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ABSTRACT 

 

This paper presents a practical methodology for selecting and evaluating alternative 

long-term monitoring networks in large watersheds. The methodology takes into 

account weather variability, optimizes the sensor locations, and provides information 

on the tradeoff among different monitoring networks. Assessment of a sensor network 

is based on the accuracy of hydrologic model predictions with inputs from sampling 

points in the sensor network. Accuracy is assessed by comparison to the “true output,” 

a spatially distibuted time series of the flow and contaminant constituents throughout 

the watershed. The true output is generated by simulating a hydrologic model with a a 

set of parameters selected based on the best available information, with complete 

weather information generated using a spatially distributed weather generator. The 

methodology provides a platform for testing several sensor network configurations in 

a matter of hours rather than years, since sensors do not have to be physically placed 

in the watersheds. Three case studies illustrate the integrated placement of in-stream 

and rain gauges in the watershed as long-term monitoring networks for hydrologic 

model calibration. Results show that raingauge networks are more important for flow 

simulations rather than nutrient simulations. Additional in-stream gauges may not be 

necessary for flow estimation, but nutrient estimation benefits from information from 

additional gauges. In addition, statistically optimal placement of rain gauges is found 

to work better than placing the rain gauges according to geographical criteria. Finally, 

the decomposition of the Nash Sutcliffe Efficiency measure into its components on the 

case study shows that the model performance is largely driven by SWAT's ability to 



 

match the timing and shape of the hydrograph, and for high model performaces that 

there exists a tradeoff between matching the distribution of the flows and nutrient 

outputs, and correctly approximating the timing and shape of the hydrograph.
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CHAPTER 1 

1 INTRODUCTION 

 

Long-term monitoring networks that are cost-efficient and informational can help 

hydrologists model and assist watershed managers in making better decisions 

involving environmental and economic activities within the watershed [Reed et al., 

2006; Mishra and Coulibaly, 2009]. However, given the specific goals of a monitoring 

network, there is the question of determining the number, location and types of sensors 

to be installed. This is a complicated problem due to the spatial and temporal 

variability of weather inherent in large watersheds, the large number of potential 

sensor configurations, and the interaction of different hydrological processes such as 

rainfal-runoff generation and nutrient generation. 

 

Data from long-term monitoring networks are generally used for hydrologic 

model calibration. The data has to be collected continuously over a sufficient period of 

time so that many different conditions (high flow, low flow) can be captured in the 

watershed. Since this time period should be at least a year in length for daily data, 

evaluating several different candidate sensor network configurations cannot be done 

by physically placing sensors in a watershed and collecting data over a period of time, 

as shown by Vandenberghe et al [2007].  Evaluation of monitoring networks by 

physically placing sensors in the watershed of interest may take either a long time to 

evaluate (on the order of years), or poor estimates of model performance due to 

insufficient data capture.    



2 

 

This paper proposes a methodology for selecting and evaluating alternative 

long-term monitoring networks which take into account weather variability, optimizes 

the sensor locations, and provides information on the tradeoff among different 

monitoring configurations. The methodology has the advantage of: 1) Allowing the 

watershed manager to test various configurations of sensor networks in a relatively 

fast timeframe without the cost of having to place actual sensors within a watershed; 

2) allowing the watershed manager to see how the watershed model that they are using 

will react given more information through additional sensors; and 3) allowing the 

watershed manager to see different aspects of model performance. 

 

The methodology allows for the configuration of several different types of 

sensors. In this paper, the configuration of a long-term monitoring network consisting 

of in-stream and rain gauges is demonstrated. Studies that discuss configuration of 

multiple types of gauges [Bras et al., 1988; Vandenberghe et al., 2007] are relatively 

sparse compared to that of single gauge types [Mishra and Coulibaly, 2009]. 

Generally, the problem of sensor network design in watersheds has been viewed as 

either a problem of only rain gauge network design [Bradley et al., 2002; Dong et al., 

2005; Bárdossy and Das, 2008], or only in-stream gauge network design [Sanders et 

al., 1987; Strobl et al., 2006, 2007; Telci et al., 2009] , with a majority of the focus on 

rain gauge network design [Mishra and Coulibaly, 2009].  

 

In addition to multiple types of gauges, the sensor network’s ability to obtain 

data that will result in a calibrated model with an accurate simulation of multiple 
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constituents is considered. Previous studies such as the one conducted by Bras et al. 

[1988] consider a rain and in-stream sampling network for flow prediction for flood 

monitoring, while Telci et al. [2009] and Strobl et al. [2006] consider an in-stream 

sampling network to detect phosphorus and other pollutants over a short timeframe. 

These studies do not help us consider the long-term effects of monitoring. 

 

Furthermore, the methodology uses heuristic combinatorial optimization 

techniques to optimally locate rain gauges according to statistically based performance 

measures, rather than geographical criteria, as in Bardossy and Das [2008]. We 

illustrate this through the use of a Tabu Search. Previous studies for rain gauge 

configuration methods have used random sampling to determine rain gauge locations. 

Bradley et al. [2002] assigns random locations and evaluates 40 alternative rain gauge 

networks for a fixed rain gauge network density. Dong et al. [2005] uses variance of 

areal rainfall estimation as their criteria selecting good rain gauge networks via 

random sampling. Other heuristic combinatorial optimization algorithms have been 

used to optimally locate rain gauges, as in the paper by Bardossy and Das [2008], who 

use simulated annealing to minimize the mean distance of the station to the whole 

catchment and to maximize the minimum distance between the stations. 

 

Finally, a huge advantage to the methodology proposed in this paper is that 

multiple weather scenarios can be generated and used to test the robustness of the 

sensor network configuration. The weather scenarios generated are by a parameterized 

weather generator that is tailored to the watershed. The parameters of the weather 
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generator can be set to model average weather conditions in the watershed, or be set to 

generate potential weather scenarios under climate change conditions. Most of the 

methods discussed previously use historical data as inputs into their hydrological 

models. For example, the “true” precipitation data for rainfall in the study by Bardossy 

and Das [2008] were generated via interpolation of historical rain gauge data. In the 

study by Bradley et al [2002], NEXRAD radar data was used as the “true” 

precipitation over the watershed. Therefore the ability to determine how the sensor 

network is affected by different weather patterns for previous studies is limited to what 

has been seen in the past, with no ability to extrapolate to possible hypothetical 

climate conditions.  

 

To summarize, this methodology expands on what has previously been done 

by configuring multiple types of gauges (rain and in-stream gauges) for long-term 

monitoring of multiple watershed processes (flow and rainfall generation). Rain gauge 

locations are optimized using a heuristic combinatorial optimization method 

optimizing statistically based performance measures, rather than geographical criteria. 

Finally, the methodology uses a parameterized weather generator to simulate true 

weather conditions in the watershed and allows us to test various weather patterns that 

may occur. 

  



5 

 

CHAPTER 2 

2 METHODOLOGY 

2.1  General Framework 

 

The idea in our approach is to develop a hydrologic model of the watershed based on 

the best available data that accepts variable weather input from a weather generator 

(“true weather”). This model is then simulated to generate a spatially distibuted time 

series of the flow and contaminant constituents. This output is assumed to be the 

“true” observations at potential in-stream gauge sites. The assessment of the 

monitoring network is then based on the accuracy of the model predictions (from a 

model with inputs from sampling points in the sensor network) compared to the true 

observations.  

  

The framework for configuring and evaluating alternative hydrometric sensor 

network configurations can be described as a three-step process: 1) develop a model 

for the “true” conditions in the watershed and generate data ; 2) configure and evaluate 

the different rain gauge networks; and 3) using the best rain gauge network, configure 

and evaluate the in-stream gauge network. Detailed steps of the framework are as 

follows: 

 

Step 1: Develop a model for the “true” conditions in the watershed and generate data 

Step 1.1: With known weather generator parameters, a parametric, gridded, 

multisite weather generator [Wilks, 2009] is used to generate several 

precipitation scenarios (TP) 
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Step 1.2: TP and θ(true), the known hydrologic model parameters (randomly 

generated or obtained by previous calibrations) are used in the hydrologic 

model to obtain TI, the true observations at all the possible in-stream gauge 

sites 

Step 2: Configure and evaluate alternative rain gauge networks 

For each candidate rain gauge network R and weather scenario: 

Step 2.1: A subset of TP, determined by the rain gauge network R configured 

using a method described in Section 2.3.1 is fed into an error model (equation 

A.5) to produce OP(R), the observed precipitation data from the rain gauge 

network. 

Step 2.2: OP(R) is used as input into the hydrologic model with true parameter 

set θ(true) to produce SI(R), the simulated output at each potential in-stream 

gauge site 

Step 2.3: An error model (equation A.7) is used on TI generated in step 1.2 to 

produce OI, the observed in-stream gauge outputs at each potential in-stream 

gauge site.  

Step 2.4: SI(R) from step 2.2 and OI from step 2.3 are compared, generating a 

set of the model performance measures Perf(R) from Section 0. 

Output: The best rain gauge network, Rbest 

Step 3: Configure and evaluate alternate in-stream gauge networks 

For each in-stream gauge network (F) and weather scenario 
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Step 3.1: A subset of TP, determined by the best rain gauge network Rbest is fed 

into an error model (equation A.5) to produce OP(Rbest), the observed 

precipitation data from the rain gauge network. 

Step 3.2: An error model (equation A.7) is used on TI generated in step 1.2 to 

produce OI, the observed in-stream gauge outputs at each potential in-stream 

gauge site. 

Step 3.3: Configure in-stream gauge network F (e.g. as described in Section 

2.3.2), and get OI(F), the observed data from the in-stream gauge network.   

Step 3.4: Perform multisite and multivariable calibration as discussed in 

Section 2.5. Calibration of the model produces θ(Rbest,F), a set of calibrated 

parameters as a function of the best rain gauge configuration Rbest, and the 

candidate in-stream gauge configuration, F.  

