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The need for multi-class origin-destination (O-D) estimation and link volume 

estimation requires multi-class observations from sensors. This dissertation has 

established a new sensor location model that includes: 1) multiple vehicle classes; 2) a 

variety of data types from different types of sensors; and 3) a focus on both link-based 

and O-D based flow estimation. The model seeks a solution that maximizes the overall 

information content from sensors, subject to a budget constraint. An efficient two-

phase metaheuristic algorithm is developed to solve the problem. 

The model is based on a set of linear equations that connect O-D flows, link 

flows and sensor observations. Concepts from Kalman filtering are used to define the 

information content from a set of sensors as the trace of the posterior covariance 

matrix of flow estimates, and to create a linear update mechanism for the precision 

matrix as new sensors are added or deleted from the solution set. Sensor location 

decisions are nonlinearly related to information content because the precision matrix 

must be inverted to construct the covariance matrix which is the basis for measuring 

information. The resulting model is a nonlinear knapsack problem.  

The two-phase search algorithm proposed addresses this nonlinear, 

nonseparable integer sensor location problem. A greedy phase generates an initial 

solution, feeding into a Tabu Search phase which swaps sensors along the budget 



 

constraint. The neighbor generation in Tabu search is a combination of a fixed swap-

out strategy with a guided random swap-in strategy.  

Extensive computational experiments have been performed on a standard test 

network. These tests verify the effectiveness of the problem formulation and solution 

algorithm. A case study on Rockland County, NY demonstrates that the sensor 

location method developed in this dissertation can successfully allocate sensors in 

realistic networks, and thus has significant practical value. 
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CHAPTER 1 

INTRODUCTION 

 

Effective traffic management in networks depends on the ability to sense and 

interpret volumes and flow patterns of vehicles using the network. Existing practice is 

based primarily on use of loop counters embedded in the roadway as a means of 

obtaining counts and average speed data for a small fraction of network links. The data 

from these relatively crude sensors has at least five major limitations: 1) the type of 

data available is very limited; 2) there is very little ability to distinguish vehicles in 

different size classes; 3) the sensors tend to produce the least reliable information 

under the most critical high-volume conditions; 4) there are too few sensors and their 

deployment is often based on need for very local data rather than being designed to 

provide useful network-wide data; and 5) there is limited ability to synthesize the data 

from a collection of sensors into a coherent picture of what is happening on the 

network as the basis for effective traffic management. 

The expectations for effectiveness of traffic management are rising for several 

reasons. First, traffic demand is growing faster than available physical capacity, 

creating increasing levels of congestion. Second, there is increasing concern with truck 

movements in urban networks because trucks impose different levels of pavement 

damage than automobiles, they have different emission characteristics, different 

accident patterns, and may be subject to different flow controls. Third, there is 

increasing interest in pricing policies for use of the network, with prices that may vary 

by location, time-of-day and vehicle class. And fourth, we may be on the verge of a 
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fundamental change in how the roadway network is funded, changing from a fuel-tax 

based system to a system based on vehicle-miles-traveled (VMT). 

To meet these rising expectations, traffic management must be based on more 

and better information about network flow patterns. Modern traffic sensing technology 

offers increasing ability to classify vehicles as they are counted, as well as to create 

data that are more informative than simple link counts, including output from video 

detectors, GPS-based vehicle location systems, automatic vehicle identification (AVI) 

systems, etc. As sensing technology advances, applications in traffic management are 

growing and many important questions about sensor deployment and data use are 

becoming more critical: What type of sensors should be used? How many of them are 

needed and where should they be installed in order to get required information 

economically? How can traffic system managers synthesize the data from different 

types of sensors, located in various parts of the network, to create network-level 

information? 

The network information of interest is partly link-based, partly path-based, and 

partly origin-destination (O-D) based. Good estimates of link volumes (including links 

that may not be observed directly) is important for evaluating speeds and travel times, 

total emissions, VMT, etc. Estimating O-D flows provides a more complete picture of 

demand on the network and the basis for evaluating possible responses to traffic 

management strategies. Path-based information provides a connection between link-

based data and O-D based demand, and is also important for traffic management 

assessment. 

In a recent review of sensor location issues, Gentili and Mirchandani (2012) 
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identify two general classes of objectives for sensor location models: flow 

observability and flow estimation. Flow observability focuses on a specific set of 

flows in the network (which may include link flows, O-D flows, path flows, etc.) and 

seeks the minimum set of sensors and locations required to solve uniquely for the 

desired flows from the sensor observations. Flow estimation, on the other hand, 

focuses on situations where sensor observations cannot uniquely determine flows, but 

seeks sensor locations that can best improve the quality of flow estimates available 

from the sensor observations. The work in this thesis is in the latter category and 

focuses on locating sensors to improve estimates of both link flows and O-D flows in a 

network. 

The purpose of this dissertation is to accomplish five important goals: 

1) Consider data collected on multiple vehicle classes; 

2) Consider a variety of data types (from different types of sensors) that include 

not just link-based data, but also turning movements and other partial path 

data; 

3) Consider an objective that may include both link-based and O-D based flow 

estimation; 

4) Formulate the optimization problem for choosing sensor types and locations to 

maximize the overall information content of the resulting data, subject to 

budget constraints on available sensor deployment; and 

5) Develop an efficient solution algorithm for the problem so that it becomes a 

practical tool for traffic management and planning. 

To accomplish these goals, the research builds on several previous efforts in 
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the rapidly growing literature on network sensor location. Particular attention is paid 

to constructing a model of the information content from different types of sensors and 

reflecting the interdependence of information from multiple sensor locations. We also 

pay special attention to the desire to sense multiple classes of vehicles and 

differentiate automobile flows from truck flows, for example.  

The model formulation that includes multiple vehicle classes and integrates 

data from a wide variety of sensor types is one major contribution of this research. 

Another important element is the design of a solution algorithm for the problem. This 

solution algorithm: 

1) Addresses the nonlinear, nonseparable discrete character of the objective 

function in the optimization using a meta-heuristic search method; 

2) Is capable of starting from an arbitrary point, representing existence of some 

prior set of sensors already in place, and find the optimal (or near-optimal) way 

to augment them within an available budget; and 

3) Is efficient enough to scale in a reasonable way to networks of realistic size. 

Chapter 2 provides background and a literature review on sensors and sensor 

location modeling. Chapter 3 describes the problem formulation in detail and Chapter 

4 discusses the literature on algorithm design and developed a solution algorithm for 

the problem. Chapter 5 describes a battery of computational experiments on a test 

network and Chapter 6 illustrates application of the model in a realistic network 

(Rockland County, New York). Chapter 7 presents conclusions and outlines directions 

for further research. 
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CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW 

 

In most urban areas, the primary source of traffic flow data is single-loop 

counters buried in the pavement on selected links or near major intersections. The data 

from these counters are generally total vehicles and average speed over relatively short 

(e.g., 10-15 minute) periods and the intended use of these data is often quite local 

(traffic signal setting, etc.). Single-loop counters do not typically provide any vehicle 

classification information, but in some places dual-loop installations have been used. 

These are capable of limited vehicle classification counts based on vehicle length, but 

are highly unreliable in congested stop-and-go conditions. 

The available technology for traffic flow sensing has improved quite 

significantly in recent years, along with rising expectations for improved network-

level traffic management. The combination of more capable sensors and higher 

expectations for using the data has motivated increasing interest in the problem of 

sensor location. How many of what types of sensors should be deployed, and in what 

locations across the network, to provide the real-time information necessary for more 

effective traffic management and control? Various aspects of this general question 

have been addressed by researchers since the late 1990’s. 

Yang and Zhou (1998) and Yim and Lam (1998) focused on identifying link 

count locations for estimating O-D matrices. Bianco, et al. (2001) also focused on O-

D estimation using link counters, but added assumed turning probabilities at 

intersections to formulate a problem of identifying a subset of links on which counters 
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should be placed. 

Gentili and Mirchandani (2005) addressed the sensor location problem as a set-

covering problem using active sensors. The intended use of the model is for 

monitoring or managing particular classes of identified traffic streams and only one 

special case is shown to be polynomially solvable. Sherali, et al. (2006) formulated a 

quadratic 0-1 optimization problem for locating Automatic Vehicle Identification 

(AVI) tag readers by maximizing the benefit that would accrue from measuring travel 

times. Eisenman, et al. (2006) used a simulation-based real-time network traffic 

estimation and prediction system based on dynamic traffic assignment (DTA) 

methodology to analyze different levels of detection and different sensor locations in a 

portion of the Chesapeake Highway Advisories Routing Traffic (CHART) network. 

Zhou and List (2010) extended the work of Eisenman, et al. (2006) and 

proposed an information-theoretic model to maximize the expected information gain 

from a set of link and point-to-point sensors, subject to budget constraints. A heuristic 

beam search algorithm was used to solve the problem. Fei and Mahmassani (2011) 

proposed a Kalman-filtering-based bi-objective model, which considers link 

information gains and O-D demand coverage in the context of dynamic traffic 

assignment, to locate a minimal number of passive point sensors given an available 

budget.  

The work by Wang, et al. (2012) focused on locating link count sensors to 

estimate route flows. They assumed that a (relatively small) set of possible routes is 

enumerated for each O-D pair (defined as the route choice set), and that prior 

estimates of flows on all these routes are available, along with confidence limits on 
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those estimates. They then proposed a two-part model, one of which constructs route 

flow estimates from observed link counts, and the other which selects link sensor 

locations to maximize reduction in uncertainty of the resulting route flows. Their focus 

on flows for an enumerated route choice set represents a level of analysis that is 

different from either Zhou and List (2010) or Fei and Mahmassani (2011), but the core 

ideas that sensors produce observations that can be used to update prior estimates, and 

that the sensor location problem is one of maximizing some information measure from 

the sensors, are common among all three efforts. 

These three previous efforts provide important building blocks for the extended 

analysis in the current research. In the research proposed here, the information-

theoretic model designed by Zhou and List (2010) is extended to include multiple 

vehicle classes and a broader range of potential sensors and data types. The extension 

uses some of the ideas of a route choice set propsed by Wang, et al. (2012). Elements 

of the formulation by Fei and Mahmassani (2011) that include a focus on both O-D 

volumes and link volumes are also included. Fei and Mahmassani (2011) developed an 

approximation for the information gain with respect to O-D pair w from placing a 

sensor on link a. By treating this value as a constant for each w-a combination 

(independent of what other sensors are chosen), they were able to express the sensor 

location model as a linear knapsack problem, which greatly simplifies the 

optimization. Wang, et al. (2012) also constructed a linear measure of information 

gain from individual sensors, creating an even simpler form of linear knapsack 

problem for locating sensors. However, as shown by Zhou and List (2010), the actual 

information content of a collection of sensors is not additive. The basic approaches 
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taken by Fei and Mahmassani (2011) and Wang, et al. (2012) are useful, but the actual 

objective (maximizing information) is nonlinear. Thus, the resulting overall 

optimization has the form of a nonlinear, nonseparable discrete knapsack problem. 

Incorporating this nonlinearity is an important part of the work described in this thesis. 

Collection and processing of video data presents particularly interesting 

opportunities and challenges. Surveillance cameras have versatile uses (e.g. crime 

detection and prevention, license plate tracking, etc). With the development of image 

processing technology, cameras can also distinguish vehicles in different classes 

effectively and provide data on turning movements at intersections. In addition, 

multiple cameras at different locations may be able to provide path information for 

selected individual vehicles. These data can be used to improve understanding and 

management of network traffic flows. However, installing and maintaining video data 

collection systems is more expensive than deploying traditional loop counters, and 

processing the video data to extract useful traffic information is also expensive 

(although becoming less so). The work in this thesis places significant emphasis on 

integrating observations from several different types of sensors (intersection-based as 

well as link-based) and on allocating limited resources most effectively to locate 

sensors that can yield information of varying levels of accuracy on multiple vehicle 

classes at varying costs. This represents a significant generalization of previous work. 

Gentili and Mirchandani (2012) provide an extensive review of work on sensor 

location models and a classification structure for different types of modeling efforts. It 

is useful to place the work presented here within that structure. They distinguish 

between what they term the “Sensor Location Flow-Observability Problem” and the 
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“Sensor Location Flow-Estimation Problem”. The former deals with the problem of 

determining how to locate sufficient sensors to guarantee that a specified set of 

network flows can be determined uniquely. The latter addresses the problem of 

identifying some set of sensor locations on the network to optimize a specified 

evaluation criterion, subject to a budget constraint. The work presented here is of the 

second type. 

Within the general category of sensor location flow-estimation models, Gentili 

and Mirchandani define ten different types of optimization models for sensor location, 

based on choosing different evaluation criteria, or “rules” (in their terminology). The 

closest model type to the work presented here is defined as Model M10: Locate a 

given number k of sensors to minimize the estimation error in the O-D flow estimates. 

The model developed in this research does not assume a fixed number of sensors to be 

located, although it is assumed that there is a budget constraint and that sensors of 

different types and locations have varying (known) costs, so that the selection of types 

and locations is constrained. Also, the model formulated here does not concentrate 

exclusively on O-D flow estimates, but also includes link flow estimates. 

Recent work on models in the M10 category includes Zhou and List (2010), 

Fei and Mahmassani (2011) and Wang, et al. (2012) mentioned above, and also papers 

by Li and Ouyang (2011), Fei, et al. (2013), Lu, et al. (2013), Sayyady, et al. (2013) 

and Hu and Liou (2014). 

Li and Ouyang (2011) developed a compact linear integer programming model 

to determine optimal locations for vehicle ID sensors for travel time estimation along 

known paths, with the assumption that sensors may fail, causing loss of coverage for 
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some path flows. Although the setting and objectives were somewhat different from 

the work presented here, their work is interesting because of the recognition of sensor 

errors and potential failure. 

Fei, et al. (2013) extended the model of Fei and Mahmassani (2011) to include 

the effects of random traffic incidents that may cause flow changes in a dynamic 

network. They formulated a two-stage stochastic optimization model to locate a fixed 

number of link sensors under uncertain future flow conditions. All the core elements 

of the model developed by Fei and Mahmassani (2011) are retained, but the set of 

coefficients used to evaluate the marginal information benefit of a sensor placed on 

link a is expanded to allow computation of an expected value across multiple traffic 

flow condition scenarios. This is a useful and ambitious piece of work, but moves in a 

different direction from what is undertaken in this thesis. The focus here is on better 

representation of the information content of a collection of various types of sensors for 

estimating flows of multiple vehicle classes, rather than representing the effects of 

flow disruptions resulting from traffic incidents.  

Lu, et al. (2013) focused on camera location for traffic surveillance and 

enforcement functions (speeding, red light infractions, etc.). They included multiple 

user classes, although their definition of classes was not by vehicle type, but classes of 

drivers distinguished by their degree of concern to avoid intersections with cameras. 

The objective of the model formulated was to maximize the observed flow on 

monitored links, given that drivers may change routes to avoid monitoring. The 

underlying premise of their model was different from the flow estimation problem of 

interest here, but the work does represent one of the few instances of multiple user 



 

11 

classes in the sensor location literature. 

Sayyady, et al. (2013) were concerned with locating weigh-in-motion sensors 

to estimate axle loads on highway links by choosing a subset of p links that are most 

representative of a larger set. They used a p-median formulation to select optimal 

locations. This work is of interest because it focused on truck flows in multiple 

classes, but the character of the flow estimation problem is considerably different from 

what is of interest here. 

Hu and Liou (2014) considered a problem of deploying what they term passive 

sensors (link flow counters) and active sensors (license plate readers) to capture a set 

of link volumes (from the passive sensors) and path or route volumes (from the active 

sensors) that would best support estimating an O-D matrix for a network. Their work 

is interesting both because it considered integration of multiple sensor types and 

observations and because the method takes advantage of explicitly constructed 

variables to determine link or path flows that can be inferred from flow conservation if 

other flows are observed directly. This approach reduces reliance on link/path/O-D 

incidence matrices for connecting observations from the sensors to the unknown flows 

to be estimated and represents a novel way of trying to represent the information 

content of a collection of sensors. However, the method does not incorporate errors in 

the sensor observations and how such errors may degrade the quality of information 

being obtained. 

