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The study of convolution powers of a finitely supported probability distribu-

tion φ on the d-dimensional square lattice is central to random walk theory. For

instance, the nth convolution power φ(n) is the distribution of the nth step of the

associated random walk. In the case that the random walk is aperiodic and ir-

reducible, φ(n) is well approximated by a single and appropriately scaled Gaus-

sian density; this is the local (central) limit theorem. When such functions are

allowed to be complex-valued, their convolution powers are seen to exhibit rich

and disparate behavior, much of which never appears in the probabilistic set-

ting. In the first half of this thesis, we study the asymptotic behavior of the con-

volution powers of complex-valued functions on Zd. This problem, originally

motivated by the problem of Erastus L. De Forest in data smoothing, has found

applications to the theory of stability of numerical difference schemes in par-

tial differential equations. For a complex-valued function φ on Zd, we ask and

address four basic and fundamental questions about the convolution powers

φ(n) which concern sup-norm estimates, generalized local limit theorems, point-

wise estimates, and stability. In one dimension, we give a complete theory of

sup-norm estimates and local limit theorems for the entire class of finitely sup-

ported complex-valued functions. This work extends results of I. J. Schoenberg,

T. N. E. Greville, P. Diaconis and L. Saloff-Coste and, in the context of stability

theory, results by V. Thomée and M. V. Fedoryuk.



In the second half of this thesis, we consider a class of ”higher order” ho-

mogeneous partial differential operators on a finite-dimensional vector space

and study their associated heat kernels. The heat kernels for this general class

of operators are seen to arise naturally as the limiting objects of the convolu-

tion powers of complex-valued functions on the square lattice in the way that

the classical heat kernel arises in the (local) central limit theorem. These so-

called positive-homogeneous operators generalize the class of semi-elliptic op-

erators in the sense that the definition is coordinate-free. We then introduce a

class of variable-coefficient operators, each of which is uniformly comparable

to a positive-homogeneous operator, and we study the corresponding Cauchy

problem for the heat equation. Under the assumption that such an operator has

Hölder continuous coefficients, we construct a fundamental solution to its heat

equation by the method of E. E. Levi, adapted to parabolic systems by A. Fried-

man and S. D. Eidelman. Though our results in this direction are implied by

the long-known results of S. D. Eidelman for 2~b-parabolic systems, our focus is

to highlight the role played by the Legendre-Fenchel transform in heat kernel

estimates. Specifically, we show that the fundamental solution satisfies an off-

diagonal estimate, i.e., a heat kernel estimate, written in terms of the Legendre-

Fenchel transform of the operator’s principal symbol – an estimate which is

seen to be sharp in many cases. We then turn to the study of such variable-

coefficient operators whose coefficients are, at worst, bounded and measurable

and we study their associated heat kernels. Following functional-analytic tech-

niques of E. B. Davies and G. Barbatis, we prove heat kernel estimates in terms

of the Legendre-Fenchel transform subject to a dimension-order restriction. Our

work in this measurable-coefficient setting extends results of E. B. Davies and

partially extends results of A. F. M. ter Elst and D. Robinson. All work in this



thesis was done in collaboration with Laurent Saloff-Coste.
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CHAPTER 1

INTRODUCTION

The study of convolution powers of a finitely supported probability distribu-

tion φ on the d-dimensional square lattice is central to random walk theory.

For instance, the nth convolution power φ(n) is the distribution of the nth step

of the associated random walk. In the case that the random walk is aperiodic

and irreducible, φ(n) is well approximated by a single and appropriately scaled

Gaussian density; this is the local (central) limit theorem. When such functions

are allowed to be complex-valued, their convolution powers are seen to exhibit

rich and disparate behavior, much of which never appears in the probabilis-

tic setting. In this thesis, we study the convolution powers of complex-valued

functions on Zd and some related topics on heat kernels of higher-order partial

differential operators.

The limiting behavior of the convolution powers of complex-valued func-

tions (or, simply non-positive functions) was originally investigated by Erastus

L. De Forest in its connection to statistical data smoothing procedures in the

late nineteenth century. De Forest posed the problem of determining the point-

wise limiting behavior of the convolution powers of any suitably normalized

and finitely supported function φ : Z → R. De Forest’s problem was later in-

vestigated by I. J. Schoenberg and T. N. E. Greville, both of whom proved (gen-

eralized) local limit theorems under varying hypotheses. Beyond local limit

theorems, the study of convolution powers of complex-valued functions saw

explosive investigation in the 1960’s, paralleled by advancements in scientific

computing, in its application to numerical solutions for partial differential equa-

tions. Arising from this study, the so-called stability theory (for finite difference
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schemes) is concerned with finding conditions under which a finitely supported

function φ : Zd 7→ C is stable in the sense that its convolution powers φ(n), for

n ≥ 1, are uniformly bounded in `1(Zd). This property is seen to have pro-

found implications for finite difference schemes in partial differential equations.

Namely, for a finite difference scheme (given by φ) to an initial value problem,

von Neumann’s theorem states that φ is stable if and only if the correspond-

ing finite difference scheme converges to a classical solution (in a pointwise

sense). In 1965, V. Thomée characterized stability (and instability) when d = 1;

Thomée’s result was partially extended to higher dimensions by M. V. Fedoryuk

in 1967.

In the second chapter of this thesis, we consider the general class of finitely

supported functions φ : Z → C. Herein, we give a complete account of local

limit theorems for this general class. As the classical heat kernel arises as the

limiting object of the convolution powers of probability distributions, our local

limit theorems show that the convolution powers of the general class are sim-

ilarly attracted to a certain class of analytic functions which includes the Airy

function and the heat kernel evaluated at purely imaginary time. Extending

the results of I. J. Schoenberg, T. N. E. Greville, P. Diaconis and L. Saloff-Coste,

our main result in this direction (Theorem 2.1.3) presents a complete solution to

De Forest’s problem. Using our local limit theorems, we then give a complete

account of the asymptotic behavior for the sup-norms of convolution powers.

In the third chapter, we study the convolution powers of complex-valued

functions on Zd. Here, we ask and address four basic and fundamental ques-

tions concerning sup-norm estimates, local limit theorems, pointwise space-

time estimates, and stability for convolution powers. Our results in this chapter
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pertain to a large, though not exhaustive, class of complex-valued functions on

Zd and our hypotheses are naturally stated in terms of local properties of Fourier

transforms. The results concerning sup-norm estimates and local limit theorems

presented in this chapter partially extend the one-dimensional results of Chap-

ter 2. The attractors which appear in our local limit theorems in this chapter

are seen to also arise as the heat kernels corresponding to higher order partial

differential operators–those which are studied in the second half of this thesis.

Following and extending work of P. Diaconis and L. Saloff-Coste, we prove a

number of results concerning pointwise space-time estimates for convolution

powers and discrete derivatives thereof; these estimates make essential use of

the Legendre-Fenchel transform and motivate our subsequent study of heat ker-

nel estimates. In the context of stability theory, we extend the affirmative results

of V. Thomée and M. V. Fedoryuk.

In the fourth chapter, we consider a class of homogeneous partial differen-

tial operators on a finite-dimensional vector space and study their associated

heat kernels. The heat kernels for this general class of operators are those which

were seen to arise in the local limit theorems presented in Chapter 3. These so-

called positive-homogeneous operators generalize the class of semi-elliptic op-

erators, introduced by F. Browder, in the sense that the definition is coordinate-

free. More generally, we introduce a class of variable-coefficient operators, each

of which is uniformly comparable to a positive-homogeneous operator, and we

study the corresponding Cauchy problem for the heat equation. Under the as-

sumption that such an operator has Hölder continuous coefficients, we con-

struct a fundamental solution to its heat equation by the method of E. E. Levi,

adapted to parabolic systems by A. Friedman and S. D. Eidelman. Though our

results in this direction are implied by the long-known results of S. D. Eidel-

3



man for 2~b-parabolic systems, our focus is to highlight the role played by the

Legendre-Fenchel transform in heat kernel estimates. Specifically, we show that

the fundamental solution satisfies an off-diagonal estimate, i.e., a heat kernel

estimate, written in terms of the Legendre-Fenchel transform of the operator’s

principal symbol– an estimate which is seen to be sharp in many cases.

Taking our motivation from Chapter 4, in the final chapter we study heat-

kernel estimates for partial differential operators with, at worst, measurable

coefficients. Following the work of E. B. Davies pertaining to higher-order

uniformly elliptic operators, we present an abstract theory for heat-kernel es-

timates, written in terms of the Legendre-Fenchel transform, for self-adjoint

partial differential operators which are uniformly comparable to positive-

homogeneous operators and are subject to a necessary dimension-order restric-

tion (written in terms of the homogeneous order of the operator). In this devel-

opment, we suitably adapt Davies’ method to the positive-homogeneous setting

and, from this, the full d-dimensional Legendre-Fenchel transform is seen to ap-

pear naturally. Our results extend those of E. B. Davies and partially extend

results of A. F. M. ter Elst and D. Robinson.

Chapters 2, 3 and 4 are based on the articles [73], [72] and [74], respectively.

The material on Chapter 5 will be included in a forthcoming article. All work in

this thesis was done in collboration with Laurent Saloff-Coste.
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CHAPTER 2

CONVOLUTION POWERS OF COMPLEX-VALUED FUNCTIONS ON Z

2.1 Introduction

Let φ : Z → C be a finitely supported function. We wish to study the convolu-

tion powers of φ, that is, the functions φ(n) : Z→ C defined iteratively by

φ(n)(x) =
∑
y∈Z

φ(n−1)(x− y)φ(y),

where φ(1) = φ. This study has been previously motivated by problems in

data smoothing and numerical difference schemes for partial differential equa-

tions [42, 80, 86, 87]. We encourage the reader to see the recent article [31] for

background discussion and pointers to the literature.

In the case that the support of φ is empty or contains a single point, the convo-

lution powers of φ are rather easy to describe. The present chapter focuses on

functions φ with finite support consisting of more than one point; in this case

we say that the support of φ is admissible. When the function φ is a probability

distribution, i.e., it is non-negative and satisfies

∑
x∈Z

φ(x) = 1,

the behavior of φ(n) for large values of n is well-known and is the subject of the

local limit theorem. A modern treatment of this classical result can be found in

Chapter 2 of [63] (see also Chapter 2 of [83]). Our aim is to extend the results

of [31] and describe the limiting behavior for the general class of complex val-

ued functions on Z with admissible support. In particular, we give bounds on

5



the supremum of |φ(n)| and prove “generalized” local limit theorems.

As an example, we consider the function φ : Z→ C defined by

φ(0) =
1

8
(5− 2i) φ(±1) =

1

8
(2 + i) φ(±2) = − 1

16
(2.1)

and φ = 0 otherwise. The convolution powers φ(n) for n = 100, 1000, 10000 are

illustrated in Figures 2.1 and 2.2. We make two crucial observations about these

graphs: First, it appears that the supremum ‖φ(n)‖∞ is decaying on the order

of n−1/2; this is consistent with the classical theory for probability distributions.

Second, as n increases, |φ(n)(x)| appears to be constant on increasingly large

intervals centered at 0. This is in stark contrast to the behavior described by the

classical local limit theorem for probability distributions. In the present chapter,

we prove that there are constants C,C ′ > 0 for which

Cn−1/2 ≤ ‖φ(n)‖∞ ≤ C ′n−1/2.

We also show that

φ(n)(bxn1/2c) =
n−1/2√
4πi/8

e−8|x|2/4i + o(n−1/2)

for x in any compact subset of R. Here, b·c denotes the greatest integer function.

We note that this approximation cannot hold uniformly for all x ∈ R because

the modulus of (4πi/8)−1/2 exp(−8|x|2/4i) is a non-zero constant whereas φ(n)

has finite support for each n. For comparison with Figure 2.2, Figure 2.3 shows

the graph of Re((4πni/8)−1/2 exp(−8|x|2/4ni)) for n = 100, 1000, 10000. We will

return to this example in Subsection 2.8.2 and justify the claims made above.
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Figure 2.1: |φ(n)| for n = 100, 1000, 10000

Figure 2.2: Re(φ(n)) for n = 100, 1000, 10000

The Fourier transform is central to the arguments made in this thesis. We recall

its definition: For φ : Z → C, finitely supported, the Fourier transform of φ is

the function φ̂ : R→ C defined by

φ̂(ξ) =
∑
x∈Z

φ(x)eixξ (2.2)
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n=10,000

Figure 2.3: Re((4πin/8)−1/2 exp(−8|x|2/4ni)) for n = 100, 1000, 10000

for ξ ∈ R.

Our first main result is illustrated in the following theorem.

Theorem 2.1.1. Let φ : Z→ C have admissible support and let A = supξ |φ̂(ξ)|. Then

there is a natural number m ≥ 2, and positive constants C and C ′ such that

Cn−1/m ≤ A−n‖φ(n)‖∞ ≤ C ′n−1/m (2.3)

for all natural numbers n.

Remark 1. The natural number m ≥ 2 appearing in Theorem 2.1.1 is consistent with

those appearing Theorems in 2.1.2 and 2.1.3; upon dividing φ by A, it is defined by

(2.7).

In the classical local limit theorem, the convolution powers of a probability

distribution are approximated by the heat kernel, an analytic function. In the
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present setting, the convolution powers φ(n) are analogously approximated by

certain analytic functions. We now define these so-called attractors: Let m ≥ 2

be a natural number and β be a non-zero complex number for which Re(β) ≥ 0.

We define Hβ
m : R→ C by

Hβ
m(x) =

1

2π

∫
R
e−ixue−βu

m

du (2.4)

provided the integral converges as an improper Riemann integral. If addition-

ally, for each ε > 0 there exists Mε > 0 such that∣∣∣∣Hβ
m(x)− 1

2π

∫ M

M

e−ixue−βu
m

du

∣∣∣∣ < ε

for all M ≥ Mε and x ∈ S ⊆ R, we say that the integral defining Hβ
m converges

uniformly in x on S. When Re(β) > 0 and m is an even natural number, it is

easy to see that

|e−ixue−βum | = e−Re(β)um ∈ L1(R)

whence the defining integral converges uniformly in x on R. In this case, Hβ
m

is equivalently defined by its inverse Fourier transform, e−βum . In the case that

Re(β) = 0, it is not immediately clear for which values of m or in what sense the

integral in (2.4) will converge. It will be shown that when m > 2, the integral

converges uniformly in x on R and, when m = 2, it converges uniformly in x

on any compact set. This is the subject of Proposition 2.4.1. The proposition

extends the results of [42] in which only odd values of m (for Re(β) = 0) were

considered.

In the case that m ≥ 2 is even and Re(β) ≥ 0, Hβ
m is the integral kernel of the

bounded holomorphic semigroup Tβ = e−β(∆)m/2 generated by the non-negative

self-adjoint operator (∆)m/2 on L2(R); here, ∆ is the unique self-adjoint exten-

sion of −(d/dx)2 originally defined on smooth compactly supported functions
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on R. In the specific case that m = 2,

Hβ
2 (x) =

1√
4πβ

e−
|x|2
4β (2.5)

is the heat kernel evaluated at complex time β. There is an extensive theory

concerning these semigroups and generalizations thereof for Re(β) > 0. In the

context of Rd, we refer the reader to the articles [9, 21] which consider general

self-adjoint operators with measurable coefficients, called superelliptic opera-

tors, each comparable to (∆)m/2 for some even m ≥ 2. In the context of Lie

groups, such generalizations are treated by [33, 76, 77]. An integral piece of this

theory concerns off-diagonal estimates for these kernels. In our setting, this is

the estimate

|Hβ
m(x)| ≤ C exp(−B|x|

m
m−1 ) (2.6)

for all x ∈ R, where C,B > 0. Given (2.4), a complex change of variables via

contour integration followed by a minimization argument easily yields the esti-

mate (2.6) (see Proposition 5.3 of [77]).

Viewing things from a slightly different perspective, when m ≥ 2 is even and

Re(β) > 0, the function Z : (0,∞)× R→ C, defined by

Z(t, x) = H tβ
m (x),

is a fundamental solution to the constant-coefficient parabolic equation

∂

∂t
+ imβ

∂m

∂xm
= 0.

The treatise [35] by S. D. Eidelman gives an extensive treatment of such “higher

order” parabolic equations with variable coefficients on Rd. For second order

parabolic systems (m = 2), A. Friedman’s classic text [40] is an excellent refer-

ence.
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Remark 2. In the case that Re(β) > 0 andm is even, the functionHβ
m and the function

Hm,b used in Theorem 2.3 of [31] and defined by its Fourier transform, Ĥm,b(ξ) =

e−(1+ib)ξm , are connected via the relation

H
m,

Im(β)
Re(β)

(
x

(Re(β))1/m

)
= (Re(β))1/mHβ

m(x)

which follows from the change of variables u 7→ (Re(β))1/mu.

In the case that m ≥ 2 is even and β > 0, the functions Hβ
m are real valued and

when m > 2 they take on both positive and negative values. As the classical

Wiener measure is defined by the transition kernel H1
2 , V. Krylov [60] and later

K. Hochberg [51] considered finitely additive signed measures on path space

defined by H1
m for m ∈ {4, 6, 8, . . . }. Recently, D. Levin and T. Lyons [65] used

rough path theory to study these measures. Both Krylov and Hochberg associ-

ated something like a process to such finitely additive measures, called signed

Wiener measures in [51], to mimic the way that Brownian motion is associated

to Wiener measure. This theory has been pursued recently by a number of au-

thors [53, 61, 62, 68, 79], and such “processes” are now called pseudo-processes;

the pseudo-process corresponding to H1
4 is called the biharmonic pseudo- pro-

cess. We do not pursue signed Wiener measures or pseudo-processes here.

When β is purely imaginary and m ≥ 2, the situation is very different from

those described above. The graphs of Re(H i
m(x)) for m = 2, 3, 4, 5 are illustrated

in Figure 2.4. When β = i/m, Hβ
m = H

i/m
m satisfies the ordinary differential

equation
dm−1y

dxm−1
+ (−i)m−1xy = 0,

c.f., Remark 3 of [48]. When m = 3, this is Airy’s equation and H
i/3
3 (x) is the

famous Airy function, Ai(x). The study of the functions Hβ
m, for β purely imag-
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Figure 2.4: Re(H i
m(x)) for m = 2, 3, 4, 5

inary, dates back the 1920’s. Such functions are closely related to those used by

Hardy and Littlewood [44] in their consideration of Waring’s problem. Using

the method of steepest descent, Burwell [16] deduced asymptotic expansions

for Hβ
m for all m > 2 (see also [8]). Concerning global bounds for Hβ

m, we cannot

expect to have estimates of the form (2.6) when β is purely imaginary, for, in

view of (2.5), x 7→ |Hβ
2 (x)| is constant. When m > 2, using oscillatory integral

methods, we show that

|Hβ
m(x)| ≤ A

|x|
(m−2)
2(m−1)

+
B

|x|

for all real numbers x, where A,B > 0. This estimate can also be deduced from

the asymptotic expansions of Burwell [16]. Our estimates are seen to be sharp

in view of this comparison.

Returning to our discussion of convolution powers, let us momentarily view the

situation with a probabilistic eye. Suppose that µ is a signed Borel measure on
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R and X1, X2, . . . are independent “random” variables each with distribution µ.

The distribution of the sum Sn := X1 +X2 + · · ·Xn, for n = 1, 2, . . . , is the mea-

sure µ(n) and can be computed by taking successive convolution powers of the

measure µ. Limit theorems are seen to be affirmative answers to the following

question: Does µ(n), properly scaled, converge in any sense as n → ∞ and if

so, to what? In [51, 52], K. Hochberg proved a class of central limit theorems.

They essentially state that, under certain conditions on µ, there exists an even

natural number m ≥ 2 such that the signed Borel measures {νn}n≥1, defined

by νn(B) = µ(n)(n1/mB) for any Borel set B, converge weakly to the measure

with density H1
m with respect to Lebesgue measure. R. Hersch [48] proved a

class of central limit theorems in which “random” variables are allowed to take

values in an abstract algebra over R (see also [97]). Like Hochberg, Hersch’s

central limit theorems also involve weak convergence, however, the class of at-

tractors in [48] is different. It consists of the Dirac mass and the measures with

densities H−i
m/m!

m for all m ≥ 2 such that m 6≡ 0 mod 4. Local limit theorems,

by contrast, focus on convergence of the density of µ(n). In our case, these are

statements of uniform (or local uniform) convergence of φ(n)(x) as n → ∞. Lo-

cal limit theorems, in the case that φ is generally real valued, were treated by

I. Schoenberg [80] and T. Greville [42] in connection to De Forest’s problem in

data smoothing. Their local limit theorems involve a certain subclass of our at-

tractors, namely Hβ
m for m ≥ 2 even and β > 0, and H iτ

m for m > 1 odd and

τ ∈ R. The local limit theorems of Schoenberg and Greville involve ad hoc as-

sumptions that are too restrictive for us; Theorem 2.1.2 extends their results. In

the case that φ has admissible support, Theorem 2.1.2 also extends the results

of [31]. We refer the reader to Section 2 of [31] for a brief review of local limit

limit theorems and their connection to data smoothing and numerical difference
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schemes for partial differential equations.

The behavior of the convolution powers φ(n) is determined by the local behavior

of φ̂ by means of the Fourier inversion formula (2.17). The latter two main re-

sults of this chapter, Theorems 2.1.2 and 2.1.3, are both stated under the assump-

tion that supξ |φ̂(ξ)| = 1; this can always be arranged by replacing φ by A−1φ for

an appropriate constant A > 0. Theorems 2.1.2 and 2.1.3 involve a number of

constants and we now proceed to describe how they come about. First, we con-

sider φ̂(ξ) for ξ ∈ (−π, π] and determine the set of points Ω(φ) ⊆ (−π, π] at which

|φ̂(ξ)| = sup |φ̂| = 1. When φ is an aperiodic and irreducible random walk, this

supremum is attained only at 0 (see Lemma 2.3.1 of [63] and its subsequent re-

mark), but in general, |φ̂(ξ)| = 1 at multiple such points. In Section 2.2, we show

that the set Ω(φ) is finite. Second, for each ξ0 ∈ Ω(φ), we consider the Taylor

expansion for log(φ̂(ξ + ξ0)/φ̂(ξ0)) on a neighborhood of zero. In general, this

series is of the form

iαξ − βξm + o(ξm)

as ξ → 0, where m = m(ξ0) ∈ {2, 3, 4, . . . }, α = α(ξ0) ∈ R and β = β(ξ0) ∈ C

with Re(β(ξ0)) ≥ 0. Further, we show that Re(β(ξ0)) = 0 whenever m(ξ0) is

odd. The constants α(ξ0) and β(ξ0) play the roles of the mean and first non-

vanishing moment of order m(ξ0) ≥ 2 for probability distributions (see Remark

4 of Section 2.2). Next, we set

mφ = max
ξ0∈Ω(φ)

m(ξ0) (2.7)

and restrict our attention to the subset of points {ξ1, ξ2, . . . , ξR} of Ω(φ) for which

m(ξq) = mφ. We show that the contribution to φ(n) by φ̂ near ξ0 ∈ Ω(φ) is on the

order of n−1/m(ξ0) (see Lemma 2.3.5). Because n−1/m(ξ0) = o(n−1/mφ) as n → ∞
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whenever m(ξ0) < mφ, the influence on φ(n) from such points is not seen in local

limits; it is only the points ξq for which m(ξq) = mφ that matter. Finally, for each

q = 1, 2, . . . , R, we set βq = β(ξq) and αq = α(ξq).

We now state our second main theorem, the first to involve local limits.

Theorem 2.1.2. Let φ : Z→ C have admissible support and be such that supξ |φ̂(ξ)| =

1. Referring to the constants above and setting m = mφ, suppose additionally that

m > 2 or Re(βq) > 0 for all q = 1, 2, . . . , R. (2.8)

Then there exists a compact set K ⊆ R such that the supremum of |φ(n)| is attained on(
R⋃
q=1

(αqn+Kn1/m)

)⋂
Z (2.9)

and

φ(n)(x) =
R∑
q=1

n−1/me−ixξq φ̂(ξq)
nHβq

m

(
x− αqn
n1/m

)
+ o(n−1/m) (2.10)

uniformly in Z.

Remark 3. If φ : Z → C has admissible support and is such that supξ |φ̂(ξ)| = 1,

hypothesis (2.8) is equivalent to the condition that, for every ξ0 ∈ (−π, π] for which

|φ̂(ξ0)| = 1,
d2

dξ2
log φ̂(ξ)

∣∣∣
ξ0
6= iτ

for any non-zero real number τ .

As the conclusion (2.9) suggests, the interesting behavior of φ(n) occurs on the

moving sets αqn + Kn1/m called packets. Each packet drifts with (and expands

around) the point αqn and so we call αq a drift constant. There is much gained in

studying φ(n) by zooming in on its packets, i.e., choosing a drift constant αq from

15



{α1, α2, . . . , αR} and studying φ(n)(bαqn+xn1/mc) where x lives in a compact set

(see Subsection 2.8.1). In doing this, we arrive at our third main result, a local

limit theorem in which only the points ξl ∈ {ξ1, ξ2, . . . , ξR} and corresponding

attractors Hβl
m appear, provided αl = αq.

Theorem 2.1.3. Let φ : Z→ C have admissible support and be such that supξ |φ̂(ξ)| =

1. Then, referring to the collections ξ1, ξ2, . . . , ξR, β1, β2, . . . , βR and α1, α2, . . . , αR

and setting m = mφ, the following holds: To each αq, there exist subcollections

ξj1 , ξj2 , . . . , ξjr(q) and βj1 , βj2 , . . . , βjr(q) such that

φ(n)(bαqn+xn1/mc) =

r(q)∑
j=1

n−1/me−ibαqn+xn1/mcξjl φ̂(ξjl)
mH

βjl
m (x) + o(n−1/m) (2.11)

uniformly for x in any compact set.

We note that Theorem 2.1.3 does not require the hypothesis (2.8) of Theorem

2.1.2. The hypothesis rules out the situation in which φ(n) is approximated by

Hβ
2 where β is purely imaginary. Correspondingly, the example where φ is de-

fined by (2.1) can be treated by Theorem 2.1.3 but not Theorem 2.1.2. For the

generality gained by eliminating the hypothesis (2.8) we lose the uniformity of

the limit (2.10) on all of Z. As we illustrate in Subsection 2.8.1, the conclusion

(2.11) is sometimes more informative anyway. The limits (2.10) and (2.11) of

Theorems 2.1.2 and 2.1.3 both involve a sum of the attractors Hβ
m. We remark

that these sums are not identically zero and, in fact, each sum is bounded below

in absolute value by Cn−1/m for some constant C > 0; this is demonstrated in

Section 2.6 and is used to establish the lower estimate in Theorem 2.1.1.

Everything in this chapter pertains to a single dimension. In Chapter 3, we will

study the convolution powers φ(n) where φ : Zd → C is subject to some restric-
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tive assumptions. Let us simply note here that the situation is more complicated

in the Zd setting. For example, it is not clear what the analogue of Theorem 2.1.1

should be. Further, at points ξ0 ∈ (−π, π]d where the Fourier transform satisfies

supξ |φ̂(ξ)| = |φ̂(ξ0)| = 1, |φ̂(ξ)| can decay at different rates along different direc-

tions. This behavior will be seen to affect local limits in which attractors exhibit

anisotropic scaling. For instance, by taking a tensor product of admissible func-

tions (in the sense of the present article), one can easily construct φ : Z2 → C for

which

φ(n)(x) = n−3/4Hβ1

2 (n−1/2x1)Hβ2

4 (n−1/4x2) + o(n−3/4)

uniformly for x = (x1, x2) ∈ Z2, where Re(β1),Re(β2) > 0.

The chapter is organized as follows: In Section 2.2, we study the local behavior

of the Fourier transform of φ. In Section 2.3, we address some technical lemmas

involving oscillatory integrals and prove the estimate A−n‖φ(n)‖∞ ≤ C ′n−1/m of

Theorem 2.1.1; this is Theorem 2.3.6. Section 2.4 concentrates on the attractors

Hβ
m where convergence, analyticity and global bounds are addressed. The local

limit theorems of Theorems 2.1.3 and 2.1.2 are proven in Section 2.5. In Section

2.6, we complete the proof of Theorem 2.1.1 and in Section 2.7, the conclusion

(2.9) of Theorem 2.1.2 is proven. Section 2.8 gives examples and addresses a

general situation previously treated in [31].

2.2 Local behavior of φ̂

In this section we study the local behavior of φ̂ at points in (−π, π] at which

the supremum of |φ̂| is attained. This will be seen to completely determine the

17



limiting behavior of the convolution powers of φ. We proceed by making some

simple observations about (2.2) under the assumptions that φ has admissible

support and supξ |φ̂(ξ)| = 1.Our first observation concerns the number of points

at which |φ̂(ξ)| = 1. Because φ has admissible support, |φ̂|2 is a non-constant

trigonometric polynomial and so |φ̂| is not constant. From here we observe that

φ̂ can only satisfy |φ̂(ξ)| = 1 at a finite number of points in (−π, π]; a simple

accumulation-point argument shows the necessity of this fact. We now observe

that φ̂ is a finite linear combination of exponentials and is therefore analytic. We

use this observation to study the local behavior of φ̂(ξ) about any point ξ0 ∈

(−π, π] for which |φ̂(ξ0)| = 1. To this end we consider

Γ(ξ) = log

(
φ̂(ξ + ξ0)

φ̂(ξ0)

)
, (2.12)

where log is taken to be the principle branch of logarithm and we allow the

variable ξ to be complex, for the time being. It follows from our remarks above

that Γ is analytic on an open neighborhood of 0 and we can therefore consider

its convergent Taylor series

Γ(ξ) =
∞∑
l=1

alξ
l

on this neighborhood. The limiting behavior of the convolution powers of φ is

characterized by the first few non-zero terms of this series.

The requirement that |φ̂(ξ)| ≤ 1 imposes conditions on the Taylor expansion

for Γ as follows: We consider the collection {al}∞l=1 of coefficients of the series

and let k = min{l ≥ 1 : Re(al) 6= 0}, which exists, for otherwise |φ̂| would be

constant. We claim that k is even and Re(ak) < 0. To see this we observe that by

only considering real values of ξ we can find a neighborhood of 0 on which

eCξ
k ≤ |φ̂(ξ + ξ0)| = |φ̂(ξ0)eΓ(ξ)|
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and where C is a real constant having the same sign as Re(ak). If it is the case

that Re(ak) > 0 or k is odd we have that |φ̂(ξ+ ξ0)| > 1 for some ξ which leads to

a contradiction. We will summarize the above arguments shortly. First we give

the following convenient definition, originally motivated by Thomée [87].

Definition 2.2.1. Let ν : R→ C be analytic on a neighborhood of a point ξ0 for which

|ν(ξ0)| = 1. Let Γ : O ⊆ R→ C be defined by

Γ(ξ) = log

(
ν(ξ + ξ0)

ν(ξ0)

)
, (2.13)

where O is an open neighborhood of 0 and is such that O 3 ξ 7→ ν(ξ + ξ0) is non-

vanishing.

1. We say that ξ0 is a point of type 1 and of order m for ν if the Taylor expansion for

(2.13) yields an even integer m ≥ 2, a real number α, and a complex number β with

Re(β) > 0 such that

Γ(ξ) = iαξ − βξm +
∞∑

l=m+1

alξ
l (2.14)

on O. In this case we write ξ0 ∼ (1;m).

2. We say that ξ0 is a point of type 2 and of order m for ν if the Taylor expansion

for (2.13) yields m, k, α, γ, p(ξ), where m and k are natural numbers with k even and

1 < m < k; α and γ are real numbers with γ > 0; and p(ξ) is a real polynomial with

p(0) 6= 0 such that

Γ(ξ) = iαξ − iξmp(ξ)− γξk +
∞∑

l=k+1

alξ
l. (2.15)

on O. In this case we write ξ0 ∼ (2;m) and set β = ip(0).

In both cases, the order m refers to the degree of the first non-vanishing term, higher

than degree one, in the Taylor expansion for Γ. The type refers to the complex phase of
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coefficient of this term: it is of type 1 if the coefficient has a non-zero real part, otherwise

it is of type 2. In either case we refer to the constant α as the drift constant for ξ0.

Let us note that the neighborhood O in the above definition is immaterial; it

needs only to be small enough to ensure that log is defined and analytic there.

Using the definition, the arguments which preceded it are summarized in the

following proposition.

Proposition 2.2.2. Let φ : Z → C have admissible support. Suppose that the Fourier

transform of φ satisfies supξ |φ̂(ξ)| = 1. Then

Ω(φ) = {ξ′ ∈ (−π, π] : |φ̂(ξ′)| = 1}

is finite and, for ξ0 ∈ Ω(φ), we have either ξ0 ∼ (1;m) or ξ0 ∼ (2;m) for some natural

number m = m(ξ0) ≥ 2.

Convention 2.2.3. For any φ : Z → C satisfying the hypotheses of Proposition 2.2.2,

set

m = max
ξ0∈Ω(φ)

m(ξ0). (2.16)

In view of the proposition, we can write

Ω(φ) = {ξ1, ξ2, . . . , ξQ},

where we shall henceforth assume that Ω(φ) is indexed in the following way:

• For each q = 1, 2, . . . , R, ξq ∼ (1;mq) or ξq ∼ (2;mq) with mq = m and

associated constants αq and βq.

• For each q = R + 1, R + 2, . . . , Q, ξq ∼ (1;mq) or ξq ∼ (2;mq) with mq < m.

Hence, to the points {ξ1, ξ2, . . . , ξR} ⊆ Ω(φ) we have the associated collections

α1, α2, . . . , αR of real numbers and β1, β2, . . . , βR of non-zero complex numbers with

Re(βq) ≥ 0 for q = 1, 2, . . . , R.
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We remark that Ω(φ), m (= mφ), and the constants αq and βq for q = 1, 2, . . . , R

of Convention 2.2.3 are consistent with those of the discussion preceding the

statement of Theorem 2.1.2. Therefore, the constants appearing in Theorems

2.1.2 and 2.1.3 are those of Convention 2.2.3.

Remark 4. There is an alternative way to find the constants mq αq and βq above. For

any function f : Z→ C, define

Ef(X) =
∑
x∈Z

f(x)φ(x),

where X is to be understood as a “random” variable with distribution φ. For each

ξq ∈ Ω, put

a(ξq) =
EXeiξqX

φ̂(ξq)

and, for each natural number k ≥ 2,

bk(ξq) =
ik

k!

(
a(ξq)

k − EXkeiξqX

φ̂(ξq)

)
.

It is easily shown that αq = a(ξq), mq = min{k ≥ 2 : bk(ξq) 6= 0} and βq = bmq(ξq).

Proposition 2.4 of [31] gives a class of examples for which φ is real valued, Ω(φ) = {0}

and m = m1 = 2l for any specified l ≥ 1. Necessarily, bk(0) = 0 for all k < 2l.

If we further assume that φ ≥ 0 and Ω(φ) = {0}, it follows that b2(0) 6= 0 and

so m = 2. This situation is equivalent to the case in which φ is the distribution of a

random variable X with state space Z such that Supp(φ) is not contained in any proper

subgroup of Z. Here α1 = EX and 2β1 = EX2 − (EX)2 = Var(X). In this way, the

standard local limit theorem is captured by Theorem 2.1.2.

To exploit the interplay between local approximations of φ̂ and the Fourier in-

version formula, it useful to consider a domain of integration T in which Ω(φ)
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sits in the interior. To this end, let η ≥ 0 be such that Ω(φ) ⊆ (−π + η, π + η) and

set T = (−π + η, π + η]. Of course, for each natural number n and x ∈ Z, we

have

φ(n)(x) =
1

2π

∫
T

e−ixξφ̂(ξ) dξ. (2.17)

It is also useful to consider the following extension of φn(x): Define φe : N×R→

C by

φe(n, x) =
1

2π

∫
T

e−ixξφ̂(ξ) dξ (2.18)

for n ∈ N and x ∈ R. We note that φe(n, x) = φ(n)(x) for all n ∈ N and x ∈ Z.

The following lemma is seen to govern the limiting behavior of the convolution

powers of φ.

Lemma 2.2.4. Let ν : R → C be analytic on a neighborhood of a point ξ0 such that

|ν(ξ0)| = 1.

1. If ξ0 ∼ (1;m), then there exist δ > 0 and B,C > 0 such that

|Γ(ξ)− iαξ + βξm| ≤ B|ξ|m+1 (2.19)

and

|ν(ξ + ξ0)| ≤ e−Cξ
m

(2.20)

for all |ξ| ≤ δ. Here Γ, α, and β are given by Definition 2.2.1.

2. If ξ0 ∼ (2;m), there exists δ > 0 and B > 0 such that

|Γ(ξ)− iαξ + ip(ξ)ξm| ≤ Bξk (2.21)

for all |ξ| ≤ δ. Moreover, there exist C,D > 0 such that the function

g(ξ) = ν(ξ0)−1ν(ξ + ξ0) exp(−iαξ + iξmp(ξ))
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satisfies

|g(ξ)| ≤ e−Cξ
k

(2.22)

and

|g′(ξ)| ≤ D|ξ|k−1e−Cξ
k

(2.23)

for all |ξ| ≤ δ. Here Γ, k, α, and p(ξ) are given by Definition 2.2.1.

Proof. By our definitions, we have

ν(ξ + ξ0) = ν(ξ0)eΓ(ξ),

where Γ is defined by (2.13). In the case that ξ0 ∼ (1;m), (2.19) and (2.20) are im-

mediate from (2.14) and the fact that the series
∑

l=m+1 alξ
l converges uniformly

on a neighborhood of 0.

In the case that ξ0 ∼ (2;m), the justification of the estimates (2.21) and (2.22)

follows similarly. For the last conclusion, we observe that

g′(ξ) =
d

dξ
exp(−iαξ + iξmp(ξ))eΓ(ξ)

=
d

dξ
exp

(
−γξk +

∞∑
l=k+1

alξ
l

)

=

(
−γkξk−1 +

∞∑
l=k+1

allξ
l−1

)
g(ξ)

on a neighborhood of 0. The inequality (2.23) now follows without trouble.

2.3 The upper bound

The goal of this section is to establish the upper bound of Theorem 2.1.1. To this

end, we address a series of technical lemmas involving oscillatory integrals of
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the form ∫ b

a

g(ξ)eif(ξ)dξ

which are used throughout the remainder of the chapter. Many of the argu-

ments within are based on the same or slightly less general arguments made by

Greville [42], Thomée [87] and, not surprisingly, van der Corput.

Lemma 2.3.1. Let h ∈ L1([a, b]) and g ∈ C1([a, b]) be complex valued. Then for any

M such that ∣∣∣∣∫ x

a

h(u)du

∣∣∣∣ ≤M

for all x ∈ [a, b] we have∣∣∣∣∫ b

a

g(u)h(u)du

∣∣∣∣ ≤M (‖g‖∞ + ‖g′‖1) .

Proof. For h ∈ L1([a, b]), the function

f(x) =

∫ x

b

h(u)du

is absolutely continuous and f ′(x) = h(x) almost everywhere. Furthermore,

our hypothesis guarantees that |f(x)| ≤M for all x ∈ [a, b]. Integration by parts

yields ∫ b

a

g(u)h(u)du = [g(u)f(u)]ba −
∫ b

a

g′(u)f(u)du

and therefore∣∣∣∣∫ b

a

g(u)h(u)du

∣∣∣∣ ≤ |f(b)g(b)|+ 0 +

∫ b

a

|f(u)‖g′(u)|du

≤ M‖g‖∞ +M‖g′‖1.

The following two lemmas, 2.3.2 and 2.3.3, are due originally to van der Corput.

The proof of Lemma 2.3.2 is a nice application of the second mean value theo-

rem for integrals and can be found in [87]. We note that Lemma 2.3 of [87] is
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stated under slightly stronger hypotheses than Lemma 2.3.2, however the proof

yields our statement exactly. The validity of Lemma 2.3.2 can also be seen us-

ing alternating series [42]. For the proof of Lemma 2.3.3, we refer the reader to

Lemma 3.3 of [87]; its proof is relatively simple but involves checking several

cases (see also Chapter 1 of [14]).

Lemma 2.3.2. Let f ∈ C1([a, b]) be real valued and suppose that f ′ is a monotonic

function such that f ′(x) 6= 0 for all x ∈ [a, b]. Then,∣∣∣∣∫ b

a

eif(u)du

∣∣∣∣ ≤ 4

λ
, (2.24)

where

λ = inf
x∈[a,b]

|f ′(x)|. (2.25)

Lemma 2.3.3. Let f ∈ C2([a, b]) be real valued and suppose that f ′′(x) 6= 0 for all

x ∈ [a, b]. Then ∣∣∣∣∫ b

a

eif(u)du

∣∣∣∣ ≤ 8
√
ρ
,

where

ρ = inf
x∈[a,b]

|f ′′(x)|.

Lemma 2.3.4. Let g ∈ C1([a, b]) be complex valued and let f ∈ C2([a, b]) be real valued

and such that f ′′(x) 6= 0 for all x ∈ [a, b]. Then∣∣∣∣∫ b

a

g(u)eif(u)du

∣∣∣∣ ≤ min

{
4

λ
,

8
√
ρ

}
(‖g‖∞ + ‖g′‖1) ,

where λ = infx∈[a,b] |f ′(x)| and ρ = infx∈[a,b] |f ′′(x)|.

Proof. Combining the results of Lemmas 2.3.2 and 2.3.3 show∣∣∣∣∫ x

a

eif(u)du

∣∣∣∣ ≤ min

{
4

λ
,

8
√
ρ

}
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for any x ∈ [a, b]. We remark that 4/λ only contributes to the upper bound pro-

vided f ′ is never zero, in which case the application of Lemma 2.3.2 is justified.

Setting h(u) = eif(u) we note that the functions g and h are the subject of Lemma

2.3.1. The result now follows immediately from Lemma 2.3.1.

Lemma 2.3.5. Let ν : R→ C be analytic on a neighborhood of ξ0 where |ν(ξ0)| = 1. If

ξ0 is a point of order m ≥ 2 for ν, then there is δ > 0 such that

1

2π

∫
|ξ−ξ0|≤δ

ν(ξ)ne−ixξdξ = O(n−1/m),

where the limit is uniform in x ∈ R.

Proof. Let us first assume that ξ0 ∼ (1;m). Our hypothesis guarantees that m is

even and by Lemma 2.2.4 there are constants C > 0 and δ > 0 such that

|ν(ξ + ξ0)| ≤ e−Cξ
m

for all −δ ≤ ξ ≤ δ. Therefore∣∣∣∣ 1

2π

∫
|ξ−ξ0|≤δ

ν(ξ)ne−ixξdξ

∣∣∣∣ ≤ ∫ δ

−δ
|ν(ξ + ξ0)|ndξ

≤
∫
R
e−nCξ

m

dξ

≤ M

n1/m
.

In the second case we assume that ξ0 ∼ (2;m). We set

g(ξ) =
[
ν(ξ0)−1ν(ξ + ξ0) exp(−iαξ + iξmp(ξ))

]

and

fn(ξ, x) = (nα− x)ξ − nξmp(ξ).
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We note that fn is real valued. Appealing to Lemma 2.2.4, let δ > 0 be chosen

so that the estimates (2.22) and (2.23) hold for all ξ ∈ [−δ, δ]. Upon changing

variables of integration and using the fact that |ν(ξ0)| = 1, we write∣∣∣∣ 1

2π

∫
|ξ−ξ0|≤δ

ν(ξ)ne−ixξdξ

∣∣∣∣ ≤ 3∑
j=1

∣∣∣∣∣
∫
Ij

g(ξ)neifn(ξ,x)dξ

∣∣∣∣∣ ,
where I1 = [−δ,−n1/m], I2 = (−n1/m, n1/m) and I3 = [n1/m, δ]. On the interval I2,

|g(ξ)| ≤ 1 by (2.22) and therefore∣∣∣∣∫
I2

g(ξ)neifn(ξ,x)dξ

∣∣∣∣ ≤ 2

n1/m
.

We now consider the integral over I1 to which we will apply Lemma 2.3.4.

First observe that the regularity requirements of Lemma 2.3.4 for fn and gn are

met. Differentiating fn twice with respect to ξ gives

∂2
ξfn(ξ, x) = −n d

2

dξ2
ξmp(ξ),

which is independent of x. Using the fact that ξmp(ξ) is a polynomial with m

being the smallest power of its terms, we may further restrict δ > 0 so that

C2|ξ|m−2 ≤
∣∣∣∣ d2

dξ2
ξmp(ξ)

∣∣∣∣ (2.26)

for some C > 0 and for all ξ ∈ [−δ, δ]. Consequently |∂2
ξfn(ξ, x)| > 0 for all ξ ∈ I1

and x ∈ R. Appealing to Lemma 2.3.3 we have∣∣∣∣∫
I1

g(ξ)neifn(ξ,x)dξ

∣∣∣∣ ≤ 8√
λ

(‖gn‖∞ + ‖ng′gn−1‖1), (2.27)

where λ = infξ∈I1 |∂2
ξfn(ξ, x)|. Using (2.26) and recalling that m ≥ 2 we observe

that

Cn1/m =
√
C2n| − n−1/m|m−2 ≤

√
inf
I1
C2n|ξ|m−2 ≤

√
λ.
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Now by (2.22) and (2.23) of Lemma 2.2.4 we have ‖gn‖∞ ≤ 1 and

‖ng′gn−1‖1 = n

∫
I1

|g′(ξ)g(ξ)n−1|dξ

≤ n

∫
I1

D|ξ|k−1e−nCξ
k

dξ

≤
∫
R
D|u|k−1e−Cu

k

du = M <∞.

Inserting the above estimates into (2.27) gives∣∣∣∣∫
I1

g(ξ)neifn(ξ,x)dξ

∣∣∣∣ ≤ 8(1 +M)

Cn1/m
=

K1

n1/m
.

A similar calculation shows that∣∣∣∣∫
I3

gn(ξ)eifn(ξ,x)dξ

∣∣∣∣ ≤ K2

n1/m

for some K2 > 0. Putting these estimates together gives∣∣∣∣ 1

2π

∫
|ξ−ξ0|≤δ

ν(ξ)ne−ixξdξ

∣∣∣∣ ≤ K1

n1/m
+

2

n1/m
+

K2

n1/m
,

our desired inequality.

Theorem 2.3.6. Let φ : Z→ C have admissible support and let A = supξ |φ̂(ξ)|. Then

there is a natural number m ≥ 2 and a real number C ′ > 0 such that

A−n‖φ(n)‖∞ ≤ C ′n−1/m (2.28)

for all natural numbers n.

Proof. It suffices to prove the theorem in the case that A = supξ |φ̂(ξ)| = 1, for

otherwise one simply multiplies the Fourier inversion formula by A−n. In view

of Proposition 2.2.2, we adopt Convention 2.2.3. For each ξq ∈ Ω(φ) with as-

sociated 2 ≤ mq ≤ m, select δq > 0 for which the conclusion of Lemma 2.3.5

holds and small enough to ensure that the intervals Iq := [ξq − δq, ξq + δp] ⊆ T
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for i = 1, 2, . . . , Q are disjoint. Set J = T \ ∪qIq and s = supξ∈J |φ̂(ξ)| < 1. Using

(2.17), we write

|φ(n)(x)| =

∣∣∣∣∣
Q∑
q=1

1

2π

∫
Iq

φ̂(ξ)ne−ixξdξ +
1

2π

∫
J

φ̂(ξ)ne−ixξdξ

∣∣∣∣∣
≤

Q∑
q=1

∣∣∣∣∣ 1

2π

∫
Iq

φ̂(ξ)ne−ixξdξ

∣∣∣∣∣+
1

2π

∫
J

|φ̂(ξ)|ndξ

≤
Q∑
q=1

∣∣∣∣∣ 1

2π

∫
Iq

φ̂(ξ)ne−ixξdξ

∣∣∣∣∣+ sn.

Using Lemma 2.3.5 we conclude that for every x ∈ R

|φ(n)(x)| ≤
Q∑
q=1

Kq

n1/mq
+ sn

≤ K

n1/m
+ sn

from which the result follows.

2.4 The attractors Hβ
m

In this section we study the functions Hβ
m defined by (2.4). Our first task is

to show that the integral defining Hβ
m converges in the senses indicated in the

introduction.

Proposition 2.4.1. Let m ≥ 2 be a natural number and let β be a non-zero complex

number such that Re(β) ≥ 0.

1. If m is even and Re β > 0 then the integral defining Hβ
m(x) in (2.4) converges

absolutely and uniformly in x on R as an improper Riemann integral.
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2. If m > 2 and Re(β) = 0 then the integral defining Hβ
m(x) converges uniformly

in x on R as an improper Riemann integral.

3. If m = 2 and Re(β) = 0 then for any compact set K ⊆ R, the integral defining

Hβ
m(x) converges uniformly in x on K as an improper Riemann integral.

Proof. For item 1 there is nothing to prove, the result follows from the classical

theory of Fourier transforms. For items 2 and 3 , let τ be the non-zero real num-

ber such that β = iτ and set f(u, x) = −xu − τum. Our job is to show that the

integral ∫
R
eif(x,u)du

converges in the senses indicated for m > 2 and m = 2 respectively.

We first consider the case where m > 2. Let ε > 0 and choose M sufficiently

large so that
8√

|τ |m(m− 1)Mm−2
≤ ε. (2.29)

Observe that for any real numbers a and b such that M < a ≤ b or a ≤ b < −M ,

|τ |m(m− 1)Mm−2 < inf
u∈[a,b]

|∂2
uf(x, u)| =: λ.

We now apply Lemma 2.3.3 and conclude that∣∣∣∣∫ b

a

e−ixu−βu
m

du

∣∣∣∣ =

∣∣∣∣∫ b

a

eif(x,u)du

∣∣∣∣ ≤ 8√
λ
< ε

for all x ∈ R and for all a ≤ b such that the distance from the interval [a, b] to 0

is more than M . The Cauchy criterion for uniform convergence guarantees that

the improper Riemann integrals∫ ∞
0

e−ixu−βu
m

du and
∫ 0

−∞
e−ixu−βu

m

du

converge uniformly in x on R. This proves item 2 .
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Let us now assume that m = 2. We remark that the above argument fails in

this case because ∂2
uf is a non-zero constant. Consequently, we need to use ∂uf ,

which depends on both u and x, to bound our integrals. Let ε > 0 and let K ⊆ R

be a compact set. We choose M > 0 so that

4

|2τM + x|
< ε

for all x ∈ K. By applying Lemma 2.3.2 and making an argument analogous to

that given in the previous case we conclude that∣∣∣∣∫ b

a

e−ixu−βu
2

du

∣∣∣∣ =

∣∣∣∣∫ b

a

eif(x,u)du

∣∣∣∣ < ε

for all x ∈ K and for all a ≤ b such that the distance from the interval [a, b] to 0

is more than M . Again, an application of the Cauchy criterion gives the desired

result.

Proposition 2.4.2. Let β be non-zero and purely imaginary. Then for any natural

number m > 2 there exist positive constants A,B such that

|Hβ
m(x)| ≤ A

|x|
m−2

2(m−1)

+
B

|x|
(2.30)

for all x ∈ R.

Proof. Let β = iτ , where τ is a non-zero real number, and set

f(u, x) = −xu− τum. For x 6= 0, put M = (2m|τ |/|x|)−1/(m−1) and write

Hβ
m(x) =

1

2π

∫ −M
−∞

eif(u,x) du+
1

2π

∫ ∞
M

eif(u,x) du+
1

2π

∫ M

−M
eif(u,x) du. (2.31)

Observe that

inf
u∈[−M,M ]

|∂uf(u, x)| = inf
u∈[−M,M ]

|x+mτum−1|

= m|τ | inf
u∈[−M,M ]

∣∣∣ x
mτ

+ um−1
∣∣∣ ≥ m|τ |Mm−1 =

|x|
2
,

31



and therefore ∣∣∣∣∫ M

−M
eif(u,x) du

∣∣∣∣ ≤ 8

|x|
(2.32)

in view of Lemma 2.3.2. Similarly, there exists C > 0 such that for any N > M ,

inf
u∈[M,N ]

|∂2
uf(u, x)| ≥ |x|

m−2
m−1

C2
.

Thus, by appealing to Lemma 2.3.3 and Proposition 2.4.1, we have∣∣∣∣∫ ∞
M

eif(u,x) du

∣∣∣∣ = lim
N→∞

∣∣∣∣∫ N

M

eif(u,x) du

∣∣∣∣
≤ lim sup

N

8√
infu∈[M,N ] |∂2

uf(u, x)|
≤ C

|x|
m−2

2(m−1)

.

By an analogous computation,∣∣∣∣∫ M

−∞
eif(u,x) du

∣∣∣∣ ≤ C

|x|
m−2

2(m−1)

(2.33)

for C > 0. The desired result follows by combining the estimates (2.31), (2.32)

and (2.33).

The final proposition of this section, Proposition 2.4.3, asserts the analyticity and

non-triviality of the functions Hβ
m for all values of m and β considered above.

To preface it, let’s consider the case in which m ≥ 2 is even and Re(β) > 0: For

any x ∈ R, observe that

Hβ
m(x) =

1

2π

∫
R
e−ixue−βu

m

du =
1

2π

∫
R

∞∑
k=0

(−ixu)k

k!
e−βu

m

du.

Setting 2b = Re(β), note that∫
R

∞∑
k=0

∣∣∣∣(−ixu)k

k!
e−βu

m

∣∣∣∣ du =

∫
R

∞∑
k=0

|xu|k

k!
e−2bum du =

∫
R
e|xu|−bu

m

e−bu
m

du.

By a simple maximization argument, one finds that |xu| − bum ≤ c|x|m/(m−1) for

all u ∈ R, where c = (1−m−1)(mb)−1/(m−1) > 0. Therefore,∫
R

∞∑
k=0

∣∣∣∣(−ixu)k

k!
e−βu

m

∣∣∣∣ du ≤ ec|x|
m/(m−1)

∫
R
e−bu

m

du <∞
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and so this application of Tonelli’s theorem justifies the following use of Fubini’s

theorem: ∫
R

∞∑
k=0

(−ixu)k

k!
e−βu

m

du =
∞∑
k=0

∫
R

(−iu)kxk

k!
e−βu

m

du.

Therefore

Hβ
m(x) =

1

2π

∞∑
k=0

(∫
R

(−iu)k

k!
e−βu

m

du

)
xk (2.34)

for each x ∈ R; note that the convergence of the series is part of the conclusion.

Consequently, Hβ
m is analytic on R. Moreover, from the representation (2.34), it

is clear that Hβ
m(x) is not identically zero. When m > 1 is odd and β is purely

imaginary, the same conclusion was reached by R. Hersch [48]. His proof in-

volves changing the contour of integration from R to a pair of rays on which

the integrand is absolutely integrable. When m ≥ 2 is even and β is purely

imaginary, Hersh’s argument pushes through with very little modification. We

therefore summarize the result below and, in the case that Re(β) = 0, refer the

reader to Theorem 4 of [48] for the essential details.

Proposition 2.4.3. Let m ≥ 2 be a natural number and let β be a non-zero complex

number with Re(β) ≥ 0. If Re(β) > 0 additionally assume that m is even. Then Hβ
m is

analytic and not identically zero.

2.5 Local limits

In this section we prove Theorem 2.1.3 and the second conclusion, (2.10), of

Theorem 2.1.2. To this end, the following three lemmas, Lemmas 2.5.1, 2.5.2 and

2.5.3, focus on local approximations to Fourier-type integrals involving integer

powers of an analytic function ν near a point ξ0 at which |ν(ξ0)| = 1. The lemmas
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treat the cases in which ξ0 ∼ (1;m), ξ0 ∼ (2; 2) and ξ0 ∼ (2;m), respectively. The

approximants are precisely the functions Hβ
m studied in the previous section.

Lemma 2.5.1. Let ν : R → C be analytic on a neighborhood of a point ξ0 for which

|ν(ξ0)| = 1. Assume that ξ0 ∼ (1;m) with associated constants α and β. Then for all

ε > 0 there is a δ > 0 and a natural number N such that∣∣∣∣n1/m

2π

∫
|ξ−ξ0|≤δ

ν(ξ)ne−ixξdξ − e−ixξ0ν(ξ0)nHβ
m

(
x− αn
n1/m

)∣∣∣∣ < ε (2.35)

for all n > N and for all real numbers x.

Proof. Let ε > 0 and set

yn = (x− αn)n−1/m

and

g(u) =
[
ν(ξ0)−1e−iαun

−1/m

ν(ξ0 + un−1/m)
]
.

Upon changing variables of integration we have

n1/m

2π

∫
|ξ−ξ0|≤δ

ν(ξ)ne−ixξdξ

=
e−ixξ0ν(ξ0)n

2π

∫
|u|≤δn1/m

[
ν(ξ0)−1e−iαun

−1/m

ν(ξ0 + un−1/m)
]n
e
−iux−αn

n1/m du

=
e−ixξ0ν(ξ0)n

2π

∫
|u|≤δn1/m

g(u)ne−iuyndu.
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Comparing the above integral with e−ixξ0ν(ξ0)nHβ
m(yn) gives∣∣∣∣n1/m

2π

∫
|ξ−ξ0|≤δ

ν(ξ)ne−ixξdξ − e−ixξ0ν(ξ0)nHβ
m(yn)

∣∣∣∣
≤

∣∣∣∣e−ixξ0ν(ξ0)n

2π

∫
|u|≤M

[g(u)n − e−βum ]e−iuyndu

∣∣∣∣
+

∣∣∣∣e−ixξ0ν(ξ0)n

2π

∫
M<|u|≤δn1/m

g(u)ne−iuyndu

∣∣∣∣
+

∣∣∣∣e−ixξ0ν(ξ0)n

2π

∫
|u|>M

e−βu
m

e−iuyndu

∣∣∣∣
≤

∫ M

−M
|g(u)n − e−βum|du+

∫
M<|u|≤δn1/m

|g(u)|ndu+

∫
|u|>M

e−Re(β)umdu

=: I1 + I2 + I3,

where M < δn1/m will soon be fixed. Notice that I1, I2 and I3 are independent

of x.

In view of Lemma 2.2.4, there is δ > 0 and C > 0 for which

|g(u)|n = |v(ξ0 + un−1/m)|n ≤ (e−C(un−1/m)m)n = e−Cu
m

(2.36)

whenever |u| ≤ δn1/m. Therefore,

I2 ≤
∫
M<|u|≤δn1/m

e−Cu
m

du ≤
∫
|u|>M

e−Cu
m

du

and because e−Cum ∈ L1(R), there existsM > 0 for which I2 < ε/3. Analogously

and in view of the fact that Re(β) > 0, there is M > 0 for which I3 < ε/3. Select-

ingM for which these estimates hold and restricting our attention to sufficiently

large n for which M < δn1/m, we move on to estimate I1.

Let’s first observe that, for all u such that |u| ≤M < δn1/m,

|g(u)n − e−βum| ≤ |g(u)|n + |e−βum | ≤ 2

in view of (2.36). Also, by an appeal to (2.19) of Lemma 2.2.4, for any u ∈
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[−M,M ],

|n((Γ(un−1/m)− iαun−1/m) + βum|

= n|Γ(un−1/m)− iαun−1/m + β(un−1/m)m| ≤ nB|un−1/m|m+1

= B|u|mn−1/m

and so

lim
n→∞

n(Γ(un−1/m)− iαun−1/m) = −βum.

