x

Set Constraints and Logic Programming

Dexter Kozen
Computer Science Department

Cornell University
Ithaca, New York 14853-7501, USA

kozen®@cs.cornell.edu

November 16, 1994

Abstract

Set constraints are inclusion relations between expressions denot-
ing sets of ground terms over a ranked alphabet. They are the main in-
gredient in set-based program analysis [3, 4, 12, 13, 17, 20, 21, 22, 26].

In this paper we describe a constraint logic programming language
CLP(scC) over set constraints in the style of Jaffar and Lassez [15]. The
language subsumes ordinary logic programs over an Herbrand domain.

We give an efficient unification algorithm and operational, declara-
tive, and fixpoint semantics. We show how the language can be applied
in set-based program analysis by deriving explicitly the monadic ap-
proximation of the collecting semantics of Heintze and Jaffar [12, 13].

1 Introduction

Set conslraints are inclusion relations between expressions denoting sets of
ground terms over a ranked alphabet . The language of set constraints

*Technical Report 94-1467, Computer Science Dept., Cornell University, November
1994. An abstract of this paper appeared in: Proc. Conf. Constraints in Computational
Logics (CCL’94), Munich, Germany, Sept. 7-9, 1994.

contains the usual Boolean operators along with a set operator f for each
n-ary f € Y with interpretation

Set constraints are the main ingredient in set-based program analysis [3, 4,
12, 13, 17, 20, 21, 22, 26]. In this approach, only monadic properties of
program variables are considered; all interdependencies are ignored. Al-
though information is lost, enough is retained to allow useful program op-
timization and type inference, and the resulting systems remain decidable
[1,2,5,6,7,10, 11, 23].

Heintze and Jaffar [13] and Heintze [12] apply set-based program analysis
in both the imperative and logic programming settings. They first give a
least fixpoint characterization of the sets of valuations of program variables
that can occur at each point in a program during execution; this is called
the collecting semantics. These sets are of course nonrecursive. They then
give a monadic approrimation to the collecting semantics in which variable
dependencies are ignored. This gives a superset of the actual set of values,
but one can still derive useful inferences about program behavior, and the
sets of values obtained are recursive. The monadic approximation has a
least fixpoint characterization almost identical to the characterization of the
collecting semantics, except that the basic operators are interpreted as set
operators.

One might desire a language in which algorithms in set-based program
analysis can be easily expressed. In this paper we introduce a logic pro-
gramming language CLP(SC) for this purpose. The language CLP(SC) is a
constraint logic programming language in the style of Jaffar and Lassez [15]
using set constraints over an Herbrand domain.

Sets of ground terms satisfy many nice algebraic properties. An axioma-
tization of these properties was proposed in [18] (see §2.1 below). Models of
these axioms are called termset algebras. The axioms of termset algebra are
reminiscent of the Clark axioms for Herbrand domains; in fact, constraint
logic programming over set constraints and conventional logic programming
over Herbrand domains have much in common. In many ways, one can think
of CLP(SC) as an intermediate stage between logic programming over an
Herbrand domain and constraint logic programming in general.

The language CLP(SC) subsumes ordinary logic programming over an

Herbrand domain, since ground terms can be identified with singleton sets,
and singleton sets are definable in CLP(SC).

There have been several previous approaches to augmenting logic pro-
gramming languages with sets. Jayaraman and Plaisted [16] present a lan-
guage in the equational programming style which combines relational, subset,
and equational assertions. Operational and fixpoint semantics are given. A
collect all property is posed as part of the semantics, which plays the same
role as minimal models or least fixpoints in logic programming. Kuper [19]
presents a language with two types of objects, individuals and sets, and a
membership predicate. Program clauses

A - \V/.rlEXl \V/[ETLEX,,L Bl, 7Bm

are allowed, where the X; are terms denoting finite sets. Kuper mentions
a suitable treatment of negation as an important open problem. Dovier et
al. [8] present a language with membership and equality predicates for finite
sets and a constructor with for adding new elements to sets. Constraints
are used in the unification process. Stolzenburg [24, 25] introduces a logic
programming language with finite sets in which membership is dealt with via
constraints. These approaches concentrate on the set unification problem.

Our approach differs from these in several ways. We have only one type of
object, namely sets of ground terms, and no explicit membership predicate.
Single ground terms are identified with singleton sets, and the membership
predicate is encoded using the subset predicate. The domain of computation
consists of all regular sets of ground terms, including infinite regular sets.
Any such set can be uniquely specified by a finite collection of set constraints.
All Boolean operations, including negation, are allowed. Negations are dealt
with using a generalized DeMorgan law.

The present paper is organized as follows. In §2. we review the basic the-
ory of set constraints. In §3, we describe the syntax of the language CLP(SC)
and give three equivalent semantics: operational, fixpoint, and declarative.
In §4, we discuss techniques for solving set constraints, including the defini-
tion of a useful normal form. In §5, we give a unification algorithm based on
the constraint satisfaction algorithm of [2], as well as some heuristics which
may improve performance. Finally, in §6, we show how the language can
be applied in set-based program analysis by deriving explicitly the monadic
approximation to the collecting semantics of Heintze and Jaffar [12, 13].

2 Set Expressions and Set Constraints

Let ¥ be a finite ranked alphabet consisting of symbols f, each with an
associated arity. Symbols in ¥ of arity 0, 1, 2, and n are called nullary,
unary, binary, and n-ary, respectively. Nullary elements are often called
constants. The set of elements of ¥ of arity n is denoted X,. The use of
any expression of the form f(xy,...,2,) in the sequel carries the implicit
assumption that f is of arity n.

The set of ground terms over ¥ is denoted Tx. This is the smallest set such
that if t1,...,1, € Ty and f € ¥, then f(t1,...,t,) € Ty. If X = {z,y,...}
is a set of variables, then Ty(X) denotes the set of terms over ¥ and X,
considering the elements of X as symbols of arity 0.

