(4,5)P2 5-

phosphatase localized on the Golgi apparatus and known to be critical in regulating the 

endocytic pathway and retrograde traffic from the endosome to the trans-Golgi network 

(TGN), as well as in the maintenance of TGN (Lowe, 2005). The L. pneumophila 

effector protein LpnE binds to PI(3)P and anchors on the cytosolic surface of the LCV, 

and can also interact with the N-terminal domain of OCRL1 (Weber et al., 2009). LpnE 

might play a role in the regulation of PI composition on the LCV by recruiting OCRL1 

which can hydrolyze PI(4,5)P2 and increases PI(4)P levels on the LCV (Haneburger and 

Hilbi, 2013). Furthermore, LpnE has been shown to be critical for L. pneumophila entry 

into both mammalian and amoebal cells. LpnE mutants are defective in avoidance of 

LAMP-1 association, implying that LpnE plays a role in LCV formation and in regulating 

vacuolar trafficking in order to prevent the LCV from acquiring lysosomal characteristics 

(Newton et al., 2007). 

The L. pneumophila effector RalF might also modulate the PI composition of the 

LCV through recruitment and activation of the host small GTPase Arf1 (Haneburger and 

Hilbi, 2013). RalF recruits Arf1 to the LCV (Nagai et al., 2002), thereby regulating ER to 

the Golgi vesicle trafficking (Donaldson and Jackson, 2000). In addition, It has been 

shown that Arf1 can recruit and activate PI4-kinase IIIand Arf1 can recruit and 

activate PI4-kinase III to trans-Golgi network (TGN) (Godi et al., 1999). Thus, Arf1 may 

play a role in PI(4)P formation on the LCV by recruiting and activating the PI4-kinase 

III to the LCV (Haneburger and Hilbi, 2013). 



 

Similarly, the Icm/Dot substrate SidM/DrrA that has both GEF and GDF activities 

for Rab1 recruits and activates Rab1 on LCV membranes and lengthens Rab1 activation 

by Rab1 AMPylation. (Ingmundson et al., 2007; Machner and Isberg, 2007; Muller et al., 

2010). Meanwhile, it has been shown that activated Rab1 (Hyvola et al., 2006) and 

activated Arf1(Lichter-Konecki et al., 2006) can recruit OCRL1 to endosomal 

membranes. Therefore, SidM/DrrA and RalF may indirectly contribute to the enrichment 

of PI(4)P on LCV membranes by facilitating recruitment of OCRL1 to LCVs (Haneburger 

and Hilbi, 2013). 

Lastly, LpdA and LecE are Icm/Dot substrates that localize to the LCVs and their 

combined activity is thought to promote conversion of PC to DAG (Viner et al., 2012). 

DAG is a second messenger and its activity results in recruitment of protein kinase D 

(PKD) (Fu and Rubin, 2011) and protein kinase C (PKC) to the LCV membrane (Almena 

and Merida, 2011). PKC can phosphorylate and activate PKD that in turn will lead to 

PI4KIIIβ recruitment to the LCV. So far, L. pneumophila effector proteins LpnE, RalF, 

SidM/DrrA, LpdA and LecE are the only bacterial protein that may indirectly contribute to 

the production of PI(4)P on the LCV by exploiting the host PI metabolizing enzymes 

PI4KIIIβ and OCRL1. However, no L. pneumophila PI-metabolizing enzymes have been 

discovered to date, although as it was discussed earlier that other intracellular pathogens 

such as S. flexneri, S. enterica and M. tuberculosis encode bacterial phosphatases to 

target host cell PI metabolism and signaling during infection(Payrastre et al., 2012). 

The presence of PI phosphatases in these pathogens further motivated our lab to 

try to identify genes that may encode PI phosphatases in L. pneumophila. 

 



 

Thesis outline 

In this dissertation, I will discuss my work, which focuses on the identification and 

characterization of a novel PI phosphatase in L. pneumophila, called SidP. An 

introduction to PI metabolism and their role in pathogenesis of intracellular pathogens is 

provided in chapter one. Chapter 2 will cover materials and methods used to perform 

the experiments described in this dissertation. Chapter 3 first describes the identification 

of this novel PI phosphatase by bioinformatics. It then lays out the in vitro and in vivo 

experiments demonstrating the PI phosphatase activity and substrate specificity of SidP 

as a PI(3)P phosphatase. I hypothesized that SidP may affect host cellular pathways 

that require PI(3)P, and therefore PI(3)P hydrolysis by SidP may be used as a 

pathogenicity factor by L. pneumophila compromising those pathways in host cells. The 

last part of chapter three covers the experiments that I have done to address the 

possible role of SidP in L. pneumophila pathogenicity. 

Chapter 4 centers on crystal structure of the SidP in order to get insights into the 

substrate specificity of SidP. I first describe my efforts to obtain the various SidP protein 

constructs used in my attempts to crystallize SidP. Since none of our SidP protein 

variants resulted in any crystals, I eventually successfully crystallized the SidP 

orthologue from L. longbeachae. In the last part of this chapter, using the SidP 

orthologue structure determination, I discuss SidP substrate specificity. Finally, in 

chapter 5 I present a model that describes the possible contribution of SidP in L. 

pneumophila pathogenicity, and I suggest some future experiments related to the 

research presented in this dissertation. 

  



 

CHAPTER 2 

Materials and Methods 

2.1 Protein expression and purification 

All recombinant proteins were expressed in the E.coli Rosetta strain, which was 

grown in LB medium supplemented with 50 μg/mL kanamycin. Protein expression was 

induced at OD600 = 0.8 for overnight at 18 °C with 0.1 mM isopropyl- B-D-

thiogalactopyranoside (IPTG). The selenomethionine-substituted proteins were 

expressed in M9 minimal media supplied with “Drop-out Mix Synthetic Minus Methionine 

w/o Yeast Nitrogen Base Powder” (US Biological). Selenomethionine powder 

(Affymetrix) was added with a final concentration of 120 mg/L of LB 15 min before IPTG 

induction. Harvested cells were resuspended in a buffer containing 50 mM Tris-HCl at 

pH 8.0, 500 mM NaCl, and protease inhibitor mixture (Roche) and were lysed by 

sonication. Soluble fractions were collected by centrifugation at 40,000 g for 40 min at 4 

°C and incubated with cobalt resins (Clontech) for 2 hours at 4 °C. Protein bound resins 

were extensively washed with lysis buffer. The His-SUMO tag was removed by 

incubating the protein bound resin with the SUMO-specific protease Ulp1 at 4 °C for 

overnight. Eluted protein samples were further purified by FPLC size exclusion 

chromatography. The peak corresponding to SidP and the homologue were pooled and 

concentrated using Amicon ultra centrifugal filter units (EMD Millipore, MA, USA) to 7-8 

mg/ml in a buffer containing 50mM HEPES at pH 7.4 and 150 mM NaCl. 

2.2 Enzymatic assays 

All diC8-phosphoinositides were purchased from Cell Signals, Inc. All reactions 

were performed in a polystyrene 96-well plate for 20 min at 37 °C with a total volume of 



 

50 l, which contains reaction buffer (50 mM Tris-HCl pH 8.0 and 150 mM NaCl, 1mM 

DTT), 1 nmol of lipids, and 0.1 g of purified enzymes. Phosphate release was 

measured at OD620 absorbance with the addition of malachite green reagent as 

described (Maehama et al., 2000). 

2.3 Cloning and mutagenesis 

SidP (Lpg0130) gene and its Longbeachae orthologue were PCR amplified from 

the L. pneumophila strain Philadelphia 1 and L. longbeachae strain NSW150 genomic 

DNA, respectively. The PCR products were digested with BamH1 and Xho1 or Sal1 

restriction enzymes and inserted into a pET28a-based vector in frame with an N-

terminal His-SUMO tag. The same digested SidP fragments were inserted into pRS415-

pGPD-GFP and pEGFP-C1 vectors (Parrish et al., 2005) for the expression of GFP 

fused SidP and its catalytically inactive mutant in yeast and mammalian cells, 

respectively. Point mutations were generated by site directed mutagenesis. All 

constructs were confirmed by DNA sequencing. 

2.4 Yeast in vivo experiment and analysis 

 Yeast strain YTS1: SEY6210.1 ymr1Δsjl2Δ sjl3Δ harboring pRS415ymr1ts 

(Parrish et al., 2004) and strain YCS215: sac1tssjl2sjl3 (Foti et al., 2001), which 

carries a temperature sensitive allele of the SAC1 gene and null alleles of SJL2 and 

SJL3, were transformed with indicated plasmids. For growth assay, yeast transformants 

were grown to midlog (OD600=0.5) at permissive temperature (26 °C), adjusted to 

10D/ml, serially diluted 1:10 3 times, spotted onto –Leu selection plates. The viability of 

these transformed cells was analyzed by incubating the plates in permissive and 



 

restricted temperatures after 3-4 days. PI levels were analyzed as previously described 

(Stefan et al., 2002). Briefly, cells transformed with control empty vector or vector 

harboring WT or mutant SidP were grown to log phase. Cells (5 OD600) were harvested, 

washed in media lacking inositol, and labeled with 50 Ci of myo-[2-3H] inositol (Perkin 

Elmer) in synthetic media lacking inositol for 1 hour. Lipids were deacylated. [3H] 

glycerophosphoinositides were extracted and 5 x 106 cpm of samples were separated 

by HPLC. 

2.5 Crystallization and preliminary X-ray crystallographic analysis 

 Initial crystallization trials were set up with a PHOENIX liquid handling system 

(Art Robbins Instruments). SidP crystals were improved by hanging drop vapor diffusion 

at 4 °C by mixing 1 μl of protein (7.5mg/ml) with an equal volume of reservoir solution 

containing 0.1M succinic acid, 0.1M HEPES at pH 7.0, 6.5% (wt/vol) PEG3350, 5 mM 

DTT. Plate shape crystals were formed within 7-10 days. Selenomethionine substituted 

SidP crystals were grown under similar conditions. For data collection, SidP crystals 

were transferred step-wise into the same solution supplemented with 20% glycerol 

before flash cooling to 100 K in liquid nitrogen. The crystal diffracted up to 2.58 Å at the 

Cornell synchrotron light source MacCHESS beam line A1. All data sets were indexed, 

integrated and scaled with HKL-2000 (Otwinowski and Minor, 1997). The crystals 

belong to space group P21 with unit cell parameters of a = 89.28 Å, b = 119.65 Å, c = 

133.53 Å,  = 900,  = 101.330,  = 900 (Table 4.3). The calculated Matthews coefficient 

Vm= 3.9 and with 68.4% of solvent in the crystal and two protein molecules in an 

asymmetric unit (Matthews, 1968). 



 

2.6 Structure determination and refinement 

Twenty selenium sites were identified in the asymmetric unit by SAD method 

using the program HKL2MAP (Pape and Schneider, 2004). The initial phase was 

calculated by single anomalous scattering (SAD) method and was improved by solvent 

flattening in HKL2MAP. The ab initio protein model was then built with COOT (Emsley 

and Cowtan, 2004). Iterative cycles of model building and refinement were carried out 

with refmac5 (Murshudov et al., 1997) in the CCP4 suite (Collaborative Computational 

Project, 1994) to complete the final model. The final SidP structure consists of 1-825 

amino acids with excellent stereochemistry and good crystallographic statistics (Table 

4.3). 

2.7 Small angle X-ray scattering (SAXS) data collecting and processing 

SAXS experiments were done at the Cornell High Energy Synchrotron Source 

(CHESS, beam line F2) at X-ray of 9.881 keV at 25 °C on monodisperse and 

homogeneous samples. Protein was expressed and purified as described before in the 

protein expression and purification procedure. Protein concentrations were determined 

using the Bradford protein assay (Bio-Rad). Freshly purified proteins were centrifuged at 

13,200 rpm and 4 °C for 10 min prior to loading into a flow cell. Scattering data were 

collected in triplicate at four different protein concentrations ranging (0.6, 1.25, 2.5, and 

5 mg/mL in a buffer containing 20 mM Tris-HCl pH 7.4, 150 mM NaCl, 5mM DTT. In 

order to avoid concentration-dependent scattering, protein concentrations higher than 5 

mg/ml were not used for data collection. The BioXTAS RAW program 

(http://sourceforge.net/projects/bioxtasraw/) was used for data reduction, averaging, and 

scaling to provide one-dimensional intensity profiles as function of q (        , where 

http://sourceforge.net/projects/bioxtasraw/


 

2 is the scattering angle). Data were collected and used for further analysis, only if the 

data did not show any sign of radiation damage or aggregation based on examining of 

Guinier plots. Background scattering was collected from buffer and subtracted from the 

scattering data (Figure 4.10A). Program package ATSAS was used for further analysis, 

and free-atom modeling of the SAXS data (Petoukhov, 2007). Only scattering data with 

Smax Rg < 1.3, calculated from low-angle regions of Guinier plots r, were qualified for 

the more analysis. Kratky plots were used to evaluate data quality and get information 

about the folded state of the proteins (Figure 4.10B). CRYSOL (Svergun et al., 1995) 

was used to calculate the theoretical scattering for the two possible models in the 

LLO_3270 crystal and was compared to the experimental scattering data (Figure 4.9B). 

The final averaged scattering profile, covering a q-range from 0.01 to 0.25 Å-1 

was further analyzed using the programs GNOM (Semenyuk, 1991; Svergun, 1992) to 

calculate distance distribution function P(r) (Figure 4.10C). Low resolution shapes were 

calculated and averaged from solution scattering data using the programs DAMMIF 

(Franke and Svergun, 2009) and DAMAVER (Volkov and Svergun, 2003). The crystal 

structure of LLO_3270 was docked in the low resolution solution structure using 

SUPCOMB (Figure 4.9C) (Kozin and Svergun, 2001). 

2.8 Bacterial strains and growth conditions 

E. coli strains were grown in LB supplemented with the appropriate antibiotics. 

All Legionella strains that I used in my experiments were derivatives of the L. 

pneumophila Philadelphia-1 wild-type strain, and received from Zhao-Qing Luo lab, 

Department of Biological Sciences, Purdue University, IN, USA. The L. pneumophila 

strains were grown on charcoal-yeast extract (CYE) plates or in ACES-buffered yeast 



 

extract (AYE)(Feeley et al., 1979). L. pneumophila strains were considered being in the 

post-exponential phase when the optical density of the cultures were (OD600 = 3.3-3.8) 

and there was an increase in bacterial motility. 