Therefore, for each such u,

lim
n→∞

∣∣g(u)n − e−βum
∣∣ = lim

n→∞

∣∣∣en(Γ(un−1/m)−iαun−1/m) − e−βum
∣∣∣ = 0.

Because [−M,M ] is a set of finite measure, an appeal to the bounded conver-

gence theorem gives N > (M/δ)m for which I1 ≤ ε/3 for all n > N . Combining

the estimates for I1, I2 and I3 gives the desired result.

Lemma 2.5.2. Let ν : R → C be analytic on a neighborhood of a point ξ0 such that

|ν(ξ0)| = 1. Assume that ξ0 ∼ (2; 2) with associated constants α and β. Let K ⊆ R be

a compact set. Then for all ε > 0 there is a δ > 0 and a natural number N such that∣∣∣∣n1/2

2π

∫
|ξ−ξ0|≤δ

ν(ξ)ne−i(xn
1/2+αn)ξdξ − e−i(xn1/2+αn)ξ0ν(ξ0)nHβ

2 (x)

∣∣∣∣ < ε (2.37)

for all n > N and for all x ∈ K.

Proof. Let ε > 0, let K ⊆ R be a fixed compact set and choose δ > 0 so that the

estimates (2.21), (2.22) and (2.23) of Lemma 2.2.4 are valid. Changing variables

of integration we write

n1/2

2π

∫
|ξ−ξ0|≤δ

ν(ξ)ne−i(xn
1/2+αn)ξdξ =

e−i(xn
1/2+αn)ξ0ν(ξ0)n

n1/2

2π

∫
|ξ|≤δ

[ν(ξ0)−1ν(ξ + ξ0)]ne−i(xn
1/2+αn)ξdξ.
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Upon setting

D =

∣∣∣∣n1/2

2π

∫
|ξ−ξ0|≤δ

ν(ξ)ne−i(xn
1/2+αn)ξdξ − e−i(xn1/2+αn)ξ0ν(ξ0)nHβ

2 (x)

∣∣∣∣ ,
we have

D ≤
∣∣∣∣n1/2

2π

∫
|ξ|≤Mn−1/2

[ν(ξ0)−1ν(ξ + ξ0)]ne−i(xn
1/2+αn)ξdξ −Hβ

2 (x)

∣∣∣∣
+n1/2

∣∣∣∣∫
Mn−1/2<|ξ|≤δ

[ν(ξ0)−1ν(ξ + ξ0)]ne−i(xn
1/2+αn)ξdξ

∣∣∣∣ ,
where for now 0 < M < δn1/2 and we have used the fact that |ν(ξ0)| = 1.

Continuing in this manner,

D ≤
∣∣∣∣ 1

2π

∫
|u|≤M

[ν(ξ0)−1ν(un−1/2 + ξ0)]ne−i(x+αn1/2)udu−Hβ
2 (x)

∣∣∣∣
+n1/2

∣∣∣∣∫
Mn−1/2<|ξ|≤δ

[ν(ξ0)−1ν(ξ + ξ0)]ne−i(xn
1/2+αn)ξdξ

∣∣∣∣
≤

∣∣∣∣∫
|u|≤M

(
[ν(ξ0)−1ν(un−1/2 + ξ0)e−iαun

−1/2

]n − e−βu2
)
e−ixudu

∣∣∣∣
+

∣∣∣∣∫
|u|>M

e−ixu−βu
2

du

∣∣∣∣
+n1/2

∣∣∣∣∫ δ

Mn−1/2

[ν(ξ0)−1ν(ξ + ξ0)]ne−i(xn
1/2+αn)ξdξ

∣∣∣∣
+n1/2

∣∣∣∣∣
∫ −Mn−1/2

−δ
[ν(ξ0)−1ν(ξ + ξ0)]ne−i(xn

1/2+αn)ξdξ

∣∣∣∣∣
=: I1 + I2 + I3 + I4,

where we have made a change of variables and used the definition of Hβ
2 . We

now estimate the terms Ii for i = 1, 2, 3, 4. First, using Lemma 2.4.1 we choose

M > 0 so that I2 ≤ ε/4 for all x ∈ K. Let us now focus on I3. We write

I3 = n1/2

∣∣∣∣∫ δ

Mn−1/2

[ν(ξ0)−1ν(ξ + ξ0)]ne−i(xn
1/2+αn)ξdξ

∣∣∣∣
= n1/2

∣∣∣∣∫ δ

Mn−1/2

[ν(ξ0)−1ν(ξ + ξ0) exp(−iα + iξ2p(ξ))]nei(nξ
2p(ξ)−ξxn1/2)dξ

∣∣∣∣
= n1/2

∣∣∣∣∫ δ

Mn−1/2

g(ξ)neifn(ξ)dξ

∣∣∣∣ ,
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where we have put

g(ξ) = ν(ξ0)−1ν(ξ + ξ0) exp(−iα + iξ2p(ξ))

and

fn(ξ) = (nξ2p(ξ)− ξxn1/2).

We wish to apply Lemma 2.3.4 to the above integral. Set

B = 4

(
1 +

∫
R
D|u|k−1e−C|u|

k

du

)
,

where C,D ≥ 0 are the constants appearing in (2.22) and (2.23) of Lemma 2.2.4.

Since ξ2p(ξ) is a polynomial with 2 being the smallest power of its terms, we can

further restrict δ > 0 so that f ′′n(ξ) 6= 0 and

c1ξ ≤
d

dξ
(ξ2p(ξ)) ≤ c2ξ

for all ξ ∈ [Mn−1/2, δ], where c1 and c2 are non-zero real numbers of the same

sign. Consequently, we can select M > 0 and a natural number N so that

inf
ξ∈[Mn1/2,δ]

|f ′n(ξ)| > 4Bn1/2

ε

for all x in the compact setK and for all n > N . Finally, an application of Lemma

2.3.4 with the above estimate and a calculation similar to that done in the proof

of Lemma 2.3.5 shows

I3 ≤
B

infξ∈[Mn1/2,δ] |f ′n(ξ)|
<
ε

4

for all n > N and for all x ∈ K. An analogous argument gives the same estimate

for I4.

Before treating I1, we fix M as the maximal M for which the above estimates

hold simultaneously. In view of (2.22) of Lemma 2.2.4, an analogous argument
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to that given in the proof of Lemma 2.5.1 shows that the absolute value of inte-

grand in I1 is bounded above by 2 for all n. Furthermore, for any u ∈ [−M,M ],

|n(Γ(un−1/2)− iαun−1/2) + βu2|

≤ n|Γ(un−1/2)− iαun−1/2 + ip(un−1/2)(un−1/2)2|+ |βu2 − ip(un−1/2)u2|

≤ Bn(un−1/2)k + u2|β − ip(un−1/2)|

≤ Bukn1−k/2 + u2|β − ip(un−1/2)|,

where we have used (2.21). Because p is continuous, ip(0) = β and k > 2, it

follows that for all u ∈ [−M,M ],

lim
n→∞

|n(Γ(un−1/2)− iαun−1/2) + βu2| = 0

and hence

lim
n→∞

∣∣∣(ν(ξ0)−1ν(un−1/2 + ξ0)e−iαun
−1/2
)n
− e−βu2

∣∣∣ = 0.

An appeal to the bounded convergence theorem guarantees that for sufficiently

large n,

I1 =

∣∣∣∣∫
|u|≤M

(
[ν(ξ0)−1ν(un−1/2 + ξ0)e−iαun

−1/2

]n − e−βu2
)
e−ixudu

∣∣∣∣
≤

∫ M

−M

∣∣∣(ν(ξ0)−1ν(un−1/2 + ξ0)e−iαun
−1/2
)n
− e−βu2

∣∣∣ du < ε/4

for all x ∈ R and in particular for all x ∈ K. Finally, from the above arguments

we choose δ > 0 and a natural number N so that for each j = 1, 2, 3, 4, Ij < ε/4

for all n > N and for all x ∈ K. Putting these estimates together shows that

D < ε as desired.

Lemma 2.5.3. Let ν : R → C be analytic on a neighborhood of a point ξ0 such that

|ν(ξ0)| = 1. Let m > 2 and assume that ξ0 ∼ (2;m) with associated constants α and

β. Then for all ε > 0 there is a δ > 0 and a natural number N such that∣∣∣∣n1/m

2π

∫
|ξ−ξ0|≤δ

ν(ξ)ne−ixξdξ − e−ixξ0ν(ξ0)nHβ
m

(
x− αn
n1/m

)∣∣∣∣ < ε (2.38)
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for all n > N and for all real numbers x.

The present lemma’s proof is analogous to the proof of the previous lemmas

in many ways. We will consequently spend less time explaining the order in

which we choose our constants.

Proof. Let ε > 0 and set

yn =
x− αn
n1/m

(2.39)

and

D =

∣∣∣∣n1/m

2π

∫
|ξ−ξ0|≤δ

ν(ξ)ne−ixξdξ − e−ixξ0ν(ξ0)nHβ
m

(
x− αn
n1/m

)∣∣∣∣ .
Since ξ0 ∼ (2;m), we choose δ > 0 so that the estimates (2.21), (2.22) and

(2.23) of Lemma 2.2.4 are valid, and the inequality∣∣∣∣ d2

dξ2
ξmp(ξ)

∣∣∣∣ ≥ B2|ξ|m−2 (2.40)

holds for all −δ ≤ ξ ≤ δ, where B > 0. Using Proposition 2.4.1, we now choose

M > 0 such that ∣∣∣∣∫
|u|>M

e−iyu−βu
m

du

∣∣∣∣ < ε/4 (2.41)

for all y ∈ R and

8

BMm/2−1

(
1 +

∫
R
D|u|k−1e−Cu

k

du

)
< ε/4, (2.42)

where B was defined above and C and D are the constants appearing in (2.23).
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As in the last lemma, we write

D =

∣∣∣∣n1/m

2π

∫ δ

−δ
ν(ξ + ξ0)ne−ix(ξ+ξ0)dξ − e−ixξ0ν(ξ0)nHβ

m(y)

∣∣∣∣
≤

∣∣∣∣∫
|u|≤M

(
[ν(ξ0)−1ν(un−1/m + ξ0)e−αun

−1/m

]n − e−βum
)
e−iyudu

∣∣∣∣
+

∣∣∣∣∫
|u|>M

e−iyu−βu
m

du

∣∣∣∣+ n1/m

∣∣∣∣∫ δ

Mn−1/m

[ν(ξ0)−1ν(ξ + ξ0)]ne−ixξdξ

∣∣∣∣
+n1/m

∣∣∣∣∣
∫ −Mn−1/m

−δ
[ν(ξ0)−1ν(ξ + ξ0)]ne−ixξdξ

∣∣∣∣∣
=: I1 + I2 + I3 + I4.

Now we estimate the terms Ij for j = 1, 2, 3, 4. Already from (2.41), we know

that I2 < ε/4 for all x ∈ R. We have

I3 = n1/m

∣∣∣∣∫ δ

Mn−1/m

[ν(ξ0)−1ν(ξ + ξ0)e−iαξ+iξ
mp(ξ)]ne−i(x+αn)ξ−inξmp(ξ)dξ

∣∣∣∣
= n1/m

∣∣∣∣∫ δ

Mn−1/m

g(ξ)neifn(ξ)dξ

∣∣∣∣ ,
where

g(ξ) = [ν(ξ0)−1ν(ξ + ξ0)e−iαξ+iξ
mp(ξ)]

and

fn(ξ) = −[(x+ αn)ξ − inξmp(ξ)].

With the aim of applying Lemma 2.3.4, we use (2.40) and observe that on the

interval [Mn−1/m, δ]

inf |f ′′n(ξ)| ≥ inf nB2|ξ|m−2 ≥ nB2|Mn−1/m|m−2 = (n1/mBMm/2−1)2 > 0.

The application of the lemma is therefore justified and we can use (2.22) and

(2.23) to see that

I3 ≤
8n1/m√

(n1/mBMm/2−1)2
(‖gn‖∞ + ‖ng′gn−1‖1)

≤ 8

CMm/2−1

(
1 +

∫
R
D|u|k−1e−Cu

k

du

)
< ε/4
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for all x ∈ R. A similar calculation gives the same estimate for I4.

To estimate I1, we essentially repeat the argument given in the proof of the

previous lemma. Again, the integrand is bounded in absolute value by 2 for all

n. Using (2.21), we observe that for any u ∈ [−M,M ]

lim
n→∞

∣∣∣(ν(ξ0)−1ν(un−1/m + ξ0)e−αun
−1/m

)n
− e−βum

∣∣∣ = 0.

Therefore, the bounded convergence theorem gives a natural number N for

which I1 ≤ ε/4 for all n > N and for all x ∈ R. Combining our estimates

finishes the proof.

For the remainder of this section, we focus on local limit theorems. The first the-

orem, Theorem 2.5.4, focuses on the case in which φ(n) is approximated locally

on its packets by linear combinations of the attractors Hβ
2 . The second theorem,

Theorem 2.5.5, isolates the second conclusion of Theorem 2.1.2. The results of

both theorems are then used to prove Theorem 2.1.3.

Theorem 2.5.4. Let φ : Z→ C have admissible support and suppose that supξ |φ̂(ξ)| =

1. Under Convention 2.2.3, suppose that m = 2 and for some q = 1, 2, . . . , R, βq is

purely imaginary. Then, to each αq, there exists subcollections ξj1 , ξj2 , . . . , ξjr(q) and

βj1 , βj2 , . . . , βjr(q) , such that

φ(n)(bxn1/2 + αqnc) =

r(q)∑
l=1

n−1/2e−i(bxn
1/2+αqnc)ξjl φ̂(ξjl)

nH
βjl
2 (x) + o(n−1/2) (2.43)

uniformly on any compact set.

Proof. Let ε > 0 and K ⊆ R be a compact set. In view of Convention 2.2.3, it fol-

lows from our hypotheses that Q = R and therefore Ω(φ) = {ξ1, ξ2, . . . , ξR}. We

note that the corresponding drift constants α1, α2, . . . , αR need not be distinct.
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Let αq be a member of the above collection and let {j1, j2, . . . , jr(q)} be the

increasing subcollection of {1, 2, . . . , R} for which αjl = αq for l = 1, 2, . . . , r(q).

Also, set Υq = {1, 2, . . . , R} \ {j1, j2, . . . , jr(q)}. It is of course possible that Υq

is empty. For example, it might be the case that 1 = r(q) = R and, in this

case, (2.43) consists only of the single attractor Hβ1

2 . In fact, this is precisely the

situation exemplified in the introduction in which φ was defined by (2.1) (see

also Subsection 2.8.2).

We divide T into subintervals: For l = 1, 2, . . . , R, define Il = [ξl − δl, ξl +

δl] ⊆ T where δl > 0 are to be defined shortly; for now, let’s require them to be

sufficiently small to ensure that the intervals Il, for l = 1, 2, . . . , R, are disjoint.

In view of (2.18), put J = T \ ∪Il and write

n1/2φe(n, xn
1/2 + αqn) (2.44)

=
n1/2

2π

∫
T

φ̂(ξ)ne−i(xn
1/2+αqn)ξdξ

=
R∑
l=1

n1/2

2π

∫
Il

φ̂(ξ)ne−i(xn
1/2+αqn)ξdξ +

n1/2

2π

∫
J

φ̂(ξ)ne−i(xn
1/2+αqn)ξdξ

=
R∑
l=1

Il + E . (2.45)

We treat the integrals Il in the two cases separately. First, we consider Il for

l ∈ Υq. Here we show that Il can be made arbitrarily small (depending on x

and n) because αq 6= αl. If ξl ∼ (2; 2), let γl, kl and pl(ξ) be associated as per
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Definition 2.2.1. We have

|Il| =

∣∣∣∣n1/2

2π

∫
Il

φ̂(ξ)ne−i(xn
1/2+αqn)ξdξ

∣∣∣∣
=

∣∣∣∣∣n1/2e−i(xn
1/2−αqn)ξlφ̂(ξl)

n

2π

∫
|ξ|≤δ

[
φ̂(ξl)

−1φ̂(ξl + ξ)
]n
e−i(xn

1/2+αqn)ξdξ

∣∣∣∣∣
≤ n1/2

∣∣∣∣∫
|ξ|≤δ

gl(ξ)
neifn,l(ξ)dξ

∣∣∣∣ ,

where

gl(ξ) = [φ̂−1(ξl)φ̂(ξl + ξ)e−iαlξ+iξ
2pl(ξ)]

and

fn,l(ξ) = −n[(xn−1/2 + αq − αl)ξ + ξ2pl(ξ)].

Now choose δl > 0 so that, on the interval [−δl, δl], gl(ξ) satisfies (2.22) and (2.23)

for some Cl, Dl > 0,

f ′′n,l(ξ) = −n d
2

dξ2
ξ2pl(ξ) 6= 0

and

Bl ≤
∣∣∣∣αl − αq − d

dξ
ξ2pl(ξ)

∣∣∣∣ (2.46)

for some Bl > 0. For the first property our choice of δl was made using Lemma

2.2.4 and the assumption that ξl ∼ (2; 2). For the second two properties we used

that fact that ξ2pl(ξ) is a polynomial with 2 being the smallest power of its terms

and αl 6= αq. We can therefore apply Lemma 2.3.4. This gives

|Il| ≤
8n1/2

infξ |f ′n,l(ξ)|
(‖gl‖∞ + ‖ng′lgn−1

l ‖)

≤ 8

infξ |(x− n1/2(αl − αq − d
dξ
ξ2pl(ξ))|

(
1 +

∫
R
Dl|ξ|kle−Clξ

kldξ

)
≤ Ml

infξ |(x− n1/2(αl − αq − d
dξ
ξ2pl(ξ))|
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for some Ml > 0 and where the above infima are taken over the interval [−δl, δl].

Using the estimate (2.46) and recalling that x lives inside the compact set K, we

can choose a natural number Nl so that

inf
ξ
|(x− n1/2(αl − αq −

d

dξ
ξ2pl(ξ))| >

Ml(R + 1)

ε

for all n > Nl and for all x ∈ K. Consequently,

|Il| ≤
Ml

Ml(R + 1)/ε
= ε/(R + 1) (2.47)

for all n > Nl and for all x ∈ K.

If instead ξl ∼ (1; 2), by an appeal to Lemma 2.5.1, we choose δl > 0 and a

natural number Nl so that

|Il| ≤ ε/2(R + 1) + |e−i(xn1/2+αqn)ξlφ̂(ξl)
nHβl

2 (x+ (αq − αl)n1/2)|

≤ ε/2(R + 1) + |Hβl
2 (x+ (αq − αl)n1/2)|

for all n > Nl and for all x ∈ R. However, as we remarked earlier Hβl
2 is the heat

kernel evaluated at complex time βl. Since Re(βl) > 0 in this case and αq 6= αl

we may increase our natural number Nl to ensure that

|Hβl
2 (x+ (αq − αl)n1/2)| ≤ ε/2(R + 1)

for any n > Nl and for all x in the compact set K. These estimates together give

|Il| ≤ ε/2(R + 1) + ε/2(R + 1) = ε/(R + 1) (2.48)

for all n > Nl and for all x ∈ K.

In the remaining estimates of Il for l = j1, j2, . . . , jr(q), we recall that αq = αl.

If ξl ∼ (2; 2), we appeal to Lemma 2.5.2. From this we choose δl > 0 and a
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natural number Nl such that

|Il − e−i(xn
1/2+αqn)ξlφ̂(ξl)

nHβl
2 (x)| ≤ ε/(R + 1) (2.49)

for all n > Nl and for all x ∈ K. If instead ξl ∼ (1; 2), we appeal to Lemma 2.5.1

and chose δl > 0 and Nl, a natural number, such that

|Il − e−i(xn
1/2+αqn)ξlφ̂(ξl)

nHβl
2 (x)| ≤ ε/(R + 1) (2.50)

for all n > Nl and for all x ∈ R. In particular we have this estimate uniform for

all x ∈ K.

After fixing our collection of δl’s in the above arguments, the set J becomes

fixed. We therefore set s = supξ∈J |φ̂(ξ)| < 1 and note that |E| ≤ n1/2sn. Thus we

may choose a natural number N0 such that |E| < ε/(R+ 1) for all n > N0 and for

all x ∈ K.

At last, we choose N to be the maximum of Nl for l = 0, 1, . . . , R. Combining

the estimates (2.44), (2.47), (2.48), (2.49) and (2.50) yields∣∣∣∣∣∣n1/2φe(n, xn
1/2 + αqn)−

∑
l∈{j1,j2...,jr(q)}

e−i(xn
1/2+αqn)ξlφ̂(ξl)

nHβl
2 (x)

∣∣∣∣∣∣
≤

∑
l∈{j1,j2,...,jr(q)}

∣∣∣Il − e−i(xn1/2+αqn)ξlφ̂(ξl)
nHβl

2 (x)
∣∣∣+

∑
l∈Υq

|Il|+ E

<
(R + 1)ε

R + 1
= ε

for any n > N and for all x ∈ K. We have shown that

φe(n, xn
1/2 + αqn) =

r(q)∑
l=1

n−1/2e−i(xn
1/2+αqn)ξjl φ̂(ξjl)

nH
βjl
2 (x) + o(n−1/2) (2.51)

uniformly for x in any compact set K.

To complete the proof of the theorem we need to replace the argument

xn1/2 + αqn by an integer in (2.51); this is precisely where the floor function
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comes in. Let K ⊆ R be compact, set

y(x, n) =
bαqn+ xn1/2c − αqn

n1/2
,

and observe that |x− y(n, x)| ≤ n−1/2. Let F ⊇ K be any compact set for which

y(x, n) ∈ F for all x ∈ K and all natural numbers n. By Proposition 2.4.3, each

function H
βjl
2 is uniformly continuous on F and therefore, for any x ∈ K, we

have

r(q)∑
l=1

n−1/2e−i(bxn
1/2+αqnc)ξjl φ̂(ξjl)

nH
βjl
2 (y(x, n))

=

r(q)∑
l=1

n−1/2e−i(bxn
1/2+αqnc)ξjl φ̂(ξjl)

nH
βjl
2 (x) + o(n−1/2). (2.52)

The result now follows from (2.51), (2.52) and the observation that

φ(n)(bxn1/2 + αqnc) = φe(n, bxn1/2 + αqnc).

Theorem 2.5.5. Let φ : Z→ C have admissible support and suppose that sup |φ̂(ξ)| =

1. Under Convention 2.2.3, additionally assume that m > 2 or Re(βq) > 0 for all

q = 1, 2, . . . , R (this precisely the hypothesis (2.8) of Theorem 2.1.2). Then

φ(n)(x) =
R∑
q=1

n−1/me−ixξq φ̂(ξq)
nHβq

m

(
x− αqn
n1/m

)
+ o(n−1/m) (2.53)

uniformly in Z.

Proof. In view of Proposition 2.2.2 and under Convention 2.2.3, our hypotheses

guarantee that either m > 2 or, in the case that m = 2, ξq ∼ (1; 2) for each

ξq ∈ Ω(φ). Consequently to each point ξq ∈ Ω(φ) of order m we may apply

either Lemma 2.5.1 or Lemma 2.5.3.
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As in the proof of the previous theorem we divide T into subintervals. For

q = 1, 2, . . . , Q, let Iq = [ξq− δq, ξq + δq] for values of δq > 0 to be chosen later (but

small enough to ensure that the Iq’s are disjoint) and set J = T \ ∪Iq. We again

define φe by (2.18) and write

n1/mφe(n, x) =
n1/m

2π

∫
T

φ̂(ξ)ne−ixξdξ

=

Q∑
q=1

n1/m

2π

∫
Iq

φ̂(ξ)ne−ixξdξ +
n1/m

2π

∫
J

φ̂(ξ)ne−ixξdξ.

Therefore,∣∣∣∣∣n1/mφe(n, x)−
R∑
q=1

e−ixξq φ̂(ξq)
nHβq

m

(
x− αqn
n1/m

)∣∣∣∣∣
≤

R∑
q=1

∣∣∣∣∣n1/m

2π

∫
Iq

φ̂(ξ)ne−ixξdξ − e−ixξq φ̂(ξq)
nHβq

m

(
x− αqn
n1/m

)∣∣∣∣∣
+

Q∑
q=R+1

n1/m

∣∣∣∣∣ 1

2π

∫
Iq

φ̂(ξ)ne−ixξdξ

∣∣∣∣∣+

∣∣∣∣n1/m

2π

∫
J

φ̂(ξ)ne−ixξdξ

∣∣∣∣ . (2.54)

As we previously noted, for q = 1, 2, . . . , R, we apply either Lemma 2.5.1 or

Lemma 2.5.3. We can therefore choose a natural number Nq and fix δq > 0 so

that ∣∣∣∣∣n1/m

2π

∫
Iq

φ̂(ξ)ne−ixξdξ − e−ixξq φ̂(ξq)
nHβq

m

(
x− αqn
n1/m

)∣∣∣∣∣ < ε

(Q+ 1)
(2.55)

for all n > Nq and for all x ∈ R.

In the case that q = R+1, R+2, . . . , Q, we appeal to Lemma 2.3.5 and choose

δq > 0 and a natural number Nq such that∣∣∣∣∣ 1

2π

∫
Iq

φ̂(ξ)ne−ixξdξ

∣∣∣∣∣ ≤ Cq
n1/mq
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for some Cq > 0 and for all n > Nq and x ∈ R. Using the fact that m > mq we

can adjust the value of Nq so that

n1/m

∣∣∣∣∣ 1

2π

∫
Iq

φ̂(ξ)ne−ixξdξ

∣∣∣∣∣ ≤ Cq
n1/mq−1/m

<
ε

(Q+ 1)
(2.56)

for all n > Nq and for all x ∈ R.

Finally, as in the proof of the last theorem, we set s = infJ |φ̂| < 1 and observe

that the last term in (2.54) is bounded by n1/msn. We therefore select a natural

number N0 such that∣∣∣∣n1/2

2π

∫
J

φ̂(ξ)ne−ixξdξ

∣∣∣∣ ≤ n1/msn <
ε

(Q+ 1)
(2.57)

for all n > N0 and for all x ∈ R.

Let us choose N to be the maximum Nq for q = 0, 1, . . . , Q. Upon combining

the estimates (2.55), (2.56), (2.57) and (2.54) we have∣∣∣∣∣n1/mφe(n, x)−
R∑
q=1

e−ixξq φ̂(ξq)
nHβq

m

(
x− αqn
n1/m

)∣∣∣∣∣ < ε (2.58)

for all n > N and for all x ∈ R. In particular, (2.58) holds for all x ∈ Z and for

such x, φe(n, x) = φ(n)(x). This is our desired result.

Proof of Theorem 2.1.3. Let K be a compact set. Assuming that φ satisfies the

hypotheses of the theorem, we adopt Convention 2.2.3 by virtue of Proposi-

tion 2.2.2. There are two distinct possibilities pertaining to the constants m and

β1, β2, . . . , βR: they satisfy the hypotheses of Theorem 2.5.4 or they satisfy the

hypotheses of Theorem 2.5.5. A moment’s thought shows that the hypotheses

of Theorem 2.5.4 and the hypotheses of Theorem 2.5.5 are indeed mutually ex-

clusive and collectively exhaustive. If the case at hand is the former there is

nothing to prove for m = 2 and the desired result is precisely the conclusion of

Theorem 2.5.4. We therefore address the latter case.
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Let αq ∈ {α1, α2, . . . , αR} and, exactly as was done in the proof of Theorem

2.5.4, define {j1, j2, . . . , jr(q)} ⊆ {1, 2, . . . , R} and Υq. Observe that (2.58) is uni-

form in R and we can therefore write

φe(n, αqn+ xn1/m)

=
R∑
l=1

n−1/me−i(αqn+xn−1/m)ξlφ̂(ξl)
nHβl

m

(
(αq − αl)n+ xn1/m

n1/m

)
+ o(n−1/m)

=
∑

l∈{j1,j2,...,jr(q)}

n−1/me−i(αqn+xn−1/m)ξlφ̂(ξl)
nHβl

m (x)

+
∑
l∈Υq

n−1/me−i(αqn+xn−1/m)ξlφ̂(ξl)
nHβl

m ((αq − αl)n1−1/m + x) + o(n−1/m).

=

r(q)∑
l=1

n−1/me−i(αqn+xn−1/m)ξjl φ̂(ξjl)
nH

βjl
m (x) +

∑
l∈Υq

Sl(n, x) + o(n−1/m).

Upon requiring x ∈ K, we consider the summands Sl(n, x) for l ∈ Υq. In the

case that Re(βl) > 0, we have

|Sl(n, x)| = |n−1/me−i(αqn+xn−1/m)ξlφ̂(ξl)
nHβl

m ((αq − αl)n1−1/m + x)|

= n−1/m|Hβl
m ((αq − αl)n1−1/m + x))|

≤ n−1/mCl exp(−Bl((αq − αl)n1−1/m + x)m/(m−1)) = o(n−1/m).

If it is the case that Re(βl) = 0, we must have m > 2. Appealing to Proposition

2.4.2, we conclude that

|Sl(n, x)|

≤ n−1/m

(
A

|(αq − αl)n1−1/m + x)|
m−2

2(m−1)

+
B

|(αq − αl)n1−1/m + x)|

)
= o(n−1/m).

Combining the above estimates shows that, for all x ∈ K,

φe(n, αqn+ xn1/m) =

r(q)∑
l=1

n−1/me−i(αqn+xn−1/m)ξjl φ̂(ξjl)
nH

βjl
m (x) + o(n−1/m).
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To complete the proof, it remains to replace the argument αqn+xn1/m by the in-

teger bαqn+xn1/mc in the equation above. This can be done easily by making an

argument analogous to that given in the last paragraph of the proof to Theorem

2.5.4. From this, the desired result follows without trouble.

2.6 The lower bound of ‖φ(n)‖∞

In this section we complete the proof of Theorem 2.1.1.

Lemma 2.6.1. Let ζ1, ζ2, · · · , ζr ∈ (−π, π] be distinct, let B > 0 and define

V =



1 1 . . . 1

e−iζ1 e−iζ2 . . . e−iζr

e−i2ζ1 e−i2ζ2 . . . e−i2ζr

...
... . . . ...

e−i(r−1)ζ1 e−i(r−1)ζ2 . . . e−i(r−1)ζr


. (2.59)

Then there is a number C > 0 such that for any ρ, σ ∈ Cr with ‖ρ‖ > B and σ = V ρ,

we have |σj| > 3C for some j = 1, 2, . . . , r. Here ‖ · ‖ denotes the usual norm on Cr.

Proof. The matrix V in (2.59) is known as Vandermonde’s matrix. It is a routine

exercise in linear algebra to show that

det(V ) =
∏

1≤l<k≤r

(e−iζk − e−iζl).

Noting that e−iζ1 , e−iζ1 , . . . , e−iζr are all distinct we conclude that V is invertible.

The proof now follows immediately from the estimate

‖ρ‖ ≤ ‖V −1‖‖σ‖.
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Proof of Theorem 2.1.1. Let φ : Z→ C have admissible support. As Theorem 2.3.6

gave the upper bound

A−n‖φ(n)‖∞ ≤ C ′n1/m

for some C ′ > 0, our job is establish the lower bound

Cn1/m ≤ A−n‖φ(n)‖∞

for some C > 0. This is done with the help of our local limit theorems.

As we noted in the proof of Theorem 2.3.6, it suffices to assume that A =

supξ |φ̂(ξ)| = 1. We adopt Convention 2.2.3 by virtue of Proposition 2.2.2 and

note that m ≥ 2, defined by (2.16), is that which appears in both Theorem 2.1.3

and Theorem 2.3.6. In view of Theorem 2.1.3, set α = α1, r = r(1) and cor-

respondingly take ξj1 , ξj2 , . . . , ξjr ∈ (−π, π] and βj1 , βj2 , . . . , βjr for which (2.11)

holds. For notational convenience, set bl = βjl and ζl = ξjl for l = 1, 2, . . . , r and

note that the points ζ1, ζ2, . . . , ζr ∈ (−π, π] are distinct. In this notation, (2.11) is

the assertion that

φ(n)(bαn+ xn1/mc) =
r∑
l=1

n−1/me−ibαn+xn1/mcζlφ̂(ζl)
mHbl

m(x) + o(n−1/m) (2.60)

uniformly for x in a compact set.

Appealing to Proposition 2.4.3, we know that each function Hb1
m is non-zero

and continuous for l = 1, 2, . . . , r. In particular, there exists B > 0 and an in-

terval I = [a, b] such that |Hb1
m (x)| ≥ B for all x ∈ I . Define V by (2.59) and let

C > 0 as guaranteed by Lemma 2.6.1. Set

f(n, x) =
r∑
l=1

e−i(αn+xn1/m)ζlφ̂(ζl)
nHbl

m(x) (2.61)

and

σk(n, x) =
r∑
l=1

e−ikζle−i(αn+xn1/m)ζlφ̂(ζl)
nHbl

m(x) (2.62)
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for k = 0, 1, . . . , r− 1. Since each function Hbl
m is continuous on R it is uniformly

continuous on [a− r, b+ r] ⊇ I . Consequently, we may choose a natural number

N for which

|f(n, x+ kn−1/m)− σk(n, x)| < C (2.63)

for all n ≥ N , k = 0, 1, . . . , r − 1 and x ∈ I . By possibly further increasing N we

can also guarantee that for any n ≥ N there is x0 ∈ I such that αn+ x0n
1/m is an

integer and for which x0 + kn−1/m ∈ I for all k = 0, 1, . . . , r− 1. We observe that

for any such k, (αn+ (x0 + kn−1/m)n1/m) is also an integer.

Now for any n ≥ N , let x0 ∈ I be as guaranteed in the previous paragraph.

Observe that

σ0(n, x0)

σ1(n, x0)

...

σ(R−1)(n, x0)


=



1 1 . . . 1

e−iζ1 e−iζ2 . . . e−iζr

e−i2ζ1 e−i2ζ2 . . . e−i2ζr

...
... . . . ...

e−i(r−1)ζ1 e−i(r−1)ζ2 . . . e−i(r−1)ζr





ρ1(n, x0)

ρ2(n, x0)

...

ρr(n, x0)


,

where

ρl(x0, n) = e−i(αn+x0n1/m)ζlφ̂(ζl)
nHbl

m(x0)

for l = 1, 2, . . . , r. Because x0 ∈ I , |ρ1(x0, n)| = |Hb1
m (x0)| > B and therefore

‖(ρ1(n, x0), ρ2(n, x0), . . . , ρr(n, x0))>‖ > B.

Appealing to Lemma 2.6.1, there is some k ∈ {0, 1, 2, . . . , r − 1} such that

|σk(n, x0)| > 3C and so by (2.63), |f(n, x0 + kn−1/m)| > 2C.

We have shown that there is a natural number N , a closed interval I and a

constant C > 0 such that for any n ≥ N

sup

∣∣∣∣∣
r∑
l=1

e−i(αn+xn1/m)ζlφ̂(ζl)
nHbl

m(x)

∣∣∣∣∣ > 2C, (2.64)
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where the above supremum is taken over the set

{x : x ∈ I and (αn+ xn−1/m) ∈ Z}.

Combining (2.60) and (2.64) we conclude that

sup
x∈Z
|φ(n)(x)| ≥ Cn−1/m (2.65)

for all n > N . The result now follows from the observation that φ(n) 6= 0 for all

n ≤ N and so, by possibly adjusting C, (2.65) must hold for all n.

2.7 Concentration of mass

In this section we complete the proof of Theorem 2.1.2. Recall that the theorem

has two conclusions, the second of which is the subject of Theorem 2.5.5 and

was already shown in the previous section. The first conclusion, (2.9), remains

to be shown.

Proof of Theorem 2.1.2. We assume that φ satisfies the hypotheses of the theorem.

By Theorem 2.5.5,

φ(n)(x) =
R∑
q=1

n−1/me−ixξq φ̂(ξq)
nHβq

m

(
x− αqn
n1/m

)
+ o(n−1/m), (2.66)

where the limit is uniform for x ∈ Z and the collections ξ1, ξ2, . . . , ξR ∈ (−π, π],

α1, α2, . . . , αR and β1, β2, . . . , βR are those set by Convention 2.2.3.

Using Theorem 2.1.1 we choose C > 0 for which the estimate (2.3) holds.

Considering all possibilities of βq and m above, we can choose M > 0 such that

|Hβq
m (y)| < C/(2R)
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for all |y| > M and for all q = 1, 2, . . . , R. This can be done by using (2.6) or the

conclusion of Proposition 2.4.2. Now let K = [−M,M ] and observe that, for any

q = 1, 2, . . . , R, ∣∣∣∣n−1/me−ixξq φ̂(ξq)
nHβq

m

(
x− αqn
n1/m

)∣∣∣∣ < Cn−1/m

2R
(2.67)

whenever (x − αqn)/n1/m > M or equivalently x /∈ αqn + Kn1/m. Further, by

combining (2.66) and (2.67) there is some natural number N such that

|φ(n)(x)| < Cn−1/m

for all x /∈ ∪q(αqn + Kn1/m) and n > N . Thus by Theorem 2.1.1, the supremum

‖φ(n)‖∞ must be attained on the set (∪q(αqn+Kn1/m)) ∩ Z for all n > N . Lastly,

observe that by enlarging the compact set K, the above dependence on N can

be removed. This completes the proof.

2.8 Examples

In this final section, we consider three examples to illustrate our results. We

begin by considering a complex valued function on Z whose convolution pow-

ers consist of two waves drifting apart. This example cannot be treated by the

results of Schoenberg, Greville or Thomée.
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2.8.1 Two Airy functions with drift

Consider the function φ : Z→ C defined by

φ(0) =
3

8
φ(±2) = −1

4
φ(±3) =

i

3
φ(±4) =

1

16

and φ(x) = 0 otherwise. The convolution powers, φ(n), exhibit two distinct

packets drifting apart, each with a rate of 2n from x = 0. Figure 2.5 illustrates

this behavior.

Figure 2.5: |φ(n)| for n = 50, 100

The Fourier transform of φ is given by

φ̂(ξ) =
3

8
− 1

2
cos(2ξ) +

2i

3
cos(3ξ) +

1

8
cos(4ξ).

Here, sup |φ̂| = 1 and is attained only at ξ1 = π/2 and ξ2 = −π/2 in (−π, π]. It

follows that

log

(
φ̂(ξ ± π/2)

φ̂(±π/2)

)
= ±2iξ ∓ 5i

3
ξ3 − 7

3
ξ4(1 + o(1)) as ξ → 0

and so α1 = 2, α2 = −2, β1 = 5i/3, β2 = −5i/3 and m = m1 = m2 = 3. In view of
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Theorem 2.1.2 (or Theorem 2.5.5),

φ(n)(x) = n−1/3e−ixπ/2H
5i
3

3

(
x− 2n

n1/3

)
+ n−1/3eixπ/2H

−5i
3

3

(
x+ 2n

n1/3

)
+ o(n−1/3)

= (5n)−1/3(i)x
[
(−1)xH

i
3
3

(
x− 2n

(5n)1/3

)
+H

i
3
3

(
−x+ 2n

(5n)1/3

)]
+ o(n−1/3)

= (5n)−1/3(i)x
[
(−1)xAi

(
x− 2n

(5n)1/3

)
+ Ai

(
−x+ 2n

(5n)1/3

)]
+ o(n−1/3)

= f(n, x) + o(n−1/3) (2.68)

uniformly for x ∈ Z, where Ai denotes the standard Airy function. To appreciate

Theorems 2.1.2 and 2.1.3, we consider φ(n)(x) for n = 10000 near the right packet

(19700 ≤ x ≤ 20150) corresponding to drift constant α1 = π/2. Figure 2.6 shows

the graph of Re(φ(n(x)) and Figure 2.7 shows the approximation, f(n, x) defined

by (2.68).

Figure 2.6: Re(φ(n)) for n = 10000

57



Figure 2.7: Re(f(n, x)) for n = 10000

Figure 2.8: Re(g(n, x)) for n = 10000

What appears to be noise in Figure 2.7 is the oscillatory tail of the term
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(5n)−1/3(i)xAi
(
− x+2n

(5n)1/3

)
in (2.68). Removing this term, we consider

g(n, x) = f(n, x)− (5n)−1/3(i)xAi
(
−x+ 2n

(5n)1/3

)
= (5n)−1/3(−i)xAi

(
x− 2n

(5n)1/3

)
.

Upon choosing α1 = π/2, an appeal to Theorem 2.1.3 gives the approximation

φ(n)(b2n+ zn1/3c) = n−1/3e−(ib2n+zn1/3cπ/2)H
5i
3

3 (z) + o(n−1/3)

= (5n)−1/3(−i)b2n+zn1/3cAi
( z

51/3

)
+ o(n−1/3)

uniformly for z in any compact set; here, ξj1 = ξ1 = π/2 and βj1 = β1 = 5/3. For

such z, it follows that

φ(n)(b2n+ zn1/3c) = g(n, b2n+ zn1/3c) + o(n−1/3)

from which we see that g is essentially the approximation yielded by Theorem

2.1.3. As Figure 2.8 shows, g(n, x) is a much better approximation to φ(n)(x) at

n = 10000 for 19700 ≤ x ≤ 20150.

2.8.2 Heat kernel at purely imaginary time

We return to the example given in the introduction and justify the claims made

therein. Let φ be given by (2.1). A quick computation shows that

φ̂(ξ) = 1− i

2
sin2(ξ/2)− sin4(ξ/2),

where the supremum of |φ̂| on the interval (−π, π] is only attained at ξ1 = 0. In

the notation of Proposition 2.2.2, we write

Γ(ξ) = log

(
φ̂(ξ)

φ̂(0)

)
= −iξ2(

1

8
− 1

96
ξ2)− 7

128
ξ4 +

∞∑
l=5

alξ
l
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on a neighborhood of 0 and so m = m1 = 2, α1 = 0 and β1 = i/8 in view of

Convention 2.2.3. By Theorem 2.1.1, there are constants C,C ′ > 0 such that

Cn1/2 ≤ ‖φ(n)‖∞ ≤ C ′n1/2. (2.69)

By Theorem 2.1.3 and using (2.5) we may also conclude that

φ(n)(bxn1/2c) = n−1/2H
i/8
2 (x) + o(n−1/2)

=
n−1/2√
4πi/8

e−8|x|2/4i + o(n−1/2),

where the limit is uniform for x in any compact set.

2.8.3 A real-valued function supported on three points

In the article [31], Example 2.4 and Proposition 2.5 therein described the asymp-

totic behavior of the convolution powers of an arbitrary real valued function φ

supported on three (consecutive) points. In the notation of the proposition we

define φ by

φ(0) = a0, φ(±1) = a± and φ = 0 otherwise, (2.70)

where a0, a+, a− ∈ R. As in [31], we also assume that a0 > 0 and that a+ 6= 0 or

a− 6= 0; this assumption guarantees that φ has admissible support. Proposition

2.5 of [31] describes the asymptotic behavior of φ(n) for all values of a0, a± except

the special case in which a+a− < 0 and 4|a+a−| = a0|a+ + a−|. Theorem 2.1.2

allows us to treat this final case with ease.

Proposition 2.8.1. Let φ be as above and assume additionally that a+a− < 0 and

4|a+a−| = a0|a+ + a−|. If a+ + a− > 0 then

φ(n)(x) = n−1/3AnHβ
3

(
x− αn
n1/3

)
+ o(Ann−1/3) (2.71)
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uniformly for x ∈ Z, where A = a0 +a+ +a−, α = (a+−a−)/A and β = i(α−α3)/6.

If a+ + a− < 0 then

φ(n)(x) = n−1/3Ane−ixπHβ
3

(
x− αn
n1/3

)
+ o(Ann−1/3) (2.72)

uniformly for x ∈ Z, where A = a0−a+−a−, α = (a−−a+)/A and β = i(α−α3)/6.

In either case, there is a compact set K for which the ‖φ(n)‖∞ is attained on the set

(αn+Kn1/3).

Proof. We may write

φ̂(ξ) = a0 + a+e
iξ + a−e

−iξ = a0 + (a+ + a−) cos(ξ) + i(a+ − a−) sin(ξ).

Under the assumption that 4|a+a−| = a0|a+ +a−| and a+ +a− > 0, it was shown

in [31] that |φ̂| is maximized only at 0 = ξ1 ∈ (−π, π] and in which case this

maximum takes the value A = a0 + a+ + a−.

Set ψ(x) = φ(x)/A. It follows immediately that Anψ(n)(x) = φ(n)(x) and

sup |ψ̂| = 1 which is taken only at ξ1 = 0. In the notation of Proposition 2.2.2 we

have

Γ(ξ) = log

(
ψ̂(ξ)

ψ̂(0)

)
= i

(
(a+ − a−)

a0 + a+ + a−

)
ξ

− i
6

(
(a+ − a−)(a2

0 − a0a+ − a0a− − 8a+a−)

(a0 + a+ + a−)3

)
ξ3 − γξ4 +

∞∑
l=5

alξ
l

on a neighborhood of 0, where γ > 0. Setting α = (a+ − a−)/A and using the

fact that 4|a+a−| = a0|a+ + a−|, we write

Γ(ξ) = iαξ − i

6
(α− α3)ξ3 − Cξ4 +

∞∑
l=5

alξ
l (2.73)

61



on a neighborhood of 0. By a quick inspection of (2.73) it is clear that ψ meets

the hypotheses of Theorem 2.1.2 with m = m1 = 3, α = α1 and β1 = i(α−α3)/6.

Therefore

ψ(n)(x) = n−1/3Hβ
3

(
x− αn
n1/3

)
+ o(n−1/3) (2.74)

uniformly for x ∈ Z. The limit (2.71) follows immediately by multiplying (2.74)

byAn. An appeal to (2.9) of Theorem 2.1.2 shows that ‖ψ(n)‖∞ and hence ‖φ(n)‖∞

is indeed attained on the set (αn+Kn1/3) for some compact set K.

In the case that a+ + a− < 0 it was shown in [31] that |φ̂| attains its only

maximum at ξ1 = π ∈ (−π, π]. Upon setting A = a0 − a+ − a−, ψ(x) = φ(x)/A

and considering the Taylor expansion of log(ψ̂(ξ + ξ1)/ψ̂(ξ1)), the result follows

by an argument similar to that given for the previous case.
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CHAPTER 3

CONVOLUTION POWERS OF COMPLEX-VALUED FUNCTIONS ON Zd

3.1 Introduction

We denote by `1(Zd) the space of complex valued functions φ : Zd → C such

that

‖φ‖1 =
∑
x∈Zd
|φ(x)| <∞.

For ψ, φ ∈ `1(Zd), the convolution product ψ ∗ φ ∈ `1(Zd) is defined by

ψ ∗ φ(x) =
∑
y∈Zd

ψ(x− y)φ(y)

for x ∈ Zd. Given φ ∈ `1(Zd), we are interested in the convolution powers

φ(n) ∈ `1(Zd) defined iteratively by φ(n) = φ(n−1) ∗ φ(1) for n ∈ N+ =: {1, 2, . . . }

where φ(1) = φ. This study was originally motivated by problems in data

smoothing, namely De Forest’s problem, and it was later found essential to

the theory of approximate difference schemes for partial differential equations

[42, 80, 86, 87]; the recent article [31] gives background and pointers to the liter-

ature.

In random walk theory, the study of convolution powers is of central impor-

tance: Given an independent sequence of random vectors X1, X2, · · · ∈ Zd, all

with distribution φ (here, φ ≥ 0), φ(n) is the distribution of the random vec-

tor Sn = X1 + X2 + · · · + Xn. Equivalently, a probability distribution φ on Zd

gives rise to a random walk whose nth-step transition kernel kn is given by

kn(x, y) = φ(n)(y − x) for x, y ∈ Zd. For an account of this theory, we encourage
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the reader to see the wonderful and classic book of F. Spitzer [83] and, for a more

modern treatment, the recent book of G. Lawler and V. Limic [63] (see also Sub-

section 3.7.6). In the more general case that φ takes on complex values (or just

simply takes on both positive and negative values), its convolution powers φ(n)

are seen to exhibit rich and disparate behavior, much of which never appears

in the probabilistic setting. Given φ ∈ `1(Zd), we are interested in the most ba-

sic and fundamental questions that can be asked about its convolution powers.

Here are four such questions:

(i) What can be said about the decay of

‖φ(n)‖∞ = sup
x∈Zd
|φ(n)(x)|

as n→∞?

(ii) Is there a simple pointwise description of φ(n)(x), analogous to the local

(central) limit theorem, that can be made for large n?

(iii) Are global space-time pointwise estimates obtainable for |φ(n)|?

(iv) Under what conditions is φ stable in the sense that

sup
n∈N+

‖φ(n)‖1 <∞? (3.1)

The above questions have well-known answers in random walk theory. For

simplicity we discuss the case in which φ is a probability distribution on Zd

whose associated random walk is symmetric, aperiodic, irreducible and of finite

range. In this case, it is known that nd/2φ(n)(0) converges to a non-zero constant

as n→∞ and this helps to provide an answer to Question (i) in the form of the

following two-sided estimate: For positive constants C and C ′,

Cn−d/2 ≤ sup
x∈Zd

φ(n)(x) ≤ C ′n−d/2
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for all n ∈ N+. Concerning the somewhat finer Question (ii), the classical local

limit theorem states that

φ(n)(x) = n−d/2Gφ(n−1/2x) + o(n−d/2)

uniformly for x ∈ Zd, where Gφ is the generalized Gaussian density

Gφ(x) =
1

(2π)d

∫
Rd

exp
(
− ξ · Cφξ

)
e−ix·ξ dξ =

1

(2π)d/2
√

detCφ
exp

(
−x · Cφ

−1x

2

)
;

(3.2)

here, Cφ is the positive definite covariance matrix associated to φ and · denotes

the dot product. As an application of this local limit theorem, one can easily

settle the question of recurrence/transience for random walks on Zd which was

originally answered by G. Pólya in the context of simple random walk [71].

For general complex valued functions φ ∈ `1(Zd), Question (ii) is a question

about the validity of (generalized) local limit theorems and can be restated as

follows: Under what conditions can the convolution powers φ(n) be approx-

imated pointwise by a combination (perhaps a sum) of appropriately scaled

smooth functions– called attractors? The answer for Question (iii) for a finite

range, symmetric, irreducible and aperiodic random walk is provided in terms

of the so-called Gaussian estimate: For positive constants C and M ,

φ(n)(x) ≤ Cn−d/2 exp(−M |x|2/n)

for all x ∈ Zd and n ∈ N+; here, | · | is the standard euclidean norm. Such es-

timates, with matching lower bounds on appropriate space-time regions, are in

fact valid in a much wider context, see [46]. Finally, the conservation of mass

provides an obvious positive answer to Question (iv) in the case that φ is a prob-

ability distribution.
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Beyond the probabilistic setting, the study of convolution powers for complex

valued functions has centered mainly around two applications, statistical data

smoothing procedures and finite difference schemes for numerical solutions to

partial differential equations; the vast majority of the existing theory pertains

only to one dimension. In the context of data smoothing, the earliest (known)

study was motivated by a problem of Erastus L. De Forest. De Forest’s prob-

lem, analogous to Question (ii), concerns the behavior of convolution powers

of symmetric real valued and finitely supported functions on Z and was ad-

dressed by I. J. Schoenberg [80] and T. N. E. Greville [42]. In the context of

numerical solutions in partial differential equations, the stability of convolu-

tion powers (Question (iv)) saw extensive investigation following World War

II spurred by advancements in numerical computing. For an approximate dif-

ference scheme to an initial value problem, the property (3.1) is necessary and

sufficient for convergence to a classical solution; this is the so-called Lax equiv-

alence theorem [75, Chapter 4] (see Section 3.6). Property (3.1) is also called

power boundedness and can be seen in the context of Banach algebras where φ is

an element of the Banach algebra (`1(Zd), ‖ · ‖1) equipped with the convolution

product [57, 81].

In one dimension, Questions (i-iv) were recently addressed in the articles [31]

and [73]. For the general class of finitely supported complex valued functions

on Z, [73] (and the preceding chapter) completely settles Questions (i) and (ii).

For instance, consider the following theorem.

Theorem 3.1.1 (Theorem 1.1 of [73]). Let φ : Z → C have finite support consisting

of more than one point. Then there is a positive constantA and a natural numberm ≥ 2
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for which

Cn−1/m ≤ An‖φ(n)‖∞ ≤ C ′n−1/m

for all n ∈ N+, where C and C ′ are positive constants.

As we saw in Chapter 2, Question (ii) is completely settled in one-dimension.

Specifically, Theorem 2.1.3 gives an exhaustive account of local limit theorems

in which the set of possible attractors includes the Airy function and the heat

kernel evaluated at purely imaginary time. In addressing Question (iii), the ar-

ticle [31] contains a number of results concerning global space-time estimates for

φ(n) for a finitely supported function φ – our results recapture (and extend in the

case of Theorem 3.1.6) these results of [31]. The question of stability for finitely

supported functions on Z was answered completely in 1965 by V. Thomée [87]

(see Theorem 3.6.1 below). In fact, Thomée’s characterization is, in some sense,

the light in the dark that gives the correct framework for the study of local limit

theorems in one dimension and we take it as a starting point for our study in Zd.

Moving beyond one dimension, the situation becomes more interesting still, the

theory harder and much remains open. As we illustrate, convolution powers

exhibit a significantly wider range of behaviors in Zd than is seen in Z (see Re-

mark 5). The focus of this chapter is to address Questions (i-iv) under some

strong hypotheses on the Fourier transform – specifically, we work under the

assumption that, near its extrema, the Fourier transform of φ is “nice” in a sense

we will shortly make precise. To this end, we follow the article [31] and gener-

alize the results therein. A complete theory for finitely supported functions on

Zd, in which the results of the previous chapter will fit, is not presently known.

Not surprisingly, our results recapture the well-known results of random walk
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theory on Zd (see Subsection 3.7.6).

As discussed above, the theory presented in this chapter pertains to a large,

though not exhaustive, class of finitely supported complex-valued functions on

Zd. As seen in the probabilistic setting (and consistent with it), the “generic”

behavior of the convolution powers of such functions is described by a single

Gaussian attractor, generally evaluated at complex time, and our theory cap-

tures this typical situation with ease. The theory however describes much richer

behavior which arises naturally in less “generic” examples, including vary-

ing rates of sup-norm decay, anisotropic scaling and multiple (drifting) attrac-

tors. To illustrate our results, throughout this introductory section we analyze

a specific non-Gaussian example whose convolution powers exhibit a natural

y-oscillation and anisotropic scaling structure (the reader is encouraged to see

Section 3.7 for more examples). Consider φ : Z2 → C defined by

φ(x, y) =
1

22 + 2
√

3
×



8 (x, y) = (0, 0)

5 +
√

3 (x, y) = (±1, 0)

−2 (x, y) = (±2, 0)

i(
√

3− 1) (x, y) = (±1,−1)

−i(
√

3− 1) (x, y) = (±1, 1)

2∓ 2i (x, y) = (0,±1)

0 otherwise.

The graphs of Re(φ(n)) for (x, y) ∈ Z2 for −20 ≤ x, y ≤ 20 are displayed in Fig-

ures 3.1 and 3.2 for n = 10 and n = 100 respectively. By inspection, one observes
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Figure 3.1: Re(φ(n)) for n = 10

Figure 3.2: Re(φ(n)) for n = 100

that Re(φ(n)) decays in absolute value as n increases and, when n = 100, there is

an apparent oscillation of Re(φ(n)) in the y-direction. Our results explain these

observations.
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For φ ∈ `1(Zd), its Fourier transform φ̂ : Rd → C is defined by

φ̂(ξ) =
∑
x∈Zd

φ(x)eix·ξ

for ξ ∈ Rd; this series is absolutely convergent. The standard Fourier inversion

formula holds for all φ ∈ `1(Zd) and moreover, for each n ∈ N+,

φ(n)(x) =
1

(2π)d

∫
Td
e−ix·ξφ̂(ξ)ndξ (3.3)

for all x ∈ Zd where Td = (−π, π]d. Like the classical local limit theorem, our

arguments are based on local approximations of φ̂ and such approximations

require φ̂ to have a certain amount of smoothness. In our setting the order of

smoothness needed in each case is not known a priori. For our purposes, it

is sufficient (but not necessary) to consider only those φ ∈ `1(Zd) with finite

moments of all orders. That is, we consider the subspace of `1(Zd), denoted by

Sd, consisting of those φ for which

‖xβφ(x)‖1 =
∑
x∈Zd
|xβφ(x)| =

∑
x∈Zd
|xβ1

1 x
β2

2 · · ·x
βd
d φ(x)| <∞

for all multi-indices β = (β1, β2, . . . , βd) ∈ Nd. It is straightforward to see that

φ̂ ∈ C∞(Rd) whenever φ ∈ Sd. We note that Sd contains all finitely supported

functions mapping Zd into C; of course, when φ is finitely supported, φ̂ extends

holomorphically to Cd.

Before we begin to formulate our hypotheses, let us introduce some important

objects by taking motivation from probability. The quadratic form ξ 7→ ξ · Cφξ

which appears in (3.2) is a positive definite polynomial in ξ and is homogeneous

in the following sense. For all t > 0 and ξ ∈ Rd,

(t1/2ξ) · Cφ(t1/2ξ) = t ξ · Cφξ.
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The map (0,∞) 3 t 7→ t1/2I ∈ Gld(R) is a continuous (Lie group) homomor-

phism from the multiplicative group of positive real numbers into Gld(R); here

I is the identity matrix in the set of d×d real matrices Md(R) and Gld(R) ⊆Md(R)

denotes the group of invertible matrices. For any such continuous homomor-

phism t 7→ Tt, {Tt}t>0 is a Lie subgroup of Gld(R), that is, a continuous one-

parameter group; the Hille-Yosida construction guarantees that all such groups

are of the form

Tt = tE = exp((log t)E) =
∞∑
k=0

(log t)k

k!
Ek

for t > 0 for some E ∈ Md(R). The Appendix amasses some basic properties of

continuous one-parameter groups.

Definition 3.1.2. For a continuous function P : Rd → C and a continuous one-

parameter group {Tt} ⊆ Gld(R), we say that P is homogeneous with respect to Tt = tE

if

tP (ξ) = P (Ttξ)

for all t > 0 and ξ ∈ Rd. In this case E is a member of the exponent set of P , Exp(P ).

We say that P is positive homogeneous if the real part of P , R = ReP , is positive

definite (that is, R(ξ) ≥ 0 and R(ξ) = 0 only when ξ = 0) and if Exp(P ) contains a

matrix E ∈Md(R) whose spectrum is real.

Throughout this chapter, we concern ourselves with positive homogeneous

multivariate polynomials P : Rd → C; their appearance is seen to be natural, al-

though not exhaustive, when considering local approximations of φ̂ for φ ∈ Sd.

A given positive homogeneous polynomial P need not be homogeneous with

respect to a unique continuous one-parameter group. For example, for each

m ∈ N+, ξ 7→ |ξ|2m is a positive homogeneous polynomial and it can be shown
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directly that

Exp(| · |2m) = (2m)−1I + o(d),

where o(d) ⊆ Md(R) is the set of anti-symmetric matrices (these arise as the Lie

algebra of the orthogonal group Od(R) ⊆ Gld(R)). It will be shown however

that, for a positive homogeneous polynomial P , trE = trE ′ whenever E,E ′ ∈

Exp(P ); this is Corollary 3.2.4. To a given positive homogeneous polynomial P ,

the corollary allows us to uniquely define the number

µP := trE (3.4)

for any E ∈ Exp(P ). This number appears in many of our results; in particular,

it arises in addressing the Question (i) in which it plays the role of 1/m in Theo-

rem 3.1.1.