Let B= (U, N, ~, 0, 1) be the usual signature of Boolean algebra. Other
Boolean operators such as — (set difference) and @ (symmetric difference)
are defined from these as usual. Let ¥ + B denote the signature consisting
of the disjoint union of ¥ and B. A sel expression over variables X is any
element of Txyg(X). The following is a typical set expression:

Sflg(zUy),~g(zNy))Ua

where f € Yy, g € ¥4, a € Yo, and z,y € X. A Boolean expression over X
is any element of Tg(X).

A positive set constraint is a formal inclusion s C ¢, where s and ¢ are set
expressions. We also allow equational constraints s = ¢, although inclusions
and equations are interdefinable: s C ¢ is equivalent to sU{ =1, and s = ¢
is equivalent to s &t C 0. A negative set constraint is the negation of a
positive set constraint: s £ ¢ or s # {.

We interpret set expressions over the powerset 27> of Ty. This forms
an algebra of signature ¥ + B, where the Boolean operators have their usual
set-theoretic interpretations and elements f € ¥, are interpreted as functions

f:@2=r — 2B
FAr A = {f(h et (€A 1<i<n}. (1)
Later, we will restrict our attention to the subalgebra Regy, of regular subsets

of TE.

A set valuation is a map

o X — 9oz

assigning a subset of Ts to each variable in X. Any set valuation o extends
uniquely to a (X 4+ B)-homomorphism

O'ZTQH_B(X) — QTE

by induction on the structure of set expressions in the usual way. We say
that the set valuation o satisfies the positive constraint s C tif o(s) C o(t),
and satisfies the negative constraint s £ tif o(s) £ o(t). We write o | ¢
if the set valuation o satisfies the constraint ¢. A system C of set constraints
is satisfiable if there is a set valuation o that satisfies all the constraints in
C; in this case we write o = C and say o is a solution of C.

2.1 Axioms of Termset Algebra

In [18], the following axiomatization of the algebra of sets of ground terms
was introduced:

fl.,zUy,..) = f(. ..)Uf(.,y,..) (2)
feoe—y,..) = flo. e,)= f(0y, (3)

f,...,)ng(,....1) = 0, f#g (5)
flz1,...,2,) =0 — \/(z;=0) (6)

i=1

and the axioms of Boolean algebra. The ellipses in (2) and (3) indicate
that the explicitly given arguments occur in corresponding places, and that
implicit arguments in corresponding places agree. Models of these axioms
are called termset algebras.

The standard interpretation 27 forms a model of these axioms. Another
model is given by the subalgebra Regy, of regular subsets of T%.

Some immediate consequences of these axioms are

Fl.,0,..) =

8
~—

— o~~~
a0

o ©
— e N

One particularly important consequence is the generalized DeMorgan law:

~flzy, .., x,) = Ug(l,...,l)

gZf

Ul ra, .~) (12)
-1 T~

i—1 n—1i

This law is useful in pushing occurrences of the negation operator ~ down
to the leaves of a term. This law can be justified intuitively as follows. The
expression f(z1,...,x,) denotes the set of all ground terms with head symbol
f and " subterm satisfying z;. A term is not of this form if either its head
symbol is not f (hence the first clause on the right hand side of (12)) or its
head symbol is f, but its i'h subterm does not satisfy z; for some ¢ (hence
the second clause on the right hand side). Formally, the law can be derived
from the termset algebra axioms by purely equational reasoning.

3 CLP(SC)

In this section we describe a logic programming language CLP(SC), a con-
straint logic programming language in the style of Jaffar and Lassez [15] over
set constraints. We describe the syntax of the language and give three equiv-
alent semantics: operational, declarative or model-theoretic, and fixpoint.
The equivalence of these three semantics follows from standard results and
techniques of constraint logic programming [15].

3.1 Examples

Before describing the syntax and semantics of the language CLP(SC), here
are some sample programs to whet the intuition.

e Consider the clauses
sng(a).
sng(f(z1,...,2,)) = sng(x1), ..., sng(x,).

for all constants @ € ¥ and function symbols f € ¥ of arity n > 1. The
goal sng(z) succeeds iff z is a singleton set.

For the goal empty(z) to succeed iff x is the empty set:
empty(0).
e For the goal nonempty(z) to succeed iff = is not the empty set:

nonempty(z) — y C x, sng(y).

For the goal equal(x,y) to succeed iff x and y are equal as sets:

equal(z, x).

For the goal unequal(z,y) to succeed iff x and y are unequal as sets:

unequal(z,y) — nonemply(z & y).

e For the goal dbl(z) to succeed iff = is a doubleton set:
dbl(y Uz) — unequal(y,z), sng(y), sng(z).

e For the goal atleast2(x) to succeed iff x contains at least two elements:

atleast2(z) — y C z, dbl(y).

Note that negative constraints are obviated by the use of sng(x). Note also
that ordinary logic programming is subsumed, since ground terms can be
identified with singleton sets, which are definable.

3.2 Syntax of cLP(sC)

Let IT = {p,q,r, ...} be a ranked alphabet of relation symbols not containing
= or C, each with a fixed finite arity. Let II,, denote the set of elements of
IT of arity n. An atomic formula is an expression of the form p(w), where

p €11, and @ = uy,...,u, is an n-tuple of set expressions. A program clause
is either

A.

A I*Bl, ceey Bn

where A is an atomic formula and the B, are either atomic formulas or
positive set constraints. A program 7 is a set of program clauses. A query is
an expression of the form

By, ..., B,

where the B; are either atomic formulas or positive set constraints.