2.9 Thin Layer Chromatography  

For each reaction, 0.1 μg of purified enzyme and 1 μg of the green fluorophore, 

Bodipy-FL labeled diC6 PI lipid substrates (Echelon Research Laboratories) were 

added to 20 μL of buffer containing 50 mM ammonium carbonate at pH 8.0 and 2 mM 

DTT then incubated for 20 min at 37 °C. If two enzymes needed to be added to a 

reaction, the first reaction was allowed to be completed and then the second enzyme 

was added and the reaction was incubated for another 20 min at 37 °C. When the 

reactions were completed, the products were dried in Speed-Vac for 30 min at 45 °C. 10 

μL of methanol/isopropanol/acetic acid (5/5/2) was used to resuspend the pellet from 

each reaction. Resuspended samples were spotted on the bottom of a TLC Silica gel 60 

F254 (EMD). Prior to sample loading the TLC Silica plate was soaked in methanol/water 

(3:2) containing 1% potassium oxalate and then dried in a 65 °C oven for one hour. 

Samples were loaded at the bottom of the TLC plate, which was then placed in a 

shallow pool of a solvent mixture of 1-propanol / 2 M acetic acid (65%:35%) in a 

developing chamber, with only the bottom of the plate covered in solvent. The solvent 

slowly moved up on the TLC and when it reached to the spotted samples, it carried out 

the soluble components of each sample and separate them based on their mobility and 

solubility. When the solvent reached the top of the plate, the plate was removed from 

the developing chamber, and using a Bio-Rad Gel dock system Fluorescent PIs were 

visualized under UV light. 



 

2.10 Cell culture and transfection 

RAW 264.7 macrophage cell line were cultured in Dulbecco’s modified Eagle 

medium (DMEM) supplemented with 10% heat-inactivated FBS (PAA Laboratories) and 

penicillin-streptomycin solution (Cellgro) at 37 °C in 5% CO2 . RAW 264.7 macrophage 

cells were used for infection, as described later. 

HEK293T cells were maintained and grown in Dulbecco’s modified Eagle 

medium (DMEM) supplemented with 10% FBS (Cellgro) and 1% penicillin-streptomycin 

solution (Cellgro) at 37 °C in 5% CO2. For transient transfection, HEK293Tcells were 

grown to about 60% confluence and the appropriate plasmid DNA were transfected into 

cells using polyethylenimine (PEI) reagent at 1:5 ratio of DNA:PEI (Vancha et al., 2004). 

24 hours after transfecting cells, they were fixed with 3.7% formaldehyde, 20% sucrose 

in PBS for 15 minutes at room temperature, or were collected with the addition of 

Laemmli sample buffer (100 mM Tris-HCl, pH 6.8, 2% SDS, 10% glycerol, 6% ß-

mercaptoethanol, 0.0025% Bromophenol Blue) , followed by sonication and boiling. For 

microscopy, cells were plated on 12 mm sterile cover glasses coated with poly-(L)-

lysine in 24-well plates. For some assays, cells were treated with drugs, starved or 

infected after transfection, and then fixed or lysed. 

2.11 Bacterial Infection 

RAW 264.7 macrophages constitutively expressing GFP-2XFYVE were seeded 

on coated cover glasses one day before infection and were grown in an antibiotic-free 

medium. The L. pneumophila Philadelphia-1 strains expressing DsRed also were 

inoculated early in the morning on the day before infection so they would be grown to 



 

the post-exponential phase and ready for infection on the day after. The plated 

macrophages were infected with relevant strains at a multiplicity of infection (MOI) of 1. 

The plates were spun at 1000 rpm for 5 minutes to let bacteria settle down, and then the 

infected macrophages were incubated at 37 °C. 1 hour post-infection the cells were 

washed 3 times with 37 °C PBS, to remove a majority of bacteria that had not started 

internalization into the host cells, thereby synchronizing the infection. Medium was 

added to the wells and the samples were placed in a 37 °C incubator for indicated time 

periods and fixed in 10% sucrose in paraformaldehyde/lysine/periodate (PLP) fixative 

(McLean and Nakane, 1974). For earlier time points, the washes were done right before 

the fixation. 

2.12 Immunofluorescence Microscopy 

The fixed HEK293T cells transfected with GFP or m-cherry tagged proteins were 

directly mounted with Fluoromount-G (Southern Biotech, Birmingham, AL, USA). 

Fixed RAW 264.7 macrophages were blocked in PBS containing 4% normal donkey 

serum (NDS) for 15 minutes in in 37 °C , followed by incubation with the primary rabbit-

anti- L. pneumophila antibody diluted 1:10000 in PBS containing 4% NDS for 30 

minutes in 37 °C. This antibody would interact with the non-internalized bacteria 

allowing us to distinguish internalized from the non-internalized bacteria. Extensive 

washing with PBS followed the primary antibody incubation. Then cells were incubated 

with secondary antibodies conjugated to CF405S Goat Anti-Rabbit IgG (H+L), (1: 500) 

(Biotium, Hayward, CA, USA) for an hour in 37 °C and washed extensively with PBS 

after secondary incubations, and then mounted with Fluoromount-G. 



 

For both RAW 264.7 macrophages and HEK293T cells Images were collected using the 

63X objective on a Zeiss LSM 700 confocal microscope (Carl Zeiss). 

2.13 Western blot 

Protein samples in Laemmli sample buffer containing β-mercaptoethanol were 

boiled for 5 minutes, resolved by SDS-PAGE, and then transferred to polyvinylidene 

fluoride (PVDF) membranes (Millipore Corporation, Bedford, MA, USA). After blocking 

the membrane with 5% non-fat milk in Tris-buffered saline (TBS) (in 20 mM Tris, 135 

mM NaCl) or Odyssey Blocking Buffer (LI-COR Biosciences) for 2 hours at room 

temperature or overnight at 4 °C, the membranes were incubated with the indicated 

primary antibodies diluted in TBST (in 20 mM Tris, 135 mM NaCl, and 0.1% Tween-20) 

and then washed extensively with TBST. The primary antibodies were detected with 

secondary antibodies. Secondary antibody incubation for 2 hours at room temperature 

was followed by extensive washing and imaging using an Odyssey Infrared Imaging 

System (LI-COR Biosciences, Lincoln, NE, USA). If necessary, intensity of the bands in 

the resulting blots were quantified by using LI-COR software and normalized to a 

corresponding reference band. 

2.14 Antibodies, drugs, special reagents 

The following antibodies were used for western blot, and immunofluorescence. 

Rabbit polyclonal antibody against full length GFP (1:1000), mouse anti-GAPDH 

(1:750), and goat anti-LC3 (1:200), all were purchased from Santa Cruz Biotechnology, 

Inc. Antisera against rabbit-anti- L. pneumophila (1:10000), and rabbit-anti-isocitrate 

dehydrogenase (ICDH) (1:10000) were gifts from from Zhao-Qing Luo lab. (Department 



 

of Biological Sciences, Purdue University, IN, USA). Full length recombinant SidP 

protein were used as an antigen to produce a specific rabbit polyclonal antibody against 

SidP following a standard protocol (Covance, Princeton, NJ, USA). Serum from the final 

bleed was diluted 1:10000 times and used. The specificity of SidP antibody was 

confirmed via western blot using the purified SidP protein as the control. 

HBSS (Hank’s Balanced Salt Solution) plus calcium, magnesium, and no phenol red 

(GIBCO® HBSS Cat# 14025) was used for starving the cells, when it was needed. 

Bafilomycin A1 was purchased from LC Laboratories. 

2.15 Yeast TCA Whole Cell Extracts 

Yeast cells were grown to mid-log phase. 5 OD600 equivalents of cells were 

collected by centrifugation and washed with 20% trichloroacidic acid (TCA) from Acros 

Organics. The cell pellets were frozen in –80 °C. The frozen cells were thawed on ice 

and resuspended in 20% TCA. Then cells were mechanically lysed with glass beads in 

4 °C. 

Cell lysates and precipitates were spun down in 4 °C and the pellets were washed with 

100% EtOH (-20 °C). Precipitates were resuspended in 40 l of 1 M Tris HCl pH8.0 and 

80 l of 2X Laemmli sample buffer. Samples were boiled for 5 minutes, followed by 

spinning at 14 K, for 5 minutes at RT. Supernatants were collected and 5-10 l were 

analysed by SDS–PAGE and immunoblotting. 



 

CHAPTER 3 

Identification of a L. pneumophila Effector that Functions as PI Phosphatase1 

3.1 Introduction 

PIs can undergo catabolism through phospholipase-dependent mechanisms or 

PI phosphatase-dependent dephosphorylation at the D-3, D-4 and/or D-5 positions of 

the inositol ring. PI phosphatases are highly conserved throughout the eukaryotes. 

There are seven known PI phosphatases in yeast that are categorized in three 

subgroups based on their catalytic domain properties: the SAC-domain phosphatases; 

the inositol polyphosphate 5-phosphatase domain enzymes; and the myotubularin 

ortholog Ymr1 (Strahl and Thorner, 2007). 

Mammalian PI phosphatases are divided into two superfamilies: the inositide 

polyphosphate 5-phosphatase superfamily, and the protein tyrosine phosphatase (PTP) 

superfamily. Each of these two superfamilies is further categorized into a few families. 

PI-5-phosphatase family enzymes dephosphorylate the D-5 position of the 

inositol head group of PI(3,5)P2, PI(4,5)P2, PI(3,4,5)P3, Ins(1,4,5)P3 and, Ins(1,3,4,5)P4. 

The PI-5-phosphatase superfamily is divided into four families: group I only hydrolyzes 

soluble inositol polyphosphates(InsP)s: Ins(1,4,5)P3 and Ins(1,3,4,5)P4; group II (e.g. 

OCRL1) hydrolyzes both PI and soluble InsP substrates; group III enzymes (e.g.SHIP1 

and SHIP2) preferably hydrolyze PIs; and group IV exclusively hydrolyzes PI(4,5)P2 

,PI(3,4,5)P3 (Liu and Bankaitis, 2010; Mitchell et al., 1996). This family is characterized 

by having a central catalytic domain consisting of almost 300 residues that contains two 

signature motifs: WXGDXN(F/Y)R and P(A/S)W(C/T)DRIL separated by about 60–75 

                                            
1
 Starting from this chapter till the end, the majority of results that has been presented in this thesis have been 

published previously as Toulabi L, et al. (2013) J Biol Chem 288: 24518-27  



 

residues (Majerus et al., 1999). The PI-5-phosphatases have a similar structural fold to 

those of magnesium-dependent endonucleases, and functions similar to these 

endonucleases as well, showing phosphomonoesterase activity in a magnesium-

dependent manner. Bioinformatics methods and mutagenesis studies suggest that 

inositide polyphosphate-5-phosphatases use the same catalytic mechanism that the 

apurinic/apyrimidinic base excision repair endonucleases use to hydrolyze their 

substrates (Liu and Bankaitis, 2010). 

The PI phosphatases of the PTP-superfamily are divided into four primary 

families. One family is the PI- 4-phosphatases type I and II whose primary substrate is 

PI(3,4)P2 (Norris et al., 1997; Nystuen et al., 2001). PTEN (phosphatase and tensin 

homolog) family of PI-3-phosphate phosphatases is included in this superfamily. PTEN, 

a tumor suppressor gene, hydrolyzes PI(3,4,5)P3. The tumor suppressor activity of 

PTEN is believed to arise from hydrolyzing the membrane-bound PI(3,4,5)P3, which is a 

signal in the regulation of cell proliferation, cell migration, and apoptosis. A third 

member of the PTP-superfamily is the myotubularins family of PI-3-phosphatases. 

Myotubularin (MTM1) is the founding member of this family, which was discovered by 

isolation of a gene mutated in X-linked centromyotubular myopathy. Mutations in 

several genes of this family are associated with human diseases. The Sac1-like PI 

phosphatases that contain a SAC domain (Suppressor of ACtin) also belong to the PTP 

superfamily. The Sac1-like PI phosphatases can hydrolyze a diverse range of PI 

substrates. This family is subdivided into two subgroups. One group contains only a Sac 

domain (e.g. human and yeast Sac1 protein) and the other group contains a SAC-



 

domain appended to PI-5- phosphatase domains (e.g. the synaptojanins)(Liu and 

Bankaitis, 2010). 

PTP-superfamily PI phosphatases are metal-independent enzymes that use the 

signature sequence “CX5R” catalytic motif to dephosphorylate PI substrates (Denu and 

Dixon, 1998). The PTP-like signature sequence “CX5R” is the signature sequence of the 

catalytic residues in a number of enzymes, including lipid phosphatases (Begley et al., 

2006), protein tyrosine phosphatases (PTPs) (Barford et al., 1998), and arsenate 

reductases (Mukhopadhyay and Rosen, 2002). The “CX5R” containing enzymes are a 

diverse group of enzymes found in both eukaryotes and prokaryotes, which hydrolyze 

phosphoryl groups from protein substrates, specifically, phosphotyrosine, threonine and 

serine containing peptides (Denu and Dixon, 1995; Zhang, 2002) or/and from PIs and, 

inositol polyphosphates (IPP)s (Deleu et al., 2006; Maehama and Dixon, 1998). 

3.2 Results 

3.2.1 Identifying PI phosphatase candidates using a bioinformatics approach 

The main goal of my project was identifying and characterizing L. pneumophila 

proteins that function as PI phosphatases. For this purpose, we initially took a 

bioinformatics approach and searched the genome of L. pneumophila, strain 

“Philadelphia”. In this search, we used a sequence pattern-based method and searched 

for the “CX5R” motif. We considered the “Cx5R” motif as a strong screening tool for 

identifying PI phosphatases, since it is the catalytic motif of four major families of PI 

phosphatases: PTEN, MTM/MTMR, Sac and, 4-Ptase (Liu and Bankaitis, 2010). 

Moreover, the “CX5R” motif is the catalytic motif of S. enterica SopB/SigD phosphatase, 



 

S. flexneri IpgD phosphatase and M. tuberculosis MptpB phosphatase (Payrastre et al., 

2012). 

Using this bioinformatics approach, our lab identified 400 open-reading frames 

containing the “CX5R” motif, of which 29 are believed to be substrates of the Icm/Dot 

secretion system (Hsu et al., 2012; Zhu et al., 2011). When I started my thesis research 

project, I expressed recombinant proteins of four of these 29 candidates, and tested 

them for phosphatase activity. Two of them showed phosphatase activity. Then, I 

focused on characterizing one of these candidates, the L. pneumophila effector 

Lpg0130, which we have named SidP (Substrate of Icm/Dot phosphatase). Our 

discovery and characterization of this novel L. pneumophila phosphatase brings new 

emphasis to the role of host PI metabolism subversion during intracellular pathogen 

infection, and significantly advances the field. 