We now begin to discuss the framework and hypotheses under which our the-

orems are stated. Let φ ∈ Sd be such that supξ∈Rd |φ̂(ξ)| = 1; this can always be

arranged by multiplying φ by an appropriate constant. Set

Ω(φ) = {ξ ∈ Td : |φ̂(ξ)| = 1}

and, for ξ0 ∈ Ω(φ), define Γξ0 : U ⊆ Rd → C by

Γξ0(ξ) = log

(
φ̂(ξ + ξ0)

φ̂(ξ0)

)
where U is a convex open neighborhood of 0 which is small enough to ensure

that log, the principal branch of logarithm, is defined and continuous on φ̂(ξ +

ξ0)/φ̂(ξ0) for ξ ∈ U . Because φ̂ is smooth, Γξ0 ∈ C∞(U) and so we can use

Taylor’s theorem to approximate Γξ0 near 0. In this chapter, we focus on the

case in which the Taylor expansion yields a positive homogeneous polynomial.

The following definition, motivated by Thomée [87], captures this notion.
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Definition 3.1.3. Let φ ∈ Sd be such that sup |φ̂(ξ)| = 1 and let ξ0 ∈ Ω(φ). We say

that ξ0 is of positive homogeneous type for φ̂ if the Taylor expansion for Γξ0 about 0 is of

the form

Γξ0(ξ) = iαξ0 · ξ − Pξ0(ξ) + Υξ0(ξ) (3.5)

where αξ0 ∈ Rd, Pξ0 is a positive homogeneous polynomial and Υξ0(ξ) = o(Rξ0(ξ)) as

ξ → 0; here Rξ0 = RePξ0 . We say that αξ0 is the drift associated to ξ0.

Though not obvious at first glance, αξ0 and Pξ0 of the above definition are neces-

sarily unique. When looking at any given Taylor polynomial, it will not always

be apparent when the conditions of the above definition are satisfied. In Section

3.3, there is a discussion concerning this, and therein, necessary and sufficient

conditions are given for ξ0 ∈ Ω(φ) to be of positive homogeneous type for φ̂.

Our theorems are stated under the assumption that for φ ∈ Sd, sup |φ̂(ξ)| = 1 and

each ξ ∈ Ω(φ) is of positive homogeneous type for φ̂. As we show in Section 3.3,

these hypotheses ensure that the set Ω(φ) is finite and in this case we set

µφ = min
ξ∈Ω(φ)

µPξ . (3.6)

This is admittedly a slight abuse of notation. We are ready to state our first main

result.

Theorem 3.1.4. Let φ ∈ Sd be such that sup |φ̂(ξ)| = 1 and suppose that each ξ ∈ Ω(φ)

is of positive homogeneous type for φ̂. Then

C ′n−µφ ≤ ‖φ(n)‖∞ ≤ Cn−µφ (3.7)

for all n ∈ N+, where C and C ′ are positive constants.
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The theorem above is a partial answer to Question (i) and nicely complements

Theorem 3.1.1 and the results of [31]. We note however that, in view of the wider

generality of Theorem 3.1.1, Theorem 3.1.4 is obviously not the final result in Zd

on this matter (see the discussion of tensor products in Subsection 3.7.4).

Returning to our motivating example and with the aim of applying Theorem

3.1.4, we analyze the Fourier transform of φ. We have

φ̂(η, ζ) =
1

11 +
√

3

(
4− 2 cos(2η) +

(
5 +
√

3
)

cos(η)

+2
(

cos(ζ) + sin(ζ)
)

+
(
2
√

3 + 2
)

cos(η) sin(ζ)
)

for (η, ζ) ∈ R2. One easily sees that sup |φ̂| = 1 and that |φ̂| is supremized in T2

at only one point (0, π/3) and here, φ̂(0, π/3) = 1. As is readily computed,

Γ(η, ζ) = log

(
φ̂(η, ζ + π/3)

φ̂(0, π/3)

)
= log(φ̂(η, ζ + π/3))

= − 1

11 +
√

3
η4 +

7− 6
√

3

118
η2ζ − 2

11 +
√

3
ζ2

+O(|η|5) +O(|η4ζ|) +O(|ηζ|2) +O(|ζ|3)

as (η, ζ)→ 0. Let us study the polynomial

P (η, ζ) =
1

22 + 2
√

3

(
2η4 +

(√
3− 1

)
η2ζ + 4ζ2

)
,

which leads this expansion. It is easily verified that P = ReP is positive definite

and

P (tE(η, ζ)) = P (t1/4η, t1/2ζ) = tP (η, ζ) with E =

1/4 0

0 1/2


for all t > 0 and (η, ζ) ∈ R2 and therefore P is a positive homogeneous polyno-

mial with E ∈ Exp(P ). Upon rewriting the error in the Taylor expansion, we
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have

Γ(η, ζ) = −P (η, ζ) + Υ(η, ζ)

where Υ(η, ζ) = o(P (η, ζ)) as (η, ζ) → (0, 0) and so it follows that (0, π/3) is

of positive homogeneous type for φ̂ with corresponding α = (0, 0) ∈ R2 and

positive homogeneous polynomial P . Consequently, φ satisfies the hypotheses

of Theorem 3.1.4 with µφ = µP = trE = 3/4 and so

C ′n−3/4 ≤ ‖φ(n)‖∞ ≤ Cn−3/4

for all n ∈ N+, where C and C ′ are positive constants. With the help of a local

limit theorem, we will shortly describe the pointwise behavior of φ.

Coming back to the general setting, we now introduce the attractors which ap-

pear in our main local limit theorem. For a positive homogeneous polynomial

P , define H(·)
P : (0,∞)× Rd → C by

H t
P (x) =

1

(2π)d

∫
Rd
e−tP (ξ)e−ix·ξ dξ (3.8)

for t > 0 and x ∈ Rd; we write HP (x) = H1
P (x). As we show in Section 3.2, for

each t > 0, H t
P (·) belongs to the Schwartz space, S(Rd), and moreover, for any

E ∈ Exp(P ),

H t
P (x) =

1

ttrE
HP (t−E

∗
x) =

1

tµP
HP (t−E

∗
x) (3.9)

for all t > 0 and x ∈ Rd; here E∗ is the adjoint of E. These function arise nat-

urally in the study of partial differential equations. For instance, consider the

partial differential operator ∂t + ΛP where ΛP := P (D), called a positive homo-

geneous operator, is defined by replacing the d-tuple ξ = (ξ1, ξ2, . . . , ξd) in P (ξ)

by the d-tuple of partial derivatives D = (i∂x1 , i∂x2 , . . . , i∂xd). The associated

Cauchy problem for this operator can be stated thus: Given initial data f (from
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a suitable class of functions), find u(x, t) satisfying (∂t + ΛP )u(x, t) = 0 x ∈ Rd, t > 0

u(0, x) = f(x) x ∈ Rd.
(3.10)

In this context, H(·)
P is a fundamental solution to (3.10) in the sense that the rep-

resentation

u(x, t) = (e−tΛP f)(x) =

∫
Rd
H

(t)
P (x− y)f(y)dy (3.11)

satisfies (∂t + ΛP )u = 0 and has u(t, ·)→ f as t→ 0 in an appropriate topology.

Equivalently,H(·)
P is the integral kernel of the semigroup e−tΛP with infinitesimal

generator ΛP . The Cauchy problem for the setting in which ΛP is replaced by an

operator H which depends on x and is uniformly comparable to (−∆)m = Λ|·|2m

is the subject of (higher order) parabolic partial differential equations and its

treatment can be found in the classic texts [35] and [40] (see also [21] and [20]).

The subject of Chapter 4 treats the case in which H is uniformly comparable to

a positive homogeneous operator; therein, we write KΛ = HP . In the present

chapter, we shall only need a few basic facts concerning H(·)
P .

Remark 5. When d = 1, every positive homogeneous polynomial is of the form

P (ξ) = βξm where Re β > 0 and m is an even natural number. In this case, HP

is equal to the function Hβ
m of Chapter 2. We note that the simplicity of the dilation

structure in one dimension is in complete contrast with the natural complexity of the

multi-dimensional analogue seen in this chapter.

For our next main theorem which addresses Question (ii), we restrict our at-

tention to the set of points {ξ1, ξ2, . . . , ξA} ⊆ Ω(φ) for which µPξq = µφ for

q = 1, 2, . . . , A; the points ξ ∈ Ω(φ) for which µPξ > µφ (if there are any) are
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not seen in local limits. Finally for each ξq for q = 1, 2, . . . , A, we set αq = αξq

and Pq = Pξq . The following local limit theorem addresses Question (ii).

Theorem 3.1.5. Let φ ∈ Sd be such that sup |φ̂(ξ)| = 1 and suppose that every point

ξ ∈ Ω(φ) is of positive homogeneous type for φ̂. Let µφ be defined by (3.6) and let

ξ1, ξ2, . . . , ξA, α1, α2, . . . , αA, and P1, P2, . . . , PA be as in the previous paragraph. Then

φ(n)(x) =
A∑
q=1

e−ix·ξq φ̂(ξq)
nHn

Pq(x− nαq) + o(n−µφ) (3.12)

uniformly for x ∈ Zd.

Let us make a few remarks about this theorem. First, the attractors Hn
Pq

appear-

ing in (3.12) are rescaled versions of HPq = H1
Pq

in view of (3.9), and all de-

cay in absolute value on the order n−µφ – this is consistent with Theorem 3.1.4.

Second, the attractors HPq(x) often exhibit slowly varying oscillations as |x| in-

creases (see Subsection (3.7.1)), however, the main oscillatory behavior, which

is present in Figure 3.2, is a result of the prefactor e−ix·ξq φ̂(ξq). This is, of course,

a consequence of φ̂ being maximized away from the origin. In Subsection 3.7.6,

we will see that when φ is a probability distribution, all of the attractors in (3.12)

are identical and the prefactors collapse into a single function, Θ, which nicely

describes the support of φ(n) and hence periodicity of the associated random

walk (see Theorems 3.7.5 and 3.7.6).

Taking another look at our motivating example, we note that the hypotheses of

Theorem 3.1.4 are precisely the hypotheses of Theorem 3.1.5 and so an applica-

tion of the local limit theorem is justified, where, because Ω(φ) is a singleton, the
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sum in (3.12) consists only of one term. We have

φ(n)(x, y) = e−i(x,y)·(0,π/3)φ̂((0, π/3))nHn
P (x, y) + o(n−µφ)

= e−iπy/3Hn
P (x, y) + o(n−3/4)

uniformly for (x, y) ∈ Z2. To illustrate this local limit, the graphs of

Re(e−iπy/3Hn
P ) for (x, y) ∈ Z2 for −20 ≤ x, y ≤ 20 are displayed in Figures 3.3

and 3.4 for n = 10 and n = 100 respectively for comparison against Figures 3.1

and 3.2. The oscillation in the y-direction is now explained by the appearance

of the multiplier e−iπy/3 and is independent of n.

Figure 3.3: Re(e−iπy/3Hn
P ) for n = 10

To address Question (iii) and obtain pointwise estimates for the φ(n), we restrict

our attention to those φ : Zd → C with finite support. In this Chapter, we present

two theorems concerning pointwise estimates for |φ(n)(x)|. The most general re-

sult, in addition to requiring finite support for φ, assumes the hypotheses of
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Figure 3.4: Re(e−iπy/3Hn
P ) for n = 100

Theorem 3.1.5; this is Theorem 3.5.10. The other result, Theorem 3.1.6, addition-

ally assumes that all ξ ∈ Ω(φ) have the same corresponding drift αξ = α ∈ Rd

and positive homogeneous polynomial P = Pξ – a condition which is seen to be

quite natural by taking a look at Subsections 3.7.3 and 3.7.6, although not nec-

essary, see Remark 8. Theorem 3.1.6 extends the corresponding 1-dimensional

result, Theorem 3.1 of [31], to d-dimensions and, even in 1-dimension, is seen to

be an improvement. In addition to global pointwise estimates for φ(n), in Sec-

tion 3.5 we present a variety of results which give global pointwise estimates

for discrete space and time derivatives of φ(n). In what follows, we describe the

statement of Theorem 3.1.6 as it is the simplest.

For simplicity, assume that φ : Zd → C is finitely supported, satisfies supξ |φ̂| = 1

and Ω(φ) consists of only one point ξ0 which is of positive homogeneous type for

φ̂. In this case, we use Theorem 3.1.5 to motivate the correct form for pointwise
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estimated for φ(n). The theorem gives the approximation

φ(n)(x) = e−ix·ξ0φ̂(ξ0)nHn
P (x− nα) + o(n−µP ) (3.13)

uniformly for x ∈ Zd, where P = Pξ0 is positive homogeneous and α = αξ0 ∈ Rd.

Pointwise estimates for the attractor HP can be deduced with the help of the

Legendre-Fenchel transform, a central object in convex analysis [78, 88]. The

Legendre-Fenchel transform of R = ReP is the function R# : Rd → R defined

by

R#(x) = sup
ξ∈Rd
{x · ξ −R(ξ)}.

It is evident that R#(x) ≥ 0 and, for E ∈ Exp(P ),

tR#(x) = sup
ξ∈Rd

{
tx · ξ −R(tEξ)

}
= R#

(
t(I−E)∗x

)
for all t > 0 and x ∈ Rd, i.e., (I − E)∗ ∈ Exp(R#). It turns out that R# is

necessarily continuous and positive definite (Proposition A.3.2). In Section 3.2,

we establish the following pointwise estimates for HP . There exists positive

constants C,M such that

|H t
P (x)| ≤ C

ttrE
exp(−MR#(t−E

∗
x)) =

C

tµP
exp(−tMR#(x/t)) (3.14)

for all x ∈ Rd and t > 0.

Remark 6. In the special case that P (ξ) = |ξ|2m, E = (2m)−1I ∈ Exp(P ) and

one can directly compute R#(x) = Cm|x|2m/(2m−1) where Cm = (2m)−1/(2m−1) −

(2m)−2m/(2m−1) > 0. Here, the estimate (3.14) takes the form

H t
|·|2m(x) ≤ C

td/2m
exp

(
−M |x|2m/(2m−1)/t1/(2m−1)

)
for t > 0 and x ∈ Rd and so we recapture the well-known off-diagonal estimate for the

semigroup e−t(−∆)m [20,21,35,40]. In the context of local limit theorems, H|·|2m is seen

80



to be the attractor of the convolution powers of κm = δ0 − (δ0 − κ)(m) where κ is the

probability distribution assigning 1/2 probability to 0 and 1/(4d) probability to±ej for

j = 1, 2, . . . , d; here and in what follows, e1, e2, . . . , ed denote the standard euclidean

basis vectors of Rd.

In view of (3.13) and the preceding discussion, one expects an estimate of the

form (3.14) to hold for φ(n), although, we note that no such estimate can be

established on these grounds (this is due to the error term in (3.13)). This how-

ever motivates the correct form and we are able to establish the following re-

sult which captures, as a special case, the situation described above in which

Ω(φ) = {ξ0}.

Theorem 3.1.6. Let φ : Zd → C be finitely supported and such that supξ∈Td |φ̂(ξ)| = 1.

Suppose that every point of ξ ∈ Ω(φ) is of positive homogeneous type for φ̂ and every

ξ ∈ Ω(φ) has the same drift α = αξ ∈ Rd and positive homogeneous polynomial

P = Pξ. Also let µφ = µP be defined by (3.4) and let R# be the Legendre-Fenchel

transform of R = ReP . Then there exists C,M > 0 for which

|φ(n)(x)| ≤ C

nµφ
exp

(
−nMR#

(
x− nα
n

))
(3.15)

for all n ∈ N+ and x ∈ Zd.

Revisiting, for a final time, our motivating example, we note that φ also satisfies

the hypotheses of Theorem 3.1.6. An appeal to the theorem gives constants

C,M > 0 for which

|φ(n)(x, y)| ≤ C

n3/4
exp

(
−nMR#((x, y)/n)

)
(3.16)

for all n ∈ N+ and for all (x, y) ∈ Z2, where R# is the Legendre-Fenchel trans-

form of R = ReP = P . Instead of finding a closed-form expression for R#,
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which is not particularly illuminating, we simply remark that

R#(x, y) � |x|4/3 + |y|2, (3.17)

where � means that the ratio of the functions is bounded above and below by

positive constants ((3.17) is straightforward to establish and can be seen as con-

sequence of Corollary A.3.3). Upon combining (3.16) and (3.17), we obtain con-

stants C,M > 0 for which

|φ(n)(x, y)|

≤ C

n3/4
exp

(
−nM

(∣∣∣x
n

∣∣∣4/3 +
∣∣∣y
n

∣∣∣2)) =
C

n3/4
exp

(
−M

(
|x|4/3

n1/3
+
|y|2

n

))
for all n ∈ N+ and for all (x, y) ∈ Z2. This result illustrates the anisotropic expo-

nential decay of n3/4|φ(n)(x, y)| for each n ∈ N+.

Back within the general setting and continuing under the assumption that

φ : Zd → C is finitely supported, we come to the final question posed at the

beginning of this introduction, Question (iv). The following result extends the

(affirmative) results of V. Thomée [87] and M.V. Fedoryuk [38] (see also the re-

lated result of [81, Theorem 7.5]).

Theorem 3.1.7. Let φ : Zd → C be finitely supported and such that supξ |φ̂(ξ)| = 1.

Suppose additionally that each ξ ∈ Ω(φ) is of positive homogeneous type for φ̂. Then,

there exists a positive constant C for which

‖φ(n)‖1 =
∑
x∈Zd
|φ(n)(x)| ≤ C

for all n ∈ N+.

This chapter is organized as follows: Section 3.2 outlines the basic theory of pos-

itive homogeneous polynomials and their corresponding attractors. Section 3.3
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focuses on the local behavior of φ̂ wherein necessary and sufficient condition

are given to ensure that a given ξ0 ∈ Ω(φ) is of positive homogeneous type for

φ̂. In Section 3.4, we prove the main local limit theorem, Theorem 3.1.5, and de-

duce from it Theorem 3.1.4. Section 3.5 focuses on global space-time bounds for

φ(n) in the case that φ is finitely supported. In addition to the proof of Theorem

3.1.6, Subsection 3.5.1 contains a number of results concerning global exponen-

tial estimates for discrete space and time differences of φ(n). In Subsection 3.5.2,

we prove global sub-exponential estimates for φ(n) in the general case that φ, in

addition to being finitely supported, satisfies the hypotheses of Theorem 3.1.7;

this is Theorem 3.5.10. In Section 3.6, after a short discussion on stability of

numerical difference schemes in partial differential equations, we present The-

orem 3.1.7 as a consequence of Theorem 3.5.10. Section 3.7 contains a number of

concrete examples, mostly in Z2, to which we apply our results; the reader is en-

couraged to skip ahead to this section as it can be read at any time. We end Sec-

tion 3.7 by showing, from our perspective, some results on the classical theory

of random walks on Zd. The Appendix contains a number of linear-algebraic re-

sults which highlight the interplay between one-parameter contracting groups

and positive homogeneous functions.

Notation: For y ∈ Zd, δy : Zd → {0, 1} is the standard delta function defined

by δy(y) = 1 and δy(x) = 0 for x 6= y. For any subset A of R, A+ denotes the

subset of positive elements of A. Given M ∈ Md(R), its corresponding linear

transformation on Rd is denoted by LM . For any r > 0, we denote the open unit

ball with center x ∈ Rd by Br(x) and the closed unit ball by Br(x). When x = 0,

we write Br = Br(0) and denote by Sr = ∂Br the sphere of radius r. Further,

when r = 1, we write B = B1 and S = S1. We define a d-dimensional floor
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function by b·c : Rd → Zd by bxc = (bx1c, bx2c, . . . , bxdc) for x ∈ Rd where bxkc

is the integer part of xk for k = 1, 2, . . . d; this is admittedly a slight abuse of

notation. Given n = (n1, n2, . . . , nd) ∈ (N+)d = Nd
+ and a multi-index β ∈ Nd,

put

|β : n| =
d∑
i=1

βi
nd

;

this is consistent with Hörmander’s notation for semi-elliptic operators and

polynomials [55, p. 100]. For any two real functions f, g on a set X , we write

f � g when there are positive constants C and C ′ for which Cg(x) ≤ f(x) ≤

C ′g(x) for all x ∈ X .

3.2 Positive homogeneous polynomials and attractors

In this section, we study positive homogeneous polynomials and their corre-

sponding attractors; let us first give some background. In Hörmander’s trea-

tise [55], polynomials of the form

Q(ξ) =
∑
|β:m|≤1

aβξ
β

for m ∈ Nd
+ are called semi-elliptic provided their principal part,

Qp(ξ) =
∑
|β:m|=1

aβξ
β,

is non-degenerate, that is, Qp(ξ) 6= 0 whenever ξ 6= 0. For a semi-elliptic poly-

nomial Q, its corresponding partial differential operator ΛQ = Q(D), called a

semi-elliptic operator, is hypoelliptic in the sense that all ΛQ-harmonic distri-

butions are smooth, see [55, p. 200]. What appears to be the most desirable
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property of semi-elliptic polynomials is the way that they scale in the sense that

Qp(t
1/m1ξ1, t

1/m2ξ2, . . . , t
1/mdξd)

=
∑
|β:m|=1

aβ

d∏
j=1

(t1/miξj)
βj =

∑
|β:m|=1

t|β:m|aβξ
β = tQp(ξ)

for all t > 0 and ξ ∈ Rd. This property, used explicitly by Hörmander, is pre-

cisely the statement that E = diag(1/m1, 1/m2, . . . , 1/md) ∈ Exp(Qp), in view of

Definition 3.1.2. Further, the associated one-parameter group {Tt} = {tE} has

the useful property that it dilates and contracts space. The following definition

captures this behavior in general (see [45, Section 1.1]).

Definition 3.2.1. Let {Tt}t>0 ⊆ Gld(R) be a continuous one-parameter group. We say

that {Tt} is contracting if

lim
t→0
‖Tt‖ = 0.

Here and in what follows, ‖ · ‖ denotes the operator norm on Gld(R).

To keep in mind, the canonical example of a contracting group is {tD} where

D = diag(γ1, γ2, . . . , γd) ∈ Md(R) with γi > 0 for i = 1, 2, . . . , d and here, it is

easily seen that tD = diag(tγ1 , tγ2 , . . . , tγd) for t > 0. Some basic results concern-

ing contracting groups are given in the Appendix and are used throughout this

chapter. As we will see shortly, for any positive homogeneous polynomial P , tE

is a contracting group for any E ∈ Exp(P ).

Of interest for us is the subclass of semi-elliptic polynomials of the form

P (ξ) =
∑

|β:2m|=1

aβξ
β =

∑
|β:m|=2

aβξ
β, (3.18)

where m ∈ Nd
+, {aβ} ⊆ C and ReP is positive definite. For these poly-

nomials, it is easy to see that the corresponding partial differential operator
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∂t + ΛP is semi-elliptic in the sense of Hörmander and hence hypoelliptic.

By a slight abuse of language, any reference to a semi-elliptic polynomial is

a reference to a polynomial of the form (3.18). It is straightforward to see

that all such semi-elliptic polynomials are positive homogeneous and have

D = diag((2m1)−1, (2m2)−1, . . . , (2md)
−1) ∈ Exp(P ). However, not all positive

homogeneous polynomials are semi-elliptic as the example of Subsection 3.7.3

illustrates. As our first result of this section shows, every positive homogeneous

polynomial has a coordinate system in which it is semi-elliptic.

Proposition 3.2.2. Let P be a positive homogeneous polynomial and let E ∈ Exp(P )

have real spectrum. There exist A ∈ Gld(R) and {m1,m2, . . . ,md} ⊆ N+ for which

A−1EA = diag((2m1)−1, (2m2)−1, . . . , (2md)
−1) (3.19)

and

(P ◦ LA)(ξ) =
∑
|β:m|=2

aβξ
β (3.20)

for ξ ∈ Rd.

Proof. In light of the fact that the spectrum ofE is real, the characteristic polyno-

mial for E factors completely over R and so we may apply the Jordan-Chevally

decomposition. This gives A ∈ Gld(R) for which F := A−1EA = D + N where

D is a diagonal matrix, N is a nilpotent matrix and ND = DN . It is evident that

Q := (P ◦ LA) is a polynomial and so we can write

Q(ξ) =
∑
β

aβξ
β (3.21)

for all ξ ∈ Rd. In fact, our hypothesis guarantees that Q is positive homoge-

neous and F ∈ Exp(Q). Our proof proceeds in three steps, first we show that

D ∈ Exp(Q). Second, we determine the spectrum of D. In the final step we
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show that N = 0.

Step 1. We have

tQ(ξ) = Q(tF ξ) = Q(tD+Nξ) = Q(tN tDξ) (3.22)

for all t > 0 and ξ ∈ Rd where D = diag(γ1, γ2, . . . , γd) for γ1, γ2, . . . γd ∈ R.

Because N is nilpotent,

tN = I +
log t

1
N + · · ·+ (log t)k

k!
Nk

where k + 1 is the index of N . Thus by (3.22), for all t > 0 and ξ ∈ Rd,

tQ(t−Dξ) = Q

(
ξ + (log t)Nξ + · · ·+ (log t)k

k!
Nkξ

)
(3.23)

= Q(ξ) + SN(ξ, log t)

where SN is a polynomial on Rd × R with no constant term. Consequently, for

each ξ ∈ Rd we may write

SN(ξ, x) =
l∑

j=1

bj(ξ)x
j (3.24)

where bj(ξ) ∈ C for each j.

Let us now fix a non-zero ξ ∈ Rd. Combining (3.21), (3.23) and (3.24) yields

∑
β

aβt
(1−β·γ)ξβ = Q(ξ) +

l∑
j=1

bj(ξ)(log t)j

for all t > 0 where β · γ = β1γ1 + β2γ2 + · · · βdγd and necessarily Q(ξ) 6= 0. Since

distinct real powers of t and log t are linearly independent as C∞ functions for

t > 0, it follows that bj(ξ) = 0 for each j and more importantly,

Q(ξ) =
∑
β·γ=1

aβξ
β. (3.25)
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Since ξ was arbitrary, (3.25) must hold for all ξ ∈ Rd and from this we see that

Q(tDξ) =
∑
β·γ=1

aβ(tDξ)β

=
∑
β·γ=1

aβt
β·γ(ξ)β = tQ(ξ) (3.26)

for all t > 0 and ξ ∈ Rd; hence D ∈ Exp(Q).

Step 2. Writing RQ = ReQ, it follows from (3.25) that

RQ(ξ) =
∑
β·γ=1

cβξ
β (3.27)

for all ξ ∈ Rd where cβ = Re aβ for each multi-index β. Now for each i =

1, 2, . . . , d, xei is an eigenvector of D with eigenvalue γi for all non-zero x ∈ R;

here ei is that of the standard euclidean basis. Using the positive definiteness of

RQ, for all t > 0 and x 6= 0, we have

tRQ(xei) = RQ(tD(xei)) = RQ(tγixei) = t(|β|γi)cβx
|β| > 0

where β is the only surviving multi-index from the sum in (3.27) and necessarily

β is an integer multiple of ei. From this we see that |β| must be even for other-

wise positivity would be violated and also that 1/γi = |β| =: 2mi as claimed.

Step 3. In view of the previous step,

tD = diag
(
t(2m1)−1

, t(2m2)−1

, . . . , t(2md)−1
)

(3.28)

for all t > 0 and so {tD}t>0 is a one-parameter contracting group. Using the

positive definiteness of RQ, it follows from Proposition A.1.5 that

lim
|ξ|→∞

RQ(ξ) ≥ lim
t→∞

inf
η∈S

RQ(tDη) ≥ lim
t→∞

t inf
η∈S

RQ(η) =∞. (3.29)
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Now because D commutes with F and D ∈ Exp(RQ),

RQ(ξ) = tt−1RQ(ξ) = RQ(tF t−Dξ) = RQ(tNξ)

for t > 0 and ξ ∈ Rd. Our goal is to show that N = 0. For suppose that N 6= 0,

then for some ξ ∈ Rd, ν = Nξ 6= 0 but Nν = 0. Then,

RQ(ξ) = RQ(tNξ) = RQ

(
ξ + (log t)Nξ +

(log t)2

2!
(N)2ξ + · · ·

)
= RQ(ξ + (log t)ν)

for all t > 0. This however cannot hold for its validity would contradict (3.29)

and so N = 0 as desired.

Proposition 3.2.3. If P is a positive homogeneous polynomial then Sym(P ) := {O ∈

Md(R) : P (Oξ) = P (ξ) for all ξ ∈ Rd} is a compact subgroup of Gld(R) and hence a

subgroup of the orthogonal group, Od(R).

Proof. It is clear that I ∈ Sym(P ) and that for any O1, O2 ∈ Sym(P ), O1O2 ∈

Sym(P ). If O ∈ Sym(P ), R(Oξ) = R(ξ) for all ξ ∈ Rd where R = ReP . The

positive definiteness of R implies that KerO is trivial and hence O ∈ Gld(R).

Consequently, P (O−1ξ) = P (OO−1ξ) = P (ξ) for all ξ ∈ Rd and hence O−1 ∈

Sym(P ).

It remains to show that Sym(P ) is compact and so, in view of the Heine-Borel

theorem, we show that Sym(P ) is closed and bounded. To see that Sym(P ) is

closed, let {On} ⊆ Sym(P ) be such that On → O ∈ Md(R). Then the continuity

of P implies that for all ξ ∈ Rd,

P (Oξ) = lim
n
P (Onξ) = P (ξ)

and so O ∈ Sym(P ).
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To show that Sym(P ) is bounded, we first make an observation from the

proof of Proposition 3.2.2. Assuming the notation therein, we conclude from

(3.29) that

lim
|ξ|→∞

R(ξ) =∞ (3.30)

because R(ξ) = RQ(A−1ξ) for all ξ ∈ Rd. Finally, to reach a contradiction, we

assume that Sym(P ) is not bounded. Then there exist sequences {On} ⊆ Sym(P )

and {ξn} ⊆ S for which limn |Onξn| =∞. Observe however that

R(Onξn) = R(ξn) ≤ sup
ξ∈S

R(ξ) <∞

for all n; in view of (3.30) we have obtained our desired contradiction.

Corollary 3.2.4. Let P be a positive homogeneous polynomial. Then for any E,E ′ ∈

Exp(P ),

tr(E) = tr(E ′).

Proof. For E,E ′ ∈ Exp(P ), it follows immediately that tEt−E′ ∈ Sym(P ) for all

t > 0. In view of Proposition 3.2.3,

ttrE−trE′ = |ttrEt− trE′| = | det(tE) det(t−E
′
)| = | det(tEt−E

′
)| = 1

for all t > 0; here we have used the fact that the trace of a real matrix is real

and that the determinant maps Od(R) into the unit circle. The corollary follows

immediately.

Lemma 3.2.5. Let P be a positive homogeneous polynomial. For any E ∈ Exp(P ), the

continuous one-parameter group {tE}t>0 is contracting.

Proof. First let E0 ∈ Exp(P ) have real spectrum. In view of Proposition 3.2.2,

A−1tE0A = diag(tγ1 , tγ2 , . . . , tγd)
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for all t > 0 where 0 < γi < 1/2 for i = 1, 2, . . . , d. By inspection, we can

immediately conclude that {tE0}t>0 is contracting. Now for any E ∈ Exp(P ),

tEt−E0 ∈ Sym(P ) ⊆ Od(R) for all t > 0 by virtue of Proposition 3.2.3; from this it

follows immediately that {tE} is contracting.

We now turn to the study of the attractors appearing in Theorem 3.1.5; these are

of the form H
(·)
P , defined by (3.8), where P is a positive homogeneous polyno-

mial.

Proposition 3.2.6. Let P be a positive homogeneous polynomial with R = ReP . The

following is true:

i) For any t > 0, H(t)
P (·) ∈ S(Rd).

ii) If E ∈ Exp(P ) then, for all t > 0 and x ∈ Rd,

H
(t)
P (x) =

1

ttrE
H1
P (t−E

∗
x) =

1

tµP
HP (t−E

∗
x);

where E∗ is the adjoint of E.

iii) There exist constants C,M > 0 such that∣∣∣H(t)
P (x)

∣∣∣ ≤ C

tµP
exp(−tMR#(x/t))

for all t > 0 and x ∈ Rd.

Proof. To prove items i) and ii), it suffices only to show that HP = H1
P ∈ S(Rd).

Indeed, if HP ∈ S(Rd) then, in particular, e−P ∈ L1(Rd) and so the change-of-
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variables formula guarantees that, for any t > 0 and x ∈ Rd,

H t
P (x) =

1

(2π)d

∫
Rd
e−tP (ξ)e−ix·ξ dξ

=
1

(2π)d

∫
Rd
e−P (tEξ)e−ix·ξ dξ

=
1

(2π)d

∫
Rd
e−P (ξ)e−ix·(t

−Eξ) det(t−E) dξ

=
t− trE

(2π)d

∫
Rd
e−P (ξ)e−i(t

−E∗x)·ξ dξ

= t−µPHP (t−E
∗
x)

whenever E ∈ Exp(P ). From this the validity of item ii) is clear but moreover,

the formula ensures that that H t
P ∈ S(Rd) for all t > 0.

In view of (3.8), HP ∈ S(Rd) if and only if e−P ∈ S(Rd) because the Fourier

transform is an isomorphism of S(Rd). Also, for any A ∈ Gld(R), it is clear that

e−P ∈ S(Rd) if and only if e−P◦LA . Hence, to show that HP ∈ S(Rd) it suffices

to show that e−P◦LA ∈ S(Rd) for some A ∈ Gld(R). This is precisely what we do

now: Let E ∈ Exp(P ) have real spectrum and correspondingly, take A ∈ Gld(R)

as guaranteed by Proposition 3.2.2. As in the proof of the proposition, we write

Q = P ◦ LA, RQ = ReQ and D = diag((2m1)−1, (2m2)−1, . . . , (2md)
−1). It is clear

that e−Q ∈ C∞(Rd). Let µ and β be multi-indices and observe that

‖e−Q‖µ,β := sup
ξ∈Rd

∣∣ξµDβe−Q
∣∣ = sup

ξ∈Rd

∣∣Qµ,β(ξ) exp(−Q(ξ))
∣∣

where Qµ,β is a polynomial. Using Proposition A.1.5 and the continuity of

Qµ,βe
−Q, it follows that

‖e−Q‖µ,β = sup
ν∈S,t>0

∣∣∣Qµ,β(tDν) exp(−Q(tDν))
∣∣∣

= sup
ν∈S,t>0

∣∣∣Qµ,β(tDν) exp(−tQ(ν))
∣∣∣.

Now because Q is positive homogeneous, Qµ,β is a polynomial and tD has the
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form (3.28),

|Qµ,β(tDν)e−tQ(ν)| ≤M1(1 + tm)e−tM2

for all t > 0 and ν ∈ S where m,M1 and M2 are positive constants. We immedi-

ately see that

‖e−Q‖µ,β ≤ sup
t>0

M1(1 + tm)e−tM2 <∞

and therefore e−Q ∈ S(Rd).

The key to the proof of iii) is a complex change-of-variables. For each x ∈ Rd,

function z 7→ e−P (z)e−ix·z is holomorphic on Cd and, in view of Proposition A.2.7,

satisfies

|e−P (ξ−iν)e−ix·(ξ−iν)| = e−x·ν |e−P (ξ−iν)| ≤ e−x·ν+MR(ν)e−εR(ξ) (3.31)

for all z = ξ − iν ∈ Cd, where M, ε are positive constants. By virtue of (3.30),

(3.31) ensures that the integration in the definition of HP can be shifted to any

any complex plane in Cd parallel to Rd. In other words, for any x, ν ∈ Rd,∫
Rd
e−P (ξ)e−ix·ξ dξ =

∫
ξ∈Rd

e−P (ξ−iν)e−ix·(ξ−iν) dξ

and therefore

|HP (x)| ≤ e−x·ν+MR(ν) 1

(2π)d

∫
Rd
e−εR(ξ) = C exp(−(x · ν −MR(ν))),

whereC > 0. The natural appearance of the Legendre-Fenchel transform is now

seen by infimizing over ν ∈ Rd. We have

|HP (x)| ≤ C inf
ν∈Rd

exp(−(x · ν −MR(ν))) = C exp

(
− sup

ν∈Rd
{x · ν −MR(ν)}

)
= C exp

(
−(MR)#(x)

)
≤ C exp

(
−MR#(x)

)
for all x ∈ Rd, where we have made use of Corollary A.3.4 to adjust the constant

93



M . Finally, an appeal to ii) and Proposition A.3.2, gives

|H(t)
P (x)| ≤ C

tµP
exp

(
−MR#(t−E

∗
x)
)

=
C

tµP
exp

(
−MR#(t(I−E)∗(x/t))

)
=

C

tµP
exp

(
−tMR#(x/t)

)
for all t > 0 and x ∈ Rd.

3.3 Properties of φ̂

Lemma 3.3.1. Let φ ∈ Sd be such that sup |φ̂| = 1 and suppose that ξ0 ∈ Ω(φ) is of

positive homogeneous type for φ̂. Then the expansion (3.5), with αξ0 ∈ Rd and positive

homogeneous polynomial Pξ0 , is unique.

Proof. The fact that |φ̂(ξ)| ≤ 1 ensures that the linear term in the Taylor expan-

sion for Γξ0 is purely imaginary. This determines αξ0 uniquely. We assume that

Γξ0(ξ) = iαξ0 · ξ − P1(ξ) + Υ1(ξ) = iαξ0 · ξ − P2(ξ) + Υ2(ξ)

for ξ ∈ U where P1 and P2 are positive homogeneous polynomials with ReP1 =

R1, ReP2 = R2 and Υi = o(Ri) as ξ → 0 for i = 1, 2. We shall prove that P1 = P2.

Let ε > 0 and, for a fixed non-zero ζ ∈ Rd, set δi = ε/2Ri(ζ) for i = 1, 2. Also,

take Ei ∈ Exp(Pi) for i = 1, 2. Because Υi = o(Ri) as ξ → 0 for i = 1, 2 there is a

neighborhoodO of 0 for which |Υi(ξ)| < δiRi(ξ) whenever ξ ∈ O for i = 1, 2. By

virtue of Lemma 3.2.5, t−E1ζ, t−E2ζ ∈ O for some t > 0 and therefore

|P1(ζ)− P2(ζ)| = t|P1(t−E1ζ)− P2(t−E2ζ)| ≤ t|Υ1(t−E1ζ)|+ t|Υ2(t−E2ζ)|

< tδ1R1(t−E1ζ) + tδ2R2(t−E2ζ) ≤ δ1R1(ζ) + δ2R2(ζ) ≤ ε

as required.
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Lemma 3.3.2. Let φ ∈ Sd be such that sup |φ̂| = 1 and suppose that ξ0 ∈ Ω(φ) is

of positive homogeneous type for φ̂ with associated positive homogeneous polynomial

P = Pξ0 and remainder Υ = Υξ0 . Then for any E ∈ Exp(P ),

lim
t→∞

tΥ(t−Eξ) = 0.

for each ξ ∈ Rd.

Proof. The assertion is clear when ξ = 0. When ξ ∈ Rd is non-zero, we note

that t−Eξ → 0 as t → 0 by virtue of Lemma 3.2.5; in particular, t−Eξ ∈ U for

sufficiently large t. Consequently,

lim
t→∞

Υ(t−Eξ)

R(t−Eξ)
= 0

because Υ(η) = o(R(η)) as η → 0 and so it follows that

lim
t→∞

tΥ(t−Eξ) = lim
t→∞

R(ξ)
Υ(t−Eξ)

t−1R(ξ)
= R(ξ) lim

t→∞

Υ(t−Eξ)

R(t−Eξ)
= 0

as desired.

Given ξ0 ∈ Ω(φ) and considering the Taylor expansion for Γξ0 , to recognize

whether or not ξ0 is of positive homogeneous type for φ̂ is not always straight-

forward, e.g., Subsection 3.7.3). Nonetheless, it is useful to have a method based

on the Taylor expansion for Γξ0 through which we can determine if ξ0 is of pos-

itive homogeneous type for φ̂ and, when it is, pick out the associated positive

homogeneous polynomial Pξ0 . The remainder of this section is dedicated to do

just this.

Given any integer m ≥ 2, the mth order Taylor expansion for Γξ0 is necessarily

of the form

Γξ0(ξ) = iαξ0 · ξ −Qm
ξ0

(ξ) +O(|ξ|m+1) (3.32)
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for ξ ∈ U where αξ0 ∈ Rd and Qm
ξ0

(ξ) is a polynomial given by

Qm
ξ0

(ξ) =
∑

1<|α|≤m

cαξ
α

for ξ ∈ Rd, where {cα} ⊆ C. No constant term appears in the expansion for Γξ0

because Γξ0(0) = 0. Moreover the fact that

φ̂(ξ + ξ0) = φ̂(ξ0)eΓξ0 (ξ)

for all ξ ∈ U and the condition that sup |φ̂(ξ)| = 1 ensure that

Re(iαξ0 · ξ −Qm
ξ0

(ξ)) = −ReQm
ξ0

(ξ) ≤ 0

for ξ sufficiently close to 0 (in fact, this is precisely why αξ0 ∈ Rd). Our final

result of this section, Proposition 3.3.3, provides necessary and sufficient condi-

tions for ξ0 to be of positive homogeneous type for φ̂ in terms of Qm
ξ0

. We remark

that the proposition, although quite useful for examples, is not used anywhere

else in this work. As the proof is lengthy and in many ways parallels the proof

of Proposition 3.2.2, we have placed it in the Appendix, Subsection A.4.

Proposition 3.3.3. Let φ ∈ Sd, suppose that sup |φ̂(ξ)| = 1 and let ξ0 ∈ Ω(φ). Then

the following are equivalent:

a. The point ξ0 is of positive homogeneous type for φ̂ with corresponding positive ho-

mogeneous polynomial Pξ0 .

b. There exist m ≥ 2 and a positive homogeneous polynomial P such that, for some

C, r > 0,

C−1R(ξ) ≤ ReQm
ξ0

(ξ) ≤ CR(ξ)

and

| ImQm
ξ0

(ξ)| ≤ CR(ξ)

for all ξ ∈ Br, where R = ReP .
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c. There existm ≥ 2 and E ∈Md(R) with real spectrum such that, for some r > 0 and

sequence of positive real numbers {tn} such that tn → ∞ as n → ∞, the sequence

{ρn} of polynomials defined by

ρn(ξ) = tnQ
m
ξ0

(t−En ξ) (3.33)

converges for all ξ ∈ Br as n→∞ and its limit has positive real part for all ξ ∈ Sr.

When the above equivalent conditions are satisfied, for any m′ ≥ m,

Pξ0(ξ) = lim
t→∞

tQm′

ξ0
(t−Eξ)

for all ξ ∈ Rd and this convergence is uniform on all compact subsets of Rd.

3.4 Local limit theorems and `∞ estimates

In this section we prove Theorems 3.1.4 and 3.1.5. Our first result ensures that,

under the hypotheses of Theorem 3.1.5, we can approximate the convolution

powers of φ by a finite sum of attractors.

Proposition 3.4.1. Let φ ∈ Sd be such that sup |φ̂(ξ)| = 1. If each ξ ∈ Ω(φ) is of

positive homogeneous type for φ̂ then Ω(φ) is discrete (and hence finite).

Proof. Let ξ0 ∈ Ω(φ) be of positive homogeneous type for φ̂; it suffices to show

that ξ0 is an isolation point of Ω(φ). In view of Definitions 3.1.2 and 3.1.3, let Γξ0 ,

Rξ0 = RePξ0 and Υξ0 be associated to ξ0. Because Rξ0 is positive definite and

Υξ0(η) = o(Rξ0(η)) as η → 0, there is a neighborhood of 0 on which Γξ0(ξ) = 0

only when ξ = 0. Since φ̂(ξ + ξ0) = φ̂(ξ0) exp(Γξ0(ξ)) for all ξ ∈ U , there is a

neighborhood of ξ0 on which |φ̂(ξ)| < 1 for all ξ 6= ξ0. Hence ξ0 is an isolation

point of Ω(φ).
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Remark 7. For any φ which satisfied the hypotheses of Proposition 3.4.1, we fix Tdφ =

(−π, π]d + ξφ where ξφ ∈ Rd makes Ω(φ) live in the interior of Tdφ (as a subspace of

Rd); this can always be done in view of the proposition. We do this only to avoid non-

essential technical issues arising from the difference between the topology of Rd and the

topology of Td inherited as a subspace.

Lemma 3.4.2. Let φ ∈ Sd be such that sup |φ̂(ξ)| = 1 and suppose that ξ0 ∈ Ω(φ) is of

positive homogeneous type for φ̂. Let α = αξ0 and P = Pξ0 be associated to φ̂ in view

of Definition 3.1.3 and let µP and H(·)
P be defined by (3.4) and (3.8) respectively. Then

there exists an open neighborhood Uξ0 of ξ0 such that, for any open sub-neighborhood

Oξ0 ⊆ Uξ0 containing ξ0, the following limit holds. For all ε > 0 there exists N ∈ N+

such that ∣∣∣∣∣ nµP(2π)d

∫
Oξ0

φ̂(ξ)ne−ix·ξ dξ − nµP e−ix·ξ0φ̂(ξ0)nHn
P (x− nα)

∣∣∣∣∣ < ε

for all natural numbers n ≥ N and for all x ∈ Rd.

Proof. Given that ξ0 ∈ Ω(φ) is of positive homogeneous type for φ̂,

φ̂(ξ + ξ0) = φ̂(ξ0)eΓ(ξ) (3.34)

for ξ ∈ U where

Γ(ξ) = iα · ξ − P (ξ) + Υ(ξ)

and where Υ(ξ) = o(R(ξ)) and R = ReP . If necessary, we restrict U further so

that ∣∣eΓ(ξ)
∣∣ = eRe(iα·ξ−P (ξ)+Υ(ξ)) ≤ e−R(ξ)/2 (3.35)

for all ξ ∈ U and put Uξ0 = ξ0 + U . Now, let Oξ0 ⊆ Uξ0 be an open set containing

ξ0. It is clear that O := Oξ0 − ξ0 is open and is such that 0 ∈ O ⊆ U . Of course,

(3.34) and (3.35) hold for all ξ ∈ O.
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Observe that, for all x ∈ Rd and n ∈ N+,

nµP

(2π)d

∫
Oξ0

φ̂(ξ)ne−ix·ξ dξ − e−ix·ξ0φ̂(ξ0)nnµPHn
P (x− nα)

=
nµP

(2π)d

∫
O
φ̂(ξ + ξ0)ne−ix·(ξ+ξ0) dξ

−e−ix·ξ0φ̂(ξ0)n
nµP

(2π)d

∫
Rd
e−nP (ξ)e−i(x−nα)·ξ dξ

=
e−ix·ξ0φ̂(ξ0)n

(2π)d

(
nµP

∫
O
enΓ(ξ)e−ix·ξ dξ

−nµP
∫
Rd
e−nP (ξ)e−i(x−nα)·ξ dξ

)
. (3.36)

Now for E ∈ Exp(P ),

nµP
∫
Rd
e−nP (ξ)e−i(x−nα)·ξ dξ

= nµP
∫
Rd
e−P (nEξ)e−i(x−nα)·ξ dξ

= nµP
∫
nE(Rd)

e−P (ξ)e−i(x−nα)·n−Eξ det(n−E) dξ

=

∫
Rd
e−P (ξ)e−i(x−nα)·n−Eξ dξ

for all x ∈ Rd and n ∈ N+ where, in view of Corollary 3.2.4, we have used the

fact that det(n−E) = n− trE = n−µP . Noting the adjoint relation (n−E)∗ = n−E
∗ ,

and upon putting y(n, x) = n−E
∗
(x− nα), we have

nµP
∫
Rd
e−nP (ξ)e−i(x−nα)·ξ dξ =

∫
Rd
e−P (ξ)e−iy(n,x)·ξ dξ (3.37)

for all x ∈ Rd and n ∈ N+.

Let ε > 0 and observe that, in view of Proposition 3.2.6, e−P/2 ∈ L1(Rd)

because P (ξ)/2 is a positive homogeneous polynomial. We can therefore choose

a compact set K for which∫
Rd\K

∣∣e−P ∣∣ dξ ≤ ∫
Rd\K

e−R(ξ) dξ ≤
∫
Rd\K

e−R(ξ)/2 < ε/3. (3.38)
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By virtue of Proposition A.1.6 and Lemma 3.2.5, there is N1 ∈ N+, such that

n−E(K) ⊆ O for all n ≥ N1. Thus∫
O
enΓ(ξ)e−ix·ξ dξ

=

∫
n−E(K)

enΓ(ξ)e−ix·ξ dξ +

∫
O\n−E(K)

enΓ(ξ)e−ix·ξ dξ

=

∫
n−E(K)

e−P (nEξ)+nΥ(ξ)e−i(x−nα)·ξ dξ +

∫
O\n−E(K)

enΓ(ξ)e−ix·ξ dξ

=
1

nµP

∫
K

e−P (ξ)+nΥ(n−Eξ)e−iy(n,x)·ξ dξ +

∫
O\n−E(K)

enΓ(ξ)e−ix·ξ dξ

(3.39)

for all n ≥ N1 and x ∈ Rd; here we have again used the fact that det(n−E) =

n−µP . Combining (3.36),(3.37) and (3.39) yields∣∣∣∣∣ nµP(2π)d

∫
Oξ0

φ̂(ξ)ne−ix·ξ dξ − e−ix·ξ0φ̂(ξ0)nnµPHn
P (x− nα)

∣∣∣∣∣
≤

∣∣∣∣∫
K

(
e−P (ξ)+nΥ(n−Eξ) − e−P (ξ)

)
e−iy(n,x) dξ

∣∣∣∣
+

∫
Rd\K

∣∣e−P (ξ)e−iy(n,x)·ξ∣∣ dξ + nµP
∣∣∣∣∫
O\n−E(K)

enΓ(ξ)e−ix·ξ dξ

∣∣∣∣
≤

∫
K

∣∣∣e−P (ξ)+nΥ(n−Eξ) − e−P (ξ)
∣∣∣ dξ

+

∫
Rd\K

e−R(ξ) dξ + nµP
∫
O\n−E(K)

∣∣eΓ(ξ)
∣∣n dξ

=: I1(n) + I2(n) + I3(n) (3.40)

for all n ≥ N1 and x ∈ Rd.

It is clear that I2(n) < ε/3 for all n ≥ N1 by virtue of (3.38). Now, in view of

(3.35) and (3.38),

I3(n) ≤ nµP
∫
O\n−E(K)

e−nR(ξ)/2 dξ ≤
∫
Rd\K

e−R(ξ)/2 dξ < ε/3

for all n ≥ N1; here we have used that facts that E ∈ Exp(P ) ⊆ Exp(R),

det(n−E) = n−µP , and

nE(O \ n−E(K)) = nE(O) \K ⊆ Rd \K.
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To estimate I1, we recall that n−E(K) ⊆ O for all n ≥ N1 and so the estimate

(3.35) ensures that the integrand of I1(n) is bounded by 2 for all n ≥ N1. In

view of Lemma 3.3.2, an appeal to the Bounded Convergence Theorem gives a

natural number N ≥ N1 for which I1(n) < ε/3 for all n ≥ N . The desired result

follows by combining our estimates for I1, I2 and I3 with (3.40).

The next lemma follows directly from Lemma 3.4.2 by upon recalling that

nµPHn
P = HP ◦ Ln−E∗ ∈ S(Rd) for all n ∈ N+.

Lemma 3.4.3. Let φ, ξ0 and P be as in the statement of Lemma 3.4.2. Under the same

hypotheses of the lemma, there exists an open neighborhood Uξ0 of ξ0 such that, for any

open sub-neighborhood Oξ0 ⊆ Uξ0 containing ξ0, there exists C > 0 and a natural

number N such that ∣∣∣∣∣ 1

(2π)d

∫
Oξ0

φ̂(ξ)ne−ix·ξ dξ

∣∣∣∣∣ ≤ C

nµP

for all n ≥ N and x ∈ Rd.

Proof of Theorem 3.1.5. Under the hypotheses of the theorem, Proposition 3.4.1

ensures that Ω(φ) is finite. In line with the paragraph preceding the statement

of the theorem, we label

Ω(φ) = {ξ1, ξ2, . . . , ξA, ξA+1, . . . , ξB} ⊆ Td

where µPξq = µφ for q = 1, 2, . . . A and µPξq > µφ for q = A+ 1, A+ 2, . . . B. Also,

we assume all additional notation from the paragraph preceding the statement

of the theorem and take Tdφ as in Remark 7.

Let {Oξq}q=1,2,...,B be a collection of disjoint open subsets of Tdφ for which the

conclusions of Lemmas 3.4.2 and 3.4.3 hold for q = 1, 2, . . . A and q = A+ 1, A+
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2, . . . B respectively. Set

K = Tdφ \
( B⋃
q=1

Oξq
)

and observe that

s := sup
ξ∈K
|φ̂(ξ)| < 1

Now, in view of the Fourier inversion formula,

φ(n)(x) =
1

(2π)d

∫
Tdφ

φ̂(ξ)ne−ix·ξ dξ

=
B∑
q=1

1

(2π)d

∫
Oξq

φ̂(ξ)ne−ix·ξ dξ +
1

(2π)d

∫
K

φ̂(ξ)ne−ix·ξ dξ (3.41)

for all x ∈ Zd and n ∈ N+. Appealing to Lemma 3.4.2 ensures that for q =

1, 2, . . . , A,

1

(2π)d

∫
Oξq

φ̂(ξ)ne−ix·ξ dξ = e−ix·ξq φ̂(ξq)
nHn

Pq(x− nαq) + o(n−µφ) (3.42)

uniformly for x ∈ Rd. Now, for each q = A + 1, A + 2, . . . , B, Lemma 3.4.3

guarantees that

1

(2π)d

∫
Oξq

φ̂(ξ)ne−ix·ξ dξ = O(n
−µPξq ) = o(n−µφ) (3.43)

uniformly for x ∈ Rd because µPξq > µφ. Finally, we note that

1

(2π)d

∫
K

φ̂(ξ)ne−ix·ξ dξ = o(n−µφ) (3.44)

uniformly for x ∈ Rd because sn = o(n−µφ). The desired result is obtained by

combining (3.41), (3.42),(3.43) and (3.44).

As an application to Theorem 3.1.5, we are now in a position to prove `∞(Zd) es-

timates for φ(n) and thus give a partial answer to Question (i). We first treat a ba-

sic lemma whose proof makes use of the famous theorem of R. Dedekind (gen-

eralized by E. Artin) concerning the linear independence of characters. Interest-

ingly enough, the statement of the lemma below mirrors a result of Dedekind
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appearing in the Volesungen [32] where the characters e−ix·ξ are replaced by

field isomorphisms, c.f., [22, p. 6].

Lemma 3.4.4. For any distinct ξ1, ξ2, . . . , ξA ∈ Td, there exists x1, x2, . . . xA ∈ Zd

such that

V =



e−ix1·ξ1 e−ix1·ξ2 · · · e−ix1·ξA

e−ix2·ξ1 e−ix2·ξ2 · · · e−ix2·ξA

...
... . . . ...

e−ixA·ξ1 e−ixA·ξ2 · · · e−ixA·ξA


is invertible.

Proof. The statement is obviously true when A = 1 and so we use induction on

A. Let ξ1, ξ2, . . . , ξA+1 ∈ Td be distinct and take x1, x2, . . . , xA ∈ Zd as guaranteed

by the inductive hypotheses. For any ζ1, ζ2, . . . , ζA ∈ Td, we define

F (ζ1, ζ2, . . . , ζA) = det



e−ix1·ζ1 e−ix1·ζ2 · · · e−ix1·ζA

e−ix2·ζ1 e−ix2·ζ2 · · · e−ix2·ζA

...
... . . . ...

e−ixA·ζ1 e−ixA·ζ2 · · · e−ixA·ζA


.

In this notation, our inductive hypothesis is the condition F (ξ1, ξ1, . . . , ξA) 6= 0.

Let G : Zd → C be defined by

G(x) = det



e−ix1·ξ1 e−ix1·ξ2 · · · e−ix1·ξA e−ix1·ξA+1

e−ix2·ξ1 e−ix2·ξ2 · · · e−ix2·ξA e−ix1·ξA+1

...
... . . . ...

...

e−ixA·ξ1 e−ixA·ξ2 · · · e−ixA·ξA e−ixA·ξA+1

e−ix·ξ1 e−ix·ξ2 · · · e−ix·ξA e−ix·ξA+1


for x ∈ Zd. Our job is to conclude that G(xA+1) 6= 0 for some xA+1 ∈ Zd. We

assume to reach a contradiction that this is not the case, that is, for all x ∈ Zd,
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G(x) = 0. Upon expanding by cofactors, we have

G(x) =
A+1∑
k=1

(−1)A+1+kF (ξ1, ξ2, . . . , ξ̂k, . . . , ξA+1)e−ix·ξk = 0

for all x ∈ Zd; here ξ̂k means that we have omitted ξk from the list ξ1, ξ2, . . . , ξA+1.

Given that ξ1, ξ2, . . . , ξA+1 are all distinct, the characters x 7→ e−ix·ξk for k =

1, 2, . . . , A+1 are distinct and so by Dedekind’s independence theorem it follows

that F (ξ1, ξ2, . . . , ξ̂k, . . . , ξA+1) = 0 for all k = 1, 2, . . . , A + 1. This however con-

tradicts our inductive hypotheses for F (ξ1, ξ2, . . . , ξA, ξ̂A+1) = F (ξ1, ξ2, . . . , ξA) 6=

0.

Proof of Theorem 3.1.4. By virtue of Theorem 3.1.5 and (3.9), we have

nµφφ(n)(x) =
A∑
k=1

e−ix·ξk φ̂(ξk)
nHPk

(
n−E

∗
k (x− nαk)

)
+ o(1) (3.45)

uniformly for x ∈ Zd where Ek ∈ Exp(Pk) for k = 1, 2, . . . A. Upon recalling

that the attractors HPk ∈ S(Rd), the upper estimate of (3.7) follows directly from

(3.45) and the triangle inequality. Showing the lower estimate of (3.7) is trickier,

for we must ensure that the sum in (3.45) does not collapse at all x ∈ Zd – this is

precisely where Lemma 3.4.4 comes in.

For the distinct collection ξ1, ξ2, . . . , ξA ∈ Td, let x1, x2, . . . , xd ∈ Zd be as guar-

anteed by Lemma 3.4.4 and, by focusing on x’s near nα1, we consider the A×A

systems

f(n, xj) =
A∑
k=1

exp (−i(xj + bnα1c) · ξk) φ̂(ξk)
nHPk

(
n−E

∗
k(xj + bnα1c − nαk)

)
(3.46)

and

gj(n) =
∑
k=1

exp(−ixj · ξk)hk(n) (3.47)
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for j = 1, 2, . . . , A, where

hk(n) =


e−ibnα1c·ξk φ̂(ξk)

nHPk(0) if α1 = αk

0 otherwise

for k = 1, 2, . . . , A. By virtue of Lemma A.1.3 and Propositions 3.2.2 and 3.2.3, it

follows that

lim
n→∞

|n−E∗k(xj + bnα1c − nαk)| =


0 if αk = α1

∞ otherwise.

for all j, k = 1, 2, . . . , A. Again using the fact that each HPk ∈ S(Rd), the above

limit ensures that, for all ε > 0, there exists Nε ∈ N+ for which

|f(n, xj)− gj(n)| < ε (3.48)

for all j = 1, 2, . . . A and n ≥ Nε. The system (3.47) can be rewritten in the form

g1(n)

g2(n)

...

gA(n)


=



e−ix1·ξ1 e−ix1·ξ2 · · · e−ix1·ξA

e−ix2·ξ1 e−ix2·ξ2 · · · e−ix2·ξA

...
... . . . ...

e−ixA·ξ1 e−ixA·ξ2 · · · e−ixA·ξA





h1(n)

h2(n)

...

hA(n)


or equivalently

g(n) = V h(n) (3.49)

for n ∈ N+ where V is that of Lemma 3.4.4. Taking CA to be equipped with

the maximum norm, the matrix V determines a linear operator LV : CA → CA

which is bounded below by virtue of the lemma. So, in view of (3.50), there is a

constant δ > 0 for which

max
j=1,2,...,A

|gj(n)| ≥ δ max
j=1,2,...,A

|hj(n)| ≥ δ|HP1(0)| =: 3C > 0 (3.50)
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for all n ∈ N+. Upon combining (3.45), (3.48) and (3.50), we obtain N ∈ N+ for

which

nµφ‖φ(n)‖∞ ≥ max
j=1,2,...A

|nµφφ(n)(xj + bnα1c)| ≥ C

for all n ≥ N . The theorem now follows by, if necessary, adjusting the constant

C for n < N .