3.3 Regular Sets

A subset of Ty, is regular if it is described by a finite tree automaton; equiva-
lently, if it is some set x; described by a system of simultaneous set equations
of the form

1 = $1(x1,...,2n)
Ty = Sa(T1,...,Tm)

(13)
Tm = Sm(T1,...,Tm)

in which each variable x; occurs on the left hand side of exactly one equa-
tion and each right hand side is a disjunction of set expressions of the form
f, ..y yn), where f € ¥, and y; € {z1,...,2n}, 1 <17 < n. It can be
proved by induction on the depth of terms that any such system has a unique
solution (see [9]). The family of regular sets over ¥ is denoted Regy. For
example, the system

y = g(z)

has the unique regular solution

o(z) = {g"(a)| n even)
o(y) = {g"(a) | n odd} .

Gilleron et al. [10] have shown that every satisfiable system of set con-
straints has a regular solution, i.e. one in which all variables are interpreted
as regular sets. We give an alternative proof of this fact below (Theorem 8).

For our domain of computation we take the family Regy, of regular subsets
of Tx. We contend that this domain in the present context is analogous to the
Herbrand universe in ordinary logic programming. One might alternatively
consider the sets represented by the family of ground set expressions, i.e.

elements of Ty 5. However, this set is too small, because there are satisfiable
systems of set constraints with no solution in Txyp: (14), for example. On
the other hand, the entire power set of Ty is too big, since there are subsets
of Ty, that are not represented by any finite system of set constraints.

The choice of the regular sets as domain of computation allows us to
think conveniently in terms of a generalized notion of substitution: if A is
any expression involving the set variables Z = z,...,z,, andifd = dy, ..., d,
is an n-tuple of regular sets described uniquely by a finite system C of set
constraints of the form (13), then the “substitution instance” A[Z/d] can be
expressed syntactically by conjoining C and A.

The domain of regular sets also satisfies the two fundamental desiderata
for constraint logic programming languages as set forth in [15], namely:

e Every element of the domain is the unique solution of a finite or infinite
family of constraints. In fact, every regular set is the unique solution
of a finite family of constraints of the form (13).

e Every element not satisfying a constraint C' satisfies some constraint C”’
such that the conjunction C,C" is unsatisfiable. This property follows
immediately from the fact that every regular set is the unique solution
of a single constraint obtained by combining the constraints (13):

G(%@Si(xl,...,xm)) - 0.

=1

3.4 Operational Semantics

In the following, C,C’ denote finite systems of set constraints; B, B’ finite lists
of atomic formulas; p an element of II,,; 3,1 n-tuples of set expressions; and
T a program.

Following [15], our operational semantics involves sequences of one-step
derivations of the form

p(§>7B7C % §:f7B7B/7C7cl (15)

which reduces the goal on the left hand side to the goal on the right hand
side whenever

o there is a fresh instantiation
p(t) — B, C.
of a program clause in 7= obtained by substituting new variables; and

e the constraint system 5 = ¢, C, C’ is satisfiable.

There is no implied ordering of the atomic formulas in a goal; any one may
be chosen for expansion at any time.
We say that the query

- B, C. (16)
succeeds if there is a sequence
B,C — ((17)

of such one-step derivations eliminating all atomic formulas, and C’ is satis-
fiable. Here —— denotes the reflexive transitive closure of —. If ¢ is a set
valuation, we say that the query (16) succeeds with o if there is a derivation
(17) with o |= C'. Note that o also satisfies the original constraint system C.

3.5 Declarative Semantics

Let
A = {p(3)|n20,p€l_[n, EERegg}.

The set A corresponds to the Herbrand base of ordinary logic programming.

We consider first-order structures M with carrier Regy, set operations
and relations U, N, ~,0,1,=, C with their usual interpretations, f € ¥ with
set-theoretic interpretation (1), and interpretations of relation symbols in II
specified by some subset AM of A. If 0 : X — Regy, we write

Mo E ¢

if M satisfies the first-order formula ¢ under valuation o in the ordinary
sense of first-order logic. We write M |= 7 if M satisfies the clauses in the
program w, considered as universally quantified Horn clauses of first-order
logic.

10

3.6 Fixpoint Semantics

For I' C A, let T,(T') be the set of all p(d) € A such that there exists a

program clause
A~ B, ..., B, C.
in 7 and a set valuation o : X — Regy, such that
e Bi[/o(@)]el, 1<i<m
e 0 EC,and

p(d) = A[z/o(7)].

The map T : 2% — 22 is monotone with respect to set inclusion, there-
fore by the Knaster-Tarski Theorem has a least fixpoint A,. Let M, be the
model specified by A, as described in §3.5; i.e., AMr = A

The following results assert the equivalence of these three semantics. The
proofs are standard, using results and techniques of logic programming and
constraint logic programming [15].

Lemma 1 The set AM is a prefizpoint of T, (i.e., T-(AM) C AM) iff
./M |: .

By the Knaster-Tarski Theorem, the least prefixpoint of T} is also its
least fixpoint. It follows that M is the minimal model of =.

Theorem 2 Let B be a finite list of atomic formulas, C a finite system of
sel constraints, d = dy,...,d, € Regs, 0 a partial set valuation such thal
o(z;) =d;, 1 <i<m, where T = x1,...,2, is a list of variables including
all those occurring in B and C, and D a system of set constraints of the form
(13) defining the substitution [T/d] uniquely.

The following statements are equivalent:

(i) Mr,o0 =BAC;
(ii) the query ?-B,C. succeeds with some extension o' of o;
(tii) the query ?-B,C,D. succeeds;

(iv) o = C, and for every clause B; in B, B;[T/d] € A,.

11

4 Efficient Constraint Solving

4.1 Atomic Form and Hypergraphs

In this section we describe a convenient normal form for systems of con-
straints called atomic form. This normal form corresponds to the combina-
torial method of [1, 2, 18] involving hypergraphs. It is also strongly related
to the automata-theoretic approach of [10, 11] and to the approach of [6]
involving finite models of monadic logic.