3.2.2 L. pneumophila effector SidP is a PI-3-phosphatase  

SidP is an 822 amino acid protein with the peptide sequence “CVSGKDR” located 

between residues 553 and 561, which led me to believe that it is a potential PI 

phosphatase (Figure 3.2A). In order to determine whether this “CX5R” motif, also called 

P-loop, functions as a PI phosphatase, I expressed recombinant SidP in the Rosetta 

(DE3) E. coli strain, then purified it to homogeneity using affinity chromatography 

followed by size exclusion chromatography (Figure 3.1A, B). I then examined the purified 

SidP for in vitro PI phosphatase activity by a malachite green based assay (Maehama et 

al., 2000). 

  



 

 
 
Figure 3.1 Gel filtration and SDS-PAGE of SidP. (A) Untagged-SidP elutes off the 
size-exclusion column as a single peak after approximately 70 mL. (B) The injected 
protein (I) has a little lower molecular weight contaminants or degraded protein, but 
these are removed from the eluted fractions. The (L) lane on the right is the molecular 
weight ladder (in kDa). 

A B 

130 

 

170 

 95 

72 

55 

43 

34 

26 

FPLC eluted fractions I L 

SDS-PAGE of Full-length SidP 

Full-length SidP gel filtration chromatogram 

Elution Volume (ml)  



 

Based on this assay, recombinant SidP protein specifically hydrolyzes PI(3)P and 

PI(3,5)P2 in vitro (Figure 3.2B, C). To determine whether the phosphatase activity of 

SidP is dependent on the “CX5R” motif, I made several mutations in this motif and the 

catalytic activity of the mutant recombinant SidP proteins were tested using the same 

assay. When the invariant catalytic cysteine was mutated to serine (C554S), 

phosphatase activity was completely abolished. Mutations of conserved residues in the 

catalytic P-loop such as D559N and R560K also abrogated the catalytic activity of SidP 

(Figure 3.2B, C). These findings show for the first time that L. pneumophila encodes a 

novel Icm/Dot effector that functions as a PI-3-phosphatase. 

3.2.3 SidP rescues the growth defect phenotype of a yeast strain defective in 

PI(3)P metabolism 

Knowing that SidP is a PI phosphatase prompted me to further examine the 

phosphatase activity of SidP in vivo. I chose Saccharomyces cerevisiae as the initial 

model system to test the enzymatic activity of SidP because of the availability of yeast 

strains, which carry temperature sensitive alleles for specific PI phosphatases and 

therefore have a growth defect phenotype at non-permissive temperatures. These 

strains provided a read-out for the phosphatase activity of SidP in vivo. S. cerevisiae 

encodes three PI(3)P phosphatases: myotubularin-related phosphatase Ymr1p and 

synaptojanin-like phosphatases Sjl2p and Sjl3p. I chose the YTS1 strain of S. cerevisiae 

to examine the PI-3- phosphatase activity of SidP in vivo. The genotype of the YTS1 

strain is: ymr1tssjl2sjl3, meaning that it is null for both Sjl2p, Sjl3p, and the only 

remaining PI(3)P phosphatase-encoding gene is a temperature sensitive allele of YMR1. 

Ymr1p is the myotubularin 3-phosphatase ortholog (Parrish et al., 2005). Therefore, the  



 

 

 

Figure 3.2 L. pneumophila effector SidP is a PI phosphatase. (A) Schematic 
structure of SidP (Lpg0130). The “CX5R” is highlighted. (B) PI substrate specificity of 
purified wild type and C554S, D559N, R560K mutants SidP as determined by the 
malachite green assay (green color indicates the release of free phosphate). PI(3)P and 
PI(3,5)P2 are the preferred substrates. (C) Quantification of the amount of released 
phosphates. Data are from three replicate experiments (mean ± S.E.M.). 
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strain does not grow at non-permissive temperature due to increased levels of PI(3)P, 

which are toxic to the cell. 

To exogenously express SidP in yeast cells, I transformed YTS1 yeast cells with a 

plasmid harboring either (i) GFP, (ii) N-terminally GFP- tagged wild type SidP, or (iii) N-

terminally GFP-tagged catalytically inactive mutant SidP(CS) (C554S), in which the 

conserved catalytic site cysteine is mutated (Figure 3.3). Exogenous expression of wt 

GFP-SidP rescued the growth defect phenotype of YTS1 at the non-permissive 

temperature at levels similar to when wt yeast Ymr1p is expressed. This suggests that 

when transformed into yeast, SidP is capable of hydrolyzing PI(3)P. However, 

exogenous expression of GFP alone or catalytically inactive GFP-SidP(CS) was not able 

to complement the growth defect phenotype at the non-permissive temperature (Figure 

3.4A). Taken together, these data suggest that SidP can function as a PI(3)P 

phosphatase in yeast cells, and its phosphatase activity is dependent on the catalytic 

“CX5R” peptide sequence. 

3.2.4 PI-3-phosphatase activity of SidP decreases cellular levels of PI(3)P and 

PI(3,5)P2 in yeast cells 

In order to confirm that rescue of the growth defect phenotype in YTS1 by SidP is 

a result of PI(3)P hydrolysis, I directly measured the cellular levels of PIs inYTS1: 

ymr1tssjl2sjl3 transformed with N-terminally GFP- tagged wild type SidP plasmids and 

control plasmids at the non-permissive temperature. Exogenous expression of SidP 

decreased cellular PI(3)P levels almost three fold when compared to cells expressing 

empty vector or the catalytic inactive SidP CS mutant (Figure 3.4B) and (Table 3.1). In 

fact, expression of SidP reduced the levels of PI(3)P to levels similar to that found in  



 

 

Figure 3.3 Exogenous expression of N-terminally GFP-tagged L. pneumophila 

SidP and SidP ortholog from L. longbeachae (LLO_3270) in S. cerevisiae YTS1: 

ymr1tssjl2sjl3 at 27 °C. Tested yeast transformants were grown to mid log phase 

(OD600=0.5) at permissive temperature (26 °C), identical amounts of yeast cells were 

used for TCA acid extraction of the yeast proteins. The whole cell denatured proteins 

were resuspended in resuspension buffer, and protein samples were separated by 

SDS-PAGE. After being transferred to membranes, proteins were probed with antibody 

specific for GFP. Relevant molecular mass standards are shown on the right (in kDa). 
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yeast expressing wild type Ymr1p. Meanwhile, SidP expression did not affect the PI(4)P 

and PI(4,5)P2 levels in these cells, but it decreased the levels of PI(3,5)P2. These results 

verified that SidP specifically functions as a PI-3-phosphatase that hydrolyzes PI(3)P and 

PI(3,5)P2 in vivo (Figure 3.4B, Table 3.1). 

3.2.5 SidP is not able to rescue the growth defect phenotype of a yeast strain 

defective in PI(4)P metabolism 

To further confirm the substrate specificity of SidP for PI(3)P in vivo, I used 

another strain of yeast that is deficient in all enzymes that hydrolyze PI(4)P at the non-

permissive temperature, resulting in lethality at the non-permissive temperature due to 

elevated levels of PI(4)P. In the YCS215: sac1tssjl2sjl3 strain, all three genes that 

encode PI(4)P phosphatases are deleted and it can only produce a temperature 

sensitive Sac1p phosphatase (Foti et al., 2001). Exogenous expression of SidP in 

YCS215: sac1tssjl2sjl3 strain did not rescue the growth defect phenotype in these 

cells (Figure 3.5), indicating that PI(4)P is not a substrate for SidP. 

3.2.6 SidP is constantly produced by L. pneumophila during its entire 

extracellular growth cycle in AYE broth 

When L. pneumophila enters post-exponential growth phase, expression of many 

virulence factors is considerably induced in order to increase the survival rate of bacteria 

in the host cells in this phase (Byrne and Swanson, 1998). Consistently, when L. 

pneumophila cultures reach post-exponential phase too, expression levels of several 

substrates of the Icm/Dot system such as RalF and SidC are increased (Conover et al., 

2003; Luo and Isberg, 2004; Nagai et al., 2002). In order to gain insights into the 

biological function of SidP, I wanted to see how the expression of SidP is regulated in  



 

 

 

Figure 3.4 Functional assay of SidP in yeast. (A) In vivo growth rescue assay of 

SidP. ymr1tssjl2sjl3 cells were transformed with indicated constructs or vector control. 
The cells were spotted onto selection plates with four serial of 10x dilutions from left to 
right, and grown at the indicated temperatures for three days. (B) Quantitative analysis 

of in vivo PI levels. ymr1tssjl2sjl3 cells were transformed with vectors expressing GFP 
(negative control), wild type SidP, SidP C554S mutant, or YMR1 (positive control) and 
labeled with 3H-myo-inositol for one hour at 37 °C. Total lipids were extracted and 
analyzed by HPLC.   
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Table 3.1 Quantitative PI level analysis in transformed yeast strains. Yeast strains 
were labeled with 3H-myo-inositol at 37 °C for 1 hour. Lipids were extracted and 
deacylated and were used for HPLC analysis as described (Botelho et al., 2008). The 
mean peak area (cpm) of each PIP species is reported as a percentage of the total 3H-
labeled lipids. 

  

Table 3.1: Quantitative PI level analysis in yeast strains transformed 

with vectors expressing SidP or control proteins. 

Vectors 

transformed 

PI levels (% of total 3H-labeled PIPs/total 

phosphoinositol) 

PI(3)P PI(4)P PI(3,5)P2 PI(4,5)P2 

pRS415-GPD-GFP    

pRS415-GPD-

GFP-SidPWt 
   

pRS415-GPD-

GFP-SidPCS 
   



 

 

 

Figure 3.5 Functional assay of SidP in yeast. In vivo growth rescue assay of SidP. 

sac1tssjl2sjl3 cells were transformed with indicated constructs or vector control. The 
cells were spotted onto selection plates with four serial of 10x dilutions from left to right, 
and grown at the indicated permissive temperature (26 °C) and non-permissive 
temperature (37 °C) for three days. 

YCS215: sac1tssjl2sjl3 

26 °C 

37 °C 



 

L. pneumophila during infection. Non-specific signals from immuno-staining prevented 

me from probing the in vivo localization of SidP during L. pneumophila infection using 

the polyclonal antibodies that we generated against SidP. Therefore, I analyzed the 

SidP protein level in cell lysates of L. pneumophila grown in AYE culture at different 

phases. Interestingly, unlike RalF, and SidC whose expression is highly induced in the 

post-exponential phase, the level of SidP protein is elevated in the exponential phase of 

L. pneumophila growth. SidP is expressed throughout the growth cycle of L. 

pneumophila in AYE culture with a rise of expression in exponentially replicative phase 

in culture (Figure 3.6) (Conover et al., 2003; Luo and Isberg, 2004). 

The expression pattern of SidP in the culture may reflect the SidP expression 

dynamics during infection. Therefore, continuous expression of SidP through the 

infection assures that LCVs will not acquire PI(3)P, since during the exponential growth 

phase the LCV needs to be protected from degradation. This suggests that SidP may 

be continuously expressed and translocated into infected cells during the entire cycle of 

intracellular growth with a rise of expression in the exponential phase of intracellular 

growth. 

3.2.7 Deletion of SidP in L. pneumophila does not cause any significant defect in 

its pathogenicity 

Considering the critical role of PI(3)P in phagosome maturation (Flannagan et al., 

2009; Vergne et al., 2003a), I speculated that removal of PI(3)P may contribute to 

eliminating the endosomal-like identity of the LCV and disruption of the regular 

phagosome maturation pathway. In other words, removal of PI(3)P by SidP from the  
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Figure 3.6 Dynamic of SidP expression in L. pneumophila grown in AYE culture. 
SidP is produced by L. pneumophila constitutively during its growth cycle. (A) Cultures 
grown in AYE at stationary phase were diluted 1 20 into fresh medium at time zero and 
the growth of bacteria was monitored by measuring OD600 at indicated time points. (B) 
The expression of SidP at different bacterial growth phases. Total proteins from 
equivalent amount of bacteria at the indicated time points after dilution were resolved by 
SDS-PAGE and probed with an anti-SidP, and anti-isocitrate dehydrogenase (ICDH) 
specific antibody. The L. pneumophila metabolic protein ICDH was used as a loading 
control. Relevant molecular mass standards ladders (L) are shown on the right (in kDa). 

Lp02 sidpsample at time 0 was loaded as a negative control for anti-SidP antibody. 
(C) Quantified and normalized SidP protein expression levels in panel (B). 



 

early phagosome may prevent fusion of the LCV with host late endosomes or 

lysosomes and block the degradation of L. pneumophila in the host phagocytic pathway. 

This scenario would be similar to the function of PI-3- phosphatases SapM and MptpB 

in M. tuberculosis infection that block phagosome maturation by depleting PI(3)P from 

Mycobacterium-containing vacuoles (MCV) (Beresford et al., 2007; Vergne et al., 2005). 

Accordingly, I speculate that in the absence of SidP, phagosome maturation 

would not be prevented; thus, LCVs harboring L. pneumophila carrying a sidP deletion 

mutation would not be able to avoid lysosomal fusion. As a result, sidP deletion mutant 

bacteria would not be able to multiply intracellularly in host cells and instead they would 

be degraded through the phagocytosis pathway. In order to test this hypothesis, I 

infected a murine RAW 264.7 macrophage cell line with wild-type L. pneumophila, an 

Icm/Dot deficient mutant, or a sidP deletion mutant. Similar to the wild-type L. 

pneumophila, the sidP deletion mutant was able to form “replication permissive” LCV, 

while the Icm/Dot deficient mutant was not able to replicate in the RAW 264.7 cells 

(Figure 3.7). Therefore, it seems that deletion of SidP in L. pneumophila did not cause 

any significant bacterial growth defect of the bacteria in the macrophage cells. Although 

the result of this experiment did not prove my hypothesis, it did not disprove it, since it is 

very common that deletion of one or several genes does not cause a growth defect 

because of functional redundancy among L. pneumophila effector proteins. There may 

be other PI(3)P phosphatases in L. pneumophila. 

