On the Proof Theory of the modal logic \underline{G} .

Ву

Daniel Leivant

TR79-380

July, 1979

Department of Computer Science Cornell University Ithaca, NY 14853

On the Proof Theory of the modal logic G .

Daniel Leivant Department of Computer Science Cornell University, Ithaca NY 14853

July 1979

1. An arithmetic interpretation * of propositional formulas (fls) is determined by interpreting atoms p_i by arithmetic sentences p_i^* . This may be extended to the language of modality by a suitable interpretation of the "necessity" connective []. Of special interest is the interpretation of
as (arithmetized) provability in, say, Peano's arithmetic PA; i.e., one defines, given $\{p_i^*\}_i$, $\iota^*:\equiv\iota$, $(\phi \circ \psi)^*:\equiv\phi^* \circ \psi^*$ for each binary connective \bullet , and $(\Box \phi)^* := \Pr(\ulcorner \phi^{*} \urcorner)$, where Ir is a (canonical) provability predicate for PA.

Under any such interpretation, any instance of the following schemas becomes a theorem or rule of PA:

(A1)
$$\Box (\varphi + \psi) + \cdot \Box \varphi + \Box \psi$$

(A2)
$$\Box \varphi + \Box \Box \varphi$$

(R1)
$$\vdash \varphi \Rightarrow \vdash \Box \varphi$$
.

In fact, these are the derivability conditions used in the proof of Gödel's incompleteness theorems. While these schemas are valid also for trivial interpretations of U (e.g., as a vacuous operator), the self-referential mechanism of PA yields as a theorem of PA also each * interpretation of

(A3)
$$\square(\square\varphi + \varphi) + \square\varphi$$

(L85 151).

Let \underline{G} (for Gödel) be the extension of classical propositional logic \underline{Cp} with (Al) - (A3), (Rl). We indicated that each *- interpretation of a theorem of \underline{G} is a theorem of \underline{PA} . Solovay [8] proved the converse: if $\vdash_{\underline{PA}} \varphi^*$ for all *, then $\vdash_{\underline{G}} \varphi$. The logic \underline{G} is discussed in extenso by Boolos [1] and Smorynski [6] (where it is denoted L).

De Jongh, Sambin and Kripke have independently shown that (A2) is derived in $\underline{G}^- := \underline{G} - (A2)$. (cf. [1], p. 30.)

2. An alternative axiomatization of \underline{G} . Let $\underline{G'}$ be like \underline{G} , except that (A3) is replaced by the inference rule

(R2)
$$\vdash \Box \varphi + \varphi \Rightarrow \vdash \varphi$$
.

We show that G' is equivalent to G.

2.1. <u>LEM4A</u>. +_G □ φ → +_G φ.

<u>Proof:</u> Assume $\vdash_{\underline{G}} \Box \varphi$; then $\vdash_{\underline{PA}} Pr \vdash_{\overline{p}}^* \neg$ for any *, so $\vdash_{\underline{PA}} \varphi^*$ by the soundness of \underline{PA} , and hence $\vdash_{\underline{G}} \varphi$ by Solovay's completeness theorem.

2.2. PROPOSITION. $\vdash_{\underline{G}}, \varphi \Rightarrow \vdash_{\underline{G}} \varphi$.

<u>Proof:</u> We only have to verify that \underline{G} is closed under (F2). Assume $\vdash_{\underline{G}} \Box \varphi + \varphi$; then $\vdash_{\underline{G}} \Box (\Box \varphi + \varphi)$ by (R1), so $\vdash_{\underline{G}} \Box \varphi$ by (A3), and $\vdash_{\underline{G}} \varphi$ by 2.1. \boxtimes

2.3. Harmodiffich. Fg q = Fg. q.

<u>Proof</u>: We only have to prove in G' every instance of (A3), say

$$\phi = \Box (\Box \varphi \rightarrow \varphi) + \Box \varphi.$$

By (P2) it suffices to derive $\Box \psi + \psi$. Arguing in \underline{C}' , assume (1) $\Box \psi$ and (2) $\Box (\Box \phi + \phi)$. Then (3) $\Box \Box (\Box \phi + \phi)$ by (2), (A2); also (4) $\Box \Box (\Box \phi + \phi) + \Box \Box \phi$ by (1), (A1); so (5) $\Box \Box \phi$ by (3), (4); (6) $\Box \Box \phi + \Box \phi$ by (2), (A1), and $\Box \phi$ by (5), (6). Ξ

3. A sequential calculus for \underline{G} . Let Γ , Δ stand for finite sets of fls. A sequent is an ordered pair $\Gamma(\Delta)$. Write Γ , Δ for $\Gamma \cup \Delta$; Γ , φ for $\Gamma \cup \{\varphi\}$; $\Gamma \cap \Gamma$ for $\{\Box \varphi \mid \varphi \in \Gamma\}$. We define \underline{G}_0 as the sequential calculus built on the following inference rules.

$$\underline{\underline{-L}}\colon \quad \frac{\Gamma\colon \varphi, \Delta}{\Gamma, \mathcal{L}, \varphi + \psi \colon \Delta_{\rho} \Xi} \quad ; \quad \underline{\underline{-R}}\colon \quad \frac{\Gamma, \varphi\colon \psi, \Delta}{\Gamma\colon \varphi + \psi, \Delta}$$

The usual rules for Λ and V (if one wishes to refer to these connectives)

$$\frac{\text{cut}}{\Gamma, \Sigma; \Delta, \Xi}; \frac{\Gamma; \Delta}{\Gamma, \Sigma; \Delta, \Xi}; \frac{\text{thin}}{\Gamma, \Sigma; \Delta, \Xi};$$

Clearly, \underline{G}_0 is the same as $\underline{C}_1 + (\Lambda 1) + (R 1)$. Let $\underline{G}_1 := G_0 + (\Lambda^2)$, and $\underline{G}_2 := \underline{G}_1 + (\underline{L})$ where \underline{L} is the rule:

Then $\underline{G}_{\mathcal{D}}$ is the same as \underline{G}' , and hence the same as \underline{G} .

3.1. LEM4A. (Cut-elimination) Every theorem of \underline{G}_0 has a proof in \underline{G}_0 without cut.

<u>Proof:</u> Same as the standard cut-elimination argument for <u>Cp</u> (cf. e.g. [3] p. 454). Permutation of <u>cut</u> over <u>OI</u> is never needed, since all fls are active in the conclusion of <u>OI</u>. When both active occurrences of a cut formula are derived by <u>OI</u>, we have

This is reduced to
$$\frac{\Gamma:\varphi}{\Gamma,\Sigma:\psi}$$
 Σ \square Γ,\square $\Sigma:\square$

We do not have cut elimination for either \underline{G}_1 or \underline{G}_2 . However, the simple axiomatization of \underline{G}_2 over \underline{G}_0 permits some interesting applications of 3.1. This is done via the following lemma.

3.2. <u>LEMMA</u>. (i) If $\Gamma \vdash_{\underline{G}} \Delta$, then $\Sigma, \Box \Xi, \Gamma \vdash_{\underline{G}} \Delta$, where each $\sigma \in \Sigma$ is an instance of (A2), and each $\xi \in \Xi$ is a theorem of \underline{G} .

(ii) Let $\underline{G_2} := \underline{G_2} - (A2)$. If $\Gamma \vdash_{\underline{G_2}} \Delta$ then $\Box \Xi, \Gamma \vdash_{\underline{G_0}} \Delta$ where each $\S \in \Xi$ is a theorem of $\underline{G_2}$.

<u>Proof:</u> (i) If $\Gamma \vdash_{\underline{G}} \Delta$ then there is a proof π in $\underline{G}_0 + (\underline{L})$ deriving $\Gamma, \Sigma: \Delta$ for Σ as above. Skipping in π each instance $\underline{\Box \varphi : \varphi}$ of (\underline{L}) and collecting $\Box \varphi$ in all antecedents below such an instance we obtain the result. The proof of (ii) is the same.

- 4. Closure under rules. Cut-free systems are useful in demonstrating closure under rules. We give two examples.
- 4.1. PROFOSITION. If $\Box \Gamma \vdash_{\underline{G}} \Box A, \Box A'$ then $\Gamma, \Box \Gamma \vdash_{\underline{G}} A, \Box A'$.

<u>Froof</u>: Assume $\Box \Gamma \vdash_{\underline{G}} \Box \Delta_{1} \Box \Delta_{2}^{\dagger}$. Then, by 3.2(i), 3.1, there is a cut free proof π of \underline{G} deriving

$$(*) \hspace{1cm} \Sigma, \square\Xi, \square\Gamma: \square\Delta, \square\Delta'$$

where $\Sigma = \{\Box \dagger_1 + \Box \Box \dagger_1\}_1$ and each $\S \in \Xi$ is a theorem of \underline{G} . We show by induction on the height h of π that (**) $\Gamma, \Box \Gamma \vdash_{\underline{G}} \Delta, \Box \Delta'$.

Basis. h = 1. (*) has no premise. Case (a). $\Box S \in \Box \Xi$ for some $S \in \Delta U \Delta'$; then $\vdash_{\underline{G}} S$ and $\vdash_{\underline{G}} \Box S$. (b) $\Box S \in \Box \Gamma$; then $\Gamma \vdash_{\underline{G}} S$, and $\Box \Gamma \vdash_{\underline{G}} \Box S$.

Ind. Step. h > 1. Case 1. (*) is derived by -L:

By ind. hyp. applied to the premises,

$$\Gamma, \Box \Gamma \vdash_{\underline{G}} \Delta, \Box \delta, \Box \psi \quad \text{and} \quad \Gamma, \Box \Gamma, \Box \psi , \Box \Box \psi \vdash_{\underline{G}} \Delta, \Box \Delta'$$

So T, DT + G A, DA

Case 2. (*) is derived by thin; trivial.

Case 3. (*) is derived by $\square I$:

then $\Gamma \vdash_{\underline{G}} \delta$ and $\Omega \Gamma \mid_{\underline{G}} \square \delta$. Since π is cut-free, these are the only possible cases.

4.2. COROLLARY. If
$$\Box\Box\Gamma \vdash_G \Box\Delta$$
 then $\Box\Gamma \vdash_G \Delta$.

4.3. PROPOSITION. If
$$\Box \Gamma \vdash_{\underline{G}_2} \Box \Delta$$
 then $\Gamma \vdash_{\underline{G}_2} \Delta$.

<u>Proof:</u> Similar to (and simpler than) 4.1., using 3.2(ii) in place of 3.2(1).

4.4. COROLLARY.
$$\Box$$
p $\bigvee_{G^{-}} \Box \Box$ p.

This contrasts with the derivability of (K^2) in $\underline{G}^{-} = \underline{G} - (K_{-})$, mentioned in §1.

We now give a second example of a rule under which \underline{G} is closed.

4.5. <u>FROPOSITION</u>. If $\Box \Gamma \vdash_{\underline{G}} \Box \lambda$, where each $\lambda \in \Lambda$ is a propositional letter, then $\Box \Gamma \vdash_{\underline{G}} \varphi$ for some $\varphi \in (\Box \Lambda, \Lambda)$.

<u>Froof</u>: Using the conventional notations of 4.1, it suffices to show that $\Box \Gamma \vdash_{\underline{Q}} \varphi$ whenever there is a cut-free proof π of \underline{G}_0 deriving (*) $\Sigma, \Box \Xi, \Box \Gamma : \Box \Delta, \Lambda$. We proceed, again, by induction on the height of π . The basis is trivial.

Ind. Step. Case 1. (*) is derived by $\pm L$.

$$\frac{\mathcal{T}_{\mathcal{A}}(\mathbb{R}^{n},\mathbb{C}^$$

By ind, hyp. applied to the left premise, if $\Box \Gamma \not\vdash_{\underline{G}} \varphi$ for $\varphi \in (\bot \Delta, \Lambda)$, then $\Box \Gamma \vdash_{\underline{G}} \Box \psi$. And by ind, hyp. for the right premise, $\Box \Gamma$, $\Box \Box \psi \vdash_{\underline{G}} \varphi$ for some $\varphi \in (\Box \Delta, \Lambda)$. Hence $\Box \Gamma \vdash_{\underline{G}} \varphi$.

Case 2: thin; trivial. Case 3. $\Box I$; then the succedent of (*) must consist of a single fl to start with.