3.5 Pointwise bounds for φ(n)

Throughout this section, we assume that φ : Zd → C is finitely supported. In

this case, φ̂(z) is a trigonometric polynomial on Cd. As usual, we assume that

supξ∈Td |φ̂(ξ)| = supξ∈Rd |φ̂(ξ + 0i)| = 1.

3.5.1 Generalized exponential bounds

In this subsection, we prove Theorem 3.1.6 and present a variety of results con-

cerning discrete space and time differences of convolution powers. The estimate

of the following lemma, Lemma 3.5.1, is crucial to our arguments to follow; its

analogue when d = 1 can be found the proof of Theorem 3.1 of [31]. We note

that in [31], the analogue of Lemma 3.5.1 is used to deduce Gevrey-type esti-

mates from which the desired estimates follow in one dimension. Such argu-

ments are troublesome when the decay is anisotropic for d > 1. By contrast, our

off-diagonal estimates are found by applying Lemma 3.5.1 following a complex

change-of-variables.

Lemma 3.5.1. Let φ : Zd → C be finitely supported and such that supξ∈Td |φ̂(ξ)| = 1.

Suppose that ξ0 ∈ Ω(φ) is of positive homogeneous type for φ̂ with associated α ∈ Rd
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and positive homogeneous polynomial P . Define fξ0 : Cd → C by

fξ0(z) = φ̂(ξ0)−1e−α·(z+ξ0)φ̂(z + ξ0) (3.51)

for z ∈ Cd. For any compact set K ⊆ Rd containing an open neighborhood of 0 for

which |φ(ξ + ξ0)| < 1 for all non-zero ξ ∈ K, there exist ε,M > 0 for which

|fξ0(z)| ≤ exp(−εR(ξ) +MR(ν))

for all z = ξ − iν such that ξ ∈ K and ν ∈ Rd.

Proof. Write f = fξ0 and denote by πr the canonical projection from Cd onto Rd.

We first estimate f(z) on a neighborhood of 0 in Cd.

Our assumption that ξ0 ∈ Ω(φ) ensures that the expansion (3.5) is valid on

an open set U ∈ Cd such that 0 ∈ πr(U) ⊆ K. By virtue of Proposition A.2.7, we

can further restrict U to ensure that, for some ε′ > 0 and M > 0,

|f(z)| ≤ e−ε
′R(ξ)+MR(ν) (3.52)

for z = ξ − iν ∈ U .

We now estimate f(z) on a cylinder of K in Cd. Since |φ̂(ξ)| < 1 for all non-

zero ξ ∈ K, the compactness K \ πr(U) ensures that, for some 0 < ε ≤ ε′, the

continuous function h : Cd → C, defined by

h(z) = eεR(ξ)f(z) = exp(−ε(R ◦ πr)(z))f(z)

for z = ξ − iν ∈ Cd, is such that |h(ξ)| < 1 for all ξ ∈ K \ πr(U). Because h is

continuous, there exists δ > 0 for which |h(z)| ≤ 1 for all z = ξ − iν such that

ξ ∈ K \ πr(U) and |ν| ≤ δ. Consequently,

|h(z)| ≤ e−εR(ξ) ≤ e−εR(ξ)+MR(ν) (3.53)
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for all z = ξ − iν such that ξ ∈ K \ πr(U) and |ν| ≤ δ. Upon possibly further

restricting δ > 0, a combination of the estimates (3.52) and (3.53) ensures that

|f(z)| ≤ e−εR(ξ)+MR(ν) (3.54)

for all z = ξ − iν ∈ C such that ξ ∈ K and |ν| ≤ δ.

Finally, we estimate f(z) = f(ξ − iν) for unbounded ν. Because φ̂ is a

trigonometric polynomial, f(z) has exponential growth on the order of |ν| for

z = ξ − iν ∈ Cd when ξ is restricted to K. Therefore,

|f(z)| ≤ e−εR(ξ)+|ν|+C (3.55)

for all z = ξ − iν such that ξ ∈ K and ν ∈ Rd. Because |ν| + C is dominated

by R(ν) by virtue of Corollary A.2.6, the lemma follows immediately from the

estimates (3.54) and (3.55).

Lemma 3.5.2. Let φ : Zd → C be finitely supported and such that supξ∈Td |φ̂(ξ)| = 1.

Assume additionally that Ω(φ) = {ξ0} and ξ0 is of positive homogeneous type for φ̂

with corresponding α ∈ Rd and positive homogeneous polynomial P and let Tdφ be as

in Remark 7. Define g(·) : N+ × Cd → C by gl(z) = 1− fξ0(z)l for l ∈ N+ and z ∈ Cd

where fξ0 is given by (3.51). There exist positive constants C and M for which

|gl(z)| ≤ lC(R(ν) +R(ξ))elMR(ν)

for all l ∈ N+ and z = ξ − iν such that ξ ∈ Tdφ and ν ∈ Rd.

Proof. By making similar arguments to those in the proof of the previous lemma,

we obtain positive constants C and M for which |1 − fξ0(z)| ≤ C(R(ξ) +

R(ν))eMR(ν) for all z = ξ + iν such that ξ ∈ Tdφ and ν ∈ Rd. The desired estimate

now follows from Lemma 3.5.1 (whereK = T dφ ) by writing gl = (1−fξ0)
∑l−1

k=0 f
k
ξ0

and making use of the triangle inequality.
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We are now in a position to prove Theorem 3.1.6.

Proof of Theorem 3.1.6. In view of the hypotheses, there exist α ∈ Rd and a pos-

itive homogeneous polynomial P such that each ξ ∈ Ω(φ) is of positive ho-

mogeneous type for φ̂ with corresponding αξ = α and Pξ = P . We write

Ω(φ) = {ξ1, ξ2, . . . , ξQ} in view of Proposition 3.4.1 and take Tdφ as in Remark

7. Because Ω(φ) is finite and lives on the interior of Tdφ, there exits a collection

of mutually disjoint and relatively compact sets {Kq}Qq=1 such that Tdφ = ∪Qq=1Kq

and, for each q = 1, 2, . . . , Q, Kq contains an open neighborhood of ξq. We now

establish two important uniform estimates. First, upon noting that |φ̂(ξ+ξq)| < 1

for all ξ ∈ Kq − ξq for each q = 1, 2, . . . , Q, by virtue of Lemma 3.5.1 there are

positive constants M and ε such that, for each q = 1, 2, . . . , Q,

|fξq(ξ − iν)| ≤ exp(−εR(ξ)−MR(ν)) (3.56)

for all ξ ∈ Kq − ξq and ν ∈ Rd. Also, by a similar argument to those given in the

proof of Lemma 3.4.2, we observe that

nµP
∫
Kq−ξq

e−εnR(ξ) dξ = nµP
∫
Kq−ξq

e−εR(n−Eξ) dξ =

∫
nE(Kq−ξq)

e−εR(ξ) dξ

≤
∫
Rd
e−εR(ξ) dξ =: C <∞ (3.57)

for all n ∈ N+ and q = 1, 2, . . . , Q.

Now, let ν ∈ Rd be arbitrary but fixed. Because φ̂ is a trigonometric polyno-

mial (and so periodic on Cd), it follows that

φ(n)(x) =
1

(2π)d

∫
Tdφ

e−ix·(ξ−iν)φ̂(ξ − iν)n dξ

=
1

(2π)d

Q∑
q=1

∫
Kq

e−ix·(ξ−iν)φ̂(ξ − iν)n dξ (3.58)

109



for all x ∈ Zd and n ∈ N+. Our aim is to uniformly estimate the integrals over

Kq. To this end, for each q = 1, 2, · · · , Q, we observe that∫
Kq

e−ix·(ξ−iν)φ̂(ξ − iν)n dξ

=

∫
Kq−ξq

e−ix·(ξq+ξ−iν)φ̂(ξq)
ne−inα·(ξ0+ξ−iν)fξq(ξ − iν)n dξ

= e−nyn(x)·ν
∫
Kq−ξq

(
e−iyn(x)·(ξq+ξ)φ̂(ξq)

)n
fξq(ξ − iν)n dξ

for all x ∈ Zd and n ∈ N+, where yn(x) := (x − nα)/n. In view of the estimates

(3.56) and (3.57), we have∣∣∣∣∣
∫
Kq

e−ix·(ξ−iν)φ̂(ξ − iν) dξ

∣∣∣∣∣ ≤ e−nyn(x)·ν
∫
Kq−ξq

|fξq(ξ − iν)|n dξ

≤ C

nµφ
exp(−n(yn(x) · ν −MR(ν))) (3.59)

for all x ∈ Zd, n ∈ N+ and q = 1, 2, . . . , Q where the constants M and C are

independent of ν. Upon setting C ′ = (2π)d/Q and combining (3.58) and (3.59),

we obtain the estimate

|φ(n)(x)| ≤ C ′

nµφ
exp(−n(yn(x) · ν −MR(ν)))

which holds uniformly for x ∈ Zd and n ∈ N+ and ν ∈ Rd. Consequently,

|φ(n)(x)| ≤ inf
ν∈Rd

C ′

nµφ
exp(−n(yn(x) · ν −MR(ν)))

≤ C ′

nµφ
exp

(
−n sup

ν
(yn(x) · ν −MR(ν))

)
≤ C ′

nµφ
exp

(
−n(MR)#(yn(x))

)
for all x ∈ Zd and n ∈ N+. The desired result follows upon noting that (MR)# �

R# in view of Corollary A.3.4.

Remark 8. The essential hypothesis of Theorem 3.1.6 (essential for a global exponential

bound) is that each ξ ∈ Ω(φ) has the same drift α; this can be seen by looking at
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the example of Subsection 3.7.2 wherein the convolution powers φ(n) exhibit two “drift

packets” which drift away from one another. The hypothesis that all of the corresponding

positive homogeneous polynomials are the same can be weakened to include, at least,

the condition that Rξ = RePξ � R for all ξ ∈ Ω(φ), where R is some fixed real

valued positive homogeneous polynomial. In any case, the theorem’s hypotheses are

seen to be natural when φ has some form of “periodicity” as can be seen in the example

of Subsection 3.7.3. Also, the hypotheses are satisfied for all finitely supported and

genuinely d-dimensional probability distributions on Zd, see Subsection 3.7.6.

For the remainder of this subsection, we restrict our attention further to finitely

supported functions φ : Zd → C which satisfy supξ |φ̂| = 1 and where this supre-

mum is attained at only one point in Td, i.e., Ω(φ) = {ξ0}. In this setting, we

obtain global estimates for discrete space and time derivatives of convolution

powers. Our first result concerns only discrete spatial derivatives of φ(n) and

is a useful complement to Theorem 3.1.6. For related results, see Theorem 3.1

of [31] and Theorem 8.2 of [86], the latter being due to O. B. Widlund [95, 96].

For w ∈ Zd and ψ : Zd → C, define Dwψ : Zd → C by

Dwψ(x) = ψ(x+ w)− ψ(x)

for x ∈ Zd.

Theorem 3.5.3. Let φ : Zd → C be finitely supported and such that supξ∈Td |φ̂(ξ)| = 1.

Additionally assume that Ω(φ) = {ξ0} and that ξ0 is of positive homogeneous type for

φ̂ with corresponding α = αξ0 ∈ Rd and positive homogeneous polynomial P = Pξ0 .

Also let µφ be defined by (3.6) (or equivalently (3.4)), let R# be the Legendre-Fenchel

transform of R = ReP and take E ∈ Exp(P ). There exists M > 0 such that, for any
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B > 0 and m ∈ N+, there exists Cm > 0 such that, for any w1, w2, . . . , wm ∈ Zd,∣∣∣Dw1Dw2 · · ·Dwm

(
φ̂(ξ0)−neix·ξ0φ(n)(x)

)∣∣∣
≤ Cm

nµφ

(
m∏
j=1

|n−E∗wj|

)
exp

(
−nMR#

(
x− nα
n

))
(3.60)

for all x ∈ Zd and n ∈ N+ such that |n−E∗wj| ≤ B for j = 1, 2, . . . ,m.

We remark that all constants in the statement of the theorem are independent

of E ∈ Exp(P ) in view of Proposition 3.2.3. The appearance of the prefactor

φ̂(ξ0)−neix·ξ0 in the left hand side of the estimate is used to remove the highly

oscillatory behavior which appears, for instance, in the example outlined in the

introduction. That which remains of φ(n) is well-behaved when this oscillatory

prefactor is removed and this is loosely what the theorem asserts. Let us further

note that, in contrast to Theorem 3.1.6, Theorem 3.5.3 does not apply to the

example illustrated in Subsection 3.7.3 (where Ω(φ) consists of two points) and,

in fact, the latter theorem’s conclusion does not hold for this φ. See Subsection

3.7.3 for further discussion.

Lemma 3.5.4. Given A > 0, ε > 0 and m ∈ N+, there exists C > 0 such that the

function

Qw1,w2,...,wm(z) =
m∏
i=1

(eiwi·z − 1)

satisfies

|Qw1,w2,...,wm(ξ − iν)| ≤ C

(
m∏
i=1

|n−E∗wi|

)
en(εR(ξ)+R(v)) (3.61)

for all z = ξ − iν ∈ Cd, n ∈ N+ and w1, w2, . . . , wm ∈ Zd for which |n−E∗wi| ≤ A for

all i = 1, 2, . . . ,m.
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Proof. We observe that, for M = m(B + 1),

|Qw1,w2,...,wm(z)| ≤
m∏
j=1

|wj · z|e|wj ·z|

≤
m∏
j=1

|n−E∗wj||nEz|eB|n
Ez| ≤

(
m∏
j=1

|n−E∗wj|

)
eM |n

Ez| (3.62)

for all z ∈ Cd, n ∈ N+ and w1, w2, . . . , wm ∈ Zd for which |n−E∗wj| ≤ B for all

j = 1, 2, . . . ,m. Given ε > 0, an appeal to Proposition A.2.5 ensures that, for

some M ′ > 0,

M |nEz| ≤M ′ + εR(nEξ) +R(nEν) = M ′ + n(εR(ξ) +R(ν)) (3.63)

for all z = ξ − iν ∈ Cd and n ∈ N+. The desired estimate is obtained by combin-

ing (3.62) and (3.63).

Proof of Theorem 3.5.3. By replacing φ(x) by φ̂(ξ0)−1eix·ξ0φ(x), we assume without

loss of generality that ξ0 = 0 and φ̂(ξ0) = 1. For any x,w1, w2, . . . , wm ∈ Zd and

ν ∈ Rd, we invoke the periodicity of φ̂ to see that

Dw1Dw2 · · ·Dwmφ
(n)(x)

= Dw1Dw2 · · ·Dwm

1

(2π)d

∫
Td
e−ix·(ξ−iν)(φ̂(ξ − iν))n dξ

=
e−nyn(x)·ν

(2π)d

∫
Td
e−inyn(x)·ξQw1,w2,...,wm(ξ − iν)f(ξ − iν)n dξ, (3.64)

where yn(x) = (x− nα)/n and f(z) = fξ0(z) = e−iα·zφ̂(z) is that of Lemma 3.5.1.

An appeal to the lemma shows that, for some ε > 0 and M ≥ 1,

|f(ξ − iν)| ≤ e−2εR(ξ)+(M−1)R(ν) (3.65)

for all ξ ∈ Td and ν ∈ Rd; note that these constants are independent of m. By

combining the estimates (3.57), (3.61),(3.64) and (3.65) we obtain, for ν ∈ Rd and
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w1, w2, . . . , wm ∈ Zd,

|Dw1Dw2 · · ·Dwmφ
(n)(x)|

≤ e−nyn(x)·ν
∫
Td
|Qw1,w2,...,wm(ξ − iν)||f(ξ − iν)|n dξ

≤ C ′m

(
m∏
j=1

|n−E∗wj|

)
exp(−nyn(x) · ν + nMR(ν))

∫
Td
e−nεR(ξ) dξ

≤ CC ′m
nµφ

(
m∏
j=1

|n−E∗wj|

)
exp(−n(yn(x) · ν −MR(ν)))

for all x ∈ Zd and n ∈ N+ for which |n−E∗wj| ≤ B for all j = 1, 2, . . . ,m. As

all constants are independent of ν, the desired estimate is obtained by repeating

the same line of reasoning of the proof of Theorem 3.1.6.

For a collection v = {v1, . . . , vd} ∈ Zd and a multi-index β, consider the discrete

spatial operator

Dβ
v = (Dv1)β1(Dv2)β2 · · · (Dvd)

βd . (3.66)

Our next result, a corollary to Theorem 3.5.3, gives estimates for Dβ
vφ

(n) in the

case that n−E∗ acts diagonally on vj for j = 1, 2, . . . , d and, in this case, the term

involving w’s in (3.60) simplifies considerably. We first give a definition.

Definition 3.5.5. Let P : Rd → C be a positive homogeneous polynomial and let

A ∈ Gld(R) and m = (m1,m2, . . . ,md) ∈ Nd
+ be as given by Proposition 3.2.2. An

ordered collection v = {v1, v2, . . . , vd} ⊆ Zd is said to be P -fitted if A∗vj ∈ span(ej)

for j = 1, 2, . . . , d. In this case we say that m is the weight of v.

Let us make a few remarks about the above definition. First, for a P -fitted

collection v = {v1, v2, . . . , vd} of weight m, by virtue of Proposition 3.2.2,

t−E
∗
vj = t−1/(2mj)vj for all t > 0 and j = 1, 2, . . . d, where E = ADA−1 ∈ Exp(P ).

Our definition does not require the v′js to be non-zero and, in fact, it is possible
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that the only P -fitted collection to a given positive homogeneous polynomial P

is the zero collection. We note however that every positive homogeneous poly-

nomial P seen in this chapter admits a P -fitted collection v which is also a basis

of Rd and, in fact, whenever P is semi-elliptic, every P -fitted collection is of the

form v = {x1e1, x
2e2, . . . , x

ded}where x1, x2, . . . , xd ∈ Z.

Corollary 3.5.6. Let φ : Zd → C be finitely supported and such that supξ∈Td |φ̂(ξ)| =

1. Additionally assume that Ω(φ) = {ξ0} and that ξ0 is of positive homogeneous type

for φ̂with corresponding α = αξ0 ∈ Rd and positive homogeneous polynomial P = Pξ0 .

Define µφ by (3.6) (or equivalently (3.4)), let m (and A) be as in Proposition 3.2.2 and

denoted by R#, the Legendre-Fenchel transform of R = ReP . There exists M > 0 such

that, for any B > 0 and multi-index β, there is a positive constant Cβ such that, for

any P -fitted collection v = {v1, v2, . . . , vd} of weight m,∣∣∣Dβ
v

(
φ̂(ξ0)−neix·ξ0φ(n)(x)

)∣∣∣ ≤ Cβ
∏d

j=1 |vj|βj

nµφ+|β:2m| exp

(
−nMR#

(
x− nα
n

))
(3.67)

for all x ∈ Zd and n ∈ N+ such that |vj| ≤ Bn1/(2mj) for j = 1, 2, . . . , d.

Proof. As we previously remarked,∣∣n−E∗vj∣∣ = |aj|
∣∣n−E∗(A∗)−1ej

∣∣ = |aj|
∣∣(A∗)−1n−Dej

∣∣ = n−1/(2mj)|vk|

for j = 1, 2, . . . , d and n ∈ N+, where D = diag ((2m1)−1, (2m2)−1, . . . , (2md)
−1)

and E = ADA−1. Considering the operator Dβ
v , the term involving w’s appear-

ing in the right hand side of (3.60) is, in our case,

(∣∣n−E∗v1

∣∣)β1
(∣∣n−E∗v2

∣∣)β2 · · ·
(∣∣n−E∗vd∣∣)βd =

d∏
j=1

|vj|βjn−βj/(2mj)

= n−|β:2m|
d∏
j=1

|vj|βj (3.68)

for all n ∈ N+. The desired estimate now follows by inserting (3.68) into (3.60).
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Our next theorem concerns discrete time estimates for convolution powers.

Given φ : Zd → C which satisfies the hypotheses of Theorem 3.5.3 with cor-

responding α ∈ Rd. For any l ∈ N+, the theorem provides pointwise estimates

for φ(n) − φ(l+n) and analogous higher-order differences. Because, in general,

the peak of the convolution powers drifts according to α, to compare φ(n) and

φ(l+n), one needs to account for this drift by re-centering φ(l+n) but, in doing this,

a possible complication arises: If lα 6∈ Zd, one cannot re-center φ(l+n) in a way

that keeps it on the lattice. For this reason, the theorem requires lα ∈ Zd and in

this case
(
δ−lα ∗ φ(l)

)
∗ φ(n)(x) = φ(l+n)(x + lα) which can then be compared to

φ(n)(x). Assuming that φ satisfies the hypotheses of Theorem 3.5.3 (with ξ0 ∈ Td

and α ∈ Zd), for any l ∈ N+ such that lα ∈ Zd, we define the discrete time

difference operator ∂l = ∂l(φ, ξ0, α) by

∂lψ =
(
δ − φ̂(ξ0)−l

(
δ−lα ∗ φ(l)

))
∗ ψ = ψ − φ̂(ξ0)−l

(
δ−lα ∗ φ(l)

)
∗ ψ (3.69)

for ψ ∈ `1(Zd).

Theorem 3.5.7. Let φ : Zd → C be finitely supported and such that supξ∈Td |φ̂(ξ)| = 1.

Additionally assume that Ω(φ) = {ξ0} and that ξ0 is of positive homogeneous type

for φ̂ with corresponding α = αξ0 ∈ Rd and positive homogeneous polynomial P =

Pξ0 . Define µφ by (3.6) (or equivalently (3.4)) and denote by R#, the Legendre-Fenchel

transform of R = ReP . There are positive constants C and M such that, for any

l1, l2, . . . , lk ∈ N+ such that lqα ∈ Zd for q = 1, 2, . . . , k (assume k ≥ 1),

|∂l1∂l2 · · · ∂lkφ(n)(x)|

≤
Ckk!

∏k
q=1 lq

nµφ+k
exp

(
−(n+ l1 + l2 + · · ·+ lk)MR#

(
x− nα

n+ l1 + l2 + · · ·+ lk

))
(3.70)

for all x ∈ Zd and n ∈ N+.
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Proof. As in the proofs of Theorems 3.1.6 and 3.5.3, we fix ν ∈ Rd and invoke the

periodicity of φ̂ to see that

∂l1∂l2 · · · ∂lkφ(n)(x)

=
1

(2π)d

∫
ξ∈Tdφ

k∏
q=1

(
1−

(
φ̂(ξ0)−1e−α·(ξ0+z)φ̂(ξ0 + z)

)lq)
φ̂(ξ0 + z)ne−ix·(ξ0+z) dξ

=
1

(2π)d

∫
ξ∈Tdφ

k∏
q=1

glq(z)φ̂(ξ0)nf(z)ne−i(x−nα)·(ξ0+z) dξ

for all x ∈ Zd and n ∈ N+, where z = ξ − iν; here, f = fξ0 is defined by (3.51)

and gl1gl2 , . . . , glk are those of Lemma 3.5.2. Put sk = l1 + l2 + · · · + lk, take ε,M

and C as guaranteed by Lemmas 3.5.1 and 3.5.2 and set C1 = (2C/ε). Observe

that

∣∣∂l1∂l2 · · · ∂lkφ(n)(x)
∣∣

≤
Ck

1k!
∏k

q=1 lq

nk
e−(x−nα)·ν

×
∫
ξ∈Tdφ

1

k!

(nε
2

(R(ν) +R(ξ))
)k
eskMR(ν) exp(−nεR(ξ) + nMR(ν)) dξ

≤
Ck

1k!
∏k

q=1 lq

nk
e−(x−nα)·ν

×
∫
ξ∈Tdφ

exp(nε(R(ξ) +R(ν))/2) exp((n+ sk)MR(ν)− nεR(ξ)) dξ

for x ∈ Zd and n ∈ N+. Upon setting yn,sk(x) = (x− nα)/(n + sk) and replacing

M by M + ε/2, we can write

∣∣∂l1∂l2 · · · ∂lkφ(n)(x)
∣∣ ≤ Ck

1k!
∏k

q=1 lq

nk
exp(−(n+ sk) (yn,sk(x) · ν −MR(ν)))

×
∫
ξ∈Tdφ

exp(−nεR(ξ)/2) dξ

Now, as we observed in the proof of Theorem 3.1.6, the integral over ξ is

bounded above by C2n
−µφ ≤ Ck

2n
−µφ for some constant C2 ≥ 1 and so we obtain

117



the estimate

∣∣∂l1∂l2 · · · ∂lkφ(n)(x)
∣∣ ≤ (C1C2)kk!

∏k
q=1 lq

nµφ+k
exp(−(n+ sk) (yn,sk(x) · ν −MR(ν)))

for all x ∈ Zd and n ∈ N+. Once again, the desired result is obtained by infimiz-

ing over ν ∈ Rd.

Remark 9. If one allows the constant M to depend on l1, l2, . . . , lk, then (3.70) can be

written

|∂l1∂l2 · · · ∂lkφ(n)(x)| ≤
Ckk!

∏k
q=1 lq

nµφ+k
exp

(
−nMl1,l2,...,lkR

#

(
x− nα
n

))
for all x ∈ Zd and n ∈ N+. Indeed, set sk = l1 + l2 + · · ·+ lk and observe that

−(n+ sk)R
#

(
x− nα
n+ sk

)
= −n sup

ν∈Rd

{(
x− nα
n

)
· ν − n+ sk

n
R(ν)

}
≤ −n sup

ν

{(
x− nα
n

)
· ν − (1 + ks)R(ν)

}
≤ −n

(
(1 + sk)R

)#
(
x− nα
n

)
≤ −nMskR

#

(
x− nα
n

)
where we have used Corollary A.3.4 to obtain Msk = Ml1,l2,...,lk .

In view the remark above, the following corollary is a special case of Theorem

3.5.7 when α = 0, φ̂(ξ0) = 1 and we only consider one discrete time derivative;

it applies to the example in the introduction and the examples of Subsections

3.7.1 and 3.7.5.

Corollary 3.5.8. Let φ : Zd → C be finitely supported and such that sup |φ̂(ξ)| = 1.

Suppose that Ω(φ) = {ξ0} is of positive homogeneous type for φ̂ with corresponding

α ∈ Rd and positive homogeneous polynomial P . Also let µφ be defined by (3.6) (or

equivalently (3.4)) and let R# be the Legendre-Fenchel transform of R = ReP . Addi-

tionally assume that α = 0 and φ̂(ξ0) = 1. There exists a positive constant C and, to
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each l ∈ N+, a positive constant Ml such that

∣∣φ(n)(x)− φ(l+n)(x)
∣∣ ≤ Cl

nµφ+1
exp(−nMlR

#(x/n))

for all x ∈ Zd and n ∈ N+.

Our final theorem of this subsection concerns both time and space differences

for convolution powers.

Theorem 3.5.9. Let φ : Zd → C be finitely supported and such that supξ∈Td |φ̂(ξ)| = 1.

Additionally assume that Ω(φ) = {ξ0} and that ξ0 is of positive homogeneous type

for φ̂ with corresponding α = αξ0 ∈ Rd and positive homogeneous polynomial P =

Pξ0 . Define µφ by (3.6) (or equivalently (3.4)), let m (and A) be as guaranteed by

Proposition 3.2.2 and denote by R#, the Legendre-Fenchel transform of R = ReP .

There are positive constantsM and C0 and, to eachB > 0 and multi-index β, a positive

constant Cβ such that, for any P -fitted collection v = {v1, v2, . . . , vd} of weight m and

l1, l2, . . . , lk ∈ N+ such that lqα ∈ Zd for q = 1, 2, . . . , k,∣∣∣∂l1∂l2 · · · ∂lkDβ
v (φ̂(ξ0)−1eix·ξ0φ(n)(x))

∣∣∣
≤
CβC

k
0k!
∏k

q=1 lq
∏d

j=1 |vj|βj

nµφ+|β:2m|+k

× exp

(
−(n+ l1 + l2 + · · ·+ lk)MR#

(
x− nα

n+ l1 + l2 + · · ·+ lk

))
for all x ∈ Zd and n ∈ N+ such that |vk| ≤ Bn1/(2mk) for k = 1, 2, . . . , d.

Proof. By replacing φ(x) by φ̂(ξ0)−1eix·ξ0φ(x) we can assume without loss of gen-

erality that ξ0 = 0 and φ̂(ξ0) = 1. Assuming the notation of Lemma 3.5.1 (with

f = fξ0) and Lemma 3.5.2, we fix ν ∈ Rd and observe that

∂l1∂l2 · · · ∂lkDβ
vφ

(n)(x) =
1

(2π)d

∫
Td

k∏
q=1

glq(z)Q(z)f(z)ne−i(n+sk)ysk,n(x)·z dξ
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for all x ∈ Zd and n ∈ N+, where z = ξ − iν, sk = l1 + l2 + · · · + lk, ysk,n(x) =

(x − nα)/(n + sk) and Q(z) =
∏d

j=1(eivj ·z − 1)βj is the subject of Lemma 3.5.4.

The desired estimate is now established by virtually repeating the arguments in

the proof of Theorems 3.5.3 and 3.5.7 while making use of Lemmas 3.5.1, 3.5.2

and 3.5.4 and noting, as was done in the proof of Corollary 3.5.6, that |n−E∗vj| =

n−1/(2mj)|vj| for j = 1, 2, . . . , d.

3.5.2 Sub-exponential bounds

In this subsection, we again consider a finitely supported function φ : Zd → C

such that supξ∈Td |φ̂(ξ)| = 1 and each ξ ∈ Ω(φ) is of positive homogeneous type

for φ̂. In contrast to the previous subsection, we do not require any relationship

between the drifts αξ and positive homogeneous polynomials Pξ for those ξ ∈

Ω(φ); a glimpse into Subsections 3.7.2 and 3.7.4 shows this situation to be a

natural one. As was noted in [31], the optimization procedure which yielded

the exponential-type estimates of the previous subsection is no longer of use.

Here we have the following result concerning sub-exponential estimates.

Theorem 3.5.10. Let φ : Zd → C be finitely supported and such that supξ∈Td |φ̂(ξ)| =

1. Suppose additionally each ξ ∈ Ω(φ) is of positive homogeneous type for φ̂ and hence

Ω(φ) = {ξ1, ξ2, . . . , ξQ}. Let αq ∈ Rd and positive homogeneous polynomial Pq be those

associated to ξq for q = 1, 2, . . . , Q. Moreover, for each q = 1, 2, . . . , Q, set µq = µPq

and let Eq ∈ Exp(Pq). Then, for any N ≥ 0, there is a positive constant CN such that

|φ(n)(x)| ≤ CN

Q∑
q=1

1

nµq
(1 + |n−E∗q (x− nαq)|)−N (3.71)

for all x ∈ Zd and n ∈ N+. The constant CN is independent of Eq ∈ Exp(Pq) for

q = 1, 2, . . . Q.
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Proof. In view of Proposition 3.4.1 and Remark 7, there exist relatively open

subsets B1,B2, . . . ,BQ of Tdφ satisfying the following properties:

1. For each q = 1, 2, . . . Q, Bq contains ξq.

2. B1 contains the boundary of Tdφ (as a subset of Rd).

3. The closed sets {B1,B2, . . . ,BQ} are mutually disjoint.

For q = 1, 2, . . . Q, define

Oq = Tdφ \

(⋃
r 6=q

Br

)
and observe that each Oq is an open neighborhood of ξq (in the relative topol-

ogy). Let {uq}Qq=1 be a smooth partition of unity subordinate to {Oq}Qq=1. By

construction, u1 ≡ 1 on the boundary of Tdφ and, for each q = 1, 2, . . . Q, uq is

compactly supported in Oq. We note that, for each q 6= 1, Supp(uq) is also a

compact subset of Rd because the boundary of Tdφ is contained in B1 (the relative

topology of Tdφ is only seen in Supp(u1)). Set

δ =
minq=1,2,...,Q dist(Supp(uq), ∂Oq)

2
√
d

> 0.

Observe that, for any x ∈ Zd and n ∈ N+,

φ(n)(x) =
1

(2π)d

∫
Tdφ

e−ix·ξφ̂(ξ)n dξ =

Q∑
q=1

1

(2π)d

∫
Oq
e−ix·ξφ̂(ξ)nuq(ξ) dξ

=

Q∑
q=1

eix·ξq φ̂(ξq)
n

nµq(2π)d

∫
Uq,n

e−iyn(x)·ξfq,n(ξ)uq,n(ξ) dξ =

Q∑
q=1

eix·ξq φ̂(ξq)
n

nµq(2π)d
Iq,n(x),(3.72)

where we have set yq,n(x) = n−E
∗
q (x− nαq), Uq,n = nEq(Oq)− ξq, defined

uq,n(ξ) = uq(n
−Eqξ),

and

fq,n(ξ) = (φ̂(ξq)
−1e−iα·n

−Eq ξφ̂(n−Eqξ + ξq))
n
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for ξ ∈ Uq,n, and put

Iq,n(x) =

∫
Uq,n

e−iyn(x)·ξfq,n(ξ)uq,n(ξ) dξ.

Of course, for each n and q, fn,q extends to an entire function on Cd; we make

no distinction between this function and fn,q. We will soon obtain the desired

estimates by integrating In,q by parts. For this purpose, it is useful to estimate

the derivatives of fq,n and this is done in the lemma below. The idea behind the

lemma’s proof is to look at fq,n on small neighborhoods in Cd of ζ ∈ Supp(uq,n) ⊆

Rd. On such complex neighborhoods, Lemma 3.5.1 gives tractable estimates

for fq,n to which Cauchy’s d-dimensional integral formula can be applied to

estimate Dαfq,n(ζ).

Lemma 3.5.11. For each q = 1, 2, . . . , Q, there exist positive constants Cq and εq such

that, for each multi-index β,

|Dβfq,n(ζ)| ≤ Cq
β!

δ|β|
exp(−εqRq(ζ))

for all n ∈ N+ and ζ ∈ Supp(uq,n).

Proof of Lemma 3.5.11. Our choice of the open cover {Oq} guarantees that |φ̂(η +

ξq)| < 1 for all non-zero η in the compact set Oq − ξq. An appeal to Lemma 3.5.1

gives ε′q,M ′
q > 0 such that

|fq,n(z)| ≤ exp
(
− ε′qRq

(
n−Eqη

)
+M ′

qRq

(
n−Eqν

))n
≤ exp(−ε′qRq(η) +M ′

qRq(ν)) (3.73)

for all n ∈ N+ and z = η − iν ∈ Cd for which η ∈ Uq,n.

We claim that there are constants εq,Mq > 0 for which

−ε′qRq(η) +M ′
qRq(ν) ≤ −εqRq(ζ) +Mq (3.74)
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for all z = η − iν ∈ Cd and ζ ∈ Rd such that |zi − ζi| = δ for i = 1, 2, . . . d.

Indeed, it is clear that Rq(ν) is bounded for all possible values of ν. An appeal

to Proposition A.2.4 ensures that, there are M ′
q, εq > 0 for which

−ε′qRq(η) = −ε′qRq(ζ + (η − ζ)) ≤ −εqRq(ζ) +M ′
q

for all η, ζ ∈ Rd provided |ηi − ζi| ≤ |zi − ζi| = δ for all i = 1, 2, . . . d. This proves

the claim.

By combining (3.73) and (3.74), we deduce that, for all n ∈ N+, ζ ∈ Rd, and

z = η − iν ∈ Cd for which η ∈ Uq,n,

|fq,n(z)| ≤ exp(−εqRq(ζ) +Mq) (3.75)

whenever |zi − ζi| = δ for all i = 1, 2, . . . d. Our aim is to combine Cauchy’s

d-dimensional integral formula,

Dβfq,n(ζ) =
β!

(2πi)d

∫
C1

∫
C2

· · ·
∫
Cd

fq,n(z) dz1dz2 . . . dzd
(z − ζ)(β1+1,β2+1,...,βd+1)

, (3.76)

with (3.75) to obtain our desired bound for ζ ∈ Supp(uq,n); here, Ci = {z :

|zi − ζi| = δ} for i = 1, 2, . . . , d. To do this, we must verify that z = η − iν is such

that η ∈ Uq,n whenever |zi − ζi| = δ for i = 1, 2, . . . , d. This is easy to see, for if

ζ ∈ Supp(uq,n) and z is such that |zi − ζi| = δ for i = 1, 2, . . . , d,

|z − ζ| =
√
dδ < dist(Supp(uq), ∂Oq) ≤ dist(Supp(un,q), ∂Un,q)

for all n ∈ N+ (the distance only increases with n because {tEq} is contracting).

Consequently, a combination of (3.75) and (3.76) shows that, for any multi-index

β,

|Dβfq,n(ζ)| ≤ β!

δ|β|
exp(−εqRq(ζ) +Mq)

for all n ∈ N+ and ζ ∈ Supp(uq,n) and thus the desired result holds. //
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We now finish the proof of Theorem 3.5.10. We assert that, for each q =

1, 2, . . . , Q and multi-index β, there exists Cβ > 0 such that

|yq,n(x)βIq,n(x)| ≤ Cβ (3.77)

for all x ∈ Zd and n ∈ N+. By inspecting (3.72), we see that the desired estimate,

(3.71), follow directly from (3.77) and so we prove (3.77).

We have, for any multi-index β,

(iyq,n(x))βIq,n(x) =

∫
Uq,n

Dβ
ξ (e−iyn(x)·ξ)fq,n(ξ)uq,n(ξ) dξ

= (−1)|β|
∫
Uq,n

e−iyn(x)·ξDβ(fq,n(ξ)uq,n(ξ)) dξ

for all n ∈ N+ and x ∈ Zd where we have integrated by parts and made ex-

plicit use of our partition of unity {uq} to ensure that all boundary terms van-

ished. To see the absence of boundary contributions, note that when q 6= 1,

uq,n and its derivatives are identically zero on a neighborhood of ∂Uq,n. When

q = 1, Supp(u1,n) ∩ ∂U1,n = ∂(nETd) and because u1,n ≡ 1 on a neighborhood

of ∂(nETdφ), the periodicity of fq,n and its derivatives (which are directly inher-

ited form the periodicity of φ̂(ξ)) ensure that the integral over the ∂U1,n is zero.

Consequently,

|yq,n(x))βIq,n(x)| ≤
∫

Supp(uq,n)

∣∣Dβ(fq,n(ξ)uq,n(ξ))
∣∣ dξ

for, q = 1, 2, . . . Q, n ∈ N+ and x ∈ Zd. Once it is observed that derivatives

of uq,n are well-behaved as n increases, the estimate (3.77) follows immediately

from Lemma 3.5.11. The fact that CN is independent of Eq ∈ Exp(Pq) for q =

1, 2, . . . , Q follows by a direct application of Proposition 3.2.3.
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3.6 Stability theory

We now turn to the stability of convolution operators. In this brief section,

we show that Theorem 3.1.7 is a consequence of of estimates of the preceding

section. Let φ : Zd → C be finitely supported and define the operator Aφ on

Lp = Lp(Rd) for 1 ≤ p ≤ ∞ by

(Aφf)(x) =
∑
y∈Zd

φ(y)f(x− y). (3.78)

Such operators arise in the theory of finite difference schemes for partial differ-

ential equations in which they produce extremely accurate numerical approx-

imations to solutions for initial value problems, e.g., (3.10). We encourage the

reader to see [75] and [89] for readable introductions to this theory; Thomée’s

survey [86] is also an excellent reference. In this framework, the operator Aφ is

known as an explicit constant-coefficient difference operator. General explicit

difference operators are produced by allowing φ to depend on a real parameter

h > 0 which is usually the grid size of an associated spatial discretization for

the initial value problem.

The operator Aφ is said to be stable in Lp if the collection of successive powers of

Aφ is uniformly bounded on Lp, i.e., there is a positive constant C for which

‖Anφf‖Lp ≤ C‖f‖Lp

for all f ∈ Lp and n ∈ N+; this property has profound consequences for dif-

ference schemes of partial differential equations as we discussed in the intro-

duction. For example, the Lax equivalence theorem states that a consistent ap-

proximate difference scheme for (3.10) is stable in Lp if and only if the difference
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scheme converges to the true solution (3.11) [86, 89]. In the L2 setting, checking

stability is straightforward. Using the Fourier transform, one finds that Aφ is

stable in L2 if and only if supξ |φ̂(ξ)| ≤ 1; this is a special case of the von Neu-

mann condition [87]. When p 6= 2, the question of stability for Aφ is more subtle.

It follows directly from the definition (3.78) that Anφ = Aφ(n) for all n ∈ N+ and

so by Minkowski’s inequality we see that

‖Anφf‖Lp = ‖Aφ(n)‖Lp ≤ ‖φ(n)‖1‖f‖Lp (3.79)

for all f ∈ Lp and n ∈ N+. This allows us to formulate a sufficient condition for

stability in Lp for 1 ≤ p ≤ ∞ in terms of the convolution powers of φ (which

is consistent with Question (iv) of Section 3.1) as follows: Aφ is stable in Lp

whenever there is a positive constant C for which

‖φ(n)‖1 =
∑
x∈Zd
|φ(n)(x)| ≤ C (3.80)

for all n ∈ N+. The condition (3.80) is also necessary when p = ∞ and so it is

called the condition of max-norm stability. Originally investigated by John [56]

and Strang [84], this theory for difference schemes has been further developed

by many authors, see for example [38, 82, 86, 87]. In one dimension (d = 1),

the question of stability in the max-norm was completely sorted out by Thomée

[87]. Thomée showed that a sufficient condition of Strang was also necessary;

this is summarized in the following theorem.

Theorem 3.6.1 (Thomée 1965). The operator Aφ is stable in L∞(R) if and only if one

of the following conditions is satisfied:

(a) φ̂(ξ) = ceixξ for some x ∈ Z and |c| = 1.

(b) |φ̂(ξ)| < 1 except for at most a finite number of points ξ1, ξ2, . . . , ξQ in T where

|φ̂(ξ)| = 1. For q = 1, 2, . . . Q, there are constants αq, γq,mq, where αq ∈ R,
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Re γq > 0 and where mq ∈ N+, such that

φ̂(ξ + ξq) = φ̂(ξq) exp(iαqξ − γkξ2mq + o(ξ2mq)) (3.81)

as ξ → 0.

Thomée’s characterization makes use of the fact that the level sets of non-

constant holomorphic functions on C have no accumulation points – a fact that

breaks down in all other dimensions, e.g., f(z) = f(z1, z2) = cos(z1 − z2). When

φ : Z → C is finitely supported and such that supξ |φ̂(ξ)| = 1, the reader should

note that the condition (b) of Theorem 3.6.1 is equivalent to the hypotheses of

Theorem 3.5.10 for, in one dimension, every positive homogeneous polynomial

is necessarily of the form P (ξ) = γξ2m where Re γ > 0 and m ∈ N+. In Zd, we

have the following result.

Corollary 3.6.2. Let φ : Zd → C satisfy the hypotheses of Theorem 3.5.10 and define

Aφ by (3.78). Then Aφ is stable in L∞ and hence stable in Lp(Rd) for all 1 ≤ p ≤ ∞.

Proof. An application of Theorem 3.5.10 with N ≥ d + 1 yields the uniform

estimate (3.80) after summing over x ∈ Zd.

Proof of Theorem 3.1.7. This is simply Corollary 3.6.2 translated into the language

of Section 3.1.

In [87], Thomée also showed that when sup |φ̂| = 1 but the leading non-linear

term in the expansion (3.81) was purely imaginary, the corresponding difference

scheme was unstable. As was discussed in [31] and [73], such expansions give

rise to local limit theorems in which the corresponding attractors are bounded

but not in L2 and hence not in S(R); for instance, the Airy function. In the
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spirit of [87], M. V. Fedoryuk explored stability and instability in higher dimen-

sions [38]. Fedoryuk’s affirmative result assumes that, for ξ0 ∈ Ω(φ), the leading

quadratic polynomial in the expansion for Γξ0 has positive definite real part.

Because any quadratic polynomial P with positive definite real part is positive

homogeneous (2−1I ∈ Exp(P )), Corollary 3.6.2 (equivalently, Theorem 3.1.7)

extends the affirmative result of [38].

3.7 Examples

In this section we consider a number of examples, mostly in Z2, to which we

apply our results. The first four examples, presented in Subsections 3.7.1, 3.7.2,

3.7.3 and 3.7.4, illustrate behaviors which appear only in the complex-valued

setting. We present these examples, not for a love of pathology, but to demon-

strate the richness of the complex-valued setting and to show that the intricacy

dealt with in the theoretical development of the preceding chapters was war-

ranted. Beyond these first four examples, in Subsection 3.7.5, we introduce a

class of real-valued functions on Zd, each prescribed by two multi-parameters

m and λ which precisely determine that anisotropic nature of the convolution

powers. Finally, in Subsection 3.7.6, we revisit the classical theory of random

walks on Zd.

3.7.1 A well-behaved real valued function on Z2

This example illustrates the case in which φ̂ is maximized only at 0 which is

of positive homogeneous type for φ̂ with corresponding P . In this case, the lo-
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cal limit theorem for φ yields one attractor with no oscillatory prefactor. The

positive homogeneous polynomial P is a semi-elliptic polynomial of the form

(3.18) and the corresponding attractor exhibits small oscillations and decays

anisotropically.

Consider φ : Z2 → R defined by φ = (φ1 + φ2)/512, where

φ1(x, y) =



326 (x, y) = (0, 0)

20 (x, y) = (±2, 0)

1 (x, y) = (±4, 0)

64 (x, y) = (0,±1)

−16 (x, y) = (0,±2)

0 otherwise

and φ2(x, y) =



76 (x, y) = (1, 0)

52 (x, y) = (−1, 0)

∓4 (x, y) = (±3, 0)

∓6 (x, y) = (±1, 1)

∓6 (x, y) = (±1,−1)

±2 (x, y) = (±3, 1)

±2 (x, y) = (±3,−1)

0 otherwise.

The graphs of φ(n) on the domain [−50, 50]× [−50, 50] for n = 100, n = 1, 000 and

n = 10, 000 are shown in Figure 3.5; in particular, the figure illustrates the decay

in ‖φ(n)‖∞. Figure 3.6 depicts φ(n)(x, y) when n = 10, 000 from various angles

and clearly illustrates its non-Gaussian anisotropic nature.

Given that φ is supported on 21 points, it is clear that φ ∈ S2. An easy com-

putation shows that sup |φ̂(ξ)| = 1 and this supremum is only attained at

ξ = (η, ζ) = (0, 0), where φ(0, 0) = 1, and hence Ω(φ) = {(0, 0)}. Expanding

the logarithm of φ(η, ζ)/φ(0, 0) about (0, 0) we find that, as (η, ζ)→ (0, 0),

Γ(η, ζ) = − 1

64

(
η6 + 2ζ4 − 2iη3ζ2

)
+O(|η7|+ |ζ5|+ |η3ζ4|+ |η5ζ2|+ |η6ζ5|).
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(a) (b)

(c)

Figure 3.5: The graph of φ(n) for (a) n = 100, (b) n = 1, 000 and (c) n =
10, 000

It is easy to see that the polynomial which leads the expansion,

P (η, ζ) =
1

64

(
η6 + 2ζ4 − 2iη3ζ2

)
,

has positive definite real part,

R(η, ζ) = ReP (η, ζ) =
1

64

(
η6 + 2ζ4

)
.

Moreover

P (tE(η, ζ)) = P (t1/6η, t1/4ζ) = tP (η, ζ) with E =

1
6

0

0 1
4

 ∈ Exp(P )

for all t > 0 and (η, ζ) ∈ R2 and therefore P is a positive homogeneous polyno-
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(a) (b)

(c) (d)

Figure 3.6: Various perspectives of φ(n) for n = 10, 000.

(a) (b)

Figure 3.7: The graphs of (a) φ(n) and (b) Hn
P for n = 10, 000.

mial (it is also semi-elliptic). Further, we can rewrite the error to see that

Γ(η, ζ) = −P (η, ζ) + Υ(η, ζ)
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where Υ(η, ζ) = o(R(η, ζ)) as (η, ζ) → (0, 0) and so we conclude that (0, 0) is

of positive homogeneous type for φ̂ with corresponding α = (0, 0) ∈ R2 and

positive homogeneous polynomial P . Clearly, µφ = µP = trE = 5/12 and so

Theorem 3.1.4 gives positive constants C and C ′ for which

C ′n−5/12 ≤ ‖φ(n)‖∞ ≤ Cn−5/12

for all n ∈ N+. An appeal to Theorem 3.1.5 shows that

φ(n)(x, y) = Hn
P (x, y) + o(n−5/12) (3.82)

uniformly for (x, y) ∈ Z2 where,

Hn
P (x, y) =

1

(2π)2

∫
R2

e−i(x,y)·(ξ1,ξ2)−nP (ξ1,ξ2) dξ1 dξ2 =
1

n5/12
HP (n−1/6x, n−1/4y)

for n ∈ N+ and (x, y) ∈ R2. The local limit (3.82) is illustrated in Figure 3.7 when

n = 10, 000. We also make an appeal to Theorem 3.1.6 to deduce pointwise

estimates for φ(n) (in fact, all results of Section 3.5 are valid for this φ). Upon

noting that

R#(x, y) =
5

36/5
x6/5 +

(
1− 1

25

)
y4/3

for (x, y) ∈ R2, the theorem gives positive constants C and M for which

|φ(n)(x, y)| ≤ C

n5/12
exp

(
−nM

((x
n

)6/5

+
(y
n

)4/3
))

for all n ∈ N+ and (x, y) ∈ Z2.

3.7.2 Two drifting packets

In this example, we study a complex valued function on Z2 whose convolution

powers φ(n) exhibit two packets which drift apart as n increases. This behavior is
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(a) (b)

(a) (b)

Figure 3.8: The graphs of Re(φ(n)) and Re(fn) for n = 30, 60.

easily described by applying Theorem 3.1.5 in which two distinct α’s appear.

Consider φ : Z2 → C defined by

φ(x, y) =



1+i
4a

(x, y) = (−1,±1)

−1+i
4a

(x, y) = (1,±1)

± 1√
2a

(x, y) = (0,±1)

0 otherwise.

where a =
√

2 +
√

2. The graphs of Re(φ(n)) for n = 30 and n = 60 are shown

in Figure 3.8(a) and Figure 3.8(b), respectively; observe the appearance of the

drifting packets.
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In computing the Fourier transform of φ̂, we find that sup |φ̂| = 1 and

Ω(φ) = {ξ1, ξ2, ξ3, ξ4} = {(π/2, 3π/4), (π/2,−π/4), (−π/2,−3π/4), (−π/2, π/4)},

where

φ̂(ξ1) = φ̂(ξ3) = (i)5/4 and φ̂(ξ2) = φ̂(ξ4) = −(i)5/4.

Set γ =
√

2− 1 and

P (η, ζ) =
1 + iγ

4
η2 + γζ2.

As in the previous example, we expand the logarithm of φ̂ near ξj for j =

1, 2, 3, 4. We find that each element of Ω(φ) is of positive homogeneous type

for φ̂ with αξ1 = αξ2 = (0, γ), αξ3 = αξ4 = (0,−γ) and Pξ1 = Pξ2 = Pξ3 = Pξ4 = P .

Note that P is obviously positive homogeneous with E = (1/2)I ∈ Exp(P ) and

hence

µφ = µPξ1 = µPξ2 = µPξ3 = µPξ4 = µP = 1. (3.83)

An appeal to Theorem 3.1.4 gives positive constants C and C ′ for which

Cn−1 ≤ ‖φ(n)‖∞ ≤ C ′n−1

for all n ∈ N+. In view of (3.83), let us note that the contribution from all points

ξ1, ξ2, ξ3, ξ4 ∈ Ω(φ) appear in the local limit given by Theorem 3.1.5. An applica-

tion of the theorem gives

φ(n)(x, y) = (i)5n/4
(
e−i(x,y)·ξ1Hn

P (x, y − nγ) + (−1)nei(x,y)·ξ2Hn
P (x, y − nγ)

+e−i(x,y)·ξ3Hn
P (x, y + nγ) + (−1)nei(x,y)·ξ4Hn

P (x, y + nγ)
)

+ o(n−1)

= (i)5n/4
(

(−1)y + (−1)n
)(
e−iπx/2eiπy/4Hn

P (x, y − γn)

+eiπx/2ei3πy/4Hn
P (x, y + γn)

)
+ o(n−1)

which holds uniformly for (x, y) ∈ Z2. In this special case that P is of second
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order, we can write

Hn
P (x, y) =

1

(2π)2

∫
R2

e−i(η,ζ)·(x,y)−nP (η,ζ) dηdζ

=
1

2πn
√
γ(1 + iγ)

exp

(
− x2

n(1 + iγ)
− y2

4nγ

)
for (x, y) ∈ R2 and from this, it is easily seen that φ(n) is approximated by two

generalized Gaussian packets respectively centered at ±(0, γn) for n ∈ N+. For

comparison, Figure 3.8(c) and Figure 3.8(d) illustrate the approximation

fn(x, y) := (i)5n/4
(

(−1)y + (−1)n
)

×
(
e−iπx/2eiπy/4Hn

P (x, y − γn) + eiπx/2ei3πy/4Hn
P (x, y + γn)

)
to φ(n) for n = 30 and 60.

3.7.3 A supporting lattice misaligned with Z2

In this example, we study a real valued function φ whose support is not well-

aligned with the principal coordinate axes. Here, the points at which φ̂ is max-

imized are of positive homogeneous type for φ̂ but the corresponding positive

homogeneous polynomials are not semi-elliptic. In this way, we have a concrete

example to illustrate the conclusion of Proposition 3.2.2. In writing out the lo-

cal limit theorem for φ, we also see the appearance of a multiplicative prefactor

which gives us information concerning the support of φ(n). Finally, the validity

of global space-time exponential-type estimates is discussed.

135



Consider φ : Z2 → R defined by

φ(x, y) =



3/8 (x, y) = (0, 0)

1/8 (x, y) = ±(1, 1)

1/4 (x, y) = ±(1,−1)

−1/16 (x, y) = ±(2,−2)

0 otherwise.

Figures 3.9 and 3.10 illustrate the graph and heat map of φ(n) respectively when

n = 100.

Figure 3.9: φ(n) for n = 100

We compute the Fourier transform of φ and find by a routine calculation that

sup |φ̂| = 1 and this maximum is attained at only two points in T2, (0, 0) and
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Figure 3.10: The heat map of φ(n) for n = 100

(π, π). We write this as

Ω(φ) = {ξ1, ξ2} = {(0, 0), (π, π)},

and note that φ(ξ1) = φ(ξ2) = 1. For ξ1 = (0, 0), we have

Γ(η, ζ)

= log

(
φ̂(ξ + ξ1)

φ(ξ1)

)

= −η
2

8
− 23η4

384
− ηζ

4
+

25η3ζ

96
− ζ2

8
− 23η2ζ2

64
+

25ηζ3

96
− 23ζ4

384
+ o(|(η, ζ)|4)
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as (η, ζ) → (0, 0). In seeking a positive homogeneous polynomial to lead the

expansion, we first note the appearance of the second order polynomial η2/8 +

ηζ/4 + ζ2/8. We might be tempted to choose this as our candidate, however, it is

not positive definite because it vanishes on the line η = −ζ . Upon closer study,

we write

Γ(η, ζ) = −1

8
(η + ζ)2 − 23

384
(η − ζ)4 + o(|(η, ζ)|4)

= −P (η, ζ) + o(P (η, ζ))

as (η, ζ)→ (0, 0), where the polynomial

P (η, ζ) =
1

8
(η + ζ)2 +

23

384
(η − ζ)4.

is positive definite. Fortunately, it is also a positive homogeneous polynomial

as can be seen by observing that, for

E =

3/8 1/8

1/8 3/8

 ,

P (tE(η, ζ)) = P
(
t1/2(η + ζ)/2 + t1/4(η − ζ)/2, t1/2(η + ζ)/2− t1/4(η − ζ)/2

)
=

1

8

(
t1/2(η + ζ)

)2
+

23

384

(
t1/4(η − ζ)

)4

= tP (η, ζ)

for all t > 0 and (η, ζ) ∈ R2. In contrast to the previous examples, P is not

semi-elliptic. However, observe that

A−1EA =

 1/
√

2 1/
√

2

−1/
√

2 1/
√

2


3/8 1/8

1/8 3/8


1/
√

2 −1/
√

2

1/
√

2 1/
√

2

 =

1/2 0

0 1/4


and

(P ◦ LA)(η, ζ) = P

(
η − ζ√

2
,
η + ζ√

2

)
=

1

8
(
√

2η)2 +
23

384
(−
√

2ζ)4 =
1

4
η2 +

23

96
ζ4
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which is semi-elliptic; this illustrates the conclusion of Proposition 3.2.2.

We have shown that ξ1 is of positive homogeneous type for φ̂ with corre-

sponding αξ1 = (0, 0) and positive homogeneous polynomial P = Pξ1 . By ex-

panding the logarithm of φ̂ near ξ2, a similar argument shows that ξ2 is also of

positive homogeneous type for φ̂ with corresponding αξ2 = (0, 0) and the same

positive homogeneous polynomial P = Pξ2 . It then follows immediately that φ

meets they hypotheses of Theorems 3.1.4 and 3.1.5 where

µφ = µP = trE = 3/4.

An appeal to Theorem 3.1.4 gives positive constants C and C ′ for which

C ′n−3/4 ≤ ‖φ(n)‖∞ ≤ Cn−3/4

for all n ∈ N+. By an appeal to Theorem 3.1.5, we also have

φ(n)(x, y) = φ̂(ξ1)ne−iξ1·(x,y)Hn
P (x, y) + φ̂(ξ2)e−iξ2·(x,y)Hn

P (x, y) + o(n−3/4)

=
(
1 + eiπ(x+y)

)
Hn
P (x, y) + o(n−3/4)

= (1 + cos(π(x+ y)))Hn
P (x, y) + o(n−3/4) (3.84)

uniformly for (x, y) ∈ Z2. Upon closely inspecting the prefactor 1 + cos(π(x+ y),

it is reasonable to assert that

Supp
(
φ(n)

)
⊆ {(x, y) ∈ Z2 : x± y ∈ 2Z} =: L

for all n ∈ N+ (Figure 3.10 also gives evidence for this when n = 100). The

assertion is indeed true, for it is easily verified that Supp(φ) ⊆ L and, because L

is an additive group, induction shows that

Supp
(
φ(n+1)

)
= Supp

(
φ(n) ∗ φ

)
⊆ Supp

(
φ(n)

)
+ Supp(φ) ⊆ L+ L = L
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for all n ∈ N+. Thus, the prefactor (1 + cos(π(x+ y)) gives us information about

the support of the convolution powers. In Section 3.7.6, we will see that this

situation is commonplace when φ is a probability distribution.