Step 3.5: OP(Rbest) and the calibrated parameters are used as input into the 

hydrologic model to produce SI(Rbest,F) the simulated model output using 

input from the best rain gauge network and the candidate in-stream gauge F.  

Step 3.6: SI(Rbest,F) from step 3.4 and OI from step 3.2 are compared, 

generating a set of the model performance measures Perf(Rbest,F) from Section 

2.5. 

Output: best sensor gauge network (Rbest, Fbest)  

Figure 1 summarizes the steps, inputs, processes used in the methodology 

(discussed in later sections), and the output from each of the steps. 
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Figure 1: Overview of the sensor networks methodology. Precipitation and in-stream 

data are abbreviated in the following manner: T = true, O = observed, P = 

precipitation, I = in-stream output, R = rain gauge network, F = in-stream gauge 

network. For example, TP is true precipitation, OI(F) is observed in-stream output 

from in-stream gauge network F. θ(true) denotes the true hydrologic model parameters 



9 

 

while θ(Rbest,F) denotes the hydrologic model parameters calibrated to the (Rbest, F) 

sensor network.   

 

A few remarks are necessary regarding the framework. The first step is crucial 

to the methodology framework in that generally, the distribution of precipitation and 

temperature within the watershed of interest as well as the true model parameters can 

never be known with certainty. In addition, having several samples of weather data 

allows for the testing of the sensor network response to spatial and temporal weather 

variability. Knowing the true distribution of watershed processes allows for a more 

precise assessment of the sensor network performance. The sensor network 

configurations are generated step-wise, so as to observe the individual effects of the 

different types of gauges on model performance. 

 

In the second step, it is important to emphasize that the objective functions for 

optimization of rain gauge locations, are based on the ability of the rain gauge network 

to capture the distribution of the rainfall over the watershed. A rain gauge “data point” 

is data from a particular point in the grid used in the gridded weather generator from 

the first step. No calibration of the model is performed in this step, and thus the rain 

gauge selection can be optimized relatively quickly. The performance measures of 

each rain gauge network is compared to the performance measures of the base case 

rain gauge network, to evaluate the relative improvement from additional observations 

from the new network.  
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Finally in the third step, in-stream gauges are configured. Here, an in-stream 

“gauge” refers to the output from specific subbasins within the distributed or semi-

distributed model used to model the watershed of interest. One calibration data set is 

generated using the weather generator, and is then used in the calibration (step 3.4). 

No optimization scheme was developed for in-stream gauge configurations. Rather, 

techniques used previously such as stream-ranking techniques, as well as dividing the 

watershed into independent subbasins were used to configure in-stream networks. This 

is because a calibration with a large number of iterations and for watershed models 

that take on the order of minutes per simulation, the resulting computation time can be 

on the order of days – a computationally expensive endeavor. The performance 

measures used to evaluate the performance of the in-stream gauge network is the same 

as used in the second step.  

 

2.2 Weather Generation 

 

Inputs in the form of precipitation and temperature are generated using a parametric 

gridded, multisite weather generator developed by Wilks [2009]. The Wilks multisite 

weather generator runs single-site weather generators in parallel by forcing them with 

spatially correlated random number streams. The precipitation and temperature inputs 

generated are based on existing distributions of both data points at currently gauged 

sites then interpolated to ungauged sites taking into account the correlations between 

each gridpoint. Additional details on how precipitation and non precipitation variables 

are generated can be seen in Appendix 5A.1. 
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In our methodology, one weather sample is generated for calibration of the 

model, used in step 3.4 of the framework. Then, several independent weather samples 

of longer durations are generated for the validation (evaluation) of the model in steps 

2.4 and 3.6. Figure 2 shows an example of the weather grid corresponding to the case 

study watershed. The color corresponds to the average rainfall over a 40-year sample 

at a particular gridpoint.  

 

Figure 2: The weather generator grid for the Cannonsville Reservoir. The color for 

each gridpoint indicates the average daily precipitation (in mm) over a 40-year sample 

of validation data. 
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2.3  Sensor Network Configuration 

 

2.3.1 Precipitation Gauge Location Optimization  

 

We employ three different methods in raingauge selection: 1) DET, a deterministic 

approach based on a weighted distance and elevation score; 2) POPT-VAR, optimal 

location of raingauges using the mean squared error of areal average rainfall predicted 

by the gauge configuration; and 3) POPT-MSE, optimal location of raingauges using 

the variance of areally averaged rainfall.  

 

The first method, DET does not use optimization techniques. Rather, it is a 

configuration of a raingauge network based on a weighted distance and elevation score 

that ensures the geographical diversity of the rain gauge locations. Further detail on 

how this technique is implemented is shown in Appendix 5A.2. 

 

Precipitiation gauge location optimization (POPT) is performed using heuristic 

methods for solving combinatorial optimization problems. We illustrate the use of 

Tabu Search [Sait and Youssef, 1999]. Tabu Search is a general iterative heuristic with 

short term memory attributes used for solving combinatorial optimization problems. It 

is a form of a local neighborhood search. Further detail on the algorithm as well as the 

pseudocode of our implementation of Tabu search is shown in Appendix 5A.4. 

 

The decision variable for the Tabu search is the n-vector of grid locations 

corresponding to the locations of the n precipitation gauges in the watershed. After a 
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user-defined maximum number of iterations have been completed, the Tabu search 

algorithm outputs the rain gauge configuration network with the best cost. The cost 

function of the Tabu search is the MSE criterion (gauge networks configured using 

this criterion are denoted POPT-MSE) or the VAR criterion (POPT-VAR), an 

extension of research done by Dong et al., [2005]. The VAR criterion is discussed in 

Appendix 5A.3.  

 

The MSE criterion evaluates how well rain gauge network i made up of Ni 

gauges approximate the “true”• areal averages by comparing the estimated average 

predicted by those raingauges, 
ti

p
,

 to the “true”• areal average at time t, 
t

 : 

2

,

1=
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=
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N
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is the average areal precipitation predicted by gauge configuration i, 
tm

p
,

ˆ  is the 

assigned rainfall at gridpoint m at time t  
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k
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N

kksub
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p
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,

1=

11
= 



  (3) 

is the "true" mean over all gridpoints in the weather generator, 
tm

p
,

 is the "true" 

rainfall at gridpoint i at time t, 
sub

N  is the number of subbasins delineated in the 

watershed, 
k

Npts  is the number of points in subbasin k, 
k

sub  is the set of points in 
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subbasin k. The best raingauge network 
best

i  for each 
i

n -gauge network should have 

the lowest MSE. 

2.3.2 In-stream Gauge Network Configuration 

 

To select candidate flow gauge sites, two alternative methods were tested: (1) Sharp's 

procedure [Sanders et al., 1987] to identify and rank stream reaches for data capture, 

and (2) dividing the watershed into hydrologically independent subbasins and placing 

gagues at the outlet of these basins [White and Chaubey, 2005]. The details of these 

methods and how they were applied to the Cannonsville watershed are discussed in 

Appendices 5A.5 and 5A.6 respectively. For semidistributed watershed models (e.g. 

SWAT) that only have distributive features up to the subbasin level, subbasins 

containing the selected stream reach report its output for the calibration; therefore a 

flow gauge configuration is a set of subbasins that contain stream reaches of interest. 

In this study, we assume flow and water quality measurements are taken at the same 

location and at the same frequency. 

2.3.3 Error Models 

 

Measurement error is inherent in every data capture process. This error is simulated 

for rain and flow measurement capture using a multiplicative error model, and is 

discussed in more detail in Appendix 5A.7. A multiplicative error model ensures that 

no negative observed flows or precipitation will be generated and that zero flows will 

remain zero. 
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2.4 Evaluating the Performance of the Sensor Network 

 

The Nash-Sutcliffe efficiency (NSE) is one of the most commonly used criteria for 

calibration and evaluation of model performance of hydrological models with 

observed data [Gupta et al., 2009]. The NSE criterion [Nash and Sutcliffe, 1970] is a 

convenient and normalized measure of model performance, in that NSE values of less 

than or equal to zero indicate that the model is only as good as using the mean of the 

observed time series as a constant predictor. However, [Schaefli and Gupta, 2007] 

warn that the NSE does not measure how good a model is in absolute terms, and 

should always be compared to an appropriate reference value for proper interpretation. 

In this paper, this issue is addressed by comparing the performance of all sensor 

networks to a base case sensor network configuration. 

 

Since the ground truth (TP and TI) and subsequently the observed data (OP 

and OI)• from the watershed are all known from applying the first step of the 

methodology, the performance of the model with known parameters and a subset of 

rain gauge data, or the calibrated model can be evaluated as an average NSE, or NSE  

for the outputs throughout the watershed. This avoids user bias towards sensor 

networks that work well at arbitrarily chosen key sites, but may not work for the 

watershed as a whole. This criterion for a constituent k is formulated as equation 4:  

 
mk

sub
N

msub

k NSE
N

NSE
,

1=

1
=   (4) 

 where 
mk

NSE
,

 is the NSE for constituent k at subbasin m and is defined as equation 5: 
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where )}({
,,,

RSIx
tmksim
 for evaluating rain gauge network R, )},({

,,,
FRSIx

besttmkobs


for evaluating sensor network (Rbest,F), }{
,,,

OIx
tmkobs
 , and 

mkobs ,,
  is the mean of the 

observed constituent k at subbasin m. The NSE  over the 25 different weather 

scenarios are shown as a boxplot.  

A decomposition of the NSE  into its components of correlation, relative 

variability and relative bias provides a diagnostic look at what component of the 

model has improved and could potentially highlight tradeoffs between the different 

components [Gupta et al., 2009]. This decomposition is shown in Equation 6: 

 
2 2

,
= 2 * * kk k k n k

NSE r     (6) 

 where  

 
,

,
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



 (7) 
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,

=
sim k obs k
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 





 (8) 

kr  is the average correlation coefficient over all subbasins between 
sim

x  and 
obs

x  

All the overbars on the components of the NSE represent the average value of 

these components over all the subbasins delineated in the watershed. This is consistent 

with the notation in equation 4. The average relative variability,   (equation 7) 
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describes the ability of the model to capture the variability in the flow and has an ideal 

value of 1. The average normalized bias, 
n

  (equation 8) describes the ability of the 

model to approximate the mean, normalized by the standard deviation of the observed 

flow time series data. The ideal value for 
n

  is 0. The normalization is a convenient 

way to compare the bias between flow gauges at different locations. Finally, the 

average correlation coefficient, r  describes how well the model matches the timing 

and shape of the hydrographs, with an ideal value of 1. 

A novel way of visualizing the three components of NSE, called a Bias 

Variance coRrelation (BVR)-rectangle plot, is shown in Figure 3. Each combination of 

performance values are presented as a rectangle, with a line from the center of the 

rectangle to the top side of the rectangle. The value for correlation is described by the 

vertical location of the center of the rectangle on the chart. The relative variability is 

shown as the ratio of the horizontal sides of the rectangle to its vertical sides which are 

set at unit length. A short squat rectangle indicates low simulated variance relative to 

the observed variance, or   values of less than 1, and a tall skinny rectangle 

indicating high simulated variance relative to the observed variance, or   values of 

greater than 1. The bias is shown as the tilt of the rectangle relative to the vertical. A 

negative bias results in a rectangle tilted with the top pointed towards the left, while a 

positive bias results in a rectangle tilted with the top pointed towards the right. Rather 

than presenting the values as numbers in a graph, a graphic visualization of the 

components for the performance provides more insight to the relative performance of 
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each. In ideal conditions, the relative variability is equal to 1, normalized bias is equal 

to 0 and the correlation coefficient is equal to one, resulting in a perfect square. 

 

 

Figure 3: Visualizing the three components of NSE:  , 
n

  and r  in equation 6. The 

ideal values of each of the components are 1 , 0
n

 , and 1r . The positions of 

the centers of the rectangles show the value of r . The tilt of the red line relative to the 

vertical shows 
n

 . The shape of the rectangle shows  .  

 

2.5 Multisite and Multivariable calibration 

 

Typically, semi-distributed watershed models (for example, SWAT) require 

parameters that describe the processes such as baseflow generation and surface runoff 

within the watershed of interest. Many of these parameters cannot be measured and 

require calibration in order for the model to properly simulate conditions in the 
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watershed. Model calibration of multiple parameters, or inverse modeling problems 

are typically solved via an optimization method that optimizes an objective function 

which is a function of the error between the simulated constituent and some observed 

data for a given calibration period. 

 

Automatic calibration of the SWAT model parameters was performed using 

dynamically dimensioned search (DDS), developed by [Tolson and Shoemaker, 

2007b] for watershed calibration. DDS is a heuristic, global search algorithm that 

requires no parameter tuning and automatically scales the search to find good 

solutions within the maximum number of function evaluations, specified by the user. 

It has been shown to perform better than other popular automatic calibration methods 

such as the shuffled complex evolution algorithm for many different types of test 

functions as well as SWAT model calibrations, finding not only better solutions but 

converging to a good solution in fewer iterations (function evaluations) [Tolson and 

Shoemaker, 2007b]. 

 

Input for calibration is made up of OP(R), weather data (temperature and 

precipitation) from the rain gauge sensor network, chosen using methods described in 

Section 2.3.1. The “ground truth” precipitation data TP is transformed into observed 

data OP(R) using equation A.5. 
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The objective function for multi-site and multi-variable calibration of the 

watershed model is a weighted sum over all constituents of the average NSE, taken 

over the observations from the in-stream gauge configuration at a particular timestep:  

 ))*
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*((max=
,

1=}{
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mk
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k

tsconstituenk
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wObjective 
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where 
mk

NSE
,

 is now defined as the NSE for constituent k at in-stream gauge m 

(equation 5), with the components in equation 5 now defined as 

)},({
,,,

FRSIx
besttmkobs

 for sensor network (Rbest,F), }{
,,,

OIx
tmkobs
 , and 

mkobs ,,
  is 

the mean of the observed constituent k at subbasin m. In equation 9,   is the 

parameter set for the hydrologic model, 
k

w  is the weight for the individual 

constituent, and 
gauge

N  is the number of in-stream gauges in the sensor network. 

 

Calibration of the watershed model to observations from multiple sites (multi-

site calibration) has been shown to be a pragmatic approach to calibrating models for 

watersheds with areas similar to the Cannonsville or larger [Van Griensven and 

Bauwens, 2003; White and Chaubey, 2005; Cao et al., 2006; Migliaccio and Chaubey, 

2007; Zhang et al., 2010]. Equation 9 uses an aggregated objective function approach 

(as in [White and Chaubey, 2005; Zhang et al., 2010]). 

 

The calibration problem becomes further complicated when multiple 

constituents such as flow and water quality (e.g. total dissolved phosphorus) outputs 

are considered simultaneously. Usually, calibration of flow and sediment parameters 
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are performed first, then phosphorus parameters are performed. Preliminary 

investigation for the current SWAT model in our case study showed that this stepwise 

calibration method provides a good performance for flow, but overpredicts the 

variability in phosphorus and thus results in poor performance of the phosphorus 

simulations (shown in Appendix 5A.9). A weighted objective function is proposed to 

simultaneously calibrate flow, sediment and phosphorus parameters. 

 

One reason for using the NSE as the calibration objective function is that it 

scales the errors at each gauge by the variance at that gauge, thereby accounting for 

the different magnitudes of flow between gauge locations that have large and small 

drainage areas. Moreover, as mentioned in Section 2.4, NSE provides an intuitive 

sense of whether the model with calibrated parameters simply does not work, i.e. for 

values of NSE   0, the model performs just as well as a constant predictor function at 

the mean of the observed values [Schaefli and Gupta, 2007]. 
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CHAPTER 3 

3 CASE STUDIES 

3.1 Site Description 

 

The Cannonsville watershed is a 1200 km 2  rural watershed located in Catskill region 

in upstate New York. It is a primarily forested and agricultural watershed, with dairy 

farming and corn and hay production making up the bulk of the agricultural activity. 

Less than 1 percent of the watershed is designated as urban. The Cannonsville 

watershed drains into the Cannonsville Reservoir, which supplies New York City with 

unfiltered drinking water. Phosphorus contamination of the reservoir from agricultural 

activities in the watershed has prompted New York City to impose strict agricultural 

practices in the area [Tolson and Shoemaker, 2007a]. 

  

The existing gauges in the watershed are used as the "base case" sensor 

network configuration against which all other sensor networks are compared. 

Currently there exist five flow gauges, one water quality station, and four rain gauges 

within this watershed. Only one of the flow and water quality gauges is currently used 

in calibration of the Soil and Water Assessment Tool (SWAT) model, and is shown in 

Figure 4. Information from all four rain gauges within the watershed is used in the 

SWAT model for simulation of the processes in the Cannonsville basin. Together, 

these four rain gauges and the single flow and water quality gauge are considered as 

the base case sensor network configuration. 
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Figure 4: The Cannonsville watershed and locations of the in-stream gauges (triangles) 

and rain gauges (circles) used for calibration of the SWAT model   

 

SWAT model predictions can possibly be improved with additional gauges. 

Since the Cannonsville is a relatively large watershed, calibrating watershed 

parameters to observations at one in-stream gauge location may result in parameter 

combinations that result in model simulations that do not reflect the true conditions in 

the watershed. Recall, in this approach, the true conditions refer to TI, the flow and 

water quality outputs generated from a model with all available input and known 

parameter values. In addition, more rain gauge data may be needed for this watershed. 

Figure 5 shows the average rainfall captured by the base case rain gauge network for 
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the same 40-year validation data set as in Figure 2. This figure shows that the resultant 

areal average rainfall prediction is much lower than what is actually occuring.  

 

Figure 5 : Average daily precipitation (in mm) over a sample of 40-year generated 

weather data at each gridpoint of the Cannonsville reservoir as captured by the base 

case rain gauge configuration.    

 

3.2 SWAT Model Overview 

 

The SWAT model is a distributed-parameter, physically based watershed scale model 

designed to model processes in largely agricultural and forested watersheds such as 

the Cannonsville watershed. It is designed to simulate the impact of land management 

practices in watersheds on the water, sediment, and agricultural chemical yields 

[Neitsch et al., 2005]. As such, SWAT is designed to model conditions in a watershed 

over long periods of time, and is not used for single-event simulation such as flood 

routing or point source pollution detection and warning. Hence SWAT benefits from 

datasets that span a long timeframe (at least 5 years). Initial development and 

calibration of the earlier SWAT2000 version of the model was performed by 
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[Benaman et al., 2005; Tolson and Shoemaker, 2007a], and a later version 

(SWAT2005) for the Cannonsville watershed was developed by [Easton et al., 2008]. 

This research uses the later version of the model. 

 

SWAT divides the model into subbasins that have a geographic location in the 

watershed and are spatially related to one another (e.g. outflow from one subbasin 

number 1 enters subbasin number 3). The subbasins are further subdivided into 

hydrological response units (HRUs). Each HRU within a subbasin describes the total 

area within the subbasin that has a unique landuse, management, and soil type 

combination. HRUs are not spatially related to one another, and do not interact; 

loadings from each HRU are calculated separately and then summed together to 

determine the total loadings from the subbasin. 

