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1. An arithmetic interpretation #* of propositional formulas (fls)
is delermined by interpreting atoms Py by arithmetic sentences p:.
This may be extended to the language of modality by a suitable interpretation
of the "necessity" connective O. Of special interest is the interpretation
of O as (arithmetized) provability ih, say, Peano's arithmetic PA;
i.e., one defines, given (p;]i, *ma, (o t)* = :p*- 1* for each
binsry connective o, and (D¢ )* 1= Pr("rp*’) , where Pr is a
(canonical) provapility predicate for PA.

Under any such interpretution, any instance of the following

schemas becomes a8 theorem or rule of PA:

(A1) O(e +¥) ». De -0y
(A2) Og - 00
(r1) ro = +0op .

In fact, these are the derivability conditions used in the proof of
. G82el's incompleteness theorems. While these schemas are valid also for
trivial interpretations of U (e.g., as a vacuous operator), the
self-referential mechanism of PA yields as a theorem of PA also

each * interpretation of
(I‘?J) C(:"p - rp) »> Ol

(v (o))



Iet G (for G8del) be the extension of classical propositicral
logic Cp with (Al)- (A3), (Rl). We indicated that each *-
interpretation of & theorem of G is a theorem of PA. Solovay [21
proved the converse: {f "PA :p* for all *, then r-c;' ». The logic
G is discussed in extenso b_y Boolos [1] and 5mryfxski_[6] (where it is
denoted L).

De Jongh, Sambin and Kripke have independently shown that (A2) is

derived in G~ :=G - (A2). (cf. [1], p. 30.)

2., An alternative axiomatization of G. Let G' be lire G,

except that (A3) is replaced by the inference rule
(r2) rOp+0 = Fo.

We show that G' 4is equivalent to G.

2.1 LEM#A. roUe = +o .

*,
Proof: Assume . O¢; then YA Prfip 7 for any *, so0 + ., %
by the soundness of PA, and hence * th by Solovay's completsness

theorem. ®

2.2. PROPOSITION. *+.,¢ = F.¢.

Proof: We only have to verify that G 1s closed under (H:).
Assume v—GDcp > ¢; then +. O(0O¢ +¢) by (R1), so v—G-:'c,n by

(I\'{), and l-u'p by 2.1 . e



¢ 300(0p » ) «0¢.

By (P2) it suffices to derive Oy -+ y. Arguing in G', assume
1) Ty and (2) U(Up »9). Then (3) UUMe +¢) vy (2),
(A2) ; also (&) CO(@Q¢ +¢) »00¢ by (1), (A); so (5) OOe
by (3), (%); (£) Ty -Op by (2), (A1), end Op by (5),

%) . 2

A zeguentisl calculus for G. Let I, 8 stand for finite sets of

W

f1s. A secuent is an ordered pair [:4. Write T,4 for TUJ4;
-,z for [ Ulsl; ©F for (Op| ¢ €T}). We define G =~ as the

sequantial calculus built on the following inference rules.

oL ; R Laoo: ¥,8
- - T:p +y,4

7

The usual rules for A and Vv (if one wishes to refer to these

connectives)
T:g,b = r:a
t. JE7T— ST 11 . thin: -
= r,z:8,= ? —" T,I:,E



Hi:  #ri0e

Cloarly, G, 16 the camo as Cp + (A1) + (1) . Let g =g+ (A2),
and G, := G, + (L) where L is the rule:

p e

2 T
Then G, is the same as G', and hence the same as G.

3.1. LEM#A. (Cut-elimination) Every theorem of G o has a proof in

G, without cut.

Proof: Same as the standard cut-elimination argument for Cp
(cf. e.g. [3] p. 454). Permutation of cut over OT 1is never needed,
since all fls are active in the conclusion of I . When both active

occurrences of a cut formula are derived by I , we have

F:o Z,9: ¥

Ur:0¢ O, 0 : 0y
ar, Uz : 0y

This is reduced to L& Do - g

T,Z:y
ar, 0Oz :0Oy

We do not have cut elimination for either _(_;_1 or G 2 However,
the simple axiomatization of G o over G ° permits some interesting

applications of 3.1 . This is done via the following lemma.

3.2. LEMMA., (i) 1If T+, 4, then £,0=,T Y where each
2 o

¢ € L is an instance of (A2), and each § € = is a theorem of G.



(11) et g, =G, - (A2). If ”_Qg 4 then DE,FI-QOA

where each § € = is a theorem of 9'2' .

Proof: (i) If T[*_ 4 then there is a proof x in G, + (L)

G

deriving T,Z:4 for I as above. Skipping in x each instance
Cetg of (L) and collecting D¢ in all antecedents below such

an instance we obtain the result. The proof of (ii) is the same. =

I}

4. Closure under rules. Cut-free systems are useful in demonstrating

closure under rules. We give two examples.

4.1. PROFOSITION. If OF », 0UAOR then I,Or +, 8,04 .

Proof: Assume QI Yo Os,0A. Then, by 3.2(i), 3.1, there is a

cut free proof x of Eo deriving
(* £, Oz, 0r: 0s,08

where £ = {Dvi +DCHi]i and cach § € = is a theorem of G. We
show by induction on the height h of x that (*¢) [,0Or e 4, o4
Basis. h=1. (%) has no premise. Case (a). DS € 0 for some
$ e AUA': then |_Qs and !*QDS ., (b) 0S €Ol ; then T ;—ES ,
and OTk 05,

In\l.—uboy. h>1. Casel. (%) is derdved by (L:

L, U5, Ur:Ca,n8,0y 1,004, 0x,0r:04,08
STy s Ly, TTE s A, CIAY




s

By ind. hyp. applied to the premices,
r,or v, 6,060y and  1,0r,04,004 v 8, aa

so r,0r +; a,0#
(#) 4is derived by thin; trivial.

Case 2.
(*) is derived by O :

Case 3.

and Drl'g bs.
then T Yo ] .( Since x 1is cut-free, these are the only possidle

cases.
then Or rG a. X

4.2. COROLIARY, If OOTr », 04
4,3, PROPOSITION. If Or +.,-08 then T+ .~ 4.
= S2 ga
Similar to (and simpler than) h.1l., using 3.2(i1) in

Yroof:
place of 3.2(1). ®

4.k, COROLIARY. Up fg- CCp.
=2
This contrasts with the derivability of (A2) in ¢~ =G - (A-y,
in clened,

r
5

mentioned in §1.
(Lihyly o

(=4

Wo now give o pecond example of a rule under which

k.5, PROPOSITION. If O +.U2,A, where eech ) €A isa

propositional letter, then UL o @ for some o ¢



troof: Using the conventional notations of 4.1, it suffices to

chow that CT bh % whenever there is a cut-free proof x of Qo

deriving (*) £,z,Cr:0a,A. We proceed, again, by induction on

tre height of x . The basis is trivial.

In3. Step. Case l. (*) is derived by 2L.

AR AT W BT 7,005 ,0ir,00y : 08 ,A
T,01 ~ OOy, 0=,01 :08,A

-

Ey ind. hyp. applied to the left premise, if Or ’IG ¢ for
o € (=4,A), then OT e Oy . And by ind. hyp. for the right

prezise, Or,C0Y v, » for some ¢ € (Ob,A) . Hence OT Fo P

G

fz-e z: <+hLin; trivial. Case 3. OI ; then the succedent of #) must
——’ —

cor.sist of a single f1 to start with. R

Some examples of application of 4.5: (1)
Cfpin) ¢, Cpvia  (2) O(pvOpv ... vO") Y p VR V .ee vidyp.

-
tere Tp :5p, Dn+lp :EDan.

€. Tre reflection principle. This is the schema O¢ + . By (A3),

G

+.Cp -9 iff Fo?- The next result shows that the reflection
grinciple is not finitely axiomatizable over G . This has been shown

rciel-theoretically by Boolos (2] .

cenzan . k n
5.1. DEOFOGITICH. Assume (*) [Dcpi »(pi)i_l FQD p+p. Then

k>n.



Proof: By induction on n. Lusis n =1; trivial. 1nd. step.
n> 1. Using again the notational conventions of 4.1, if (*) holds,

then there is a cut-frco proof x of _G_o deriving
- “k n
(**) £,0=,0¢, > ¢l _,, Op:p.

(*) must be derived by thin or -L. The left premise have the
form ‘E,DE,(D:pi - ‘Pi)i’ 0% : p,00% and is derived again by thin or
+L. These inferences may be ordered at will, with a single instance
of thin on the top; this is simply because such instances of 2L may
be permuted ([4]). To recall:

r:4,0,0 [‘,‘Q:A)a'

Do » y:0,x Lo~ ¥,0:8
[,a -+ 6,9+ y:8

may be rearranged as

[:8,0,0 F,o > ¢,0:8 Ly:8,a Mo+ y,p:8
Do > ¥, > 12 i > 1,8
9 » v,u -+ p:b

We may assume,therefore, that instances of reflection are active below

active occurrences of fls in I ; taking successively left premises of

+L, we then get in x a sequent £,02,0%p: p,(uq‘i ie1°
Hence O"p s p, (O, )1 1+ Since up VG P, we get, by L.5.,
Dp FD(pi for some i, say i =k. Since n>1, Dn-lp Yo %

by 4.,2. Hence (C:tcpi *tpill Ji GDn-lp*p. By ind. hyp. k-1>n-1,

and 50 k>n. B



6. Interpolation. A system S satisfies (Craig's) interpolation
ir qn»s' implies that Prg K and « hs' for some f1 «x with

logical constants common to ¢ and ¢.

6.1. PROPOSITION. S, satisfies interpolation.

Proof: We apply cut-elimination (3.1) via Maehara's partition

method (cf. [4) p. 35). The presence of the rule OI necessitates only

s r,a:y
—
two additional clauses, (1) Consider OF, Ja:0v? and assume «x is

an interpolant for the premise: I'+«x,y and A,x.. Then
Gr,0-x+ 0y ana Oar O-«x. So OF--~0O=«,0vy and

Ca,m0~«r, and "0O=« is an interpolant for the conclusion. (2)
Similarly, if = is an interpolant for T,4:8, then Uk is for Or,0a :0s.
6.2. LEM{A. Assume l‘,rl[f']v-GA, (), T - (ryseeer)) . Set

‘}:f= [o(sl,...,ﬁn)l o €L, 5;: Tor 1, j=1,...,n}. Then

l‘,}.:f *e A,Lg .

Proof: A straightforward and trivial induction on the length of

the proof in G, for [,r :5,%,. I

6.3. FROFOSITION. If H =G, +S, where § 1is a set of axioms (no

rules!) closed under substition, then H satisfies interpolation.

Proof: Assume ¢[5,4) “H ¥($,8) ; then x(5,4,3], Pre ¥
= 2o

with £CS. So by5.2. zq’s[‘i»],qnG ¥. By5.1 there is an
o

interpelant « in G for MzP®%) A and y. Since P8cs

by our assumption on S, ¢ x and K k. . ¥

R
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6.4. COROLLARY. G, and G,

) G, = G satisfy interpolation. ¥

The interpolation theorem for G was proved independently by
Boolos [1] and Smorynski [7] , using Xriple models for G.  Ac ucual,
from the interpolation theorem Beth's definability theorem for G

readily follows.



(1)
(2]

{3]
(4]

{51
3
(7]
1£9)]

9]
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