Definition 3 A system of set constraints is in atomic form if

e the variables are partitioned into two disjoint sets /' and X, called the
atoms and primary variables, respectively,

e there is a subset E¢(u) C U for each f € ¥, and w € U", and

e there is a subset P(z) C U for each z € X,

such that the system consists of constraints

Uu = 1 (18)

uelU
uNv = 0, for distinct w,v € U (19)
f@ < U wu (20)
uEEf(E)
z = |J wu, re X (21)
ueP(x)

where any f(@) appears on at most one left hand side of a constraint of the
form (20). We take Es(u) = U for expressions f(u) not appearing on the
left hand side of any constraint (20); this implicitly asserts the redundant
constraint f(u) C 1.

The tuple (U, X, E, P) specifies a system of set constraints in atomic
form, where U is the set of atoms, X the set of primary variables, £ specifies
the maps F;: U™ — 2V and P gives the sets P(z). O

The clauses (18) and (19) say that the atoms form a finite partition of
Ts. As in [1, 2], we can regard such a system as a hypergraph on vertices U
with hyperedge relations

Ef U —2Y

12

one for each f € Y,. For constants a € ¥y, E, is a subset of U, unary
g € ¥, give rise to ordinary binary edge relations, binary f € ¥, give rise
to ternary hyperedge relations, etc. This structure can also be regarded as a
nondeterministic finite tree automaton [10, 11].

Definition 4 ([1]) The hypergraph corresponding to a system of set con-
straints in atomic form is said to be closed if every F;(u) is nonempty. The
hypergraph is said to have a closed induced subhypergraph if there is a subset
V' C U such that for every f € ¥, and every n-tuple w € V", the set E¢(u)
intersects V. O

The notion of closure is captured axiomatically by (6) [18].
Definition 5 A runis amap 0 : Ty — U such that for all f(1,...,t,) € Ty,
O(f (s st)) € By(0(1)..,01,) (2)

O
The run f corresponds to an infinite run of a tree automaton in the automata-

theoretic approach of [10, 11].
The following theorem was proved in [1].

Theorem 6 ([1]) Let C = (U, X, E, P) be a system of sel constraints in
atomic form considered as a hypergraph as described above. The following
three statements are equivalent:

(i) C has a closed induced subhypergraph;
(ii) there exists a run 0 : Ty — U;
(1ii) C is satisfiable.

Proof sketch. (i) — (ii) The existence of a closed induced subhypergraph
on atoms V allows us to assign an atom 6(t) € V to each ground term ¢ € Ty
inductively such that (22) holds.

(ii) — (iii) Given a run 6, a set valuation o satisfying C can be obtained
by setting

~(P(x)) (23)

(iii) — (i) Given valuation o satisfying C, take
V= {uelU]o(u)#0}.
O

If there is a closed induced subhypergraph not containing an atom u,
then u is not needed in the construction of #, and can be annihilated without
affecting satisfiability. Formally, we impose the extra set constraint v = 0,
then use property (7) and Boolean algebra to construct an equisatisfiable
system in atomic form in which the atom u does not appear. For each occur-
rence of u on the left hand side of a constraint (20), by (7) that constraint
is immediately satisfied and may be deleted. Any other occurrence of u may
then be deleted, since it only appears in disjunctions. We are left with a
smaller system in atomic form.

4.2 Reduction to Atomic Form

Every system of set constraints can be put into atomic form effectively with at
most an exponential increase in size. Here is an algorithm, which is essentially
the same as the normal form algorithm of [1]:

Algorithm 7 1. Replace any subexpression f(t1,...,1,) by a variable z
and add constraints

r = f(y1,---yYn) (24)
yi = i, 1<1<n,
where z,¥y1,...,y, are new variables. This is called flattening. Repeat

until the system consists of purely Boolean constraints and constraints

of the form (24).

2. Replace each constraint of the form (24) by two inclusions

fs- o ym)
~ Sy yn)

N 1N

14

3. Apply the generalized DeMorgan law (12) to the left hand side of (25)

to get the equivalent inclusion

U g(@,....0y)ulJ 1,1~y 1,...,1) C ~ax,
Jex = =~ —_——
g# f

i—1 n—1

then rewrite this as separate inclusions

g(l,...,1)
F o~y
—_——

i—1 n—u

: gFf

1 <1< n.

~XT

N 1N

~XT

All constraints are now either purely Boolean or of the form

flze,...,2,) C x (26)

where z, zq,...,x, are positive or negative literals or the constant 1.

4. Let X be the set of variables in use at this point. These are the primary
variables. Let B be the set of purely Boolean constraints. Introduce a
new set of variables U, one for each atom of the free Boolean algebra on
generators X modulo B; equivalently, one for each maximal conjunction
of literals from X consistent with B. For v € U and z € X, write
u < x if the literal appears in the conjunction corresponding to u
and u <~z if the literal ~z appears in the conjunction corresponding
to u. Replace the constraints B with the constraints (18), (19), and
(21) for each z € X, where P(z) = {u € U | u < z}. It follows
from elementary Boolean algebra that this system is equivalent to the
original.

5. In constraints of the form (26), replace each positive literal = with
Uuep(s) U, €ach negative literal ~z with U,gp(s) v, and each occurrence
of the constant 1 with U,cpu. Apply (2) to express each left hand
side as a union of expressions of the form f(u1,...,u,). Separate each
resulting constraint

Usr@ < Ju

ueA u€el

15

into a finite collection of constraints

f@ < Yu, ueA.

uel
6. Collect all constraints with the same left hand side,

f(m) C Uu, Eek&,

uel

and let K¢(uw) = NE. Replace these constraints with the single equiva-
lent constraint (20).

The resulting system is in atomic form.

One can still reduce the size of the system by annihilating atoms u that
are 1naccessible in the automata-theoretic sense, since they will never be
chosen in the construction of the run 6 in Theorem 6. Formally,

7. Let W be the smallest set closed under the following operation: if
u € W” then Ef(uw) € W. Annihilate all atoms v € U — W. If
U has a closed induced subhypergraph on atoms V', then the induced
subhypergraph on atoms V N W is also closed, therefore by Theorem 6
the new system is satisfiable iff the old one was.