Let us finally note that, because αξ1 = αξ2 = (0, 0) and Pξ1 = Pξ2 = P , φ sat-

isfies the hypotheses of Theorem 3.1.6. A straightforward computation shows

that R#(x, y) � |x + y|2 + |x − y|4/3 where R = ReP and so, by an appeal to

Theorem 3.1.6, there are positive constants C and M for which

|φ(n)(x, y)| ≤ C

n3/4
exp

(
−M

(
|x+ y|2

n
+
|x− y|4/3

n1/3

))
for all (x, y) ∈ Z2 and n ∈ N+. We note however that because Ω(φ) = {ξ1, ξ2}, φ

does not satisfy the hypotheses of Theorem 3.5.3 and, by closely inspecting Fig-

ure 3.9, this should come at no surprise. In fact, by a direct application of (3.84),

it is easily shown that |φ(n)(0, 0)| ≥ εn−3/4 for some ε > 0 whereas φ(n)(0, 1) = 0

for all n ∈ N+. Consequently, |D(0,1)φ
(n)(0, 0)| ≥ εn−3/4 for all n ∈ N+ from which

it is evident that the conclusion to Theorem 3.5.3, (3.60), doesn’t hold.

3.7.4 Contribution from non-minimal decay exponent

In the present example, we study a real valued function φ on Z2 with Ω(φ) =

{ξ1, ξ2}. Although both ξ1 and ξ2 are of positive homogeneous type for φ̂ with

corresponding positive homogeneous polynomials Pξ1 and Pξ2 , we find that

µφ = µPξ1 < µPξ2 which is in contrast to the preceding examples. Consequently,

only the contribution from ξ1 appears in the local limit.
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Consider φ : Z2 → R be defined by

φ(x, y) =



19/128 (x, y) = (0, 0)

19/256 (x, y) = (0,±1)

1/4 (x, y) = (±1, 0)

1/8 (x, y) = (±1,±1)

−5/64 (x, y) = (±2, 0)

−5/128 (x, y) = (±2,±1)

1/256 (x, y) = (±4, 0)

1/512 (x, y) = (±4,±1)

0 otherwise.

(3.85)

The graphs of φ(n) for (x, y) ∈ Z2 such that −100 ≤ x, y ≤ 100 are displayed

in Figures 3.11(a) and 3.11(c) for n = 100 and Figures 3.12(a) and 3.12(c) for

n = 1, 000. Upon considering the Fourier transform of φ, we find that sup |φ̂| = 1

and this maximum is attained at exactly two points in T2. Specifically,

Ω(φ) = {ξ1, ξ2} = {(0, 0), (π, 0)},

where φ̂(ξ1) = 1 and φ̂(ξ2) = −1. In expanding the logarithm of φ̂(ξ + ξ1)/φ̂(ξ1)

about (0, 0), we find that ξ1 = (0, 0) is of positive homogeneous type for φ̂ with

αξ1 = (0, 0) and

Pξ1(η, ζ) =
η6

16
+
ζ2

4
.

Clearly Pξ1 is positive homogeneous with E1 = diag(1/6, 1/2) ∈ Exp(Pξ1) thus

µPξ1 = trE1 = 2/3. Now, upon expanding the logarithm of φ̂(ξ + ξ2)/φ̂(ξ2) we

find that ξ2 = (π, 0) is also of positive homogeneous type for φ̂ with αξ2 = (0, 0)
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(a) (b)

(c) (d)

Figure 3.11: φ(n), (a) and (c), Hn
Pξ1

, (b) and (d), for n = 100

and positive homogeneous polynomial

Pξ2(η, ζ) = η2 +
ζ2

4
;

Here, E2 = (1/2)I ∈ Exp(Pξ2) and thus µPξ2 = trE2 = 1. In this case

µφ = min
i=1,2

µPξi = µPξ1 = 2/3

and so, in light of the paragraph preceding the statement of Theorem 3.1.5, we

restrict our attention to ξ1, in which case the theorem describes the approxima-

tion of φ(n) by a single attractor HPξ1
. This is the local limit

φ(n)(x, y) = Hn
Pξ1

(x, y) + o(n−2/3) (3.86)

which holds uniformly for (x, y) ∈ Z2. Figures 3.11(b), 3.11(d), 3.12(b) and

3.12(d) illustrate this result. It should be noted that the approximations shown
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(a) (b)

(c) (d)

Figure 3.12: φ(n), (a) and (c), Hn
Pξ1

, (b) and (d), for n = 1, 000

in Figures 3.11 and 3.12 appear more coarse than those of the previous exam-

ples. For instance, Figure 3.11(c) depicts minor oscillations in the graph of φ(n)

which do not appear in the approximation illustrated in Figure 3.11(d). These

oscillations are due to the influence on φ(n) by φ̂ near ξ2 which for n = 1, 000 is

not yet sufficiently scaled out. As demonstrated in the proof of Theorem 3.1.5,

this influence dies out on the relative order of n1−2/3 = n−1/3 and thus the influ-

ence is not negligible when n = 1, 000.

As a final remark, we note that φ is the tensor product of two functions mapping
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Z into C. Specifically, φ = φ1 ⊗ φ2 where,

φ1(x) =



19/64 x = 0

1/2 x = ±1

−5/32 x = ±2

1/128 x = ±4

0 otherwise

and φ2(y) =


1/2 y = 0

1/4 y = ±1

0 otherwise.

In fact, had we studied the functions φ1 and φ2 separately, we would have found

that

φ
(n)
1 (x) = Hn

η6/16(x) + o(n−1/6) and φ
(n)
1 (y) = Hn

ζ2/4(y) + o(n−1/2)

uniformly for x, y ∈ Z and from this deduced the local limit (3.86) because φ(n) =

φ
(n)
1 ⊗ φ

(n)
2 and HPξ1

= Hη6/16 ⊗ Hζ2/4 (note also that µφ = 1/6 + 1/2 = µφ1 +

µφ2). In general, tensor products can be used to create a wealth of examples in

any dimension to which the results of lower dimensions can be applied. For

instance, by applying the much stronger theory of one dimension (in light of

[73]), one can deduce stronger results than are given here for the class of finitely

supported functions on Zd of the form

φ = φ1 ⊗ φ2 ⊗ · · · ⊗ φd

where φk : Z 7→ C is finitely supported for k = 1, 2, . . . , d. How to place these

examples in a d-dimensional theory is an open question.

3.7.5 A simple class of real valued functions

In this subsection we consider a class of real valued and finitely supported func-

tions φm,λ determined by two multi-parameters m ∈ N+ and λ ∈ Rd
+, c.f, Sub-
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section 2.4 of [31]. Here, Ω(φm,λ) contains only 0 ∈ Td which is of positive

homogeneous type for φ̂m,λ with no drift and whose associated positive ho-

mogeneous polynomial is a semi-elliptic polynomial with no “mixed” terms.

In this setting, our methods yield easily `∞-asymptotics and local limit theo-

rems for φ(n)
m,λ = (φm,λ)

(n). Moreover, all of the results of Section 3.5 concerning

global space-estimates for φ(n)
m,λ and its discrete differences are valid and we ap-

ply them.

Let m = (m1,m2, . . . ,md) ∈ Nd
+ and λ = (λ1, λ2, . . . , λd) be such that λj ∈

(0, 21−mj/d] for j = 1, 2, . . . , d with at least one λj < 21−mj/d. Define

φm,λ = δ0 −
d∑
j=1

λj(δ0 − ρj)(mj) (3.87)

where ρj = (1/2)(δej + δ−ej) is the Bernoulli walk on the jth coordinate axis. By

a straightforward computation, we have

φ̂m,λ(ξ) = 1−
d∑
j=1

λj(1− cos(ξj))
mj

for ξ = (ξ1, ξ2, . . . , ξd) ∈ Rd and from this it is easily seen that supξ |φ̂m,λ(ξ)| = 1

which is attained only at 0 ∈ Td, i.e., Ω(φm,λ) = {0}. Here, φ̂m,λ(0) = 1 and it is

easily seen that

Γ(ξ) = log(φ̂m,λ(ξ)) = −Pm,λ(ξ) + o(Pm,λ(ξ))

as ξ → 0, where

Pm,λ(ξ) =
d∑
j=1

λj
2mj

ξ
2mj
j

for ξ = (ξ1, ξ2, . . . , ξd) ∈ Rd. Note that Pm,λ(ξ) is a semi-elliptic polynomial of

the form (3.18) with Dm = diag((2m1)−1, (2m2)−1, . . . , (2md)
−1) ∈ Exp(Pm,λ) and
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hence

µφm,λ = µPm,λ
= (2m1)−1 + (2m2)−1 + · · ·+ (2md)

−1 = |1 : 2m|,

where 1 = (1, 1, . . . , 1) ∈ Nd.

For any l ∈ N, recall from Section 3.5 the discrete time difference operator ∂l =

∂l(φm,λ, ξ0, α) which, in this case, is given by

∂lψ = (δ − φ(l)
m,λ) ∗ ψ

for ψ ∈ `1(Zd). For any multi-index β ∈ Nd, consider the difference operator

Dβ = Dβ
e defined for any ψ ∈ `1(Zd) by

Dβψ = (De1)β1(De2)β2 · · · (Ded)
βdψ

where Dejψ(x) = ψ(x + ej) − ψ(x) for x ∈ Zd and (Dej)
0 is the identity. We

note that e = {e1, e2, . . . , ed} is Pm,λ-fitted of weight m in view of the discussion

preceding Corollary 3.5.6. Finally, define

|x|m =
d∑
j=1

|xj|2mi/(2mi−1) (3.88)

for x = (x1, x2, . . . , xd) ∈ Rd and observe that

|n−Dmx|m =
d∑
j=1

|xj|2mj/(2mj−1)/n1/(2mj−1)

for x ∈ Rd and n ∈ N+.

Proposition 3.7.1. Let φm,λ be defined by (3.87), assume the notation above and write

(φm,λ)
(n) = φ

(n)
m,λ for n ∈ N+. There are positive constants C and C ′ for which

Cn−|1:2m| ≤ ‖φ(n)
m,λ‖∞ ≤ C ′n−|1:2m| (3.89)
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for all n ∈ N+. We have

φ
(n)
m,λ(x)

= n−|1:2m|HPm,λ

(
n−Dmx

)
+ o(n−|1:2m|)

= n−|1:2m|HPm,λ

( x1

n1/(2m1)
,

x2

n1/(2m2)
, . . . ,

xd
n1/(2md)

)
+ o(n−|1:2m|) (3.90)

uniformly for x = (x1, x2, . . . , xd) ∈ Zd, where HPm,λ
is defined by (3.8). There are

positive constants C0, C1,M0 and M1 for which

|φ(n)
m,λ(x)| ≤ C0

n|1:2m| exp
(
−M0

∣∣n−Dmx
∣∣
m

)
(3.91)

and

|φ(n+1)
m,λ (x)− φ(n)

m,λ(x)| ≤ C1

n|1+2m:2m| exp
(
−M1

∣∣n−Dmx
∣∣
m

)
(3.92)

for all x ∈ Zd and n ∈ N+. Further, there are positive constants C0 and M and, to each

multi-index β, a positive constant Cβ such that, for any l1, l2, . . . , lk ∈ Nd
+,

|∂l1∂l2 · · · ∂ljDβφ
(n)
m,λ(x)| ≤

CβC
k
0k!
∏k

q=1 lq

n|1+β+2km:2m| exp
(
−M

∣∣(n+ sk)
−Dmx

∣∣
m

)
(3.93)

for all x ∈ Zd and n ∈ N+, where sk = l1 + l2 + · · ·+ lk.

Remark 10. For simplicity, we have not treated the critical case in which λj = 21−mj/d

for j = 1, 2, . . . , d in the proposition above, however, our methods handle this easily. In

this case, the local limit (3.90) instead contains the prefactor 1 + exp(iπ(n− x1 − x2 −

· · · − xd)). The estimate (3.92) is also valid here but (3.93) and (3.91) fail to hold (for

reasons similar to those of Subsection 3.7.3).

Proof. In view of the discussion proceeding the proposition, straightforward ap-

plications of Theorems 3.1.4 and 3.1.5 yield (3.89) and (3.90) respectively. To see

the global space-time estimates, we first observe that

P#
m,λ(x1, x2, . . . , xd)

=
d∑
j=1

(
2mj

λj

)1/(2mj−1)
((

1

2mj

)1/(2mj−1)

−
(

1

2mj

)2mj/(2mj−1)
)
|xj|2mj/(2mj−1)
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for x = (x1, x2, . . . , xd). From this it is easily checked that | · |m � P#
m,λ (this

can also be seen with the help of Corollary A.3.3). Using the fact 0 ∈ Ω(φm,λ)

has corresponding α0 = 0 and P0 = Pm,λ which is semi-elliptic, φm,λ meets

hypotheses of Theorem 3.1.6, Corollary 3.5.8 and Theorem 3.5.7. The estimates

(3.91) follows immediately from Theorem 3.1.6. Upon noting that µφ + 1 =

|1 : 2m| + |2m : 2m| = |1 + 2m : 2m|, (3.92) follows from Corollary 3.5.8.

Finally, the estimate (3.93) follows from Theorem 3.5.9 once it is observed that

µφ + |β : 2m| + k = |1 + β + 2km : 2m|, e = {e1, e2, . . . , ed} is Pm,λ-fitted with

weight m and
∏

j=1 |ej|βj = 1.

3.7.6 Random walks on Zd: A look at the classical theory

In this short subsection, we revisit the classical theory of random walks on Zd.

We denote byM1
d, the set functions φ : Zd → [0, 1] satisfying

‖φ‖1 =
∑
x∈Zd

φ(x) = 1,

i.e.,M1
d is the set of probability distributions on Zd. As discussed in the intro-

duction, each φ ∈ M1
d drives a random walk on Zd whose nth-step transition

kernel kn is given by kn(x, y) = φ(n)(y − x) for x, y ∈ Zd. Taking our terminol-

ogy from [83, p. 72], we say that φ ∈ M1
d is genuinely d-dimensional if Supp(φ) is

not contained in any (d− 1)-dimensional affine subspace of Rd; in this case, we

also say that the associated random walk is genuinely d-dimensional. Our main

focus throughout this subsection is on subset of φ ∈M1
d which are genuinely d-

dimensional with finite second moments. In contrast to the standard literature,

we make no assumptions concerning periodicity/aperiodicity/irreducibility,

c.f., [63, 83]. In this generality, our formulation of the (classical) local limit theo-
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rem, Theorem 3.7.5, naturally contains a prefactor Θ which nicely describes the

support of φ(n) and hence the random walk’s periodic structure.

Our first two results, Lemma 3.7.2 and Proposition 3.7.3 are stated for the gen-

eral class of φ ∈M1
d; one should note that both results fail to hold in the case that

φ is generally complex valued. The lemma and proposition highlight the impor-

tance of the set Ω(φ) and, in particular, its inherent group structure. This intrin-

sic structure (and much more) was also recognized by B. Schreiber in his study

of (complex valued) measure algebras on locally compact abelian groups [81].

In fact, Schreiber’s results can be used to prove Lemma 3.7.2 and Proposition

3.7.3; although, in our context, the proofs are straightforward and so we pro-

ceed directly.

Lemma 3.7.2. Let φ ∈ M1
d. Then Ω(φ) depends only on Supp(φ) in the sense that, if

Supp(φ1) = Supp(φ2) for φ1, φ2 ∈ M1
d, then Ω(φ1) = Ω(φ2). Furthermore, for each

ξ ∈ Ω(φ), there exists ω(ξ) ∈ (−π, π] such that

φ̂(ξ) = eiω(ξ) = eix·ξ

for all x ∈ Supp(φ).

Proof. We shall use the following general property of complex numbers. If

{z1, z2, . . . } ⊆ C satisfy
∞∑
k

|zk| = 1 =
∣∣∣ ∞∑
k=1

zk

∣∣∣
then, for some ω ∈ (−π, π], zk = rke

iω for all k. Thus, whenever ξ ∈ Ω(φ), i.e.,

|φ̂(ξ)| =
∣∣∣ ∑
x∈Zd

φ(x)eix·ξ
∣∣∣ = 1,
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there exists ω = ω(ξ) ∈ (−π, π] for which

eix·ξ = eiω(ξ) (3.94)

for all x ∈ Supp(φ). In particular, this shows that Ω(φ) depends only on Supp(φ).

Further, observe that

φ̂(ξ) =
∑
x∈Zd

φ(x)eix·ξ = eiω(ξ)
∑
x∈Zd

φ(x) = eiω(ξ) (3.95)

and so the result follows upon combining (3.94) and (3.95).

Proposition 3.7.3. Let φ ∈M1
d. Then Ω(φ) is a subgroup of Td and

φ̂
∣∣∣
Ω(φ)

: Ω(φ)→ S1

is a homomorphism of groups; here, Td is taken to have the canonical group structure

and S1 = {z ∈ C : |z| = 1}.

Proof. It is obvious that 0 ∈ Ω(φ); hence Ω(φ) is non-empty. Let ξ1, ξ2 ∈ Ω(φ)

and, in view of Lemma 3.7.2,

φ̂(ξ2 − ξ1) =
∑

x∈Supp(φ)

φ(x)eix·(ξ1−ξ2) =
∑

x∈Supp(φ)

φ(x)φ̂(ξ2)φ̂(ξ1)−1

= φ̂(ξ2)φ̂(ξ1)−1‖φ‖1 = φ̂(ξ2)φ̂(ξ1)−1

and thus ξ2 − ξ1 ∈ Ω(φ) because |φ̂(ξ2 − ξ1)| = |φ̂(ξ2)φ̂(ξ1)−1| = 1. As Ω(φ) is

non-empty and closed under subtraction, we conclude at once that Ω(φ) is a

subgroup of Td and the restriction of φ̂ to Ω(φ) is a homomorphism.

We now begin to develop what is needed to recapture and reformulate the

classical local limit theorem in the general case that φ ∈ M1
d is genuinely d-

dimensional and has finite second moments. In this case, the mean αφ ∈ Rd and
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covariance Cφ ∈Md(R) of φ are defined respectively by

{αφ}k =
∑
x∈Zd

xkφ(x) for k = 1, 2, . . . , d

and

{Cφ}k,l =
∑
x∈Zd

(xk − {αφ}k)(xl − {αφ}l)φ(x) for k, l = 1, 2, . . . , d.

Proposition 3.7.4. Let φ ∈ M1
d be genuinely d-dimensional with finite second mo-

ments and let αφ and Cφ be the mean and covariance of φ as defined above. Set

Pφ(ξ) =
1

2
ξ · Cφξ

for ξ ∈ Rd. Then each ξ0 is of positive homogeneous type for φ̂ with αξ0 = αφ and

positive homogeneous polynomial Pξ0 = Pφ. In particular, µφ = µPφ = d/2.

Proof. When φ is genuinely d-dimensional, it is well-known that the covariance

form

ξ 7→ Cov(φ)(ξ) = ξ · Cφξ

is positive definite (when αφ = 0, Supp(φ) contains a basis of Rd and when

αφ 6= 0, an appropriate shift does the trick). Upon noting that 2−1I ∈ Exp(Pφ),

we conclude that Pφ is a positive homogeneous polynomial. Observe that, for

Γ(ξ) = log(φ̂(ξ + ξ0)/φ̂(ξ0)),

∂kΓ(0) =
∂kφ̂(ξ0)

φ̂(ξ0)
=

1

φ̂(ξ0)

∑
x∈Supp(φ)

ixkφ(x)eix·ξ0

=
1

φ̂(ξ0)

∑
x∈Supp(φ)

ixkφ(x)eiω(ξ0) =
eiω(ξ0)

φ̂(ξ0)

∑
x∈Supp(φ)

ixkφ(x)

= i{αφ}k

for all k = 1, 2 . . . d, where we have used Lemma 3.7.2. By analogous reasoning,

which again makes use of the lemma, ∂k,lΓ(0) = −{Cφ}k,l for k, l = 1, 2, . . . , d.
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Consequently,

Γ(ξ) =
d∑

k=1

∂kΓ(0)ξk +
d∑

k,l=1

1

2
∂k,lΓ(0)ξkξl+o(|ξ|2) = iαφ ·ξ−Pφ(ξ)+o(|ξ|2), (3.96)

as ξ → 0, where we have used the positive definiteness Pφ to rewrite the error.

From this it follows immediately that ξ0 is of positive homogeneous type for φ̂

with αξ0 = αφ and positive homogeneous polynomial Pξ0 = Pφ.

We now present the classical local limit theorem in a new form. Assuming the

notation of the previous proposition, the attractor Gφ = HPφ which appears

below is the generalized Gaussian density given by (3.2), see [63, p. 25]. Let us

also note that, in view of the previous proposition and Proposition 3.4.1, Ω(φ) is

finite.

Theorem 3.7.5. Let φ ∈ M1
d be genuinely d-dimensional with finite second moments.

Then there exists positive constants C and C ′ for which

Cn−d/2 ≤ sup
x∈Zd

φ(n)(x) ≤ C ′n−d/2 (3.97)

for all n ∈ N+. Furthermore,

φ(n)(x) = n−d/2Θ(n, x)Gφ

(
x− nαφ√

n

)
+ o(n−d/2) (3.98)

uniformly for x ∈ Zd, where Θ : N+ ×Zd is dependent only on Supp(φ) in the sense of

Lemma 3.7.2 and is given (equivalently) by

Θ(n, x) =
∑
ξ∈Ω(φ)

ei(nω(ξ)−x·ξ) =
∑
ξ∈Ω(φ)

cos(nω(ξ)− x · ξ); (3.99)

here, ω(ξ) ∈ (−π, π] is that given by Lemma 3.7.2 for each ξ ∈ Ω(φ).

Proof. The hypotheses of the present theorem are weaker than those of Theo-

rems 3.1.4 and 3.1.5 as the latter theorems require φ to have finite moments of
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all orders. However, what is really used in the proof of the Theorem 3.1.5 is the

condition that, for each ξ0 ∈ Ω(φ), Γξ0 can be written in the form (3.96) where

Pξ0 = Pφ is positive definite (in the general case that φ is complex valued, it is

not known a priori how many terms in the Taylor expansion for Γξ0 are needed

for this to be true). Under the present hypotheses and in view of Proposition

3.7.4, the proof of Theorem 3.1.5 pushes through with no modification and so

we apply it (or simply its conclusion). As an immediate consequence, we obtain

(3.97) because Theorem 3.1.4 follows directly from Theorem 3.1.5. It remains to

show that the local limit yielded by Theorem 3.1.5 can be written in the form

(3.98).

By virtue of Proposition 3.7.4, we have αξ = αφ, Pξ = Pφ for all ξ ∈ Ω(φ)

and, moreover µφ = µP = d/2. Noting that all ξ ∈ Ω(φ) have corresponding

positive homogeneous polynomials of the same order (because the polynomials

are identical), all appear in the local limit. Consequently,

φ(n)(x) =
∑
ξ∈Ω(φ)

e−ix·ξ(φ̂(ξ))nHn
Pφ

(x− nαφ) + o(n−d/2)

=

 ∑
ξ∈Ω(φ)

e−ix·ξ(φ̂(ξ))n

n−d/2HPφ

(
n−1/2 (x− nαφ)

)
+ o(n−d/2)

= n−d/2

 ∑
ξ∈Ω(φ)

ei(nω(ξ)−x·ξ)

Gφ

(
n−1/2 (x− nαφ)

)
+ o(n−d/2)

= n−d/2Θ(n, x)Gφ

(
x− nαφ√

n

)
+ o(n−d/2)

uniformly for x ∈ Zd. In view of Lemma 3.7.2, it is clear that Θ depends only on

Supp(φ) and so to complete the proof, we need only to verify the second equality

in (3.99). Using the fact that Ω(φ) is a subgroup of Td in view of Proposition 3.7.3,
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for each ξ ∈ Ω(φ), −ξ ∈ Ω(φ) and therefore

Θ(n, x) =
1

2

 ∑
ξ∈Ω(φ)

ei(nω(ξ)−x·ξ) +
∑
ξ∈Ω(φ)

ei(nω(−ξ)−x·(−ξ))

 =
∑
ξ∈Ω(φ)

cos(nω(ξ)−x · ξ)

where we have noted that ω(−ξ) = −ω(ξ) for each ξ ∈ Ω(φ).

By close inspection of the theorem, one expects that in general Θ can help us

describe the support of φ(n) and hence the periodicity of the associated random

walk. This turns out to be the case as our next theorem shows.

Theorem 3.7.6. Let φ ∈ M1
d be genuinely d-dimensional with finite second moments

and define Θ : N+ × Zd → R by (3.99). Then

Supp
(
φ(n)

)
⊆ Supp(Θ(n, ·)) (3.100)

for all n ∈ N+. Further, if

lim sup
n
|Θ(n, x+ bnαφc)| > 0

for x ∈ Zd, then

lim sup
n

nµφφ(n)(x+ bnαφc) > 0.

Proof. In view of Lemma 3.7.2, for any x0 ∈ Supp(φ), ω(ξ) = x0 ·ξ for all ξ ∈ Ω(φ).

Therefore, for any x0 ∈ Supp(φ),

Θ(n, x) =
∑
ξ∈Ω(φ)

cos((nx0 − x) · ξ)

for all n ∈ N+ and x ∈ Zd and, in particular,

Θ(1, x0) =
∑
ξ∈Ω(φ)

cos(0) = #(Ω(φ)) > 0
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whence Supp(φ) ⊆ Supp(Θ(1, ·)). The inclusion (3.100) follows straightfor-

wardly by induction. For the second conclusion, an appeal to Theorem 3.7.5

shows that, for sufficiently large n,

nd/2φ(n)(x+ bnαφc) ≥ |Θ(n, x+ bnαφc)Gφ(n−1/2(x+ bnαφc − nαφ))|/2

for all x ∈ Rd. Of course, for any fixed x, limn→∞ |Gφ(n−1/2(x+ bnαφc−nαφ))| =

Gφ(0) > 0 and from this, the assertion follows without trouble.

To illustrate the utility of the function Θ, we consider a class of examples which

generalizes simple random walk. For a fixed m = (m1,m2, . . . ,m2) ∈ Nd
+ define

φm ∈M1
d by

φm(mjej) = φm(−mjej) =
1

2d

for j = 1, 2, . . . , d and set φm(x) = 0 otherwise; here, {e1, e2, . . . , ed} is the

standard euclidean basis. This generates the random walk with statespace

{(k1m1, k2m2, . . . , kdmd) : kj ∈ Z for j = 1, 2, . . . , d}. We have:

Proposition 3.7.7. Let Θm : N+ × Zd → R be that associated to φm by (3.99). Then

Θm(n, x) =


2
(∏d

j=1mj

)
if mj|xj for all j = 1, 2, . . . d and n− |x : m| is even

0 otherwise.

Proof. For notational convenience, we write φ = φm and Θ = Θm. Observe

that φ̂(ξ) = (1/d)
∑d

j=1 cos(mjξj) for ξ = (ξ1, ξ2, . . . , ξd) ∈ Td and so by a direct

computation,

Ω(φ) = Ωe ∪̇Ωo

=

{
π

(
k1

m2

,
k2

m2

, . . . ,
kd
md

)
: k ∈ Ze

}
⋃̇{

π

(
k1

m2

,
k2

m2

, . . . ,
kd
md

)
: k ∈ Zo

}
,
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where

Ze = {k ∈ Zd : −mj < kj ≤ mj and kj is even for j = 1, 2, . . . , d}

and

Zo = {k ∈ Zd : −mj < kj ≤ kj and mj is odd for j = 1, 2, . . . , d}.

With this decomposition, we immediately observe that

ω(ξ) =


0 if ξ ∈ Ωe

π if ξ ∈ Ωo.

In the case that mj

∣∣xj for j = 1, 2, . . . , d,

Θ(n, x) =
∑
ξ∈Ωe

ei(0n−x·ξ) +
∑
ξ∈Ωo

ei(πn−x·ξ)

=
∑
k∈Ze

exp

(
−iπ

d∑
j=1

kjxj
mj

)
+
∑
k∈Zo

exp

(
iπ

(
n−

d∑
j=1

kjxj
mj

))

= #(Ze) + exp

(
iπ

(
n−

d∑
j=1

xj
mj

))
#(Zo)

where we have used (3.99). Now #(Ze) = #(Zo) =
∏d

j=1mj and so it follows

that

Θ(n, x) =
(
1 + eiπ(n−|x:m|)) d∏

j=1

mj =


2
(∏d

j=1mj

)
if n− |x : m| is even

0 if n− |x : m| is odd.

In the case that ml 6
∣∣xl for some l = 1, 2, . . . , d, observe that

Θ(n, x) =
∑
ξ∈Ωe

e−iξ·x +
∑
ξ∈Ωo

ei(πn−ξ·x)

=
d∏
j=1

∑
mj<kj≤mj

kjeven

exp

(
−iπxjkj

mj

)

+eiπn
d∏
j=1

∑
mj<kj≤mj

kjodd

exp

(
−iπxjkj

mj

)
. (3.101)
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Focusing on the lth multiplicand in the first term, it is straightforward to see

that (
e−2πixl/ml − 1

) ∑
ml<kj≤ml

kleven

exp

(
−iπxlkl

ml

)

=
∑

ml<kj≤ml
kleven

exp

(
−iπxl(kl + 2)

ml

)
− exp

(
−iπxlkl

ml

)
= 0

and since ml 6
∣∣xl, we can immediately conclude that∑

ξ∈Ωe

e−iξ·x =
∑

ml<kj≤ml
kleven

exp

(
−iπxlkl

ml

)∏
j 6=l

∑
mj<kj≤mj

kjeven

exp

(
−iπxjkj

mj

)
= 0.

An analogous argument shows that
∑

ξ∈Ωo
ei(πn−ξ·x) = 0 and so, in view of

(3.101), it follows that Θ(n, x) = 0 as desired.

Simple random walk is, of course, the random walk defined by φm where m =

(1, 1, . . . , 1). In this case, the proposition yields

Θ(1,1,...,1)(n, x) =


2 if n− x1 − x2 − · · · − xd is even

0 if n− x1 − x2 − · · · − xd is odd;

this captures the walk’s well-known periodicity.

We end this section by showing that Theorem 3.1.6 provides a Gaussian (up-

per) bound in the case that φ ∈ M1
d is finitely supported and genuinely d-

dimensional. To obtain a matching lower bound, it is necessary to make some

assumptions concerning aperiodicity.

Theorem 3.7.8. Let φ ∈ M1
d be finitely supported and genuinely d-dimensional with

mean αφ ∈ Rd. Then, there exist positive constants C and M for which

φ(n)(x) ≤ C

nd/2
exp

(
−M |x− nαφ|2/n

)
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for all n ∈ N+ and x ∈ Zd.

Proof. In view of Proposition 3.7.4, our hypotheses guarantee that every ξ ∈

Ω(φ) is of positive homogeneous type with corresponding αξ = αφ and positive

homogeneous polynomial Pξ = Pφ; here µφ = µPφ = d/2 and Rφ = RePφ = Pφ.

An appeal to Theorem 3.1.6 gives positive constants C and M for which

φ(n)(x) = |φ(n)(x)| ≤ C

nd/2
exp

(
−nMP#

φ ((x− nαφ) /n)
)

for all n ∈ N+ and x ∈ Zd. Upon noting that P#
φ is necessarily quadratic and

positive definite by virtue of Proposition A.3.2, we conclude that P#
φ � | · |2 and

the theorem follows at once.
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CHAPTER 4

POSITIVE-HOMOGENEOUS OPERATORS, HEAT KERNEL ESTIMATES

AND THE LEGENDRE-FENCHEL TRANFORM

4.1 Introduction

In this chapter, we consider a class of homogeneous partial differential opera-

tors on a finite dimensional vector space and study their associated heat ker-

nels. These operators, which we call nondegenerate-homogeneous operators,

are seen to generalize the well-studied classes of semi-elliptic operators intro-

duced by F. Browder [15], also known as quasielliptic operators [94], and a spe-

cial “positive” subclass of semi-elliptic operators which appear as the spatial

part of S. D. Eidelman’s 2~b-parabolic operators [36]. In particular, this class of

operators contains all integer powers of the Laplacian. We begin this introduc-

tion by motivating the study of these homogeneous operators by first demon-

strating the natural appearance of their heat kernels in the study of convolution

powers of complex valued functions. To this end, consider a finitely supported

function φ : Zd → C and define its convolution powers iteratively by

φ(n)(x) =
∑
y∈Zd

φ(n−1)(x− y)φ(y)

for x ∈ Zd where φ(1) = φ. In the special case that φ is a probability distribution,

i.e., φ is non-negative and has unit mass, φ drives a random walk on Zd whose

nth-step transition kernels are given by kn(x, y) = φ(n)(y−x). Under certain mild

conditions on the random walk, φ(n) is well-approximated by a single Gaussian

density; this is the classical local limit theorem. Specifically, for a symmetric,
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aperiodic and irreducible random walk, the theorem states that

φ(n)(x) = n−d/2Gφ(x/
√
n) + o(n−d/2)

uniformly for x ∈ Zd, where Gφ is the generalized Gaussian density

Gφ(x) =
1

(2π)d

∫
Rd

exp
(
− ξ · Cφξ

)
e−ix·ξ dξ =

1

(2π)d/2
√

detCφ
exp

(
−x · Cφ

−1x

2

)
;

(4.1)

here, Cφ is the positive definite covariance matrix associated to φ and · denotes

the dot product [63, 72, 83]. The canonical example is that in which Cφ = I (e.g.

Simple Random Walk) and in this case φ(n) is approximated by the so-called

heat kernel

Kn
(−∆)(x) = n−d/2Gφ(x/

√
n) = (2πn)−d/2 exp

(
−|x|

2

2n

)
.

In addition to its natural appearance as the attractor in the local limit theorem,

Kt
(−∆)(x) is a fundamental solution to the heat equation

∂t + (−∆) = 0.

In fact, this connection to random walk underlies the heat equation’s probabilis-

tic/diffusive interpretation. Beyond the probabilistic setting, this link between

convolution powers and fundamental solutions to partial differential equations

persists as can be seen in the following examples.
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Example 1. Consider φ : Z2 → C defined by

φ(x1, x2) =
1

22 + 2
√

3
×



8 (x1, x2) = (0, 0)

5 +
√

3 (x1, x2) = (±1, 0)

−2 (x1, x2) = (±2, 0)

i(
√

3− 1) (x1, x2) = (±1,−1)

−i(
√

3− 1) (x1, x2) = (±1, 1)

2∓ 2i (x1, x2) = (0,±1)

0 otherwise.

(a)
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Figure 4.1: The graphs of Re(φ(n)) (a) and Re(e−iπx2/3Kn
Λ) (b) for n = 100.

Analogous to the probabilistic setting, the large n behavior of φ(n) is described by a

generalized local limit theorem in which the attractor is a fundamental solution to a

heat-type equation. Specifically, the following local limit theorem holds (see [72] for

details):

φ(n)(x1, x2) = e−iπx2/3Kn
Λ(x1, x2) + o(n−3/4)

uniformly for (x1, x2) ∈ Z2 where KΛ is the “heat” kernel for the heat-type equation

∂t + Λ = 0 where

Λ =
1

22 + 2
√

3

(
2∂4

x1
− i(
√

3− 1)∂2
x1
∂x2 − 4∂2

x2

)
.
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This local limit theorem is illustrated in Figure 4.1 which shows Re(φ(n)) and the ap-

proximation Re(e−iπx2/3Kn
Λ) when n = 100.

Example 2. Consider φ : Z2 → R defined by φ = (φ1 + φ2)/512, where

φ1(x1, x2) =



326 (x1, x2) = (0, 0)

20 (x1, x2) = (±2, 0)

1 (x1, x2) = (±4, 0)

64 (x1, x2) = (0,±1)

−16 (x1, x2) = (0,±2)

0 otherwise

and

φ2(x1, x2) =



76 (x1, x2) = (1, 0)

52 (x1, x2) = (−1, 0)

∓4 (x1, x2) = (±3, 0)

∓6 (x1, x2) = (±1, 1)

∓6 (x1, x2) = (±1,−1)

±2 (x1, x2) = (±3, 1)

±2 (x1, x2) = (±3,−1)

0 otherwise.

In this example, the following local limit theorem, which is illustrated by Figure 4.2,

describes the limiting behavior of φ(n). We have

φ(n)(x1, x2) = Kn
Λ(x1, x2) + o(n−5/12)

uniformly for (x1, x2) ∈ Z2 where KΛ is again a fundamental solution to ∂t + Λ = 0
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(a) (b)

Figure 4.2: The graphs of Re(φ(n)) (a) and Kn
Λ (b) for n = 10, 000.

where, in this case,

Λ =
1

64

(
−∂6

x1
+ 2∂4

x2
+ 2∂3

x1
∂2
x2

)
.

Example 3. Consider φ : Z2 → R defined by

φ(x, y) =



3/8 (x1, x2) = (0, 0)

1/8 (x1, x2) = ±(1, 1)

1/4 (x1, x2) = ±(1,−1)

−1/16 (x1, x2) = ±(2,−2)

0 otherwise.

Here, the following local limit theorem is valid:

φ(n)(x1, x2) =
(
1 + eiπ(x1+x2)

)
Kn

Λ(x1, x2) + o(n−3/4)

uniformly for (x1, x2) ∈ Z2. Here again, the attractor KΛ is the fundamental solution

to ∂t + Λ = 0 where

Λ = −1

8
∂2
x1

+
23

384
∂4
x1
− 1

4
∂x1∂x2−

25

96
∂3
x1
∂x2−

1

8
∂2
x2

+
23

64
∂2
x1
∂2
x2
− 25

96
∂x1∂

3
x2

+
23

384
∂4
x2
.

The operators appearing in the above examples share two important proper-

ties: homogeneity and positivity. While we make these notions precise in the
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next section, loosely speaking, homogeneity is the property that Λ “plays well”

with some dilation structure on Rd, though this structure is different in each

example. Further, homogeneity for Λ is reflected by an analogous one for the

corresponding heat kernel KΛ; in fact, the specific dilation structure is, in some

sense, selected by φ(n) as n→∞ and leads to the corresponding local limit the-

orem. We encourage the reader to see the recent article [72] for a more thorough

study of these examples and, in general, a more through study of local limit the-

orems. As we have often found–through local limit theorems and otherwise–

knowledge of the attractor KΛ informs our study of convolution powers (see

Theorem 1.6 and Section 5.1 of [72]).

The prototypical examples of homogeneous operators considered in this chap-

ter are the so-called semi-elliptic operators originally introduced by F. Brow-

der in [15] and shortly appearing thereafter in L. Hörmander’s treatise on lin-

ear partial differential operators [54, 55]. Given d-tuple of positive integers

n = (n1, n2, . . . , nd) ∈ Nd
+ and a multi-index β = (β1, β2, . . . , βd) ∈ Nd, set

|β : n| =
∑d

k=1 βk/nk. Consider the constant coefficient partial differential oper-

ator

Λ =
∑
|β:n|≤1

aβD
β

with principal part (relative to n)

Λp =
∑
|β:n|=1

aβD
β,

where aβ ∈ C and Dβ = (i∂x1)β1(i∂x2)β2 · · · (i∂xd)βd for each multi-index β ∈

Nd. Such an operator is said to be semi-elliptic if the symbol of Λp, defined by

Pp(ξ) =
∑
|β:n|=1 aβξ

β for ξ ∈ Rd, is non-vanishing away from the origin. If

Λ satisfies the stronger condition that RePp(ξ) is strictly positive away from
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the origin, we say that it is positive-semi-elliptic. What seems to be the most

important property of semi-elliptic operators is that their principal part Λp is

homogeneous in the following sense: If given any smooth function f we put

δt(f)(x) = f(t1/n1x1, t
1/n2x2, . . . , t

1/ndxd) for all t > 0 and x = (x1, x2, . . . , xd) ∈

Rd, then

tΛ = δ1/t ◦ Λp ◦ δt

for all t > 0. This homogeneous structure was used explicitly in the work of F.

Browder and L. Hörmander and, in this chapter, we generalize this notion. Our

generalization captures the operators appearing in Examples 1, 2 and 3.

As mentioned above, the class of semi-elliptic operators was introduced by F.

Browder in [15] who studied spectral asymptotics for a related class of variable-

coefficient operators (operators of constant strength). Semi-elliptic operators

appeared later in L. Hörmander’s text [54] as model examples of hypoelliptic

operators on Rd beyond the class of elliptic operators. Around the same time

L. R. Volevich [94] independently introduced the same class of operators but

instead called them “quasi-elliptic”. Since then, the theory of semi-elliptic oper-

ators, and hence quasi-elliptic operators, has reached a high level of sophistica-

tion and we refer the reader to the articles [1–5,15,49,50,54,55,58,90,92], which

use the term semi-elliptic, and the articles [11–13, 17, 23–30, 41, 67, 70, 91, 93, 94],

which use the term quasi-elliptic, for an account of this theory. We would also

like to point to the 1971 paper of M. Troisi [91] which gives a more complete list

of references (pertaining to quasi-elliptic operators).

Shortly after F. Browder’s paper [15] appeared, S. D. Eidelman considered a

subclass of semi-elliptic operators on Rd+1 = R ⊕ Rd (and systems thereof) of
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the form

∂t +
∑

|β:2m|≤1

aβD
β = ∂t +

∑
|β:m|≤2

aβD
β, (4.2)

where m ∈ Nd
+ and the coefficients aβ are functions of x and t. Such an oper-

ator is said to be 2m-parabolic if its spatial part,
∑
|β:2m|≤1 aβD

β , is (uniformly)

positive-semi-elliptic. We note however that Eidelman’s work and the exist-

ing literature refer exclusively to 2~b-parabolic operators, i.e., where m = ~b, and

for consistency we write 2~b-parabolic henceforth [36, 37]. The relationship be-

tween positive-semi-elliptic operators and 2~b-parabolic operators is analogous

to the relationship between the Laplacian and the heat operator and, in the con-

text of this chapter, the relationship between nondegenerate-homogeneous and

positive-homogeneous operators described by Proposition 4.2.4. The theory of

2~b-parabolic operators, which generalizes the theory of parabolic partial differ-

ential equations (and systems), has seen significant advancement by a number

of mathematicians since Eidelman’s original work. We encourage the reader to

see the recent text [37] which provides an account of this theory and an exhaus-

tive list of references. It should be noted however that the literature encompass-

ing semi-elliptic operators and quasi-elliptic operators, as far as we can tell, has

very few cross-references to the literature on 2~b-parabolic operators beyond the

1960’s. We suspect that the absence of cross-references is due to the distinctness

of vocabulary.

Returning to our discussion of convolution power examples, we note that the

operators appearing in Examples 1 and 2 are both positive-semi-elliptic and con-

sist only of their principal parts. This is easily verified, for n = (4, 2) = 2(2, 1)

in Example 1 and n = (6, 4) = 2(3, 2) in Example 2. In contrast to Examples

1 and 2, the operator Λ which appears in Example 3 is not semi-elliptic in the
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given coordinate system. After careful study, the Λ appearing in Example 3 can

be written equivalently as

Λ = −1

8
∂2
v1

+
23

384
∂4
v2

(4.3)

where ∂v1 is the directional derivative in the v1 = (1, 1) direction and ∂v2 is the

directional derivative in the v2 = (1,−1) direction. In this way, Λ is seen to be

semi-elliptic with respect to some basis {v1, v2} of R2. For this reason, our formu-

lation of nondegenerate-homogeneous operators (and positive-homogeneous

operators), given in the next section, is made in a basis independent way.

The subject of this chapter is an account of positive-homogeneous operators,

a class of operators which generalize semi-elliptic operators, and their corre-

sponding heat equations. In Section 4.2, we introduce positive-homogeneous

operators and study their basic properties; therein, we show that each positive-

homogeneous operator is semi-elliptic in some coordinate system. Section 4.3

develops the necessary background to introduce the class of variable-coefficient

operators studied in this chapter; this is the class of (2m,v)-positive-semi-

elliptic operators introduced in Section 4.4–each of which is comparable to a

constant-coefficient positive-homogeneous operator. In Section 4.5, we study

the heat equations corresponding to uniformly (2m,v)-positive-semi-elliptic

operators with Hölder continuous coefficients. Specifically, we use the famous

method of E. E. Levi, adapted to parabolic systems by A. Friedman and S. D.

Eidelman, to construct a fundamental solution to the corresponding heat equa-

tion. Our results in this direction are captured by those of S. D. Eidelman [36]

and the works of his collaborators, notably S. D. Ivashyshen and A. N. Kochubei

[37], concerning 2~b-parabolic systems. Our focus in this presentation is to high-

light the essential role played by the Legendre-Fenchel transform in heat kernel
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estimates which, to our knowledge, has not been pointed out in the context of

semi-elliptic operators. In a forthcoming work, we study an analogous class of

operators, written in divergence form, with measurable-coefficients and their

corresponding heat kernels. This class of measurable-coefficient operators does

not appear to have been previously studied. The results presented here, using

the Legendre-Fenchel transform, provides the background and context for our

work there.

4.1.1 Preliminaries

Fourier Analysis: Our setting is a real d-dimensional vector space V equipped

with Haar (Lebesgue) measure dx and the standard smooth structure; we do not

affix V with a norm or basis. The dual space of V is denoted by V∗ and the dual

pairing is denoted by ξ(x) for x ∈ V and ξ ∈ V∗. Let dξ be the Haar measure

on V∗ which we take to be normalized so that our convention for the Fourier

transform and inverse Fourier transform, given below, makes each unitary. For

the remainder of this thesis, all functions on V and V∗ are understood to be

complex-valued. For a non-empty open set Ω ⊆ V and 1 ≤ p ≤ ∞, we denote

by Lp(Ω) := Lp(Ω, dx) the usual Lebesgue space equipped with its usual norm

‖ · ‖Lp(Ω); when the context is clear, we will simply write ‖ · ‖p = ‖ · ‖Lp(Ω). In the

case that p = 2, the corresponding inner product on L2(Ω) is denoted by 〈·, ·〉. Of

course, we will also work with L2(V∗) := L2(V∗, dξ); here the L2-norm and inner

product will be denoted by ‖ · ‖2∗ and 〈·, ·〉∗ respectively. The Fourier transform

F : L2(V) → L2(V∗) and inverse Fourier transform F−1 : L2(V∗) → L2(V) are

initially defined for Schwartz functions f ∈ S(V) and g ∈ S(V∗) by

F(f)(ξ) = f̂(ξ) =

∫
V
eiξ(x)f(x) dx and F−1(g)(x) = ǧ(x) =

∫
V∗
e−iξ(x)g(ξ) dξ
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for ξ ∈ V∗ and x ∈ V respectively.

For the remainder of this chapter (mainly when duality isn’t of interest), W

stands for any real d-dimensional vector space (and so is interchangeable with

V or V∗). For a non-empty open set Ω ⊆ W , we denote by C(Ω) and Cb(Ω) the

set of continuous functions on Ω and bounded continuous functions on Ω, re-

spectively. The set of smooth functions on Ω is denoted by C∞(Ω) and the set

of compactly supported smooth functions on Ω is denoted by C∞0 (Ω). We de-

note by D′(Ω) the space of distributions on Ω; this is dual to the space C∞0 (Ω)

equipped with its usual topology given by seminorms. A partial differential

operator H on W is said to be hypoelliptic if it satisfies the following property:

Given any open set Ω ⊆ W and any distribution u ∈ D′(Ω) which satisfies

Hu = 0 in Ω, then necessarily u ∈ C∞(Ω).

Dilation Structure: Denote by End(W ) and Gl(W ) the set of endomorphisms

and isomorphisms of W respectively. Given E ∈ End(W ), we consider the one-

parameter group {tE}t>0 ⊆ Gl(W ) defined by

tE = exp((log t)E) =
∞∑
k=0

(log t)k

k!
Ek

for t > 0. These one-parameter subgroups of Gl(W ) allow us to define con-

tinuous one-parameter groups of operators on the space of distributions as fol-

lows: Given E ∈ End(W ) and t > 0, first define δEt (f) for f ∈ C∞0 (W ) by

δEt (f)(x) = f(tEx) for x ∈ W . Extending this to the space of distribution on W

in the usual way, the collection {δEt }t>0 is a continuous one-parameter group of

operators on D′(W ); it will allow us to define homogeneity for partial differen-

tial operators in the next section.
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Linear Algebra and Polynomials: Given a basis w = {w1, w2, . . . , wd} of W ,

we define the map φw : W → Rd by setting φw(w) = (x1, x2, . . . , xd) whenever

w =
∑d

l=1 xlwl. This map defines a global coordinate system on W ; any such

coordinate system is said to be a linear coordinate system on W . By definition,

a polynomial on W is a function P : W → C that is a polynomial function in

every (and hence any) linear coordinate system on W . A polynomial P on W is

called a nondegenerate polynomial if P (w) 6= 0 for all w 6= 0. Further, P is called

a positive-definite polynomial if its real part, R = ReP , is non-negative and has

R(w) = 0 only when w = 0.

The Rest: Finally, the symbols R,C,Z mean what they usually do, N denotes

the set of non-negative integers and I = [0, 1] ⊆ R. The symbols R+, N+ and I+

denote the set of strictly positive elements of R, N and I respectively. Likewise,

Rd
+, Nd

+ and Id+ respectively denote the set of d-tuples of these aforementioned

sets. We say that two real-valued functions f and g on a setX are comparable if,

for some positive constant C, C−1f(x) ≤ g(x) ≤ Cf(x) for all x ∈ X ; in this case

we write f � g. Adopting the summation notation for semi-elliptic operators of

L. Hörmander’s treatise [55], for a fixed n = (n1, n2, . . . , nd) ∈ Nd
+, we write

|β : n| =
d∑

k=1

βk
mk

.

for all multi-indices β = (β1, β2, . . . , βd) ∈ Nd. Finally, throughout the estimates

made in this chapter, constants denoted by C will change from line to line with-

out explicit mention.
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4.2 Homogeneous operators

In this section we introduce two important classes of homogeneous constant-

coefficient on V. These operators will serve as “model” operators in our theory

in the way that integer powers of the Laplacian serves a model operators in the

elliptic theory of partial differential equations. To this end, let Λ be a constant-

coefficient partial differential operator on V and let P : V∗ → C be its symbol.

Specifically, P is the polynomial on V∗ defined by P (ξ) = e−iξ(x)Λ(eiξ(x)) for

ξ ∈ V∗ (this is independent of x ∈ V precisely because Λ is a constant-coefficient

operator). We first introduce the following notion of homogeneity of operators;

it is mirrored by an analogous notion for symbols which we define shortly.

Definition 4.2.1. Given E ∈ End(V), we say that a constant-coefficient partial differ-

ential operator Λ is homogeneous with respect to the one-parameter group {δEt } if

δE1/t ◦ Λ ◦ δEt = tΛ

for all t > 0; in this case we say that E is a member of the exponent set of Λ and write

E ∈ Exp(Λ).

A constant-coefficient partial differential operator Λ need not be homogeneous

with respect to a unique one-parameter group {δEt }, i.e., Exp(Λ) is not necessar-

ily a singleton. For instance, it is easily verified that, for the Laplacian −∆ on

Rd,

Exp(−∆) = 2−1I + od

where I is the identity and od is the Lie algebra of the orthogonal group, i.e., is

given by the set of skew-symmetric matrices. Despite this lack of uniqueness,

when Λ is equipped with a nondegenerateness condition (see Definition 4.2.2),
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we will find that trace is the same for each member of Exp(Λ) and this allows us

to uniquely define an “order” for Λ; this is Lemma 4.2.10.

Given a constant coefficient operator Λ with symbol P , one can quickly verify

that E ∈ Exp(Λ) if and only if

tP (ξ) = P (tF ξ) (4.4)

for all t > 0 and ξ ∈ V∗ where F = E∗ is the adjoint of E. More generally, if

P is any continuous function on W and (4.4) is satisfied for some F ∈ End(V∗),

we say that P is homogeneous with respect to {tF} and write F ∈ Exp(P ). This

admitted slight abuse of notation should not cause confusion. In this language,

we see that E ∈ Exp(Λ) if and only if E∗ ∈ Exp(P ).

We remark that the notion of homogeneity defined above is similar to that put

forth for homogeneous operators on homogeneous (Lie) groups, e.g., Rockland

operators [39]. The difference is mostly a matter of perspective: A homogeneous

group G is equipped with a fixed dilation structure, i.e., it comes with a one-

parameter group {δt}, and homogeneity of operators is defined with respect to

this fixed dilation structure. By contrast, we fix no dilation structure on V and

formulate homogeneity in terms of an operator Λ and the existence of a one-

parameter group {δEt } that “plays” well with Λ in sense defined above. As seen

in the study of convolution powers on the square lattice (see [72]), it useful to

have this freedom.

Definition 4.2.2. Let Λ be constant-coefficient partial differential operator on V with

symbol P . We say that Λ is a nondegenerate-homogeneous operator if P is a nondegen-

erate polynomial and Exp(Λ) contains a diagonalizable endomorphism. We say that Λ
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is a positive-homogeneous operator if P is a positive-definite polynomial and Exp(Λ)

contains a diagonalizable endomorphism.

For any polynomial P on a finite-dimensional vector space W , P is said to be

nondegenerate-homogeneous if P is nondegenerate and Exp(P ), defined as the set

of F ∈ End(W ) for which (4.4) holds, contains a diagonalizable endomorphism.

We say that P is positive-homogeneous if it is a positive-definite polynomial and

Exp(P ) contains a diagonalizable endomorphism. In this language, we have the

following proposition.

Proposition 4.2.3. Let Λ be a positive homogeneous operator on V with symbol P .

Then Λ is a nondegenerate-homogeneous operator if and only if P is a nondegenerate-

homogeneous polynomial. Further, Λ is a positive-homogeneous operator if and only if

P is a positive-homogeneous polynomial.

Proof. Since the adjectives “nondegenerate” and “positive”, in the sense of both

operators and polynomials, are defined in terms of the symbol P , all that needs

to be verified is that Exp(Λ) contains a diagonalizable endomorphism if and

only if Exp(P ) contains a diagonalizable endomorphism. Upon recalling that

E ∈ Exp(Λ) if and only if E∗ ∈ Exp(P ), this equivalence is verified by simply

noting that diagonalizability is preserved under taking adjoints.

Remark 11. To capture the class of nondegenerate-homogeneous operators (or positive-

homogeneous operators), in addition to requiring that that the symbol P of an operator

Λ be nondegenerate (or positive-definite), one can instead demand only that Exp(Λ)

contains an endomorphism whose characteristic polynomial factors over R or, equiva-

lently, whose spectrum is real. This a priori weaker condition is seen to be sufficient by

an argument which makes use of the Jordan-Chevalley decomposition. In the positive-

homogeneous case, this argument is carried out in [72] (specifically Proposition 2.2)
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wherein positive-homogeneous operators are first defined by this (a priori weaker) con-

dition. For the nondegenerate case, the same argument pushes through with very little

modification.

We observe easily that all positive-homogeneous operators are nondegenerate-

homogeneous. It is the “heat” kernels corresponding to positive-homogeneous

operators that naturally appear in [72] as the attractors of convolution powers of

complex-valued functions. The following proposition highlights the interplay

between positive-homogeneity and nondegenerate-homogeneity for an opera-

tor Λ on V and its corresponding “heat” operator ∂t + Λ on R⊕ V.

Proposition 4.2.4. Let Λ be a constant-coefficient partial differential operator on V

whose exponent set Exp(Λ) contains a diagonalizable endomorphism. Let P be the

symbol of Λ, set R = ReP , and assume that there exists ξ ∈ V∗ for which R(ξ) > 0.

We have the following dichotomy: Λ is a positive-homogeneous operator on V if and

only if ∂t + Λ is a nondegenerate-homogeneous operator on R⊕ V.

Proof. Given a diagonalizable endomorphismE ∈ Exp(Λ), setE1 = I⊕E where

I is the identity on R. Obviously, E1 is diagonalizable. Further, for any f ∈

C∞0 (R⊕ V),

(
(∂t + Λ) ◦ δE1

s

)
(f)(t, x) =

(
∂t
(
f
(
st, sEx

))
+ Λ

(
f
(
st, sEx

)))
= s(∂t + Λ)(f)(st, sEx) = s

(
δE1
s ◦ (∂t + Λ)

)
(f)(t, x)

for all s > 0 and (t, x) ∈ R⊕ V. Hence

δE1

1/s ◦ (∂t + Λ) ◦ δE1
t = s(∂t + Λ)

for all s > 0 and therefore E1 ∈ Exp(∂t + Λ).
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It remains to show that P is positive-definite if and only if the symbol of

∂t + Λ is nondegenerate. To this end, we first compute the symbol of ∂t + Λ

which we denote by Q. Since the dual space of R ⊕ V is isomorphic to R ⊕ V∗,

the characters of R ⊕ V are represented by the collection of maps (R⊕ V) 3

(t, x) 7→ exp(−i(τt+ ξ(x))) where (τ, ξ) ∈ R⊕ V∗. Consequently,

Q(τ, ξ) = e−i(τt+ξ(x)) (∂t + Λ) (ei(τt+ξ(x)) = iτ + P (ξ)

for (τ, ξ) ∈ R ⊕ V∗. We note that P (0) = 0 because E∗ ∈ Exp(P ); in fact, this

happens whenever Exp(P ) is non-empty. Now if P is a positive-definite poly-

nomial, ReQ(τ, ξ) = ReP (ξ) = R(ξ) > 0 whenever ξ 6= 0. Thus to verify

that Q is a nondegenerate polynomial, we simply must verify that Q(τ, 0) 6= 0

for all non-zero τ ∈ R. This is easy to see because, in light of the above fact,

Q(τ, 0) = iτ + P (0) = iτ 6= 0 whenever τ 6= 0 and hence Q is nondegener-

ate. For the other direction, we demonstrate the validity of the contrapositive

statement. Assuming that P is not positive-definite, an application of the in-

termediate value theorem, using the condition that R(ξ) > 0 for some ξ ∈ V∗,

guarantees that R(η) = 0 for some non-zero η ∈ V∗. Here, we observe that

Q(τ, η) = i(τ + ImP (η)) = 0 when (τ, η) = (− ImP (η), η) and hence Q is not

nondegenerate.

We will soon return to the discussion surrounding a positive-homogeneous op-

erator Λ and its heat operator ∂t + Λ. It is useful to first provide representation

formulas for nondegenerate-homogeneous and positive-homogeneous opera-

tors. Such representations connect our homogeneous operators to the class of

semi-elliptic operators discussed in the introduction. To this end, we define the

“base” operators on V. First, for any element u ∈ V, we consider the differential
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operator Du : D′(V)→ D′(V) defined originally for f ∈ C∞0 (V) by

(Duf)(x) = i
∂f

∂u
(x) = i

(
lim
t→0

f(x+ tu)− f(x)

t

)
for x ∈ V. Fixing a basis v = {v1, v2, . . . , vd} of V, we introduce, for each multi-

index β ∈ Nd, Dβ
v = (Dv1)β1 (Dv2)β2 · · · (Dvd)

βd .