Against the backdrop of the previous work described above, the following 

chapter creates a new formulation of the sensor location flow-estimation problem that: 

1) Considers data collected on multiple vehicle classes; 
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2) Considers a variety of data types (from different types of sensors) that include 

not just link-based data, but also turning movements and other path-based data; 

3) Includes estimation of both link flows and O-D flows; and 

4) Chooses sensor types and locations to maximize the overall information 

content of the resulting data, subject to budget constraints on available sensor 

deployment. 
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CHAPTER 3 

A SENSOR LOCATION MODEL 

 Introduction 3.1

The purpose of the model developed in this chapter is to choose sensor types 

and locations to maximize the overall information content of the resulting data, subject 

to budget constraints on available sensor deployment. At the center of the model is a 

set of linear equations that relate O-D flows, link flows and sensor observations. The 

sensor information content is defined using concepts from Kalman filtering, resulting 

in a set of nonlinear equations that relate choices of sensor types and locations to total 

information gain. The final optimization is then a nonlinear knapsack model in which 

the sensors are chosen subject to a budget constraint. The following sections describe 

the elements of this model and how these elements are integrated to create the overall 

problem formulation. 

 Relating Flows and Observations 3.2

If zones are defined as the origin and destination points in a network, the O-D 

flows are often summarized as a square matrix (i.e., from-to), but it is also possible to 

express the relevant entries (ignoring the intrazonal trips on the diagonal, as well as 

any other combinations that are known or assumed to be zero) as a column vector, Q, 

and we will adopt that convention. The length of this vector will be denoted N, and 

individual entries will be indexed by n. If the network contains L directed links, the 

vector of link volumes, V, can be expressed as: 
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V PQ                                      Equation 3- 1 

where P is an L x N link utilization matrix whose entries give the proportion of trips 

for O-D pair n that use link l, l = 1,…, L. 

For the model discussed here, the values of P are assumed known, creating a 

linear relationship between Q and V. Q is treated as unknown and is to be estimated by 

a constructed vector,Q . This estimate is assumed to have a covariance matrix
QS . The 

link volume estimate: V PQ , has a covariance matrix,S𝑉, that can be related to QS  

through Equation 3-2 (Fei and Mahmassani, 2011):  

T

V QS PS P                                     Equation 3- 2                             

The matrix P can be determined through some mechanism of identifying paths (either 

implicitly or explicitly) between each origin and destination in Q, and assigning 

relative likelihoods for traffic using each of those paths. This can be done in several 

possible ways, including both deterministic and stochastic traffic assignment models, 

reflecting various sets of assumptions about how traffic flows are distributed on the 

network. The sensor location model can work with P matrices developed in many 

different ways, but the end results (sensor types and locations) will be somewhat 

sensitive to the assumptions underlying whatever P matrix is used. 

In the computational experiments described later in this thesis, P has been 

determined using a process that uses link lengths and free-flow travel times to 

construct efficient links (i.e., links that move further from the origin and closer to the 

destination, both in terms of distance and time) for each O-D pair. Based on the set of 

efficient links for each O-D pair, paths can be identified explicitly and path choice 
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probabilities are constructed using a probit model. The link utilization probabilities in 

P can then be constructed by aggregating the path choice probabilities for all paths 

that include a given link. Because path impedance (as a function of distance and travel 

time) for automobiles and trucks is different, the values in P for the same link and O-D 

pair, but different vehicle classes, will differ, but these values are in different rows of 

P, corresponding to link flow for the separate vehicle classes. 

This process for constructing the matrix P is consistent with an assumption that 

the process of locating sensors in the network should not depend on detailed 

observations of network flows. That is, the sensors must be located before the 

observations are available. If the actual flows in the network are assumed to represent 

either deterministic or stochastic user equilibrium, then in general, the elements of P 

are functions of Q. In this case, Equation 3-1 is a set of nonlinear equations and the 

optimal set of sensor locations based on prior knowledge of the flows might not be the 

same as the set constructed without that knowledge. However, the model developed 

here proceeds under the assumption that the P matrix must be computed before 

detailed flows are available. 

A collection of sensors in the network produces a vector of observations, Y. 

These observations can be related to link volumes and O-D flows by Equation 3-3. 

V Q YY A V A Q                      Equation 3- 3 

where QA  and VA  are coefficient matrices and Y  is a column vector of observation 

errors.  

Using Equation 3-1, we can reduce Equation 3-3 to 



 

16 

YY HQ                             Equation 3- 4 

where H is a coefficient matrix that contains characteristics of P, QA , and VA . Each 

column of H corresponds to an O-D pair. Rows or collections of rows in H are 

associated with the observations from a particular sensor, and we will denote the total 

number of rows in H as G. The problem of choosing sensor types and locations can be 

defined as choosing a particular set of rows to make up the matrix H, subject to a 

budget constraint. 

 A Measure of Information from the Sensors 3.3

Different choices of rows to construct H can be evaluated using a measure of 

information contained in the sensor observations. If a classic Kalman filter is used to 

integrate new sensor information into an estimate of Q, the objective of minimizing 

mean-square error is equivalent to minimizing the trace of the posterior covariance 

matrix (Zhou and List, 2010). Each vector, Q , can be decomposed into its mean, Q , 

and deviation component, Qd . 1Qd Q Q  , where 1  is a vector of 1. The length 

of deviation vector, 
QdL  can be calculated by 

2 2

1

( )
Q

n
T

d Q Q ij i

j

L d d Q Q


   , where 

index i  represents the element of vector, j  represents the repetition. The 

information comprising QS  is obtained from the deviation vector Qd  and trace of 

variance covariance matrix equals to the sum of squared deviations(Johnson and 

Wichern, 2007). 

If there is some prior estimate of the O-D matrix, Q


, with covariance matrix 
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QS 
, and a set of sensors produce observations Y as given by equation 3-4, with 

covariance matrix R, the Kalman filter is a linear updating mechanism to create a 

posterior estimate of Q, denoted  Q


. The update is of the form: 

 Q Q Y HQ
  

                Equation 3- 5 

The term  Y HQ


  is the error between what is observed and what was 

expected, based on the prior estimate, Q


. The matrix   is a gain matrix, and if the 

entries in that matrix are selected to minimize mean square errors in the posterior 

estimate, Q


, the result is: 

1( )T T

Q QS H HS H R                   Equation 3- 6 

The corresponding update to the covariance matrix S𝑄 is  

   
1

1
1T

Q Q Q Q QS S HS I H S S H R H



           

  
 Equation 3- 7 

As a special case, if no prior covariance matrix on Q is available, the prior precision 

matrix,  
1

QS


  is zero, and Equation 3-7 simplifies to  

1 1( )T

QS H R H                     Equation 3- 8 

The information content associated with a set of sensor choices (types and 

locations) is the reduction in  Qtr S   achieved by deploying those sensors. Because 

the covariance matrix update does not require the observations Y themselves, but only 

specification of H and R, the problem of choosing sensor locations to maximize 

information content can be addressed separately from the actual update of the 
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estimated O-D matrix. 

It is also useful to compare the idea of information content from a set of 

sensors (and maximization of that information as the objective of a sensor location 

model) with several previous efforts to create objectives for sensor location.  The 

survey paper by Gentili and Mirchandani (2012) summarized seven location 

evaluation criteria (“rules”) proposed in previous papers on sensor location flow 

estimation. It should be noted that each of these rules was developed for a situation 

where only link counters are considered and there is a single vehicle class, so none of 

them focus on separating vehicles by class nor on sensors located at intersections. 

However, considering them as possible criteria (as contrasted with maximizing 

information content from the sensors) provides additional insight into the model 

proposed here. 

 

1) Rule 1: O-D Covering Rule (Yang et al., 1991). Maximize the total number of 

O-D pairs covered by the solution set. An O-D pair is covered if some route 

connecting the O-D pair includes a sensor, so that some fraction of trips for 

that O-D pair is observed. This is a simple criterion and measurement of 

attainment is easy. It also avoids need for any prior estimates of O-D volumes. 

However, as a result no distinction is made between important large-volume 

O-D pairs and less important small-volume pairs. By focusing on reducing 

variance, the information criterion places emphasis on O-D pairs for which the 

estimated volumes are most uncertain, and these are generally high-volume 

pairs.   
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2) Rule 2: Maximal Flow Fraction Rule (Yang and Zhou, 1998). Counting 

sensors should be located on links so that, for each covered O-D pair, the flow 

fraction for this O-D pair on measured links is as large as possible. The idea 

behind this rule is to choose links for counting where the link flow is 

dominated by one (or a few) O-D pairs, so that the counted values can be used 

to estimate O-D volumes with greater confidence. However, to use this rule in 

practice, it is necessary to have prior information on link flows, so in general it 

is not a very useful criterion. 

 

3) Rule 3: Route Covering Rule or O-D Separation Rule (Yang et al., 2006; Ma 

et al., 2006). Counting sensors should be located on links so that the total 

number of routes covered by the location set or the total number of O-Ds 

separated by the location set is maximized. This is an amplification of Rule 1, 

since the objective is to not only observe some route connecting each O-D pair, 

but to observe all routes. An O-D pair is separated by the sensor location set if 

the sensors cover all routes connecting that O-D pair. Implementation of this 

rule requires explicit enumeration of all routes connecting each O-D pair, so it 

is difficult to use in a large network. This rule is also somewhat at odds with 

information maximization, because locating a sensor to count traffic on a low 

volume link that is part of a route connecting a minor O-D pair (in order to 

separate that O-D pair) may yield much less information than a sensor on a 

higher volume link used by several other O-D pairs. 
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4) Rule 4: Maximal Flow Intercepting Rule (Yang and Zhou, 1998). Counting 

sensors should be located on links so that the total observed flow is as large as 

possible. This rule focuses on link flows rather than O-D volumes. If some 

prior information on likely link flows is available, the sensor location solution 

is a simple “greedy” process of ranking the links by volume and selecting the 

largest until the available budget is exhausted.  Although easy to implement 

computationally, this rule requires prior information on the link flows that the 

sensors are designed to collect, which is problematic, and it does not recognize 

that many high volume links are likely to be in sequence along a corridor and 

selecting all of them for sensing counts the same traffic multiple times. This 

may not yield much new information. The maximization of information from 

the collection of sensors will generally produce a much more effective 

solution. 

 

5) Rule 5: Maximal O-D Demand Fraction Rule (Cipriani et al., 2006). Counting 

sensors should be located on links that maximize the sum of intercepted O-D 

demand fractions. This rule is a variation of Rule 2, but focuses on the total 

fraction of demand measured for each O-D pair covered. The idea behind this 

rule is that the estimated link utilization coefficients in the matrix P are likely 

to contain errors, and it may be difficult to eventually estimate O-D volumes 

from having observed only a small fraction of the volume (a small coefficient 

in P). Thus, this rule focuses on choosing links with large pan values (i.e., the 
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fraction of trips for O-D pair n that use link a). However, focusing only on the  

pan values without considering the volume on O-D pair n can lead this rule to 

locate a sensor to capture nearly all flow for a minor O-D pair (because the pan 

value is near 1), but yield much less total information than a sensor on a link 

used by several high volume O-D pairs (but with smaller pan values). 

 

6) Rule 6: Maximal Net Route Flow Captured Rule (Yang and Zhou, 1998). 

Counting sensors should be located on links so that, for a given number of 

counting sensors, the largest net O-D route flows are measured. The idea of net 

O-D route flows is to eliminate multiple counting of the same route flows on 

different links. This is a useful conceptual generalization of Rule 4, and shifts 

the focus from link flows to route flows, but it is difficult to implement in large 

networks because it requires route enumeration in order to determine overlaps 

and compute net flow observed. The concept of information maximization also 

accomplishes the goal of discounting multiple observations of the same flows, 

but does so without requiring route enumeration. 

 

7) Rule 7: Maximal Net O-D Flow Captured Rule (Yim and Lam, 1998). 

Counting sensors should be located on links so that, for a given number of 

counting sensors, the largest number of net O-D trips is measured. This is a 

variation of Rule 6, but focuses directly on O-D volumes rather than route 

volumes. In concept, this makes the rule easier to implement than Rule 6, but 
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in practice the computation of net flows observed is still difficult without route 

enumeration. 

 

Using a direct measure of information from the set of sensor locations offers an 

opportunity for an objective that is more comprehensive than these previous criteria, 

and thus sets the stage for a formal definition of the problem of sensor location as 

viewed in this thesis. 

 Problem Formulation 3.4

Our overall objective includes the estimation of link volumes across the entire 

network, as well as the O-D matrix, so we are also concerned with  Vtr S  , where 

Equation 3-2 is used to construct 
VS   from QS 

. The objective is then to choose a 

collection of rows of H to solve: 

( ) (1 ) ( )V QMinZ tr S tr S                     Equation 3- 9 

( ) (1 ) ( )T

Q Qtr PS P tr S                                               

where   is a weighting parameter ( 0 1   ), so that the sensors can be selected 

considering the accuracy of both link volumes and O-D volumes. 

When multiple vehicle classes, m, are included, the O-D vector Q contains 

blocks of elements for each vehicle class and a row of H (corresponding to an 

observation from a sensor) may contain non-zero elements pertaining to a single 

vehicle class or to multiple classes, depending on the nature of the sensor. 
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Consider K different types (technologies) for sensors, indexed k = 1, …, K. For 

sensor type k, assume there are Dk different potential locations in the network that are 

feasible. The total number of possible type-location possibilities is then 
1

K

k

k

D D


 . 

We will index these possible choices by d = 1, …, D. If the observations from 

different sensors are independent, R is a block-diagonal matrix. A sensor that produces 

multiple measurements simultaneously may have correlated errors among those 

measurements, but those will be independent of blocks corresponding to any other 

sensor. We can define dR  as the block within R that corresponds to sensor d. The 

update to the precision matrix can then be written as: 

     
1 1

1

1

D
T

Q Q d d d

d

S S h R h
 

  



                Equation 3- 10 

where dh  is the collection of rows in H that pertains to measurements at sensor d. 

That is, the effects of individual sensors on the posterior precision matrix can be 

decomposed into separate matrices   1T

d d dh R h  and the net effect of a collection of 

sensors can be written as the sum of the individual matrices. 

This does not mean that the effect of individual sensors on the trace of the 

covariance matrix is separable. The precision matrix must be inverted before the trace 

computation, and this complicates the evaluation of the objective function for the 

sensor location problem (Equation 3-9). However, the separability in the computation 

of the precision matrix is still useful. 

For each d, there is a matrix d  that expresses its effect on the posterior 
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precision matrix  
1

QS


 . We can also create a decision vector X with integer elements 

xd, that indicate the number of sensor possibility d has been implemented. Then the 

posterior precision matrix can be represented as: 

   
1 1

1

D

Q Q d d

d

S S x
 

 



                    Equation 3- 11 

Combining Equation 3-10 and 3-11, we see that Z is a nonlinear function of X, 

and the sensor location problem can be expressed as: 

Min ( )Z X            Equation 3- 12 

s.t. 
1

D

d d

d

c x B


                Equation 3- 13 

 0,1dx                  Equation 3- 14 

where cd is a cost associated with deploying sensor option d, and B is an overall 

budget limit. 

This is a nonlinear knapsack problem. The variables are discrete and the 

objective function is nonseparable, which makes it a difficult problem to solve. 

Further discussion of potential approaches to solution can be facilitated by an 

example, so we’ll consider a small network described in the following section. 

 An Example Network 3.5

Figure 3- 1 shows a small network with nine nodes and 12 two-way links. The 

values alongside the links are lengths, in miles. For analysis purposes, each of the two-

way links is replaced by a pair of directional links, so the network has 24 directed 

links. We will assume that there are four O-D pairs for each vehicle class in this 
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network:  1-6, 1-9, 4-3 and 4-9. Three vehicle classes are assumed to be of interest – 

automobiles and two truck classes. The first truck class is two-axle, six-tire medium 

trucks. The second class includes all heavier trucks. Light trucks are included with the 

automobiles. 