4.3 Testing Satisfiability

If the system C of set constraints in atomic form is not closed, then there is
some constraint of the form

flur, ... u,) € 0. (27)

Property (6) then implies that any satisfying valuation must have w; = 0
for some 7, 1 <1 < n. We can pick some u; and annihilate it as described
above. However, if some F,(uw) = {u;}, then this last action causes the right
hand side of another constraint (20) to vanish, in which case the process
must be repeated. If this process ever stabilizes in a system in atomic form
in which every Fy(u) is nonempty, then we have found a closed induced
subhypergraph, and by Theorem 6 the system is satisfiable.

16

The choice of u; to annihiliate is inherently a nondeterministic process.
No more efficient algorithm is likely to be found, since the general satisfiabil-
ity problem is nondeterministic exponential-time complete [1, 6]. However,
if there are no operators of arity two or greater, then there is no nondeter-
ministic choice to be made and the process becomes deterministic. This is
the essence of the proof of the result of [1] that the satisfiability problem can
be solved in deterministic exponential time in this case.

Even in the presence of operators of arity two or greater, the following
greedy heuristic may be useful in improving performance: always annihilate
the u; that removes the largest number of constraints (20) with 0 on the right

hand side.

4.4 Regular Solutions

In this section we give an alternative proof of a result of Gilleron et al.
[10] that we can restrict our attention to regular solutions of systems of set
constraints. This result is essential in the semantics of CLP(SC).

Theorem 8 ([10]) FEvery satisfiable system of sel constraints has a regular
solution.

Proof. Let C be a satisfiable system of set constraints in atomic form. By
Theorem 6, the associated hypergraph contains a closed induced subhyper-
graph; i.e., one can annihilate atoms u to obtain an equisatisfiable system
in atomic form in which all £¢(@) are nonempty. Now perform the following
steps in order:

1. Delete all atoms but one from each Fy(@).

2. Annihilate all atoms except those appearing on the right hand sides of
inclusions (20).

3. Combine all constraints (20) with the same right hand side u into a
single constraint whose left hand side is the disjunction of the left hand
sides of all constraints with right hand side w.

4. Change all inclusions to equalities.

17

Each step in the above process strengthens the system (annihilation of u is
tantamount to adding the constraint u = 0), so any solution of the resulting
system is also a solution of the original system C. The resulting system of
equations (20) is of the form (13), which has a unique regular solution (see
[9]). Moreover, every f(u) occurs in exactly one equation (20); this implies

that (18) and (19) hold as well. O

5 Efficient Unification

In constraint logic programming, unification is just conjunction of constraints.
In our case, however, we wish to maintain constraints in atomic form for the
sake of efficiency. We show in this section an efficient way to unify two con-
straint systems C, D in atomic form into a new constraint system & in atomic
form that is equivalent to the conjunction of C and D. This is done in two
steps: the first, a common refinement step in which atoms from C and D are
paired; and a minimization step in which inaccessible atoms are annihilated
and equivalent atoms coalesced.

5.1 Common Refinement

Let C = (U¢, X¢, E°, P°) and D = (U?, XP, EP, PP) be two systems of
set constraints in atomic form with disjoint sets of atoms. We unify C and
D by forming their coarsest common refinement. The resulting system will
be in atomic form and will be equivalent to the conjunction of C and D.
For u € U® and v € UP, let uv denote a new variable which is formally
the ordered pair (u,v) but represents the conjunction uNwv. Define the system

& = (U%, X¢, E¢, P?) as follows:

U =) ((P(e) x PP(x))

U((U° = P()) x (UP = PP(x)))) (28)
X¢ = XCux? (29)

E?(ulvl,...,unvn) = (chc(ul,...,un) X E}?(vl,...,vn)) nuUe (30)
(P¢(z) x PP(z))nU¢, z€ XN XP
PE(z) = { (P°(z) xUPYNU® ze X —XP (31)
(U€ x PP(z))nU* , e XP - XC.

18

This definition can be justified as follows. To obtain (28), we start by taking
the atoms of the coarsest common refinement to be conjunctions of pairs of
atoms, one from C and one from D. Some of these atoms will be immediately
annihilated, however, due to the constraints (21). If x € X¢ N X?, then the
two constraints of the form (21) involving z, one from C and one from D,
imply that

Ju= U v,

u€PC(z) vEPP(z)

or equivalently that uv = 0 for u € P¢(z) and v ¢ PP(z) or for u ¢ P¢(z)
and v € PP(z). These uv are annihilated, giving the definition of U¢ as it
appears in (28).

To justify (30), each constraint of the form (20) for C, say

flur, ... u,) C U u,
uEEfC(ﬂ)
and the constraint
U v = 1
veUP
for D combine using (2) to give constraints
f(u1v17 L 7unvn) g U uv . (32)
u € E?(U)
ww € U
Symmetrically, the constraint
flo1,...,v,) C U v
vERT (1)
for D and the constraint
U u = 1
uelUC
for C combine to give constraints
f(ulvla R unvn) g U uv . (33)
v € E7 (v)
ww € U®

19

Combining constraints (32) and (33) with like left hand sides, we obtain the
constraint

flugvr, .. upv,) C U uv .
uEE?(ﬂ)
v € E7 (v)
uv € UE

The justification for (31) is similar.

5.2 Minimization

As we progress down in the search tree, repeated unifications may result in
a proliferation of extraneous atoms. This can be countered by the following
process, which attempts to identify redundancy by (i) deleting inaccessible
atoms, and (ii) identifying equivalent atoms. The technical notions of in-
accessible and equivalent are defined formally below. This construction is
analogous to reducing the number of states in a deterministic or nondeter-
ministic finite state automaton by forming the quotient modulo a suitable
equivalence relation (see [14]).