Proposition 4.2.5. Let Λ be a nondegenerate-homogeneous operator on V. Then there

exist a basis v = {v1, v2, . . . , vd} of V and n = (n1, n2, . . . , nd) ∈ Nd
+ for which

Λ =
∑
|β:n|=1

aβD
β
v. (4.5)

where {aβ} ⊆ C. The isomorphism En
v ∈ Gl(V), defined by En

vvk = (1/nk)vk for

k = 1, 2, . . . , d, is a member of Exp(Λ). Further, if Λ is positive-homogeneous, then

n = 2m for m = (m1,m2, . . . ,md) ∈ Nd
+ and hence

Λ =
∑
|β:m|=2

aβD
β
v.

We will sometimes refer to the n and m of the proposition as weights. Before ad-

dressing the proposition, we first prove the following mirrored result for sym-

bols.

Lemma 4.2.6. Let P be a nondegenerate-homogeneous polynomial on a d-dimensional

real vector space W. Then there exists a basis w = {w1, w2, . . . , wd} of W and n =

(n1, n2, . . . , nd) ∈ Nd
+ for which

P (ξ) =
∑
|β:n|=1

aβξ
β

for all ξ = ξ1w1 + ξ2w2 + · · · + ξdwd ∈ W where ξβ := (ξ1)β1 (ξ2)β2 · · · (ξd)βd and

{aβ} ⊆ C. The isomorphism En
w ∈ Gl(V), defined by En

wwk = (1/nk)wk for k =

1, 2, . . . , d, is a member of Exp(P ). Further, if P is a positive-definite polynomial, i.e.,
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it is positive-homogeneous, then n = 2m for m = (m1,m2, . . . ,md) ∈ Nd
+ and hence

P (ξ) =
∑
|β:m|=2

aβξ
β

for ξ ∈ W .

Proof. Let E ∈ Exp(P ) be diagonalizable and select a basis w = {w1, w2, . . . , wd}

which diagonalizes E, i.e., Ewk = δkwk where δk ∈ R for k = 1, 2, . . . , d. Because

P is a polynomial, there exists a finite collection {aβ} ⊆ C for which

P (ξ) =
∑
β

aβξ
β

for ξ ∈ W . By invoking the homogeneity of P with respect to E and using the

fact that tEwk = tδkwk for k = 1, 2, . . . , d, we have

t
∑
β

aβξ
β =

∑
β

aβ(tEξ)β =
∑
β

aβt
δ·βξβ

for all ξ ∈ W and t > 0 where δ · β = δ1β1 + δ2β2 + · · · + δdβd. In view of the

nondegenerateness of P , the linear independence of distinct powers of t and

the polynomial functions ξ 7→ ξβ , for distinct multi-indices β, as C∞ functions

ensures that aβ = 0 unless β · δ = 1. We can therefore write

P (ξ) =
∑
β·δ=1

aβξ
β (4.6)

for ξ ∈ W . We now determine δ = (δ1, δ2, . . . , δd) by evaluating this polynomial

along the coordinate axes. To this end, by fixing k = 1, 2, . . . , d and setting

ξ = xwk for x ∈ R, it is easy to see that the summation above collapses into a

single term aβx
|β| where β = |β|ek = (1/δk)ek (here ek denotes the usual kth-

Euclidean basis vector in Rd). Consequently, nk := 1/δk ∈ N+ for k = 1, 2, . . . , d

and thus, upon setting n = (n1, n2, . . . , nd), (4.6) yields

P (ξ) =
∑
|β:n|=1

aβξ
β
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for all ξ ∈ W as was asserted. In this notation, it is also evident that En
w = E ∈

Exp(P ). Under the additional assumption that P is positive-definite, we again

evaluate P at the coordinate axes to see that ReP (xwk) = Re(ankek)x
nk for x ∈ R.

In this case, the positive-definiteness of P requires Re(ankek) > 0 and nk ∈ 2N+

for each k = 1, 2, . . . , d. Consequently, n = 2m for m = (m1,m2, . . . ,md) ∈ Nd
+

as desired.

Proof of Proposition 4.2.5. Given a nondegenerate-homogeneous Λ on V with

symbol P , P is necessarily a nondegenerate-homogeneous polynomial on V∗

in view of Proposition 4.2.3. We can therefore apply Lemma 4.2.6 to select a

basis v∗ = {v∗1, v∗2, . . . , v∗d} of V∗ and n = (n1, n2, . . . , nd) ∈ Nd
+ for which

P (ξ) =
∑
|β:n|=1

aβξ
β (4.7)

for all ξ = ξ1v
∗
1 + ξ2v

∗
2 + · · · ξdv∗d where {aβ} ⊆ C. We will denote by v, the dual

basis to v∗, i.e., v = {v1, v2, . . . , vd} is the unique basis of V for which v∗k(vl) = 1

when k = l and 0 otherwise. In view of the duality of the bases v and v∗, it is

straightforward to verify that, for each multi-index β, the symbol of Dβ
v is ξβ in

the notation of Lemma 4.2.6. Consequently, the constant-coefficient partial dif-

ferential operator defined by the right hand side of (4.5) also has symbol P and

so it must be equal to Λ because operators and symbols are in one-to-one cor-

respondence. Using (4.5), it is now straightforward to verify that En
v ∈ Exp(Λ).

The assertion that n = 2m when Λ is positive-homogeneous follows from the

analogous conclusion of Lemma 4.2.6 by the same line of reasoning.

In view of Proposition 4.2.5, we see that all nondegenerate-homogeneous oper-

ators are semi-elliptic in some linear coordinate system (that which is defined
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by v). An appeal to Theorem 11.1.11 of [55] immediately yields the following

corollary.

Corollary 4.2.7. Every nondegenerate-homogeneous operator Λ on V is hypoelliptic.

Our next goal is to associate an “order” to each nondegenerate-homogeneous

operator. For a positive-homogeneous operator Λ, this order will be seen to

govern the on-diagonal decay of its heat kernel KΛ and so, equivalently, the ul-

tracontractivity of the semigroup e−tΛ (see Remark 19). With the help of Lemma

4.2.6, the few lemmas in this direction come easily.

Lemma 4.2.8. Let P be a nondegenerate-homogeneous polynomial on a d-dimensional

real vector space W . Then limξ→∞ |P (ξ)| = ∞; here ξ → ∞ means that |ξ| → ∞ in

any (and hence every) norm on W .

Proof. The idea of the proof is to construct a function which bounds |P | from

below and obviously blows up at infinity. To this end, let w be a basis for W

and take n ∈ Nd
+ as guaranteed by Lemma 4.2.6; we have En

w ∈ Exp(P ) where

En
wwk = (1/nk)wk for k = 1, 2, . . . , d. Define | · |nw : W → [0,∞) by

|ξ|nw =
d∑

k=1

|ξk|nk

where ξ = ξ1w1+ξ2w2+· · ·+ξdwd ∈ W . We observe immediatelyEn
w ∈ Exp(|·|nw)

because tEn
wwk = t1/nkwk for k = 1, 2, . . . , d. An application of Proposition 4.3.2

(a basic result appearing in our background section, Section 4.3), which uses the

nondegenerateness of P , gives a positive constant C for which |ξ|nw ≤ C|P (ξ)|

for all ξ ∈ W . The lemma now follows by simply noting that |ξ|nw → ∞ as

ξ →∞.

Lemma 4.2.9. Let P be a polynomial on W and denote by Sym(P ) the set of O ∈

End(W ) for which P (Oξ) = P (ξ) for all ξ ∈ W . If P is a nondegenerate-homogeneous
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polynomial, then Sym(P ), called the symmetry group of P , is a compact subgroup of

Gl(W ).

Proof. Our supposition that P is a nondegenerate polynomial ensures that, for

each O ∈ Sym(P ), Ker(O) is empty and hence O ∈ Gl(W ). Consequently,

given O1 and O2 ∈ Sym(P ), we observe that P (O−1
1 ξ) = P (O1O

−1
1 ξ) = P (ξ)

and P (O1O2ξ) = P (O2ξ) = P (ξ) for all ξ ∈ W ; therefore Sym(P ) is a subgroup

of Gl(W ).

To see that Sym(P ) is compact, in view of the finite-dimensionality of Gl(W )

and the Heine-Borel theorem, it suffices to show that Sym(P ) is closed and

bounded. First, for any sequence {On} ⊆ Sym(P ) for which On → O as n→∞,

the continuity of P ensures that P (Oξ) = limn→∞ P (Onξ) = limn→∞ P (ξ) = P (ξ)

for each ξ ∈ W and therefore Sym(P ) is closed. It remains to show that Sym(P )

is bounded; this is the only piece of the proof that makes use of the fact that P

is nondegenerate-homogeneous and not simply homogeneous. Assume that, to

reach a contradiction, that there exists an unbounded sequence {On} ⊆ Sym(P ).

Choosing a norm | · | on W , let S be the corresponding unit sphere in W .

Then there exists a sequence {ξn} ⊆ W for which |ξn| = 1 for all n ∈ N+ but

limn→∞ |Onξn| =∞. In view of Lemma 4.2.8,

∞ = lim
n→∞

|P (Onξn)| = lim
n→∞

|P (ξn)| ≤ sup
ξ∈S
|P (ξ)|,

which cannot be true for P is necessarily bounded on S because it is continuous.

Lemma 4.2.10. Let Λ be a nondegenerate-homogeneous operator. For any E1, E2 ∈

Exp(Λ),

trE1 = trE2.
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Proof. Let P be the symbol of Λ and take E1, E2 ∈ Exp(Λ). Since E∗1 , E
∗
2 ∈

Exp(P ), tE∗1 t−E∗2 ∈ Sym(P ) for all t > 0. As Sym(P ) is a compact group in view

of the previous lemma, the determinant map det : Gl(V∗) → C∗, a Lie group

homomorphism, necessarily maps Sym(P ) into the unit circle. Consequently,

1 = | det(tE
∗
1 t−E

∗
2 )| = | det(tE

∗
1 ) det(t−E

∗
2 ) = |ttrE∗1 t− trE∗2 | = ttrE

∗
1 t− trE∗2

for all t > 0. Therefore, trE1 = trE∗1 = trE∗2 = trE2 as desired.

By the above lemma, to each nondegenerate-homogenerous operator Λ, we de-

fine the homogeneous order of Λ to be the number

µΛ = trE

for any E ∈ Exp(Λ). By an appeal to Proposition 4.2.5, En
v ∈ Exp(Λ) for some

n ∈ N+ and so we observe that

µΛ =
1

n1

+
1

n2

+ · · ·+ 1

nd
. (4.8)

In particular, µΛ is a positive rational number.

4.2.1 Positive-homogeneous operators and their heat kernels

We now restrict our attention to the study of positive-homogeneous operators

and their associated heat kernels. To this end, let Λ be a positive-homogeneous

operator on V with symbol P and homogeneous order µΛ. The heat kernel for

Λ arises naturally from the study of the following Cauchy problem for the cor-

responding heat equation ∂t + Λ = 0: Given initial data f : V→ C which is, say,
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bounded and continuous, find u(t, x) satisfying
(∂t + Λ)u = 0 in (0,∞)× V

u(0, x) = f(x) for x ∈ V.
(4.9)

The initial value problem (4.9) is solved by putting

u(t, x) =

∫
V
Kt

Λ(x− y)f(y) dy

where K(·)
Λ (·) : (0,∞)× V→ C is defined by

Kt
Λ(x) = F−1

(
e−tP

)
(x) =

∫
V∗
e−iξ(x)e−tP (ξ) dξ

for t > 0 and x ∈ V; we call KΛ the heat kernel associated to Λ. Equivalently,

KΛ is the integral (convolution) kernel of the continuous semigroup {e−tΛ}t>0 of

bounded operators on L2(V) with infinitesimal generator −Λ. That is, for each

f ∈ L2(V), (
e−tΛf

)
(x) =

∫
V
Kt

Λ(x− y)f(y) dy (4.10)

for t > 0 and x ∈ V (see Lemma 5.3.1). Let us make some simple observations

about KΛ. First, by virtue of Lemma 4.2.8, it follows that Kt
Λ ∈ S(V) for each

t > 0. Further, for any E ∈ Exp(Λ),

Kt
Λ(x) =

∫
V∗
e−iξ(x)e−P (tE

∗
ξ) dξ =

∫
V∗
e−i(t

−E∗ )ξ(x)e−P (ξ) det(t−E
∗
) dξ

=
1

ttrE

∫
V∗
e−iξ(t

−Ex)e−P (ξ) dξ =
1

tµΛ
K1

Λ(t−Ex)

for t > 0 and x ∈ V. This computation immediately yields the so-called on-

diagonal estimate for KΛ,

‖e−tΛ‖1→∞ = ‖Kt
Λ‖∞ =

1

tµΛ
‖K1

Λ‖∞ ≤
C

tµΛ

for t > 0; this is equivalently a statement of ultracontractivity for the semigroup

e−tΛ. As it turns out, we can say something much stronger.
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Proposition 4.2.11. Let Λ be a positive-homogeneous operator with symbol P and

homogeneous order µΛ. Let R# : V → R be the Legendre-Fenchel transform of R =

ReP defined by

R#(x) = sup
ξ∈V∗
{ξ(x)−R(ξ)}

for x ∈ V. Also, let v and m ∈ Nd
+ be as guaranteed by Proposition 4.2.5. Then, there

exit positive constants C0 and M and, for each multi-index β, a positive constant Cβ

such that, for all k ∈ N,

∣∣∂ktDβ
vK

t
Λ(x− y)

∣∣ ≤ CβC
k
0k!

tµΛ+k+|β:2m| exp

(
−tMR#

(
x− y
t

))
(4.11)

for all x, y ∈ V and t > 0. In particular,

∣∣Kt
Λ(x− y)

∣∣ ≤ C

tµΛ
exp

(
−tMR#

(
x− y
t

))
(4.12)

for all x, y ∈ V and t > 0.

Remark 12. In view of (4.8), the exponent on the prefactor in (4.11) can be equivalently

written, for any multi-index β and k ∈ N, as µΛ + k + |β : 2m| = k + |1 + β : 2m| =

|1 + 2km + β : 2m| where 1 = (1, 1, . . . , 1).

We prove the proposition above in the Section 4.5; the remainder of this section

is dedicated to discussing the result and connecting it to the existing theory.

Let us first note that the estimate (4.11) is mirrored by an analogous space-time

estimate, Theorem 5.3 of [72], for the convolution powers of complex-valued

functions on Zd satisfying certain conditions (see Section 5 of [72]). The rela-

tionship between these two results, Theorem 5.3 of [72] and Proposition 4.2.11,

parallels the relationship between Gaussian off-diagonal estimates for random

walks and the analogous off-diagonal estimates enjoyed by the classical heat

kernel [46].
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Let us first show that the estimates (4.11) and (4.12) recapture the well-known

estimates of the theory of parabolic equations and systems in Rd – a theory in

which the Laplacian operator ∆ =
∑d

l=1 ∂
2
xl

and its integer powers play a central

role. To place things into the context of this chapter, let us observe that, for

each positive integer m, the partial differential operator (−∆)m is a positive-

homogeneous operator on Rd with symbol P (ξ) = |ξ|2m; here, we identify Rd as

its own dual equipped with the dot product and Euclidean norm | · |. Indeed,

one easily observes that P = | · |2m is a positive-definite polynomial and E =

(2m)−1I ∈ Exp((−∆)m) where I ∈ Gl(Rd) is the the identity. Consequently, the

homogeneous order of (−∆)m is d/2m = (2m)−1 tr(I) and the Legendre-Fenchel

transform of R = ReP = | · |2m is easily computed to be R#(x) = Cm|x|2m/(2m−1)

where Cm = (2m)1/(2m−1) − (2m)−2m/(2m−1) > 0. Hence, (4.12) is the well-known

estimate ∣∣Kt
(−∆)m(x− y)

∣∣ ≤ C

td/2m
exp

(
−M |x− y|

2m/(2m−1)

t1/(2m−1)

)
for x, y ∈ Rd and t > 0; this so-called off-diagonal estimate is ubiquitous to

the theory of “higher-order” elliptic and parabolic equations [20, 35, 40, 77]. To

write the derivative estimate (4.11) in this context, we first observe that the basis

given by Proposition 4.2.5 can be taken to be the standard Euclidean basis, e =

{e1, e2, . . . , ed} and further, m = (m,m, . . . ,m) is the (isotropic) weight given

by the proposition. Writing Dβ = Dβ
e = (i∂x1)β1(i∂x2)β2 · · · (i∂xd)βd and |β| =

β1 + β2 + · · ·+ βd for each multi-index β, (4.11) takes the form

∣∣∂ktDβKt
(−∆)m(x− y)

∣∣ ≤ C

t(d+|β|)/2m+k
exp

(
−M |x− y|

2m/(2m−1)

t1/(2m−1)

)
for x, y ∈ Rd and t > 0, c.f., [35, Property 4, p. 93].

The appearance of the 1-dimensional Legendre-Fenchel transform in heat ker-
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nel estimates was previously recognized and exploited in [9] and [10] in the

context of elliptic operators. Due to the isotropic nature of elliptic operators,

the 1-dimensional transform is sufficient to capture the inherent isotropic decay

of corresponding heat kernels. Beyond the elliptic theory, the appearance of the

full d-dimensional Legendre-Fenchel transform is remarkable because it sharply

captures the general anisotropic decay of KΛ. Consider, for instance, the partic-

ularly simple positive-homogeneous operator Λ = −∂6
x1

+∂8
x2

on R2 with symbol

P (ξ1, ξ2) = ξ6
1 + ξ8

2 . It is easily checked that the operator E with matrix represen-

tation diag(1/6, 1/8), in the standard Euclidean basis, is a member of the Exp(Λ)

and so the homogeneous order of Λ is µΛ = tr(diag(1/6, 1/8)) = 7/24. Here we

can compute the Legendre-Fenchel transform of R = ReP = P directly to ob-

tainR#(x1, x2) = c1|x1|6/5 +c2|x2|8/7 for (x1, x2) ∈ R2 where c1 and c2 are positive

constants. In this case, Proposition 4.2.11 gives positive constants M1,M2 and C

for which

|Kt
Λ(x1−y1, x2−y2)| ≤ C

t7/24
exp

(
−
(
M1
|x1 − y1|6/5

t1/5
+M2

|x2 − y2|8/7

t1/7

))
(4.13)

for (x1, x2), (y1, y2) ∈ R2 and t > 0. We note however that Λ is “separable” and so

we can write Kt
Λ(x1, x2) = Kt

(−∆)3(x1)Kt
(−∆)4(x2) where ∆ is the 1-dimensional

Laplacian operator. In view of Theorem 8 of [9] and its subsequent remark, the

estimate (4.13) is seen to be sharp (modulo the values of M1,M2 and C). To fur-

ther illustrate the proposition for a less simple positive-homogeneous operator,

we consider the operator Λ appearing in Example 3. In this case,

R(ξ1, ξ2) = P (ξ1, ξ2) =
1

8
(ξ1 + ξ2)2 +

23

384
(ξ1 − ξ2)4

and one can verify directly that the E ∈ End(R2), with matrix representation

Ee =

3/8 1/8

1/8 3/8
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in the standard Euclidean basis, is a member of Exp(Λ). From this, we immedi-

ately obtain µΛ = tr(E) = 3/4 and one can directly compute

R#(x1, x2) = M1|x1 + x2|2 +M2|x1 − x2|4/3

for (x1, x2) ∈ R2 where M1 and M2 are positive constants. Consequently,

|Kt
Λ(x1 − y1, x2 − y2)|

≤ C

t3/4
exp

(
−
(
M1
|(x1 − y1) + (x2 − y2)|2

t
+M2

|(x1 − y1)− (x2 − y2)|4/3

t1/3

))
for (x1, x2), (y1, y2) ∈ R2 and t > 0. Furthermore, m = (1, 2) ∈ N2

+ and the

basis v = {v1, v2} of R2 given in discussion surrounding (4.3) are precisely those

guaranteed by Proposition 4.2.5. Appealing to the full strength of Proposition

4.2.11, we obtain positive constants C,M1 and M2 and, for each multi-index β, a

positive constant Cβ such that, for each k ∈ N,

∣∣∂ktDβ
vKΛ(x1 − y1, x2 − y2)

∣∣ CβC
k
0k!

t3/4+k+|β:2m| exp
(
−
(
M1
|(x1 − y1) + (x2 − y2)|2

t

+M2
|(x1 − y1)− (x2 − y2)|4/3

t1/3

))
for (x1, x2), (y1, y2) ∈ R2 and t > 0.

In the context of homogeneous groups, the off-diagonal behavior for the heat

kernel of a positive Rockland operator (a positive self-adjoint operator which

is homogeneous with respect to the fixed dilation structure) has been studied

in [7,34,47] (see also [3]). Given a positive Rockland operator Λ on homogeneous

groupG, the best known estimate for the heat kernelKΛ, due to Auscher, ter Elst

and Robinson, is of the form

|Kt
Λ(h−1g)| ≤ C

tµΛ
exp

(
−M

(
‖h−1g‖2m

t

)1/(2m−1)
)

(4.14)
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where ‖ · ‖ is a homogeneous norm on G (consistent with Λ) and 2m is the

highest order derivative appearing in Λ. In the context of Rd, given a sym-

metric and positive-homogeneous operator Λ with symbol P , the structure

GD = (Rd, {δDt }) for D = 2mE where E ∈ Exp(Λ) is a homogeneous group

on which Λ becomes a positive Rockland operator. On GD, it is quickly veri-

fied that ‖ · ‖ = R(·)1/2m is a homogeneous norm (consistent with Λ) and so the

above estimate is given in terms of R(·)1/(2m−1) which is, in general, dominated

by the Legendre-Fenchel transform of R. To see this, we need not look further

than our previous and simple example in which Λ = −∂6
x1

+ ∂8
x2

. Here 2m = 8

and so R(x1, x2)1/(2m−1) = (|x1|6 + |x2|8)1/7. In view of (4.13), the estimate (4.14)

gives the correct decay along the x2-coordinate axis; however, the bounds de-

cay at markedly different rates along the x1-coordinate axis. This illustrates that

the estimate (4.14) is suboptimal, at least in the context of Rd, and thus leads

to the natural question: For positive-homogeneous operators on a general ho-

mogeneous group G, what is to replace the Legendre-Fenchel transform in heat

kernel estimates?

Returning to the general picture, let Λ be a positive-homogeneous operator on

V with symbol P and homogeneous order µΛ. To highlight some remarkable

properties about the estimates (4.11) and (4.12) in this general setting, the fol-

lowing proposition concerning R# is useful; for a proof, see Section 8.3 of [72].

Proposition 4.2.12. Let Λ be a positive-homogeneous operator with symbol P and let

R# be the Legendre-Fenchel transform of R = ReP . Then, for any E ∈ Exp(Λ),

I − E ∈ Exp(R#). Moreover R# is continuous, positive-definite in the sense that

R#(x) ≥ 0 and R#(x) = 0 only when x = 0. Further, R# grows superlinearly in the

187



sense that, for any norm | · | on V,

lim
x→∞

|x|
R#(x)

= 0;

in particular, R#(x)→∞ as x→∞.

Let us first note that, in view of the proposition, we can easily rewrite (4.12), for

any E ∈ Exp(Λ), as∣∣Kt
Λ(x− y)

∣∣ ≤ C

tµΛ
exp

(
−MR#

(
t−E(x− y)

))
for x, y ∈ V and t > 0; the analogous rewriting is true for (4.11). The fact

that R# is positive-definite and grows superlinearly ensures that the convolu-

tion operator e−tΛ defined by (4.10) for t > 0 is a bounded operator from Lp

to Lq for any 1 ≤ p, q ≤ ∞. Of course, we already knew this because Kt
Λ is a

Schwartz function; however, when replacing Λ with a variable-coefficient op-

erator H , as we will do in the sections to follow, the validity of the estimate

(4.12) for the kernel of the semigroup {e−tH} initially defined on L2, guaran-

tees that the semigroup extends to a strongly continuous semigroup {e−tHp} on

Lp(Rd) for all 1 ≤ p ≤ ∞ and, what’s more, the respective infinitesimal genera-

tors −Hp have spectra independent of p [21]. Further, the estimate (4.12) is key

to establishing the boundedness of the Riesz transform, it is connected to the

resolution of Kato’s square root problem and it provides the appropriate start-

ing point for uniqueness classes of solutions to ∂t + H = 0 [6, 69]. With this

motivation in mind, following some background in Section 4.3, we introduce

a class of variable-coefficient operators in Section 4.4 called (2m,v)-positive-

semi-elliptic operators, each such operator H comparable to a fixed positive-

homogeneous operator. In Section 4.5, under the assumption that H has Hölder

continuous coefficients and this notion of comparability is uniform, we con-

struct a fundamental solution to the heat equation ∂t + H = 0 and show the
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essential role played by the Legendre-Fenchel transform in this construction.

As mentioned previously, in a forthcoming work we will study the semigroup

{e−tH} where H is a divergence-form operator, which is comparable to a fixed

positive-homogeneous operator, whose coefficients are at worst measurable. As

the Legendre-Fenchel transform appears here by a complex change of variables

followed by a minimization argument, in the measurable coefficient setting it

appears quite naturally by an application of the so-called Davies’ method, suit-

ably adapted to the positive-homogeneous setting.

4.3 Contracting groups, Hölder continuity and the Legendre-

Fenchel transform

In this section, we provide the necessary background on one-parameter con-

tracting groups, anisotropic Hölder continuity, and the Legendre-Fenchel trans-

form and its interplay with the two previous notions.

4.3.1 One-parameter contracting groups

In what follows, W is a d-dimensional real vector space with a norm | · |; the

corresponding operator norm on Gl(W ) is denoted by ‖ · ‖. Of course, since

everything is finite-dimensional, the usual topologies on W and Gl(W ) are in-

sensitive to the specific choice of norms.

Definition 4.3.1. Let {Tt}t>0 ⊆ Gl(W ) be a continuous one-parameter group. {Tt} is
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said to be contracting if

lim
t→0
‖Tt‖ = 0.

We easily observe that, for any diagonalizable E ∈ End(W ) with strictly pos-

itive spectrum, the corresponding one-parameter group {tE}t>0 is contracting.

Indeed, if there exists a basis w = {w1, w2, . . . , wd} of W and a collection of pos-

itive numbers λ1, λ2, . . . , λd for which Ewk = λkwk for k = 1, 2, . . . , d, then the

one parameter group {tE}t>0 has tEwk = tλkwk for k = 1, 2, . . . , d and t > 0. It

then follows immediately that {tE} is contracting.

Proposition 4.3.2. Let Q and R be continuous real-valued functions on W . If R(w) >

0 for all w 6= 0 and there exists E ∈ Exp(Q) ∩ Exp(R) for which {tE} is contracting,

then, for some positive constant C, Q(w) ≤ CR(w) for all w ∈ W . If additionally

Q(w) > 0 for all w 6= 0, then Q � R.

Proof. Let S denote the unit sphere in W and observe that

sup
w∈S

Q(w)

R(w)
=: C <∞

because Q and R are continuous and R is non-zero on S. Now, for any non-

zero w ∈ W , the fact that tE is contracting implies that tEw ∈ S for some t > 0

by virtue of the intermediate value theorem. Therefore, Q(w) = Q(tEw)/t ≤

CR(tEw)/t = CR(w). In view of the continuity of Q and R, this inequality

must hold for all w ∈ W . When additionally Q(w) > 0 for all non-zero w, the

conclusion that Q � R is obtained by reversing the roles of Q and R in the

preceding argument.

Corollary 4.3.3. Let Λ be a positive-homogeneous operator on V with symbol P and

let R# be the Legendre-Fenchel transform of R = ReP . Then, for any positive constant

M , R# � (MR)#.
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Proof. By virtue of Proposition 4.2.5, let m ∈ Nd
+ and v be a basis for V and

for which E2m
v ∈ Exp(Λ). In view of Proposition 4.2.12, R# and (MR)# are

both continuous, positive-definite and have F 2m
v := I − E2m

v ∈ Exp(R#) ∩

Exp((MR)#). Upon noting that F 2m
v vk = ((2mk − 1)/2mk)vk for k = 1, 2, . . . , d,

we immediately conclude that {tF 2m
v } is contracting and so the corollary follows

directly from Proposition 4.3.2.

Lemma 4.3.4. Let P be a positive-homogeneous polynomial on W and let n = 2m ∈

Nd
+ and w be a basis forW for which the conclusion of Lemma 4.2.6 holds. LetR = ReP

and let β and γ be multi-indices such that γ ≤ β (in the standard partial ordering of

multi-indices); we shall assume the notation of the lemma.

1. For any n ∈ N+ such that |β : m| ≤ 2n, there exist positive constants M and M ′

for which

|ξγνβ−γ| ≤M(R(ξ) +R(ν))n +M ′

for all ξ, ν ∈ W .

2. If |β : m| = 2, there exist positive constants M and M ′ for which

|ξγνβ−γ| ≤MR(ξ) +M ′R(ν)

for all ν, ξ ∈ W .

3. If |β : m| = 2 and β > γ, then for every ε > 0 there exists a positive constant M

for which

|ξγνβ−γ| ≤ εR(ξ) +MR(ν)

for all ν, ξ ∈ W .

Proof. Assuming the notation of Lemma 4.2.6, let E = E2m
w ∈ End(W ) and

consider the contracting group {tE⊕E} = {tE ⊕ tE} on W ⊕ W . Because R is
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a positive-definite polynomial, it immediately follows that W ⊕W 3 (ξ, ν) 7→

R(ξ) + R(ν) is positive-definite. Let | · | be a norm on W ⊕W and respectively

denote by B and S the corresponding unit ball and unit sphere in this norm.

To see Item 1, first observe that

sup
(ξ,ν)∈S

|ξγνβ−γ|
(R(ξ) +R(ν))n

=: M <∞

Now, for any (ξ, ν) ∈ W ⊕ W \ B, because {tE⊕E} is contracting, it follows

from the intermediate value theorem that, for some t ≥ 1, t−(E⊕E)(ξ, ν) =

(t−Eξ, t−Eν) ∈ S. Correspondingly,

|ξγνβ−γ| = t|β:2m||(t−Eξ)γ(t−E)β−γ|

≤ t|β:2m|M(R(t−Eξ) +R(t−Eν))n

≤ t|β:m|/2−nM(R(ξ) +R(ν))n

≤ M(R(ξ) +R(ν))n

because |β : m|/2 ≤ n. One obtains the constant M ′ and hence the desired

inequality by simply noting that |ξγνβ−γ| is bounded for all (ξ, ν) ∈ B.

For Item 2, we use analogous reasoning to obtain a positive constant M

for which |ξγνβ−γ| ≤ M(R(ξ) + R(ν)) for all (ξ, ν) ∈ S. Now, for any non-

zero (ξ, ν) ∈ W ⊕ W , the intermediate value theorem gives t > 0 for which

tE⊕E(ξ, ν) = (tEξ, tEν) ∈ S and hence

|ξγνβ−γ| ≤ t−|β:2m|M(R(tEξ) +R(tEν)) = M(R(ξ) +R(ν))

where we have used the fact that |β : 2m| = |β : m|/2 = 1 and that E ∈ Exp(R).

As this inequality must also trivially hold at the origin, we can conclude that it

holds for all ξ, ν ∈ W , as desired.
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Finally, we prove Item 3. By virtue of Item 2, for any ξ, ν ∈ W and t > 0,

|ξγνβ−γ| = |(tEt−Eξ)γνβ−γ| = t|γ:2m||(t−Eξ)γνβ−γ|

≤ t|γ:2m| (MR(t−Eξ) +M ′R(ν)
)

= Mt|γ:2m|−1R(ξ) +M ′t|γ:2m|R(ν).

Noting that |γ : 2m| − 1 < 0 because γ < β, we can make the coefficient of

R(ξ) arbitrarily small by choosing t sufficiently large and thereby obtaining the

desired result.

4.3.2 Notions of regularity and Hölder continuity

Throughout the remainder of this chapter, v will denote a fixed basis for V and

correspondingly we henceforth assume the notational conventions appearing in

Proposition 4.2.5 and n = 2m is fixed. For α ∈ Rd
+, consider the homogeneous

norm | · |αv defined by

|x|αv =
d∑
i=1

|xi|αi

for x ∈ V where φv(x) = (x1, x2, . . . , xd). As one can easily check,

|tAαx|αv = t|x|αv

for all t > 0 and x ∈ V where Aα ∈ End(V) is represented by the matrix

(Aα)v = diag(α−1
1 , α−1

2 , . . . , α−1
d )

with respect to the basis v.

Definition 4.3.5. Let m ∈ Nd
+. We say that α ∈ Rd

+ is consistent with m if

Aα = ω(I − E) (4.15)

for some ω > 0 where Aα is as above and E is that which appears in Proposition 4.2.5.

193



As one can check, α is consistent with m if and only if α = a−1ω where

ω =

(
2m1

2m1 − 1
,

2m2

2m2 − 1
, . . . ,

2md

2md − 1

)
. (4.16)

Definition 4.3.6. Let Ω ⊆ Ω′ ⊆ V and let f : Ω′ → C. We say that f is v-Hölder

continuous on Ω if for some α ∈ Id+ and positive constant M ,

|f(x)− f(y)| ≤M |x− y|αv (4.17)

for all x, y ∈ Ω. In this case we will say that α is the v-Hölder exponent of f . If Ω = Ω′

we will simply say that f is v-Hölder continuous with exponent α.

The following proposition essentially states that, for bounded functions, Hölder

continuity is a local property; its proof is straightforward and is omitted.

Proposition 4.3.7. Let Ω ⊆ V be open and non-empty. If f is bounded and v-Hölder

continuous of order α ∈ Id+, then, for any β < α, f is also v-Hölder continuous of order

β.

In view of the proposition, we immediately obtain the following corollary.

Corollary 4.3.8. Let Ω ⊆ V be open and non-empty and m ∈ Nd
+. If f is bounded and

v-Hölder continuous on Ω of order β ∈ Id+, there exists α ∈ Id+ which is consistent with

m for which f is also v-Hölder continuous of order α.

Proof. The statement follows from the proposition by choosing any α, consistent

with m, such that α ≤ β.

The following definition captures the minimal regularity we will require of fun-

damental solutions to the heat equation.
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Definition 4.3.9. Let n ∈ Nd
+, v be a basis of V and let O be a non-empty open subset

of [0, T ] × V. A function u(t, x) is said to be (n,v)-regular on O if on O it is contin-

uously differentiable in t and has continuous (spatial) partial derivatives Dβ
vu(t, x) for

all multi-indices β for which |β : n| ≤ 1.

4.3.3 The Legendre-Fenchel transform and its interplay with v-

Hölder continuity

Throughout this section, R is the real part of the symbol P of a positive-

homogeneous operator Λ on V. We assume the notation of Proposition 4.2.12

(and hence Proposition 4.2.5) and write E = E2m
v . Let us first record two impor-

tant results which follow essentially from Proposition 4.2.12.

Corollary 4.3.10.

R# � | · |ωv.

where ω was defined in (4.16).

Proof. In view of Propositions 4.2.5 and 4.2.12, F 2m
v = I − E2m

v ∈ Exp(R#) ∩

Exp(| · |ωv). After recalling that {tF 2m
v } is contracting, Proposition 4.3.2 yields the

desired result immediately.

By virtue of Proposition 4.2.12, standard arguments immediately yield the fol-

lowing corollary.

Corollary 4.3.11. For any ε > 0 and polynomial Q : V→ C, i.e., Q is a polynomial in

any coordinate system, then

Q(·)e−εR#(·) ∈ L∞(V) ∩ L1(V).
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Lemma 4.3.12. Let γ = (2mmax − 1)−1. Then for any T > 0, there exists M > 0 such

that

R#(x) ≤MtγR#(t−Ex)

for all x ∈ V and 0 < t ≤ T .

Proof. In view of Corollary 4.3.10, it suffices to prove the statement

|tEx|ωv ≤Mtγ|x|ωv

for all x ∈ V and 0 < t ≤ T where M > 0 and ω is given by (4.16). But for any

0 < t ≤ T and x ∈ V,

|tEx|ωv =
d∑
j=1

t1/(2mj−1)|xj|ωj ≤ tγ
d∑
j=1

T (1/(2mj−1)−γ)|xj|ωj

from which the result follows.

Lemma 4.3.13. Let α ∈ Id+ be consistent with m. Then there exists positive constants

σ and θ such that 0 < σ < 1 and for any T > 0 there exists M > 0 such that

|x|αv ≤Mtσ(R#(t−Ex))θ

for all x ∈ V and 0 < t ≤ T .

Proof. By an appeal to Corollary 4.3.10 and Lemma 4.3.12,

|x|ωv ≤MtγR#(t−Ex)

for all x ∈ V and 0 < t ≤ T . Since α is consistent with m, α = a−1ω where a

is that of Definition 4.3.5, the desired inequality follows by setting σ = γ/a and

θ = 1/a. Because α ∈ Id+, it is necessary that a ≥ 2mmin/(2mmin − 1) whence

0 < σ ≤ (2mmin − 1)/(2mmin(2mmax − 1)) < 1.
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The following corollary is an immediate application of Lemma 4.3.13.

Corollary 4.3.14. Let f : V → C be v-Hölder continuous with exponent α ∈ Id+ and

suppose that α is consistent with m. Then there exist positive constants σ and θ such

that 0 < σ < 1 and, for any T > 0, there exists M > 0 such that

|f(x)− f(y)| ≤Mtσ(R#(t−E))θ

for all x, y ∈ V and 0 < t ≤ T . In particular, this estimate holds for the coefficients of

H .

4.4 On (2m,v)-positive-semi-elliptic operators

In this section, we introduce a class of variable-coefficient operators on V whose

heat equations are studied in the next section. These operators, in view of

Proposition 4.2.5, generalize the class of positive-homogeneous operators. Fix

a basis v of V, m ∈ Nd
+ and, in the notation of the previous section, consider a

differential operator H of the form

H =
∑
|β:m|≤2

aβ(x)Dβ
v =

∑
|β:m|=2

aβ(x)Dβ
v +

∑
|β:m|<2

aβ(x)Dβ
v

:= Hp +Hl

where the coefficients aβ : V → C are bounded functions. The symbol of H ,

P : V× V∗ → C, is defined by

P (y, ξ) =
∑
|β:m|≤2

aβ(y)ξβ =
∑
|β:m|=2

aβ(y)ξβ +
∑
|β:m|<2

aβ(y)ξβ

:= Pp(y, ξ) + Pl(y, ξ).

for y ∈ V and ξ ∈ V∗. We shall call Hp the principal part of H and correspond-

ingly, Pp is its principal symbol. Let’s also define R : V∗ → R by

R(ξ) = RePp(0, ξ) (4.18)
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for ξ ∈ V∗. At times, we will freeze the coefficients of H and Hp at a point

y ∈ V and consider the constant-coefficient operators they define, namely H(y)

and Hp(y) (defined in the obvious way). We note that, for each y ∈ V, Hp(y)

is homogeneous with respect to the one-parameter group {δEt }t>0 where E ∈

Gl(V) is defined by its matrix representation

Ev = diag{(2m1)−1, (2m2)−1, . . . , (2md)
−1}

in the basis v; i.e., it is homogeneous with respect to the same one-parameter

group of dilations at each point in space. This also allows us to uniquely define

the homogeneous order of H by

µH = trE = (2m1)−1 + (2m2)−1 + · · ·+ (2md)
−1. (4.19)

As in the constant-coefficient setting, Hp(y) is not necessarily homogeneous

with respect to a unique group of dilations, i.e., it is possible that Exp(Hp(y))

contains members of Gl(V) distinct from E. However, we shall henceforth only

work with the endomorphism E, defined above, for worrying about this non-

uniqueness of dilations does not aid our understanding nor will it sharpen our

results. Let us further observe that, for each y ∈ V, Pp(y, ·) and R are homoge-

neous with respect to {tE∗}t>0 where E∗ ∈ Gl(V∗).

Definition 4.4.1. The operator H is called (2m,v)-positive-semi-elliptic if for all y ∈

V, RePp(y, ·) is a positive-definite polynomial. H is called uniformly (2m,v)-positive-

semi-elliptic if it is (2m,v)-positive-semi-elliptic and there exists δ > 0 for which

RePp(y, ξ) ≥ δR(ξ)

for all y ∈ V and ξ ∈ V∗. When the context is clear, we will simply say that H is

positive-semi-elliptic and uniformly positive-semi-elliptic respectively.
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In light of the above definition, a semi-elliptic operator H is one that, at ev-

ery point y ∈ V, its frozen-coefficient principal part Hp(y), is a constant-

coefficient positive-homogeneous operator which is homogeneous with respect

to the same one-parameter group of dilations on V. A uniformly positive-semi-

elliptic operator is one that is semi-elliptic and is uniformly comparable to a

constant-coefficient positive-homogeneous operator, namely Hp(0). In this way,

positive-homogeneous operators take a central role in this theory.

Remark 13. In view of Proposition 4.2.5, the definition of R via (4.18) agrees with that

we have given for constant-coefficient positive-homogeneous operators.

Remark 14. For an (2m,v)-positive-semi-elliptic operator H , uniform semi-ellipticity

can be formulated in terms of RePp(y0, ·) for any y0 ∈ V; such a notion is equivalent in

view of Proposition 4.3.2.

4.5 The heat equation

For a uniformly positive-semi-elliptic operatorH , we are interested in construct-

ing a fundamental solution to the heat equation,

(∂t +H)u = 0 (4.20)

on the cylinder [0, T ] × V; here and throughout T > 0 is arbitrary but fixed.

By definition, a fundamental solution to (4.20) on [0, T ] × V is a function Z :

(0, T ]× V× V→ C satisfying the following two properties:

1. For each y ∈ V, Z(·, ·, y) is (2m,v)-regular on (0, T )×V and satisfies (4.20).
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2. For each f ∈ Cb(V),

lim
t↓0

∫
V
Z(t, x, y)f(y)dy = f(x)

for all x ∈ V.

Given a fundamental solution Z to (4.20), one can easily solve the Cauchy prob-

lem: Given f ∈ Cb(V), find u(t, x) satisfying
(∂t +H)u = 0 on (0, T )× V

u(0, x) = f(x) for x ∈ V.

This is, of course, solved by putting

u(t, x) =

∫
V
Z(t, x, y)f(y) dy

for x ∈ V and 0 < t ≤ T and interpreting u(0, x) as that defined by the limit

of u(t, x) as t ↓ 0. The remainder of this chapter is essentially dedicated to

establishing the following result:

Theorem 4.5.1. Let H be uniformly (2m,v)-positive-semi-elliptic with bounded v-

Hölder continuous coefficients. Let R and µH be defined by (4.18) and (4.19) respec-

tively and denote by R# the Legendre-Fenchel transform of R. Then, for any T > 0,

there exists a fundamental solution Z : (0, T ] × V × V → C to (4.20) on [0, T ] × V

such that, for some positive constants C and M ,

|Z(t, x, y)| ≤ C

tµH
exp

(
−tMR#

(
x− y
t

))
(4.21)

for x, y ∈ V and 0 < t ≤ T .

We remark that, by definition, the fundamental solution Z given by Theorem

4.5.1 is (2m,v)-regular. Thus Z is necessarily continuously differentiable in t
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and has continuous spatial derivatives of all orders β such that |β : m| ≤ 2.

As we previously mentioned, the result above is implied by the work of S. D.

Eidelman for 2~b-parabolic systems on Rd (where~b = m) [36,37]. Eidelman’s sys-

tems, of the form (4.2), are slightly more general than we have considered here,

for their coefficients are also allowed to depend on t (but in a uniformly Hölder

continuous way). Admitting this t-dependence is a relatively straightforward

matter and, for simplicity of presentation, we have not included it (see Remark

15). In this slightly more general situation, stated in Rd and in which v = e is the

standard Euclidean basis, Theorem 2.2 (p.79) [37] guarantees the existence of a

fundamental solutionZ(t, x, y) to (4.2), which has the same regularity appearing

in Theorem 4.5.1 and satisfies

|Z(t, x, y)| ≤ C

t1/(2m1)+1/(2m2)+···+1/(2md)
exp

(
−M

d∑
k=1

|xk − yk|2mk/(2mk−1)

t1/(2mk−1)

)
(4.22)

for x, y ∈ Rd and 0 < t ≤ T where C and M are positive constants. By an appeal

to Corollary 4.3.10, we have R# � | · |ωv and from this we see that the estimates

(4.21) and (4.22) are comparable.

In view of Corollary 4.3.8, the hypothesis of Theorem 4.5.1 concerning the coef-

ficients of H immediately imply the following a priori stronger condition:

Hypothesis 4.1. There exists α ∈ Id+ which is consistent with m and for which the

coefficients of H are bounded and v-Hölder continuous on V of order α.
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4.5.1 Levi’s Method

In this subsection, we construct a fundamental solution to (4.20) under only the

assumption that H , a uniformly (2m,v)-positive-semi-elliptic operator, satisfies

Hypothesis 4.1. Henceforth, all statements include Hypothesis 4.1 without ex-

plicit mention. We follow the famous method of E. E. Levi, c.f., [64] as it was

adopted for parabolic systems in [35] and [40]. Although well-known, Levi’s

method is lengthy and tedious and we will break it into three steps. Let’s moti-

vate these steps by first discussing the heuristics of the method.

We start by considering the auxiliary equation

(
∂t +

∑
|β:m|=2

aβ(y)Dβ
v

)
u = (∂t +Hp(y))u = 0 (4.23)

where y ∈ V is treated as a parameter. This is the so-called frozen-coefficient

heat equation. As one easily checks, for each y ∈ V,

Gp(t, x; y) :=

∫
V∗
e−iξ(x)e−tPp(y,ξ)dξ (x ∈ V, t > 0)

solves (4.23). By the uniform semi-ellipticity of H , it is clear that Gp(t, ·; y) ∈

S(V) for t > 0 and y ∈ V. As we shall see, more is true: Gp is an approximate

identity in the sense that

lim
t↓0

∫
V
Gp(t, x− y; y)f(y) dy = f(x)

for all f ∈ Cb(V). Thus, it is reasonable to seek a fundamental solution to (4.20)

of the form

Z(t, x, y) = Gp(t, x− y; y) +

∫ t

0

∫
V
Gp(t− s, x− z; z)φ(s, z, y)dzds

= Gp(t, x− y; y) +W (t, x, y) (4.24)
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where φ is to be chosen to ensure that the correction term W is (2m,v)-regular,

accounts for the fact that Gp solves (4.23) but not (4.20), and is “small enough”

as t → 0 so that the approximate identity aspect of Z is inherited directly from

Gp.

Assuming for the moment that W is sufficiently regular, let’s apply the heat

operator to (4.24) with the goal of finding an appropriate φ to ensure that Z is a

solution to (4.20). Putting

K(t, x, y) = −(∂t +H)Gp(t, x− y; y),

we have formally,

(∂t +H)Z(t, x, y)

= −K(t, x, y) + (∂t +H)

∫ t

0

∫
V
Gp(t− s, x− z; z)φ(s, z, y) dz ds

= −K(t, x, y) + lim
s↑t

∫
V
Gp(t− s, x− z; z)φ(s, z, y) dz

−
∫ t

0

∫
V
−(∂t +H)Gp(t− s, x− z; z)φ(s, z, y) dz ds

= −K(t, x, y) + φ(t, x, y)−
∫ t

0

∫
V
K(t− s, x, z)φ(s, z, y) dz ds (4.25)

where we have made use of Leibniz’ rule and our assertion thatGp is an approx-

imate identity. Thus, for Z to satisfy (4.20), φ must satisfy the integral equation

K(t, x, y) = φ(t, x, y)−
∫ t

0

∫
V
K(t− s, x, z)φ(s, z, y) dz ds

= φ(t, x, y)− L(φ)(t, x, y). (4.26)

Viewing L as a linear integral operator, (4.26) is the equationK = (I−L)φwhich

has the solution

φ =
∞∑
n=0

LnK (4.27)
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provided the series converges in an appropriate sense.

Taking the above as purely formal, our construction will proceed as follows: We

first establish estimates for Gp and show that Gp is an approximate identity; this

is Step 1. In Step 2, we will define φ by (4.27) and, after deducing some subtle

estimates, show that φ’s defining series converges whence (4.26) is satisfied. Fi-

nally in Step 3, we will make use of the estimates from Steps 1 and 2 to validate

the formal calculation made in (4.25). Everything will be then pieced together

to show that Z, defined by (4.24), is a fundamental solution to (4.20). Our entire

construction depends on obtaining precise estimates for Gp and for this we will

rely heavily on the homogeneity of Pp and the Legendre-Fenchel transform ofR.

Remark 15. One can allow the coefficients of H to also depend on t in a uniformly

continuous way, and Levi’s method pushes though by instead taking Gp as the solution

to a frozen-coefficient initial value problem [36, 37].

Step 1. Estimates for Gp and its derivatives

The lemma below is a basic building block used in our construction of a fun-

damental solution to (4.20) via Levi’s method and it makes essential use of the

uniform semi-ellipticity ofH . We note however that the precise form of the con-

stants obtained, as they depend on k and β, are more detailed than needed for

the method to work. Also, the partial differential operators Dβ
v of the lemma are

understood to act of the x variable of Gp(t, x; y).

Lemma 4.5.2. There exist positive constants M and C0 and, for each multi-index β, a
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positive constant Cβ such that, for any k ∈ N,

|∂ktDβ
vGp(t, x; y)| ≤ CβC

k
0k!

tµH+k+|β:2m| exp
(
−tMR# (x/t)

)
(4.28)

for all x, y ∈ V and t > 0.

Before proving the lemma, let us note that tR#(x/t) = R#(t−Ex) for all t > 0

and x ∈ V in view of Proposition 4.2.12. Thus the estimate (4.28) can be written

equivalently as

|∂ktDβ
vGp(t, x; y)| ≤ CβC

k
0k!

tµH+k+|β:2m| exp(−MR#(t−Ex)) (4.29)

for x, y ∈ V and t > 0. We will henceforth use these forms interchangeably and

without explicit mention.

Proof. Let us first observe that, for each x, y ∈ V and t > 0,

∂ktD
β
vGp(t, x; y) =

∫
V∗

(Pp(y, ξ))
kξβe−iξ(x)e−tPp(y,ξ) dξ

=

∫
V∗

(Pp(y, t
−E∗ξ))k(t−E

∗
ξ)βe−iξ(t

−Ex)e−Pp(y,ξ)t− trE dξ

= t−µH−k−|β:2m|
∫
V∗

(Pp(y, ξ))
kξβe−iξ(t

−Ex)e−Pp(y,ξ)d ξ

where we have used the homogeneity of Pp with respect to {tE∗} and the fact

that µH = trE. Therefore

tµH+k+|β:2m|(∂ktD
β
vGp(t, · ; y))(tEx) =

∫
V∗

(Pp(y, ξ))
kξβe−iξ(x)e−Pp(y,ξ)dξ (4.30)

for all x, y ∈ V and t > 0. Thus, to establish (4.28) (equivalently (4.29)) it suffices

to estimate the right hand side of (4.30) which is independent of t.

The proof of the desired estimate requires making a complex change of vari-

ables and for this reason we will work with the complexification of V∗, whose
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members are denoted by z = ξ − iν for ξ, ν ∈ V∗; this space is isomorphic to Cd.

We claim that there are positive constants C0,M1,M2 and, for each multi-index

β, a positive constant Cβ such that, for each k ∈ N,

|(Pp(y, ξ − iν))k(ξ − iν)βe−Pp(y,ξ−iν)| ≤ CβC
k
0k!e−M1R(ξ)eM2R(ν) (4.31)

for all ξ, ν ∈ V∗ and y ∈ V. Let us first observe that

Pp(y, ξ − iν) = Pp(y, ξ) +
∑
|β:m|=2

∑
γ<β

aβ,γξ
γ(−iν)β−γ

for all z, ν ∈ V∗ and y ∈ V, where aβ,γ are bounded functions of y arising from

the coefficients ofH and the coefficients of the multinomial expansion. By virtue

of the uniform semi-ellipticity of H and the boundedness of the coefficients, we

have

−RePp(y, ξ − iν) ≤ −δR(ξ) + C
∑
|β:m|=2

∑
γ<β

|ξγνβ−γ|

for all ξ, ν ∈ V∗ and y ∈ V where C is a positive constant. By applying Lemma

4.3.4 to each term |ξγνβ−γ| in the summation, we can find a positive constant M

for which the entire summation is bounded above by δ/2R(ξ) + MR(ν) for all

ξ, ν ∈ V∗. By setting M1 = δ/6, we have

−RePp(y, ξ − iν) ≤ −3M1R(ξ) +MR(ν) (4.32)

for all ξ, ν ∈ V∗ and y ∈ V. By analogous reasoning (making use of item 1 of

Lemma 4.3.4), there exists a positive constant C for which

|Pp(y, ξ − iν)| ≤ C(R(ξ) +R(ν))

for all ξ, ν ∈ V∗ and y ∈ V. Thus, for any k ∈ N,

|Pp(y, ξ − iν)|k ≤ Ckk!

Mk
1

(M1(R(ξ) +R(ν)))k

k!
≤ Ck

0k!eM1(R(ξ)+R(ν)) (4.33)
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for all ξ, ν ∈ V∗ and y ∈ V where C0 = C/M1. Finally, for each multi-index β,

another application of Lemma 4.3.4 gives C ′ > 0 for which

|(ξ − iν)β| ≤ |ξβ|+ |νβ|+
∑

0<γ<β

cγ,β|ξγνβ−γ| ≤ C ′ ((R(ξ) +R(ν))n + 1)

for all ξ, ν ∈ V∗ where n ∈ N has been chosen to satisfy |β : 2nm| < 1. Conse-

quently, there is a positive constant Cβ for which

|(ξ − iν)β| ≤ Cβe
M1(R(ξ)+R(ν)) (4.34)

for all ξ, ν ∈ V∗. Upon combining (4.32), (4.33) and (4.34), we obtain the inequal-

ity ∣∣Pp(y, ξ − iν)k(ξ − iν)βe−Pp(y,ξ−iν)
∣∣ ≤ CβC

k
0k!e−M1R(ξ)+(M+2M1)R(ν)

which holds for all ξ, ν ∈ V∗ and y ∈ V. Upon paying careful attention to the

way in which our constants were chosen, we observe the claim is established by

setting M2 = M + 2M1.

From the claim above, it follows that, for any ν ∈ V∗ and y ∈ V, the following

change of coordinates by means of a Cd contour integral is justified:∫
V∗

(Pp(y, ξ))
kξβe−iξ(x)e−Pp(y,ξ) dξ

=

∫
ξ∈V∗

(Pp(y, ξ − iν)k(ξ − iν)βe−i(ξ−iν)(x)e−Pp(y,ξ−iν) dξ

= e−ν(x)

∫
ξ∈V∗

(Pp(y, ξ − iν)k(ξ − iν)βe−iξ(x)e−Pp(y,ξ−iν) dξ.

Thus, by virtue of the estimate (4.31),∣∣∣∣∫
V∗

(Pp(y, ξ))
kξβe−iξ(x)e−Pp(y,ξ) dξ

∣∣∣∣ ≤ CβC
k
0k!e−ν(x)eM2R(ν)

∫
V∗
e−M1R(ξ) dξ

≤ CβC
k
0k!e−(ν(x)−M2R(ν))

for all x, y ∈ V and ν ∈ V∗ where we have absorbed the integral of
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exp(−M1R(ξ)) into Cβ . Upon minimizing with respect to ν ∈ V∗, we have∣∣∣∣∫
V∗

(Pp(y, ξ))
kξβe−iξ(x)e−Pp(y,ξ)dξ

∣∣∣∣ ≤ CβC
k
0k!e−(M2R)#(x) ≤ CβC

k
0k!e−MR#(x)

(4.35)

for all x and y ∈ V because

−(M2R)#(x) = − sup
ν
{ν(x)−M2R(ν)} = inf

ν
{−(ν(x)−M2R(ν))};

in this we see the natural appearance of the Legendre-Fenchel transform. The

replacement of (M2R)#(x) by MR#(x) is done using Corollary 4.3.3 and, as re-

quired, the constant M is independent of k and β. Upon combining (4.30) and

(4.35), we obtain the desired estimate (4.28).

As a simple corollary to the lemma, we obtain Proposition 4.2.11.

Proof of Proposition 4.2.11. Given a positive-homogeneous operator Λ, we in-

voke Proposition 4.2.5 to obtain v and m for which Λ =
∑
|β:m|=2 aβD

β
v. In other

words, Λ is an (2m,v)-positive-semi-elliptic operator which consists only of its

principal part. Consequently, the heat kernel KΛ satisfies Kt
Λ(x) = Gp(t, x; 0) for

all x ∈ V and t > 0 and so we immediately obtain the estimate (4.11) from the

lemma.

Making use of Hypothesis 4.1, a similar argument to that given in the proof of

Lemma 4.5.2 yields the following lemma.

Lemma 4.5.3. There is a positive constant M and, to each multi-index β, a positive

constant Cβ such that

|Dβ
v[Gp(t, x; y + h)−Gp(t, x; y)]| ≤ Cβt

−(µH+|β:2m|)|h|αv exp(−tMR#(x/t)

for all t > 0, x, y, h ∈ V. Here, in view of Hypothesis 4.1, α is the v-Hölder continuity

exponent for the coefficients of H .
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Lemma 4.5.4. Suppose that g ∈ Cb((t0, T ] × V) where 0 ≤ t0 < T < ∞. Then, on

any compact set Q ⊆ (t0, T ]× V,∫
V
Gp(t, x− y; y)g(s− t, y) dy → g(s, x)

uniformly on Q as t→ 0. In particular, for any f ∈ Cb(V),∫
V
Gp(t, x− y; y)f(y) dy → f(x)

uniformly on all compact subsets of V as t→ 0.

Proof. Let Q be a compact subset of (t0, T ]× V and write∫
V
Gp(t, x− y; y)g(s− t, y) dy

=

∫
V
Gp(t, x− y;x)g(s− t, y) dy

+

∫
V
[Gp(t, x− y; y)−Gp(t, x− y;x)]g(s− t, y) dy

:= I
(1)
t (s, x) + I

(2)
t (s, x).

Let ε > 0 and, in view of Corollary 4.3.11, let K be a compact subset of V for

which ∫
V\K

exp(−MR#(z)) dz < ε

where the constant M is that given in (4.28) of Lemma 4.5.2. Using the continu-

ity of g, we have for sufficiently small t > 0,

sup
(s,x)∈Q
z∈K

|g(s− t, x− tEz)− g(s, x)| < ε.

We note that, for any t > 0 and x ∈ V,∫
V
Gp(t, x− y;x) dy = e−tPp(x,ξ)

∣∣∣
ξ=0

= 1.
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Appealing to Lemma 4.5.2 we have, for any (s, x) ∈ Q,

|I(1)
t (s, x)− g(s, x)| ≤

∣∣∣ ∫
V
Gp(t, x− y;x)(g(s− t, y)− g(s, x)) dy

∣∣∣
≤

∫
V
|Gp(1, z;x)(g(s− t, x− tEz)− g(s, x))| dz

≤ 2‖g‖∞C
∫
V\K

exp(−MR#(z)) dz

+C

∫
K

exp(−MR#(z))|(g(s− t, x− tEz)− g(s, x))| dz

≤ εC
(

2‖g‖∞ + ‖e−MR#‖1

)
;

here we have made the change of variables: y 7→ tE(x − y) and used the ho-

mogeneity of Pp to see that tµHGp(t, t
Ez;x) = Gp(1, z;x). Therefore I(1)

t (s, x) →

g(s, x) uniformly on Q as t→ 0.