 

The structure of the SWAT model has a significant impact on how input data is 

used. Inputs into the SWAT model are weather data in the form of precipitation and 

daily max and min temperatures, soil type, and land use. Weather data is assigned for 

the entire subbasin; soil type and land use along with land use management practices 

are assigned to the HRU level. For weather inputs, the Cannonsville watershed is 

discretized into 296 2 km * 2 km grids, the centers of which are the potential location 

of a rain gauge. The grid is consistent with the gridded multisite generator used to 

generate weather scenarios for calibration and simulation [Wilks, 2009] described in 

Section 2.1. Estimation of areal rainfall for use in the SWAT model is then performed: 

each gridpoint is assigned to a subbasin in the SWAT model. Then, for each ungauged 
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gridpoint k the observed rainfall from the closest gauge gridpoint j is assigned to it. 

The arithmetic average is taken for each subbasin delineated in the SWAT model, and 

this arithmetic average is used as input into the SWAT model for each subbasin. The 

location of a raingauge within the subbasin could potentially affect the simulation of 

the SWAT model, thus the data from a raingauge should be representative of the 

rainfall within the subbasin. For relatively flat terrain the effects may not be very 

apparent, but one can imagine that for subbasins with high orographic effects and 

hence a lot of spatial variability in rainfall this could cause potential problems for 

runoff calculations within the watershed. For the purposes of this research, land use 

and soil type is assumed fixed for the entire simulation period. 

 

Thirty-two SWAT parameters were calibrated: 15 for flow, 11 for sediment 

and 6 for phosphorus. The details for the calibrated parameters are discussed in 

Appendix 5A.8. The rain gauges are assumed to be unbiased, i.e. 1=
, j

 , and 

1.05=

,

,

mtrue

mobs




 in equation A.5, i.e. an inflation of 5 percent over the true standard 

deviation due to random gauge errors. The value of 1.05 was based on a study 

performed by [Bradley et al., 2002], who performed a study in the same geographical 

area. The observed output (OI for flow, sediment, etc.) is obtained from the “ground 

truth”• using equation A.7, with 0.1=
2

,, mk
 . This implies that the gauge captures 

within 20 percent of the actual flow about 95 percent of the time. This is consistent 

with the precision of such measurements found in available literature, which is 

typically 5 to 10 percent accurate [Hirsch and Costa, 2004]. 
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3.3 Land Use Cases 

 

As a further verification process the methodology was tested on three different land 

use cases within the watershed: 1) the existing land use case (referred to as Cville1), 2) 

all-forested watershed (referred to as Cville2), and 3) the watershed with all 

agricultural activity moved upstream (referred to as Cville3). 

 

The different landuse cases affect the runoff volume and nutrient loading of the 

watershed. Figures 6-8 illustrate how the land use changes affect the nutrient loading 

in the watershed. In the existing land use case (Cville1) shown in Figure 6, the high 

phosphorus yield areas are located at the bottom of the watershed.  

 

The two hypothetical land use cases Cville2 and Cville3 can be viewed as 

completely different watersheds compared to the existing land use case. When all 

agricultural activity (pasture, hay, and corn land uses) are converted to forest in the 

Cville2 land use case, the total amount of phosphorus contribution decreases relative 

to the Cville1 land use case, and the high yield phosphorus areas (shown in Figure 7) 

are more evenly distributed throughout the watershed. Finally, shifting all the 

agricultural activity upstream as in the Cville3 land use case results in the 

concentration of high yield phosphorus areas at the top of the watershed, shown in 

Figure 8. The soil type remains unchanged for all three land use scenarios. 



28 

 

 

 

 

 

 

 

 

 

 
Figure 6: Distribution of phosphorus contribution from each subbasin for the existing 

land use case, Cville1 
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Figure 7: Distribution of phosphorus contribution from each subbasin for an all 

forested land use case, Cville2  
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Figure 8: Distribution of phosphorus contribution from each subbasin for the land use 

case with a majority of agricultural activity shifted upstream, Cville3 
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CHAPTER 4 

4 RESULTS AND DISCUSSION 

4.1 Selecting the Best Rain Gauge Network 

 

Results are presented for the configuration of 5, 10, 15, and 20 rain gauge network 

using the three methods described in Section 2.3.1. First, a discussion of the results for 

the existing land use case Cville1 is presented in Section 4.1.1. In particular, this 

section discusses performance of the rain gauge network as a function of how well the 

SWAT model with inputs from the rain gauge network simulates flow and total 

dissolved phosphorus in the watershed, shown by the NSE  performance criterion 

(equation 4) and its components (equations 6-8). The effect of different gauge 

configuration techniques and increasing the number of rain gauges in the configuration 

is discussed. 

 

Then, the applicability of the methodology in different land use cases is 

demonstrated in Section 0. In particular, the network configuration method for each of 

the rain gauge networks is fixed to be the POPT-MSE method. 

 

4.1.1 Existing Land Use Case (Cville1) 

 

A visual representation of the performances of rain gauge networks configured using 

the three different configuration methods DET, POPT-MSE and POPT-VAR is shown 

in Figure 9. We show the results for the selection of a 10-rain gauge network for total 

dissolved phosphorus simulations compared to the performance of the base case rain 

gauge network shown in Figure 4.  
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The three methodologies for configuring rain gauge networks consistently 

results in rain gauge networks that perform better than the base case rain gauge 

network. Figure 9(a) shows that the NSE  values for the 25 different weather scenarios 

are consistently lower for the base case than for the three 10-rain gauge networks (10R 

DET, 10R POPT-MSE, and 10R POPT-VAR), indicating relatively poor model 

simulations with input from the base case rain gauge network. The range of NSE  

values are also much larger for the base case rain gauge network, indicating poor 

performance relative to variable weather patterns within the case study watershed. The 

BVR-rectangle plot in Figure 9(b) provides an indication as to the poor performance 

of the base case network – the distribution (mean and variance) of the total dissolved 

phosphorus are under predicted, and the timing and shape of flow of the total 

dissolved phosphorus is poorly simulated. Interpretation of BVR-rectangle plots are 

discussed in Section 2.4. 

 

The POPT-MSE gauge network generally produces superior model 

performances in terms of NSE  compared to the DET and POPT-VAR gauge 

networks. The boxplot in figure 9(a) shows that the NSE  values for total dissolved 

phosphorus simulation throughout the watershed (equation 4) with input from the 

POPT-MSE gauge network is on average higher across the 25 different weather 

scenarios as compared to the other methods. The smaller range in NSE  values over 

the 25 different weather scenarios also show that the POPT-MSE rain gauge network 

is more robust to variable weather patterns. 
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The BVR-rectangle plots in figure 9(b) shows that the POPT-MSE rain gauge 

network  produces input data that results in total dissolved phosphorus modeling 

results that have better representation of the shape and timing of the total dissolved 

phosphorus flows in the watershed on average. The DET gauge network on the other 

hand, generally results in total dissolved phosphorus modeling results that have less 

bias and a more accurate relative variability. Figure 9(a) shows that the NSE  values 

for the POPT-MSE gauge network is higher than that of the DET gauge network, 

while the BVR-rectangle plot indicates that on average, both networks are comparable. 

The implications for this result is that the correlation coefficient, r  is the more heavily 

weighted component of the NSE  in equation 6. Additionally, there is a tradeoff 

between getting the shape and timing of the hydrograph right (controlled by the 

correlation coefficient) and getting the flow distribution (bias and relative variability) 

right. This tradeoff is not apparent when looking at the NSE  results alone in figure 

9(a).  

 

Similar trends in flow simulations as well as with the 5, 15 and 20-rain gauge 

networks were observed, shown in  Table 1.  
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Figure 9: Results for model performance for total dissolved phosphorus simulation for 

the 10 rain gauge configuration. Part (a) shows a boxplot showing the distribution of 

SEN  (equation 4) for total dissolved phosphorus over 25 different weather scenarios 

and part (b) shows a BVR-rectangle plot showing the  , 
n

 , and r  averaged over all 

weather scenarios. 

  

A visual representation of the results for an increasing number of rain gauges 

in the watershed with land use scenario Cville1 is shown as a boxplot and as a BVR-

rectangle plot for total dissolved phosphorus simulation in Figure 10. The rain gauge 

networks are configured using POPT-MSE method. The boxplot illustrates the trend 

of improving NSE  values and the range of the NSE  over the 25 weather scenarios as 

the number of rain gauges in a network increases. Improving NSE  values indicate an 

improvement in terms of model performance with input from the rain gauge networks. 

A smaller NSE  range over the 25 weather scenarios indicate that the rain gauge 

network is able to better capture variable weather patterns in the watershed and thus is 

more robust to different weather conditions.  
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When looking at the individual components of the NSE , the components  , 

n
 , and r  all improve from the base case up to the 15-rain gauge configuration. The 

model simulated with input from 15-gauge configuration appears to have a better 

approximation of the mean and variance of the flow (as indicated by the tilt and the 

square shape of the BVR-rectangle plot), but has a worse approximation of the shape 

and timing of the observed output (as indicated by the correlation measure) compared 

to the 20-rain gauge configuration. Again, the tradeoff between correctly simulating 

the shape and timing of the total dissolved phosphorus output and correctly estimating 

the distribution (mean and variance) of the total dissolved phosphorus is seen here. 

 

Generally, r  seems to be the dominating component of the NSE . This is 

demonstrated in both figures 9(a) where the POPT-MSE method has a higher NSE  

score than the deterministic method and 10(a) where the 20-rain gauge configuration 

has a better NSE score than the 15-rain gauge configuration.  

 

Figure 10: Results for model performance for total dissolved phosphorus simulation 

for increasing number of rain gauges. Part (a) shows a boxplot showing the 

distribution of average NSE for total dissolved phosphorus over 25 different weather 
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scenarios and part (b) shows a BVR-rectangle plot showing the  , 
n

 , and R  

averaged over all weather scenarios.   

  

The best rain gauge network for the exsiting land use case (Cville1) is the 20 

rain gauge network chosen using the POPT-MSE method. Figure 11 shows the 

average rainfall captured by the best rain gauge network for the same 40-year 

validation data set as in Figure 2 and Figure 5. The best rain gauge network better 

captures the distribution of rainfall over the watershed compared to the base case rain 

gauge network shown in Figure 5. Results in this section have demonstrated that when 

the distribution of rainfall is well captured, the SWAT model is able to capture the 

timing, shape, mean and variance of both flow and total dissolved phosphorus quite 

accurately.  

 

Figure 11: Average daily precipitation (in mm) over a sample of 40-year generated 

weather data at each gridpoint of the Cannonsville reservoir as captured by the base 

case rain gauge configuration. 
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Table 1: Summary of average model performance values for flow and total dissolved 

phosphorus simulations using observations from different rain gauge network 

configurations for the Cville1 land use scenario  

Flow 

  
NSE [range] R β α 

basecase N/A 0.641 [0.059] 0.811 -0.130 0.792 

5-gauge det 0.664 [0.048] 0.821 -0.104 0.812 

  VAR 0.701 [0.044] 0.843 -0.083 0.857 

  MSE 0.701 [0.044] 0.843 -0.083 0.857 

10-gauge det 0.777 [0.032] 0.884 -0.024 0.945 

  VAR 0.763 [0.041] 0.875 -0.069 0.879 

  MSE 0.798 [0.034] 0.895 -0.035 0.937 

15-gauge det 0.794 [0.032] 0.893 -0.031 0.926 

  VAR 0.787 [0.036] 0.887 -0.064 0.885 

  MSE 0.825 [0.034] 0.910 -0.024 0.955 

20-gauge det 0.801 [0.032] 0.896 -0.025 0.938 

  VAR 0.800 [0.032] 0.894 -0.056 0.897 

  MSE 0.846 [0.029] 0.919 -0.035 0.936 

 

Total dissolved phosphorus 

basecase N/A 0.561 [0.101] 0.768 -0.053 0.850 

5-gauge det 0.614 [0.096] 0.793 -0.053 0.854 

  VAR 0.633 [0.074] 0.805 -0.042 0.886 

  MSE 0.633 [0.074] 0.805 -0.042 0.886 

10-gauge det 0.724 [0.058] 0.865 -0.002 0.992 

  VAR 0.709 [0.060] 0.847 -0.033 0.912 

  MSE 0.734 [0.058] 0.867 -0.011 0.973 

15-gauge det 0.747 [0.048] 0.872 -0.009 0.964 

  VAR 0.741 [0.059] 0.864 -0.030 0.920 

  MSE 0.772 [0.046] 0.887 -0.004 0.989 

20-gauge det 0.751 0.048 0.875 -0.004 0.983 

  VAR 0.752 0.054 0.871 -0.026 0.928 

  MSE 0.800 0.043 0.899 -0.011 0.967 
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4.1.2 Multiple Land Use Cases 

 

The POPT-MSE method is used to configure rain gauges for the three land use cases 

described in Section 3.3. Table 2 summarizes the results for different rain gauge 

configurations tested over 25 different weather scenarios and for the three different 

land use scenarios described in Section 4.1. More detailed results for the Cville2 and 

Cville3 land use cases can be seen in Appendix B.1 and B.2. 

 

 

Results for the different land use scenarios show that in general for modeling 

flow in all land use scenarios, model performance improves as the number of rain 

gauges placed in the watershed increases. However, for total dissolved phosphorus 

more rain gauges in the watershed does not necessarily translate into better model 

performance. The fact that the trend seen in flow simulation performance is not seen in 

total dissolved phosphorus simulation (which depends on the amount of water in the 

watershed) performance indicates that an underlying modeling process within SWAT 

that is pertinent to phosphorus may not necessarily improve with improving flow 

simulation.  

 

The sensor networks with more rain gauges tend to be more robust to different 

weather patterns within the watershed as well. This indicates that more rain gauges are 

able to capture more of the rainfall variability. 
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Table 2:   Summary of average model performance values for flow and total dissolved 

phosphorus (TDP) simulations with inputs from different rain gauge 

network configurations chosen using the MSE method and different 

Cannonsville land use scenarios  

 Cville1 

 
Flow  [range] TDP [range] 

basecase 0.642 [0.059] 0.561 [0.101] 

5R 0.701 [0.044] 0.633 [0.074] 

10R 0.798 [0.037] 0.734 [0.058] 

15R 0.825 [0.038] 0.772 [0.048] 

20R 0.846 [0.041] 0.800 [0.052] 

 Cville2 

basecase 0.661 [0.077] 0.57 [0.109] 

5R 0.679 [0.053] 0.54 [0.114] 

10R 0.741 [0.043] 0.63 [0.068] 

15R 0.781 [0.042] 0.73 [0.066] 

20R 0.821 [0.038] 0.63 [0.151] 

 Cville3 

basecase 0.695 [0.060] -0.082 [0.435] 

5R 0.730 [0.050] 0.426 [0.208] 

10R 0.728 [0.052] 0.620 [0.075] 

15R 0.722 [0.060] 0.384 [0.197] 

20R 0.809 [0.042] 0.436 [0.169] 

4.2 Selecting the Best In-stream Gauge Network 

 

Results are presented for the configuration of 3 and 5 in-stream gauge network using 

the two methods described in Section 2.3.2. The base case sensor network has the four 

original raingauges and one in-stream gauge, as discussed in Section 3.1. Each of the 

sensor network configurations are described by the number of rain (denoted R) and in-

stream (denoted F) gauges it contains, as well as the method chosen to configure the 

in-stream gauges. For instance, the (20R, 5FSharp) sensor network configuration 

denotes a 20-raingauge network and a 5 in-stream gauge network chosen using Sharp's 

stream ranking method. 
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First, a discussion of the results for the existing land use case (Cville1) is 

presented in Section 4.2.1. In particular, this section discusses performance of the in-

stream gauge network as a function of how well the SWAT model calibrated to 

observations from the in-stream gauge network simulates flow and total dissolved 

phosphorus in the watershed, shown by the NSE  performance criterion (equation 4) 

and its components (equations 6-8). The precipitation inputs for calibration and 

simulation are from the best rain gauge network for the existing land use case. The 

effect of different techniques and increasing the number of in-stream gauges in the 

configuration is discussed. 

 

Then, the applicability of the methodology in different land use cases is 

demonstrated in Section 4.2.2. The effect of phosphorus production as a function of 

the different land use case is discussed. 

 

4.2.1 Existing Land Use Case (Cville1) 

 

First, the effects of model calibration with additional rain gauge data is investigated. 

When the model is calibrated at the base case site with observations from the 20-rain 

gauge network (20R, 1F) instead of the base case raingauge network, an improvement 

in model performance for flow is seen in Figure 12(a). The BVR-rectangle plot in 

Figure 12(b) shows that this is because not only is the shape and timing of the 

hydrograph improved from the base case, but the estimation of the distribution (mean 
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and variance) improves as well. This indicates that proper capture of rainfall is crucial 

in proper modeling for flow of the watershed. 

 

In general, the range of the NSE  values for flow simulation using a model 

calibrated to the observations from the different sensor networks do not decrease by 

much relative to the range for NSE  for the base case network. This is due to the fact 

that the model parameters that are calibrated are not the same as the "true" parameter 

values, and some discrepencies in simulation of the watershed processes are bound to 

occur between all different weather scenarios. 

 

In terms of methods for in-stream gauge selection, Figure 12 shows that adding 

hydrologically independent in-stream gauges (the “indep”• gauge configurations) 

yields better results in general than placing more gauges upstream from the base case 

in-stream gauge configuration using Sharp's method. The "indep" in-stream gauge 

networks result in model performances for flow simulation that are much better at 

capturing the shape and timing of the observed hydrograph, and also in estimating the 

distribution of the flows than the "Sharp" in-stream gauge networks. 

 

Increasing the number of in-stream gauges in the watershed to three results in 

slight improvement from the performance of the model calibrated to the (20R,1F) 

network in Figure 12. This indicates that for modeling of flow in this watershed, 

increasing the number of in-stream gauges is not required. Also, the tradeoff between 

obtaining a good approximation of the distribution of the flows and a good 
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approximation of the shape and timing of the output graph is again apparent between 

the (20R, 3Findep) configuration (which has a better approximation of the shape and 

timing of the hydrograph) and the (20R, 5Findep) configuration (which has a better 

approximation of the distribution of the flows). 

 

Increasing the number of in-stream gauges in the watershed to five however, 

does not guarantee an improvement in model performance from the (20R, 1F) sensor 

network, as evidenced by the (20R, 5Fsharp) network in Figure 12. A possible reason 

for the trend where model performance suffers when information from more in-stream 

gauges are included upstream from the base-case in-stream gauge is the fact that the 

drainage areas for each in-stream gauge site is nested within one another. Information 

from the catchment area contributing to the most upstream site is included in each of 

the gauges downstream from it [Migliaccio and Chaubey, 2007]. Thus, errors in the 

most upstream site could be compounded in the subsequent downstream gauges. 
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Figure 12: Results for model performance for flow simulation for different sensor 

network configurations. Part (a) shows a boxplot showing the distribution 

of SEN  for flow over 25 different weather scenarios and part (b) shows a 

BVR-rectangle plot showing the  , 
n

 , and R  averaged over all weather 

scenarios.   

  

In terms of the total dissolved phosphorus modeling, the trends are slightly 

different from flow modeling, shown in Figure 13. The model calibrated to 

observations at the base case in-stream gauge (both for the base case and also the 20R, 

1F configuration) tends to over-predict the variance of the total dissolved phosphorus, 

as seen in Figure 13(b). When the information from more rain gauges are added to the 
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basecase rain gauge configuration in the (20R, 1F) configuration, the ability of the 

model to match the timing and the shape of the total dissolved phosphorus output 

improves, but the fact that the model overpredicts the variance of the total dissolved 

phosphorus output results in the relatively poor performance of the sensor network. 

This indicates that increasing the number of rain gauges is not the most important step 

needed for total dissolved phosphorus simulation, unlike that in the flow simulation 

case. 

 

Nutrient modeling in this watershed may benefit from observation from 

additional in-stream gauging sites. Figure 13(a) shows that adding up to two gauges 

upstream of the base case in-stream gauge shows improvement (as in the (20R, 

3FSharp) case). However, the "indep" in-stream gauge networks like (20R,3Findep) 

and (20R, 5Findep) have good model performance values as well. The information 

from additional in-stream gauges generally improve the ability of the model to capture 

the distribution of the TDP. The timing and shape of the TDP hydrograph is again 

captured best using information from gauges that are hydrologically independent from 

one another. 

 

A summary of the results for the different sensor networks in a single land-use 

case is shown in table 3. 
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Figure 13: Results for model performance for total dissolved phosphorus simulation 

for different sensor network configurations. Part (a) shows a boxplot showing the 

distribution of average NSE for total dissolved phosphorus over 25 different weather 

scenarios and part (b) shows a BVR-rectangle plot showing the  , 
n

 , and R .   
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Table 3: Summary of average model performance values over different weather 

scenarios for different sensor network configurations  

Flow 

 

NSE [range] R  n
    

basecase 0.753 [0.045] 0.884 -0.074 1.006 

20R,1F 0.811 [0.028] 0.901 -0.004 0.965 

20R,3Findep 0.824 [0.030] 0.907 -0.009 0.884 

20R, 5Findep 0.816 [0.042] 0.907 -0.011 0.957 

20R, 3Fsharp 0.805 [0.032] 0.898 -0.014 0.891 

20R, 5Fsharp 0.772 [0.042] 0.881 -0.030 0.945 

 

Total dissolved phosphorus 

basecase 0.414 [0.216] 0.837 0.070 1.177 

20R,1F 0.524 [0.132] 0.868 0.033 1.205 

20R,3Findep 0.719 [0.063] 0.877 0.012 0.982 

20R, 5Findep 0.756 [0.047] 0.886 0.021 0.948 

20R, 3Fsharp 0.734 [0.068] 0.878 -0.001 0.939 

20R, 5Fsharp 0.553 [0.093] 0.845 0.083 1.020 

 

4.2.2 Multiple Land Use Cases 

 

The effects of land use on the different ideal in-stream gauges for each of the land use 

cases are apparent. Table 4 summarizes the results for different sensor network 

configurations tested over 25 different weather scenarios and for the three different 

land use scenarios described in Section 3.3. More detailed results for Cville2 and 

Cville3 land use cases are shown in Appendix 5B.1 and 5B.2  
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Table 4:   Summary of average model performance values for different sensor network 

configurations. Rbest, the best rain gauge network for each of the land use 

cases is the 20-rain gauge network for Cville1, the 15-rain gauge network 

for Cville2, and the 10-rain gauge network for Cville3 

 
Cville1 

 
Flow  [range] TDP [range] 

basecase 0.753 [0.045] 0.414 [0.216] 

Rbest ,1F 0.811 [0.028] 0.524 [0.132] 

Rbest, 3Findep 0.824 [0.030] 0.719 [0.063] 

Rbest, 5Findep 0.816 [0.042] 0.756 [0.047] 

Rbest, 3Fsharp 0.805 [0.032] 0.734 [0.068] 

Rbest, 5Fsharp 0.772 [0.042] 0.553 [0.093] 

 Cville2 

basecase 0.672 [0.077] 0.585 [0.109] 

Rbest ,1F 0.738 [0.042] 0.619 [0.068] 

Rbest, 3Findep 0.787 [0.028] 0.679 [0.072] 

Rbest, 5Findep 0.704 [0.058] 0.657 [0.075] 

Rbest, 3Fsharp 0.707 [0.041] 0.663 [0.060] 

Rbest, 5Fsharp 0.795 [0.037] 0.732 [0.048] 

 Cville3 

basecase 0.695 [0.063] -0.082 [0.434] 

Rbest ,1F 0.701 [0.058] 0.572 [0.106] 

Rbest, 3Findep 0.712 [0.045] 0.589 [0.076] 

Rbest, 5Findep 0.669 [0.081] 0.560 [0.113] 

Rbest, 3Fsharp 0.744 [0.043] 0.675 [0.060] 

Rbest, 5Fsharp 0.721 [0.051] 0.569 [0.098] 

 

Some general results remain consistent throughout the three land use cases. As 

in the Cville1 land use case, flow simulations do not benefit much more from adding 

in-stream gauges for both the Cville2 and Cville3 land use case. Total dissolved 

phosphorus simulations generally improve when more in-stream gauges are added. 

 

For the Cville2 land use case, the model calibration benefits from additional 

observations from two more independent in-stream gauges (as in the (Rbest, 3Findep) 

network) , or an additional four upstream gauges (as in the (Rbest, 5Fsharp) network). 
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This is consistently the case for both flow and phosphorus. The (Rbest, 5Fsharp) 

network works well because of the way the phosphorus is distributed throughout the 

watershed, as seen in Figure 7. 

 

For the Cville3 land use case, the model calibration benefits from additional in-

stream gauge networks selected using Sharp’s method rather than the in-stream gauge 

networks selected using the independent basins method for both flow and total 

dissolved phosphorus. Again, it appears as though the way the phosphorus is 

distributed throughout the watershed, Figure 8, is a main factor in the performance.  

 

The results show that the different land use cases affect the ideal in-stream 

gauge network for each land use case. This is because moving agricultural activity 

such as corn and hay also affects the amount of water and nutrients generated by the 

model. 
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4.3 Proposed Sensor Network for the Cannonsville Watershed (Cville1) 

 

The proposed sensor network for the existing land use case in the Cannonsville 

watershed is shown in figure 14. The locations of the rain gauge network is well 

spread out throughout the watershed. For flow calibration, observations at the base 

case in-stream gauge would suffice, while for phosphorus calibration, observations 

from all of the five in-stream gauges shown will be beneficial. 

 

 

 

 
Figure 14: The proposed sensor network for the existing land use case in the 

Cannonsville watershed 
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CHAPTER 5 

5 CONCLUSIONS 

 

The methodology discussed in this paper provides a platform for testing several 

combinations of rain and in-stream gauge configurations in a relatively short amount 

of time without having to physically place sensors within the environment itself. These 

sensor network configurations were also tested with many different weather scenarios 

that each span a period of 30 years to determine the robustness of the sensor network 

to different weather patterns. The performance of these sensor networks were 

evaluated and compared against one another through calibration and simulation of the 

watershed model used by the watershed managers to model conditions in the 

watershed. It is important to note that the user of this methodology is not limited to the 

sensor network configuration methods discussed here. 

 

Since a “ground truth”• model is used to describe the conditions in the 

watershed if all inputs and parameters were known, the user is able to gain insight on 

how additional information from sensor networks affect the modeling of different 

constituents. This enables the user to make a well-informed decision on the types and 

quantities of sensors to invest. Specifically for the case study, significant 

improvements on model performance from the base case configuration for both flow 

and total phosphorus can be made by adding more rain gauges in the watershed. More 

rain gauges in the watershed also results in more robust model performance for 

variable weather patterns as compared to the base case configuration of rain gauges. 
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As for in-stream gauges, additional investment may not be necessary if the user were 

concerned with just the modeling of the flows within the watershed, but up to four 

gauges may be added from hydrologically independent streams to improve the 

modeling of phosphorus. 

 

The decomposition of a common hydrologic model performance statistic 

(NSE) into its components lends insight into the various aspects of model performance 

and how it improves. For instance, it appears that the model performance is largely 

driven by SWAT’s ability to match the timing and shape of the hydrograph (i.e. by the 

correlation coefficient R). In the case where the model performance is high (i.e high 

NSE values), figures show that there exists a tradeoff between getting the timing and 

shape of the hydrograph correctly and the distribution of the flows (bias and variance) 

correctly. These diagnostics may provide additional insight to watershed managers on 

what aspects the model is performing well in. 

 

Further studies on this topic are warranted. This paper neglects temporal 

effects and focuses instead on the spatial effects of sampling; however sampling 

frequency is another important aspect of sensor network development that should not 

be ignored. Also, other types of sensors not discussed here such as soil moisture 

sensors will aid in the development of the understanding of the underlying baseflow in 

the watershed, a phenomena that is not well understood despite decades of study. 

Efficient placement of these sensors will be a boon to watershed modelers. In addition, 

the weather generator used in this study can be parameterized for different types of 



52 

 

climate scenarios, therefore it is a natural step to studying climate change in the 

watersheds and how better rain and flow gauging can guide the decision-making 

process. 

 

Further investigation into the multi-site calibration techniques used in this 

paper can be expanded upon. The single objective optimization assumes that flows and 

nutrient amounts are independent from one in-stream gauge to another, since no cross 

correlation effects are considered. Therefore, a more generalized least squares 

approach that takes into account these cross correlation effects is warranted. A multi-

objective approach can also be taken for the modeling of different constituents over at 

different in-stream gauge sites. This eliminates the required assumption of 

independence between gauge observations and the subjectivity on the weights on the 

different constituents. However, this would limit the number of in-stream gauges and 

constituents to be tested as this would make the problem very large (e.g. for four 

constituents and five potential in-stream gauge sites the number of objectives can go 

up to 20) and thus computationally expensive. 

 

With the ever increasing complexity of watershed models, the demand for data 

which provides useful information to the watershed modeler will surely increase. The 

wireless sensor network revolution will surely aid in the endeavor to understand better 

the conditions in the watershed, however efficient placement of these sensors is crucial 

in order that the information gained from these sensor networks provide the more 

information with the least cost. The methodology provided in this paper will be a 
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valuable tool in providing insight into the value of additional data, aiding in 

investment decisions on hydrometric sensor networks.
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APPENDIX A 

A FURTHER DISCUSSION ON THE METHODOLOGY 

 

A.1 Weather Generation 

 

In the Wilks weather generator [Wilks, 2009], the occurrence of precipitation at a 

currently gauged site is modeled using a two-state first-order Markov chain. Then, 

conditional on a wet day, the precipitation amounts are drawn from a mixed 

exponential distribution fitted to historical data. The correlations between occurrences 

and precipitation amounts at different currently gauged and ungauged sites are also 

fitted to historical data. 

 

The nonprecipitation variables in the Wilks weather generator (here, daily 

maximum and minimum temperatures) are generated at a single site using a first order 

autoregression. In order to perform this analysis, the maximum and minimum 

temperatures have to be standardized (zero mean, unit variance) where the 

standardizations are conditional on wet or dry days. This is expanded to simultaneous 

simulation of minimum and maximum temperatures at different locations by 

expanding the dimensions of the parameters of the autoregressive formula, and 

keeping track of the simultaneous correlations between standardized maximum and 

minimum temperatures at the different locations. 
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A.2 Deterministic Rain Gauge Configuration 

 

For the deterministic approach, a "base case" raingauge network serves as the starting 

gauge configuration. The base case rain gauge network can be the existing rain gauge 

network. The remaining available grid points, m are assigned a score based on their 

proximity and elevation difference from each gauge n in the starting gauge 

configuration, as in equations (A.1-A.3): 

mmm
HwDwDET **=

21
  (A.1) 

The DET score is based on the two components: Dm, a distance measure (equation 

A.2), and Hm, a elevation difference measure (equation A.3).   
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In equation A.2, 
mn

d  is the distance between ungauged point m and gauged point n. 

Dm is the smallest distance 
mn

d
 
over all the n gauged points for an scaled by largest  

min(
mn

d ) found over all the ungauged points m. The scaling is to give the score Dm a 

value between 0 and 1. 
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Similarly, in equation A.3, 
mn

h  is the absolute elevation difference between ungauged 

point m and gauged point n. Hm is the smallest elevation difference over all the n 

gauged points scaled by the largest min(hmn) found over all the ungauged points m. 

The scaling gives the score Hm a value between 0 and 1.  
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The ungauged point with the highest 
m

score  (equation A.1) will be assigned as 

the next gauging point, the new rain gauge configuration is updated, and the process is 

repeated until the desired number of gauges in the configuration is obtained.  

 

The greatest benefit of using the deterministic method is the method's 

simplicity and speed for solving the gauge placement problem where the number of 

possible configurations are large. For example placing 10 rain gauges in a site where 

there are 296 possible locations for a rain gauge could result in 18
10  different possible 

combinations. Further, this method ensures geographical diversity in choosing a 

limited number of rain gauges, which leads to a better idea of the amount and 

distribution of rain falling within the watershed. 

 

This procedure was tested out for different combinations of w1 and w2 on a 

sample of generated weather data. The results in Figure 15 show the mean squared 

error of areal rainfall prediction by different rain gauge networks chosen using this 

method with several combinations of weights w1 and w2. The figure shows that a 

weighting of w1 = 0.4 and w2 = 0.6 in equation A.1 appeared to give the best rain 

gauge networks with under 20 gauges in terms of predicting the average rainfall over 

the watershed. 
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Figure 15: Mean squared error of areal rainfall prediction predicted by rain gauge 

networks chosen deterministically under different combinations of weights 

w1 and w2 for equation A.1. 

 

A.3 VAR objective function 

 

The VAR criterion describes how well rain gauge network i made up of 
i

N  gauges 

captures the variance of the areal rainfall, rather than areal averages as in the MSE 

criterion described in Section 2.3.1. This is especially important in large watersheds, 

where there is a possibility of a large amount of precipitation occurring in one region 

of the watershed, and almost no precipitation in other parts of the watershed. The 

variance of the areally averaged rainfall can be formulated as [Dong et al., 2005]:  
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N
s   is the average temporal variance taken over the gauges in the 

rain gauge configuration, 2

n
s  is the variance of the nth gauge, r  is the mean of the 

correlation coefficients of all bi-combinations of the rain gauges in the rain gauge 

configuration i. 

 

According to equation A.4, as the number of raingauges approaches infinity, 

the variance of areally averaged rainfall converges to a linear function of the average 

point variance and the average correlation coefficient in the watershed [Dong et al., 

2005]. The rain gauges are placed so that the estimated VAR for the rain gauge 

network matches as closely to VAR value calculated if all gridpoints were used. 

 

A.4 Tabu Search Algorithm for Optimization of Precipitation Gauge Location 

 

In our implementation of Tabu Search, the rain gauge configuration consisting of n 

rain gauges at each iteration i is defined as 
kni

xxxxR :,...,,{=
21

 is a gridpoint in the 

weather generator grid}. Each 
i

R  has an associated set of possible moves to candidate 

solutions 
jji

RRRCand :{=)(  is in the neighborhood of solution }
i

R . 

 

A move is a swap between one of the grid points in 
i

R  with a set of points 

},...,,{=)(
21 n

yyyig  in =G  {the set of ordered gridpoints to be swapped in}. The set 



59 

 

G is populated by running the deterministic selection method described in Appendix 

A.2 until the total number of available gridpoints are exhausted. In each iteration i, the 

set of gridpoints to be swapped in )(ig  of length N is selected sequentially out of the 

set G. Then the candidate solutions },...,,{=)(
21 Ni

RRRRCand  are generated by 

swapping gridpoint 
k

x  in the rain gauge configuration 
i

R  with each of the points in 

)(ig . The elements k of 
i

R  to be swapped out are also chosen sequentially. 

 

Among the candidate solutions )(
i

RCand , the candidate 
*

j
R  with the best cost 

)(
*

j
RCost  is selected as the solution for the next iteration 

1i
R . )(RCost  is the MSE 

(equation 1) or the VAR (equation A.4). 

 

Tabu Search takes advantage of adaptive (flexible) memory by keeping track 

of a list of previous moves, called the Tabu list, )(iT . The length of the list, 

)(TLength  is a parameter of the Tabu search algorithm that describes the number of 

iterations in which a particular move (e.g. swap out grid point k for grid point m in the 

Tabu list) is not allowed. Keeping a Tabu list prevents cycling of the algorithm. 

 

A move to a set of candidate solutions from the current solution 
i

R  to obtain 

the best candidate 
*

j
R  is accepted as long as the move attribute is not in the Tabu list 

for the current iteration )(iT . The cost of the resulting candidate, )(
*

j
RCost  does not 

necessarily have to be better than the cost of the current solution, )(
i

RCost . Therefore, 
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unlike local search which stops when no new better solution is found in the current 

neighborhood, Tabu Search allows for a more global search of the solution space. 

 

If the move attribute to obtain candidate solution 
*

j
R  is in the Tabu list, the 

Tabu can be overridden if )(
*

j
RCost  is better than the aspiration criterion. The 

aspiration criterion is defined as the best cost seen so far. If )(
*

j
RCost  is not better 

than the aspiration criterion, then no moves are made and a new set )(ig  is generated. 
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Figure 16: Pseudocode for Tabu Search algorithm adapted from Sait and Youssef 

[1999] 
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A.5 In-stream Gauge Configuration Using Sharp’s Method 

 

 

For Sharp's procedure, the farthest upstream portion of the main channel as well as 

tributaries that do not have other streams flowing into them are given a ranking of 1. 

At each of the confluence of tributaries and the main channel, the rankings of the 

tributary and the main channel at that point are summed, until the farthest downstream 

portion. The first priority stream reach to be gauged is called the centroid of the stream 

reach, found by dividing the rank at the farthest downstream point by two and finding 

the stream reach whose rank is closest to that number. Second priority stream reaches 

are the stream reaches ranked closest to the first quarter and third quarter of the rank at 

the furthest downstream reach, and lower priority reaches are thus found by continuing 

to subdivide the rank at the farthest downstream portion by eights, sixteenths, and so 

forth. 

 

The selection of gauge configurations are done according to the following 

priorities: 1) the first gauge configuration will contain the highest priority gauge(s), 2) 

each successive gauge configuration will contain the previous gauge configuration 

plus additional gauges of equal or lower priority than the lowest priority gauge in the 

previous gauge configuration, 3) if there is an existing gauge in a subbasin close to the 

subbasin that contains the current priority stream gauges to be assigned, then the 

subbasin with the existing flow gauge should be chosen (this is to make sure that we 

use the information from currently existing gauges). 
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The gauge locations selected using this method is shown in Figure 17. By the 

way the stream reaches are ranked, the in-stream gauge locations are necessarily 

located along the main channel of the Cannonsville watershed. 

 

Figure 17: In-stream gauge networks configured according to Sharp’s method 

 

A.6 In-stream Gauge Configuration Using the Independent Basins Method 

 

 

For the second method of locating in-stream gauges, the watershed is divided into 

several areas that are hydrologically independent, that is, they do not flow into one 

another. These areas may contain one or several subbasins that were delineated in the 

semi-distributed watershed model. Then, a potential gauging site is identified as the 

outlet of each of these hydrologically independent areas. Gauges chosen to be in the 

in-stream gauge network are prioritized by drainage area behind the gauge site.  
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The in-stream gauge networks configured for the Cannonsville watershed 

using the independent basins method is shown in Figure 18. 