Definition 9 Let C,D be systems of set constraints in atomic form over
primary variables X. We call C and D equivalent if for any solution o of C

there is a solution 7 of D such that o(x) = 7(z) for all z € X, and vice versa.
O

Definition 10 Let C = (U, X, E¢, P°) and D = (UP, X, E?, PP) be
systems of set constraints in atomic form over primary variables X. A ho-
momorphism h : C — D is a map h : U¢ — UP such that

P(x) = h7Y(PP(2)) (34)
WES(us,. . un)) = EP(h(wy),...h(u,)) . (35)
a

Lemma 11 Let C = (U, X, E¢, P°) and D = (UP, X, E?, PP) be systems
of set constraints in atomic form over primary variables X, and let h : C — D
be a homomorphism. Then C and D are equivalent.

20

Proof. Given a run 6 : Ty, — U° for C, define
n = hob:Ty —UP . (36)

A brief argument involving (22) and (35) shows that 5 is a run for D.
Conversely, given a run 5 : Ty — UP for D, define a run 6 : Ty — U° for
C satisfying (36) inductively: suppose n(t;) = h(68(¢;)), 1 <@ <n. Then

n(f(te,...,t,)) €

Ef(n(t
= Ef(h
= h(E?(e(t) ..-,ﬂ(tn))) :

)

so there exists u € E¢ (9(1),...,0(t,)) such that h(u) = n(f(t1,...,t)).
Setting 0(f(t4, ..., n)) = u, we have

ROf(tr, .. 1) = 5(f(tr,e . otn)) .

In either case, by (34) we have

n(t) € PD(:L') < h(0(t)) € PD(J})
< 0(t) € P(a),

thus
“H(PP(x) = 07Y(P(x)) .

As argued in Theorem 6, the left and right hand sides of this equation are
components (23) of set valuations satisfying D and C, respectively. O

Definition 12 Let C = (U, X, F, P) be a system in atomic form. An equiv-
alence relation = on U is called a congruence if the following two conditions

hold:
(i) if u =v and v € P(x), then v € P(z);

(ii) if u; = v, 1 < 0 < n, then for all v € E¢(us,...,u,) there exists
v € F¢(vy,...,v,) such that v = u.

21

v h
{ h

Theorem 13 Let C = (U, X, E, P) be a system in atomic form with no
inaccessible atoms in the sense of step 7 of Algorithm 7. The congruence re-
lations on C and homomorphic images of C are in one-to-one correspondence
up to isomorphism.

Proof. We first show how to construct a quotient system modulo a con-
gruence. This system will be a homomorphic image of C under the canonical
map taking an atom to its congruence class.

Let = be a congruence on U. Associate a new variable [u] with the
=-congruence class of u. Define

U= (W] uer)
Plz) = {lul|ve P(x)}
Ei([ua], ..., [un]) {lu] | v € Ef(ur, ... u,)} .
The set E%([ui], ..., [u,]) is well-defined by Definition 12(ii). Moreover, [u] €
P'(z) iff u € P(x); the left-to-right implication depends on Definition 12(i).
Now consider the system C/= of constraints

Ul = 1 (37)

[’U,]ELT/

~
~
=
=
=5
S
S’
N
&
~
w
©
S’

This system is in atofu]cifaarhpmmed the canonical map u

omomorphism h : C — D induces a congruence on C

(u) = h(v).

This operation is inverse to the quotient

O

diately from Lemma 11 that the system C and its quotient
;in the sense of Definition 9.

an be defined on U by setting u = v if for all f € X,

=
<

and z,
u€ Plz) < veP(x)
FEsi(u,u,v) = Fs(u,v,70).

22

However, this congruence is by no means optimal. The following construc-
tion, analogous to the standard minimization algorithm for finite automata
(see [14]), may give a better solution in some cases.

The algorithm marks unordered pairs of atoms {u, v} as inequivalent. All
pairs are initially unmarked. If v € P(z) and v ¢ P(z) for some z, mark
{u,v}. Now repeat the following two steps until there are no more marks:

I.Ifu = uy, ... up, © = v1,...,0,, and E¢(u) contains an element u
such that all pairs {u,v} for v € E;(v) are marked, then nondeter-
ministically choose some distinct pair {u;,v;}, 1 < ¢ < n, and mark
it.

2. If {u,w} is marked but neither {u,v} nor {v,w} is marked, nondeter-
ministically choose either {u,v} or {v,w} and mark it.

When done, unmarked pairs are equivalent.

Any nondeterministic execution of this process results in a congruence,
and all maximally coarse congruences (resulting in minimal homomorphic
images) are achieved by some execution. Moreover, if ¥ contains no symbols
of arity two or greater, then step 2 can be dispensed with, since in this case
step 1 is deterministic and automatically results in a transitive relation. In
this case the entire process is deterministic and gives the unique maximally
coarse congruence, resulting in the unique minimal homomorphic image.

6 An Application

In program analysis and compiler optimization, one often wishes to determine
information such as whether a given variable can take on a given value at
a given point in the program. Of course this is undecidable in general, but
it 1s often possible to describe a superset of the values a variable can take
on at a given point, and this approximate information may still be useful in
performing optimizations.

Heintze and Jaffar [13] introduced the technique of monadic approzima-
tion in which variable interdependencies are ignored. See [12] for a thorough
introduction to this technique and examples of its application to imperitive
and logic programs.

23

In this section we show how CLP(SC) can be used to give a concise charac-
terization of the monadic approximation for a simple imperitive programming
language consisting of the following constructs:

ri=e simple assignment

if x = y then p else ¢ conditional

while z =y do p while loop

P q sequential composition

The test = y in the conditional and while loop can be replaced by = # y
or any similar test. Programs in this language are called while programs.