Some examples of application of 4.5: (1) $\Box(p \vee q) \vee_{\underline{G}} \Box p \vee \Box q \quad (2) \quad \Box(p \vee \Box p \vee \ldots \vee \Box^n p) \vee_{\underline{G}} p \vee \Box p \vee \ldots \vee \Box^n p.$ Here $\Box^0 p := p, \ \Box^{n+1} p := \Box \Box^n p.$

- 5. The reflection principle. This is the schema $\Box \varphi + \varphi$. By (A3), $\vdash_{\underline{G}} \Box \varphi + \varphi$ iff $\vdash_{\underline{G}} \varphi$. The next result shows that the reflection principle is not finitely axiomatizable over \underline{G} . This has been shown model-theoretically by Boolos [2].
- 5.1. PROPOSITION. Assume (*) $\{\Box \varphi_i + \varphi_i\}_{i=1}^k \vdash_{\underline{G}} \Box^n p + p$. Then $k \ge n$.

<u>Proof:</u> By induction on n. <u>Basis</u> n = 1; trivial. <u>Ind. step.</u> n > 1. Using again the notational conventions of 4.1, if (*) holds, then there is a cut-free proof π of \underline{G}_{Q} deriving

(**)
$$\Sigma, \Box \Xi, (\Box \varphi_i \rightarrow \varphi_i)_{i=1}^k, \Box^n p : p.$$

(*) must be derived by thin or $\rightarrow L$. The left premise have the form $\Sigma_i \Box \Xi_j (\Box \varphi_i \rightarrow \varphi_i)_i$, $\Box^n p: p_i \Box \bullet$ and is derived again by thin or $\rightarrow L$. These inferences may be ordered at will, with a single instance of thin on the top; this is simply because such instances of $\rightarrow L$ may be permuted ([4]). To recall:

$$\frac{\Gamma : \Delta, \alpha, \varphi}{\Gamma, \varphi} \quad \frac{\Gamma, \psi : \Delta, \alpha}{\Gamma, \varphi} \quad \frac{\Gamma, \varphi \mapsto \psi : \Delta, \alpha}{\Gamma, \varphi \mapsto \psi : \Delta}$$

$$\Gamma, \varphi \mapsto \psi : \Delta$$

may be rearranged as

$$\frac{\Gamma; \delta, \alpha, \varphi \qquad \Gamma, \varphi \rightarrow \psi, \Gamma; \Delta}{\Gamma, \varphi \rightarrow \psi, \alpha \rightarrow \Gamma; \Delta, \varphi} \qquad \frac{\Gamma, \psi; \Delta, \alpha \qquad \Gamma, \varphi \rightarrow \psi, \beta; \Delta}{\Gamma, \varphi \rightarrow \beta; \psi; \Delta}$$

$$\Gamma, \varphi \rightarrow \psi, \alpha \rightarrow \beta; \Delta$$

$$\Gamma, \varphi \rightarrow \psi, \alpha \rightarrow \beta; \Delta$$

We may assume, therefore, that instances of reflection are active below active occurrences of fls in Σ ; taking successively left premises of $\pm \underline{L}$, we then get in π a sequent $\Sigma, \Box \Xi, \Box^n p : p, \{\Box \varphi_i\}_{i=1}^k$. Hence $\Box^n p \vdash_{\underline{G}} p, (\Box \varphi_i)_{i=1}^k$. Since $\Box^n p \not\vdash_{\underline{G}} p$, we get, by 4.5., $\Box^n p \vdash_{\Box} \varphi_i$ for some i, say i = k. Since n > 1, $\Box^{n-1} p \vdash_{\underline{G}} \varphi_k$ by 4.2. Hence $\{\Box \varphi_i + \varphi_i\}_{i=1}^{k-1} \vdash_{\underline{G}} \Box^{n-1} p + p$. By ind. hyp. $k-1 \ge n-1$, and so $k \ge n$.

- 6. Interpolation. A system S satisfies (Craig's) interpolation if $\varphi \vdash_S \psi$ implies that $\varphi \vdash_S \kappa$ and $\kappa \vdash_S \psi$ for some fl κ with logical constants common to φ and ψ .
- 6.1. PROPOSITION. G satisfies interpolation.