3.2.8 Examining SidP phosphatase activity during infection using a PI(3)P probe 

At the same time, I took another approach to visualize the contribution of SidP in 



 

 

Figure 3.7 Deletion of SidP in L. pneumophila did not cause any significant 
bacterial growth defect of the bacteria in the macrophage cells. RAW 264.7 cell 
line containing a GFP-fusion-2X-FYVE domain infected with indicated L. pneumophila 
strains at an MOI of 1 for 18 hours. L. pneumophila Philadelphia-1 wild type strain Lp02 
(A) Icm/Dot deficient strain Lp03(dotA-)(B), or strain ΔsidP strain: the sidP deletion 
mutant Lp02 strain (C). Note, wild type and ΔsidP replicated inside RAW 264.7 cell (red 
patches), but Icm/Dot deficient strain was not able to replicate intracellularly. 
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hydrolyzing and removing PI(3)P from the LCV during infection. In this experiment, I 

used a PI(3)P probe, GFP-tagged 2X tandem FYVE domain of early EEA1, as a 

molecular tool to monitor the levels of PI(3)P on the LCV and as a read-out for the PI-3-

phosphatase activity of SidP during infection. To circumvent the technical difficulty of 

transiently transfecting macrophage cell lines, I made a stable RAW 264.7 cell line 

containing a GFP-fusion-2X-FYVE domain. I infected these cells with wild type, Icm/Dot 

deficient, or sidP deficient mutant L. pneumophila and analyzed the levels of the PI(3)P 

probe using confocal microscopy and immunohistochemistry staining. Considering the 

PI-3-phosphatase activity of SidP in the wild type strain, I expected to see a higher GFP 

signal around LCVs in the Icm/Dot deficient sidP deletion mutant bacteria, when 

compared to the signal around LCVs harboring wild type L. pneumophila. Because of 

the variability of the PI(3)P signal in LCVs, even within the same L. pneumophila strain, 

I was not able to definitively assign any signal differences based on L. pneumophila 

strain (data not shown). Since PI(3)P enrichment on a phagosome happens at the early 

stages of phagocytosis (within 5 minutes of phagocytosis initiation) (Cosio and 

Grinstein, 2008), it is possible that the difference of PI(3)P levels on the LCVs of these 

different L. pneumophila strains would be detectable only in the earlier stages of the 

infection. Therefore, it is likely that by the time I had synchronized the bacteria and fixed 

the cells, the peak time of PI(3)P accumulation on the LCV carrying mutant L. 

pneumophila had already passed. 

3.2.9 Investigating the possible role of SidP in disruption of recognition of the 

LCV by the host autophagy system 

Another process that has been proposed to be manipulated by L. pneumophila 



 

is autophagy (Dubuisson and Swanson, 2006). It is known that the generation of PI(3)P 

by the Vps34 kinase complex during the early stages of autophagy is essential for 

autophagosome (AP) formation. PI(3)P mediates recruitment of PI(3)P binding proteins 

such as DFCP1 and WIPI2 that are important for autophagosome formation and 

autophagy (Vergne and Deretic, 2010). Considering the critical role of PI(3)P in initiating 

autophagy, I wanted to address the question of whether SidP may interrupt 

autophagosome formation via hydrolysis of PI(3)P and therefore contribute to L. 

pneumophila’s avoidance of the host autophagy pathway. 

Furthermore, according to a recent study, L. pneumophila effector protein RavZ 

inhibits the host autophagy pathway during infection by functioning as a cysteine 

protease, which irreversibly deconjugates the host lipid-conjugated Atg8 proteins 

covalently attached to phosphatidylethanolamine (PE) on the autophagosomal 

membrane. Since attachment of Atg8 is essential for autophagosome formation, RavZ 

interferes with host autophagy by directly targeting Atg8 proteins (Choy et al., 2012). 

However, a ravZ deletion mutant is still able to establish replication permissive LCVs 

that can avoid the host autophagy system. This suggests that L. pneumophila encodes 

other effectors that can mediate the LCV’s avoidance of the host autophagy system 

(Choy et al., 2012). Based on these previous findings, I tested the role of SidP in 

autophagy inhibition during infection. Since sidP deletion mutants are still infectious, 

and given the high likelihood that there are other bacterial effectors that can manipulate 

the host autophagy system, I did not look at autophagy during L. pneumophila infection. 

Rather, I investigated the possible effects of exogenous expression of SidP on the 

process of autophagy in transfected cells by Western blotting for LC3I and II complexes. 



 

However, by looking at levels of endogenous and over expressed LC3I and II 

complexes using western blotting and confocal microscopy analysis, respectively, I 

concluded that SidP expression did not affect the autophagy pathway in mammalian 

cells (Figure 3.8 and 3.9). It is worth noting that simultaneous deletion of ravZ and sidP 

did not affect the L. pneumophila pathogenicity. 

3.3 Discussion 

Bacterial and host PI kinases, PI phosphatases, and PI-binding proteins can 

potentially regulate the PI identity of the LCV. Although our knowledge of the PI 

components of the LCV as well as the host proteins and bacterial effectors that target 

PIs has greatly increased in recent years, (Weber et al., 2006), to date, there has been 

no report of a L. pneumophila effector protein that hydrolyzes host PIs. 

Taken together, my findings show for the first time that L. pneumophila encodes 

a PI-3-phosphatase that specifically hydrolyzes PI(3)P and PI(3,5)P2 in vitro and in vivo. 

SidP contains the PTP-like signature sequence “CX5R”, which indeed hydrolyzes 

phosphoryl groups from PIs. The in vitro enzymatic activity of SidP was confirmed with 

several pieces of independent in vivo evidence, indicating that exogenously expressed 

SidP can also function as PI phosphatase in S. cerevisiae cells. 

Moreover, my results indicate that endogenous SidP is constantly expressed 

throughout the entire extracellular growth cycle of L. pneumophila in AYE broth. This 

implies that SidP is also expressed during the entire cycle of L. pneumophila infection. 
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Figure 3.8 SidP does not inhibit LC3 puncta formation in HK293T cells under 
starvation condition. HK293T cells co-transfected with GFP, GFP-SidP, and GFP-
RavZ together with mCherry tagged LC3 were starved by replacing the media with 
HBSS in the presence 160nM Bafilomycin A1 (for blocking the fusion of 
autophagosomes with lysosomes) for 1 hour. Under starvation condition, red channel 
images show LC3 puncta in cells transfected with SidP-GFP, as well as the control cells 
transfected with GFP but not in the cells transfected with GFP-RavZ. 



 

 

 
Figure 3.9 Exogenous expression of SidP did not inhibit the formation of LC3II in 

HEK293T cells. Immunoblot analysis of endogenous LC3I and LC3II levels in HEK293T 

cells transfected with plasmids encoding GFP, GFP-SidP, and GFP-RavZ. 24 hours 

post-transfection cells were starved by replacing the media with HBSS in the presence 

or absence of 160 nM Bafilomycin A1 (for blocking the fusion of autophagosomes with 

lysosomes) for 1 hour prior to collecting and lysing the cells.The whole cell lysates were 

collected with the addition of Laemmli sample buffer, and protein samples were 

separated by SDS-PAGE. After being transferred to membranes, proteins were probed 

with antibody specific for LC3. GAPDH protein was used as a loading control. Relative 

conversion of LC3I to LC3II under starvation condition is more in the cells expressing 

GFP, GFP-SidP compare to the cells expressing GFP-RavZ. 

  

 



 

This speculative view about SidP expression during infection suggests that the 

catalytic activity of SidP and removing PI(3)P from LCVs may play a role in the 

formation of LCVs at the very early stages of infection, and even more important for 

intracellular replication of the bacteria in the exponential phase. It also implies that 

although SidP is expressed in lower quantities after the exponential phase, expression 

of SidP continues until later stages of infection, presumably to keep the integrity of 

LCVs and to help avoidance of LCVs fusion with the host lysosomes until late stages of 

infection. 

During L. pneumophila infection, early phagosomes enriched with PI(3)P 

transform into LCVs enriched with PI(4)P (Vieira et al., 2002). The subversion of a 

PI(3)P-enriched early phagosome to a PI(4)P-enriched LCV, combined with the 

continuous expression of SidP during the whole cycle of L. pneumophila, led me to think 

that there is a strong likelihood that SidP plays a role in the PI identity change of the 

LCV and eliminating the endosomal-like identity of the LCV. This change of identity 

contributes to blocking phagosome maturation and the degradation of L. pneumophila in 

the host lysosomes.  

However, my experimental results suggest that SidP is not the only player in this 

transformation, yet SidP’s enzymatic activity suggests that it could be one the players. 

Although the results from my experiments showed that deletion of SidP in L. 

pneumophila does not cause any significant intracellular bacterial growth defect in the 

macrophage cells, they do not exclude the role of SidP in inhibition of phagosome 

maturation by depleting PI(3)P from the LCV. Because of functional redundancy among 

L. pneumophila effector proteins, only a small number of single deletions impair its 



 

pathogenicity. It is possible that L. pneumophila encodes other PI phosphatases that 

have not been identified yet. In fact, our bioinformatics screen revealed 28 more PI 

phosphatase candidates besides SidP. Furthermore, the SidP deletion mutant’s lack of 

phenotype may be the result of bacterial compensation by exploiting host proteins. The 

lack of phenotype does not disprove my hypothesis that SidP’s enzymatic activity 

removes PI(3)P from early Legionella containing phagosomes, and helps these 

phagosomes acquire LCV PI identity. 

In support of the idea that L. pneumophila encodes other PI metabolizing enzyme 

such as SidP to establish the LCV composition, recently our lab reported that the 

Icm/Dot substrate SidF functions as a PI-3-phosphatase (Hsu et al., 2012). According to 

this study, SidF anchors on the LCV membrane and hydrolyzes PI(3,4,5)P3 and 

PI(3,4)P2 to PI(4,5)P2 and PI(4)P. Therefore, SidF and SidP can synergistically 

contribute to regulation of the PI composition of the LCV by making PI(4)P and 

removing PI(3)P, respectively. Furthermore, SidF can indirectly prevent PI(3)P 

accumulation on the LCV by hydrolyzing PI(3,4,5)P3 to PI(4,5) P2 . PI(3,4,5)P3 can be 

hydrolyzed by host 5p- or 4p- phosphatases, such as SHIP-1 and Inpp4A, to PI(3)P 

during endocytic processes (Shin et al., 2005). Thus, SidF by consuming the substrate 

PI(3,4,5)P3 prevents the accumulation of PI(3)P by these enzymes. 

In summary, this part of my research led to discovery of a L. pneumophila PI-3-

phosphatase that hydrolyzes PI(3)P and PI(3,5)P2 . The enzymatic activity of SidP 

strongly suggests that SidP may contribute to the lipid identity of the LCV and its escape 

from lysosomal fusion. However, additional experimental data are needed to support 

this hypothesis. 



 

CHAPTER 4 

Crystal Structure Determination and Overall Structure of SidP 

4.1 Introduction 

The PTP-superfamily PI phosphatases consists of metal-independent enzymes 

that use their signature “CX5R” motif to dephosphorylate PI substrates (Denu and 

Dixon, 1998). The PTP-like phosphatases share a common mechanism of catalysis and 

a conserved catalytic core structure (Andersen et al., 2001; Zhang, 2003). The 

conserved catalytic core structure of most if not all the PTP-like phosphatases contains 

a central parallel ß-sheet with flanking α-helices and the catalytic pocket which contains 

the “CX5R” signature sequence at its bottom. The active site pocket of these enzymes 

varies in shape and size, most likely resulting from the structural components peripheral 

to the conserved catalytic core. This diversity may be responsible for the various 

substrate specificities found in these enzymes. Non-catalytic regions that flank the 

catalytic core of these enzymes, especially in the PTP superfamily, often play a role in 

their diverse cellular functions (Andersen et al., 2001; Mauro and Dixon, 1994; Tonks 

and Neel, 2001). Regardless of their substrate specificity and the size or shape of the 

catalytic pocket, all “CX5R” containing enzymes seem to use a similar catalytic 

mechanism for executing their phosphate monoester hydrolysis. 

The phosphate-binding loop called (P-loop) is located at the bottom of the active 

site of these enzymes and contains the signature sequence “CX5R” (Denu and Dixon, 

1998). Site-directed mutagenesis studies and chemical modification experiments showed  

that the conserved cysteine residue present in the P-loop is vital for the phosphatase 

activity of these enzymes. These enzymes use a double displacement reaction as their 



 

catalytic mechanisms. The SH group of cysteine, a strong nucleophile, displaces the 

leaving alcohol group and binds to the phosphate monoester of the substrate forming a 

thiol-phosphate (phospho-enzyme) intermediate (Barford et al., 1998; Guan and Dixon, 

1991; Pannifer et al., 1998). The nitrogens in the main chain of the P-loop residues and 

the guanidinium group of the conserved arginine side chain have been proposed to 

position the oxygens of the substrate phosphate group into an optimal orientation and 

stabilize its highly negative charge (Barford et al., 1994). In fact, mutational studies 

indicate that the conserved arginine in the CX5R signature sequence is required for 

catalysis, most likely for stabilizing the transition state. This arginine can play a role in 

substrate binding to a lesser degree (Zhang et al., 1994b). The transition state is 

resolved when an acceptor water molecule displaces the PO3 group from the phospho-

enzyme intermediate. The PTP superfamily enzymes use a general acid-base 

mechanism for catalysis. It has been suggested that they employ an aspartic acid 

residue located in an adjacent structural loop as the general acid. This Asp promotes 

the phosphoester bond cleavage by donating a proton to the ester oxygen of the 

substrate leaving group and reconstituting an uncharged hydroxyl group at the position 

from which the PO3 group is removed (Fauman and Saper, 1996; Fauman et al., 1996; 

Jia et al., 1995; Zhang et al., 1994a). 

4.2 Results 

4.2.1 Full length and truncated SidP proteins did not crystallize 

 

Sequence alignment shows that SidP is fairly well conserved in all genome 

sequenced Legionella species, as well as some related pathogenic bacterial species 



 

such as Fluoribacter dumoffii and Rickettsiella grylli (Figure 4.1). However, SidP has no 

significant sequence homology to any known prokaryotic and eukaryotic PI 

phosphatase. This prompted me to investigate the existence of novel structural or 

mechanistic features in SidP. To further characterize the molecular mechanism and 

structure of this newly characterized PI-3-phosphatase, we set out to determine the 

atomic structure of SidP by X-ray crystallography. 