 

Figure 3- 1: Example network. 

 

Four types of sensors will be considered for this example: 

1) point sensor (i.e., link volume counter) with vehicle classification 

capability; 

2) point sensor with only aggregate volume capability; 

3) intersection surveillance camera providing through movements and turning 

movements, but without vehicle classification information; and 

4) Automatic Vehicle Identification (AVI) sensors on a pair of links, 

providing counts of vehicles (by vehicle class) that appear in both places 

within a specified time interval.  

These sensors provide data of differing types and with different levels of detail. They 

1

2

3

4 5 6

7
8 9

1.8

1.3

1.0 2.0

1.21.1

1.3

1.2

1.9

1.71.7
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are also assumed to have different costs. Table 3- 1 provides details on the possible 

locations, nature of observations available, and costs for each potential sensor. The 

problem is to select sensor types and locations in the network so that the variance of 

the resulting link volume estimates and O-D estimates are minimized while keeping 

the total expense within the available budget. For the example, it is assumed that the 

total available sensor budget is 8 units, implying that between two and four of the 

possible sensors can be chosen.  

Table 3- 1: Potential locations, observations and costs for sensors 

Index, 

d 
Type Location Cost Observations 

1 
Point sensor 

classified 
Link 4-5 3 

Link count on 4-5 for three vehicle 

classes 

2 
Point sensor 

aggregate 
Link 4-7 1 Aggregated link count on 4-7 

3 
Point sensor 

aggregate 
Link 7-8 1 Aggregated link count on 7-8 

4 
Point sensor 

aggregate 
Link 5-6 1 Aggregated link count on 5-6 

5 
Point sensor 

classified 
Link 1-2 3 

Link count on 1-2 for three vehicle 

classes 

6 
Surveillance 

camera 

Node 5 

Facing west 
5 

Aggregated traffic counts on path 

4-5-2, 4-5-6, and 4-5-8 

7 AVI 
Link 1-2 & 

link 6-9 
5 

Traffic counts that show up both on link 

1-2 and link 6-9 for three vehicle classes 

 

Choosing to implement a particular sensor results in one or more observations, 

and each of these observations are connected to the unknown O-D volumes (by 

vehicle class) by the sub-matrices dh defined in section 3.4. These coefficients are 

constructed from the multiclass P matrix.  Table 3- 2 summarizes the rows of H for 

the sensors considered in this example, and Table 3- 3 shows the error variances 
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associated with the various potential observations. For purposes of this example, it 

will be assumed that all observations (even multiple observations from a single sensor) 

are independent of one another. 

Table 3- 2: Potential rows of H matrix resulting from sensor choices 

 

Table 3- 3: Error variances for possible sensor choices 

 

The information contained in Table 3- 2 and Table 3- 3 can be used to specify 

the d  matrices, and Eqs. 3-15 and 3-16 illustrate the computations for sensor option 

1 (classified vehicle counts on link 4-5) and sensor option 6 (aggregated turning 

movements at node 5). The collection of these update matrices for each potential 

Sensor Obs.

Index Observation Label 1-6(1) 1-9(1) 4-3(1) 4-9(1) 1-6(2) 1-9(2) 4-3(2) 4-9(2) 1-6(3) 1-9(3) 4-3(3) 4-9(3)

1 4-5(1) 0.227 0.198 0.737 0.429 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 4-5(2) 0.000 0.000 0.000 0.000 0.207 0.173 0.757 0.371 0.000 0.000 0.000 0.000

3 4-5(3) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.212 0.191 0.699 0.414

2 4 4-7 0.000 0.292 0.000 0.571 0.000 0.329 0.000 0.629 0.000 0.300 0.000 0.586

3 5 7-8 0.000 0.292 0.000 0.571 0.000 0.329 0.000 0.629 0.000 0.300 0.000 0.586

4 6 5-6 0.594 0.274 0.178 0.253 0.581 0.258 0.143 0.226 0.545 0.249 0.182 0.236

7 1-2(1) 0.773 0.509 0.263 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

8 1-2(2) 0.000 0.000 0.000 0.000 0.793 0.499 0.243 0.000 0.000 0.000 0.000 0.000

9 1-2(3) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.788 0.509 0.301 0.000

10 4-5-2 0.000 0.000 0.559 0.000 0.000 0.000 0.614 0.000 0.000 0.000 0.517 0.000

11 4-5-6 0.227 0.105 0.178 0.253 0.207 0.092 0.143 0.226 0.212 0.097 0.182 0.236

12 4-5-8 0.000 0.094 0.000 0.176 0.000 0.081 0.000 0.146 0.000 0.094 0.000 0.178

13 1-2-6-9(1) 0.000 0.357 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

14 1-2-6-9(2) 0.000 0.000 0.000 0.000 0.000 0.352 0.000 0.000 0.000 0.000 0.000 0.000

15 1-2-6-9(3) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.360 0.000 0.000

OD pair and vehicle class

1

5

6

7

Sensor Obs. Obs. Error

Index Observation Label Variance

1 4-5(1) 16.014

2 4-5(2) 0.69

3 4-5(3) 1.268

2 4 4-7 2.815

3 5 7-8 2.815

4 6 5-6 3.891

7 1-2(1) 14.95

8 1-2(2) 0.993

9 1-2(3) 1.026

10 4-5-2 3.317

11 4-5-6 5.965

12 4-5-8 2.22

13 1-2-6-9(1) 2.499

14 1-2-6-9(2) 0.352

15 1-2-6-9(3) 0.144

1

5

6

7
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sensor can be pre-computed and stored for later use in the optimization algorithm. 

 

1

1

0.227 0 0

0.198 0 0

0.737 0 0

0.429 0 0

0 0.207 0
16.014 0 0 0.227 0.198 0.737 0.429 0 0 0 0 0 0 0 0

0 0.173 0
0 0.69 0 0 0 0 0 0.207 0.173

0 0.757 0
0 0 1.268

0 0.371 0

0 0 0.212

0 0 0.191

0 0 0.699

0 0 0.414



 
 
 
 
 
 
 
   
   

 
   
    
 
 
 
 
 
 
  

0.757 0.371 0 0 0 0

0 0 0 0 0 0 0 0 0.212 0.191 0.699 0.414

 
 


 
  

 

 Equation 3- 15 

 

1

6

0 0.227 0

0 0.105 0.094

0.559 0.178 0

0 0.253 0.176

0 0.207 0
3.317 0 0 0 0 0.559 0

0 0.092 0.081
0 5.965 0

0.614 0.143 0
0 0 2.2

0 0.226 0.146

0 0.212 0

0 0.097 0.094

0.517 0.182 0

0 0.236 0.178



 
 
 
 
 
 
 
   
   

 
   
    
 
 
 
 
 
 
  

0 0 0.614 0 0 0 0.517 0

0.227 0.105 0.178 0.253 0.207 0.092 0.143 0.226 0.212 0.097 0.182 0.236

0 0.094 0 0.176 0 0.081 0 0.146 0 0.094 0 0.178

 
 


 
  

 

0.0032 0.0028 0.0104 0.0061 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0028 0.0025 0.0091 0.0053 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0104 0.0091 0.0339 0.0198 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0061 0.0053 0.0198 0.0115 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0618 0.0517 0.2266 0.1111 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0517 0.0432 0.1893 0.0928 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.2266 0.1893 0.8306 0.4073 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.1111 0.0928 0.4073 0.1997 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0353 0.0319 0.1167 0.0692

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0319 0.0288 0.1053 0.0624

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1167 0.1053 0.3852 0.2284

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0692 0.0624 0.2284 0.1355
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 Equation 3- 16 

In Equation 3-15, where the sensor provides class-specific observations, the 

precision update matrix is block-diagonal, with separate updates for each vehicle class. 

However, when the observations are aggregated across vehicle classes, as in sensor 6, 

the precision update matrix (Equation 3-16) does not have that block structure. 

Precision updates will always be non-negative (i.e., a sensor cannot provide 

“negative information”), so adding another sensor will never reduce precision in the 

estimate of either link volumes or O-D volumes. Translated to the covariance 

matrices, this means that an additional sensor will never increase a variance, or the 

trace of the covariance matrices. An additional sensor is always “worth something,” 

even if the incremental value is small. In this example, the available budget is a 

multiple of the smallest sensor cost, so we can be sure that no budget will go unused in 

an optimal solution. This allows us to focus only on possible solutions that use the 

entire budget. 

For example, if sensors 5 and 6 (a classified point sensor on link 1-2 and a 

surveillance camera at node 5) are selected, the sensor budget is exhausted. If it is 

further assumed that the prior precision matrix contains essentially no information 

(i.e., a small value of 0.00001 for each diagonal entry), then the precision matrix 

resulting from the selection of these two sensors can be computed as follows: 

0.0086 0.0040 0.0068 0.0096 0.0078 0.0035 0.0054 0.0086 0.0080 0.0037 0.0069 0.0090

0.0040 0.0058 0.0031 0.0119 0.0036 0.0050 0.0025 0.0101 0.0037 0.0057 0.0032 0.0117

0.0068 0.0031 0.0995 0.0075 0.0062 0.0027 0.1078 0.0067 0.0063 0.0029 0.0926 0.0071

0.0096 0.0119 0.0075 0.0247 0.0088 0.0103 0.0060 0.0211 0.0090 0.0116 0.0077 0.0242

0.0078 0.0036 0.0062 0.0088 0.0072 0.0032 0.0049 0.0078 0.0073 0.0033 0.0063 0.0082

0.0035 0.0050 0.0027 0.0103 0.0032 0.0044 0.0022 0.0088 0.0032 0.0049 0.0028 0.0101

0.0054 0.0025 0.1078 0.0060 0.0049 0.0022 0.1172 0.0054 0.0051 0.0023 0.1001 0.0057

0.0086 0.0101 0.0067 0.0211 0.0078 0.0088 0.0054 0.0181 0.0080 0.0098 0.0069 0.0206

0.0080 0.0037 0.0063 0.0090 0.0073 0.0032 0.0051 0.0080 0.0075 0.0034 0.0065 0.0084

0.0037 0.0057 0.0029 0.0116 0.0033 0.0049 0.0023 0.0098 0.0034 0.0056 0.0029 0.0114

0.0069 0.0032 0.0926 0.0077 0.0063 0.0028 0.1001 0.0069 0.0065 0.0029 0.0861 0.0072

0.0090 0.0117 0.0071 0.0242 0.0082 0.0101 0.0057 0.0206 0.0084 0.0114 0.0072 0.0237
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   
1 1

5 6Q QS S
 

       

 

 Equation 3- 17 

The precision matrix can then be inverted to produce the covariance matrix, as 

follows: 

 

The trace of this matrix is 600,226. 

Using the link utilization coefficients, P , and Equation 3-2, we can compute 

the covariance matrix of the link volumes and its trace. Since this matrix is 24 x 24, it 

is not shown completely here, but the trace value is 10,202. 

Then, assuming 0.5  , the value of the objective function for this selection 

of sensors is Z = 305,215. 

If different sensors were selected, different subsets of the pre-computed d  

0.0486 0.0303 0.0204 0.0096 0.0078 0.0035 0.0054 0.0086 0.0080 0.0037 0.0069 0.0090

0.0303 0.0232 0.0121 0.0119 0.0036 0.0050 0.0025 0.0101 0.0037 0.0057 0.0032 0.0117

0.0204 0.0121 0.1041 0.0075 0.0062 0.0027 0.1078 0.0067 0.0063 0.0029 0.0926 0.0071

0.0096 0.0119 0.0075 0.0247 0.0088 0.0103 0.0060 0.0211 0.0090 0.0116 0.0077 0.0242

0.0078 0.0036 0.0062 0.0088 0.6415 0.4018 0.1991 0.0078 0.0073 0.0033 0.0063 0.0082

0.0035 0.0050 0.0027 0.0103 0.4018 0.2549 0.1242 0.0088 0.0032 0.0049 0.0028 0.0101

0.0054 0.0025 0.1078 0.0060 0.1991 0.1242 0.1767 0.0054 0.0051 0.0023 0.1001 0.0057

0.0086 0.0101 0.0067 0.0211 0.0078 0.0088 0.0054 0.0181 0.0080 0.0098 0.0069 0.0206

0.0080 0.0037 0.0063 0.0090 0.0073 0.0032 0.0051 0.0080 0.6130 0.3942 0.2377 0.0084

0.0037 0.0057 0.0029 0.0116 0.0033 0.0049 0.0023 0.0098 0.3942 0.2578 0.1522 0.0114

0.0069 0.0032 0.0926 0.0077 0.0063 0.0028 0.1001 0.0069 0.2377 0.1522 0.1745 0.0072

0.0090 0.0117 0.0071 0.0242 0.0082 0.0101 0.0057 0.0206 0.0084 0.0114 0.0072 0.0237

23685 -27640 -16096 118 -11273 12411 11345 -2024 -11128 14920 3919 2535

-27640 45933 -7617 324 13957 -22148 -122 3657 13708 -26198 8382 -3533

-16096 -7617 62112 -993 6114 6413 -33136 -1150 6168 6882 -27774 -627

118 324 -993 62724 -574 -173 2228 -32663 562 61 -1576 -35510

-11273 13957 6114 -574 22011 -30580 -9122 -2514 -10656 14008 4227 1743

12411 -22148 6413 -173 -30580 54642 -12278 2701 11438 -22252 7656 -3412

11345 -122 -33136 2228 -9122 -12278 55003 2666 11328 -77 -29525 1311

-2024 3657 -1150 -32663 -2514 2701 2666 70929 -1487 3442 -1926 -30605

-11128 13708 6168 562 -10656 11438 11328 -1487 25467 -27541 -20130 2789

14920 -26198 6882 61 14008 -22252 -77 3442 -27541 47020 -7347 -3800

3919 8382 -27774 -1576 4227 7656 -29525 -1926 -20130 -7347 65110 -881

2535 -3533 -627 -35510 1743 -3412 1311 -30605 2789 -3800 -881 65590
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matrices would be used to update the O-D flow precision matrix. These would lead to 

different resulting covariance matrices, different trace values, and a different objective 

function value. The objective function value clearly also depends on the assumed 

values for the   weights, reflecting varying importance placed on O-D vs. link flow 

uncertainty. 

In this small example, there are only nine combinations of sensor choices that 

fully utilize the available budget (but do not exceed it), so the selection of optimal 

sensor types and locations can be done by enumeration. Table 3- 4 summarizes the 

trace computations for O-D and link flows for each of the combinations.  

Table 3- 4: Trace calculations for selections of sensors that use the full budget in the test 

example 

Case Sensors selected Cost 𝑡𝑟(S𝑉
+) 𝑡𝑟(S𝑄

+) 

1 2-3-4-6 8 12,184 701,748 

2 1-2-4-5 8 2,657 400,177 

3 1-3-4-5 8 2,657 400,177 

4 1-2-3-5 8 62,845 500,061 

5 5-6 8 10,202 600,226 

6 2-3-4-7 8 390,569 700,031 

7 1-6 8 263,404 700,101 

8 1-7 8 753,083 600,048 

9 5-7 8 846,603 600,058 

 

In this case, there are two solutions that are clearly best – using sensors 1-2-4-5 

or 1-3-4-5. Sensors 2 and 3 provide identical information (see Table 3- 4), so they can 

be used interchangeably. The combination of a set of classified link counts on links 1-

2 and 4-5, plus aggregate link counts on links 5-6 and either 4-7 or 7-8, provide the 

most information within the available budget. 
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However, looking beyond the dominant solutions in this example, it is clear 

from Table 3- 4 that some sensor choices may be better for reducing variance in O-D 

estimates, while others may do better at reducing link volume variance (compare cases 

4 and 5 in Table 3- 4, for example). Thus, as situations become more complicated, 

using the weighted combination of the two traces can provide solutions that may be 

quite different from focusing on either one or the other exclusively. 