Proof: We apply cut-elimination (3.1) via Machara's partition method (cf. [4] p. 35). The presence of the rule \Box I necessitates only two additional clauses. (1) Consider $\Gamma, \Delta: \Upsilon$, and assume κ is an interpolant for the premise: $\Gamma \vdash \kappa$, Υ and $\Delta, \kappa \vdash$. Then $\Box \Gamma, \Box \neg \kappa \vdash \Box \Upsilon$ and $\Box \Delta \vdash \Box \neg \kappa$. So $\Box \Gamma \vdash \neg \Box \neg \kappa, \Box \Upsilon$ and $\Box \Delta \vdash \Box \neg \kappa$. So $\Box \Gamma \vdash \neg \Box \neg \kappa, \Box \Upsilon$ and $\Box \Delta \vdash \Box \neg \kappa$ is an interpolant for the conclusion. (2) Similarly, if κ is an interpolant for $\Gamma, \Delta: \delta$, then $\Box \kappa$ is for $\Box \Gamma, \Box \Delta: \Box \delta$. 16.2. LETMA. Assume $\Gamma, \Sigma_1[\widehat{\tau}] \vdash_{\underline{G}} \Delta, \Sigma_2[\widehat{\tau}]$, $\widehat{\tau} = (\tau_1, \dots, \tau_n)$. Set $\Sigma_1^{\widehat{\tau}} = (\sigma(\delta_1, \dots, \delta_n) \mid \sigma \in \Sigma_1, \delta_1 = \tau$ or \bot , $J = 1, \dots, n$. Then $\Gamma, \Sigma_1^{\widehat{\tau}} \vdash_{\underline{G}} \Delta, \Sigma_2^{\widehat{\tau}}$.

<u>Proof</u>: A straightforward and trivial induction on the length of the proof in \underline{G}_2 for $\Gamma, \Sigma_1: \Delta, \Sigma_2$.

6.3. <u>FROPOSITION</u>. If $\underline{H} = \underline{G}_0 + \underline{S}$, where \underline{S} is a set of axioms (no rules!) closed under substitution, then \underline{H} satisfies interpolation.

<u>Proof:</u> Assume $\varphi(\vec{p},\vec{q}) \vdash_{\underline{H}} \psi(\vec{p},\vec{s})$; then $\Sigma(\vec{p},\vec{q},\hat{s})$, $\varphi \vdash_{\underline{G_o}} \psi$, with $\Sigma \subseteq S$. So by 5.2. $\Sigma^{\vec{q},\vec{s}}(\vec{p})$, $\varphi \vdash_{\underline{G_o}} \psi$. By 5.1 there is an interpolant κ in $\underline{G_o}$ for $\wedge(\Sigma^{\vec{q},\vec{s}}) \wedge \varphi$ and ψ . Since $\Sigma^{\vec{q},\vec{s}} \subseteq \underline{S}$ by our assumption on \underline{S} , $\varphi \vdash_{\underline{H}} \kappa$ and $\kappa \vdash_{\underline{H}} \psi$. \boxtimes

6.4. COROLLARY. \underline{G}_1 and $\underline{G}_2 = \underline{G}$ satisfy interpolation.

The interpolation theorem for \underline{G} was proved independently by Boolos [1] and Smorynski [7], using Kriple models for \underline{G} . As usual, from the interpolation theorem Beth's definability theorem for \underline{G} readily follows.

REFERENCES

- [1] G. Boolos: The Unprovability of Consistency, Cambridge, 1979.
- [2] : Reflection principles and iterated consistency assertions; Jour. Symb. Logic 44 (1979) 33-35.
- [3] S. C. Kleene: Introduction to Metamathematics, Amsterdam, 1952.
- [4] : Fermutability of inferences in Gentzen's calculi <u>LK</u> and <u>LJ</u>; <u>Mem. of AMS 10</u>, 1952.
- [5] M. H. Löb: Solution of a problem of Leon Henkin; <u>Jour. Symb. Logic 20</u> (19,5) 115-118.
- [6] C. Smoryński: Calculating self-referential statements, I: explicit calculations; to appear in Studia Logica.
- [7] : Beth's theorem and self-referential sentences; Logic Colloquium 77 (eds. A. Macintyre et als.), Amsterdam, 1978.
- [8] R. Solovay: Provability interpretations of modal logic; <u>Israel Jour. Math</u> 25 (1976) 287-304.
- [9] G. Takeuti: Proof Theory, Amsterdam, 1978.

