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SUMMARY 

We descnoo and compare algorithms for calculating maximum likelihood estimates 
for longitudinal data which arise from a generalized linear model Our models can 
accommodate virtually unlimited correlation structures but are more efficient with random 
effects and autoregressive structures. We consider a Monte Carlo Newton-Raphson and a 
stochastic approximation algorithm for fitting these models. 
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1. INTRODUCTION 

Generalized linear models have enjoyed widespread use due to their flexibility in 
modeling independent observations from a wide variety of distributions and incorporating 
possibly nonlinear links between the mean of the response and the predictors. In the past 
decade research has focused on extending those methods to accommodate correlated 
responses (e.g., Zeger and Liang, 1986; Schall, 1991; McCulloch, 1996). In this paper we 
describe simulation based approaches to calculating fully parametric maximum likelihood 
estimates (MLEs) for a wide class of generalized linear models for serially correlated data. 

Because of the computational difficulties ofML estimation even for simple models 
(e.g., Albert, 1991; Le, Leroux and Puterman, 1992) there has been little work on non­
normal data. Chan and Ledholter (1995) describe a Monte Carlo EM algorithm for count 
data which is similar to the methods developed in Section 3. However, much work (e.g. 
Zeger and Qaqish, 1988) has centered on alternatives to ML estimation. 

Section 2 descnbes a model which allows virtually unlimited correlation structures 
in the serial measurements. Section 3 describes two methods of calculating MLEs, a 
Monte Carlo version of Newton-Raphson and a method based on stochastic 
approximation. Section 4 describes details for a logit-normal model and Section 5 offers 
conclusions. 

2. THE MODEL 

We consider the following class of models. Y will denote the observed data vector 
and we will describe the correlation structure through a vector e. Conditional on e, we 
assume that the elements of Y are independent and drawn from a distribution which, for 
simplicity of exposition, we take to have canonical link and constant scale function. To 
complete the specification, we assume a distribution for e, depending on parameters a: 

fr;1eCYif3,e) = exp{yq;- c(q;) + d(y)} 

e ~ .fe(ela). 
(1) 

Here, g(E[Y;Ie]) = 77; = x;f3 + e;, with x; being the ith row of X, the model matrix for the 
fixed effects and g(·) being the link function. The likelihood for (1) is given by 

n 

L(f3,a) = JIJ!r; 1eCYif3,e)fe(ela)de, (2) 
i=l 

which often cannot be evaluated in closed form. Our goal is to develop algorithms to 
calculate fully parametric MLEs based on (2). 

3. FITTING METHODS 

In this section we develop two simulation based methods for calculating MLEs, a 
Monte-Carlo Newton-Raphson (MCNR) approach and an approach based on stochastic 
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approximation. Central to either is the ability to simulate random draws from 
fe~y(elf3,a, Y), so we first descn'be that. 

3.1 A Metropolis algorithm for simulating/rom !elY 

The algorithm we use is a Metropolis algorithm so we need to specify the 
distribution, he(e), from which candidate draws are made and an acceptance function for 

deciding whether to retain the old draw or accept the candidate one. We first consider the 
acceptance function so let e denote the previous draw and suppose we generate a new 

value e; for the kth component of e from the candidate distnbution. Letting 

e• = (epe2 , ••• ,ek-Pe;,ek+t'···,en) we then accept e• with probability Ak(e,e*) and 

otherwise retain e. Here Ak ( e, e •) is given by 

The second term in braces in (3) can be rewritten: 

feiY(e *IY)he(e) _ Tifr.le(Y1Ie *)/e(e*)he(e) 

fe~(eiY)he(e*)- Tifr.1e(Y1Ie)fe(e)he(e *) 

(3) 

(4) 

• where e_k =(epe2 , ••• ,ek-l'ek+W··,en)=e_k. Upon choosing he(e)=fetle_t(ekle-k) 

equation (4) simplifies to /Ytle(Jtle;) I fYtle(Yklek). So, to generate value from /elY we 

consider the elements of e one at a time, generate candidate draws from the conditional 
distribution of that element given the rest and accept it if the ratio of the conditional 
densities is high enough. 

In many situations, fetle-t (ekle-k) takes a simple form and hence will be easy to 

generate from. For example, in an autoregressive process of order I, the conditional 
distribution of~ only depends on ~-I· Spatial processes with a dependence structure 
which only included a neighborhood of nearby values would experience a similar 
simplification. We now consider the use of this Metropolis step. 

3.2 Monte Carlo Newton-Raphson 

Whenever the marginal density of Y is formed as a mixture as in (2), the ML 
equations can be written as 
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(Sa) 

(Sb) 

Equation (Sa) suggests (McCulloch, 1996) a Monte-Carlo version of Newton-Raphson 
(MCNR) or scoring which would take the form: 

J} (m+l) = J} (m) + 

E[X 'W (9 (m) ,e )XIy rl X '(E[W (9 (m) ,e) OTJ I (y- ~(p (m)' e ))iy]), 
Of.l O=o(m) 

where Jl; (f3,e) = E[J;je], W(S,e)-1 = diag{(t317; I OJL;) 2 var(Y;je)} and 817 I o,u IS a 

diagonal matrix with entries t3rJ; I o,u; . 
Equation (Sb) involves only the distribution of e and can be chosen to be easy to 

solve. A MCNR algorithm can now be constructed as follows: 

1. Choose starting values f3 (O) and a (O) • Set m=O. 

2. Simulate N values, e0 >,e(2), ... ,e(N>, from fe1r(elf3(m),a(m),Y) usmg the 

Metropolis algorithm described in Section 3.1 

3. a. Calculate 

E[X'W(ecm> ,e)XIyr1X'CE[W(ecm> ,e)m, (y- J.L(f3cm> ,e))jy]), 
OJl O=iJm) 

where the hats denote expectations approximated using the values from 2. 

b. Choose a(m+I) to maximize_!_ fmfe(e(k)la (m)) , 
N k=! 

c. Set m=m+ 1. 

4. If convergence is achieved, declare pcm+I) and a(m+I) to be MLEs, 

otherwise return to step 2. 

3.3 Stochastic approximation 
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A different approach to fitting these models has been suggested recently by Gu and 
Lin (1995) through the use of a stochastic approximation (SA) algorithm, though the basic 
idea of using SA to find MLEs is certainly older (e.g., Moyeed and Baddeley, 1991; 
Ruppert, 1991 ). The basic concept is to write JY,e as fy !elY. We can then easily derive 

81nfY,e (Y,ela,l3) 81nfy (Yia,l3) 8lnfeiY (eiY,a,l3) 
-----'----- = + __ __:_ ___ _ 

89 89 89 
(7) 

We are interested in finding the root of the likelihood equation, e.g., where 
8lnf, (Yia,(3) 

Y = 0 . SA algorithms are methods of finding roots of regression equations 
89 

so we need to rewrite (7) as a regression equation. Write ,u(9) for the score function, 

8lnf, (Yia,(3) 
y , to emphasize we are regarding it as a function of 9 and that it is not a 
89 

[
8ln/ IY(eiY,a,I3)J 

function of e and note that E e 89 is zero for fixed Y when 

8ln /elY (elY ,a, 13) 
e ~ feiY(eiY,a,l3) by the usual score identity. Hence 89 can be 

regarded as a mean-zero, "error" term m the regression equation, 
8lnfy e(Y,ela,(3) 

' = ,u(9) +error. Thus, plugging the random values of e into 
89 

8lnfy (Y,ela,(3) 
'e gives the "data" for performing the regression. 
89 

To implement a SA algorithm we use the Metropolis algorithm of Section 3.1 to 

generate a sequence of e(i) ~ feiY(eiY,a,l3) and use them to form data 

(i) 
8lnfy (Y,e la,l3) ,e One can then apply a multivariate version of a SA algorithm. 

89 
Ruppert (1991) provides a nice review. A SA algorithm for this problem would generally 
take the following form 

(m) 
8lnfy (Y,e la,(3) 

9(m+l) =9(m) -a ___ ,;;_e ____ _ 

m 89 
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where a is chosen to decrease slowly to zero. Ideally a also incorporates information 
m m 

8lnf, (Yia,(3) 
about the derivative of y (with respect to 9) at the root, but this is rarely 

89 
known in practice. 

We considered three forms of SA algorithms. One used (8) with 

a = a [i;[8 2 lnfv,e (Y,ela,f3)]-l' 
m (m+k)a 8989' 

where E denotes an estimate of the expectation (for some details see the next Section) 
and k and a are predetermined constants. The other versions of SA were similar but 
formed the estimate not directly from the last iteration of (8) but instead by using data 
from a majority of the values from the iteration scheme. This follows suggestions of Frees 
and Ruppert (1990) and Ruppert (1991). The estimates are formed either by fitting a 

(m) 
81n f y (Y ,e Ia, (3) 

straight line to the data (plotting 9Cm+ l) versus ,e ) and solving for 
89 

the root or by simply averaging the a(m) values from (8). 

4. AN ILLUSTRATION 

We give some of the details for a balanced data, logit-normal model. This would 
be useful for modelling binary, serially correlated data. Let Yi denote the data for the ith 
subject with the Yi independent. Next, and conditional on ei, Yij ~ Bemoulli(pij) with 

ln(pli I (1- pli )) = xijP + e; and 

e; ~ N(O,a), 

where xij is the ijth row of the model matrix, X. The use of the Metropolis algorithm of 

Section 3.1 in either a MCNR or SA algorithm takes the following form. 

1. Generate e; from the conditional distribution of eif given eik (k:t:j) and using 

the current values of a and (3. 

2. Accept the new e; with probability Ak(e,e *),where Ak(e,e *) is given by 

. { * 1 + exp{xijf3 +eli} } 
mm 1,exp{yli(eli -eli)} , * · 

1 + exp{xlif3 +eli } ) 

If the new value is not accepted, then retain the old value. 
The MCNR algorithm consists of the following steps. 

6 



1. Choose starting values 13<0> and a (O). Set m=O. 

2. Simulate N values, e(l>,e<2>, ... ,e<N>, from fe
1
Y(el13<m>,a<m>,y) usmg the 

Metropolis algorithm described above. 

3. a. Calculate 

13(m+I) = 13<m> + E[X'W(I3(m) ,e)XIyr1 X'(y- E[p(l3(m) ,e))ly ]), (9) 

where the hats denote expectations approximated using the values from 2, 
p(l3,e) has entries (l+exp(-(x~l3+e;))-1 and W(l3,e) is a diagonal matrix with entries 

p(l3, e )(1- p(l3, e)) . 

c. Set m=m+ 1. 

4. If convergence is achieved, declare 13<m+I) and a (m+l) to be MLEs, 

otherwise return to step 2. 

Step 3b. involves the normal distribution, so the maximizing values depend on the 
structure assumed. In our example we will assume no structure for a and, since the data 
are complete and balanced, a (m+l) will simply be the sample variance-covariance matrix of 
the e(i). Other variance-covariance structures can be handled by deriving the 
corresponding ML equations. 

The SA algorithm simplifies in the case of the mixture model (2) since 13 only 
enters the conditional distribution ofY given e and a only enters the distribution of e. We 
therefore have 

8lnfy (Y,ela,l3) 81n/Yie (Yie,l3) ,e = and (10) 
813 813 

8lnfy (Y,ela,l3) ,e 
= 

8lnf (ela) 
e 

8a 8a 

The other ingredient we need to use (8) is an equation for a . The optimal a would be 
m m 

of the form (Ruppert, 1991) a = a ( 8Jl (9))-1 but this is impossible 
m (m+k)a 89 _A 

9-9ML 

7 
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since we do not know the MLE, 9 ML. However, we can approximate the derivative at 

the current estimates since 

8,u (9) = 8 2 lnfv (Yja.,f3) = E[8 2 In fv,e (Y,eja.,f3)] 
89 8989' 8989' ' 

where the expectation is taken with respect to /elY and using (7). This is the rationale 

behind equation (9). 
Using (10), the iteration for f3 in the SA algorithm is given by 

f3(m+I) = f3(m) + a E[X'W(f3(m) ,e)XIyriX'(y -p(f3(m) ,e<m))), (11) 
(m+k)a 

where the hat denotes an approximation to the expectation, 
p(f3,e) has entries (1+exp(-(x~f3+e;))-1 and W(f3,e) is a diagonal matrix with entries 

p(f3, e )(1 - p(f3, e)) . A similar set of equations can be derived for a., though a possible 

problem is keeping a. (m+I) positive semi-definite. An alternative is to use an iteration more 
like step 3b ofMCNR. 

It remains to estimate the expectation in (11). We propose using the average of all 
the simulated values to estimate E[W(f3(m) ,e)IY], e.g., 

£[ W (f3(m) ,e)IY] = __!__ LW(p(m) ,eCi)). 
N; 

5. DISCUSSION 

To compare MCNR and SA we focus on (6) and (11), i.e., the iterations for (3. 
They are very similar with the main difference being the multiplier which precedes the 
increment from f3(m+I) to f3(m). Minor differences are the fact that a single simulated value 

is used in SA and hence the p(f3(m) ,e<mJ) term is calculated with that single value rather 

than averaged over a number of values. We approximate the second derivative matrix 

E[X'W(f3(m) ,e)XIy] similarly for both, though in SA the average is over all the e<il values 

while in MCNR it is just for the values simulated at that iteration. 

The multiplier a decreases the step size as the iterations increase in SA. 
(m+k)a 

This eventually serves to eliminate the stochastic error involved in the Metropolis step. 
To achieve a corresponding reduction using MCNR, the simulation size would have to be 
increased as the iterations increase in order to eliminate the simulation noise. 

SA seems to have advantages in that it can use all of the simulated data to 
calculate estimates and it uses the simulated values one at a time. A theoretical advantage 
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of SA is that convergence proofs are worked out for many cases. Practical details of the 
implementation of both SA and MCNR need to be worked out. 
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