This small example illustrates the general process of selecting sensors, 

computing the resulting covariance matrices and then the traces and the objective 

function value; and how the solution process needs to search for a budget-feasible 

solution that minimizes that objective. It also emphasizes that the computation of the 

objective function for a given solution is not trivial, so constructing an effective search 

process for a solution is important. 

 Summary  3.6

The sensor location model is based on a set of linear equations that relate O-D 

flows, link flows and sensor observations. The sensor information content is then 

defined using concepts from Kalman filtering, resulting in a measure that focuses on 

the trace of the covariance matrix for the O-D flows and the trace of the covariance 

matrix for the link flows. The Kalman filter also provides a linear updating scheme for 

the precision matrices associated with O-D flows, in which the effect of each potential 

sensor choice can be represented as a matrix d . The d  matrix for each sensor can 

be pre-computed before the optimization begins. Because the information content of 

the sensors is measured on the covariance matrices, the precision matrix for the O-D 
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flows must be inverted in order to compute the information gain for any potential set 

of sensor choices, implying a nonlinear relationship between sensor choices and the 

objective of maximizing information gain. However, the updating process for the 

precision matrices provides a structure around which the optimization for sensor 

location can be formulated in an effective way. 

The optimization problem is a nonlinear knapsack problem with a 

nonseparable objective function and integer decision variables. Problems of this class 

are known to be difficult to solve exactly, so primary attention has been devoted to 

developing an effective heuristic solution method. This is the focus of the following 

chapter. 
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CHAPTER 4 

A SOLUTION ALGORITHM FOR THE SENSOR LOCATION MODEL 

 

 Introduction 4.1

The sensor location model developed in Chapter 3 is a nonlinear nonseparable 

knapsack problem. Although the knapsack structure of the problem is potentially 

helpful in constructing an efficient solution method, the complexity of the objective 

function presents difficulties. In this chapter, previous research on solution of various 

types of knapsack problems is reviewed, and a new two-phase algorithm is proposed 

for the sensor location problem. The first phase uses a greedy approach to construct a 

relatively good starting solution for the second phase, which uses Tabu Search to find 

a near-optimal solution. 

The literature on solution of nonlinear knapsack problems includes several 

general approaches, but most focus on situations where the objective function is 

separable (e.g., Horst and Tuy, 1990; Hochbaum, 1995; Li, et al. 2009) and the most 

effective solution methods also assume that the variables are continuous rather than 

discrete (e.g., Bretthauer and Shetty, 1995, 2002; Kodialam and Luss, 1998). 

Bretthauer and Shetty (2001) provided a survey of algorithms and applications. 

Powell, et al. (2005) discuss approximate dynamic programming as an approach for 

resource allocation problems with high dimensionality, but the required approximation 

of the objective function using linear or piecewise linear structure seems problematic 

for the situation of interest here. Jahangiri, et al. (2006) developed a procedure for 

improving the computational efficiency of dynamic programming for non-convex 
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separable integer problems, but this also appears to have limited applicability to the 

current problem. 

There is some literature addressing nonseparable quadratic problems. Gallo, et 

al. (1980) and Caprara, et al. (1999) developed exact methods for quadratic problems. 

Hochbaum (2007) proposed a scheme to separate integer quadratic problems using a 

transformation matrix, which can only be used for relatively small problems. Romeijn 

(2007) and Sharkey and Romeijn (2011) focused on nonseparable continuous 

problems, based on the analysis of a family of linear programs which are closely 

related to the problems. 

The literature on quadratic knapsack problems has been of particular interest 

because quadratic approximations to the objective function are often used in nonlinear 

optimization. An approach based on the procedure described by Caprara, et al. (1999) 

has been explored, but does not seem to be effective for the problem faced here. The 

primary challenge is that combinations of more than two sensors have important joint 

benefits, but these combinations are not evaluated correctly using the quadratic 

approximation. 

The exact methods in the current literature are unable to address the nonlinear, 

nonseparable problem posed for sensor location in realistic size road networks, so it is 

necessary to seek a heuristic method that will produce good (if not necessarily 

optimal) solutions in a reasonable amount of computation time. This chapter proposes 

a two-phase meta-heuristic method based on Tabu Search, which performs well on the 

sensor location problem. Section 4.2 presents the algorithm, starting with general ideas 

and working up through the details of the implementation. 
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 The Two-Phase Solution Method 4.2

The general idea of the algorithm is based on moving from one solution to 

another along the budget constraint by exploring potential swaps of one or more 

sensors currently in the solution for an equal-cost subset not currently part of the 

solution. To evaluate such a swap, the current precision matrix,  
1

QS


 , is revised by 

subtracting the d   matrices for the sensors being swapped out and then adding 

those for the sensors being added. The resulting tentative precision matrix is inverted, 

the link covariance matrix is computed and the traces of the two covariance matrices 

are recorded for computation of the objective function, Z. Based on this value, the new 

solution is either kept or discarded and the process continues.  

The algorithm proposed here is consisted of two phases. The first phase 

generates an initial solution using a greedy procedure, while the second phase uses a 

Tabu Search method to perform the swaps. These phases are discussed separately in 

the following subsections. 

4.2.1. Greedy Phase 

In the first phase, the unit marginal change that each potential new sensor d can 

bring to the objective value, dUMZ , is calculated (see Equation 4-1) and ranked. 

0d
d

d

Z Z
UMZ

c


                       Equation 4-1 

where 0Z  is the objective value of the current solution set (which may include pre-

existing sensors). dZ is the new objective value with an additional sensor d

implemented and dc is the cost of sensor d . Because implementing an additional 
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sensor can never increase variances in QS 
 and 

VS  , dZ is always smaller than or 

equal to 0Z . Thus, dUMZ  can never be positive. The most negative values of 

dUMZ  are associated with the sensors that contain the most information relative to 

their cost, given the current solution set. The general idea of using the ratio of change 

in the objective function over cost to rank items is common in many knapsack 

algorithms, and selecting items in order of their ranking is a “greedy” procedure that 

often produces relatively good solutions. 

For the current problem, there is an additional element of creating a good 

starting solution for the Tabu Search procedure – having a mix of different sensor 

types (and costs) in the solution. When multiple sensor types (at varying costs) are 

available for potential deployment, the swapping process works more efficiently if the 

starting solution contains a mixture of sensor types because there is a richer set of 

initial swapping opportunities. 

 In order to generate a diverse initial solution, we subdivide the available 

budget among all available sensor types and choose sensors in a greedy way within 

each type. The budget allowance for each sensor type k, kB , is calculated as shown in 

Equations 4-2 and 4-3. 

1

k
k K

k

k

C
B B

C





                   Equation 4-2 

k d

d k

C c


                     Equation 4-3 

where B is the total budget allowance and dc  is the cost of sensor d . Thus kC  is 
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the total cost of implementing all candidate sensors of type k . Then for each sensor 

type k , sensors are added to the solution set in order of their dUMZ from the smallest 

(most negative) to the largest until kB is exhausted. 

When multiple sensor types are available, it is also likely that the set of 

potential choices includes different types at a single location (link or intersection). 

Since the values of dUMZ are not updated during the greedy selection process as new 

sensors are added to the solution set, some important locations may be selected 

multiple times with different sensor types and this degrades the quality of the overall 

solution. In order to prevent duplication of sensors at a single location in the greedy 

phase, a location prohibition is introduced. Locations already covered by previous 

sensor choices cannot be selected again. This location prohibition creates a bias where 

sensor types processed first are likely to be selected for critical locations, and the 

following sensor types have fewer location choices. To avoid overly restricting the 

initial solution, the process is repeated for all sensor type permutations so that each 

type can have the opportunity to be selected at important locations. We then compute 

the objective function value for all the solutions of different permutation. The best 

solution is selected as the initial solution for the Tabu Search phase. 

The location constraint is only used in the greedy phase. In the Tabu Search 

phase, UMZ values are updated at each iteration. Thus no constraint regarding the 

number of sensors to be implemented at a certain location is imposed. The duplicated 

information will be automatically reflected in the revisedUMZ . 

This greedy procedure creates an effective starting solution for the swapping 
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process in the second phase of the algorithm, and does so with relatively modest 

computation. Testing the Tabu Search with a randomly generated initial solution has 

demonstrated that the greedy procedure improves both the quality of the final solution 

and the speed with which it is reached.   

4.2.2. Tabu Search  

The second phase is a Tabu Search algorithm. Local searches check the 

immediate neighbors of a current trial solution in the hope of finding an improved 

solution. At each step, worsening moves can be accepted if no improving move is 

available, which can help the algorithm to escape a suboptimal region or plateau. In 

addition, prohibitions represented by a Tabu list, are introduced to discourage the 

search from coming back to previously-visited solutions. The general procedure of a 

Tabu Search algorithm is shown in Figure 4- 1. 

 



 

40 

Initial solution

Create a set of neighbor 
solutions

Evaluate and rank the 
neighbor solutions

Is this solution in Tabu 
list?

yes Is this solution 
best so far?

Select the next top solution 
from the ranked neighbors

Choose it as the best 
admissible solution

No

Stopping criteria 
satisfied?

Final solution

yes

No

yes

No

Update 
Tabu 
list

 

Figure 4- 1: Flow chart of Tabu search. 

 

The two major building blocks of a Tabu Search algorithm are creation of a set 

of neighboring solutions and the definition of the Tabu list. In the sensor location 

application, neighbors are defined as the result of a simple swap.  

To determine a sensor to be swapped out, all sensors that are currently in the 

solution set are examined and their dUMZ  value is calculated, with the 
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understanding that the change in Z is from deleting the sensor rather than adding it. 

These dUMZ  values are positive, rather than negative. The sensors to be swapped 

out follow the ranked list ofUMZ , starting from the sensors contributing the least 

information (smallest positive dUMZ  value). TN  is the tenure length of the Tabu 

list, and sensors on that list are not eligible to be swapped out. 

Normally there are far more sensors not selected than selected, so it is 

computationally expensive to calculate UMZ values for all sensors currently not in 

the solution set in order to decide which ones to swap in. Therefore, we only evaluate 

a subset of cN  candidate sensors at each iteration. Those cN  sensors are selected 

randomly from all candidates at the beginning of each iteration so that each time, a 

different subset is considered. 

Within the set of cN  candidate sensors, the probability that a sensor d  is 

selected for swapping in is based on the UMZ values within the candidate subset, Sc. 

The probability, dp , is computed using Equation 4-4.  

c

d
d

i

i S

UMZ
p

UMZ





                    Equation 4-4 

The dUMZ  is defined as adding an extra sensor d , regardless of the number of 

sensor d currently implemented. Therefore the UMZ values of sensors are all 

negative, and the most negative values are associated with sensors contributing the 

most information. Thus, Equation 4-4 provides a higher probability of selection for 

sensors that are likely to contribute more information. 



 

42 

The randomness in selecting the candidate sensor set and selecting actual 

sensors to be swapped in prevents the algorithm from being trapped in local optima. 

The direction that UMZ  provides helps the algorithm to converge faster than if 

neighbors were selected completely at random. 

At the beginning of a neighbor generation, the sensors implemented in the 

current solution set are evaluated. The sensor with the smallest positive UMZ  will 

definitely be swapped out. Then a sensor in the candidate set is selected to be swapped 

in following the distribution calculated from Equation 4-4. If the sensor selected to 

enter the solution is less expensive than the sensor being swapped out, additional 

selections are made from the candidate list until the available budget is consumed. 

Alternatively, if the sensor being swapped out is less expensive than the one selected 

to enter the solution, additional sensors are picked to leave from the ranked UMZ list 

until the budget is again balanced. This process generates one neighboring solution to 

the current solution. At each iteration, a fixed number of neighbors are evaluated and 

the best available neighbor is considered for adoption as the current incumbent 

solution.  

As additional protection against having the algorithm become “stuck” in a 

local optimum, the algorithm includes multi-starts. The Tabu search performs multiple 

times and the best solution among different trials is output as the final solution.  

The overall process clearly has several control parameters: 

v : the number of neighbors at each iteration in Tabu Search 

TN : the tenure length of the Tabu list 

cN  :  the total number of candidates considered for entry at each  
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  iteration 

triN  : the number of trials performed. 

Selection of these parameters is likely to influence the effectiveness of the search 

process, and experiments to evaluate parameter settings are described in Chapter 5. 

However, at this stage it is important to state the algorithm carefully and completely. 

4.2.3. Algorithm Statement 

The description of parameters 

D  is total number of potential sensor type and location combinations 

0x  is a 1D  column vector denote pre-existing sensors with integer entries 

indicating the number of sensor d implemented  

m

QS   is the prior variance-covariance matrix of O-D volume for vehicle class m 

m  is the weights on precision of link volume for vehicle class m, [0,1]m   

mP  is the link utilization coefficients matrix for vehicle class m. 

dc  is the cost of sensor d  

dp  is the probability of sensor d  to be swapped in 

d is the precision update of sensor d  

dUMZ  is the unit marginal change in the objective value that sensor d  can bring 

B  is the total budget 

kB  is the budget allowance of sensor type k  

v  is the number of neighbors at each iteration in Tabu Search 

T  is Tabu list 
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TN  is the tenure length of the Tabu list 

cN  is the total number of candidates considered for each iteration 

triN  is the number of trials performed 

totFE is the total number of function evaluations allowed per trial 

outS  is the set of sensors to be swapped out 

inS  is the set of sensors to be swapped in 

cS  is the set of candidate sensors to be considered at current iteration 

curx  is the current solution set 

curZ  is the objective value for curx  

bestx  is the best solution so far 

AL  is the aspiration level, the best objective value so far 

totSp  is the total spending of curx  

Two-phase algorithm for a sensor allocation problem 

Input: 0x , m

QS  , dc , B ,
m ,

mP , d , v  , TN , cN , totFE , triN  

Output: bestx and AL  

Procedure: 

Phase 1: Greedy Search 

Step 1: Find an initial solution, 1x , using Greedy procedure.  

Step 1.1: Compute 0Z  from 0x  and dUMZ  for 1,...,d D  using Equation 

4-1. 



 

45 

Step 1.2: Rank all D  sensors according to their dUMZ s from smallest 

(negative, with biggest reduction on Z) to biggest and categorize them 

according to their sensor type.  

Step 1.3: Compute kB  for each sensor type k  using Equation 4-2, 4-3. 

Step 1.4: For each sensor type permutation 1,..., Kk k , starting from 1k , select 

the sensors of type 1k  according to the ranked UMZ  from top to 

bottom until reach the budget allowance 1kB . Repeat the process for 

2k  to Kk with location constraint.  

Step 1.5: Compute objective function values of the solutions for each 

permutation. Keep the solution with the lowest objective function 

value and denote it as 1x .  

Phase 2: Tabu Search 

Step 2: Initialize T, set AL   , 1curx x  

Step 3: Generate v  neighbors from curx  

Step 3.1: Randomly select cN  candidate sensors from all D  candidate 

sensors and put them into cS . Compute dp  using Equation 4-4 for 

sensors in cS . 

Step 3.2: For each sensor implemented in curx (does not include pre-installed 

sensors), compute UMZ. Sort sensors by UMZ from the biggest to the 

smallest. 
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Step 3.3: Pick the first sensor in the sorted UMZ and add it to outS . Randomly 

select one sensor from cS following dp  and add it to inS  

Step 3.4: Compute the total spending, totSp , 

1) If totSp B , take out one more sensor on the top of UMZ list and 

go back to the beginning of step 3.4 

2) If totSp B , and min( )d
d

B totSp C


  , randomly pick a sensor with 

cost smaller than B totSp following dp  and add it to inS . Go back 

to the beginning of step 3.4. 

3) If totSp B and min( )d
d

B totSp C


  , proceed to step 3.5. 

Step 3.5: Record the neighbor and corresponding outS , inS . Reset outS , inS  to  . 

Continue to generate next neighbor by going back to step 3.3 until all 

v  neighbors are generated. 