In order to obtain atomic level structural information of SidP, I first tried to 

crystallize SidP. As described in chapter 3, the recombinant full-length protein of SidP 

from L. pneumophila strain Philadelphia 1 was highly expressed in Rosetta cells. I was 

able to purify relatively large quantities of SidP to high purity and homogeneity and 

concentrate it to > 8mg/ml. However, SidP did not crystallize in any of the 480 

conditions I used in my crystallization screen, where sitting drops were dispensed using 

the PHOENIX liquid handling system (Art Robbins Instruments). 

After several unsuccessful crystallization screen trials using full-length SidP, the 

next logical step was to attempt to crystallize truncated SidP proteins that were still 

enzymatically active. The rationale was that the truncated SidP proteins would be more 

amenable to crystallization because of their smaller size. There are several commonly 

used methods used to identify the boundaries of distinct domains in a protein such as 

limited proteolysis and sequence conservation. One such method identifies blocks of 

sequence conservation among protein homologous to a protein of interest to estimate 

the domain boundaries (Wilson et al., 2000). 

I used sequence conservation comparison and the predicted secondary structure   



 

 



 

 

Figure 4.1 Multiple sequence alignment of SidP. The sequences of SidP from 
pathogenic bacteria were aligned by the Clustal Omega server (Sievers et al., 2011) 
and colored by ALSCRIPT program (Barton, 1993). Residues numbers are labeled 
according to the LLO_3270 sequence. The conserved residues are shaded in yellow 
and identical residues are shaded in red. Secondary elements of SidP are draw under 
the alignment. The catalytic CX5R motif is marked by red triangles. Five conserved 
cationic residues that contribute the positive charges at the catalytic site are marked by 
blue dots. The hydrophobic loop is highlighted by a brown box. Entrez database 
accession numbers are as follow: LLO_3270: gi: 289166576; Lpg_0130: gi: 52840385; 
LPV_0148: gi : 397665762; LPC_0151: gi: 148358289; Lpp_0145: gi: 54296126; 
LPO_0140: gi : 397662684; LPW_01311: 307608875; Lpl_0130: gi: 54293092; 
FdumT_15202: gi: 388457923; LDG_6053: gi: 374261093; RICGR_1079: gi: 
160871888. 



 

obtained from PsiPred (http://bioinf.cs.ucl.ac.uk/psipred/) to design and express several 

recombinant truncated SidP proteins. These truncated SidP proteins were cloned, 

expressed, and purified using the same procedures used for the full length SidP cloning 

and expression. Then, I tested the purified proteins for PI-phosphatase activity. The 

truncated protein variants that were found to be catalytically active were screened for 

crystallization. Similar to full-length SidP, none of these pure and homogenous truncated 

proteins crystallized despite extensive crystallization trials. (Figure 4.2 and Table 4.1). 

This finding is not uncommon and can result from low protein stability, protein 

degradation, and misfolding (Smialowski and Frishman, 2010). To check whether this 

was the case, I compared the differences in size and purity between freshly purified 

protein samples and proteins that had been left at 4 °C for 5-7 days using SDS-PAGE. I 

found that neither full-length nor truncated SidP proteins are stable. The appearance of a 

smaller (almost 40 KDa, compared to 90 kDa for full-length SidP) band in the older 

samples of both full-length and truncated SidP indicated that proteolytic cleavage of the 

protein takes place near either the amino or carboxyl terminus  

Since none of the truncated SidP proteins crystallized, perhaps because of 

proteolytic cleavage, I took an experimental approach of “limited proteolysis” as a 

complementary method to identify SidP domains suitable for structural analysis. This 

method is based on the fact that in general, inter-domain regions of proteins are more 

accessible to proteases than folded regions within a structural domain. Therefore, inter-

domain regions are more susceptible to protease digestion than the structured domains. 

The stable limited proteolytic products corresponding to individual protein domains can 

be identified using mass spectroscopy (Koth et al., 2003). 

http://bioinf.cs.ucl.ac.uk/psipred/


 

  
Figure 4.2 Gel filtration and SDS-PAGE of truncated SidP (residues 1-689). (A) 
Untagged-SidP elutes off the size-exclusion column as a single peak after approximately 
60 mL. (B) The injected protein has lower molecular weight contaminants or degraded 
protein (Lane I) but these are removed from the eluted fractions. The “L” lane is the 
molecular weight ladder. 
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SidP Enzymatic activity 

aa 1-822 Wt  Y  

aa 123-822 Wt  N  

aa 1-762 Wt  Y  

aa 123-762 Wt  N  

aa 1-711 Wt  Y  

aa 123-711 Wt  N  

aa 1-689 Wt  Y  

aa 123-689 Wt  N  

aa 1-666  N  

aa 123-666  N  

aa 1-822 Mutant (C 554S)  N 

 

 

Table 4.1 List of recombinant SidP proteins that were cloned and tested for PI 

phosphatase activity. 

  



 

I used two different proteases, trypsin and chymotrypsin, for limited digestion of 

full-length SidP. The trypsin digestion was less informative, since SidP appeared 

completely digested over a very narrow range of trypsin concentrations. However, when I 

used chymotrypsin for limited digestion of the full-length SidP and two truncated SidP 

versions, the digestion profile of all three SidP proteins showed a similar pattern with a 

few stable fragments (Figure 4.3). The biggest stable fragment was around 30 kDa, 

which is one-third the size of full-length SidP. Since the fragment was too small, I 

decided not to analyze it using mass spectroscopy. 

4.2.2 Legionella longbeachae strain NSW150 LLO_3270 is a PI-3-phosphatase 

Following the previous set of experiments, I decided to turn my focus to 

crystallizing SidP orthologues from other Legionella species. I cloned SidP from 

Legionella longbeachae strain NSW150 (locus tag LLO_3270), which has 54% sequence 

identity and 68% sequence similarity to SidP from L. pneumophila in Rosetta cells. It is  

worth noting that the primary sequence of the catalytic loop of LLO_3270, “CVSGKDR”, 

is identical to the catalytic motif of SidP. Using the same methods described for full- 

length and truncated pneumophila SidP proteins, the L. longbeachae SidP orthologue 

LLO_3270 was expressed and purified to homogeneity (Figure 4.4). 

Before trying to crystallize LLO_3270, I tested its PI- phosphatase activity in vitro. 

Based on results from the malachite green test, LLO_3270 specifically hydrolyzes PI(3)P 

while it does not show any detectable activity with PI (3,5) P2 (Figure 4.5). 

4.2.3 LLO_3270 can rescue the growth defect of yeast cells defective in 

generating PI 3-phosphatase 

To confirm the similarity between SidP and its ortholog LLO_3270, I analyzed the 
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Figure 4.3 Limited proteolysis of recombinant full length and truncated SidP 
proteins by trypsin and chymotrypsin. (A, B) 4 µg purified full length SidP was 
incubated with two fold serial dilutions(1 µg) of trypsin(A) and chymotrypsin (B) on ice for 
1 hour and immediately boil in loading buffer, following with analysis by SDS-PAGE . 
(C,D) Limited proteolysis of truncated SidP(aa 1-762) panel (C) and SidP(aa 1-711) 
panel (D) by chymotrypsin in the same way it was done for full length SidP. All 
polyacrylamide gels were developed by coomassie Brilliant Blue G-250 staining. The 
undigested sample of each protein has been labeled “U”.The (L) lane is the molecular 
weight ladder (in kDa). 
  



 

in vivo phosphatase activity of LLO_3270 by complementation assays in 

Saccharomyces cerevisiae. Similar to SidP, exogenous expression of GFP-tagged 

LLO_3270 in the PI(3)P phosphatase deficient YTS1: ymr1tssjl2sjl3 strain that only 

encodes a temperature sensitive Ymr1p phosphatase, rescued the growth defect 

phenotype resulting from the elevated levels of PI(3)P at the non-permissive 

temperature (Parrish et al., 2005). In contrast, transformation of the PI(4)P phosphatase 

deficient YCS215: sac1tssjl2sjl3 strain with the same LLO_3270 expression vector did 

not rescue the growth defect resulting from toxic levels of PI(4)P at the non-permissive 

temperature (Figure 4.6) (Foti et al., 2001). These findings show that L. longbeachae 

substrate of Icm/Dot effector LLO_3270 also functions as a PI-3-phosphatase both in 

vitro and in vivo. 

4.2.4 Crystal structure determination and overall structure of L. longbeachae SidP 

ortholog LLO_3270 

To attempt to crystallize LLO_3270, highly pure and homogenous full-length 

LLO_3270 protein was concentrated to 7.5 mg/ml and subjected to an initial 

crystallization screen of 480 conditions, as set up by the ARI Phoenix robot. In my first 

crystal trial, I found several conditions that promoted the formation of diamond-shaped 

crystals (Table 4.2). To get larger crystals, I manually set up crystal trays using the initial 

conditions and the hanging drop vapor diffusion method at room temperature. LLO_3270 

formed large diamond-shaped crystals within a relatively short time range, anywhere 

from overnight to a few days after I set up the crystal trays (Figure 4.7A). 

When we took the diamond-shaped crystals to the Cornell High Energy 

Synchrotron Source (CHESS) for X-ray diffraction, the crystals produced low quality 



 

 

 

Figure 4.4 Gel filtration and SDS-PAGE of LLO_3270. (A) Untagged-LLO_3270 elutes 
off the size-exclusion column as a major single peak after 70 mL. (B) Eluted fractions on 
a SDS-PAGE. The “L” lane is the molecular weight ladder in kDa. 
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Figure 4.5 SidP Legionella longbeachae orthologue, LLO_3270 is a PI 
phosphatase. (A) Schematic structure of LLO_3270. The “CX5R” is highlighted. (B) PI 
substrate specificity of purified wild type and C550S, D555N, and R556K mutants 
LLO_3270 as determined by the malachite green assay (green color indicates the 
release of free phosphate). PI(3)P is the preferred substrates. (C) Quantification of the 
amount of released phosphate. Data are from three replicate experiments (mean ± 
S.E.M). 
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Figure 4.6 Functional complementation assays of SidP and its L. longbeachae 
orthologue (LLO_3270) in yeast. (A) In vivo growth rescue assay of SidPs in 

ymr1tssjl2sjl3 stain. (B) In vivo growth rescue assay of SidPs in sac1tssjl2sjl3 
strain. In both (A) and (B), corresponding yeast cells were transformed with indicated 
constructs or vector control. The cells were spotted onto selection plates with four serial 
of 10x dilutions from left to right, and grown at the indicated temperatures for three 
days. 
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diffraction patterns that were non-analyzable and unusable for structure determination. 

The diffraction pattern resembled a twinned crystal diffraction pattern, although the 

crystals were not visibly twinned. This likely happened because the protein crystallized 

too quickly. Therefore, I worked on identifying the conditions to produce crystals at a 

slower rate or with different shapes. 

I re-examined my initial screening trays and looked for crystals with morphologies 

different from the initial diamond shape. Of fifteen 24 well plates (288 conditions), only 

one well had a few tiny plate-shaped crystals. Fortunately, their diffraction pattern 

looked promising and analyzable. However, reproducing these plate crystals proved 

difficult. I carried out extensive optimizations trials by varying pH, buffer, salt, 

precipitant, temperature, drop size as well as concentration of the protein. Finally, it 

became apparent that these plate crystals form only in a very narrow range of 

conditions at temperatures around 4 degree centigrade. The best plate-shaped crystals 

were obtained using hanging drop vapor diffusion method at 4 degrees centigrade, with 

a reservoir solution containing 0.1M HEPES (pH 7.0), 0.1M succinic acid, and 6.5% 

(wt/vol) PEG3350. The crystals formed a few weeks after I set up the tray (Figure 4.7B). 

The detectors that are used to measure and visualize the x-ray diffraction pattern 

of a crystal can only measure the intensity and therefore can only give information about 

the amplitude of a diffracted X-ray. Thus, phase information of each diffracted X-ray is 

systematically lost during data collection. Meanwhile, both amplitude and phase 

information are required to obtain the electron density distribution in a crystal. The lost 

phase can be recovered using a few methods including multi-wavelength anomalous 

diffraction (MAD), multiple isomorphous replacemnet (MIR), and single-wavelength. 



 

Screen name  Well  Condition  

Hampton Index H3 0.2 M sodium malonate pH 7.0, 20% PEG-3000  
 

Hampton Index  H4 0.1 M Citric acid pH 3.5, 25% PEG-3000 
 

Hampton Index  H7 0.15 M DL-Malic acid pH 7.0, 20% PEG-3350 
 

JCSG-Plus  B12 0.2 M tri-potassium citrate, 20 % w/v PEG 3350 
 

JCSG-Plus  F7 0.8 M succinic acid pH 7.0 
 

JCSG-Plus  F10 1.1 M sodium malonate, 0.1 M HEPES pH 7.0, 
 0.5 % v/v Jeffamine ED-2001  

JCSG-Plus F11 1.0 M succinic acid, 0.1 M HEPES pH7.0,  
1 % w/v PEG 2000 MME 2.0 

 

JCSG-Plus  G2 0.02 M magnesium chloride, 0.1 M HEPES pH 
7.5, 22 % w/v polyacrylic acid 5100 sodium salt  
 

PACT Premier  E11 0.2 M sodium citrate, 20 % w/v PEG 3350 
 

PACT Premier  E12 0.2 M sodium malonate, 20 % w/v PEG 3350 
 

PACT Premier  F12 0.2 M sodium malonate, 0.1 M Bis Tris propane 
pH 6.5, 20 % w/v PEG 3350  
 

PACT Premier  G1 0.2 M sodium fluoride, 0.1 M Bis Tris propane pH  
7.5 ,20 % w/v PEG 3350 
 

PACT Premier  G12 0.2 M sodium malonate 0.1 M Bis Tris propane pH 
7.5,20 % w/v PEG 3350  

PACT Premier  H12 0.2 M sodium malonate 0.1 M Bis Tris propane pH 
8.5, 20 % w/v PEG 3350 

 

Table 4.2 Initial screen hits for LLO_3270 diamond crystals 

  



 

anomalous dispersion (SAD).  

SAD method was used for initial phase calculation I expressed LLO_3270 in 

Rosetta cells that were grown in media where methionine was replaced by 

selenomethionine (Se-Met). Since LLO_3270 has 10 methionine residues, incorporation 

of Se-Met should produce enough anomalous signal to be used for initial phase 

calculation. 