Let us now consider I(2). With the help of Lemmas 4.3.13 and 4.5.3 and by

making similar arguments to those above we have

|I(2)
t (s, x)| ≤ C‖g‖∞

∫
V
t−µH |x− y|αv exp(−MR#(t−E(x− y)) dy

≤ ‖g‖∞Ctσ
∫
V
t− trE(R#(t−E(x− y)))θ exp(−MR#(t−E(x− y))) dy

≤ ‖g‖∞Ctσ
∫
V
(R#(x))θ exp(−MR#(z)) dz ≤ ‖g‖∞C ′tσ

for all s ∈ (t0, T ], 0 < t < s − t0 and x ∈ V; here 0 < σ < 1. Consequently,

I
(2)
t (s, x)→ 0 uniformly on Q as t→ 0 and the lemma is proved.

Combining the results of Lemmas 4.5.2 and 4.5.4 yields at once:

Corollary 4.5.5. For each y ∈ V, Gp(·, · − y; y) is a fundamental solution to (4.23).

Step 2. Construction of φ and the integral equation

210



For t > 0 and x, y ∈ V, put

K(t, x, y) = −(∂t +H)Gp(t, x− y; y)

=
(
Hp(y)−H

)
Gp(t, x− y; y)

=

∫
V∗
e−iξ(x−y)

(
Pp(y, ξ)− P (x, ξ)

)
e−tPp(y,ξ) dξ

and iteratively define

Kn+1(t, x, y) =

∫ t

0

∫
V
K1(t− s, x, z)Kn(s, z, y) dzds

where K1 = K. In the sense of (4.27), note that Kn+1 = LnK.

We claim that for some 0 < ρ < 1,

|K(t, x, y)| ≤ Ct−(µH+1−ρ) exp(−MR#(t−E(x− y))) (4.36)

for all x, y ∈ V and 0 < t ≤ T where M and C are positive constants. Indeed,

observe that

|K(t, x, y)| ≤
∑
|β:m|=2

|aβ(y)−aβ(x)||Dβ
vGp(t, x−y; y)|+C

∑
|β:m|<2

|Dβ
vGp(t, x−y; y)|

for all x, y ∈ V and t > 0 where we have used the fact that the coefficients of H

are bounded. In view of Lemma 4.5.2, we have

|K(t, x, y)| ≤
∑
|β:m|=2

|aβ(y)− aβ(x)|Ct−(µH+1) exp(−MR#(t−E(x− y)))

+Ct−(µH+η) exp(−MR#(t−E(x− y)))

for all x, y ∈ V and 0 < t ≤ T where

η = max{|β : 2m| : |β : m| 6= 2 and aβ 6= 0} < 1.

Using Hypothesis 4.1, an appeal to Corollary 4.3.14 ensures that

|K(t, x, y)| ≤ Ctσ−(µH+1)(R#(t−E(x− y)))θ exp(−MR#(t−E(x− y)))

+Ct−(µH+η) exp(−MR#(t−E(x− y)))
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for all x, y ∈ V and 0 < t ≤ T where θ is positive and 0 < σ < 1. Our claim is

then justified by choosing ρ = max{σ, 1− η} and adjusting the constants C and

M appropriately.

Taking cues from our heuristic discussion, we will soon form a series whose

summands are the functions Kn for n ≥ 1. In order to talk about the conver-

gence of this series, our next task is to estimate these functions and in doing this

we will observe two separate behaviors: a finite number of terms will exhibit

singularities in t at the origin; the remainder of the terms will be absent of such

singularities and will be estimated with the help of the Gamma function. We

first address the terms with the singularities.

Lemma 4.5.6. Let 0 < ρ < 1 and M > 0 be as above. For any positive natural number

n such that ρ(n−1) ≤ µH+1 and ε > 0 for which εn < 1, there is a constantCn(ε) ≥ 1

such that

|Kn(t, x, y)| ≤ Cn(ε)t−(µH+1−nρ) exp(−M(1− εn)R#(t−E(x− y)))

for all x, y ∈ V and 0 < t ≤ T .

Proof. In view (4.36), it is clear that the estimate holds when n = 1. Let us

assume the estimate holds for n ≥ 1 such that ρn < 1 + µH and ε > 0 for which

εn < ε(n+ 1) < 1. Then

|Kn+1(t, x, y)|

≤
∫ t

0

∫
V
Cn(ε)(t− s)−(µH+1−nρ)C1(ε)s−(µH+1−ρ)

× exp(−Mε,nR
#((t− s)−E(x− z))) exp(−MR#(s−E(z − y))) dz ds

(4.37)
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for x, y ∈ V and 0 < t ≤ T where we have set Mε,n = M(1− εn). Observe that

R#(t−E(x− y)) = sup{ξ(x− y)− tR(ξ)}

= sup{ξ(x− z)− (t− s)R(ξ) + ξ(z − y)− sR(ξ)}

≤ R#((t− s)−E(x− z)) +R#(s−E(z − y)) (4.38)

for all x, y, z ∈ V and 0 < s ≤ t and therefore

exp(−Mε,nR
#((t− s)−E(x− z))) exp(−MR#(s−E(z − y)))

≤ exp(−Mε,n+1R
#(t−E(x− y)))

× exp(−εnM(R#((t− s)−E(x− z) +R#(s−E(z − y))). (4.39)

Combining (4.37), (4.38) and (4.39) yields

|Kn+1(t, x, y)|

≤ C1(ε)Cn(ε) exp(−Mε,n+1R
#(t−E(x− y)))

∫ t

0

∫
V
(t− s)−(µH+1−nρ)

×s−(µH+1−ρ) exp(−εnM(R#((t− s)−E(x− z) +R#(s−E(z − y))) dz ds

≤ C1(ε)Cn(ε) exp(−Mε,n+1R
#(t−E(x− y)))

×
[
(t/2)−(µH+1−nρ)

∫ t/2

0

∫
V
s−(µH+1−ρ)

× exp(−εnMR#(s−E(z − y))) dz ds

+(t/2)−(µH+1+ρ)

∫ t

t/2

∫
V
(t− s)−(µH+1−nρ)

exp(−εnMR#((t− s)−E(x− z))) dz ds
]

≤ C1(ε)Mn(ε) exp(−Mε,n+1R
#(t−E(x− y)))

×
[
(t/2)−(µH+1−nρ)

∫ t/2

0

s−(1−ρ) ds

∫
V

exp(−εnMR#(z)) dz

+(t/2)−(µH+1+ρ)

∫ t/2

0

s−(1−n)ρds

∫
V

exp(−εnMR#(z)) dz
]

≤ Cn+1(ε)t−(µH+1−(n+1)ρ) exp(−Mε,n+1R
#(t−E(x− y))

for all x, y ∈ V and t > 0 where we have put

Cn+1(ε) = C1(ε)Cn(ε)
n+ 1

nρ
2µH+(1−(n+1)ρ)

∫
V

exp(−εnMR#(z)) dz
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and made use of Corollary 4.3.11.

Remark 16. The estimate (4.38) is an important one and will be used again. In the

context of elliptic operators, i.e., where R#(x) = Cm|x|2m/(2m−1), the analogous result

is captured in Lemma 5.1 of [35]. It is interesting to note that S. D. Eidelman worked

somewhat harder to prove it. Perhaps this is because the appearance of the Legendre-

Fenchel transform wasn’t noticed.

It is clear from the previous lemma that for sufficiently large n, Kn is bounded

by a positive power of t. The first such n is n̄ := dρ−1(trE + 1)e. In view of the

previous lemma,

|Kn̄(t, x, y)| ≤ Cn̄(ε) exp(−M(1− εn̄)R#(t−E(x− y)))

for all x, y ∈ V and 0 < t ≤ T where we have adjusted Cn̄(ε) to account for this

positive power of t. Let δ < 1/2 and set

ε =
δ

n̄
, M1 = M(1− δ) and C0 = max

1≤n≤n̄
Cn(ε).

Upon combining proceeding estimate with the estimates(4.36) and (4.38), we

have

|Kn̄+1(t, x, y)|

≤ C2
0

∫ t

0

∫
V
(t− s)−(µH+(1−ρ))

× exp(−MR#((t− s)−E(x− z)) exp(−M(1− εn̄)R#(s−E(z − y))) ds dz

≤ C2
0 exp(−M1R

#(t−E(x− y)))

∫ t

0

∫
V
(t− s)−(µH+(1−ρ))

× exp(−CδR#((t− s)−E(z))) dz ds

≤ C0(C0F )
tρ

ρ
exp(−M1R

#(t−E(x− y)))

for all x, y ∈ V and 0 < t ≤ T where

F =

∫
V

exp(−MδR#(z)) dz <∞.
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Let us take this a little further.

Lemma 4.5.7. For every k ∈ N+,

|Kn̄+k(t, x, y)| ≤ C0

Γ(ρ)

(C0FΓ(ρ))k

k!
tρk exp(−M1R

#(t−E(x− y))) (4.40)

for all x, y ∈ V and 0 < t ≤ T . Here Γ(·) denotes the Gamma function.

Proof. The Euler-Beta function B(·, ·) satisfies the well-known identity B(a, b) =

Γ(a)Γ(b)/Γ(a+ b). Using this identity, one quickly obtains the estimate

k−1∏
j=1

B(ρ, 1 + jρ) =
Γ(ρ)k−1

Γ(1 + kρ)
≤ Γ(ρ)k−1

k!
.

It therefore suffices to prove that

|Kn̄+k(t, x, y)| ≤ C0(C0F )k
k−1∏
j=0

B(ρ, 1 + jρ)tkρ exp(−M1R
#(t−E(x− y))) (4.41)

for all x, y ∈ V and 0 < t ≤ T .

We first note that B(ρ, 1) = ρ−1 and so, for k = 1, (4.41) follows directly

from the calculation proceeding the lemma. We shall induct on k. By another

application of (4.36) and (4.38), we have

Jk+1(t, x, y)

:=
[
C2

0(C0F )k
k−1∏
j=0

B(ρ, 1 + jρ)
]−1

|Kn̄+k+1(t, x, y)|

≤
∫ t

0

∫
V
(t− s)−(µH+(1−ρ))s−kρ exp(−MR#((t− s)−E(x− z)))

× exp(−M1R
#(s−E(z − y))) dz ds

≤ exp(−M1R
#(t−E(x− y)))

×
∫ t

0

∫
V
(t− s)−(µH+(1−ρ))s−kρ exp(−MδR#((t− s)−E(x− z))) dz ds
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for all x, y ∈ V and 0 < t ≤ T . Upon making the changes of variables z →

(t− s)−E(x− z) followed by s→ s/t, we have

Jk+1(t, x, y) ≤ exp(−M1R
#(t−E(x− y)))F

∫ 1

0

(t− st)ρ−1(st)kρt ds

≤ exp(−M1R
#(t−E(x− y)))Ft(k+1)ρB(ρ, 1 + kρ)

for all x, y ∈ V and 0 < t ≤ T . Therefore (4.41) holds for k + 1 as required.

Proposition 4.5.8. Let φ : (0, T ]× V× V→ C be defined by

φ =
∞∑
n=1

Kn.

This series converges uniformly for x, y ∈ V and t0 ≤ t ≤ T where t0 is any positive

constant. There exists C ≥ 1 for which

|φ(t, x, y)| ≤ C

tµH+(1−ρ)
exp(−M1R

#(t−E(x− y))) (4.42)

for all x, y ∈ V and 0 < t ≤ T whereM1 and ρ are as in the previous lemmas. Moreover,

the identity

φ(t, x, y) = K(t, x, y) +

∫ t

0

∫
V
K(t− s, x, z)φ(s, z, y) dz ds (4.43)

holds for all x, y ∈ V and 0 < t ≤ T .

Proof. Using Lemmas 4.5.6 and 4.5.7 we see that

∞∑
k=1

|Kn(t, x, y)|

≤ C0

[ n̄∑
n=1

t−(µH+(1−nρ)) +
1

Γ(ρ)

∞∑
k=1

(C0FΓ(ρ))k

k!
tkρ
]

exp(−M1R
#(t−E(x− y)))

for all x, y ∈ V and 0 < t ≤ T from which (4.42) and our assertion concern-

ing uniform convergence follow. A similar calculation and an application of
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Tonelli’s theorem justify the following use of Fubini’s theorem: For x, y ∈ V and

0 < t ≤ T ,∫ t

0

∫
V
K(t− s, x, z)φ(s, z, y) ds dz

=
∞∑
n=1

∫ t

0

∫
V
K(t− s, x, z)Kn(s, z, y) dz ds =

∞∑
n=1

Kn+1(t, z, y)

= φ(t, x, y)−K(t, x, y)

as desired.

The following Hölder continuity estimate for φ is obtained by first showing the

analogous estimate forK and then deducing the desired result from the integral

formula (4.43). As the proof is similar in character to those of the preceding two

lemmas, we omit it. A full proof can be found in [37, p.80]. We also note here

that the result is stronger than is required for our purposes (see its use in the

proof of Lemma 4.5.11). All that is really required is that φ(·, ·, y) satisfies the

hypotheses (for f ) in Lemma 4.5.10 for each y ∈ V.

Lemma 4.5.9. There exists α ∈ Id+ which is consistent with m, 0 < η < 1 and C ≥ 1

such that

|φ(t, x+ h, y)− φ(t, x, y)| ≤ C

tµH+(1−η)
|h|αv exp(−M1R

#(t−E(x− y)))

for all x, y, h ∈ V and 0 < t ≤ T .

Step 3. Verifying that Z is a fundamental solution to (4.20)

Lemma 4.5.10. Let α ∈ Id+ be consistent with m and, for t0 > 0, let f : [t0, T ] ×

V → C be bounded and continuous. Moreover, suppose that f is uniformly v-Hölder

continuous in x on [t0, T ] × V of order α, by which we mean that there is a constant

C > 0 such that

sup
t∈[t0,T ]

|f(t, x)− f(t, y)| ≤ C|x− y|αv
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for all x, y ∈ V. Then u : [t0, T ]× V→ C defined by

u(t, x) =

∫ t

t0

∫
V
Gp(t− s, x− z; z)f(s, z) ds dz

is (2m,v)-regular on (t0, T )× V. Moreover,

∂tu(t, x) = f(t, x) + lim
h↓0

∫ t−h

t0

∫
V
∂tGp(t− s, x− z; z)f(s, z) dz ds (4.44)

and for any β such that |β : m| ≤ 2, we have

Dβ
vu(t, x) = lim

h↓0

∫ t−h

t0

∫
V
Dβ

vG(t− s, x− z; z)f(s, z) dz ds (4.45)

for x ∈ V and t0 < t < T .

Before starting the proof, let us observe that, for each multi-index β,

|Dβ
vGp(t− s, x− z; z)f(s, z)|

≤ C(t− s)−(µH+|β:2m|) exp(−MR#((t− s)−E(x− z)))|f(s, z)|.

Using the assumption that f is bounded, we observe that∫ t

t0

∫
V
|Dβ

vGp(t− s, x− z; z)f(s, z)| dz ds

≤ C

∫ t

t0

∫
V
(t− s)−µH+|β:2m| exp(−MR#((t− s)−E(x− z))) dz ds

≤ C

∫ t

t0

∫
V
(t− s)−|β:2m| exp(−MR#(z)) dz ds

≤ C

∫ t

t0

(t− s)−|β:2m| ds

for all t0 ≤ t ≤ T and x ∈ V. When |β : m| < 2,∫ t

t0

(t− s)−|β:2m| ds (4.46)

converges and consequently

Dβ
vu(t, x) =

∫ t

t0

∫
V
Dβ

vGp(t− s, z − x; z)f(s, z) dz ds
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for all t0 ≤ t ≤ T and x ∈ V. From this it follows that Dβ
vu(t, x) is continuous

on (t0, T ) × V and moreover (4.45) holds for such an β in view of Lebesgue’s

dominated convergence theorem. When |β : m| = 2, (4.46) does not converge

and hence the above argument fails. The main issue in the proof below centers

around using v-Hölder continuity to remove this obstacle.

Proof. Our argument proceeds in two steps. The fist step deals with the spa-

tial derivatives of u. Therein, we prove the asserted x-regularity and show

that the formula (4.45) holds. In fact, we only need to consider the case where

|β : m| = 2; the case where |β : m| < 2 was already treated in the paragraph pro-

ceeding the proof. In the second step, we address the time derivative of u. As

we will see, (4.44) and the asserted t-regularity are partial consequences of the

results proved in Step 1; this is, in part, due to the fact that the time derivative

of Gp can be exchanged for spatial derivatives. The regularity shown in the two

steps together will automatically ensure that u is (2m,v)-regular on (t0, T )× V.

Step 1. Let β be such that |β : m| = 2. For h > 0 write

uh(t, x) =

∫ t−h

t0

∫
V
Gp(t− s, x− z; z)f(s, z) dz ds

and observe that

Dβ
vuh(t, x) =

∫ t−h

t0

∫
V
Dβ

vGp(t− s, x− z; z)f(s, z) dz ds

for all t0 ≤ t − h < t ≤ T and x ∈ V; it is clear that Dβ
vuh(t, x) is continuous

in t and x. The fact that we can differentiate under the integral sign is justified

because t has been replaced by t−h and hence the singularity in (4.46) is avoided

in the upper limit. We will show that Dβ
vuh(t, x) converges uniformly on all
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compact subsets of (t0, T )×V as h→ 0. This, of course, guarantees thatDβ
vu(x, t)

exists, satisfies (4.45) and is continuous on (t0, T )× V. To this end, let us write

Dβ
vuh(t, x) =

∫ t−h

t0

∫
V
Dβ

vGp(t− s, x− z; z)(f(s, z)− f(s, x)) dz ds

+

∫ t−h

t0

∫
V
Dβ

vGp(t− s, x− z; z)f(s, x) dz ds

=: I
(1)
h (t, x) + I

(2)
h (t, x).

Using our hypotheses, Corollary 4.3.8 and Lemma 4.3.13, for some 0 < σ < 1

and θ > 0, there is M > 0 such that

|f(s, z)− f(s, x)| ≤ C(t− s)σ(R#((t− s)−E(x− z)))θ

for all x, z ∈ V, t ∈ [t0, T ] and s ∈ [t0, t]; consequently

|Dβ
vGp(t− s, x− z; z)(f(s, z)− f(s, x))|

≤ C(t− s)−(µH+1)tσ(R#(t−E(x− z)))θ exp(−MR#((t− s)−E(x− z)))

≤ C(t− s)−(µH+(1−σ)) exp(−MR#(t− s)−E(x− z))

for all x, z ∈ V, t ∈ [t0, T ] and s ∈ [t0, t]. This estimate guarantees that

I(1)(t, x) :=

∫ t

t0

∫
V
Dβ

vGp(t− s, x− z; z)(f(s, z)− f(s, x)) dz ds

exists for each t ∈ [t0, T ] and x ∈ V. Moreover, for all t0 ≤ t − h < t ≤ T and

x ∈ V,

|I(1)(t, x)− I(1)
h (t, x)| ≤

∫ t

t−h

∫
V
|Dβ

vGp(t− s, x− z; z)(f(s, z)− f(s, x))| dz ds

≤ C

∫ t

t−h

∫
V
(t− s)σ−1 exp(−MR#(z)) dz ds ≤ Chσ.

From this we see that limh↓0 I
(1)
h (t, x) converges uniformly on all compact subsets

of (t0, T )× V.
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We claim that for some 0 < ρ < 1, there exists C > 0 such that∣∣∣ ∫
V
Dβ

vGp(t− s, x− z; z) dz
∣∣∣ ≤ C(t− s)−(1−ρ) (4.47)

for all x ∈ V and s ∈ [t0, t]. Indeed,∫
V
Dβ

vGp(t− s, x− z; z) dz

=

∫
V
Dβ

v[Gp(t− s, x− z; z)−Gp(t− s, x− z; y)]
∣∣
y=x

dz

+
[
Dβ

v

∫
V
Gp(t− s, x− z; y) dz

]∣∣
y=x

.

The first term above is estimate with the help of Lemma 4.5.3 and by making

arguments analogous to those in the previous paragraph; the appearance of ρ

follows from an obvious application of Lemma 4.3.13. This term is bounded by

C(t− s)−(1−ρ). The second term is clearly zero and so our claim is justified.

By essentially repeating the arguments made for I(1)
h and making use of

(4.47), we see that

lim
h↓0

I
(2)
h (t, x) = I(2)(t, x) =:

∫ t

t0

∫
V
Dβ

vGp(t− s, x− z; z)f(s, x) dz ds

where this limit converges uniformly on all compact subsets of (t0, T )× V.

Step 2. It follows from Leibnitz’ rule that

∂tuh(x, t) =

∫
V
Gp(h, x− z; z)f(t− h, z) dz

+

∫ t−h

t0

∫
V
∂tGp(t− s, x− z; z)f(s, z) dz ds

=: J
(1)
h (t, x) + J

(2)
h (t, x)

for all t0 < t − h < t < T and x ∈ V. Now, in view of Lemma 4.5.4 and our

hypotheses concerning f ,

lim
h↓0

J
(1)
h (t, x) = f(t, x)
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where this limit converges uniformly on all compact subsets of (t0, T )× V.

Using the fact that ∂tGp(t−s, x−z; z) = −Hp(z)Gp(t−s, x−z; z), we see that

lim
h↓0

J
(2)
h (t, x)

= lim
h↓0

∫ t−h

0

∫
V

(
−
∑
|β:m|=2

aβ(z)Dβ
v

)
Gp(t− s, x− z; z)f(s, z) dz ds

= −
∑
|β:m|=2

lim
h↓0

∫ t−h

0

∫
V
Dβ

vGp(t− s, x− z; z)(aβ(z)f(s, z)) dz ds

for all t ∈ (t0, T ) and x ∈ V. Because the coefficients of H are v-Hölder con-

tinuous and bounded, for each β, aβ(z)f(s, z) satisfies the same condition we

have required for f and so, in view of Step 1, it follows that J (2)
h (t, x) converges

uniformly on all compact subsets of (t0, T )×V as h→ 0. We thus conclude that

∂tu(t, x) exists, is continuous on (t0, T )× V and satisfies (4.44).

Lemma 4.5.11. Let W : (0, T ]× V× V→ C be defined by

W (t, x, y) =

∫ t

0

∫
V
Gp(t− s, x− z; z)φ(s, z, y) dz ds,

for x, y ∈ V and 0 < t ≤ T . Then, for each y ∈ V, W (·, ·, y) is (2m,v)-regular on

(0, T )× V and satisfies

(∂t +H)W (t, x, y) = K(t, x, y). (4.48)

for all x, y ∈ V and t ∈ (0, T ). Moreover, there are positive constants C and M for

which

|W (t, x, y)| ≤ Ct−µH+ρ exp(−MR#(t−E(x− y))) (4.49)

for all x, y ∈ V and 0 < t ≤ T where ρ is that which appears in Lemma 4.5.6.

Proof. The estimate (4.49) follows from (4.28) and (4.42) by an analogous com-

putation to that done in the proof of Lemma 4.5.6. It remains to show that, for
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each y ∈ V, W (·, ·, y) is (2m,v)-regular and satisfies (4.48) on (0, T ) × V. These

are both local properties and, as such, it suffices to examine them on (t0, T )× V

for an arbitrary but fixed t0 > 0. Let us write

W (t, x, y) =

∫ t

t0

∫
V
Gp(t− s, x− z; z)φ(s, z, y) dz ds

+

∫ t0

0

∫
V
Gp(t− s, x− z; z)φ(s, z, y) dz ds

=: W1(t, x, y) +W2(t, x, y)

for x, y ∈ V and t0 < t < T . In view of Lemmas 4.5.9 and 4.5.10, for each y ∈ V,

W1(·, ·, y) is (2m,v)-regular on (t0, T )× V and

(∂t +H)W1(t, x, y)

= ∂tW1(t, x, y) +
∑
|β:m|≤2

aβ(x)Dβ
vW1(t, x, y)

= φ(t, x, y) + lim
h↓0

∫ t−h

t0

∫
V
∂tGp(t− s, x− z; z)φ(s, z, y) dz dy

+ lim
h↓0

∫ t−h

t0

∫
V

∑
|β:m|≤2

aβ(x)Dβ
vGp(t− s, x− z; z)φ(s, z, y) dz ds

= φ(t, x, y) + lim
h↓0

∫ t−h

t0

∫
V
(∂t +H)Gp(t− s, x− z; z)φ(s, z, y) dz ds

= φ(t, x, y)− lim
h↓0

∫ t−h

t0

∫
V
K(t− s, x, z)φ(s, z, y) dz ds (4.50)

for all x ∈ V and t0 < t < T ; here we have used the fact that

(∂t +H)Gp(t− s, x− z; z) = −K(t− s, x, z).

Treating W2 is easier because Gp(t − s, x − z, z) and its derivatives remain

bounded for z, x ∈ V and 0 < s ≤ t0. Consequently, derivatives may be taken

under the integral sign and so it follows that, for each y ∈ V,W2(·, ·, y) is (2m,v)-

regular on (t0, T )× V and

(∂t +H)W2(t, x, y) = −
∫ t0

0

∫
V
K(t− s, x, z)φ(s, z, y) dz ds (4.51)
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for x ∈ V and t0 < t < T . We can thus conclude that, for each y ∈ V, W (·, ·, y) is

(2m,v)-regular on (t0, T )× V and, by combining (4.50) and (4.51),

(∂t +H)W (t, x, y) = φ(t, x, y)− lim
h↓0

∫ t−h

0

∫
V
K(t− s, x, z)φ(s, z, y) dz ds

for x ∈ V and t0 < t < T . By (4.36), Proposition 4.5.8 and the Dominated

Convergence Theorem,

lim
h↓0

∫ t−h

0

∫
V
K(t− s, x, z)φ(s, z, y) dz ds =

∫ t

0

∫
V
K(t− s, x, z)φ(s, z, y) dz ds

= φ(t, x, y)−K(t, x, y)

and therefore

(∂t +H)W (t, x, y) = K(t, x, y)

for all x, y ∈ V and t0 < t < T .

The theorem below is our main result. It is a more refined version of Theorem

4.5.1 because it gives an explicit formula for the fundamental solution Z; in

particular, Theorem 4.5.1 is an immediate consequence of the result below.

Theorem 4.5.12. Let H be a uniformly (2m,v)-positive-semi-elliptic operator. If H

satisfies Hypothesis 4.1 then Z : (0, T ]× V× V→ C, defined by

Z(t, x, y) = Gp(t, x− y; y) +W (t, x, y) (4.52)

for x, y ∈ V and 0 < t ≤ T , is a fundamental solution to (4.20). Moreover, there are

positive constants C and M for which

|Z(t, x, y)| ≤ C

tµH
exp

(
−tMR#

(
x− y
t

))
(4.53)

for all x, y ∈ V and 0 < t ≤ T .
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Proof. As 0 < ρ < 1, (4.49) and Lemma 4.5.2 imply the estimate (4.53). In view

of Lemma 4.5.11 and Corollary 4.5.5, for each y ∈ V, Z(·, ·, y) is (2m,v)-regular

on (0, T )× V and

(∂t +H)Z(t, x, y) = (∂t +H)Gp(t, x− y, y) + (∂t +H)W (t, x, y)

= −K(t, x, y) +K(t, x, y) = 0

for all x ∈ V and 0 < t < T . It remains to show that for any f ∈ Cb(V),

lim
t→0

∫
V
Z(t, x, y)f(y) dy = f(x)

for all x ∈ V. Indeed, let f ∈ Cb(V) and, in view of (4.49), observe that∣∣∣∣∫
V
W (t, x, y)f(y)

∣∣∣∣ ≤ Ctρ‖f‖∞
∫
V
t−µH exp(−MR#(t−E(x− y)))dy

≤ Ctρ‖f‖∞
∫
V

exp(−MR#(y)) dy ≤ Ctρ‖f‖∞

for all x ∈ V and 0 < t ≤ T . An appeal to Lemma 4.5.4 gives, for each x ∈ V,

lim
t→0

∫
V
Z(t, x, y)f(y)dy = lim

t→0

∫
V
Gp(t, x− y; y)f(y) dy

+ lim
t→0

∫
V
W (t, x, y)f(y) dy

= f(x) + 0 = f(x)

as required. In fact, the above argument guarantees that this convergence hap-

pens uniformly on all compact subsets of V.

We remind the reader that implicit in the definition of fundamental solution to

(4.20) is the condition that Z is (2m,v)-regular. In fact, one can further deduce

estimates for the spatial derivatives of Z, Dβ
vZ, of the form (4.11) for all β such

that |β : 2m| ≤ 1 (see [37, p. 92]). Using the fact that Z satisfies (4.20) and

H’s coefficients are bounded, an analogous estimate is obtained for a single t

derivative of Z.
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CHAPTER 5

UNIFORMLY POSITIVE-HOMOGENEOUS OPERATORS WITH

MEASURABLE COEFFICIENTS AND HEAT KERNEL ESTIMATES

5.1 Introduction

Throughout this chapter V is a d-dimensional real vector space equipped with

the standard smooth structure; we henceforth assume the notation of Chapter

4. Taking our motivation from Theorem 4.5.1, given a self-adjoint partial dif-

ferential operator H on L2(V), which we will take to be uniformly comparable

to a positive-homogeneous operator Λ with symbol P and homogeneous order

µΛ (in the sense that it satisfies a Gårding inequality), we are interested in the

validity of heat kernel estimates for H in terms of the Legendre-Fenchel trans-

form of R = ReP . Specifically, we ask: Under what conditions on H does the

semigroup {e−tH} have an integral kernel Z : (0,∞)× V× V→ C satisfying

|Z(t, x, y)| ≤ C

tµΛ
exp

(
−tMR#

(
x− y
t

))
for x, y ∈ V and 0 < t ≤ T < ∞ where C = C(H,T ) and M = M(H,T ) are

positive constants? We recall that Z is an integral kernel for {e−tH} provided,

for each f ∈ L2(V),

(
e−tHf

)
(x) =

∫
V
Z(t, x, y)f(y) dy

for t > 0 and almost every x ∈ V. Of course, when Z is sufficiently regular,

this notion coincides with the definition of fundamental solution to the heat

equation given in Section 4.5. Consequently, Theorem 4.5.1 can be seen as an

affirmative answer to the above question in the case that H has Hölder coef-

ficients (and is uniformly positive-semi-elliptic). In this chapter, we adapt the
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functional analytic method of E. B. Davies (presented in [21]) to the positive-

homogeneous setting and show that, in particular, the above question also has

an affirmative answer when the coefficients of H are only bounded and mea-

surable, provided µΛ < 1 (see Theorem 5.8.4). In this adaptation of Davies’

elegant method, we will see the natural appearance of the full d-dimensional

Legendre-Fenchel transform in heat kernels estimates for (uniformly) positive-

homogeneous operators. We recall that the 1-dimensional Legendre-Fenchel

transform was previously observed (and exploited) in [9] and [10] for elliptic op-

erators; in the elliptic setting, the anisotropic character of the full d-dimensional

transform isn’t needed. For further discussion on the Legendre-Fenchel trans-

form in heat kernel estimates (and its virtues), we refer the reader to Subsection

4.2.1.

5.2 Sobolev spaces, uniformly positive-homogeneous self-

adjoint operators and their quadratic forms

In the first part of this section, we define a family of Sobolev spaces on V.

These spaces, which include those of the classical elliptic theory, were also dis-

cussed in the context of Rd in [58]. Then, given a formally self-adjoint positive-

homogeneous operator Λ on V, we study the quadratic form QΛ it defines. Be-

cause Λ is symmetric, its symbol is necessarily real and it is henceforth denoted

byR. We then realize Λ as a self-adjoint operator on L2 whose domain and form

domain are characterized by the previously defined Sobolev spaces; everything

here relies on the semi-elliptic representation of positive-homogeneous opera-

tors given in Proposition 4.2.5.
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Let 1 ≤ p < ∞, m ∈ Nd
+ and let v be a basis for V. For any non-empty open set

Ω ⊆ V define

Wm,p
v (Ω) = {f ∈ Lp(Ω) : Dα

vf ∈ Lp(Ω) ∀ α with |α : m| ≤ 1}

where Dα
v = (i∂1)α1(i∂2)α2 · · · (i∂d)αd . By the symbol, ∂i, we mean the restriction

of the derivation ∂i = ∂vi onto the open set Ω. As usual, each derivative is to be

understood in the distributional sense. For any f ∈ Wm,p
v (Ω) let

‖f‖Wm,p
v (Ω) =

 ∑
|α:m|≤1

∫
Ω

|Dα
vf |pdx

1/p

.

Clearly, ‖ · ‖Wm,p
v (Ω) is a norm on Wm,p

v (Ω) and the usual arguments show that

Wm,p
v (Ω) is a Banach space in this norm. Naturally, we will call these spaces

Sobolev spaces; in the context of Rd, these spaces were previously studied in [24]

and [58]. Notice that when V = Rd, v = e and m = (m,m, . . . ,m), our definition

coincides with that of Wm,p(Ω), the standard Sobolev spaces of Rd. In fact, the

basis e is immaterial in this setting. Let us also denote by Wm,p
v,0 (Ω) the closure

of C∞0 (Ω) in the ‖ · ‖Wm,p
v

(Ω) norm.

Temporarily, we restrict our attention to the case where Ω = V and p = 2. As

one can check by the use of smooth cut-off functions and mollification, C∞0 (V)

is dense in Wm,p
v (V). The following result follows by the standard method, c.f.,

[66]; its proof is omitted.

Lemma 5.2.1. Let m ∈ Nd, v be a basis of V and v∗ be the corresponding dual basis.

Then

Wm,2
v (V) =

{
f ∈ L2(V) : ξαf̂(ξ) ∈ L2(V∗) ∀ α with |α : m| ≤ 1

}
(5.1)

and

‖f‖2
Wm,2

v (V)
=

∑
|α:m|≤1

‖ξαf̂(ξ)‖2
2∗ .
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Lemma 5.2.2. Let Λ be a symmetric positive-homogeneous operator with symbol R

and, in view of Proposition 4.2.5, let m ∈ Nd
+ and v be a basis of V as guaranteed by

the proposition. Then

Wm,2
v (V) =

{
f ∈ L2(V) :

∫
V∗
R(ξ)|f̂(ξ)|2dξ <∞

}
and moreover, the norms

‖f‖′ :=
(
‖f‖2

2 +

∫
V∗
R(ξ)|f̂(ξ)|2dξ

)1/2

and ‖ · ‖Wm,2
v (V) are equivalent.

Proof. By virtue of Proposition 4.3.2 (working in the coordinates defined by v),

there are positive constants C and C ′ for which

C(1 +R(ξ)) ≤
∑
|α:m|≤1

ξ2α ≤ C ′(1 +R(ξ)).

for all ξ ∈ V∗. With this estimate, the result follows directly from Lemma 5.2.1

using the Fourier transform.

Returning to the general situation, let Ω ⊆ V be a non-empty open set. For

f ∈ L2(Ω) define f∗ ∈ L2(V) by

f∗(x) =


f(x) if x ∈ Ω

0 otherwise.

Of course, ‖f‖L2(Ω) = ‖f∗‖L2(V). The following lemma shows that Wm,2
v,0 (Ω) is

continuously embedded in Wm,2
v (V):

Lemma 5.2.3. For any f ∈ Wm,2
v,0 (Ω), f∗ ∈ Wm,2

v (V) and

‖f‖Wm,2
v (Ω) = ‖f∗‖Wm,2

v (V).
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Proof. Let f ∈ Wm,2
v,0 (Ω) and let {fn} ⊆ C∞0 (Ω) for which ‖fn − f‖Wm,2

v (Ω) → 0 as

n→∞. Then for any φ ∈ C∞0 (V) and multi-index α for which |α : m| ≤ 1,∫
V
f∗(D

α
vφ)dx =

∫
Ω

f(Dα
vφ)dx = lim

n→∞

∫
Ω

fn(Dα
vφ)dx

= lim
n→∞

(−1)|α|
∫

Ω

(Dα
vfn)φdx = (−1)|α|

∫
Ω

(Dα
vf)φdx

= (−1)|α|
∫
V
(Dα

vf)∗φdx

where we used the fact that each fn has compact support in Ω and thus par-

tial integration produces no boundary terms. Thus for each such α, Dα
vf∗ =

(Dα
vf)∗ ∈ L2(V) and ‖Dα

vf‖L2(Ω) = ‖Dα
vf∗‖L2(V) from which the result fol-

lows.

We now turn to positive-homogeneous operators, viewed in the L2 setting and

their quadratic forms. Let Ω ⊆ V be a non-empty open set and let Λ be a

positive-homogeneous operator on V with symbol R and let m ∈ Nd and v

be the basis of V guaranteed by Proposition 4.2.5. Define

Dom(QΛΩ
) = Wm,2

0,v (Ω)

and for each f, g ∈ Dom(QΛΩ
), put

QΛΩ
(f, g) =

∫
V∗
P (ξ)f̂∗(ξ)ĝ∗(ξ)dξ.

Proposition 5.2.4. Then the restriction Λ|C∞0 (Ω) extends to a non-negative self-adjoint

operator on L2(Ω), denoted by ΛΩ. Its associated quadratic form is QΛΩ
has domain

Dom(QΛΩ
) = Wm,2

v,0 = Dom(Λ1/2) and moreover C∞0 (Ω) is a core for QΛΩ
.

Remark 17. The self-adjoint operator ΛΩ is the Dirichlet operator on Ω, i.e., the opera-

tor associated with the Dirichlet problem.

Remark 18. One can show that Dom(ΛΩ) = W 2m,2
v,0 (Ω). This fact however isn’t needed

for our development.
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Proof of Proposition 5.2.4. In view of Lemma 5.2.2, there are constants C,C ′ > 0

for which

C‖f‖Wm,2
v (V) ≤

(
‖f‖2

L2(V) +

∫
V∗
R(ξ)|f̂(ξ)|2dξ

)1/2

≤ C ′‖f‖Wm,2
v (V)

for all f ∈ Wm,2
v (V). Thus by Lemma 5.2.3,

C‖f‖Wm,2
v (Ω) ≤

(
‖f‖2

L2(Ω) +QΛΩ
(f)
)1/2

≤ C ′‖f‖Wm,2
v (Ω)

for all f ∈ Wm,2
v,0 (Ω). It follows that

‖f‖′Ω :=
(
‖f‖2

L2(Ω) +QΛΩ
(f)
)1/2

defines a norm on Wm,2
v,0 (Ω), equivalent to the norm ‖ · ‖Wm,2

v (Ω). From this we

can also conclude that QΛΩ
is a bona fide quadratic form.

It is easy to see thatQΛΩ
is symmetric, positive-definite (in the sense of forms)

and densely defined; these assertions follow because R is positive-definite and

C∞0 (Ω) ⊆ Wm,2
v,0 (Ω) ⊆ L2(Ω). We claim that QΛΩ

is closed. Indeed, let {fn} ⊆

Wm,2
v,0 (Ω) be a QΛΩ

-Cauchy sequence and such that fn → f in L2(Ω) for some

f ∈ L2(Ω). Because the norms ‖·‖′Ω and ‖·‖Wm,2
v (Ω) are equivalent, we know that

{fn} is also a Cauchy sequence in Wm,2
v,0 (Ω) and so it converges. Moreover, as

the topology on Wm,2
v,0 (Ω) is finer than the topology induced by the L2(Ω) norm,

we can conclude that f ∈ Wm,2
v,0 (Ω) and fn → f in Wm,2

v,0 (Ω). By again appealing

to the equivalence of norms, it follows that QΛΩ
is closed. It is now evident that

C∞0 (Ω) is a core for QΛΩ
.

In view of the theory of quadratic forms, QΛΩ
has a unique associated non-

negative self-adjoint operator ΛΩ with Dom(Λ
1/2
Ω ) = Dom(QΛΩ

). Also, because

〈Λf, g〉Ω = 〈Λf∗, g∗〉 =

∫
V∗
P (ξ)f̂∗(ξ)ĝ∗(ξ)dξ = QΛΩ

(f, g) = 〈f,Λg〉Ω

for all f, g ∈ C∞0 (Ω), ΛΩ must be a self-adjoint extension of Λ|C∞0 (Ω).
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5.3 Ultracontractivity and Sobolev-type inequalities

In this section we show that (self-adjoint) positive-homogeneous operators have

many desirable properties shared by elliptic operators. In particular, for a self-

adjoint positive-homogeneous operator Λ, we will prove corresponding Nash

and Gagliardo-Nirenberg inequalities.

Let Λ be a self-adjoint positive-homogeneous operator on V with symbol R and

homogeneous order µΛ. In view of Proposition 5.2.4, Λ determines a self-adjoint

positive-homogeneous operator on L2(V), ΛV. By an abuse of notation we shall

write Λ = ΛV and QΛV = QΛ. Using the spectral calculus, define semigroup

{e−tΛ}; this is a C0-contraction semigroup of self-adjoint operators on L2(V).

In view of our discussion in Chapter 4, it should be no surprise that the semi-

group e−tΛ, defined here by the spectral calculus coincides with that given by

the Fourier transform; this, in particular, is verified by the following lemma.

Lemma 5.3.1. For f ∈ L2(V) and t > 0,

(
e−tΛf

)
(x) =

∫
V
KΛ(t, x− y)f(y)dy (5.2)

almost everywhere, where KΛ(t, x) = (e−tR)∨(x) ∈ S(V). For each t > 0, this formula

extends {e−tΛ} to a bounded operator from Lp(V) to Lq(V) for any 1 ≤ p, q ≤ ∞.

Furthermore, for each 1 ≤ p, q ≤ ∞, there exists Cp,q > 0 such that

‖e−tΛ‖p→q ≤
Cp,q

tµΛ(1/p−1/q)

for all t > 0. In particular, the semigroup is ultracontractive with

‖e−tΛ‖2→∞ ≤
C2,∞

tµΛ/2

for all t > 0.
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Remark 19. Given a C0-semigroup {Tt} of self-adjoint operators on L2, we say that the

semigroup is ultracontractive if, for each t > 0, Tt is a bounded operator from L2 to L∞.

We note that this condition immediately implies (by duality) that, for each t > 0, Tt is

a bounded operator from L1 to L∞ and this is often (though not exclusively, e.g., [43])

taken to be the definition of ultracontractivity, see [18]. Our terminology is not meant to

imply (as it does in the case of Markovian semigroups) that the semigroup is contractive

on Lp for any p; it usually isn’t.

Proof of Lemma 5.3.1. We first verify the representation formula (5.2). Using

the Fourier transform, one sees easily that convolution by KΛ defines a C0-

contraction semigroup on L2(V) of self-adjoint operators. Denote this semi-

group and its corresponding generator by Tt and A respectively and note that A

is necessarily self-adjoint. For each f ∈ C∞0 (V), observe that

lim
t→0

∥∥t−1 (Ttf − f) + Λf
∥∥

2
= lim

t→0

∥∥∥(t−1(e−tR(ξ) − 1) +R(ξ)
)
f̂(ξ)

∥∥∥
2∗

= 0

where we have appealed to the dominated convergence theorem and the fact

that F(Λf) = Rf̂ . Consequently, C∞0 (V) ⊆ Dom(A) and Af = −Λf for all

f ∈ C∞0 (V). Our aim is to show that Λ|C∞0 (V) is essentially self-adjoint for then

A = −Λ and so necessarily, Tt = e−Λt as claimed.

Let f ∈ Ran(Λ|C∞0 (V) ± i)⊥. By the unitarity of the Fourier transform,

0 = 〈f, (Λ± i)g〉 = 〈f̂ , (R± i)ĝ〉∗ = 〈(R± i)f̂ , ĝ〉∗

for all g ∈ C∞0 (V). We know that F(C∞0 (V)) is dense in L2(V∗) and so it follows

that (R(ξ)± i)f̂(ξ)) = 0 almost everywhere. Using the fact that R is real-valued,

we conclude that f = 0 and so Ran(Λ|C∞0 (V) ± i)⊥ = {0}. This implies that

Ran(Λ|C∞0 (V)± i) is dense in L2(V) and thus the proof is complete in view of von

Neumann’s criteria for essential self-adjointness.
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The asserted Lp → Lq estimates for {e−tΛ} are now established using the

Fourier transform. In fact, we already established the L1 → L∞ estimate in the

paragraph proceeding Proposition 4.2.12; we leave the remaining estimate to

the reader.

Remark 20. It should be pointed out that Λ|C∞0 (Ω) is not generally essentially self-

adjoint; for instance one can consider the Dirichlet and Neumann operators when Ω

is, say, a bounded open non-empty subset of V. In this case the above argument fails

because F(C∞0 (Ω)) isn’t dense in L2(V∗).

Proposition 5.3.2 (Nash’s inequality). Let Ω be a non-empty open subset of V and

let Λ be a positive-homogeneous operator with homogeneous order µΛ. We consider the

self-adjoint operator ΛΩ and its quadratic form QΛΩ
. There exists C > 0 such that

‖f‖1+1/µΛ

L2(Ω) ≤ CQΛΩ
(f)1/2‖f‖1/µΛ

L1(Ω)

for all f ∈ C∞0 (Ω).

Proof. It suffices to prove the estimate when Ω = V, for the general result fol-

lows from the isometric embedding of Wm,2
v,0 (Ω) into Wm,2

v (V), c.f., Lemma 5.2.3,

and that of L1(Ω) into L1(V). Again, we will denote ΛV and QΛV by Λ and QΛ

respectively. In view of Lemma 5.3.1, the self-adjointness of Λ and duality give

C ′ > 0 such that

‖e−tΛ‖1→2 ≤
C ′

tµΛ/2
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for all t > 0. Thus for any f ∈ C∞0 (V),

‖f‖2 ≤ ‖e−tΛf − f‖2 + ‖e−tΛf‖2

≤
∥∥∥∥∫ t

0

d

ds
e−sΛfds

∥∥∥∥
2

+
C ′

tµΛ/2
‖f‖1

≤
∫ t

0

‖Λ1/2e−sΛΛ1/2f‖2ds+
C ′

tµΛ/2
‖f‖1

≤
∫ t

0

‖Λ1/2e−sΛ‖2→2dsQΛ(f)1/2 +
C ′

tµΛ/2
‖f‖1 (5.3)

for all t > 0. Using spectral theory we see that

‖Λ1/2e−sΛ‖2→2 ≤ sup
λ>0
|λ1/2e−sλ| ≤ C ′′

s1/2

for all s > 0 and therefore

‖f‖2 ≤ 2C ′′t1/2QΛ(f)1/2 +
C ′

tµΛ
‖f‖1

for all t > 0. The result follows by optimizing the above inequality and noting

that µΛ > 0.

Suppose additionally that µΛ < 1. Using ultracontractivity directly, a calculation

analogous to (5.3) yields

‖f‖∞ ≤
∫ t

0

‖e−sΛ/2‖2→∞‖λ1/2e−sΛ/2‖2→2dsQΛ(f)1/2 +
C

tµΛ/2
‖f‖2

≤ C ′t(1−µΛ)/2QΛ(f)1/2 +
C

tµΛ/2
‖f‖2

for f ∈ C∞0 (V) and t > 0. Upon optimizing with respect to t and using the

density of C∞0 (V) in Wm,2
v (V), we obtain the following lemma:

Lemma 5.3.3. If µΛ < 1 then there is C > 0 such that for all f ∈ Wm,2
v,0 (Ω),

‖f‖L∞(Ω) ≤ CQΛΩ
(f)µΛ/2‖f‖1−µΛ

L2(Ω).
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Lemma 5.3.3 is the analog of the Gagliardo-Nirenberg inequality in our setting.

5.4 Fundamental Hypotheses

In this section, we consider arbitrary self-adjoint operators on L2(Ω) where Ω is

a non-empty open subset of V; herein and in the next three sections ‖·‖2 denotes

the L2(Ω) norm, 〈·, ·〉 denotes its inner product and all mentions of a positive-

homogeneous operator Λ refer to the self-adjoint operator ΛΩ of Proposition

5.2.4. Correspondingly, QΛΩ
is denoted by QΛ. We will state three hypothe-

ses for such self-adjoint operators under which one can deduce the existence of

heat kernels and prove corresponding off-diagonal estimates. Our construction

is based on E.B. Davies’ article [21], wherein a general class of higher order self-

adjoint uniformly elliptic operators on Rd is studied.

Let’s consider a self-adjoint operator H , bounded below, with domain

Dom(H) ⊆ L2(Ω) and its corresponding quadratic form Q with domain

Dom(Q). We require that C∞0 (Ω) ⊆ Dom(Q). The first of three fundamental

hypotheses concerning H and Q is as follows:

Hypothesis 5.1. Let H and Q be as above. There exists a self-adjoint positive-

homogeneous operator Λ with corresponding quadratic form QΛ such that

1

2
QΛ(f) ≤ Q(f) ≤ C(QΛ(f) + ||f ||22) (5.4)

for all f ∈ C∞0 (Ω) where C ≥ 1. We shall call Λ a reference operator for H .

Hypothesis 5.1 is a comparability statement between H and the positive-

homogeneous operator Λ. In this way, (5.4) is analogous to Gårding’s inequality
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in that the latter compares second order elliptic operators to the Laplacian.

When Hypothesis 5.1 holds, the inequality (5.4) ensures that Dom(Q) =

Dom(QΛ) and that H ≥ 0. In view of Proposition 5.2.4, there exist m ∈ Nd

and a basis v of V such that

Dom(Q) = Dom(QΛ) = Wm,2
v,0 (Ω)

and, because C∞0 (Ω) is dense in Wm,2
v,0 (Ω), (5.4) holds for all f in this common

domain. These remarks are summarized in the following lemma:

Lemma 5.4.1. Let H be a self-adjoint operator satisfying Assuption 5.1. Then H ≥ 0

and

Dom(Q) = Wm,2
v,0 (Ω)

where m and v are those associated with Λ via Proposition 5.2.4. Moreover, (5.4) holds

for all f in this common domain.

As in [21], we avoid identification of Dom(H) as it isn’t necessary. By virtue

of Lemma 5.4.1 and Theorem 1.53 of [69], −H generates a strongly continuous

semigroup Tt = e−tH on L2(Ω) which is a bounded holomorphic semigroup on

a non-trivial sector of C. The main goal of this chapter is to show that the semi-

group Tt has an integral kernel Z satisfying off-diagonal estimates in terms of

the Legendre-Fenchel transform of R. Under the hypotheses given in this sec-

tion, we obtain these off-diagonal estimates by means of Davies’ perturbation

method, suitably adapted to our naturally anisotropic setting. Specifically, we

study perturbations of the semigroup Tt formed by conjugating Tt by ”nice”

operators. To this end, set

C∞∞(Ω,Ω) = {φ ∈ C∞(Ω,Ω) : ∂kv (λ(φ)) ∈ L∞(Ω) for all v ∈ V, λ ∈ V∗ and k ≥ 0}
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and, for φ ∈ C∞∞(Ω,Ω) and λ ∈ V∗, we consider the smooth functions eλ(φ) and

e−λ(φ); these will act as bounded and real-valued multiplication operators on

L2(Ω). For each such λ and φ, we define the twisted semigroup T λ,φt on L2(Ω) by

T λ,φt = eλ(φ)Tte
−λ(φ)

for t > 0. For any f ∈ L2(Ω) such that e−λ(φ)f ∈ Dom(H), observe that

eλ(φ)(−H)e−λ(φ)f = eλ(φ) lim
t→0

Tt(e
−λ(φ)f)− (e−λ(φ)f)

t

= lim
t→0

T λ,φt f − f
t

where we have used the fact that eλ(φ) acts as a bounded multiplication operator

on L2(Ω). Upon pushing this argument a little further one sees that T λ,φt has

infinitesimal generator −Hλ,φ = −eλ(φ)He−λ(φ) = eλ(φ)(−H)e−λ(φ) and

Dom(Hλ,φ) =
{
f ∈ L2(Ω) : e−λ(φ)f ∈ Dom(H)

}
.

We also note that, in view of the resolvent characterization of bounded holo-

morphic semigroups, e.g., Theorem 1.45 of [69], it is straightforward to verify

that {T λ,φt } is a bounded holomorphic semigroup on L2(Ω).

Remark 21. This construction for T λ,φt is similar to that done in [21]. The difference be-

ing that λ for us is a “multi-parameter” whereas in [21] it is a scalar. This construction

is the basis behind the suitable adaptation of Davies’ method for positive-homogeneous

operators, discussed in the introductory section of this chapter.

In the same spirit, define twisted form Qλ,φ by

Qλ,φ(f) = Q(e−λ(φ)f, eλ(φ)f)

for all f ∈ Dom(Qλ,φ) := Dom(Q). One can easily check that multiplication by

eλ(φ) for φ ∈ C∞∞(Ω,Ω) is an isomorphism of Wm,2
v,0 (Ω) and so necessarily Qλ,φ is
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densely defined and closed. It generally isn’t symmetric or real-valued. As the

next lemma shows, Hλ,φ corresponds to Qλ,φ in the usual sense.

Lemma 5.4.2. For any λ ∈ V∗ and φ ∈ C∞∞(Ω,Ω),

Dom(Hλ,φ) ⊆ Dom(Qλ,φ) = Dom(Q)

and

Qλ,φ(f) = 〈Hλ,φf, f〉

for all f ∈ Dom(Hλ,φ).

Proof. For f ∈ Dom(Hλ,φ),

e−λ(φ)f ∈ Dom(H) ⊆ Dom(Q) = Wm,2
v,0 (Ω).

Because φ ∈ C∞∞(Ω,Ω), ∂ki eλ(φ) ∈ L∞(Ω) for all i = 1, 2, . . . , d and k ≥ 0 . Using

the Leibniz rule it follows that

f = eλ(φ)(e−λ(φ)f) ∈ Wm,2
v,0 (Ω) = Dom(Qλ,φ).

We see that,

〈Hλ,φf, f〉 = 〈H(e−λ(φ)f), eλ(φ)f〉 = Q(e−λ(φ)f, eλ(φ)f) = Qλ,φ(f)

as desired.

Our second fundamental hypothesis is as follows:

Hypothesis 5.2. LetH andQ satisfy Hypothesis 5.1 with associated reference operator

Λ. There exist E ⊆ C∞∞(Ω,Ω) and M > 0 such that:

i) For each pair x, y ∈ Ω, there is φ ∈ E for which φ(x)− φ(y) = x− y.
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ii) For all φ ∈ E , λ ∈ V∗ and f ∈ Dom(Q),

|Qλ,φ(f)−Q(f)| ≤ 1

4
(Q(f) +M(1 +R(λ))‖f‖2

2) (5.5)

where R is the symbol of Λ. We will call (5.5) the form comparison inequality.

Our next lemma follows immediately from Lemma 5.4.2 and Hypothesis 5.2. Its

proof is omitted.

Lemma 5.4.3. Let φ ∈ E and λ ∈ V∗. If Hypothesis 5.2 holds,

2 Re[Qλ,φ(f)] = 2 Re[(Hλ,φf, f)] ≥ −M
2

(1 +R(λ))‖f‖2
2 (5.6)

for all f ∈ Dom(Hλ,φ).

Hypothesis 5.3. Let H satisfy Hypotheses 5.1 and 5.2 and let Λ be the associated self-

adjoint positive-homogeneous operator with symbol R and homogeneous order µΛ. Set

κ = min{n ∈ N : µΛ/n < 1} and denote by QΛκ the quadratic form corresponding to

Λκ. There is C > 0 such that, for any φ ∈ E and λ ∈ V∗,

Dom(Hκ
λ,φ) ⊆ Dom(QΛκ)

and

QΛκ(f) ≤ C(|〈Hκ
λ,φf, f〉|+ (1 +R(λ))κ‖f‖2

2)

for all f ∈ Dom(Hκ
λ,φ).

In [21], the self-adjoint operators considered are required to satisfy Hypothesis

5.1 in the special case that Λ = (−∆)m on Rd for some m ∈ N. The theory in [21]

proceeds under only two hypotheses which are paralleled by Hypotheses 5.1

and 5.2 above respectively. Incidentally, off-diagonal estimates are only shown
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in the case that 2m < d which corresponds to µΛ < 1 in our setting (See Ex-

ample 2.8.2). As the proposition below shows, when µΛ < 1, Hypothesis 5.3 is

superfluous.

Proposition 5.4.4. Let H be a self-adjoint operator satisfying Hypotheses 5.1 and 5.2.

Let Λ be the associated positive-homogeneous operator with symbolR and homogeneous

order µΛ. If µΛ < 1, i.e., κ = 1, then Hypothesis 5.3 holds.

Proof. The assertion that Dom(Hλ,φ) ⊆ Dom(QΛ) for all φ ∈ E and λ ∈ V∗ is a

consequence of Lemma 5.4.2. Using (5.4) and (5.5), we have

QΛ(f) ≤ 2Q(f) ≤ C(Re(Qλ,φ(f)) + (1 +R(λ))‖f‖2
2)

≤ C(|Qλ,φ(f)|+ (1 +R(λ))‖f‖2
2)

for all f ∈ Dom(Q), φ ∈ E and λ ∈ V∗. In view of Lemma 5.4.2, the proof is

complete.

5.5 The L2 theory

We now return to the general theory. Throughout this section all hypotheses are

to include Hypotheses 5.1 and 5.2 without explicit mention. Except for Lemma

5.5.3, all statements mirror those in [21] and their proofs follow with little or no

change. We will keep track of certain constants and to this end, any mention

of M > 0 refers to that which is specified in Hypothesis 5.2. As usual, positive

constants denoted by C will change from line to line.

Lemma 5.5.1. For any λ ∈ V∗ and φ ∈ E ,

‖T λ,φt ‖2→2 ≤ exp(M(1 +R(λ))t/4)
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for all t > 0.

Proof. For f ∈ L2(Ω), put ft = T λ,φt f . By Lemma 5.4.3,

d

dt
‖ft‖2

2 = −2 Re[(Hλ,φft, ft)] ≤
M

2
(1 +R(λ))‖ft‖2

2.

The result now follows from Grönwall’s lemma.

Lemma 5.5.2. There exists C > 0 such that

‖Hλ,φT
λ,φ
t ‖2→2 ≤

C

t
exp

(
M

2
(1 +R(λ))t

)
for all t > 0, λ ∈ V∗ and φ ∈ E .

Proof. Our argument uses the theory of bounded holomorphic semigroups, c.f.

[19]. For f ∈ L2(Ω), r > 0 and |θ| ≤ π/3 put

fr = exp[−reiθHλ,φ]f.

It follows that fr ∈ Dom(Hλ,φ) and

d

dr
‖fr‖2

2 = −eiθ(Hλ,φfr, fr)− e−iθ(fr, Hλ,φfr)

= −eiθQλ,φ(fr)− e−iθQλ,φ(fr)

= −(eiθ + e−iθ)Q(fr) +Dr

where

Dr = −eiθ[Qλ,φ(fr)−Q(fr)]− e−iθ[Qλ,φ(fr)−Q(fr)].

By Hypothesis 5.2,

|Dr| ≤ (Q(fr) +M(1 +R(λ))‖f‖2
2)/2

and so with the observation that eiθ + e−iθ ≥ 1 for all |θ| ≤ π/3,

d

dr
‖fr‖2

2 ≤
M

2
(1 +R(λ))‖f‖2

2.
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Hence,

‖fr‖2 ≤ exp(M(1 +R(λ))r/4)‖f‖2

in view of Grönwall’s lemma. From the above estimate we have

‖ exp[−zHλ,φ −M(1 +R(λ))z]‖2→2

≤ exp(M(1 +R(λ))r/4) exp(−M(1 +R(λ)) Re(z)/2) ≤ 1

for all z = reiθ for r > 0 and |θ| ≤ π/3 because 2 Re(z) ≥ r. Theorem 8.4.6 of [19]

yields

‖(Hλ,φ +M(1 +R(λ))/2) exp[−tHλ,φ −M(1 +R(λ))t/2]‖2→2 ≤
C ′

t

for all t > 0. It now follows that

‖Hλ,φT
λ,φ
t ‖2→2 ≤

C

t
exp(M(1 +R(λ))t/2)

for all t > 0 where we have put C = C ′ + 2.