Step 4: Evaluate the objective function value for all v  neighbors and rank neighbors 

according to their objective value from smallest to the biggest. Pick the top 

most solution in v  neighbors. 

Step 5: If the outS for this neighbor is not in the Tabu list T, set this neighbor as curx , 

add inS to T and keep newest TN  entries. If curZ AL , set curAL Z , 

best curx x  

Step 6: If the outS  for this neighbor is in the Tabu list T, but curZ AL , set this 

neighbor as curx , add inS to T and keep newest TN  entries, set curAL Z , 

best curx x  
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Step 7: If the outS  for this neighbor is in the Tabu list T, and curZ AL , move to the 

next neighbor on the ranked list and go back to step 5 

Step 8: If all neighbors violate T and none of them can override, go back to step 3 with 

step 3.3 modified as “Pick the first sensor not in the Tabu list in the sorted 

UMZ and add it to outS . Randomly select one sensor from cS  and add it to 

inS .” If all currently implemented sensors are part of T, thus outS definitely 

violate T. Keep the neighbor with the smallest objective function value. 

Step 9: If the current number of function evaluation is smaller than totFE , increment 

the iteration number and go back to step 3 

Step 10: Repeat step 2 to step 9 for triN  times. Select the best solution as bestx  and 

output its corresponding AL. 

 

 Summary 4.3

The search algorithm proposed in this chapter is designed to solve the 

nonlinear nonseparable knapsack problem for sensor location formulated in Chapter 3. 

The algorithm consists of two parts: a greedy phase to generate an initial solution and 

a Tabu Search phase to swap sensors along the budget constraint. The neighbor 

generation in Tabu search is a combination of a fixed swap-out strategy with a guided 

random swap-in strategy.  

Because we cannot guarantee that the objective function Z is convex or that 

there is particular structure involved in that function, there is no good way to generate 

a performance guarantee on the heuristics. That is we cannot guarantee that we will 
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find a solution within certain percent of optimal. The evaluation of the heuristics must 

be strictly experimental. The purpose of the experiments in the following two chapters 

is to test its ability to get reasonable solutions in different situations. It is to be 

expected that the structure of the network on which the sensor location has been done 

might have effects on the nature of the Z function. The mechanism that’s present in 

this problem for representing that structure is through the coefficient matrices P and H. 

Part of the testing is to look at the way in which those coefficient matrices are 

constructed and how that affects the solution. 

Both the sensor location model and the search algorithm for its solution 

contain parameters. The parameters of the formulation affect the character of the 

solutions for sensor choice and location. The parameters of the search algorithm affect 

how efficiently those solutions can be found. The next chapter uses an example 

network as a test bed for experiments to evaluate the effects of these parameters. 
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CHAPTER 5 

TESTING AND EVALUATION OF THE MODEL 

 

To test the concepts and solution algorithm, a series of experiments has been 

developed. These experiments are designed to evaluate parameter settings for the 

solution method and to provide insights into sensor location solutions under varying 

budgets and with varying importance placed on information related to O-D volumes 

and link flows. 

5.1 Test Network  

All the tests are performed on the “Sioux Falls” (SF) network, shown in Figure 

5- 1. It originated from a representation of part of the street network in Sioux Falls, 

South Dakota. This network, first constructed and used by LeBlanc, et al. (1975), has 

since become a “standard” test network for many types of transportation network 

algorithms. We have borrowed the basic structure of the network from the original 

version used by LeBlanc, et al. (1975), but we have created O-D tables and link 

characteristics that enhance the network’s usefulness as a test bed for the sensor 

location algorithm.  

Three vehicle classes (see Table 5- 1) are used, representing automobiles, 

medium trucks and heavy trucks.  The O-D tables are based on 7 origin and 

destination zones (node 1, 6, 7, 10, 13, 15, and 20) and exhibit different flow patterns 

between automobiles and trucks (see Table 5- 2, Table 5- 3, and Table 5- 4). Node 10 is 

assumed to be a zone in a downtown area, where many trips (both automobile and 
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truck) begin and end. Node 13 is a loading area at the periphery of the city, and is 

more important for truck trips than for automobile trips. 
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Figure 5- 1: Sioux Falls network 

Table 5- 1: Vehicle class information in Sioux Falls network 

Class 

number 
Type 

Cost of time 

Coefficient 

Cost of distance 

Coefficient 

Vehicle 

equivalents 

1 Automobile 0.2 0.25 1 

2 Medium truck 0.33 1 2 

3 Heavy truck 0.5 1.5 3 

 

Table 5- 2: Seven-zone O-D table for vehicle class 1 (veh/hr) 
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O\D 1 6 7 10 13 15 20 

1 0 491 440 1070 532 839 359 

6 491 0 306 269 224 266 264 

7 442 308 0 1348 90 723 90 

10 1064 267 1343 0 532 533 794 

13 526 221 90 537 0 708 91 

15 846 267 714 534 719 0 1069 

20 355 267 88 807 89 1071 0 

 

Table 5- 3: Seven-zone O-D table for vehicle class2 (veh/hr) 

O\D 1 6 7 10 13 15 20 

1 0 14 37 121 69 24 19 

6 25 0 19 37 16 7 10 

7 30 19 0 50 37 7 18 

10 116 45 62 0 116 38 49 

13 68 23 30 113 0 27 25 

15 19 7 14 33 25 0 15 

20 19 3 18 33 28 3 0 

 

Table 5- 4: Seven-zone O-D table for vehicle class 3 (veh/hr) 

O\D 1 6 7 10 13 15 20 

1 0 42 53 121 41 48 39 

6 38 0 8 19 13 6 8 

7 68 20 0 37 18 10 18 

10 115 34 40 0 26 28 23 

13 33 15 8 36 0 18 14 

15 27 7 17 32 8 0 14 

20 32 13 21 23 5 8 0 

 

For each O-D pair, free flow conditions on the links are used to compute path 

choice probabilities for each vehicle class using a probit model of path choice. These 
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calculations create the values for the P matrix in Equation 3-2, and hence the hd 

matrices for each of the sensor types and locations considered. 

5.2  Sensor Types and Candidate Sensors 

As sensing technology advances, more and more types of data are available to 

be used for travel demand and traffic volume estimation. In terms of vehicle 

classification ability, sensors can be divided into classification sensors, dual sensors 

and aggregated sensors. The classification sensors can differentiate all vehicle classes 

assumed. The dual sensors can only provide observations of automobiles and non-

automobiles. The aggregated sensors only give the total counts regardless of vehicle 

class observed. Sensors can also be divided into several categories according to their 

implementation locations and observations they provide. 

Point sensors associated with links 

These sensors are normally implemented along the road side (e.g. microwave 

and laser radar sensors), underneath the pavement (e.g. inductive loop detectors, 

magnetic sensors), or mounted overhead above the road surface (e.g. infrared sensors). 

They can provide traffic counts on this link either classified or aggregated. 

Point sensors associated with intersections 

These sensors are normally implemented at intersections so that they can 

provide turning movements at the intersection. The most widely used type is a 

surveillance camera. Together with video image processors, cameras can provide the 

number of vehicles turning left, going straight, or turning right from each leg of the 
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intersection. Those counts can either be aggregated or classified. Normally at least two 

cameras are needed for each intersection to ensure the quality of the image for 

processing. Other sensors of this type can be a set of Bluetooth detectors at an 

intersection. 

Partial path sensors 

These sensors provide partial path information by identifying specific vehicles 

in order to trace their trajectories. For example, GPS-based systems obtain data from 

online GPS users, RFID sensors only detect vehicles with an RFID tag, and cell-phone 

data follows users with a cell phone from a specific carrier. All of these data are 

subject to the problems of market penetration and sample representation when used for 

travel demand and traffic volume estimation purpose. We didn’t assume any sensor 

from this category in our tests, but this type of data can definitely fit into our model 

frame and algorithm if desired. 

For the purpose of testing, we have assumed 5 types of sensors (see Table 5- 5). 

Sensor costs and error characteristics are estimated based on a report by Middleton, et 

al. (2009), as well as papers by Rabiu (2013), Zhang, et al. (2007), and Taghvaeeyan, 

et al.(2014). For the current tests, these characteristics are assumed to be the same for 

all locations in the network. Sensor type 1 and 2 in Table 5- 5 can be assumed as any 

types of point sensors associated with link. Sensor types 3 to 5 are assumed to be 

different types of surveillance cameras together with image processing software, 

capable of separating varying numbers of vehicle classes. To get a good quality image 

for processing, two cameras are assumed to be installed at each intersection. 
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Table 5- 5: Sensor types assumed in tests 

Index 
Location 

type 

# 

class 

Counting 

error 

Overcount 

ratio 

Classification 

error 

Cost 

($/Lane or 

$/Node) 

1 Link 1 2% 50% 0% 1800 

2 Link 5 2% 50% 5% 4550 

3 Intersection 1 2% 50% 0% 11800 

4 Intersection 2 2% 50% 9% 14160 

5 Intersection 5 2% 50% 13% 16992 

 

The third column of the table is the number of vehicle classes these sensors can 

differentiate. As we can see, sensor types 2 and 5 can differentiate up to 5 vehicle 

classes. Since we only assumed three vehicle classes for our tests, the actual 

observations for these types of sensors only differentiate 3 vehicle classes. The R 

matrix associated with each sensor can be generated using the method described in the 

Appendix. 

5.3 Parameter Tuning 

The first set of experiments is intended for tuning the parameters of the Tabu 

Search algorithm. These parameters are: the tenure length of the Tabu list ( TN ), the 

number of neighbors explored at each iteration ( ), the size of candidate sensor pool 

to be swapped in when generating neighbors ( cN ), the maximum number of objective 

function evaluations for each trial ( totFE ), and the number of trials performed for the 

multi-start purpose ( triN ).  The parameters and candidate values are listed in Table 5- 

6. 

Table 5- 6: Parameters and candidate values 
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Parameter Range 

Tenure length of the Tabu list { |1 10}T TN N  
 

Number of neighbors explored at 

each iteration 
{ |1 20}     

Size of candidate sensor pool {50,70,90,110,130,150,170,190,210}cN 
 

Number of trials {1,2,3,4,5}TN 
 

Maximum number of function 

evaluations 
{50000,25000,16667,12500,10000}totFE  

 

These five parameters can be divided into two groups. The first three are more 

concerned with the performance of the algorithm, while the latter two are more about 

how to allocate the limited computational effort. Since they have different purposes 

and tuning them together with all possible combinations can be computationally very 

expensive, we tuned these two groups separately. 

For the parameter tuning experiments, the problem-specific constants – the 

weight on link volume estimation in the objective function ( ) and total budget to 

spend ( B ) – are set to intermediate values for the test network. We set    = 0.5, 

meaning that we focus equally on link volume estimation and travel demand 

estimation. After some trial runs, a budget of $125,000 seems to be in the middle of a 

budget range-of-interest. Therefore, the budget is set to be $125,000 during the whole 

parameter tuning process. More tests will be performed on these two parameters in the 

next two sections to see how solutions change with different objective emphasis and 

budget availability. 

After some trial runs, the maximum number of function evaluations of 25000 

and the number of trials of 2 seems performs well. Therefore, we set those two 
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parameters as above when tuning the tenure length, number of neighbors and size of 

candidate set. We explore all the combinations of the possible values mentioned in 

Table 5- 6 for the first three parameters. Altogether there are 1800 possibilities. The 

average posterior objective function value across all trials is used to evaluate different 

cases in order to pick a set of parameters that generate a stable result.  

The top 10 combinations are shown in Table 5- 7. Over all 1800 cases, there 

seems to be a pattern that the algorithm performs better when the number of neighbors, 

 , is bigger than 15, the tenure length, TN , is less than or equal to 3 and the size of 

candidate pool, cN  , is around 70. However, among the top performed cases, the 

average Z 
 seems to be in a similar range. This indicates that some randomness still 

plays a role. We set the number of neighbors to be 19, tenure length to be 2 and size of 

candidate pool to be 70 in all following parameter tuning and testing since this case 

came to the top. However, some other combinations could also produce very 

acceptable results. 

Table 5- 7: Top 10 combinations of  , TN , and cN  

  TN
 cN

 Z 
 

19 2 70 34383 

11 1 70 34584 

16 2 90 34881 

20 2 70 34921 

20 2 150 34964 

15 2 90 35132 

20 3 70 35214 

17 3 70 35249 

13 3 110 35283 

20 3 90 35321 
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We tuned the parameters concerning computational effort with the first group 

of parameters fixed to their best value. The parameter candidates are designed in a 

way that the overall computational effort (i.e. the total number of function evaluations 

per trial times the number of trials) is around 50,000 for all cases tested here. We first 

tested totFE  from 1000 to 10,000, resulting to a triN  ranging from 50 to 5. The 

result is shown in Table 5- 8. 

Table 5- 8: Sorted result of parameter tuning for computational effort 1 

totFE  triN
 Total computational effort Z 

 
10000 5 50000 23686 

8000 6 48000 25122 

6000 8 48000 25372 

7000 7 49000 25466 

9000 6 54000 25487 

4000 13 52000 28091 

5000 10 50000 28670 

3000 17 51000 29588 

2000 25 50000 29954 

1000 50 50000 47198 

 

It seems that algorithm performs better when more computational effort is 

spent on each trial, rather than using it to increase the number of trials. Therefore, we 

expanded the range of totFE  tested. The result is shown in Table 5- 9. It seems that 

this expanded test further confirms our conclusion. Therefore we pick the totFE  as 

25000 and triN  as 2 for all later tests. 

Table 5- 9: Sorted result of parameter tuning for computational effort 2 

totFE  triN
 Total computational effort Z 

 
25000 2 50000 22544 

50000 1 50000 22791 
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12500 4 50000 24052 

10000 5 50000 24359 

16667 3 50001 25307 

 

The parameters used for subsequent tests are summarized in Table 5- 10.  

Table 5- 10: Parameter configuration 

Parameter Value 

  19 

TN
 2 

cN
 70 

totFE  25000 

triN
 2 

 

5.4 Changes of Budget  

We want to see how the solution changes when the budget availability changes. 

Therefore, we performed a series of tests from a budget of $50,000 to $250,000 at 

$25,000 increments. A budget of $50,000 means that around a quarter of the links in 

the network can be covered if the budget is spent solely on aggregated sensors.  An 

increment of $25,000 can add around 10 more aggregated link count sensors or 4 

classified link count sensors or 2 aggregated cameras or 1 dual or classified camera. 

Figure 5- 2 summarizes the result for the objective function value, Z. Increasing the 

budget clearly reduces Z 
, but at a much slower rate as the budget exceeds $100,000, 

meaning that the marginal effect an extra dollar brings after $100,000 is relatively 

small. The primary range of interest might be between $75,000 and $150,000.  
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Figure 5- 2: Z 
 under different budget level 

Table 5- 11 shows the breakdown of Z
+
 into its components,  Qtr S 

 and 

 Vtr S 
, as the budget changes.  Because these two components are equally weighted 

in the objective, it is not surprising that their values are somewhat similar in the 

optimal solutions at each budget level, but as the budget increases, there is somewhat 

greater emphasis on reducing  Vtr S 
 and the ratio shown in the last column of the 

table increases slightly.  

Table 5- 11: Objective function value and breakdown under different budgets 

B Z 
  Qtr S 

  Vtr S 
    /Q Vtr S tr S 

 

50000 404265 410860 397670 1.03 

75000 82583 72727 92439 0.79 

100000 34579 38587 30570 1.26 

125000 23375 25656 21093 1.22 

150000 15803 18098 13507 1.34 

175000 11937 14185 9689 1.46 

200000 10178 11957 8399 1.42 
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225000 8768 10523 7013 1.50 

250000 7578 9625 5531 1.74 

 

Table 5- 12 shows the number of sensors of each type chosen in the best 

solution for each budget level. The first column is the budget level, with columns 2 to 

6 corresponding to the number of sensors chosen for aggregated link count sensors, 

classified link count sensors, aggregated cameras, dual cameras and classified cameras 

respectively. The solutions include many more link count sensors than cameras. This 

reflects the fact that link sensors are much less expensive and it is necessary to deploy 

sensors across several parts of the network to successfully reduce Z
+
. As the budget 

increases, classified link counters replace aggregate counters and more classified 

intersection sensors are deployed. Cameras capable of producing only aggregate 

counts of turning movements at intersections are hardly used at all. The results 

summarized in Table 5- 12 contain at least three important conclusions. First, use of 

sensors capable of providing vehicle classification is highly desirable when the 

available budget allows such choices. Second, an optimal solution is likely to contain a 

mix of sensor types, deployed to complement one another. Third, if intersection 

surveillance is used as part of the sensor solution, it is important to use that to obtain 

vehicle classification information in turning counts, not just aggregate counts.  