I collected X-ray diffraction data from the Se-Met substituted plate crystals of 

LLO_3270 at CHESS (Figure 4.7C). All data sets were indexed, integrated and scaled 

with HKL-2000 (Otwinowski and Minor, 1997). The crystals belong to space group P21 

with unit cell parameters of a = 89.28 Å, b = 119.65 Å, c = 133.53 Å,  = 900,  = 

101.330,  = 900 (Table 4.3). Each asymmetric unit contains two molecules. The 

structure was solved using the selenium single wavelength anomalous diffraction (SAD) 

method with the help of the program HKL2MAP (Pape and Schneider, 2004). The final 

structure was refined against a 2.58 Å resolution data set with Rwork = 19.8 and Rfree 

=23.7, respectively (Table 4.3). 

4.2.5 Crystal structure and overall domain configuration of LLO_3270  

 Full length LLO_3270 contains 825 amino acids. The crystal structure indicates 

that LLO_3270 is composed of three distinctive domains (Figure 4.8). The catalytic 

domain (alpha helices are colored in blue and beta-strands are in pink) and the 

appendage domain (I-domain – depicted in brown), which is inserted within the catalytic 

domain between residues 189 and 306, are both found at the N-terminus between 

residues 1 - 666. The C-terminus (residue 667-825) folds into an entirely  helical 

domain (CT-domain - colored in green). 



 

 

 

Figure 4.7 Crystallization and X-ray crystallography of LLO_3270. (A) Diamond 
shape crystals were the first observed crystals but did not diffract well. (B) After 
optimizing the condition, the plate shape crystals were formed that diffracted well. (C) 
Diffraction pattern of plate-shaped LLO_3270 crystals.  
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Data collection 

Space group P21 

Cell dimensions a = 89.28 Å, b = 119.65 Å, c = 133.53 Å, 

 = 900,  = 101.330,  = 900 

Synchrotron beam lines CHESS A1 

Wavelength (Å) 0.978 

Resolution (Å)a 49.44-2.58 (2.65-2.58) 

Unique reflections 164,803 

Completeness (%)a 98.5 (95.5) 

Rsym
a,b (%) 9.9 

<I>/<σ>a 10.96 (1.21) 

Number of molecules in an 
ASU 

2 

Refinement statistics 

Rcrys / Rfree (%)a,c 19.8/23.7 (30.8/37.5) 

Rms bond length (Å) 0.016 

Rms bond angles (°) 1.729 

Most favored/Allowed (%) 97.04/2.96 

Outliers (%) 0 
aValues in parenthesis are for the highest resolution shell 
bRsym = hi|II(h) − <I(h)|/hiII(h) 
cRcrys = (|Fobs|−k|Fcal|)/|Fobs|. Rfree was calculated for 5% of reflections 
randomly excluded from the refinement.  

 

Table 4.3 X-ray data collection, and structural refinement statistics 
  



 

 
Since the electron density for the linker peptide between the catalytic domain and 

the C-terminal domain is missing, the C-terminal domain can be assigned to either one 

of the two LLO_3270 molecules in the asymmetric unit in two possible ways (Figure 4.9 

A). In order to definitively assign the correct domain organization of LLO_3270, I used 

small-angle X-ray scattering (SAXS) method to obtain information about the solution 

properties of LLO_3270, including its overall shape. 

SAXS can give information about the scattering intensity of a particle. In an ideal 

dilute monodisperse solution, where there are no interactions between the particles, the 

scattering intensity from the entire solution is proportional to the average of the 

scattering intensities of a single particle in all orientations. The scattering intensity of a 

particle can be transformed to scattering density of that particle. Scattering density 

reflects the number of electrons of that particle as well as the distribution of the 

electrons around the particle and can be used to reconstitute the electron density and 

its distance distribution in the particle. Thus, SAXS can be used to determine size, 

shape, and internal structure of a particle at low resolution (10-100) Å. in-solution 

scattering data that are complementary to high-resolution crystal X-ray diffraction data. 

In general, SAXS data can give us information about overall shape, conformational 

changes, folding and assembly, flexibility of a structures, quaternary structure, complex 

formation, and oligomerization behavior, and even more information about 

macromolecules (Svergun, 1992; Svergun, 1995; Svergun et al., 2001). 

The SAXS data allowed me to reconstruct a low-resolution three-dimensional 

(3D) structural model of the LLO_3270. I used CRYSOL (described in chapter 2) 

program to position and fit two possible atomic models from crystallography into the  



 

 

 
Figure 4.8 Crystal structure of LLO_3270. (A) and (B) Two orthogonal views of the 
crystal structure of SidP represented in ribbons. The catalytic “CX5R” motif is shown in 
spheres and indicated by an arrow. LLO_3270 consists of three domains. The N-
terminal catalytic domain is colored in blue and the I-domain, which is inserted within 
the catalytic domain, is shown in brown. The C-terminal (CT) domain is colored in 
green. 



 

  
Figure 4.9 BioSAXS analysis of LLO_3270. (A) The two protein molecules in the 
asymmetric unit of the LLO_3270 crystal. The green (model I) and pink (model II) 
colored ovals indicate two distinct monomer models of LLO_3270. (B) CRYSOL fitting of 
LLO_3270 crystal structure models to the experimental data (black curve) on a plot of 
intensity versus q. The theoretic scattering from the LLO_3270 crystallographic model I 

is shown in green and in pink for model II. The Chi (   ) values are 1.49 and 5.22 for 
the fitting of Model I and II, respectively. The Chi values indicate that model I is 
acceptable and has a significant better fit with the experimental data than model II. (C) 
SAXS-based shape reconstruction for LLO_3270. The crystal structure of Model I is 
docked in the low-resolution envelope using the SUPCOMB program. 



 

 

Figure 4.10 Background scattering subtraction and data quality evaluation. (A) 

Background scattering was collected from buffer and subtracted from the scattering. 

Green shows the lowest concentration, and purple shows the highest concentration. 

(B)Kratky plots were used to evaluate data quality and get information about the folded 

state of the proteins (C) Distance distribution function P(r). 

A 

B 
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SAXS data. Using the SAXS model, I was able to select the correct atomic model from 

the two possible atomic models obtained from the crystal structure. The model 

presented in (Figure 4.11C) (labeled as model I in Figure 4.9A) had a significantly better 

fit with the SAXS data than the alternative model (model II) (Figure 4.9B).Therefore, 

information that I obtained using X-ray crystallography combined with SAXS enabled 

me to construct the overall shape and domain configuration of LLO_3270 (Figure 4.9C, 

Figure 4.8). 

4.2.6 The catalytic domain of LLO_3270 

The catalytic domain of LLO_3270 is composed of a structural core consisting of 

11 pleated -sheets surrounded by 18 -helices. These secondary structure elements 

group in a bird nest-like structure with a deep invaginated pocket at the center of the 

catalytic domain (Figure 4.11). Like other PI phosphatases, the bottom of this deep 

pocket, where the catalytic CX5R motif (residue 554-560 or catalytic P-loop) is located, is 

highly positively charged (Figure 4.11B, D). A number of conserved arginine and lysine 

residues (labeled with blue oval in Figure 4.1) and the electric dipole of the -helix, 

where the catalytic P-loop ends, contribute in part to the positive electrostatic potential of 

the catalytic site. Similar to other CX5R containing phosphatases, this positively charged  

pocket is perfect for the recognition and accommodation of the negatively charged head 

group of PIs. 

Intriguingly, a long loop between 8 and 20 enriched with hydrophobic residues 

(colored in gold in Figure 4.11, 4.12 and in the brown box Figure 4.1) works like a cap 

that closely covers the catalytic pocket of LLO_3270. This structural architecture  



 

 

Figure 4.11 The catalytic domain of LLO_3270 . (A) Ribbon diagram of the catalytic 
domain of LLO_3270. the catalytic motif is shown in red in sticks. The catalytic pocket is 
covered by a hydrophobic loop, colored in gold. (B) The catalytic domain at the same 
orientation as in (A) represented in surface. The surface is colored based on electrostatic 
potential with positively charged regions in blue (+4 kcal per electron) and the negatively 
charged regions in red (-4 kcal per electron). Surface potential calculations were 
determined using APBS plug-in on PyMol (DeLano Scientific, LLC). (C) Ribbon diagram 
of the catalytic domain of SidP viewed with 600 rotation along the horizontal axis 
compared in (A). The hydrophobic loop is removed for a better view of the catalytic 
pocket. (D) Surface representation of the catalytic domain of SidP. The surface has a 
same orientation as (C) and is colored with the scheme as in (B). Again, the hydrophobic 
loop is removed to demonstrate the deeply invaginated and highly cationic catalytic site. 



 

 

Figure 4.12 The catalytic domain of LLO_3270. Ribbon diagram of the catalytic 
domain of LLO_3270. The catalytic motif is shown in red in sticks. A hydrophobic loop 
that covers the catalytic pocket, is colored in gold and is showed in sticks in the 
zoomed-in view. A close view of the catalytic P-loop of LLO_3270 on the right.  

 

  



 

suggests a regulatory role for the hydrophobic loop by controlling the accessibility of 

substrates to the catalytic pocket. 

Close examination of the crystal structure of catalytic domain of LLO_3270 

revealed another exceptional feature of its catalytic loop a unique conformation of the 

conserved arginine (Arg556) within the CX5R loop. Arg556 faces away from the catalytic 

cysteine (Cys550) and the hydrophobic part of its side chain is inserted between two 

hydrophobic residues, Tyr625 and Leu417. Meanwhile, the guanidinium group of Arg556 

makes hydrogen bonds with the main chain carbonyl group of His466 and interact with 

Glu528 through electrostatic attraction (Figure 4.13A). In contrast, this conserved 

catalytic arginine residue adopts a very different conformation in SidF, the other L. 

pneumophila PI phosphatase that our lab recently reported to specifically hydrolyze 

PI(3,4)P2 and PI(3,4,5)P3 (Hsu et al., 2012). The conserved catalytic Arg645 of the SidF 

CX5R loop adopts a conformation that seems to facilitate the catalytic reaction of SidF by 

proper positioning the target phosphate group of the substrate and making it ready for 

the nucleophilic attack by the conserved catalytic cysteine (Cys 645). The conformation 

of SidF Arg651 is enforced by four hydrophobic residues (Val360, Val418, Phe624, and 

Phe718) that are located close to one another in the vicinity of the catalytic loop of SidF  

to create a hydrophobic fence that restricts the Arg651 in this conformation (Figure 

4.13B). 

It may be necessary for the Arg556 of LLO_3270 to switch its conformation to one 

similar to that of Arg645 of SidF to facilitate its substrate binding and catalytic activities. 

The question then is: why has LLO_3270 adopted a conformation that need to be 

changed to activate its catalytic activity? Although there is no obvious functional 



 

advantage for Arg556 to have a different conformation than Arg645, it may play a 

regulatory role in the activity of LLO_3270. In fact, a conformational change in the. 

catalytic “CX5R” P-loop of Sac1 PI-phosphatase has been proposed to play a role in the 

regulation of the enzymatic activity of Sac1(Zhong et al., 2012). 

4.2.7 Comparison of the catalytic domain of LLO_3270 and substrate specificity 

The primary amino acid sequences of SidP and its orthologue LLO_3270 do not 

show any significant similarity to other known PI phosphatases. My structure of 

LLO_3270 revealed that its catalytic domain has the same conserved structural core 

seen in other PI phosphatases. The catalytic core of LLO_3270 comprises one -helix 

and a central β-sheet with four parallel β-strands. The catalytic CX5R is part of a loop 

that connects the carboxyl end of one of the β-strands to the amino terminus of the -

helix (Figure 4.11A and Figure 4.12) (Barford et al., 1994; Lee et al., 1999; Manford et 

al., 2010; Stuckey et al., 1994). 

In addition, I performed a structural homology search using the distance-

matrix alignment (Dali) server (Holm and Rosenstrom, 2010; Holm and Sander, 1993). 

Dali server is a network service routinely used by crystallographers for comparing 

tertiary structure of proteins. By submitting coordinates of a query protein structure to 

Dali server, the 3D structure of the query protein will be compared against the protein 

structures available in protein data bank (PDB). Dali search of SidP revealed that the 

catalytic domain of LLO_3270 is strikingly similar to the catalytic domain of SidF. The 

Dali Server calculated the 3D structural superposition of these two structures and 

yielded a Z-score of 20.3 and a root-mean-square deviation (rmsd) of 2.9 Å for 421 

aligned residues. Z-Score is a statistical measurement that reflects the distance of a  



 

 

Figure 4.13 Structural comparison of the catalytic site between SidP and SidF. (A) 
The catalytic site of SidP. Note that CX5R arginine is away from the catalytic cysteine 
(Cys550). The hydrophobic part of Arg556 side chain is sandwiched between two 
hydrophobic residues Tyr625 and Leu417, while the guanidinium group interacts with 
the main chain carbonyl group of His456 through hydrogen bonding and residue Glu528 
through electrostatic attraction. (B) The catalytic site of SidF. The presence of a cluster 
of hydrophobic residues (Val360, Val418, Phe624, and Phe718) retains the CX5R 
arginine Arg651 in a conformation that its guanidinium group is close to the catalytic 
cysteine. 

  



 

 

Figure 4.14 Stereo view of superposition of the catalytic domain of LLO_3270 with 
SidF. LLO_3270 is colored in blue and SidF (PDB ID: 4FYG) is in yellow. The CX5R 
motif is shown in red. 



 

data point from the mean in a group of data set, and the higher z-score means the 

further from the mean. Thus, the very high Z-score resulting from Dali comparison of  

catalytic domain of SidP and SidF indicates their similarity is very significant (Figure 

4.14). 

Although LLO_3270 and SidF have very similar catalytic domain structures and 

both have PI-3-phosphatase activity, SidF hydrolyzes PI(3,4)P2 and PI(3,4,5)P3. These 

are distinct from LLO_3270, which hydrolyzes PI(3)P. This prompted us to investigate  

whether there are fine structural features in these phosphatases that may contribute to 

their distinct substrate specificity. To this end, I closely compared the catalytic sites of 

SidP, SidF and other PI phosphatases, such as the myotubularin phosphatase (Begley 

et al., 2006; Begley et al., 2003) and the tumor suppressor PTEN (Lee et al., 1999). This 

analysis revealed differences in both the overall shape of the active site pocket and in 

the primary sequence of the catalytic P-loop. 

A primary sequence comparison of the catalytic P-loops revealed an interesting 

pattern. It seems that all the phosphatases that can hydrolyze substrates with two 

adjacent phosphate groups have a lysine residue immediately after the conserved 

catalytic cysteine of the CX5R motif (orange boxes)(Figure 4.15A). It is possible that the 

presence of a lysine residue after the catalytic cysteine could be a determining factor for 

the substrate specificity of these phosphatases. A lysine residue in this position in PI 

phosphatases such as SidF and IpgD, SopB, PTEN, and INPP4B, causes the 

preferable hydrolysis of the PI species with two consecutive phosphate groups. In 

contrast, enzymes such as SidP, Sac1 and MTMR2 those have a non-lysine residue 

after  



 

 

Figure 4.15 Enzymes with a non-lysine residue following the catalytic cysteine seem to 
hydrolyze mono- or non-consecutively di-phosphorylated PI species. However, 
enzymes with a lysine residue after the cysteine (orange boxes) can hydrolyze lipids 
with two consecutive phosphate groups. (B) A close view of the catalytic site lysine 
(K646) in SidF. The main chain amide group forms hydrogen bond with the D3 
phosphate, while the epsilon amide group interacts with the D4 phosphate. A lysine 
residue at the second position of the “CX5R” motif provides the specificity for PI 
substrates with two consecutive phosphate groups. 



 

the catalytic cysteine preferably hydrolyze mono- or non-consecutively di- 

phosphorylated PI species. Thus, the presence or absence of a lysine residue after the 

conserved cysteine in the CX5R motif is a likely determining factor for the substrate 

specificity of these enzymes. Based on the crystal structure of SidF in complex with its 

substrate PI(3,4)P2 (Begley et al., 2006; Hsu et al., 2012; Luo and Isberg, 2004), the 

adjacent phosphate groups by “sensing” the distance between the phosphate groups. 

We can imagine this lysine as a “molecular ruler” for consecutively di-phosphorylated PI 

species. Therefore, the lack of this lysine residue in LLO_3270, as well as in Sac1 and 

MTMR2, could in part be the reason why these enzymes do not hydrolyze PI species 

with two adjacent phosphate groups. 

Furthermore, structural comparison of the catalytic pocket of LLO_3270 with other 

phosphatases revealed that the size of the catalytic pocket in LLO_3270 is considerably 

smaller (Figure 4.11B, D) than the catalytic pocket of SidF (Hsu et al., 2012). This spatial 

restriction may also restrict the accessibility of bulky PIs with multiple phosphate groups. 

4.3 Discussion 

Structure determination of LLO_3270 revealed that this phosphatase contains two 

additional novel domains, the I-domain and the CT-domain, in addition to its main 

catalytic domain. The crystal structure allowed me to see for the first time several unique 

and interesting features of the catalytic domain of LLO_3270 that may play roles in the 

regulation of the enzymatic activity and substrate specificity of this enzyme. 

Furthermore, the structure of LLO_3270 shows that both the I-domain and CT-

domain are entirely made up of -helices. Interestingly, neither of these two domains 

showed any considerable structural homology to any known protein structures, as 



 

determined using a search on the Dali server. It is possible that these domains will 

function as protein-protein interaction domains during infection and mediate the 

interaction of LLO_3270 with host proteins or other Legionella effector proteins. These 

interactions may be important for the proper targeting of LLO_3270 during infection. 

Since only 10% of L. pneumophila encoded proteins are transferred to the host 

cells during infection by the Icm/Dot secretion system, it has been proposed that these 

secreted effector proteins may carry some special molecular signature and structural 

features. In addition to the substrates’ intrinsic properties such as the presence three 

hydrophobic amino acids at the very C-terminal end of some set of substrates like RalF 

(Nagai et al., 2005), or large stretches of glutamic acid in other subset of substrates 

(Lifshitz et al., 2013), other factors have been proposed to play roles in the proper 

transfer of the Icm/Dot substrates, including chaperones that may help correctly fold the 

substrates so that their molecular signature can be exposed to the Icm/Dot transporter. 

Molecular features on the substrates that can be recognized by the Icm/Dot secretion 

system, such as stretches of residues with similar physicochemical properties at the 

carboxyl terminal part of the protein, seem to play an important role in substrate 

translocation. It has been suggested that these determinants for substrate recognition 

and transfer may be found on the carboxyl terminus of substrate proteins, but the 

mechanism of substrate recognition is poorly understood (Luo and Isberg, 2004). 

Therefore, a more detailed study of the structure of the CT-domain may reveal a 

structural signature recognizable by the Icm/Dot secretion apparatus. 

Consistent with our hypothesis that CT-domain may play a role in LLO_3270 

transfer, we found a glutamate cluster called “E-block” in the CT-domain. E blocks are  



 

 

 

Figure 4.16 The CT-domain of LLO_3270. (A) Ribbon diagram of the CT-domain of 

LLO_3270. The very C-terminus of LLO_3270 assumes a long -helix structure. This -
helix is enriched with glutamate residues (shown in sticks). (B) Surface representative of 
the CT domain. The same color scheme applied in Figure 4.8 is used in this figure. Note 

that the C-terminal -helix is negatively charged due the cluster of glutamate residues.  



 

regions of 6-8 glutamate residues that have been reported to act as an important 

element for the transfer of many effectors (Huang et al., 2011; Lifshitz et al., 2013). 

Intriguingly, the C-terminal residues of LLO_3270 form a long  helix containing 29 

residues that is rich in glutamate and has an overall negative charge (Figure 4.16A and 

B). The seven glutamate residues found in this helix make an “E block”. Interestingly, 

although the glutamate residues in the C-terminal  helix are not completely conserved 

among SidP homologues in different species, it seems that having an overall negative 

surface potential at the C-terminus is a conserved physico-chemical property, as SidP 

proteins from other Legionella species are all enriched with glutamate residues at their 

C-termini (Figure 4.1). 

L. pneumophila chaperones may facilitate exposure of the substrate translocation 

signature to the Icm/Dot transporter system. Small, acidic L. pneumophila proteins such 

as IcmS, IcmW, and LvgA have been shown to make stable IcmS/IcmW and IcmS/LvgA 

complexes (Coers et al., 2000; Vincent and Vogel, 2006) that interact with a large 

numbers of effector proteins and facilitate their transfer by an unknown mechanism, 

possibly by inducing conformational changes in the effectors. It is not understood why 

these chaperones only improve the transfer of a subset of effector proteins. Likely, these 

chaperones are required for transfer of the substrates that require chaperone binding to 

achieve the optimal conformation for recognition by the Icm/Dot system (Cambronne and 

Roy, 2007; Lifshitz et al., 2013; Qiu and Luo, 2013). Investigating the possible interaction 

of the CT-domain with IcmS/IcmW and IcmS/LvgA complexes in vitro may help us 

understand the mechanism of how L. pneumophila chaperones facilitate efficient transfer 

of effector proteins into the host. 



 

Finally, SidP and LLO_3270 do not contain trans-membrane domains or 

membrane binding domains. Furthermore, my in vitro liposome-binding assay showed 

that neither the full-length proteins nor the catalytic domains were able to bind directly to 

membranes (data not shown). Therefore, it is plausible that either the I-domain, or the 

CT-domain, or both may be involved in protein-protein interactions that help LLO_3270 

anchor onto the LCV membrane through binding to other yet unidentified host or 

Legionella proteins. 



 

CHAPTER 5 

Conclusions and perspectives 

5.1 SidP and SidF may actively regulate the LCV lipid composition 

Taking into consideration the critical roles that PIs play in cellular vesicle 

trafficking, PI composition and lipid identity of the LCV is expected to play a significant 

role in LCV biogenesis and maturation. Therefore, unraveling the molecular 

mechanisms that regulate the PIs on the LCV spatially and temporally during infection is 

very important for understanding L. pneumophila pathogenicity. 

During L. pneumophila infection early phagosome transition to LCV is 

accompanied with a PI(3)P enriched organelle transformation to a PI(4)P enriched 

organelle. Enrichment of PI(4)P on the LCV membrane makes it a trans-Golgi-like 

compartment. This Golgi-like identity of the early LCV may make it a more appropriate 

organelle to recruit, interact with and fuse with ER-derived secretory vesicles. 

Consistent with this idea, PI(4)P-binding L. pneumophila effector proteins SidC and 

SidM anchor on the LCV membrane through PI(4)P and presumably aid in the 

recruitment and fusion of ER-derived vesicles with the LCV (Luo and Isberg, 2004; 

Machner and Isberg, 2006; Murata et al., 2006; Ragaz et al., 2008). 

The following model depicts how the non-overlapping PI-3 phosphatase activities 

of SidP and SidF may actively regulate the LCV lipid composition and consequently 

contribute to the LCV programming for L. pneumophila multiplication. SidP 

dephosphorylates and depletes PI(3)P on the LCV. This may contribute in blocking the 

fusion of host endosomes or lysosomes with the LCV, which prevents bacterial 

degradation via the phagolysosomal pathway (Figure 5.1, and 5.2). According to this  



 

 

 

Figure 5.1 SidP may block phagocytosis by depleting PI (3)P from the early 

phagosome. PIs interconvert during phagocytosis and later stages of phagosomal 

maturation into the phagolysosome. SidP may contribute to phagocytosis maturation 

arrest by interfering with PIs interconversions. 

  



 

 

 

Figure 5.2 Functional model of modulating host PIs in L. pneumophila infection. 

L. pneumophila encodes two PI phosphatases, SidF and SidP. While SidF specifically 

hydrolyzes PI(3,4)P2 and PI(3,4,5)P3, SidP removes PI(3)P on the surface of early 

bacterial phagosomes. By the synergistic action of these two effectors, the LCV will be 

diverted from PI(3)P mediated phagolysomal pathway into a PI(4)P enriched 

compartment that is hospitable for the intracellular replication of the bacterium 



 

model, SidF anchors on the LCV membrane and hydrolyzes PI(3,4,5)P3 and PI(3,4)P2 

to PI(4,5)P2 and PI(4)P. SidF can also indirectly prevent PI(3)P accumulation on the 

LCV by hydrolyzing PI(3,4,5)P3, which is the substrate of host 5p- or 4p- phosphatases. 

PI(3,4,5)P3 can be converted into PI(3)P by the catalytic function of 5p- or 4p- 

phosphatases during endocytic processes (Shin et al., 2005). This synergistic action of 

SidP and SidF in PI(3)P removal from the LCV may contribute in blocking the fusion of 

host endosomes or lysosomes with the LCV, which prevents bacterial degradation via 

the phagolysosomal pathway. The phosphatase activity of SidF may also contribute to 

the enrichment of PI(4)P on the LCV by hydrolyzing PI(3,4)P2 Substrate. PI(4)P can 

then recruit several other bacterial effectors, such as SidC and SidM, which promote the 

recruitment and fusion of ER-derived vesicles with the LCV and its maturation. This 

model could be oversimplified, as the mechanism governing the regulation of the PI 

composition on LCV membranes is expected to be complex, and it likely involves many 

PI-metabolizing enzymes and several related Icm/Dot-secreted effector proteins. 

Presently, we have very little knowledge and understanding of the interaction 

between L. pneumophila PI-binding effectors. SidP and SidF have only recently been 

discovered, and molecular details of their functions have yet to be identified. 

Furthermore, unlike the other pathogens discussed, the frequent occurrence of 

functional redundancy among L. pneumophila effector proteins makes it difficult to 

narrow down the role of each specific PI-phosphatase in pathogenicity. Studying and 

identifying these interactions will be invaluable when it comes to unraveling the 

molecular details of L. pneumophila infection. Deletion of SidF or simultaneous deletion 

of SidP and SidF did not cause any obvious defects in bacterial growth or infection. 



 

Again, a possible explanation for the lack of phenotype is that other bacterial effector 

proteins or host proteins can compensate for the function of these two proteins. As 

previously described, our bioinformatics approach identified 29 open-reading frames 

containing the “CX5R” motif, which are believed to be substrates of the Icm/Dot 

secretion system (Hsu et al., 2012; Zhu et al., 2011). Only two of these candidates, 

SidP and SidF have been identified and partially characterized, and so there may be 

several others that function as PI phosphatases and contribute to LCV lipid identity. 

In addition, screening using “CX5R” motif would not be able to identify all potential 

PI phosphatases in L. pneumophila, since the remaining major family of PI 

phosphatases, the “5-phosphatase family”, does not contain the “Cx5R” motif. Instead, 

the 5-phosphatase (5-Ptase) metal dependent family has two motifs: “WxGDxNxR” and 

“PxWCDRxL” (Jefferson and Majerus, 1996).Therefore, exploring other candidates and 

possible identification of other L. pneumophila PI phosphatases would definitely helpful 

to have a better picture of PI regulation on the LCV and the impact of this regulation on 

L. pneumophila pathogenicity. 

5.2 Future directions 

In terms of host cell biology, the most important challenge is to understand the 

role of SidP during the L. pneumophila infectious cycle, and the consequences of 

expressing SidP in host cells. Since sidP deletion mutants are still infectious, and given 

the high likelihood that there are other bacterial effectors that function redundantly with 

SidP, dissecting the function of SidP during L. pneumophila infection would be very 

difficult. Identification and elucidation of function of other L. pneumophila PI(3)P 

phosphatases would be helpful to understand the role of SidP in infection. L. 



 

pneumophila strains from which the genes encoding PI(3)P phosphatases have been 

deleted singularly or/and simultaneously could be used to study the phenotype and 

pathogenicity of these strains. 

Furthermore, generating and studying pathogenicity of L. longbeachae strain 

carrying LLO_3270 deletion mutants could be worth trying, since different species of 

legionella encode and translocate different sets of effector proteins. With the same 

logic, exogenous expression of LLO_3270 in mammalian cells and studying the 

possible effects on mammalian cellular pathways can be another alternative. 

L. pneumophila has been shown to interact with host cells in a very specific 

manner. Host cells interact and cooperate in a host-specific-dependent manner with L. 

pneumophila effector protein during infection. For example, L. pneumophila ΔsdhA 

mutant shows only minor growth defect in D. discoideum, meanwhile its intracellular 

growth is severely impaired in macrophages. Most likely because L. pneumophila 

effector protein SdhA is involved in inhibition of death pathways in macrophages that 

are absent in D. discoideum (Laguna et al., 2006; O'Connor et al., 2012). Thus, 

investigation and careful quantification of the intracellular growth of sidP deletion mutant 

strain in different host cells, including amoebal, drosophila, and mammalian cells may 

reveal growth defect phenotypes in one or more of these host cells. 

Although LCVs harboring L. pneumophila carrying a sidP deletion mutation were 

able to avoid lysosomal fusion and the sidP deletion mutant strain was able to form 

“replication permissive” LCVs (Figure 3.7), deletion of SidP may still affect the dynamics 

of the LCV maturation and change the acquisition of endosomal markers by the LCV 

during infection. 



 

Investigating the possible effects of exogenous expression of SidP in the 

mammalian cell endocytic pathway may give us some indication about its role during 

infection. Both stable and transient expression of SidP in macrophages proved 

unsuccessful in our hands and we may need to deliver tagged-SidP into macrophages 

by microinjection. The effect of exogenous delivery of SidP on mammalian cell 

phagosome acidification or other aspect of endocytic pathway may be helpful to 

understand the role of SidP in pathogenicity. 

During phagosome maturation, the phagosome membrane undergoes several 

changes. These include remodeling, changes in associated molecular markers, 

decrease in pH and increase in oxidative potential. These specific molecular and 

chemical markers can be used to study the possible role of SidP in arresting 

phagocytosis maturation. Using macrophages injected with the purified SidP protein, the 

role of SidP in phagocytosis maturation arrest can also be tested by tracking changes in 

phagosome acidity using Lyso Tracker Blue (Invitrogen), a fluorescent acidotropic 

reagent which serves as a marker of maturing phagosomes(Via LE, 1998),(Malik ZA, 

2000). Phagocytosis can then be monitored using 3D live imaging, over a period of 15-

60 minutes at 2 minutes time intervals. The number of acidic phagosomes positive can 

be quantified. 

Studying and comparing the time required for digestion and clearance of 

digested fluorescent-E. coli in macrophages injected with the purified SidP protein can 

be used to test the effect of SidP on the dynamic of phagocytosis. Macrophages 

injected with the purified SidP can be tested for markers for the early phagosome 

(EEA1) or the phagolysosome (Cathepsin D and LAMP1) (Flannagan et al., 2009) at 



 

several time points after adding the phagocytic stimuli. This experiment may reveal the 

possible delay in phagocytosis maturation in the presence of SidP, as indicated by 

delayed appearance of markers for late endosomes and phagolysosomes. 

It is shown that eukaryotic PI phosphatase activities are regulated through 

interaction with their binding partners. Eukaryotic PI phosphatases like Fig4 can be 

recruited to the membrane, where their substrates are localized through their binding 

partners (Duex et al., 2006; Ikonomov et al., 2009). L. pneumophila genome has a large 

number of genes predicted to encode proteins or domains, which some are involved in 

host-pathogen interaction.(Newton H. J., 2010). CT-domain of SidP may be involved in 

protein-protein interactions that help SidP anchor onto the LCV membrane through 

binding to other proteins. Thus, I speculate that similar to eukaryotic phosphatases, 

some other yet unidentified host or L. pneumophila proteins may control regulation 

(especially temporal) of SidP activity and its localization. Yeast two- hybrid system (Bai 

and Elledge, 1996), or a Stable Isotope Labeling with Amino aCids (SILAC) experiment 

can be used for identifying putative candidates in the host cells as SidP binding partners 

(Ong et al., 2002). The physical interaction of SidP with its possible binding partner 

candidates can be tested by coimmunopercipitation. In fact, I have already started a 

SILAC experiment. N-terminally GFP-tagged SidP and GFP proteins have been 

exogenously expressed in human T98-G cells growing in SILAC media. I have already 

collected the cells and purified the GFP and GFP-tagged SidP, using GFP-binding 

beads. The purified protein samples are stored in -80 °C ready to be processed and 

analyzed using mass spectroscopy. 

  



 

 

Figure 5.3 GFP and SidP-GFP protein purified from T98G cells grown in SILAC 

media. T98G cells growing in light SILAC media were transfected with plasmid 

expressing GFP, and the cells growing in heavy SILAC media were transfected with 

plasmid expressing GFP-SidP. Proteins were purified using GFP binding beads. To test 

the quality of the samples 1 µg of each were separated by SDS-PAGE followed by sliver 

staining  

 

  



 

The CT-domain of SidP may be involved in L. pneumophila protein-protein 

interactions that help translocation of SidP by the Icm/Dot transporter system. L. 

pneumophila chaperones such as IcmS and IcmW have been shown to make stable 

IcmS/IcmW complexes, and interact with some of the substrates of Icm/Dot to make 

their interaction with the Icm/Dot system more efficient. I wanted to test the possible 

interaction of CT-domain of SidP with IcmS/IcmW complex in vitro. I already have 

expressed recombinant N-terminal His-SUMO tag-CT- SidP(residues 674-) in the 

Rosetta (DE3) E. coli strain, purified it to homogeneity using affinity chromatography 

followed by size exclusion chromatography (Figure 5.4). I have co-expressed 

recombinant N-terminal His-IcmS-IcmW-C-terminal Stag in the Rosetta cells. Currently I 

am working on optimization of IcmS-IcmW expression condition , since it seems that the 

IcmS-IcmW complex is not stable in vitro. When stable IcmS-IcmW proteins are 

available, their binding to CT-SidP can be tested in vitro.  

The polyclonal antibodies that we have generated against SidP were not able to 

probe the in vivo localization of SidP during L. pneumophila infection because of non-

specific signals. I have purified anti- SidP using affinity chromatography, however, the 

purified antibody also shows non-specific signal. Therefore, I am missing an essential 

tool to study the function of SidP during infection. Antibody production can be repeated 

using truncated SidP or by injecting the protein to a different choice of animal. This 

challenge could also be overcome by making L. pneumophila that expresses a tagged 

SidP that can be tracked using the epitope tag (Lp02ΔsidP/taggedSidP). 

As mentioned in Chapter 3, we were not able to visualize the SidP PI(3)P 

phosphatase activity by tracking the intensity and dynamic of a PI(3)P probe, GFP- 



 

 

Figure 5.4 Gel filtration and SDS-PAGE of CT-SidP and IcmS/IcmW proteins. 
Tagged CT-SidP (A) and tagged IcmS/IcmW proteins (B) elute off the size-exclusion 
columns in the major peak after approximately 80 mL. 
  

IcmS/IcmW gel filtration chromatogram CT-SidP gel filtration chromatogram 

A B 



 

fusion-2X-FYVE domain, during L. pneumophila infection. This might reflect errors in 

timing in our capture of the dynamic changes of PI(3)P probe during infection. 

Therefore, live imaging of cells infected with a fluorescently labeled L. pneumophila, 

may help capture the possible transient changes of PI(3)P on the LCV in early stages of 

infection. 

Besides vesicle trafficking, L. pneumophila phosphatases may interfere with 

other signaling cascades found in the host cell. Since SidP can hydrolyze PI(3,5) P2 to 

generate PI(5)P (Figure 3.2), it would be interesting to see whether the production of 

PI(5)P can indirectly activate the Akt/survival pathway similar to the activation of the 

Akt/survival pathway of S. flexneri, S. enterica by PI(5)P (Knodler et al., 2005; Marcus et 

al., 2001; Pendaries et al., 2006; Steele-Mortimer et al., 2000). 

Concluding remarks 

The discovery of SidP as a L. pneumophila PI phosphatase underscores the 

significance of a common strategy employed by intracellular pathogens during infection, 

the exploitation of the host PI metabolism. Subversion of host PIs by bacterial virulence 

factors has been reported in other intracellular pathogens, such as S. flexneri (Niebuhr 

et al., 2002), S. typhimurium (Bakowski et al., 2008; Patel et al., 2009), and M. 

tuberculosis (Vergne et al., 2003a; Vergne et al., 2005). The presence of SidP 

homologs in other pathogenic bacteria, such as Fluoribacter dumoffii and Rickettsiella 

grylli (Figure 3.1) suggests that many intracellular pathogens use subversion of host PI 

metabolism as a powerful strategy to survive inside host cells. 



 

The identification of a number of PI phosphatase proteins in L. pneumophila and 

L. Longebeachae, has given us an exciting opportunity to characterize these enzymes 

in more depth. My work and future work and also work of other members of our team 

will provide invaluable and novel information to start studying the role of PI signaling 

and metabolism in host-legionella interaction. My work will contribute to the 

understanding of host-pathogen interaction in general and may open a window for 

developing a new category of anti-microbial drugs by targeting pathogen effector 

proteins. Microbiology and the cell biology fields have contributed to development of 

many imaging and biochemical techniques. My findings may have a contribution for 

developing new tools for studying host-pathogen interactions in particular and cell 

biology and microbiology field in general. 



 

APPENDIX I 

 I have identified three “CX5R” containing PI phosphatases in L. longbeachae. 

All these effector proteins show detectable homology in their primary amino acid 

sequence to a Caenorhabditis elegans inositol polyphosphate-4-phosphatase. I have 

been interested in studying these phosphatases for the following reasons. First, their 

primary amino acid sequences show homology to a eukaryotic PI phosphatase. Second 

catalytic “CX5R” motifs of all of these L. longbeachae PI phosphatases, and C. elegans 

inositol polyphosphate-4-phosphatase have identical amino acid residues (Figure I.1). 

Third, so far no structure of PI- 4-phosphatases family of mammalian PI phosphatases 

has been determined, meanwhile, the structure of at least one member of other PI 

phosphatases family has been determined. 

I have started working on two of these effector proteins LLO_1412 and LLO_ 

1652. Effector protein LLO_1652 is an 919 amino acid protein with the peptide 

sequence “CKSGKDR” located between residues 799 and 807 (Figure I.2A). effector 

protein LLO_1412 contains 1029 amino acids and its catalytic “CKSGKDR” motif is 

located between residues 879 and 887 (Figure I.2B). 

I expressed recombinant LLO_1652 and LLO_1412 proteins in the Rosetta (DE3) 

E. coli strain, purified them to homogeneity using affinity chromatography followed by 

size exclusion chromatography (Figure I.2A, B, and I.3A, B). I then examined the 

purified proteins for in vitro PI phosphatase activity by a malachite green based assay 

(Figure I.4A). LLO_1652 and 1412 both are able to hydrolyze PI(3,4)P2, PI(4,5)P2 and 

PI(3,4,5)P3. Consistent with what it was proposed in chapter 4 that the presence of a 

lysine residue after the conserved cysteine in the CX5R motif is a likely determining 



 

 

 

Figure I.1 Sequence alignment of the catalytic motif of L. longbeachae PI 
phosphatases and C. elegans inositol polyphosphate-4-phosphatase. Red box 
shows the catalytic motif of these proteins.  
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Figure I.2 Gel filtration and SDS-PAGE of LLO_1652. (A) Untagged-LLO_1652 elutes 
off the size-exclusion column as the major peak after approximately 70 mL. (B) The 
FPLC eluted fractions are collected and assayed by SDS. The injected protein is loaded 
in lane (I), the (L) lane is the molecular weight ladder (in kDa). 
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Figure I.3 Gel filtration and SDS-PAGE of LLO_1412. (A) Untagged-LLO_1412 elutes 
off the size-exclusion column in the major peak after approximately 60 mL. (B) The FPLC 
eluted fractions are collected and assayed by SDS. (L) Lane is the molecular weight 
ladder (in kDa).  
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Figure I.4 Legionella longbeachae LLO_1652 and LLO_1412 are PI phosphatases. 
(A) PI substrate specificity of purified LLO_1652 and LLO_1412 as determined by the 
malachite green assay (green color indicates the release of free phosphate). PI(3,4)P2, 
PI(4,5)P2 and PI(3,4,5)P3 are the preferred substrates. (B) Determination of LLO_1412 
and LLO_1652 substrate specificity .Fluorescent lipids. were used as the substrates for 
the enzymatic reaction of PI phosphatases as labeled. In lane 5 and 8, the 
the reactions were first carried out with di-C8- Bodipy-FL-PI(3,4)P2, and LLO_1652 and 
LLO_1412, respectively The products of each reaction were further hydrolyzed by the 
addition of SidP, (lane 6, 9 for LLO_1652 and LLO_1412, respectively), or Sac1 (lane 7, 
10 for LLO_1652 and LLO_1412, respectively).  



 

factor for the recognition and hydrolyzing substrates with two adjacent phosphate 

groups, LLO_1652 and 1412 have a lysine after the conserved cysteine (orange box 

Figure I.1). 

Since both LLO_1652 and 1412 do not hydrolyze any mono-phosphoinositide, 

malachite green assay cannot provide any information about which phosphate group is 

removed by these enzymes. In order to answer this question I used fluorescent 

phosphoinositide-based TLC method (Taylor and Dixon, 2001)(Figure I.4B). Both 

LLO_1652 and 1412 hydrolyzed PI(3,4)P2 to a single phosphorylated PI product , and 

this product could not be further digested by the specific PI-4-phosphatase yeast Sac1 

(Figure I.4B, lanes 7,10) (Guo et al., 1999). However, it could be hydrolyzed to 

phosphatidylinositol (Figure I.4B, lanes 6, 9; orange boxes) by SidP phosphatase that 

hydrolyzes PI(3)P. These results suggest that both LLO_1652 and LLO_1412 can 

specifically dephosphorylate PI(3,4)P2 at the D4 position of the inositol ring. 

Testing the in vivo phosphatase activity of LLO_1652 and LLO_1412 by 

exogenous expression of these proteins in mammalian cells and the measuring the 

cellular radiolabeled PIs, will be the next experiment to be done. Furthermore, looking at 

the impact of exogenous expression of these proteins on mammalian cellular pathways 

could be investigated, to study if these proteins can cause any phenotype in the cells 

that have been transfected by them. Along the same lines, making L. longbeachae 

strains from which the genes encoding these phosphatases have been deleted 

singularly or and/or simultaneously could be used to study the phenotype and 

pathogenicity of these strains. 



 

On the structural studies side, crystallization trials of LLO_1652 and LLO_1412 

failed to yield any crystals. However, I already have made some progress to make N-

terminally truncated LLO_1652 proteins, which are expressed in high levels and can be 

purified to high homogeneity. Attempts to crystallize these LLO_1652 truncated proteins 

are in progress now (Figure I.5)and (Table I.1). 



 

 

Figure I.5 Gel filtration and SDS-PAGE of truncated LLO_1652 (residues207-919). 
(A) Untagged-protein elutes off the size-exclusion column in the major peak after 
approximately 70 mL. (B) The FPLC eluted fractions are collected and assayed by SDS. 
(L) Lane is the molecular weight ladder (in kDa). 
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Truncated LLO_1652  Quality  

LLO_1652 (residues 207-919)  
 

Very good 

LLO_1652 (residues 252-919)  
 

Good 

LLO_1652 (residues 302-919)  
 

Not good  

LLO_1652 (residues 340-919)  
 

Bad 

LLO_1652 (residues 392-919)  
 

Very bad 

 

Table: I.1: pET28a-His6-SUMO-LLO1652 truncated proteins list   
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