6.1 Collecting Semantics

The collecting semantics associates with each point in the program the set of
valuations of program variables that can occur at that point during execution.
Following Heintze [12], we describe here the collecting semantics for while
programes.

Let p be a while program and let X be the set of program variables
occurring in p. We associate with each subprogram ¢ two points, one just
before and one just after ¢. Each such point is labeled with a letter a, b, ¢, ...
We denote by U* the set of valuations ¥ : X — {values} of program variables
that ever occur at point @ during execution.

Heintze [12] gives a system of set inclusions whose least solution charac-
terizes the sets W* exactly. These are given in Figure 1. In that figure,

Ulz:=e] = {lz/i(e)] | € ¥}
Uz=y] = {e¥|y(x)=1v(y)}
Ul #y] = {YeV|p(x)#Y(y)}

and [z /a] denotes the valuation that agrees with ¢ everywhere except pos-
sibly x, and the value of ¥[z/a] at z is a.

If s is the starting point of the program, then we set W* = {14}, where
g 1s some initial valuation.

6.2 Monadic Approximation

Heintze [12] shows that the monadic approximation to the collecting seman-
tics can be computed as the least solution to the same set of equations as

24

by oly e b
! ; Velz:=¢ C W
if x = y then p else ¢ Uiz =9y] C W
T 21 M Uolz£y] C Wl
" ¢ ef eype C S
while z = y do p Uiz =y] C WP
T VI vty o
a cd c g q;a
P9
t1 vr C Pb
ab -

Figure 1: The collecting semantics of while programs

in Figure 1, except that the meaning of U* is altered to ignore dependencies
among variables. Whereas W* is a collection of valuations ¢ : X — {values},
we define U* to be a set valuation, i.e. a mapping

@a X 2{values}

that assigns a set of values to each program variable at point a. Under the
new interpretation,

\Tl[w::e] = \T/a:/\l/e
Blo=y] = {w J¥(2) N (), y/B() N ()], i D)0 D(y) £ 0

otherwise

25

Az, V()| = |¥(y)| =1, V(z)=Y(y)
) b, @)l =Byl =1, W) £ B()
o Ay) = { /By -)],)] =1, [B(y)] > 1

Wl /U(e) — U] [0()] > 1 ()] = 1

v, |W(z)| > 1, [¥(y)] > 1.

Here |A[denotes the cardinality of A; U[z/A] denotes the map that agrees
with U everywhere except possibly x, and the value of \Il[:z;/A] at = is A;
and \I/() is the set of values denoted by the expression e under the set-
theoretic interpretation of the operators, where the variables occurring in e
are interpreted by V. The inclusions C of Figure 1 are interpreted pointwise.

The definitions of W[z = y] and ¥[z # y] may seem rather complicated.
Intuitively, \Tl[:fj = y] is the minimal set valuation approximating the collec-
tion of valuations

{¥ 1¥(2) = () and vz € X 4(2) € ¥(2)} .
The set W[z = y] can be constructed as follows.

1. Form the maximal set of valuations ¥ of which W is an approximation.
This is just the direct product

[I19() = {¢|Vz€X ¢(z) € ¥(2)} .

zeX

2. Intersect U with the diagonal set

{¢ [¢(x) = ¢(y)}

to obtain the set W[z = y] as defined above. (Any other reasonable test
can be used here.)

3. Take

Ve =yl = Ire X{v(2)|¢eVe=y]},

the so-called cartesian closure of W[z = y] [13]. This is the smallest set
valuation approximating ¥[z = y].

This construction is illustrated in the following diagram.

26

T
The construction of W[z # y] is similar, except that the set {1 | o(z) # ¢ (y)}
is used in step 2.

One can show that U%(z) is a superset of the set {¢(z) | ¢ € U*} of the
values assigned to x under the old interpretation; i.e., the monadic interpre-
tation is a safe approximation to the collecting semantics. See Heintze [12]
for further details.

Below we give a CLP(SC) program to compute the monadic approximation
to the collecting semantics. In this program, the formula

ma(f’ (ﬁp” , y)
asserts that if the set variables = xq,...,r, are instantiated with sets
of values for the program variables (also denoted T = z1,...,,), then after

executing program p, the final sets of values assigned to the program variables
under the monadic approximation are given by the values of the set variables
¥ =Y1,..-,Yn- Lhe expression “p” denotes the representation of program p
in some suitable encoding.

ma(T, “z; = e(T)", 21, ..., Tic1, €(T), Tig1y ..oy Tn).
ma(Z, “if b then p else ¢", 7 UZ) -

test(z, “b”,w), ma(u, “p”,y),

test(T, “=b",7), ma(v, “q",Z).
ma(Z, “while b do p”,Zz) -

T=7U7,

test(w, “b”,v), ma(v, “p”,7),

test(u, “=b", 7).

(1))

ma(f, “p; quz) B ma(fv ccpw’y), ma(y7 q 75)'

27

yee, Ny, o,z Ny, . ..) = nonemply(x Ny).
T, ‘e #y”,0) — x =y, sng(z), sng(y).

T, ‘e #y",T) — unequal(z,y), sng(x), sng(y).
test(T,“c #y”, ..., x,...,y —x,...) — sng(x), atleast2(y).
test(T,“c #y”,...,x —y,...,y,...) — atleast2(x), sng(y).
test(T, “z # y”,T) :— alleast2(x), atleast2(y).

If p is a program, the query

17— ma(o(z1), ..., o(zn), “p", 7).

will instantiate the variables i with the sets of possible final values of the pro-
gram variables under the monadic approximation to the collecting semantics,
assuming that the initial values are given by the valuation).

Acknowledgements

We are indebted to Alex Aiken, Nevin Heintze, and Joxan Jaffar for valu-
able ideas and suggestions. The support of the National Science Foundation
under grant CCR-9317320 and the U.S. Army Research Office through the
ACSyAM branch of the Mathematical Sciences Institute of Cornell Univer-
sity under contract DAAL03-91-C-0027 is gratefully acknowledged.