 

Figure 18: In-stream gauge networks configured using the independent basins method 

 

A.7 Error model equations 

 

For precipitation at gauge m and time t (denoted by 
tm

P
,

), the “observed” data 

is obtained using equation A.5 [Bradley et al., 2002]:  

tmPtmtruetmobs
PP

,,,,,,
*=   (A.5) 

where the error has a log-normal distribution ),(
2

,,,, mmtmP
LN


   and the 

parameters 
m,

  and 
2

,m
  are user-defined. 

The parameter 
mtrue

mobserved

m

,

,

,
=







 represents the bias of the observed 

precipitation in terms of the true precipitation, where a value of 1 indicates an 
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unbiased guage, a value greater than 1 indicates a positively biased gauge and a value 

less than 1 indicates a negatively biased gauge. The variance of the log-normally 

distributed error is given by  

)
1

(*])[(=
2

,

2

,2

,

2

2

,

mp

mp

mtrue

obs

m
C

C







 (A.6) 

where 
mtrue

mtrue

mp
C

,

,2

,
=



 is the coefficient of variation for the true precipitation site m, 

while 2

,

2

)(

mtrue

obs




 represents the inflation of the standard deviation of the precipitation 

measured by gauge m as a result of random gauge errors. 

For each constituent k at gauge m and time t (denoted by 
tmkobs

x
,,,

), the 

"observed" data is obtained using Equation A.7  

tmkxtmktruetmkobs
xx

,,,,,,,,,
*=   (A.7) 

 

 where the error has a normal distribution )(1,
2

,,
 N

tmP
  and the parameter 2

  is 

user-defined. Note that we have assumed that the error of the in-stream gauge readings 

are unbiased. 

 

A.8 Calibrated SWAT Parameters 

 

The parameters that are calibrated for the SWAT model are shown in Table 5.  

 

Table 5: Calibrated SWAT parameters [Neitsch et al., 2004; Woodbury et al., 2010] 

Parameter Description Constituent 

SFTMP Snowfall temperature [°C]  Flow 
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SMTMP 
Snow melt base temperature 

[°C]  
Flow 

SMFMX 
Melt factor for snow on 

June 21 [mm H2O/°C-day] 
Flow 

TIMP 
Snow pack temperature lag 

factor  
Flow 

SURLAG 
Surface runoff lag 

coefficient  
Flow 

GW_DELAY 
Groundwater delay time 

[days]  
Flow 

ALPHA_BF Baseflow alpha factor  Flow 

GWQMN 

Threshold depth of water in 

the shallow aquifer required 

for return flow to occur [mm 

H2O]. 

Flow 

LAT_TTIME 
Lateral flow travel time 

[days] 
Flow 

ESCO  
Soil evaporation 

compensation factor  
Flow 

CN2 

Initial SCS curve number 

for moisture condition II. 

Values can be referenced in 

a table provided by the SCS.  

Flow 

DEPTH 

(SOL_Z) 

(multiplicativ

e) 

Depth from soil surface to 

bottom of layer [mm] 
Flow 

BD 

(SOL_BD) 

Moist bulk density [Mg/m
3
 

or g/cm
3
]  

Flow 

AWC 

(SOL AWC) 

Available water capacity 

(plant available water) of the 

soil layer [mm H2O/mm 

soil].   

Flow 

KSAT 

(SOL_K) 

Saturated hydraulic 

conductivity  
Flow 

ADJ_PKR 

Peak rate adjustment factor 

for sediment routing in the 

subbasin (tributary 

channels) 

Sediment 

PRF 

Peak rate adjustment factor 

for sediment routing in the 

main channel 

Sediment 

SPCON 

Linear parameter for 

calculating the maximum 

amount of sediment that can 

Sediment 
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be reentrained during 

channel sediment routing 

SPEXP 

Exponent parameter for 

calculating sediment 

reentrained in channel 

sediment routing 

Sediment 

LAT_SED 

Sediment concentration in 

lateral and groundwater 

flow (mg/L) 

Sediment 

SLSUBBSN_

f 

(multiplicativ

e) 

Average slope length (m), or 

the distance that sheet flow 

is the dominant surface 

runoff flow process 

Sediment 

SLSOIL_f 

(multiplicativ

e) 

Slope length for lateral 

subsurface flow (m) 
Sediment 

CH_EROD Channel erodibility factor Sediment 

CLAY_f 

(multiplicativ

e) 

Clay content (% soil weight) Sediment 

ROCK_f 

(multiplicativ

e) 

Rock content (% soil 

weight) 
Sediment 

MUSLE_adj 
Adjustment factor for the 

MUSLE equation  
Sediment 

PPERCO 
Phosphorus percolation 

coefficient (10 m
3
/Mg) 

Phosphorus 

PHOSKD 
Phosphorus soil partitioning 

coefficient (m
3
/Mg) 

Phosphorus 

CMN 

Rate factor for humus 

mineralization of active 

organic nutrients 

Phosphorus 

P_UPDIS 
Phosphorus uptake 

distribution parameter 
Phosphorus 

ERORGP 

Phosphorus enrichment ratio 

for loading with sediment, 

where the enrichment ratio 

is the ratio of the 

concentration of phosphorus 

transported with the 

sediment to the 

concentration of phosphorus 

in the soil surface layer. 

Phosphorus 
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A.9 Determining the Weights for the Weighted Objective Function for Calibration 

 

Four different combinations of weights were tested for the calibration objective 

function (equation 9) to determine which constituent should be more heavily 

weighted. Case 1 is the set of weights where flow, sediment and phosphorus 

parameters are equally weighted: 
3

1
==

sedflow
ww , 

6

1
==

PPTDP
ww . Case 2 is the set 

of weights where flow parameters are weighted more: 
2

1
=

flow
w ,

4

1
=

sed
w , 

8

1
==

PPTDP
ww . Case 3 is the set of weights where phosphorus parameters are 

weighted more: 
4

1
====

PPTDPsedflow
wwww . Finally, case 4 is the set of weights 

where sediment parameters weighted more: 
5

1
===

PPTDPflow
www ,

5

2
=

sed
w . The 

simultaneous calibration is also compared to the sequential calibration method. The 

preliminary results are summarized in   

PSP 

Phosphorus availability 

index, i.e. the fraction of 

fertilizer phosphorus which 

is in solution after an 

incubation period 

Phosphorus 
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Table 6. Based on the results, the weights in Case 4 are used for the simultaneous 

calibration of all constituents for the SWAT model. 
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Table 6: Summary of NSE values at a single site for each of the constituents and each 

of the weight cases compared to the sequential calibration method 

   OF value  
flow

NSE  
sed

NSE  
TDP

NSE  
PP

NSE  

Case 1  0.94 0.96 0.94 0.93 0.91 

Case 2  0.92 0.94 0.93 0.90 0.88 

Case 3  0.92 0.95 0.93 0.92 0.90 

Case 4  0.95 0.97 0.95 0.95 0.92 

Sequential  N/A 0.98 0.96 0.31 -3.96 
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APPENDIX B 

B ADDITIONAL RESULTS 

 

B.1 Extended Results for Cville2 Land Use Case 

 

 

 
Figure 19: Results for model performance for flow simulation for increasing number 

of rain gauges in the Cville2 land use case. The top figure shows a boxplot 

showing the distribution of average NSE for total dissolved phosphorus 

over 25 different weather scenarios and the bottom figure shows a BVR-
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rectangle plot showing the  , 
n

 , and R  averaged over all weather 

scenarios. 

 

 

Figure 20: Results for model performance for total dissolved phosphorus simulation 

for increasing number of rain gauges in the Cville2 land use case. The top 

figure shows a boxplot showing the distribution of average NSE for total 

dissolved phosphorus over 25 different weather scenarios and the bottom 
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figure shows a BVR-rectangle plot showing the  , 
n

 , and R  averaged 

over all weather scenarios. 

 

 

 

Figure 21: Results for model performance for flow simulation for different sensor 

network configurations in the Cville2 land use case. The top figure shows a 

boxplot showing the distribution of average NSE for total dissolved 

phosphorus over 25 different weather scenarios and the bottom figure 

shows a BVR-rectangle plot showing the  , 
n

 , and R . 
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Figure 22: Results for model performance for total dissolved phosphorus simulation 

for different sensor network configurations in the Cville2 land use case. 

The top figure shows a boxplot showing the distribution of average NSE 

for total dissolved phosphorus over 25 different weather scenarios and the 

bottom figure shows a BVR-rectangle plot showing the  , 
n

 , and R . 
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B.2 Extended results for the Cville3 Land Use Case 

 

 

 

Figure 23:  Results for model performance for flow simulation for increasing number 

of rain gauges in the Cville2 land use case. The top figure shows a boxplot 

showing the distribution of average NSE for total dissolved phosphorus 

over 25 different weather scenarios and the bottom figure shows a BVR-
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rectangle plot showing the  , 
n

 , and R  averaged over all weather 

scenarios. 

 

 

 

Figure 24: Results for model performance for total dissolved phosphorus simulation 

for increasing number of rain gauges in the Cville3 land use case. The top 

figure shows a boxplot showing the distribution of average NSE for total 
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dissolved phosphorus over 25 different weather scenarios and the bottom 

figure shows a BVR-rectangle plot showing the  , 
n

 , and R  averaged 

over all weather scenarios. 

 

 

Figure 25: Results for model performance for flow simulation for different sensor 

network configurations in the Cville3 land use case. The top figure shows a 

boxplot showing the distribution of average NSE for total dissolved 

phosphorus over 25 different weather scenarios and the bottom figure 

shows a BVR-rectangle plot showing the  , 
n

 , and R . 
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Figure 26: Results for model performance for total dissolved phosphorus simulation 

for different sensor network configurations in the Cville3 land use case. 

The top figure shows a boxplot showing the distribution of average NSE 

for total dissolved phosphorus over 25 different weather scenarios and the 

bottom figure shows a BVR-rectangle plot showing the  , 
n

 , and R .
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