Table 5- 12: Number of sensors chosen for each sensor type 

B # agg link # cls link # agg cam # dual cam # cls cam 

50000 11 0 0 2 0 

75000 6 0 1 1 2 

100000 7 0 0 2 3 
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125000 1 5 0 3 3 

150000 2 9 0 2 4 

175000 4 13 0 1 5 

200000 1 16 0 1 6 

225000 1 19 0 3 5 

250000 0 27 0 1 5 

 

Based on the data in Figure 5- 2 and Table 5- 12, two solutions have been 

selected for further analysis and comparison – those for budgets of $100,000 and 

$150,000. The solution at $100,000 contains a mix of aggregate link counters and 

intersection surveillance for vehicle classification information. The solution at 

$150,000 shows substitution of classified link counters for many of the aggregate 

counters and achieves a total Z
+
 value that is approximately one-half of the value at a 

budget of $100,000. Figure 5- 3 shows the sensor deployment under both solutions. 

 
Figure 5- 3: Sensor deployment with budgets of $100,000 and $150,000 
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Three of the five nodes at which intersection cameras are installed in the 

solution for B = $100,000 are retained in the solution for B = $150,000 (nodes 3, 8 and 

21), although the installation at node 8 is upgraded from dual class to full 

classification. Much of the additional budget is used in the vicinity of node 10 (the 

major origin and destination for all traffic classes). Because there are many trips that 

do not go “through” this intersection, but terminate there, the combination of link 

counters and intersection cameras for through movements allows much greater 

reduction of uncertainty regarding the various O-D volumes for all vehicle classes. 

Table 5- 13 provides more detail regarding this point, showing the initial 

variances and final variances for all O-D pairs with origin or destination at node 10. 

The first column of the table indicates the O-D pair and vehicle class, and the second 

column shows the initial variance for each O-D volume. The very large variances are 

all for the automobile vehicle class because the anticipated volumes are much higher 

for auto trips than for the two truck classes. The third column in the table shows the 

final variances in the run with budget of $100,000. All the auto O-D variances have 

been reduced quite dramatically. The truck O-D volume variances have also been 

reduced, although for some O-D pairs (e.g., 15-10 and 20-10) the final values are only 

slightly smaller than the initial values. For these O-D pairs, the sensors deployed 

provide little information. 

Table 5- 13: Prior and posterior O-D volume variance related to node 10 

O-D  Qtr S 

 
 

100,000Qtr S 

 
 

150,000Qtr S 

 
10-1(1) 377370 706 292 

10-6(1) 23763 328 291 
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10-7(1) 601220 443 340 

10-13(1) 94341 223 65 

10-15(1) 94696 1481 394 

10-20(1) 210150 1786 918 

1-10(1) 381630 722 298 

6-10(1) 24120 328 274 

7-10(1) 605700 424 268 

13-10(1) 96123 221 64 

15-10(1) 95052 1434 282 

20-10(1) 217080 1533 586 

10-1(2) 4485 433 227 

10-6(2) 675 189 222 

10-7(2) 1281 196 123 

10-13(2) 4485 357 217 

10-15(2) 481 479 154 

10-20(2) 800 631 264 

1-10(2) 4880 451 250 

6-10(2) 456 160 194 

7-10(2) 833 176 106 

13-10(2) 4256 364 233 

15-10(2) 363 362 142 

20-10(2) 363 327 247 

10-1(3) 4408 113 87 

10-6(3) 385 72 43 

10-7(3) 533 31 22 

10-13(3) 225 72 59 

10-15(3) 261 261 52 

10-20(3) 176 153 99 

1-10(3) 4880 121 91 

6-10(3) 120 49 33 

7-10(3) 456 31 21 

13-10(3) 432 79 66 

15-10(3) 341 340 61 

20-10(3) 176 155 126 
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The last column in Table 5- 13 shows the final variances for the run with a 

budget of $150,000. There is general improvement for all vehicle classes, relative to 

the results at a $100,000 budget. This is a direct result of the additional classified 

sensors placed near node 10 in the solution for the $150,000 budget. 

If we look at the best solutions for both trials in all 9 budget cases (18 total 

runs), we note that more than half of the sensor candidates (123 out of 224, or 55%) 

are never chosen in any trial.  The top ten sensor choices (based on the number of 

times they appear in the 18 solutions) are summarized in Table 5- 14. All of these are 

classified sensors, and seven of the ten are in the vicinity of node 10. This further 

emphasizes the importance of sensing flows in the center of this network. 

Table 5- 14: Top 10 sensors frequently chosen among all trials for all budget cases 

Sensor Location Sensor type Times chosen 

90 6-2 2 12 

119 15-10 2 12 

210 10 5 12 

104 10-15 2 11 

208 8 5 11 

80 2-6 2 10 

105 10-16 2 10 

124 16-10 2 10 

103 10-11 2 9 

108 11-10 2 9 
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5.5 Changes of Relative Weight on O-D Volumes and Link Flows 

In this set of tests, we examined the effects that the changes in  , the relative 

weight of O-D variances and link flow variances in the objective function. As   

increases, the weight on O-D volume variance decreases and more emphasis is put on 

link volumes. Eleven values of , from 0 to 1 at 0.1 increments, were tested using a 

budget of $100,000. The result is organized in Table 5- 15. The overall value of the 

objective Z 
 is relatively insensitive to  . As   increases, the measure of O-D 

volume variance (  Qtr S 
) increases slightly and the measure of link flow variance (

 Vtr S 
) decreases slightly, but it is only when 1   (the objective function value 

depends entirely on link volume variance) that there is a marked change, with  Qtr S 
 

increasing substantially as it no longer factors into the objective.  

Table 5- 15: Changes on objective value for different   

  Z 
  Qtr S 

 
 Vtr S 

 
   /Q Vtr S tr S 

 
0 31950 31950 36414 0.88 

0.1 36543 36231 39346 0.92 

0.2 36604 36167 38350 0.94 

0.3 35237 35352 34967 1.01 

0.4 35270 36584 33298 1.10 

0.5 34579 38587 32755 1.06 

0.6 33559 34766 32755 1.06 

0.7 31420 34006 30311 1.12 

0.8 35289 38895 34388 1.13 

0.9 31058 37490 30343 1.24 

1 29271 53493 29271 1.83 
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Additional insight can be gained by examining the sensor deployment 

solutions for three values of   (0, 0.5 and 1). The results are shown in Figure 5- 4, 

Figure 5- 5, and Figure 5- 6 respectively. When 0  , the solution makes considerable 

use of aggregate link sensors. In the intermediate solution ( 0.5  ), there is a shift 

away from these aggregate link sensors and an additional intersection has been 

instrumented. As the weight on link flow variance continues to increase to 1  , the 

use of aggregate link counters further diminishes. These results indicate that the more 

interested we are in the variance of link flow volumes, the more budget should be 

expended on intersection surveillance with classified counts and the less useful are the 

aggregate link counters. This result is somewhat surprising, because we might expect 

that if the primary interest is in link volumes, it should be desirable to deploy counters 

on more links, even if the counts are aggregate. However, when there are multiple 

vehicle classes of interest, it is vital to obtain vehicle classification information and the 

intersection surveillance is particularly useful for that purpose.  
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Figure 5- 4: Sensor allocation for 0    

 

Figure 5- 5: Sensor allocation for 0.5   
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Figure 5- 6: Sensor allocation for 1   

5.6 Sensitivity Analysis for the P Matrix 

In all experiments to this point, we have been using the link utilization 

coefficients derived from an empty network, which means the link costs are not 

updated by the actual traffic volume. We assumed this because it is much easier 

information to get than the link utilization of an equilibrium situation. We only need to 

know the network characteristics, e.g. link length, capacity, topology, to get the link 

utilization from the empty network. However, in order to get the utilization 

coefficients from equilibrium, we need to know flow information, which is hard to get 

before sensor implementation. However, it is useful to evaluate how sensitive the 

sensor location decisions are to the assumed link utilization coefficients. Therefore, we 

perform a set of tests comparing use of Stochastic Network Loading (SNL) 
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coefficients in the matrix P with use of coefficients from a Stochastic User 

Equilibrium (SUE) flow pattern. This is possible in this test situation because an actual 

set of O-D tables is available and can be assigned to the network to obtain the SUE 

solution. 

A budget of $100,000 and a weight of 0.5 are used for the tests. Table 5- 16 and 

Figure 5- 7 show the comparison. The objective function value of SUE is generated 

from the SUE solution evaluated under the SNL utilization coefficients for calculation 

of  Vtr S 
 in order to make two solutions comparable. The overall objective value of 

the two solutions is very similar, indicating that the information content of the two 

solutions is essentially the same. 

Table 5- 16: Prior and posterior for SNL and SUE 

Case Z 
 Z 

 /Z Z 

 

SNL 34579 8090050 0.0043 

SUE 34455 8090050 0.0043 
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Figure 5- 7: Sensor allocation for SNL and SUE 

As we can see from Figure 5- 7, there are clearly some differences in the sensor 

selection and location, particularly for the aggregated link counters. The intersections 

chosen for camera implementation are either the same or adjacent with the chosen 

sensor type a little bit different. We conclude from this test that the sensor locations 

chosen, especially for link counters, are likely to be somewhat sensitive the use of 

unloaded network link utilization coefficients, but that the information content of the 

solutions is very insensitive. That is, there are likely to be alternative sensor 

deployment solutions that yield approximately the same information. Using values in 

the P matrix that do not reflect actual current flows may result in choosing a different 

sensor location solution, but may not be harmful in reducing the actual information 

obtained. 
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5.7 Summary 

This chapter analyzes the characteristics of the sensor allocation solutions on 

the Sioux Falls network. Tests on different budget level, B , and relative weight,  , 

have been presented. Sensitivity analysis on utilization coefficients in the P matrix is 

also performed. 

 As more budget is available, the classified link count sensors and classified 

cameras are more frequently chosen to address the variance of multiple vehicle classes. 

Meanwhile, inexpensive aggregated sensors are less likely to be chosen. There is a 

clear preference for more detailed information on the various vehicle classes, and this 

allows the overall variance measure to be improved. In the Sioux Falls network, there 

is a concentration of activity (trip ends by all vehicle classes) around one major node, 

and the solutions tend to focus sensors in that area, regardless of budget. However, as 

the available budget increases, the types of sensors deployed around that node change 

and allow much better resolution of the various vehicle class O-D volumes. The 

solutions across different levels of available budget also show the importance of an 

integrated solution using multiple sensor types. 

In terms of  , different weight put emphasis differently on  Vtr S 
 and 

 Qtr S 
 resulting in different spatial arrangement of the solution. As more emphasis is 

put on link volume variances in a multi-class context, the number of aggregated link 

count sensors selected is smaller, and more emphasis is placed on obtaining vehicle 

classification information. 
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The sensitivity analysis at the last part of this chapter show us that the 

utilization coefficients generated using empty network is a good substitute for actual 

utilization coefficients. The information content of the resulting solutions is quite 

similar. 

In the next chapter, a case study on a real network is presented to shown the 

scalability of the model and solution method. 
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CHAPTER 6 

A CASE STUDY IN ROCKLAND COUNTY, NEW YORK 

 

Rockland County is on the west side of the Hudson River, just north of New 

York City, located as shown in Figure 6- 1. The county is roughly triangular in shape, 

covering 199 square miles with a total population of just over 310,000.  Figure 6- 2 

shows additional detail about the county, including some of the main highways. The 

county contains a portion of the New York State Thruway (I-87) leading to the Tappan 

Zee Bridge and is roughly bisected by the Palisades Interstate Parkway (PIP), running 

north-south. It also contains the connections between I-87 and two other major 

facilities going south into New Jersey – the Garden State Parkway (GSP) and I-287. 

The PIP and the GSP are closed to commercial traffic. However, in addition to I-87 

and I-287, portions of several state highways in the county are heavily used truck 

routes. 

 

 

Figure 6- 1: Location of Rockland County, New York. 
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The principal sources of primary data for this test case are O-D and link 

utilization estimates generated by Zhao (2013). Those estimates were calculated from 

the average daily vehicle counts collected by the New York State Department of 

Transportation, and estimates of truck trip generation based on land use. The 

experiments with this test network are designed to answer two basic questions: 

1) Does the methodology developed in this research scale reasonably to a 

much larger network than used in Chapter 5, with a much more complex 

structure and variety of facilities? 

2) How might a traffic management or transportation planning agency in an 

area like Rockland County (a suburban county near a major metropolitan 

area) use the sensor location model most effectively? 

 

Figure 6- 2: Rockland County, New York. 
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6.1 Network Construction 

The network representation used contains 25 traffic analysis zones (TAZs), 

where trips originate and terminate. 14 of these zones are internal and the remaining 

11 represent the entry/exit points to the county from adjoining areas, including the 

Tappan Zee Bridge. There are thus 600 O-D pairs for each vehicle class, although 

some of these (origins and destinations for trucks at the external zones representing the 

parkways) are required to have zero trips. Table 6- 1 summarizes the location of the 

TAZs. 

Table 6- 1: Traffic Analysis Zones 

TAZ 

code 
Description 

301 External zone on the north of the Rockland county, linked by highway 9W 

302 
External zone on the northwest of the Rockland county, linked by Palisades 

Interstate Parkway 

303 Local zone representing Stony Point 

304 Local zone representing Haverstraw town 

305 Local zone representing  Haverstraw village 

306 Local zone representing New Hempstead 

307 Local zone representing New Square 

308 Local zone representing Clarkstown 

309 Local zone representing Spring valley 

310 Local zone representing Nyack 

311 
External zone on the east of Rockland County, linked by Tappan Zee 

Bridge 

312 External zone on the south of Rockland County, linked by I- 287 

313 Local zone representing Suffern 

314 External zone on the south of Rockland county, representing NJ local 

315 Local zone representing Airmont 
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316 Local zone representing Chestnut Ridge 

317 
External zone on the south of Rockland County, linked by Garden State 

parkways 

318 External zone on the south of Rockland county, representing NJ local 

319 Local zone representing Orangetown 

320 External zone on the south of Rockland county, representing NJ local 

321 
External zone on the south of Rockland County, linked by NJ Palisades 

Interstate Parkway 

322 Local zone representing Sloatsburg 

323 
External zone on the west of Rockland county, representing Orange county 

local 

324 External zone on the west of Rockland County, linked by I-87 

325 Local zone representing West Haverstraw village 

 

Two vehicle classes are assumed, automobiles and trucks. Theoretically there 

are 1200 O-D pairs for two vehicle classes. However, prior work on estimating O-D 

tables for this network (Zhao, 2013) produced estimates in which many O-D pairs 

have zero volume and many others have very small volumes. For the experiments 

conducted here, the set of O-D pairs of interest has been limited to 288 O-D pairs that 

are likely to have volumes of at least 10 veh/h for automobiles or 5 veh/h for trucks. 

The resulting problem is still of substantial size, but a large number of potential O-D 

pairs that contribute little to the understanding of traffic flows in the network have 

been eliminated. This type of reduction to focus on pairs of significant interest in 

determining sensor locations is likely to be an important part of most realistic 

implementations of the ideas developed in this thesis. 

The network includes 277 nodes and 771 links (including centroid connectors 

to the TAZs). The network is designed to represent the designated state and county 



 

77 

highways, with other links added as necessary to make connections. The overall 

network is shown in Figure 6- 3. 

Each link has attributes of length, number of lanes, free-flow speed and overall 

capacity. The capacity values are based on the functional classes of the links, using the 

class definitions in Table 6- 2 (from NYSDOT). Centroid connectors for the internal 

TAZs are assumed to be 0.5 mile in length and have a fixed speed of 25 mph. 

Table 6- 2: Road classes included in the Rockland model. 

Functional 

Classification Code 
Description 

11 Urban Interstate 

12 Urban other Freeway and Expressway 

14 Urban Principal Arterial 

16 Urban Minor Arterial 

17 Urban Major Collector 

20 Ramp (speed limit below 45 mph) 

21 Ramp (speed limit greater or equal to 45 mph) 

999 Centroid Connector 

 

A total of 304 links and 26 intersections are identified as candidate locations 

for potential sensor deployment (see Figure 6- 4). Selected links include state highways 

(i.e., 9W, 17, 45, 59, 202, 303, 304, 306, and 340), important county routes (i.e., 

Routes 20, 74, 80, 108, and 210), links that connect to external zones (representing 

entrances to and exits from the county) and other principal arterials. On each candidate 

link, either an aggregate link counter or a dual-loop counter (that can count cars and 

trucks separately) can be implemented. There is also no constraint regarding the 

number of sensors can be implemented on a single link. Because link counts contain 
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errors and separate counters are assumed to produce independent observations, 

duplicating sensors on a single link has the effect of reducing the error variance for 

flows. With a limited budget for sensor deployment, it is usually preferable to deploy 

sensors on different links, but if the greatest information gain can be obtained by 

duplicating one or more sensors, the optimization allows that. 
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Figure 6- 3: Rockland County network. 
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Figure 6- 4: Candidate links and intersections 



 

81 

Links on the New York State Thruway and the PIP are not considered for 

sensor placement because in this case study the perspective taken is that of a county-

level agency and Rockland County does not have jurisdiction over either the Thruway 

or the PIP. However, the prior conditions for the sensor placement optimization 

assume that accurate data is already being collected on the Thruway by the agencies 

that operate the facility. 

The candidate intersections for camera placement are primarily the 

intersections of the state and county highways mentioned above. These are likely to be 

among the most important intersections in the network.  

6.2 Prior Covariance Matrices 

The sensor location model operates by updating prior covariance matrices for 

O-D flows and link volumes into posterior matrices that have minimum trace values 

(sums of variances). To implement this process, it is necessary to specify what the 

prior matrices (either covariance or precision) are. It is possible to use a zero precision 

matrix as a representation of no prior information, but in practice that is somewhat 

unrealistic. The fact that the network exists and is in operation implies some level of 

prior information, even if the network is not well instrumented. In this case study, 

some prior information has already been asserted as the basis for reducing the number 

of O-D pairs of interest. 

For this analysis, prior estimates of O-D volume variances for the 288 O-D 

pairs of interest have been constructed by assuming that the values estimated by Zhao 

(2013) represent an average and the actual (unknown) values are uniformly distributed 
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between 0 and twice the estimate. This results in a prior variance estimate for each O-

D pair that is one-third the estimated volume squared. These prior variance estimates 

distinguish between O-D volumes that are likely to be relatively large (and have large 

prior variances) and those that are likely to be relatively small (and have small prior 

variances). The placement of sensors in the network is then more likely to focus on the 

higher-volume O-D pairs in an effort to reduce the trace of the posterior covariance 

matrix. All off-diagonal elements (covariances) in the prior covariance matrix are 

assumed to be zero. The prior covariance matrix for the link flows is computed from 

the covariance matrix of O-D volumes using Equation 3-2.  

In addition to the assumed prior information on O-D volume and link flow 

variances, the effects of the assumed pre-existing sensors on the Thruway (I-87) are 

incorporated into the initial covariance matrices QS 
 and 

VS  . The Thruway is 

assumed to have vehicle counts and classification information along each link, with 

small error rates of 0.5% for vehicle counts and 0.5% for vehicle classification, with 

classification errors assumed to be equally distributed in each direction.  

6.3 Possible Sensors and Characteristics 

Three types of available sensors are assumed: aggregated link count sensors, 

classified link count sensors and classified cameras. These sensors have characteristics 

shown in Table 6- 3. For each sensor type, the simulation method described in 

Appendix has been used to construct an R matrix for the sensor, based on the counting 

error rate, classification error rate, and overcount ratio shown in Table 6- 3. 
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Table 6- 3: Sensor types assumed in tests 

Index 
Location 

type 

# 

class 

Counting 

error 

Overcount 

ratio 

Classification 

error 

Cost 

($/Lane or 

$/Node) 

1 Link 1 2% 50% 0% 1800 

2 Link 5 2% 50% 5% 4550 

3 Intersection 2 2% 50% 9% 14160 

 

Entries for the rows of H corresponding to the link count sensors are developed 

from the link utilization probabilities in the matrix P, constructed using free-flow 

impedances on the network links for each vehicle class. The H matrices for cameras 

need partial path (turning movement) probabilities at the relevant intersections. These 

turning movements probabilities are derived using a simple Markovian approximation 

based on link probabilities. Figure 6- 5 provides an example.  

 

Figure 6- 5: Example intersection 

 

The probability of turning movement A  B D, ABDP  for flow on a specific 

O-D pair is computed as: 
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BD
ABD AB

BD BC BE

P
P P

P P P


 
                          Equation. 6-1 

where ABP  is the link utilization coefficient (link probability) for link AB for that O-D 

pair, and the other terms are defined similarly. Other turning movement probabilities 

(e.g. ABEP , CBDP ) can be calculated in the same way. These values provide entries in 

the rows of H corresponding to the camera sensors at intersections. 

6.4  Experiments and Results 

Two sets of computational experiments are done for the Rockland County 

network. The first is sensor allocation using only the two types of link count sensors 

under varying levels of available budget. This set of experiments accomplishes three 

objectives: 1) it demonstrates the efficacy of the sensor location method on a realistic 

network; 2) it establishes a baseline result constructed with only the most basic sensor 

types available; 3) it demonstrates how the solution changes with a varying budget. 

The second set of experiments adds cameras as a potential sensor type, and provides 

an ability to evaluate the role of video sensing of vehicle classification within an 

overall sensing plan. 

In each experiment, we allocate 10000 objective function evaluations per trial 

and 15 trials for each budget case. We also use a tenure length of 3, and 10 neighbors 

for the Tabu search. Lambda (the relative weight of O-D variances and link flow 

variances) is set as 0.5, putting equal weight on both. 



 

85 

6.4.1 Link Count Sensors and Budget Variations 

In the first experiment, at each candidate link, one or more aggregated or 

classified link count sensors can be implemented. The available sensor budget is 

varied from $100,000 to $450,000 at $50,000 increments. Figure 6- 6 summarizes the 

result for the objective function value, Z, as well as its two components,  Qtr S 
 and 

 Vtr S 
. 

 

Figure 6- 6: Objective value over different budgets 

 

For budgets between $100,000 and $250,000, each budget increment produces 

substantial improvement in the variances of both O-D volumes and link flows. 

However, at budgets beyond $250,000, the further improvements are quite modest. 

Thus, for this network the budget of $250,000 appears to be a very important point. 
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Some further interpretation of the Z value is also useful. At a budget of 

$250,000, both   Qtr S 
 and  Vtr S 

 have values of approximately 1,000,000. Since 

there are 288 O-D pairs included in the trace computation for QS 
, the average 

variance for an O-D pair volume is about 3500. This implies the average standard 

deviation on an estimated O-D volume is approximately 59 vehicles/hour. For the link 

flows, there are 771 links in the network, with two vehicle classes, so there are 1542 

volumes included in the trace computation. Thus, the average variance is about 650, 

corresponding to an average standard deviation on a link flow estimate of 

approximately 25 vehicles/hour. Of course, these average standard deviations do not 

apply to every O-D pair and link, but the magnitudes give some general meaning to 

the value of Z in the optimization. 

The solution covers 81% of O-D pairs (234 out of 288). That is, some fraction 

of the volume for 234 O-D pairs is observed at one or more of the sensors. Among the 

54 O-D pairs that are not covered, 17 cannot be covered by any sensor in the current 

candidate set. The other 37 uncovered O-D pairs have small O-D volume estimates, 

and hence small variances. The O-D pairs that cannot be covered by any candidate 

locations are related to I-87, I-287, the PIP and the Garden State Parkway. If some 

ramp links for these limited-access facilities were included in the candidate location 

set, coverage of those 17 O-D pairs could be achieved, but for the current experiments 

the ramps are not considered accessible locations. 

The results summarized in Table 6- 4 and Table 6- 5 provide additional insight 

into the effects of sensors on variances for specific O-D pairs and links. Table 6- 4 
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shows results for the 20 O-D pairs that have largest prior estimated volumes. The 

column labeled “O-D” indicates the origin and destination nodes, and the “1” indicates 

that the flows are for vehicle class 1 (automobiles). All of these high-volume O-D 

pairs are external-external flows; i.e., both the origin and destination are outside 

Rockland County, but the trips move across the County. The “prior_initial” column 

indicates the variance on the estimated O-D flow based on the prior estimate, and the 

column “prior_preinstall” shows the variance after the effect of the assumed pre-

existing information on I-87. The values in this column are entries in QS 
. The column 

labeled “diff_preInstall” contains the reduction in O-D variance between the prior 

values and the “preinstall” values. Eleven of the top 20 O-D pairs are affected by the 

data from the Thruway. The last eight columns show the reduction of O-D variance 

(relative to QS 
) from the sensor installations at varying budget levels (from $100,000 

to $450,000). The darker the green color, the more reduction is achieved.  The sensor 

placement decisions are quite effective at reducing the variance in estimated volumes 

for these large O-D flows, and most of the effect for these large O-D pairs is obtained 

even at relatively small budgets. With a limited budget, the most effective way to 

reduce  Qtr S 
 is to locate sensors that reduce the largest variances first.  

Table 6- 4: Variance reduction on top volume O-D pairs 
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Table 6- 5 presents similar information, but for link flows. The links shown are 

the 20 highest volume flows in the network. All are vehicle class 1 (automobiles), as 

indicated in the second column of the table. Most of these high-volume links are on 

the Thruway and the assumed sensor data from the Thruway reduces most of the 

variances to small values before the location of additional sensors. The sensor location 

model successfully addresses the remaining links, and again most of the effect on 

these high-volume links is achieved even at small budgets. As with the elements of  

 Qtr S 
, the most effective way to reduce ( )Vtr S   is to focus on the largest values 

first. 

Table 6- 5: Variance reduction on top volume links 
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As further exploration of the effect of additional budget, an experiment was 

performed with a very large budget of $25,000,000. This is 100 times larger than the 

critical budget of $250,000. The solution in this case includes 1963 aggregated link 

count sensors and 3776 classified link count sensors, far more than the number of 

candidate locations in the network (304). On average, more than 18 sensors are 

implemented at each location. The very large budget is expended by duplicating 

sensors. As discussed above, this results in a small decrease in variances for estimated 

O-D volumes and link flows, but the overall effectiveness is low. With this very large 

budget, the resulting Z 
 is 899,510, only 5.7% lower than the value achieved at a 

budget of $250,000. This is mainly because a lot of the links and O-D pairs related to 

PIP have relatively large variances, contributing to a large Z 
. However, those links 

are not eligible for sensor deployment. 

The remaining relatively large variances are primarily associated with the 

internal centroid connector links in the network. These are not considered candidate 

links for sensors because they are “virtual” links rather than single physical facilities, 

so the sensor location model cannot operate to reduce the variances on these links. 

Two useful practical conclusions can be drawn from this experiment. First, a 

mechanism of sensing total trip ends in a zone (analogous to sensing volume on a 

centroid connector) would be useful in reducing  Qtr S 
. This could stimulate useful 

thought about incorporating a different type of sensor information. Second, it probably 

is useful to exclude centroid connectors when computing ( )Vtr S  . They are not “real” 
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links, but are introduced into the network for modeling purposes, and ( )Vtr S   should 

probably be computed only using actual physical links. 

For further analysis, the focus is on the results achieved at budgets of $250,000 

and below. Figure 6- 7 shows how many sensors are implemented of each type under 

different budgets. As the budget increases, more sensors of each type are 

implemented.  However, the number of classified sensors implemented increases 

faster than that of the aggregated sensors. It is probably because automobiles far 

outnumber trucks, contributing to the majority of the uncertainty in both link volumes 

and O-D volumes. The aggregated link count can be an acceptable rough estimate for 

automobiles when budget is scarce. Under a small budget like $100,000, much of the 

budget is spent on relatively inexpensive aggregated link count sensors to cover as 

many O-D pairs and links as possible. As the budget increases, more money can be 

spent on classified sensors to address the uncertainty in truck volumes, especially on 

route 80 and 59 where truck volumes are high. 

 

Figure 6- 7: Number of sensors implemented under different budgets 
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We are interested in where the classified sensors are implemented. Therefore, 

we pick the top 10 classified link count sensors that are most frequently chosen among 

all eight cases of different budget (see Table 6- 6). As we can see, those sensors are 

implemented mostly on links with high truck volumes and low implementation cost 

(i.e. links with only one lane).  

Table 6- 6: Top 10 frequently chosen classified sensors 

Index Type Location Cost 
Auto 

volume 

Truck 

volume 

Total 

volume 
Frequency 

330 2 3201-171 4550 466 220 686 7 

435 2 59-60 4550 897 265 1162 6 

329 2 171-3202 4550 483 223 706 6 

369 2 61-70 9100 1903 336 2239 5 

422 2 61-60 4550 656 323 979 5 

482 2 33-30 4550 1034 239 1273 5 

331 2 3181-170 4550 281 214 495 5 

519 2 55-56 4550 1336 207 1542 5 

334 2 135-3182 4550 419 182 601 5 

421 2 60-61 4550 942 324 1267 4 

 

Figure 6- 8 shows the selected locations and sensor types for the budget level of 

$250,000. Altogether, 50 aggregated link count sensors and 25 classified link count 

sensors are implemented. Primary areas for sensor deployment are: 

 the area around zones 305 and 325 in the northeast part of the network 

(the villages of Haverstraw and West Haverstraw) 

 US highway 202 (links connecting nodes 25, 26, 27 and 30) 

 State highway 45 (links connecting nodes 25, 42, 56, 79, 97, 107 and 

123) 
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 State highway 59 (links connecting nodes 115-120) 

 County route 74 (links connecting nodes 74-82) 

 County route 80 (links connecting nodes 55-61) and  

 connecting links to the external zones 314, 317, 318 and 320 at the 

southern edge of the network (the border with New Jersey).  

We also compared the solution for a budget of $100,000 to the solution for the 

budget of $250,000 to see how the sensor allocation changes as the budget increases. 

The solution for the budget of $100,000 obviously deploys fewer sensors (and 

especially fewer classified sensors), but in general focuses on similar areas of the 

network, as shown in Figure 6- 9. Only 23 sensors are exactly the same in the two 

solutions, but in the larger budget solution classified sensors are often substituted for 

aggregate sensors in similar locations. As the budget increases, sensor density along 

the main corridors in the network also increases. 
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Figure 6- 8: Sensor allocation for budget of $250,000 
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Figure 6- 9: Sensor allocation for budget of $100,000 
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6.4.2 Including Video Sensors at Intersections  

We now consider surveillance cameras at intersections as a potential sensor 

type. Together with image processing software, they can provide classified turning 

movements at the candidate intersections shown in Figure 6- 4. This data may be quite 

valuable, but the cameras are considerably more expensive than link counters. In this 

experiment, it is assumed surveillance at an intersection results in observability of all 

movements at the intersection (through movements and turns from each approach), 

and that the video processing software associated with the sensor can distinguish 

vehicle classes for all movements. 

With the cameras added to the possible sensor set and the budget set at 

$250,000, the result of the optimization is shown in Figure 6- 10. Altogether, 22 

aggregated link count sensors, 16 classified link count sensors, and 8 cameras have 

been chosen. Comparing Figure 6- 8 and Figure 6- 10, we see that cameras are used in 

places where originally many link count sensors are allocated. They are used to 

substitute for those link count sensors in key areas of the network. After cameras are 

added, the final Z 
 has been reduced by approximately 10%, with ( )Qtr S   reduced 

by 7% and ( )Vtr S   reduced by 13%. Thus, availability of the video sensors leads to a 

superior overall solution and the sensor location model developed here incorporates 

them into the process of deploying sensors across the network in a seamless fashion. 
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Figure 6- 10: Sensor allocation for budget of $250,000 with cameras added 



 

97 

6.5 Summary 

The Rockland County test case demonstrates that the sensor location method 

developed in this research can successfully allocate sensors in realistic networks, and 

thus has significant practical value. It also demonstrates that the addition of classified 

video sensors at intersections can increase the total information content of a solution 

without requiring extra money. The classified turning movements provided by 

cameras have considerable value and should be considered more in practice. 
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CHAPTER 7 

CONCLUSIONS 

 

Effective traffic management in networks depends on the ability to sense and 

interpret volumes and flow patterns of vehicles using the network. Traffic 

management needs to become more effective to deal with increasing levels of 

congestion, emission control, special concern with truck movements, increasing 

interest in pricing policies for use of the network, and the potential for a fundamental 

change in how the roadway network is funded, changing from a fuel-tax based system 

to a system based on vehicle-miles-traveled (VMT).  

Modern traffic sensing technology offers increasing ability to classify vehicles as 

they are counted, as well as to create data that are more informative than simple link 

counts, including output from video detectors, GPS-based vehicle location systems, 

automatic vehicle identification (AVI) systems, etc. Good estimates of link volumes 

(including links that may not be observed directly) are important for evaluating speeds 

and travel times, total emissions, VMT, etc. Estimating O-D flows (by vehicle class) 

provides a more complete picture of demand on the network and the basis for 

evaluating possible responses to traffic management strategies. Path-based information 

provides a connection between link-based data and O-D based demand, and is also 

important for traffic management assessment. 

This dissertation establishes a new sensor location model that focuses on 

multiple vehicle classes and an objective that includes both link-based and O-D based 

flow estimation. It includes capability to locate a variety of sensor types in an 
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integrated way to maximize the information content of the entire set of sensors. The 

model formulation has the form of a nonlinear knapsack problem. An effective 

solution method is developed using a two-phase process. In the first phase, a greedy 

algorithm creates a good starting point for the second phase. The second phase is a 

Tabu Search algorithm that seeks improvement in the solution by swapping sensors 

while maintaining the overall budget constraint on the solution. 

Extensive computational experiments have been performed on a small test 

network with 24 nodes and 76 links. These tests verify the effectiveness of the 

problem formulation and solution algorithm. They also indicate some important 

aspects of sensor deployment. When the sensor budget is quite small, the need for 

spatial coverage in the network is dominant and the sensors chosen are mostly the 

least expensive ones – simple aggregate link flow counters. As the available budget 

increases, classified link count sensors and classified cameras are more frequently 

chosen to address the need to construct flow estimates separated by vehicle class. 

Concentration of sensor allocation also happens around nodes with concentrated 

activity (e.g. trip ends or link flows by all vehicle classes) at any budget level. 

However, as the available budget increases, the types of sensors deployed around that 

node change and allow much better resolution of the various vehicle class O-D 

volumes. 

The solutions across different levels of available budget also show the 

importance of an integrated solution using multiple sensor types. As the weight in the 

objective function changes and more emphasis is put on link volume variances in a 

multi-class context, the number of aggregated link count sensors selected is smaller, 
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and more emphasis is placed on obtaining vehicle classification information. The 

sensitivity analysis on utilization coefficients shows that the coefficients generated 

using free-flow speeds and travel times in the network are a good substitute for actual 

utilization coefficients. The information content of the resulting solutions is quite 

similar. 

A case study on Rockland County, NY demonstrates that the sensor location 

method developed in this dissertation can successfully allocate sensors in realistic 

networks, and thus has significant practical value. It also demonstrates that the 

addition of classified video sensors at intersections can increase the total information 

content of a solution without requiring extra money. The classified turning movements 

provided by cameras have considerable value and should be considered more in 

practice. 

The research in this dissertation contributes an important capability for 

locating sensors in a multiclass environment. This is likely to be of particular interest 

in urban areas where there is a desire to better understand differences between auto 

movements and truck movements so that more effective policies on emissions, 

pavement maintenance and energy consumption can be designed. In the experiments 

conducted here, equal weight has been placed on all vehicle classes. This is consistent 

with a measure of overall information content from the set of sensors, but in some 

applications there may be special interest in locating sensors to understand truck 

movements. This can be accommodated within the framework established here, by 

introducing another set of vehicle class weights in the evaluation of the trace values 

from the O-D volume and link flow covariance matrices. Further exploration of this 
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possibility, and the impacts on sensor type and location choices, is certainly 

worthwhile. 

There might also be useful effort in simulating the ability of different sensor 

deployment strategies to support OD and link flow estimation. By simulating the 

observations, estimating the OD volumes and estimating the link flows in a test bed 

where the underlying answers are known, we are able to test whether there is a 

significant correlation between the objective function and actual ability to estimate 

those matrices and flows. There are also additional sensor types and opportunities that 

can be incorporated into the model formulation, but which have not been included in 

the computational experiments conducted here. Observations from AVI-equipped 

vehicles in the traffic stream or GPS-related data for specific vehicles are two types of 

data that have not been included in the experiments done here. 

A useful extension of the core model in future work is to consider route flows 

more directly in the overall objective. Route flows represent an intermediate construct 

between the link flows and O-D flows considered here. Building variances on route 

flow estimates directly into the model is likely to be useful for incorporating path-

oriented data (like AVI and GPS data) into the model framework. 

There is also opportunity for use of cell-phone based data in understanding 

network flows. Such data are more aggregated geographically than the types of 

observations considered in this dissertation, but they can fit into the general 

information-theoretic framework used here. This presents another opportunity for 

future research and development efforts. 
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APPENDIX  

CONSTRUCTION OF SENSOR ERROR COVARIANCE MATRICES 

 

As discussed in chapter 3, each sensor is characterized by a delta precision 

matrix, d , that reflects its effect on the precision matrix for the O-D volumes in the 

network. The matrix d  is calculated using Equation A-1. 

  1T

d d d dh R h                      Equation A-1 

The dh  matrix is constructed from the link utilization coefficients, as 

described in the example in Chapter 3. The dR  matrix is the covariance matrix for 

the errors in the observations from sensor d. The purpose of this appendix is to 

describe a process for constructing dR .  

For this purpose, the 9-node network used as an example in Chapter 3 is used 

again. Figure A- 1 illustrates the network. Four O-D pairs are assumed to be of interest 

in this network: 1-6, 1-9, 4-3 and 4-9. Three vehicle classes are assumed – 

automobiles and two truck classes. The first truck class is two-axle, six-tire medium 

trucks. The second class includes all heavier trucks. Light trucks are included with the 

automobiles. 
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Figure A- 1: Example network. 

We consider four types of potential sensors: aggregated link count sensors, 

classified link count sensors, aggregated intersection surveillance and classified 

intersection surveillance. When an intersection is instrumented, we assume that all the 

movements (through and turns) from all approaches at that node are recorded. This 

may involve use of multiple cameras. The basic information on the accuracy of 

observations from the sensors is shown in Table A- 1. 

Table A- 1: Sensor types used for illustration 

Index 
Location 

type 

# 

class 

Counting 

error 

Overcount 

ratio 

Classification 

error 

1 Link 1 2% 50% 0% 

2 Link 3 2% 50% 5% 

3 Intersection 1 2% 50% 0% 

4 Intersection 3 2% 50% 9% 

 

The third column of the table is the number of vehicle classes these sensors can 

differentiate. The counting errors are the percentage of time when an error record 

occurs. We assumed two types of counting error, overcounting and undercounting. In 

the case of overcounting, a vehicle is recorded when there is actually no vehicle 

present. This can generally happen during heavy traffic, where a lot of stop-and-go 
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happens, and a vehicle can be double counted. In the case of undercounting, a count is 

missed when a vehicle passes a sensor. This can happen with small vehicles, vehicles 

changing lanes, etc.  Since different sensors have different error patterns, we do not 

make specific assumptions here regarding the vehicle classes associated with 

overcounting and undercounting. But those assumptions can be easily added to our 

framework if needed.  The overcounting ratio is the percentage of counting error that 

is an overcount. The rest will be undercount. The classification error is the percentage 

of time when an observed vehicle is misclassified into a wrong category.  

The dR  matrix (covariance matrix for errors in the observations) for different 

sensors can be derived through simulation. Each record generated is an observation (or 

lack of observation in the case of undercounting) of a vehicle. We simulate an hour’s 

worth of traffic to calculate the dR  matrix. Since we don’t know the actual traffic 

volume on each link before the sensor installation, we used the link capacity as an 

upper bound estimate. 

Consider a classified link count sensor as an example. Each simulated entry 

contains three flags (whether it is a counting error, whether it is an overcount or 

undercount, whether it is a classification error) and two fields (true vehicle class and 

observed vehicle class). To generate an entry, we first generate two random variables 

to decide whether this record is a counting error or not, and if it is a counting error, 

whether it is an overcount or undercount. An overcount entry is automatically flagged 

as a classification error and the true vehicle class is marked as 0.  The observed class 

is generated randomly from the distribution of vehicle class market share. An 

undercount entry is assumed not to be a classification error since the count does not 
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actually show up. The observed vehicle class is marked as 0. The true class is 

randomly generated using vehicle class market share just as for non-counting-error 

entries. 

The vehicle class market share is the percentage of time that a vehicle observed 

belongs to a certain vehicle class. It is estimated from total travel demand and is 

assumed to be the same across all links. These data can also be easily derived from 

some manual traffic counts sampled across the network, if needed.  

For records that are not counting errors, we then use a third random variable to 

decide whether an entry is a classification error or not. If it is not a classification error, 

the observed class of this entry is assumed to be the same as the true vehicle class. 

Otherwise we make the assumption that the observed vehicle class is one vehicle class 

away from the true vehicle class. That is, the (erroneous) observed class can only be 2 

if the true vehicle class is either 1 or 3. If the true vehicle class is 2, we assume a 50% 

chance it will be misclassified as vehicle class 1 and 50% chance to be misclassified as 

vehicle class 3. All these assumptions can be modified in a real situation depending on 

the specific sensors under consideration. 

We summarize the result in a confusion matrix (see Table A- 2) and compare 

the total number of vehicles of a certain vehicle class in the observation and true 

situation (see Table A- 3). The error column in Table A- 3 gives one sample of 

observation errors. We repeat the process multiple times and then compute the sample 

covariance matrix from all the samples as an estimate of the dR  matrix.  

Table A- 2: Example confusion matrix of one trial of classified link counter simulation 

True\Observed Class 0 Class 1 Class 2 Class 3 Sum 
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Class 0 0 9 0 1 10 

Class 1 6 988 65 0 1059 

Class 2 1 3 58 2 64 

Class 3 0 0 2 65 67 

Sum 7 1000 125 68 
 

 

Table A- 3: Example simulation result summary of one trial 

Vehicle class True count Observed count Error 

1 1059 1000 -59 

2 64 125 61 

3 67 68 1 

 

The sampling distribution of a sample covariance matrix is called the Wishart 

distribution. It is defined as the sum of independent products of multivariate normal 

random vectors. Johnson and Wichern (2007) have shown that in the case of large 

sample, the law of large numbers applies and it has a distribution that is nearly normal. 

In this case, samples are quite easy to generate, so it is possible to use large sample 

sizes without incurring large computation times. 

Table A- 4 shows an example of observation errors for a sample of 1,000,000 

trials.  An example dR  matrix of observation errors is shown in Table A- 5. Note 

that for a sensor that records vehicle class (and makes classification errors), the 

covariances are negative. One of the important parts of this method for estimating the 

dR  matrix is that it accounts for the fact that errors from classified counts are 

correlated, and that information is then included in the computation of the d  matrix 

for the sensor. 

 

Table A- 4: Example observation errors for 1,000,000 trials 
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Trials\Error Class 1 Class 2 Class 3 

1 -59 61 1 

2 -41 44 2 

3 -44 55 0 

4 -57 53 -2 

5 -59 58 -1 

… … … … 

999999 -53 48 -1 

1000000 -42 48 0 

 

Table A- 5: Example dR  matrix 

dR  Class 1 Class 2 Class 3 

Class 1 72.74 -51.32 -0.10 

Class 2 -51.32 57.57 -5.12 

Class 3 -0.10 -5.12 6.78 

 

A simplified version of the same process is used to construct a variance 

estimate for an aggregated link count sensor. Because an aggregated link counter 

produces only a single observed value, dR  is a scalar, rather than a matrix and there 

are no covariance terms. The simulation treats an aggregated link counter as a 

simplified version of classified link count sensor where the total number of vehicle 

classes is 1 and the classification error rate is 0. 

The dR  matrix of an intersection surveillance sensor can be performed in a 

similar way. Consider a classified sensor at node 5 in the network as an example. 

There are 15 observations associated with this sensor (5 relevant movements for each 

of the three vehicle classes). The resulting dR  matrix is a 15 by 15 matrix (See Table 

A- 6). We assume that the errors made by the sensor are counting errors and vehicle 

classification errors, but not mis-recording turning movements. That is, if a vehicle is 
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recorded correctly, its actual movement (through, left turn, right turn) is also recorded 

properly. As a result of this assumption, the dR  matrix is block-diagonal. The 

submatrix concerning different observations of one turning movement can be derived 

in a similar way as a classified link counter. The capacity of a path used in the 

calculation is the smallest capacity of included links. Since all links in the 9-node 

network have the same capacity, the submatrices are all the same. 

Table A- 6: Example dR  matrix of a classified camera at node 5 

2-5-6(1) 2-5-6(2) 2-5-6(3) 2-5-8(1) 2-5-8(2) 2-5-8(3) 4-5-2(1) 4-5-2(2) 4-5-2(3) 4-5-6(1) 4-5-6(2) 4-5-6(3) 4-5-8(1) 4-5-8(2) 4-5-8(3)

2-5-6(1) 72.74 -51.32 -0.1 0 0 0 0 0 0 0 0 0 0 0 0

2-5-6(2) -51.32 57.57 -5.12 0 0 0 0 0 0 0 0 0 0 0 0

2-5-6(3) -0.1 -5.12 6.78 0 0 0 0 0 0 0 0 0 0 0 0

2-5-8(1) 0 0 0 72.74 -51.32 -0.1 0 0 0 0 0 0 0 0 0

2-5-8(2) 0 0 0 -51.32 57.57 -5.12 0 0 0 0 0 0 0 0 0

2-5-8(3) 0 0 0 -0.1 -5.12 6.78 0 0 0 0 0 0 0 0 0

4-5-2(1) 0 0 0 0 0 0 72.74 -51.32 -0.1 0 0 0 0 0 0

4-5-2(2) 0 0 0 0 0 0 -51.32 57.57 -5.12 0 0 0 0 0 0

4-5-2(3) 0 0 0 0 0 0 -0.1 -5.12 6.78 0 0 0 0 0 0

4-5-6(1) 0 0 0 0 0 0 0 0 0 72.74 -51.32 -0.1 0 0 0

4-5-6(2) 0 0 0 0 0 0 0 0 0 -51.32 57.57 -5.12 0 0 0

4-5-6(3) 0 0 0 0 0 0 0 0 0 -0.1 -5.12 6.78 0 0 0

4-5-8(1) 0 0 0 0 0 0 0 0 0 0 0 0 72.74 -51.32 -0.1

4-5-8(2) 0 0 0 0 0 0 0 0 0 0 0 0 -51.32 57.57 -5.12

4-5-8(3) 0 0 0 0 0 0 0 0 0 0 0 0 -0.1 -5.12 6.78
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