References

[1] A. AIkKEN, D. KozEN, M. VARDI, AND E. WIMMERS, The complezity of set
constraints, in Proc. 1993 Conf. Computer Science Logic (CSL’93), E. Borger,
Y. Gurevich, and K. Meinke, eds., vol. 832 of Lect. Notes in Comput. Sci.,
Eur. Assoc. Comput. Sci. Logic, Springer, September 1993, pp. 1-17.

[2] A. AIKEN, D. KozeN, aND E. WiMMERS, Decidability of systems of set
constraints with negative constraints, Tech. Rep. 93-1362, Computer Science
Department, Cornell University, June 1993.

[3] A. AIKEN AND B. MuRrPHY, Implementing regular tree expressions, in Proc.

1991 Conf. Functional Programming Languages and Computer Architecture,
August 1991, pp. 427-447.

28

[4] ——, Static type inference in a dynamically typed language, in Proc. 18th

[10]

[11]

[12]

[13]

[14]

[15]

Symp. Principles of Programming Languages, ACM, January 1991, pp. 279—
290.

A. AIKEN AND E. WIMMERS, Solving systems of set constraints,in Proc. Tth
Symp. Logic in Computer Science, IEEE, June 1992, pp. 329-340.

L. BacaMAIR, H. GANZINGER, AND U. WALDMANN, Set constraints are the
monadic class, in Proc. 8th Symp. Logic in Computer Science, IEEE, June
1993, pp. 75-83.

W. CHARATONIK AND L. PACHOLSKI, Negative set constraints with equality,
in Proc. 9th Symp. Logic in Computer Science, IEEE, July 1994, pp. 128-136.

A. DoviEr, E. G. OM0oDEO, E. PONTELLI, AND G. Rossi, Fmbedding finite
sets in a logic programming language, in Proc. 3rd Int. Workshop Extensions
of Logic Programming (ELP’92), E. Lamma and P. Mello, eds., vol. 660 of
Lect. Notes Artificial Intell., Springer, February 1992, pp. 150-167.

J. ENGLEFRIET, Tree automata and tree grammars, Tech. Rep. DAIMI F'N-10,
Aarhus University, April 1975.

R. GiLLErON, S. TisoN, AND M. ToMmMASI, Solving systems of set con-
straints using tree automata, in Proc. Symp. Theor. Aspects of Comput. Sci.,
vol. 665, Springer-Verlag Lect. Notes in Comput. Sci., February 1993, pp. 505—
514.

——, Solving systems of set constraints with negated subset relationships,
in Proc. 34th Symp. Foundations of Comput. Sci., IEEE, November 1993,
pp. 372-380.

N. HEINTZE, Set Based Program Analysis, PhD thesis, Carnegie Mellon Uni-
versity, 1993.

N. HEINTZE AND J. JAFFAR, A finite presentation theorem for approzimating
logic programs, in Proc. 17th Symp. Principles of Programming Languages,
ACM, January 1990, pp. 197-2009.

J. E. HopcrorFT AND J. D. ULLMAN, Introduction to Automata Theory,
Languages, and Computation, Addison-Wesley, 1979.

J. JAFFAR AND J.-L. LAssEz, Constraint logic programming, in Proc. Symp.
Principles of Programming Languages (POPL) 1987, ACM, January 1987,
pp- 111-119.

29

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

B. JAYARAMAN AND D. A. PLAISTED, Programming with equations, subsets,
and relations, in Proc. North Amer. Conf. Logic Programming 1989, E. L.
Lusk and R. A. Overbeek, eds., vol. 2, MIT Press, 1989, pp. 1051-1068.

N. D. JoNES AND S. S. MUucHNICK, Flow analysis and optimization of LISP-
like structures, in Proc. 6th Symp. Principles of Programming Languages,
ACM, January 1979, pp. 244-256.

D. KozgN, Logical aspects of set constraints, in Proc. 1993 Conf. Computer
Science Logic (CSL’93), E. Bérger, Y. Gurevich, and K. Meinke, eds., vol. 832
of Lect. Notes in Comput. Sci., Eur. Assoc. Comput. Sci. Logic, Springer,
September 1993, pp. 175-188.

G. M. KuPER, Logic programming with sets, in Proc. Symp. Principles of
Database Systems (PODS) 1987, ACM, 1987, pp. 11-20.

P. MisurA, Towards a theory of types in PROLOG, in Proc. 1st Symp. Logic
Programming, IEEE, 1984, pp. 289-298.

P. MisurAa AND U. REDDY, Declaration-free type checking, in Proc. 12th
Symp. Principles of Programming Languages, ACM, 1985, pp. 7-21.

J. C. REYNOLDS, Automatic computation of data set definitions, in Informa-
tion Processing 68, North-Holland, 1969, pp. 456-461.

K. STEFANSSON, Systems of set constraints with negative constraints are
NEXPTIME-complete, in Proc. 9th Symp. Logic in Computer Science, IEEE,
June 1994, pp. 137-141.

F. STOLZENBURG, An algorithm for general set unification and its complezxity,
in Proc. Workshop Logic Programming with Sets, in conjunction with 10th
Int. Conf. Logic Programming, E. Omodeo and G. Rossi, eds., June 1993,
pp. 17-22.

——, Logic programming with sets by membership-constraints, in Proceedings
of the 10th Logic Programming Workshop, N. E. Fuchs and G. Gottlob, eds.,
Universitat Ziirich, 1994, Institut fir Informatik. Technical Report ifi 94.10.

J. Youncg AND P. O’KEEFE, Fzperience with a type evaluator, in Partial
Evaluation and Mixed Computation, D. Bjgrner, A. P. Ershov, and N. D.
Jones, eds., North-Holland, 1988, pp. 573-581.

30