Lemma 5.5.3. For any k ∈ N, there is C > 0 such that

‖Hk
λ,φe

−tHλ,φ‖2→2 ≤
C

tk
exp(M(1 +R(λ))t/2)

for all t > 0, φ ∈ E and λ ∈ V∗.

Proof. As −Hλ,φ is the generator of the semigroup e−tHλ,φ , for any t > 0 and

f ∈ L2(Ω), e−tHλ,φf ∈ Dom(Hk
λ,φ). We have

Hk
λ,φe

−tHλ,φ =
(
Hλ,φe

−(t/k)Hλ,φ
)k

and so by the previous lemma

‖Hk
λ,φe

−tHλ,φ‖2→2 ≤
(
C

t
exp(M(1 +R(λ)t/2k)

)k
from which the result follows.
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5.6 Off-diagonal estimates

In this section we prove off-diagonal estimates for the semigroup Tt = e−tH . Let

R be the symbol of the positive-homogeneous reference operator Λ for H and

let µΛ be its homogeneous order.

Lemma 5.6.1. Let H be a self-adjoint operator satisfying Hypotheses 5.1 and 5.2 with

reference operator Λ. Let Tt = e−tH be the associated semigroup. If the twisted semi-

group T λ,φt satisfies the ultracontractive estimate

‖T λ,φt ‖2→∞ ≤
C

tµΛ/2
exp[M(R(λ) + 1)t/2] (5.7)

for all λ ∈ V∗, φ ∈ E and t > 0 whereC,M > 0, then Tt has integral kernelZ(t, x, y) =

Z(t, x, ·) ∈ L1(Ω) satisfying the off-diagonal bound

|Z(t, x, y)| ≤ C

tµΛ
exp

(
−tMR#

(
x− y
t

)
+Mt

)
for all x, y ∈ V and t > 0.

Proof. It is clear that the adjoint of T λ,φt is T−λ,φt and so by duality and (5.7),

‖T λ,φt ‖1→2 ≤
C

tµΛ/2
exp[M(R(λ) + 1)t/2]

for t > 0 where we have replaced MR(−λ) by MR(λ) in view of Proposition

4.3.2. Thus for all t > 0, λ ∈ V∗ and φ ∈ E ,

‖T λ,φt ‖1→∞ ≤ ‖T λ,φt ‖1→2‖T λ,φt ‖2→∞

≤ C

tµΛ/2
exp[M(R(λ) + 1)t/2]

C

tµΛ/2
exp[M(R(λ) + 1)t/2]

≤ C

tµΛ
exp[Mt(R(λ) + 1)].

The above estimate guarantees that T λ,φt has integral kernel Zλ,φ(t, x, y) satisfy-

ing the same bound (see Theorem 2.27 of [19]). By construction, we also have

Zλ,φ(t, x, y) = e−λ(φ(x))Z(t, x, y)eλ(φ(y))
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where Z = Z0,φ is the integral kernel of Tt = T 0,φ
t . Therefore

|e−λ(φ(x))Z(t, x, y)eλ(φ(y))| ≤ C

tµΛ
exp(Mt(R(λ) + 1))

or equivalently

|Z(t, x, y)| ≤ C

tµΛ
exp (λ(φ(y)− φ(x)) +Mt(R(λ) + 1))

for all t > 0, x, y ∈ Ω, λ ∈ V∗ and φ ∈ E . In view of Hypothesis 5.2, for any x and

y ∈ Ω there is φ ∈ E for which φ(x) = x and φ(y) = y. Consequently, we have

that for all x, y ∈ Ω, λ ∈ V∗ and t > 0,

|Z(t, x, y| ≤ C

tµΛ
exp (λ(y − x) +Mt(R(λ) + 1)) .

The proof of the lemma will be complete upon minimizing the above bound

with respect to λ ∈ V∗. In this process, we shall see how the Legendre-Fenchel

transform appears naturally. For any x, y ∈ Ω and t > 0, we have

|Z(t, x, y)| ≤ C

tµΛ
inf
λ
{exp {λ(y − x) +Mt(R(λ) + 1)}}

≤ C

tµΛ
exp

(
−t sup

λ

{
λ

(
x− y
t

)
−MR(λ)

})
exp(Mt)

≤ C

tµΛ
exp

(
−t(MR)#

(
x− y
t

)
+Mt

)
≤ C

tµΛ
exp

(
−tR)#

(
x− y
t

)
+Mt

)
where we replaced (MR)# by MR# in view of Corollary 4.3.3.

Theorem 5.6.2. Let H be a self-adjoint operator satisfying Hypotheses 5.1, 5.2 and

5.3 where Λ is the associated positive-homogeneous reference operator with symbol R

and homogeneous order µΛ. Then the cooresponding semigroup Tt = e−tH has integral

kernel Z : (0,∞)× Ω× Ω→ C satisfying

|Z(t, x, y)| ≤ C

tµΛ
exp

(
−tMR#

(
x− y
t

)
+Mt

)
for all x, y ∈ Ω and t > 0 where C is some positive constant.
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Proof. Take κ as in Hypothesis 5.3. We note that for all f ∈ Dom(Λκ),

‖f‖∞ ≤ CQΛκ(f)µΛ/2κ‖f‖1−µΛ/κ
2

in view of Lemma 5.3.3. The application of the lemma is justified because Λκ is

positive-homogeneous with κ−1 Exp(Λκ) = Exp(Λ) and, as required, µΛ/κ < 1.

For f ∈ L2(Ω), set ft = T λ,φt f . In view of Hypothesis 5.3 and Lemmas 5.5.1 and

5.5.2, we have

‖ft‖∞ ≤ QΛκ(ft)
µΛ/2κ‖ft‖1−µΛ/κ

2

≤ C
(
|〈Hκ

λ,φft, ft〉|+ (1 +R(λ))κ‖ft‖2
2

)µΛ/2κ ‖ft‖1−µΛ/κ
2

≤ C
(
‖Hκ

λ,φft‖2‖ft‖2 + (1 +R(λ))κ‖ft‖2
2

)µΛ/2κ ‖ft‖1−µΛ/κ
2

≤ C

(
exp(M(1 +R(λ))t/4)

tκ
+ (1 +R(λ))k

)µΛ/2κ

× exp(M(1 +R(λ))t/4)‖f‖2

≤ C

tµΛ/2
exp(M(1 +R(λ))t/2)‖f‖2

for all φ ∈ E and λ ∈ V∗. In view of Lemma 5.6.1, the theorem is proved.

5.7 Homogeneous Operators

In this short section, we show that the term Mt in heat kernel estimate of The-

orem 5.6.2 can be removed when H is ”homogeneous” in the sense given by

Definition 5.7.1 below. For simplicity, we work on full vector space, i.e., Ω = V.

Our arguments in this section follow closely to the work of G. Barbatis and E. B.

Davies [9]. Given a self-adjoint operator H on L2(V) satisfying Hypotheses 5.1

and 5.2 with quadratic form Q and associated positive-homogeneous operator

Λ. For any E ∈ Exp(Λ), observe that

(Usf)(x) = sµΛ/2f(sEx)
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defines a unitary operator Us on L2(V) for each s > 0 with U∗s = U1/s. For each

s > 0, set

Hs = s−1U∗sHUs.

and note that Hs is a self-adjoint operator on L2(V). It is easily verified that the

quadratic form Qs associated to Hs has

Qs(f) = s−1Q(Usf)

for all f in the common domain Dom(Qs) = Dom(Q) = Dom(Λ1/2). Being a

rescaled version of the operator H , it is clear the Hs will satisfy the Hypotheses

5.1 and 5.2. Let us isolate the following special situation:

Definition 5.7.1. Assuming the notation above, we say that H is homogeneous pro-

vided that Hs satisfies Hypothesis 5.1 and 5.2 with the same constants as H for all

s > 0. In other words, Hs (and so Qs) satisfies the estimates (5.4) and (5.5) uniformly

for s > 0.

We note that a positive-homogeneous operator Λ is homogeneous in the above

sense, for our defining property of homogeneous constant coefficient operators

can be written equivalently as Λs = Λ for all s > 0. In the example section

below, we will see that the replacement of Hs by H amounts to a rescaling of

the arguments of the coefficients in the case that H consists of only terms of

”principal order”.

Theorem 5.7.2. Let H be a self-adjoint operator satisfying the hypotheses of Theorem

5.6.2 with associated reference operator Λ with symbol R and order µΛ < 1. If, addi-

tionally, H is homogeneous, then its heat kernel Z satisfies the estimate

|Z(t, x, y)| ≤ C

tµΛ
exp

(
−tMR#

(
x− y
t

))
for all x, y ∈ V and t > 0, where C and M are positive constants.
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Proof. Using the fact that Us is unitary for each s > 0, it follows that

e−tHs = e−ts
−1U1/sHUs = U1/se

−(t/s)HUs

for s, t > 0. Consequently, for f ∈ L2(V),

(
e−tHsf

)
(x) =

∫
V
s−µΛK(t/s, s−Ex, y)sµΛf(sEy) dy

= s−µΛ

∫
V
Z(t/s, s−Ex, s−Ey)f(y) dy

for s, t > 0 and almost every x ∈ V. Thus, e−tHs has an integral kernel Zs :

(0,∞)× V× V→ C satisfying

Zs(t, x, y) = s−µΛZ(t/s, s−Ex, s−Ey)

for x, y ∈ V. Equivalently,

Z(t, x, y) = sµΛZs(st, sEx, sEy)

for t, s > 0 and x, y ∈ V. We now apply the same sequence of arguments to the

self-adjoint operators Hs and the semigroups e−tHs . Under the hypothesis that

H is homogeneous, a careful study reveals that each estimate in the sequence

of lemmas preceding Theorem 5.6.2 and the estimates in the proof of Theorem

5.6.2 are independent of s. From this, we obtain positive constants C and M for

which

|Zs(t, x, y)| ≤ C

tµΛ
exp

(
−tMR#

(
x− y
t

)
+Mt

)
for all t > 0 and x, y ∈ V and this holds uniformly for s > 0. Consequently,

|Z(t, x, y)| ≤ sµΛC

(st)µΛ
exp

(
−(st)MR#

(
sE(x− y)

st

)
+Mst

)
≤ C

tµΛ
exp

(
−tMR#

(
x− y
t

)
+Mst

)
for all s, t > 0 andx, y ∈ V where we have used the fact that I − E ∈ Exp(R#).

The desired estimate follows by letting s→ 0.
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5.8 Regularity of Z when µΛ < 1

In this section, we show that the heat kernel Z is particularly nice when µΛ < 1.

Lemma 5.8.1. Let Λ be a positive-homogeneous operator with real symbol R and ho-

mogeneous order µΛ. If µΛ < 1, then∫
V∗

1

(1 +R(ξ))1−εdξ <∞

where ε = (1− µΛ)/2. In particular, (1 +R)−1 ∈ L1(V∗).

Proof. For any Borel set B, write m(B) =
∫
B
dξ. It suffices to prove that

∞∑
l=0

m(Fl)

2l
<∞

where Fl := {ξ ∈ V∗ : 2l ≤ R(ξ)1−ε ≤ 2l+1}. To this end, fix E ∈ Exp(R) and

observe that, for any l ≥ 1,

Fl =
{
ξ : 2l−1 ≤ (t−1R(ξ))1−ε ≤ 2l

}
=

{
ξ : 2l−1 ≤ R(t−Eξ)1−ε ≤ 2l

}
= {tEξ : 2l−1 ≤ R(ξ)1−ε ≤ 2l} = tEFl−1

where we have set t = 21/(1−ε). Continuing inductively we see that Fl = tlEF0

for all l ∈ N and so it follows that

m(Fl) =

∫
tlEF0

dξ =

∫
F0

det(tlE)dξ = (tl trE)m(F0) = tlµΛm(F0).

where we have used the fact that µΛ = trE∗ = trE because E∗ ∈ Exp(Λ).

Consequently,

∞∑
l=0

2−lm(Fl) = m(F0)
∞∑
l=0

2−l(tlµΛ) =
∞∑
l=0

(
2−1tµΛ

)l
<∞

because 2−1tµΛ = 2(µΛ/(1−ε)−1) < 1.
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Lemma 5.8.2. Let | · | be a norm on V and suppose that µΛ < 1. There exists C > 0

such that ∫
V∗

|eiξ(x) − eiξ(y)|2

1 +R(ξ)
dξ ≤ C|x− y|(1−µΛ)

for all x, y ∈ V.

Proof. In view of the preceding lemma,

|eiξ(x) − eiξ(y)|2

(1 +R(ξ)
≤ 4(1 +R(ξ))−1 ∈ L1(V∗)

for all x, y ∈ V. Consequently, it suffices to treat only the case in which 0 <

|x − y| ≤ 1. In this case, let E ∈ Exp(R) be that given by Lemma 4.2.6, set

t = |x− y|−1 and observe that∫
V∗

|eiξ(x) − eiξ(y)|2

(1 +R(ξ))
dξ =

∫
t≤R(ξ)

|eiξ(x) − eiξ(y)|2

(1 +R(ξ))
dξ +

∫
t>R(ξ)

|eiξ(x) − eiξ(y)|2

(1 +R(ξ))
dξ

≤
∫
t≤R(ξ)

4

R(ξ)
dξ +

∫
t>R(ξ)

|eiξ(x) − eiξ(y)|2dξ

≤
∫

1≤R(ξ)

4

R(tE∗ξ)
tµΛdξ +

∫
1>R(ξ)

|eiξ(tEx) − eiξ(tEy)|2tµΛdξ

≤ tµΛ−1

∫
1≤R(ξ)

4

R(ξ)
dξ + tµΛ|tE(x− y)|2

∫
1>R(ξ)

4|ξ|2∗dξ

where | · |∗ is the corresponding dual norm on V∗. Using Lemma 5.8.1 and the

fact that |ξ|2∗ is bounded on the bounded set {1 > R(ξ)}, it follows that∫
V∗

|eiξ(x) − eiξ(y)|2

(1 +R(ξ))
dξ ≤ C

(
tµΛ−1 + tµΛ|tE(x− y)|2

)
for some C > 0. In view of Lemma 4.2.6 and Lemma A.1.2, ‖tE‖ ≤ C ′t1/2 for

some C ′ > 0 because t ≥ 1. Consequently,∫
V∗

|eiξ(x) − eiξ(y)|2

(1 +R(ξ))
dξ ≤ C

(
tµΛ−1 + tµΛ+1|x− y|2

)
= 2C|x− y|(1−µΛ).
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The following lemma is analogous to Lemma 14 of [21].

Lemma 5.8.3. Let H be a self-adjoint operator satisfying Assuption 5.1 with reference

operator Λ and suppose that µΛ < 1. There exists a uniformly bounded function φ :

V→ L2(V) such that for every f ∈ L2(V),

{(H + 1)−1/2f}(x) = (f, φ(x)) (5.8)

for almost every x ∈ V. Moreover, φ is Hölder continuous of order α = (1 − µΛ)/2.

In particular, (H + 1)−1/2 is a bounded operator from L2(V) into L∞(V) and for each

f ∈ L2(V), there is a version of (H + 1)−1/2f which is bounded and Hölder continuous

of order α.

Proof. In view of (5.4),∫
V∗

(1 +R(ξ))|ĝ(ξ)|2dξ ≤ c‖(1 +H)1/2g‖2
2

for all g ∈ Wm,2
v (V). Also by the Cauchy-Schwarz inequality∫
V∗

(1 +R(ξ))ε/2|ĝ(ξ)|dξ ≤ C

(∫
V∗

(1 +R(ξ))|ĝ(ξ)|2dξ
)1/2

where

C2 =

∫
V∗

(1 +R(ξ))ε

(1 +R(ξ))
dξ <∞

in view of Lemma 5.8.1. Consequently, for all g ∈ Wm,2
v (V), ĝ ∈ L1(V∗) and

‖g‖∞ ≤
∫
V
(1 +R(ξ))ε/2|ĝ(ξ)|dξ ≤ C‖(1 +H)1/2g‖2. (5.9)

So (H + 1)1/2 is an injective self-adjoint operator and therefore has dense range

in L2(V). We can therefore consider (H + 1)−1/2, which by (5.9) is a bounded

operator from L2(V) into L∞(V).
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Let | · | be a norm on V and for f ∈ L2(V) set g = (H + 1)−1/2f . For almost

every x, y ∈ V we have

|g(x)− g(y)| ≤
∫
V∗
|eiξ(x) − eiξ(y)||ĝ(ξ)|dξ

≤
(∫

V∗
(1 +R(ξ))|ĝ(ξ)|2dξ

)1/2(∫
V∗

|eiξ(x) − eiξ(y)|2

(1 +R(ξ))
dξ

)1/2

≤ c‖f‖2

(∫
V∗

|eiξ(x) − eiξ(y)|2

(1 +R(ξ))
dξ

)1/2

≤ C‖f‖2|x− y|α (5.10)

in view of the previous lemma. It follows from (5.9) that for almost every x ∈ V,

there exists φ(x) ∈ L2(V) such that

(H + 1)−1/2f(x) = (f, φ(x)).

By putting f = φ(x), another application of (5.9) shows that ‖φ(x)‖ ≤ C. More-

over, (5.10) guarantees that

|(f, φ(x)− φ(y))| ≤ C‖f‖2|x− y|α

from which it follows that ‖φ(x)−φ(y)‖2 ≤ C|x−y|α almost everywhere. Finally,

redefine φ, so that all of the above statements hold on all of V.

Theorem 5.8.4. Let H be a self-adjoint operator satisfying Hypotheses 5.1 and 5.2. Let

Λ be the associated positive-homogeneous operator with symbol R and homogeneous

order µΛ. If µΛ < 1 then, there exists Z : C+ × V× V→ C such that

(
e−zHf

)
(x) =

∫
V
Z(z, x, y)f(y)dy

for all f ∈ L1(V) ∩ L2(V). For fixed z ∈ C+, Z(z, ·, ·) : V × V → C is Hölder

continuous of order α = (1−µΛ)/2. Moreover for each x, y ∈ V, C+ 3 z 7→ Z(z, x, y)

is analytic. Finally, there exists C > 0 such that

|Z(t, x, y)| ≤ C

tµΛ
exp

(
−tMR#

(
x− y
t

)
+Mt

)
for all x, y ∈ V and t > 0.
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Proof. In view of Proposition 5.4.4, the final conclusion follows from Theorem

5.6.2. The fact that e−zH is a bounded holomorphic semigroup ensures that

B(z) = (1 + H)e−zH is a bounded holomorphic function on L2(V) for z ∈ C+.

For x, y ∈ V, z ∈ C+ define

Z(z, x, y) := (B(z)φ(y), φ(x)).

It follows that C+ 3 z 7→ Z(z, x, y) is analytic for any x, y ∈ V. Now for fixed

z ∈ C+, Z(z, ·, ·) is Hölder continuous of order α. Indeed, let | · | be a norm on V.

With the help of Lemma 5.8.3, observe that for z ∈ C+,

|Z(z, x, y)− Z(z, x′, y′)| ≤ |Z(z, x, y)− Z(z, x′, y)|+ |Z(z, x′, y)− Z(z, x′, y′)|

≤ C‖B(z)‖2→2 (‖φ(x)− φ(x′)‖2 + ‖φ(y)− φ(y′)‖)

≤ C‖B(z)‖2→2

(
|x− x′|2(α/2) + |y − y′|2(α/2)

)
≤ C‖B(z)‖2→2

(
|x− x′|2 + |y − y′|2

)α/2
for all (x, y), (x′, y′) ∈ V× V as claimed. It remains to show that Z(z, x, y) is the

integral kernel of e−zH .

Again by Lemma 5.8.3, (H + 1)−1/2 : L2(V) → L∞(V) is bounded and so

(H + 1)−1/2 : L1(V)→ L2(V) is also bounded by duality. More is true: Using the

self-adjointness of H one can check that

φx(y) = φy(x)

for almost every x, y ∈ V. Here, the variable of integration is that which appears
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in the subscript. So for f ∈ L1(V) ∩ L2(V),

(
e−Hzf

)
(x) = ((H + 1)−1/2B(z)(H + 1)−1/2f)(x)

=

∫
V
(B(z)(H + 1)−1/2f)(w)φw(x)dw

=

∫
V
(f, φ(w))(B(z)φ(x)(w)dw

=

∫
V

∫
V
f(y)φy(w)(B(z)φ(x)(w)dwdy

=

∫
V

∫
V
f(y)φw(y)(B(z)φ(x)(w)dwdy

=

∫
V

∫
V
(B(z)φ(y))(w)φw(x)dwf(y)dy

as desired.

5.9 Super-semi-elliptic operators

In this section, we consider a class of operators to which we apply the theory of

the preceding sections. We call this class of operators super-semi-elliptic oper-

ators, a term motivated by the super-elliptic operators of E. B. Davies [21] (see

also [9,85]). Naturally, the class of super-semi-elliptic operators include the class

of super-elliptic operators.

Let m ∈ Nd
+ be such that

|1 : 2m| = (2m1)−1 + (2m2)−1 + · · ·+ (2md)
−1 < 1,

let v = {v1, v2, . . . , vd} be a basis of V and let E ∈ Gl(V) be given by Evk =

(2mk)
−1vk for k = 1, 2, . . . , d. Herein, we consider a class of operators written in

divergence form whose coefficients are only required to be bounded and mea-

surable. In the notation of Chapter 4, consider the partial differential operator

254



H given formally by

H =
∑
|α:m|≤1
|β:m|≤1

Dα
v{aα,β(x)Dβ

v} (5.11)

where we require the following conditions for the functions aα,β :

• The collection

{aα,β(·)}|α:m|≤1
|β:m|≤1

⊆ L∞(V)

and we shall put

ν = max
|α:m|≤1
|β:m|≤1

‖aα,β‖∞.

• For each x ∈ V, the matrix

{aα,β(x)}|α:m|≤1
|β:m|≤1

is Hermitian.

• There exists {Aα,β : |α : m| = 1, |β : m| = 1} ⊆ R such that

Λ :=
∑
|α:m|=1
|β:m|=1

Aα,βD
α+β
v

has positive-definite symbol R (and so it is a positive-homogeneous oper-

ator with E ∈ Exp(Λ) and µΛ = |1 : m| < 1) and, for some C ≥ 1,

3

4

∑
|α:m|=1
|β:m|=1

Aα,βηαηβ ≤
∑
|α:m|=1
|β:m|=1

aα,β(x)ηαηβ ≤ C
∑
|α:m|=1
|β:m|=1

Aα,βηαηβ

for all η ∈ ⊕|α:m|=1C and almost every x ∈ V.

We will call such operators super-semi-elliptic.
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For a general super-semi-elliptic operator H , its quadratic form Q is given by

Q(f, g) =
∑
|α:m|≤1
|β:m|≤1

∫
V
aα,β(x)Dα

vf(x)Dβ
vg(x)dx

for f, g ∈ C∞0 (V) (in fact, this defines H). Q is clearly symmetric. Taking C∞0 (V)

as a form core for Q, we see that Q extends to a closed quadratic form on L2(V),

also denoted by Q with domain Dom(Q) = W 2,m(V) and H extends to a self-

adjoint operator with Dom(H) ⊆ Dom(Q).

Proposition 5.9.1. There exists a positive constant C for which H + C satisfies Hy-

pothesis 5.1. If H consists only of its principal terms, i.e,

H =
∑
|α:m|=1
|β:m|=1

Dα
v{aα,β(x)Dβ

v},

then H satisfies the Hypotheses 5.1.

Proof. For f ∈ C∞0 (V), observe that

3

4
QΛ(f) +

∑
|α+β:m|<2

∫
V
aα,βD

α
vfD

β
vfdx

=
3

4

∑
|α:m|=1
|β:m|=1

∫
V
Aα,βD

α
vfD

β
vfdx+

∑
|α+β:m|<2

∫
V
aα,β(x)Dα

vfD
β
vfdx

≤
∑
|α:m|≤1
|β:m|≤1

∫
V
aα,βD

α
vfD

β
vfdx = Q(f)

≤ C
∑
|α:m|=1
|β:m|=1

∫
V
Aα,βD

α
vfD

β
vfdx+

∑
|α+β:m|<2

∫
V
aα,βD

α
vfD

β
vfdx

≤ CQΛ(f) +
∑

|α+β:m|<2

∫
V
aα,βD

α
vfD

β
vfdx.
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Thus
3

4
QΛ(f) + L(f) ≤ Q(f) ≤ CQΛ(f) + L(f) (5.12)

where we have put

L(f) =
∑

|α+β:m|<2

∫
V
aα,βD

α
vfD

β
vfdx.

Using uniform bound on the coefficients aα,β and Cauchy-Schwarz inequality

we see that

|L(f)| ≤ C
∑

|α+β:m|<2

∫
V
|Dα

vf ||Dβ
vf |dx ≤ C

∑
|α+β:m|<2

‖Dα
vf‖2‖Dβ

vf‖2

for some C > 0. For each multi-index γ such that |γ : m| < 1, it follows from

Item 3 of Lemma 4.3.4 (where β > γ and ν = v1 + v2 + · · ·+ vd) that

‖Dγ
vf‖2

2 =

∫
V∗
|ξ2γ||f̂(ξ)|2dξ ≤

∫
V∗

(εR(ξ) + Mε|f̂(ξ)|2dξ = εQΛ(f) + Mε‖f‖2
2

where ε can be taken arbitrarily small. Taking into account all possible multi-

indices appearing in L, we can produce a positive constant M for which

|L(f)| ≤ 1

4
QΛ(f) +M‖f‖2

2. (5.13)

By combining (5.12) and (5.13), we obtain

1

2
QΛ(f) =

3

4
QΛ(f)− 1

4
QΛ(f)

≤ Q(f)− L(f)− 1

4
QΛ(f)

≤ Q(f) + C‖f‖2
2

≤ C1QΛ(f) + C2‖f‖2
2

from which the first assertion follows immediately. In the case that H consists

only of its pricipal terms, L is identically 0 and so the second assertion follows

from (5.12) at once.
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To address Hypothesis 5.2 we need to first introduce an appropriate class E . For

any integer l ≥ 1, put

Fl =

{
ψ ∈ C∞0 (R) : sup

x∈R

∣∣∣∣djψdxj (x)

∣∣∣∣ ≤ 1 for all j = 1, 2, . . . , l

}
.

We will take E to be the set of φ ∈ C∞∞(V,V) for which there are ψ1, ψ2, . . . , ψd ∈

Fl such that

(θv ◦ φ ◦ θ−1
v )(x1, x2, . . . , xd) = (ψ1(x1), ψ2(x2), . . . , ψ3(x3)) (5.14)

for all (x1, x2, . . . , xd) ∈ Rd.

Remark 22. What is important for us is that the jth-coordinate function of θv ◦φ ◦ θ−1
v

only depends on xj for each j = 1, 2, . . . , d.

Lemma 5.9.2. For each multi-index α > 0, there exists Cα > 0 such that for all

f ∈ Dom(Q), φ ∈ E and λ ∈ V∗,

|e−λ(φ(x))Dα
v(eλ(φ)f)(x)−Dα

vf(x)| ≤ Cα
∑

0<β≤α

∑
0<γ≤β

|λγ||Dα−β
v f(x)| (5.15)

for almost every x ∈ V.

Proof. In view of the coordinate charts (V, θv) and (V∗, θv∗), we have

λ(φ(x)) = (λ1, λ2, . . . , λd) · (ψ1(x1), ψ2(x2), . . . , ψd(xd))

for x ∈ V and λ ∈ V∗ where θv(x) = (x1, x2, . . . , xd) and θv∗(λ) = (λ1, λ2, . . . , λd).

So for any multi-index β > 0,

Dβ
v(eλ(φ)) =

(
i
∂

∂x1

)β1
(
i
∂

∂x2

)β2

· · ·
(
i
∂

∂xd

)βd (
e(λ1,λ2,...,λd)·(ψ1,ψ2,...,ψd)

)
=

(
iβ1

∂β1

∂xβ1

1

eλ1ψ1

)(
iβ2

∂β2

∂xβ2

2

eλ2ψ2

)
· · ·

(
iβd

∂βd

∂xβdd
eλdψd

)
.
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Using the properties we have required for each ψj , it follows that

|e−λ(φ)Dβ
v(eλ(φ))| ≤ Cβ

∏
βj 6=0

 βj∑
l=1

|λl|

 ≤ Cβ
∑

0<γ≤β

|λγ|

where Cβ > 0 is independent of φ and λ. In view of the Leibniz rule,

∣∣e−λ(φ(x))Dα
v

(
eλ(φ)f

)
(x)−Dα

vf(x)
∣∣

=

∣∣∣∣∣ ∑
0<β≤α

Cα,βe
−λ(φ(x))Dβ

v

(
eλ(φ)

)
(x)Dα−β

v f(x)

∣∣∣∣∣
≤ Cα

∑
0<β≤α

∑
0<γ≤β

|λγ||Dα−β
v f(x)|.

for almost every x ∈ V where Cα is independent of λ and φ. The constants Cα,β

appearing in the penultimate line are the standard multi-index combinations.

Proposition 5.9.3. With respect to the class E above, H (and so H + C satisfies Hy-

pothesis 5.2). Furthermore, H + C satisfies Hypothesis 5.3.

Proof. Let x, y ∈ V and set (x1, x2, . . . , xd) = θv(x) and (y1, y2, . . . , yd) = θv(y).

For each pair xi, yi ∈ R there is ψi ∈ Fl for which ψi(xi) = xi and ψi(yi) = yi;

such functions can be found by smoothly cutting off the identity while keeping

derivatives bounded appropriately. Using this collection of ψi’s, we define φ as

in (5.14) and note that

φ(x)− φ(y) = θ−1
v (ψ1(x1), ψ2(x2), . . . , ψd(xd))− θ−1

v (ψ1(y1), ψ2(y2), . . . , ψd(yd))

= θ−1
v (x1, x2, . . . , xd)− θ−1

v (y1, y2, . . . , yd)

= x− y

as required.
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For any λ ∈ V∗, φ ∈ E and f ∈ Dom(Q),

Qλ,φ(f) =
∑
|α:m|≤1
|β:m|≤1

∫
V
aα,β(x)Dα

v(e−λ(φ)f)(x)Dβ
v(eλ(φ)f)(x)dx.

Using the uniform boundedness of the collection {aα,β}, we have

|Qλ,φ(f)−Q(f)|

=
∣∣∣ ∑

0<|α:m|≤1
0<|β:m|≤1

∫
V
aα,β

[
eλ(φ)Dα

v(e−λ(φ)f)e−λ(φ)Dβ
v(eλ(φ)f)−Dα

vfD
β
vf
]
dx
∣∣∣

=
∣∣∣ ∑

0<|α:m|≤1
0<|β:m|≤1

∫
V
aα,β

[ (
eλ(φ)Dα

v(e−λ(φ)f)−Dα
vf
)
e−λ(φ)Dβ

v(eλ(φ)f)

+Dα
vf
(
e−λ(φ)Dβ

v(eλ(φ)f)−Dβ
vf
) ]
dx
∣∣∣

≤ C
∑

0<|α:m|≤1
0<|β:m|≤1

∫
V
|eλ(φ)Dα

v(e−λ(φ)f)−Dα
vf ||e−λ(φ)Dβ

v(eλ(φ)f)|

+ |Dα
vf ||e−λ(φ)Dβ

v(eλ(φ)f)−Dβ
vf |dx

≤ C
∑

0<|α:m|≤1
0<|β:m|≤1

∫
V
|eλ(φ)Dα

v(e−λ(φ)f)−Dα
vf ||e−λ(φ)Dβ

v(eλ(φ)f)−Dβ
vf |

+ |Dα
vf ||e−λ(φ)Dβ

v(eλ(φ)f)−Dβ
vf |dx.

With the help of Lemma 5.9.2,

|Qλ,φ(f)−Q(f)| ≤ C
∑

0<|α:m|
≤1

0<|β:m|
≤1

∑
0<γα≤α
0<γβ≤β

∑
0<ηα≤γα
0<ηβ≤γβ

∫
V
|ληα||Dα−γα

v f ||ληβ ||Dβ−γβ
v f |dx

+ C
∑

0<|α:m|≤1
0<|β:m|≤1

∑
0<γβ≤β

∑
0<ηβ≤γβ

∫
V
|Dα

vf ||ληβ ||D
β−γβ
v f |dx

≤ C
∑

0<|α:m|≤1
0<|β:m|≤1

∑
0≤γα≤α
0<γβ≤β

∑
0≤ηα≤γα
0<ηβ≤γβ

∫
V
|ληαDα−γα

v f ||ληβDβ−γβ
v f |dx
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where C > 0 is independent of φ, λ and f . Thus by the Cauchy-Schwarz in-

equality,

|Qλ,φ(f)−Q(f)| ≤ C
∑

0<|α:m|≤1
0<|β:m|≤1

∑
0≤γα≤α
0<γβ≤β

∑
0≤ηα≤γα
0<ηβ≤γβ

‖ληαDα−γα
v f‖2‖ληβD

β−γβ
v f‖2. (5.16)

It is important to note that for no such summand is |β − γβ : m| = 1. In view of

Lemma 4.3.4 and Proposition 5.9.1 it follows that for all such β, γβ and ηβ ,

‖ληβDβ−γβ
v f‖2

2 =

∫
V∗
|λ2ηβξ2(β−γβ)||f̂(ξ)|2dξ

≤ ε

∫
V∗
R(ξ)|f̂(ξ)|2dξ +Mε(1 +R(λ))‖f‖2

2

≤ εQΛ(f) +Mε(1 +R(λ))‖f‖2
2

≤ εQ(f) +M(1 +R(λ))‖f‖2
2

where ε can be taken arbitrarily small. For all admissible α, γα and ηα, a similar

calculation (making use of Lemma 4.3.4 and Proposition 5.9.1) shows that

‖ληαDα−γα
v f‖2

2 ≤M(Q(f) + (1 +R(λ))‖f‖2
2)

for some M > 0. Thus for any ε > 0, each summand in (5.16) satisfies

‖ληαDα−γα
v f‖2‖ληβD

β−γβ
v f‖2

≤ (M(Q(f) + (1 +R(λ))‖f‖2
2))1/2(εQ(f) +M(1 +R(λ))‖f‖2

2)1/2

≤ (εM)1/2Q(f) +
M3/2

ε1/2
(1 +R(λ))‖f‖2

2.

The result now follows by choosing ε appropriately and combining these esti-

mates.

In view of the preceding Proposition, µΛ < 1, H + C necessarily satisfied

Hypothesis 5.3 and the results of Section 5.8. Upon noting that the semigroup

generated by −H and that generated by −(H + C) are related by e−t(H+C) =

e−tCe−tH , we immediately obtain the following result.
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Proposition 5.9.4. Let H be a super-semi-elliptic operator with associated reference

operator Λ, defined above. Let µΛ be the homogeneous order of Λ and letR be its symbol.

Then the semigroup Tz = e−zH has integral kernel Z : C+ × V× V→ C for which

(
e−zHf

)
(x) =

∫
V
Z(z, x, y)f(y) dy

for all f ∈ L1(V) ∩ L2(V). For fixed z, Z(z, ·, ·) is jointly Hölder continuous of order

α = (1− µΛ)/2. For fixed x, y ∈ V, z 7→ Z(z, x, y) is analytic. Finally,

|Z(t, x, y)| ≤ C

tµΛ
exp

(
−tMR#

(
x− y
t

)
+Mt

)
for all x, y ∈ V and t > 0.

Homogeneous super-semi-elliptic operators

If a super-semi-elliptic operator H has the special form

H =
∑
|α:m|=1
|β:m|=1

Dα
v{aα,β(x)Dβ

v}

or, more precisely, its quadratic form is given by

Q(f, g) =
∑
|α:m|=1
|β:m|=1

∫
V
aα,β(x)Dα

vfD
β
vg dx

we will call it a homogeneous super-semi-elliptic operator. By the work of the last

section, H satisfies Hypothesis 5.1, 5.2 and 5.3. In the notation of Section 5.7, we

observe that

Qs(f, g) = s−1Q(Usf, Usg) = s−1sµΛ

∑
|α:m|=1
|β:m|=1

∫
V
aα,β(x)Dα

v(fs)(x)Dα
v(fs)(x) dx

for f, g ∈ W 2,m(V) where fs(x) = f(sEx) for s > 0 and x ∈ V. Noting the

definition of E at the the beginning of the subsection, for each multi-index γ
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such that |γ : m| = 1,

Dγ
vfs(x) = s|γ:2m|(Dγ

vf)(sEx) = s1/2(Dγ
vf)(sEx).

Consequently,

Qs(f, g) = sµΛ

∑
|α:m|=1
|β:m|=1

∫
V
aα,β(x)Dα

vf(sEx)Dα
vf(sEx) dx

=
∑
|α:m|=1
|β:m|=1

∫
V
aα,β(s−Ex)Dα

vf(x)Dα
vf(x) dx.

In other words, we have formally

Hs =
∑
|α:m|=1
|β:m|=1

Dα
v{aα,β(s−Ex)Dβ

v}

for s > 0. Thus, Hs is H with coefficients whose arguments are dilated by

s−E . Thus, under the assumption that H super-semi-elliptic and so all estimates

concerning aα,β hold uniformly for x ∈ V, we see immediately that H is ho-

mogeneous in the sense of Section 5.7 and therefore ripe for the application of

Theorem 5.7.2. In other words, one can take M = 0 in Proposition 5.9.4

Writing semi-elliptic operators in divergence form

The uniformly positive semi-elliptic operators of Section 4.4 are of the form

H =
∑
|α:m|≤2

aαD
α
v (5.17)

whereas the super-semi-elliptic operators considered in the preceding subsec-

tion are of the form

H =
∑
|α:m|≤1
|β:m|≤1

Dα
v{aα,βDβ

v}. (5.18)
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An operator H given by the expression (5.18) is said to be in divergence form. We

note that many of the calculations in the preceding section used the fact that

the operators were given in divergence form and, in particular, this allowed

us to carry out our analysis in terms of the quadratic form Q. For this reason,

one readily asks the question: Can each semi-elliptic operator H , given in the

form 5.17, be written in divergence form provided its coefficients are sufficiently

smooth. A moment’s thought shows that this is equivalent to the following

number-theoretic question:

Question 5.9.5. Given m = (m1,m2, . . . ,md) ∈ Nd
+ and α = (α1, α2, . . . , αd) ∈ Nd

for which |α : m| = 2. Does there exists β ∈ Nd with β ≤ α such that |β : m| = 1?

In general, the answer to this question is no and can be seen by considering m =

(2, 3, 5, 30) ∈ N4
+ and α = (1, 2, 4, 1) ∈ N4. With this example in mind, it is easy

to see that the answer to the above question is no whenever d ≥ 4. However,

the question does have an affirmative answer in dimensions 1, 2, and 3. This is

captured by the following result due to Robert Kesler of Cornell University [59].

Proposition 5.9.6. Suppose that d ≤ 3 and m = (m1,m2, . . . ,md) ∈ Nd
+. If α =

(α1, α2, . . . , αd) ∈ Nd is such that |α : m| = 2, then there exists β ∈ Nd such that

β ≤ α and |β : m| = 1.

Proof. The assertion is obvious when d = 1. In the case that d = 2, it is necessary

that α1 ≥ m1 or α2 ≥ m2 for otherwise |α : m| < 2. If α1 ≥ m1, then β := (m1, 0)

is such that β ≤ α and |β : m| = 1. Similarly, if α2 ≥ m2, then β = (0,m2) does

the trick. It remains to prove the assertion when d = 3.

We can and do assume without loss of generality that

α1

m1

≥ α2

m2

≥ α3

m3
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and that αi < mi for i = 1, 2, 3. Set

S =

{
0 ≤ n ≤ α2 : there is an integer k for which

n

m2

=
k

m1

}
and put β2 = supS. Now, the equation

|α : m| = α1

m1

+
α2

m2

+
α3

m3

= 2

guarantees that m2|m1 · m2 and so m2 = m2,1m2,3 where m2,1|m1 and m2,3|m3.

Observe that, for some integer l,

β2 +m2,3

m2

=
l

m1

+
M2,3

m2

=
l

m1

+
1

m12

.

But since, m1 = km1,2 for some integer k, we obtain

β2 +m2,3

m2

=
l + k

m1

.

It now follows immediately that α2 > β2 + m2,3 for otherwise, β2 + m2,3 ∈ S

contrary to the definition of β2. Therefore

β2

m2

≥ α2

m2

− m2,3

m2

and so
α1

m1

+
β2

m2

≥ α1

m1

+
α2

m2

− m2,3

m2

.

If m2,3/m2 ≤ 1/3 then
α1

m1

+
β2

m2

≥ 1

and using the definition of β2 it follows that we can fine β1 ≤ α1 for which

β1

m1

+
β2

m2

= 1

which gives the result with β = (β1, β2, 0). If instead m2,3/m2 = 1/m2,1 > 1/3,

we only have two options, m2,1 = 1 and m2,1 = 2. In the first case, m2 = m2,3|m3

and, given the fact that
α2

m2

+
α3

m3

≥ 1,
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we may easily produce β ≤ α which does the trick. In the final case, m2 = 2m2,3

and so it follows that m2 and m1 are necessarily even. Consequently,

α1

2m̃1

+
α2

2m̃2

+
α3

m3

= 2

for m̃2, m̃2 ∈ N+. However, by our initial constraints, α1/2m̃1, α2/2m̃2 ≥ 1/2 and

so α1 ≥ m̃1 and α2 ≥ m̃2. In this case, it is easily seen β = (m̃1, m̃2, 0) has β ≤ α

and

|β : m| = m̃1

2m̃1

+
m̃2

2m̃2

= 1.
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APPENDIX A

APPENDIX

A.1 Properties of contracting one-parameter groups

The following proposition is standard [45, Section 1.1].

Proposition A.1.1. Let E,G ∈Md(R) andA ∈ Gld(R). Also, let E∗ ∈Md(R) denote

the adjoint of E. Then for all t, s > 0, the following statements hold:

• 1E = I • tE∗ = (tE)∗ • If EG = GE, then tEtG = tE+G

• (st)E = sEtE • AtEA−1 = tAEA
−1 • det(tE) = ttrE

• (tE)−1 = t−E

Lemma A.1.2. Let {Tt} ⊆ Gld(R) be a continuous one-parameter contracting group.

Then, for some E ∈ Gld(R), Tt = tE for all t > 0. Moreover, there exists a positive

constant C for which

‖Tt‖ ≤ C + t‖E‖

for all t > 0.

Proof. The representation Tt = tE for some E ∈ Md(R) follows from the Hille-

Yosida construction. If for some non-zero vector η, Eη = 0, then tEη = η for all

t > 0 and this would contradict our assumption that {Tt} is contracting. Hence

E ∈ Gld(R) and, in particular, ‖E‖ > 0. From the representation Tt = tE it

follows immediately that ‖Tt‖ ≤ t‖E‖ for all t ≥ 1 and so it remains to estimate
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‖Tt‖ for t < 1. Given that {Tt} is continuous and contracting, the map t 7→ ‖Tt‖

is continuous and approaches 0 as t → 0 and so it is necessarily bounded for

0 < t ≤ 1.

Lemma A.1.3. LetE ∈ Gld(R) be diagonalizable with strictly positive spectrum. Then

{tE} is a continuous one-parameter contracting group. Moreover, there is a positive

constant C such that

‖tE‖ ≤ Ctλmax

for all t ≥ 1 and

‖tE‖ ≤ Ctλmin

for all 0 < t < 1, where λmax = max(Spec(E)) and λmin = min(Spec(E)).

Proof. Let A ∈ Gld(R) be such that A−1EA = D = diag(λ1, λ2, . . . , λd) where

necessarily Spec(E) = Spec(D) = {λ1, λ2, . . . , λd} ⊆ (0,∞). It follows from the

spectral mapping theorem that Spec(tD) = {tλ1 , tλ2 , . . . , tλd} for all t > 0 and

moreover, because tD is symmetric,

‖tD‖ ≤ max({tλ1 , tλ2 , . . . , tλd}) =


tλmax if t ≥ 1

tλmin if t < 1.

By virtue of Proposition A.1.1, we have

‖tE‖ = ‖AtDA−1‖ ≤ ‖A‖‖tD‖‖A−1‖ ≤ C‖tD‖ = C ×


tλmax if t ≥ 1

tλmin if t < 1

for t > 0 where C = ‖A‖‖A−1‖; in particular, {tE} is contracting because λmin >

0.

Proposition A.1.4. Let {Tt}t>0 ⊆ Gld(R) be a continuous one-parameter contracting

group. Then, for all non-zero ξ ∈ Rd,

lim
t→0
|Ttξ| = 0 and lim

t→∞
|Ttξ| =∞.
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Proof. The validity of the first limit is clear. Upon noting that |ξ| = |T1/tTtξ| ≤

‖T1/t‖|Ttξ| for all t > 0, the second limit follows at once.

Proposition A.1.5. Let {Tt}t>0 ⊆ Gld(R) be a continuous one-parameter contracting

group. There holds the following:

a) For each non-zero ξ ∈ Rd, there exists t > 0 and η ∈ S for which Ttη = ξ.

Equivalently,

Rd \ {0} = {Ttη : t > 0 and η ∈ S}.

b) For each sequence {ξn} ⊆ Rd such that limn |ξn| =∞, ξn = Ttnηn for each n, where

{ηn} ⊆ S and tn →∞ as n→∞.

c) For each sequence {ξn} ⊆ Rd such that limn |ξn| = 0, ξn = Ttnηn for each n, where

{ηn} ⊆ S and tn → 0 as n→∞.

Proof. In view of Proposition A.1.4, the assertion a) is a straightforward applica-

tion of the intermediate value theorem. For b), suppose that {ξn} ⊆ Rd is such

that |ξn| → ∞ as n → ∞. In view of a), take {ηn} ⊆ S and {tn} ⊆ (0,∞) for

which ξn = Ttnηn for each n. In view of Lemma A.1.2,

∞ = lim inf
n
|ξn| ≤ lim inf

n

(
C + tMn

)
|ηn| ≤ C + lim inf

n
tMn ,

where C,M > 0, and therefore tn →∞. If instead limn ξn = 0,

∞ = lim
n→∞

|ηn|
|ξn|

= lim
n→∞

|T1/tnξn|
|ξn|

≤ lim sup
n
‖T1/tn‖ ≤ lim sup

n
(C + (1/tn)M)

from which we see that tn → 0, thus proving c).

Proposition A.1.6. Let {Tt} be a continuous contracting one-parameter group. Then

for any open neighborhood O ⊆ Rd of the origin and any compact set K ⊆ Rd, K ⊆

Tt(O) for sufficiently large t.
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Proof. Assume, to reach a contradiction, that there are sequences {ξn} ⊆ K and

tn → ∞ for which ξn /∈ Ttn(O) for all n. Because K is compact, {ξn} has a

subsequential limit and so by relabeling, let us take sequences {ζk} ⊆ K and

{rk} ⊆ (0,∞) for which ζk → ζ , rk → ∞ and ζk /∈ Trk(O) for all k. Setting sk =

1/rk and using the fact that {Tt} is a one-parameter group, we have Tskζk /∈ O

for all k and so lim infk |Tskζk| > 0, where sk → 0. This is however impossible

because {Tt} is contracting and so

lim
k→∞
|Tskζk| ≤ lim

k→∞
|Tsk(ζk − ζ)|+ lim

k→∞
|Tskζ| ≤ C lim

k→∞
|ζk − ζ|+ 0 = 0

in view of Lemma A.1.2.

A.2 Properties of homogeneous functions on Rd

Proposition A.2.1. Let {Tt} ⊆ Gld(R) be a contracting one-parameter group and let

R,Q : Rd → R be continuous and homogeneous with respect to {Tt}. If R is positive

definite, then there exists C > 0 such that

|Q(ξ)| ≤ CR(ξ) (A.1)

for all ξ ∈ Rd. If both Q and R are positive definite, then

Q � R. (A.2)

Proof. Upon reversing the roles of R and Q, it is clear that the (A.2) follows from

(A.1) and so it suffices to prove (A.1). Because R is continuous and positive

definite, it is strictly positive on S and so, given that Q is also continuous,

C := sup
η∈S

|Q(η)|
R(η)

<∞.
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For any non-zero ξ ∈ Rd, let t > 0 be such that ξ = Ttν for ν ∈ S in view of

Proposition A.1.5 and observe that

|Q(ξ)| = |Q(Ttη)| = t|Q(η)| ≤ tCR(η) = CR(Ttη) = CR(ξ).

By invoking the continuity of R and Q, the above estimate must also hold for

ξ = 0.

Proposition A.2.2. Let E ∈ Gld(R) be diagonalizable with strictly positive spectrum

and suppose that R : Rd → R is continuous, positive definite, and homogeneous with

respect to {tE}. Then, for any γ > (min(Spec(E)))−1,

|ξ|γ = o(R(ξ)) as ξ → 0.

Proof. By virtue of Lemma A.1.3, we know that {tE} is contracting and ‖tE‖ ≤

Ctλ for all t < 1 where λ = min(Spec(E)) and C > 0. Let {ξn} be such that

limn ξn → 0 and, in view of Proposition A.1.5, let {ηn} ⊆ S and tn → 0 be such

that ξn = tEn ηn. Then

lim sup
n

|ξn|γ

R(ξn)
= lim sup

n

|tEn ηn|γ

tnR(ηn)
≤ lim sup

n

(Ctλn|ηn|)γ

tnR(ηn)
≤M lim

n
tγλ−1
n = 0,

where

M := sup
η∈S

Cγ|η|γ

R(η)

is finite because R is continuous and positive definite.

Lemma A.2.3. Let m = (m1,m2, . . . ,md) ∈ Nd
+, D = diag(m−1

1 ,m−1
2 , . . . ,m−1

d ) ∈

Gld(R) and suppose that R : Rd → R is continuous, positive definite and homogeneous

with respect to {tD}. Then for any multi-index β such that |β : m| > 1,

ξβ = o(R(ξ)) as ξ → 0.
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Proof. Put γ = |β : m| − 1 > 0 observe that

sup
η∈S

|ηβ|
R(η)

:= M <∞

because R is continuous and non-zero on S. Let {ξn} ⊆ Rd be such that |ξn| → 0

as n → ∞. By virtue of Proposition A.1.5, there are sequences {ηn} ⊆ S and

{tn} ⊆ (0,∞) for which tn → 0 and ξn = tDn ηn for all n. We see that

ξβn = (tDn ηn)β =
(
t(m1)−1

n η1

)β1
(
t(m2)−1

n η2

)β2

· · ·
(
t(md)−1

n ηd

)βd
= t|β:m|ηβn

for each n. Therefore

lim sup
n

|ξβn |
R(ξn)

= lim sup
n

t|β:m||ηβn|
tR(ηn)

≤ lim sup
n

Mtγn = 0

as desired.

For the remainder of this appendix, P is a positive homogeneous polynomial

and R = ReP .

Proposition A.2.4. For any compact set K, there are positive constants M and M ′

such that

MR(ξ) ≤ R(ξ + ζ) +M ′

for all ξ ∈ Rd and ζ ∈ K.

Proof. Set U = B3/2 \B1/2 = {u ∈ Rd : 1/2 ≤ |u| ≤ 3/2} and

M = inf
η∈S,u∈U

R(u)

R(η)
;

M is necessarily positive because R is continuous and positive definite. For E ∈

Exp(P ), {tE} is contracting and so it follows that for some T > 0,
(
η + t−Eζ

)
∈ U

for all η ∈ S, ζ ∈ K and t > T . Consider the set V = {ξ = tEη ∈ Rd : t > T, η ∈
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S} and observe that for any ξ ∈ V and ζ ∈ K, t−E(ξ + ζ) = η + t−Eζ ∈ U for

some t > T and consequently

R(ξ + ζ)

R(ξ)
=
tR(η + t−Eζ)

tR(η)
≥M.

We have shown that MR(ξ) ≤ R(ξ + ζ) for all ξ ∈ V and ζ ∈ K. To complete

the proof, it remains to show that R is bounded on V C = Rd \V ; however, given

the continuity of R, we need only verify that the set V C is bounded. By virtue of

Proposition A.1.5, we can write

V C = {0} ∪
{
ξ = tEη : t ≤ T, η ∈ S

}
.

and so, by an appeal to Lemma A.1.2, we see that |ξ| ≤ C + T ‖E‖ for all ξ ∈

V C.

Our final three results in this subsection concern estimates for P andR regarded

as functions on Cd. In what follows, | · | denotes the standard euclidean norm on

Cd = R2d and S denotes the 2d-sphere.

Proposition A.2.5. For any M,M ′ > 0, there exists C > 0, for which

|z| ≤ C +MR(ξ) +M ′R(ν).

for all z = ξ − iν ∈ Cd.

Proof. Define Q(ξ, ν) = MR(ξ) + M ′R(ν) for (ξ, ν) = z ∈ R2d and observe that

Q is positive definite. It suffices to show that there exists a set V with bounded

complement V C = R2d \ V such that

|z| = |(ξ, ν)| ≤ Q(ξ, ν) (A.3)

for all (ξ, ν) ∈ V . To this end, set

N = sup
(η,ζ)∈S

|(η, ζ)|
Q(η, ζ)
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which is finite because Q is strictly positive on S. Let E ∈ Exp(P ) have real

spectrum and recall that E is diagonalizable with λ := max(Spec(E)) < 1 in

view of Proposition 3.2.2. An appeal to Lemma A.1.3 gives C > 0 for which

‖tE‖ ≤ Ctλ for all t ≥ 1; the lemma also guarantees that {tE⊕E} ⊆ Gl2d(R) is

contracting. Set T = max({1, (CN)1/(1−λ}) and consider the set V = {(ξ, ν) =

tE⊕E(η, ζ) ∈ R2d : t > T, (η, ζ) ∈ S}. For any (ξ, ν) ∈ V , we have

|(ξ, ν)|
Q(ξ, ν)

=
|(tEη, tEζ)|
Q(tE⊕E(η, ζ))

≤ Ctλ|(η, ζ)|
tQ(η, ζ)

≤ Ctλ−1N < N−1N = 1

and therefore (A.3) is satisfied. To see that V C is bounded, one simply repeats the

argument given in the proof of Proposition A.2.5 where, in this case, Proposi-

tion A.1.5 and Lemma A.1.2 are applied to the one-parameter contracting group

{tE⊕E}.

By considering only real arguments ξ ∈ Rd, Proposition A.2.5 ensures that, for

some constant C1 > 0, |ξ| ≤ C1 + R(ξ) for all ξ ∈ Rd. Upon noting that R

is strictly positive on any sphere of radius δ, one easily obtains the following

corollary.

Corollary A.2.6. For each C, δ > 0, there exists M > 0 for which

|ξ|+ C ≤MR(ξ)

for all |ξ| > δ.

Proposition A.2.7. Let P be a positive homogeneous polynomial with R = ReP .

There exist ε > 0 and M > 0 such that

−ReP (z) ≤ −εR(ξ) +MR(ν) (A.4)

and

|P (z)| ≤M(R(ξ) +R(ν)) (A.5)

for all z = ξ − iν ∈ Cd.
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Proof. Let E ∈ Exp(P ) have strictly real spectrum and, by virtue of Proposition

3.2.2, let A be such that D = A−1EA = diag((2m1)−1, (2m2)−1, . . . , (2md)
−1) and

PA(ξ) := (P ◦ LA)(ξ) =
∑
|α:m|=2

aαξ
α,

where m = (m1,m2, . . . ,md) ∈ Nd
+. Because A ∈ Gld(R) ⊆ Gld(C), it suffices to

verify the estimates (A.4) and (A.5) for PA and RA = RePA. As in the proof of

the previous proposition, we identify Cd = R2d by z = (ξ, ν), and observe that

{tD⊕D} ⊆ Gl2d(R) is contracting. Consequently, by considering Tt = tD⊕D, the

estimate (A.5) follows directly from Proposition A.2.1.

An appeal to the multivariate binomial theorem shows that for all z = ξ −

iν ∈ Cd,

PA(ξ − iν) = PA(ξ) +Q(ξ, ν), (A.6)

where

Q(ξ, ν) =
∑
|α:m|=2

aα
∑
γ<α

(
α

γ

)
ξγ(−iν)α−γ =

∑
|α:m|=2
γ<α

bα,γξ
γνα−γ;

here, {bα,γ} ⊆ C. We claim that for each δ > 0, there exists M > 0 such that

|Q(ξ, ν)| ≤ δRA(ξ) +MRA(ν) (A.7)

for all ξ, ν ∈ Rd. For the moment, let us accept the validity of the claim. By

choosing δ < 1, a combination of (A.6) and (A.7) yields

−Re(PA(ξ − iν)) +RA(ξ) ≤ δRA(ξ) +MRA(ν)

for all ξ, ν ∈ Rd and from this we see that (A.4) is satisfied with ε = 1 − δ. It

therefore suffices to prove (A.7).

For any multi-indices β and γ for which |β : m| = 2 and γ < β, it is straight-

forward to see that

(tDξ)γ(tDν)β−γ = t|γ:2m|t|β−γ:2m|ξγνβ−γ = t|β:2m|ξγνβ−γ = tξγνβ−γ
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for all ξ, ν ∈ Rd and so the map (ξ, ν) 7→ ξγνβ−γ is homogeneous with respect

to the contracting group {tD⊕D} ⊆ Gl2d(R). Consequently, an application of

Proposition A.2.1 gives C > 0 for which

|ξγνβ−γ| ≤ C(RA(ξ) +RA(ν))

for all ξ, ν ∈ Rd. By invoking the homogeneity of ξγ and RA(ξ) with respect to

{tD} ⊆ Gld(R), the above estimate ensures that, for all t > 0,

|ξγνβ−γ| = |t|γ:2m|(t−Dξ)γνβ−γ|

≤ t|γ:2m|C(RA(t−Dξ) +RA(ν))

= Ct|γ:2m|−1RA(ξ) + Ct|γ:2m|RA(ν)

for all ξ, ν ∈ Rd. Noting that |γ : 2m| − 1 < 0 because γ < β, we can make

the coefficient of RA(ξ) in the above estimate arbitrarily small by choosing t

sufficiently large. Consequently, for any δ > 0 there exists M > 0 for which

|ξγνβ−γ| ≤ δRA(ξ) +MRA(ν)

for all ξ, ν ∈ Rd. The claim (A.7) now follows by a simple application of the

triangle inequality.

A.3 Properties of the Legendre-Fenchel transform of a positive-

homogeneous polynomial

Lemma A.3.1. Let P be a positive homogeneous polynomial and let R = ReP . For

E ∈ Exp(P ) with real spectrum let λmax = max(Spec(E)) and λmin = min(Spec(E))
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(note that 0 < λmin, λmax ≤ 1/2 by Proposition 3.2.2) and set

NE(x) =


|x|1/(1−λmax) if |x| ≥ 1

|x|1/(1−λmin) if |x| < 1

for x ∈ Rd. There are positive constants M,M ′ for which

|x| −M ≤ R#(x) ≤M ′NE(x) (A.8)

for all x ∈ Rd.

Proof. Set M = supξ∈S R(ξ) and observe that, for any non-zero x ∈ Rd,

R#(x) = sup
ξ∈Rd
{x · ξ −R(ξ)} ