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ABSTRACT 

This paper discusses problems in ecology and epidemiology that 
represent challenging and important scientific problems. The emphasis is on 
ecology and epidemiology of infectious diseases, and the use of 
supercomputers as a complementary and novel tool to experimentation and 
classical approaches. A brief discussion to address the concept of a 
fundamental scale, a necessary step in the development of a landscape model, 
is illustrated through the use of a model for the serpertine grassland at Jasper 
Ridge, CA. Further issues related to the proper level of aggregation and scale 
are addressed through the myxoma-rabbit system and the human 
immunodeficiency virus-man system. 
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INTRODUCTION 

Taking the charge of the Molokai conference literally, this paper discusses problems 

in ecology and epidemiology that represent grand scientific challenges. The areas that we 

will discuss are of fundamental scientific importance;_ they are also ones where the potential 

for supercomputing to have major impact is tremendous, but not yet realized. 

Supercomputing represents a novel tool that complements experimentation and 

classical theoretical approaches. It can transform the way ecologists and epidemiologists 

even frame their questions, freeing them from constraints that have been taken for granted. 

Such liberation will take time, but the issues are too important to delay initiating the 

process. 

In this paper, we join ecology and epidemiology-more precisely, the 

epidemiology of infectious diseases-because they represent closely related subjects. 

Ecology deals with the relationships between organisms and their environment, which 

includes other such organisms and other species; among the interspecific interactions of 

concern are competition, predation, and parasitism. The dynamics of infectious diseases 

represent a special case of the latter: an interaction between parasite or pathogen and host, 

where the particular infectious agent may be a virus, a bacterium, or other organism. 

Viewing the dynamics of infectious diseases within an ecological as well as an 

epidemiological context has provided a 'neV:. perspective on disease spread, control, and 
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evolution (Anderson and May 1979, Levin 1983), and has given new impetus to modeling 

effons. 

Given the parallels discussed in the last paragraph, it is not surprising that effons at 

modeling ecological and epidemiological interactions, though historically they developed 

separately, have followed quite similar paths. The classical fare in both fields has involved 

dynamical systems of low dimensionality, in large pan in deference to what could be done 

analytically. In ecology, statistical mechanical theories of interacting species have been 

developed, but have had no real impact on the subject because the necessary simplifying 

assumptions cannot be justified biologically. Ecological systems are not composed of 

ensembles of interchangeable particles, and show tremendous heterogeneity and complexity 

across a range of scales. Analytical approaches have not been capable of deiling with the 

full range of complexity, although of course they remain critical elements in an integrated 

· approach to studying complex ecosystems. The supercomputer complements these 

methods, and opens up dramatic new possibilities for understanding the structure and 

dynamics of ecosystems and epidemics. 

ECOLOGICAL SYSTEMS 

In the early part of the twentieth century, two views of ecosystems were advanced. 

One, due to Gleason (1926), argued that plant communities were very loose assemblages, 

that species were distributed individualistically, and that stochastic factors were of major 

imponance. The contrary view (Clements 1936) argued that the vegetation at a particular 

location would tend to an asymptotic state, the climax, determined by local climatic and 

edaphic (soil) conditions and consisting of a single or a small number of competitively 

dominant species. The latter point of,view was also represented in the mathematical 

theories ofLotka (1925) and Volterra (1931), whose approach was developed to describe 

animal communities, but was applied more generally. These models, which are taught in 

introductory ecology courses and continue to provide grist for the mills of mathematicians 

today, consist of systems of differential equations representing the dynamics of interacting 
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species, treated as if chemicals in solution. The emphasis is almost always on the 

asymptotic behavior, which usually involves convergence to a singular point or a limit 

cycle. The general characteristics of such approaches involve determinism, predictability, 

homogeneity, and equilibrium, all of which are features that cause the ecologist some 

concern. 

The most influential applications of these equations have been to pairs of interacting . 

species; attempts to expand beyond this have led to some interesting mathematical 

excursions, but to very little biological success. Giyen the uncertainty with which the 

forms of the equations, much less the parameters, are known, the classical problems of 

analytical complexity, sensitivity to parameters and ~rial conditions, and error propagation 

have seriously restricted our ability to use such formalisms to predict the dynamics of 

ecosystems. 

Equally problematical is the fact that the choice of the ecological species as the 

fundamental unit to use in modelling is arbitrary. In some cases, one must break the 

species into age classes, developmental stages, genetic types, or social groups. In others, 

it is ~ppropriate to lump species together into groups that perform similar functions. 

Indeed, it may be appropriate to do both at the same time, lumping together the juvenile 

stages of a group of species that show similar behavior at that life stage, and creating 

different groupings at adult stages. Indeed, any choice of aggregate variable is to some 

extent arbitrary, suppressing heterogeneity within a group in an attempt to organize 

individuals into aggregates for which some characteristic behavior can be assumed. 

One of the most intriguing aspects of a population's structure is its spatial 

distribution. In much the same way that a population can be subdivided into age groups, it 

can be subdivided into local subpopulations; and it is this patchiness of populations, 

coupled with environmental variability, that accounts for the coexistence of large numbers 

of species that otherwise could not exist together. 
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For continuously disnibuted species, as for example oceanic plankton, continuum 

descriptions are appropriate; and a considerable literature exists based on the resultant 

coupled parabolic partial differential equations. Such approaches can be very instructive in 

treating such problems as the spread of invading species, including those that cause 

epidemics, and there is a beautiful and applicable mathematical literature on the asymptotic 

speed of propagation that emerges from such descriptions (Kolmogorov et al. 1936, 

Bramson 1983, Andow et al., ms.). Nonetheless, such approaches are not easily extended 

to the consideration of localized random disturbances, which are common features of 

ecosystems, and for which percolation theory and approaches involving interacting particle 

systems (Liggett 1985, Zallen 1983, Durrett 1988) may be more appropriate. Furthermore, 

most ecologists are unable to take data over a continuum of spatial scales simultaneously, 

and tend to select study sites of fixed (and small) size for reasons that have more to do with 

logistics.and finances than with science. 

One of the most exciting challenges facing ecological theorists is to address these 

and other questions by developing methods for relating processes taking place on different 

spatial, temporal, and organizational scales. A proper theory of scaling for ecosystems 

should stimulate experimentation and data collection that address explicitly the 

manifestation of patterns on multiple scales, and provide the basis for extrapolation from .. 
data collected on one scale to patterns on broader or narrower scales. Such a theory also 

would address two related and emerging problems of substantial applied importance. The 

rapidly accumulating base of information arising from remote sensing is resnicted in 

resolution by the minimum pixel size that can be u~e~; theories that can interpret that 

information in terms of processes played out on finer scales are a fundamental need. 

Furthermore, as attention turns to global climate change and its implications for Earth's 

ecosystems, various modeling groups have seen the attractiveness of coupling global 

climate models with models of the dynamics of ecosystems; such approaches would allow 

one to address not only the effects of a changing climate on ecosystems, but also the 
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reciprocal effects that altered ecosystems (for example due to deforestation) must have on 

climate change. Yet the typical scales of resolution in global climate models are orders of 

magnitude coarser that those used in ecosystem models; and even with massively parallel 

processing, the potential for refining the grid of the climate models is severely limited. 

Thus the alternative approach must be developed, of scaling up ecosystem models to 

provide believable models at the landscape level. This is the ultimate goal of our approach. 

A necessary step in developing a landscape model is to define a fundamental scale, 

that of the primary building block of the larger mo,del. Processes occurring at smaller 

scales are represented by their average effect on processes at the fundamental scale. For 

example, one of the systems we are modeling is ?- serpentine grassland at Jasper Ridge, 

California, and the fundamental scale we have chosen is a 10-cm by 10-cm area (We will 

use the Jasper Ridge model in the following discussion to illustrate our approach.) Of 

course, the choice of any scale is to some degree arbitrary ignoring heterogeneity within a 

cell in order to retain a fundamental unit sufficiently large that its dynamics are statistically 

reasonably predictable. We also are investigating models that account for dynamics 

occulTing at a smaller scale-tracking mortality, reproduction, and competition as a 

function of spacing at length-scales on the order of millimeters or centimeters in ~ attempt 

to find an optimal degree of resolution. In this paper, we ignore the finer details and model 

demographic· processes as a function of population densities within a 10-cm by 10-cm 

neighborhood. 

One of the factors influencing the choice of fundamental scale of the Jasper Ridge 

model is the size-scale of disturbances affecting the grassland, since it has been established 

that species distributions at Jasper Ridge are controlled to a large extent by disturbance 

regime (Hobbs and Mooney 1985); approximately 10% of the landscape is disturbed per 

year by the actions of small mammals and insects. In order to capture the landscape 

dynamics of the grassland, we choose the fundamental scale of the model (1 00 cm2) an 
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order of magnitude smaller than the size of a typical disturbance (1100 cm2 on average; 

Hobbs and Mooney 1985). 

Once the scale of the smallest model unit is set, the second step in our approach is 

to build a landscape level model by constructing a 104 cell grid incorporating dispersal, 

. competition, and spatially correlated extrinsic factors. The dynamics portrayed at the 

landscape level are generated by copies of a basic demographic model running in each 

fundamental unit, or grid cell, of the landscape (Fig. 1). The model in its simplest form 

can be run efficiently on a microcomputer; but as greater detail is added, it is necessary to 

use the facilities of the Cornell National Supercomputer Facility (CNSF). This is 

particularly true when we wish to explore p~eter space in detail. Because of these 

considerations, the model is being coded in FORTRAN; and the same version, with slight 

modification, can be run on an ffiM clone, the CNSF, or a Macintosh. Spatial and 

temporal statistics applied to model output are more computationally intensive than the 

model runs themselves and must, in general, be conducted on the CNSF. The structure of 

the model is designed to capitalize on the parallel capabilities of the CNSF. 

· Currently, the Jasper Ridge model is built around four plant species, chosen to 

represent demographic types characteristic of the plant community. Connections between 

the species occur through competitive interactions, which, in the current version, act to 

modify seed production as a function of the densities of the four species within each model 

cell. This represents a major regulatory feature of the demographic model, as it introduces 

a density dependent dynamic regulating the production of seeds by individual plants. As 

density within a cell increases, seed production by individual plants declines. Tne 

dynamics are such that each species, in the absence of disturbance, would reach an 

equilibrium population density (or limit cycle) over time (Fig. 2a); in the presence of 

random disturbances, the stochastic process is stationary and approximately ergodic 

(depending on boundary conditions). 
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Landscape level processes in the Jasper Ridge model are produced, in part, through 

mechanisms that act to couple dynamics among cells across the landscape. These include 

disturbance, dispersal, and competition. For example, the dispersal of seeds among cells 

allows recolonization of a disturbed site, or invasion by an introduced species, and acts to 

connect population dynamics across the grid. However, such coupling is not sufficient to 

maintain landscape level heterogeneity. Otherwise, synchronization across cells occurs 

because of the self-damping of the demographic model within each cell; thus, without 

disturbance the model approaches a stable point or limit cycle at the level of the landscape 

through time (Fig 2b ). Without an outside forcing function, the landscape model simply 

becomes a large scale realization of the model constructed at the fundamental scale, with 

dispersal serving sixpply to homogenize the system across space. 

Spatial heterogeneity is introduced by disturbing sites at random within the 

landscape; Monte Carlo techniques are employed to deterinine.the location of disturbances 

(Fig. 3). Disturbances are allowed to occur over two distinct time periods in the yearly 

cycle depicted by the model. The impacts of introducing disturbances are manifold and 

depend in part on time of occurrence (Fig. 2c) relative to the seasonal dynamics of species. 

Disturbances can affect local population structure by removing plants from the population 

before they reproduce (Disturbance 1 in Fig. 1), and can have a large impact on the local 

abundance of.a species, especially since all of the plants being modeled are annuals. In 

contrast, a disturbance occurring after seed set (Disturbance 2 in Fig. 1) can have either 

little or no effect on the local population or a large effect, depending on whether the seed 

bank is destroyed. Differences among species in time of flowering and in dispersal ability 

under a disturbance regime can act to crea~e substantial differences in distri_butional panerns 

observed across the landscape. Another major impact of disturbance is to create a different 

physical environment within affected cells through a change in moisture and nutrient 

availabilities (Koide et al. 1985, Mielke 1977). This is modeled as a change in parameter 

values for rates of gennination, survival, and reproduction of plants growing on cells 
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affected by disturbances. Again, environmental differences associated with disturbances 

act to create pattern across the landscape. 

Another source of landscape heterogeneity can be introduced by building 

environmental gradients into the model. This would be similar to modeling a landscape 

over a range of altitudes or range of soil types, where population processes change in 

response to a changing environment. Parameters describing demographic processes along 

a static gradient in the model would then be a function of location as well as of disturbance 

regime. This provides a mechanism for modeling over several community types and for 

developing a model at larger landscape scales. 

Model outputs are analyzed by evaluating a variety of spatial and temporal pattern 

descriptors, correlograms and semivariograms, power spectra, fractal dimensions, and 

nested analyses of variance (see for example, Fig. 4). These may be used to compare 

model outputs with data taken from the natural system, and used to refme the model. The 

model itself can then be used as an experimental tool on the computer, on which the 

parameters of various key processes can be varied to study their importance in defming 

pattern on various scales. With Richard Durrett, we have begun the consideration of 

percolation model approximations to our detailed model, in the hope of gaining 

understanding of the importance of the basic processes. Finally, analogous versions of the 

model are being implemented for forest systems. 

Clearly, it is possible to make a model more and more detailed by adding 

complexity. However, adding complexity to any model can be dangerous, adding to the 

dynamical complexity as well. Furthermore, with increase in resolution comes increasing 

computational needs, as well as problems of parameter estimation. Developing models at 

larger fundamental scales is one way to simplify the process, both in terms of computation 

and comprehension; our goal is to develop these descriptions by examining the emergent 

propenies of systems structural at finer scales, and to compare the output of the aggregated 
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behaviors with observed features of real systems. This is an iterative process, which can 

be repeated several times. 

EPIDEMIOLOGICAL SYS1EMS 

Although Daniel Bernoulli presented a mathematical model for the effects of 

smallpox vaccination as early as 1760, current mathemati~al models of the spread of 

epidemics trace back to work of En'ko in 1889 (see Dietz 1988), and to the notion, 

advanced by Hamer (1906), that the critical process in the dynamics of disease was in the 

contact rate between susceptibles and infectives (see also Ross 1911, Brownlee 1907, 

McKendrick 1912). The contact rate describes the essential nonlinearity in what otherwise 

is basically a linear system. The classical assumption is that the rate of new infections is 

proportional to the number of infectives and to the number of susceptibles, an assumption 

that is easy to motivate from first principles when densities are low. It is recognized that 

this simple relationship is likely to break down at higher densities, but it remains a 

convenient starting point for most models in use today. A related problem, particularly 

important in the consideration of populations that fluctuate in size, is whether contact rates 

should be functions of the actu~ numbers of susceptibles and infectives in a particular area, 

or only on their relative proportions with respect to the total population, including 

recovered, immune, and latent individuals. It is not the purpose of this paper to enter into 

that debate, 'Yhich of course can only be resolved with regard to particular diseases and · 

under particular conditions. 

Ross (1911), in studying the dynamics of malaria, and Kermack and McKendrick 

(1927) produced two of the classic papers of the mathematical epidemiological literature. 

The contribution of Kermack and McKendric;k was the demonstration of the existence of a 
. -

threshold value for the number of susceptibles, such that if fewer were present in a 

population, a disease could not take hold. Such a threshold is important for a variety of 

reasons, most importantly because it provides a target for vaccination strategies. If the 

susceptible population is reduceq. below the threshold value by removal techniques such as 
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vaccination, then the disease can be controlled. Of course, computation of the threshold 

can be problematical and highly model dependent, and particular interest today focuses on 

how that threshold is to be computed when the population is broken into distinct 

subgroups. This is one of the foci of our own work. 

Another objective involves understanding the periodic and more complicated 

dynamics observed in the dynamics of many diseases (Hethcore and Levin 1989; Schaffer 

et al. 1985). Soper (1929) began the investigation of the causes of periodic behavior; but 

the list of contributory causes continues to expand (I:Iethcote and Levin 1989). 

The availability of supercomputers has expanded greatly our capacity to investigate 

these issues. In particular, parallel processing_ techniques are especially suited to the 

problem of nonhomogeneous mixing, which is a consequence of the fact that populations 

are subdivided into different risk groups. Within groups, the rates of interaction are 

typically very different than they are among groups; and furthermore, intergroup 

interactions are not likely to be homogeneous. For example, in the dynamics of diseases 

such as influenza, age is a primary consideration, since different age groups have different . 

contact rates, different susceptibilities, and different risks of mortality. For sexually 

transmitted disease such as AIDS, the adult population is key; but subdivision is necessary 

with regard to sexual preference and behavior. For AIDS, of course, drug users also 

represent a risk category that needs to be considered explicitly. In the remainder of this 

paper, we will discuss briefly models of three viral diseases: myxomatosis, a disease of 

rabbits; influenza; and AIDS. 

Myxomatosis is a disease of rabbits, and has been used as a biological method of 

controlling the spread of rabbits in Australia and in Europe (Fenner and RJtcliffe 1965). 

The early success of the viral control soon was dissipated. however, as evolutionary 

pressures drove the virus towards lower levels of virulence, and the rabbit to increased 

resistance. Differential equation models of this system captured many of the principal 

features, but were unable to represent the full complexity: the multiplicicy of grades of the 
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vrms, the geographic and seasonal variability, the etiology of the disease, and the 

demography of the host population. As such, still unresolved are explanations of the 

coexistence of viral grades in the field, and projections of prospects for future control of the 

rabbit population. 

Detailed simulations (Dwyer et al. 1989) on the CNSF have demonstrated that even 

the interaction between single grades and homogeneous hosts can show complicated 

dynamics, including periodic and chaotic behavior. In particular, the natural oscillations 

that are characteristic of any host parasite system in.teract with the seasonal forcing that 

derives from host demographic patterns to produce a panoply of dynamic behaviors as 

critical parameters are varied. Further investigations have elucidated the interactions among 

strains, and the coevolution between virus and host. 

Viral evolution takes on a new dimension in the annual ravages of influenza, whose 

rapid changes, facilitated by a particularly labile molecular structure, foil host coevolution 

and result in the sporadic reappearance of strains long disappeared. Although the molecular 

shift and drift involving the surface antigens of the virus are weil understood, such 

knowledge is insufficient to explain the interepidemic periods. Such periods are 

determined by epidemiological characteristics, in particular the time neceSS3!}' for a 

sufficient susceptible population to build back up after an epidemic or pandemic. The 

threshold behavior mentioned earlier as a general property of epidemics is key to an 

understanding of when new outbreaks can occur. A separate but related problem involves 

an understanding of how the seemingly dormant strains of the virus are maintained for the 

decades that can pass before the susceptible population reaches threshold. 

Our investigations of influenza (Castilla-Chavez et al. 1988, 1989a, Liu and Levin 

1989) on the C)l"SF have incorporated details of the age structure of the host population, 

including age specific contact rates, mortalities, and fecundities. It is well appreciated that 

the human population does not mix homogeneously; for example, school children tend to 

mix with school children, and have a panicularly high contact rate and probability of 
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transmission of the disease. Non-homogeneous mixing of different age groups does not 

appear capable of leading to sustained oscillations, but can produce oscillations that are 

very slowly damped. A separate phenomenon that produces similar behavior is the 

cocirculation of distinct strains of the virus, which show partial but incomplete cross­

immunity with one another. When a full age-structured model is considered in a population 

in which such partially incompatible viral strains are cocirculating, the two weakly damped 

oscillators are mutually excitatory; the result is that sustained oscillations are maintained. 

Analytic models have provided deep insights into this problem, but a full understanding 

could be obtained only when those analyses were carried out in concert with detailed 

simulations on the CNSF. 

Finally, and most recently, we have turned our attention to models of the AIDS 

epidemic. AIDS, as a primarily sexually transmitted disease, is a disease for which the 

assumption of homogeneous mixing is a total failure. Detailed models (Castille-Chavez et 

al. 1987, 1989b,c,d,e,f) have been developed that subdivide the population into risk 

groups based on sexual behavior or other characteristics, and show how to compute the .. 

threshold for such multi-group models. However, what are needed now are models that 

incorporate the rapidly accumulating information on human sexual behaviors, and that are 

tailored to different geographical regions. For these detailed models, the supercomputer is 

essential. 

CONCLUSION 

We have presented here only the briefest introduction to the application of the 

supercomputer to emerging problems in ecology and epidemiology. In the short space of 

this paper, it is impossible to develop these investigations in detail; for that purpose. the 

reader is directed to the referenced works. Suffice it to say that the epidemiological and 

ecological problems facing us in the next decade represent some of the grand challenges for 

society; this applied importance, and the models' rich and fascinating mathematical 

behaviors, place them in the elite group of Grand Challenges for Supercomputing. 
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FIGURE LEGENDS 

FIGURE 1. General structure of the Jasper Ridge serpentine grassland model as it runs 

within individual cells of the model grid. The same model structure is used for each 

species with connections between species coming through competitive interactions during 

the flowering stage. Connections among cells of the model grid occur through dispersal. 

FIGURE 2. Mean abundance at each time step for Lashthenia californica, one of the four 

species in the Jasper Ridge model, averaged over all cells of the same disturbance type. 

(A) The model run as one cell for 100 generations with no disturbances. (B) The model 

run as a 100 x 100 grid of cells for 100 generations with no disturbances. (C) The model 

run as 100 x 100 grid of cells for 100 generations· with two disturbance types, April and 

July, affecting approximately 10% of the model cells during each time step. 

FIGURE 3. A subsection of the grid for the Jasper Ridge model showing randomly 

distributed disturbances of two types. 

FIGURE 4. Examples of descriptors of model output. (A) Semivariogram, representing 

the mean squared variance of the abundance of four species as a function o,f spatial 

disturbance. (B) Power spectral analysis of the spatial distribution of four species and 

disturbance regime. (C) Spatial variance of four species as a function of size of basic 

sampling unit. 
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Spatial Spectra for Jasper Ridge Model 
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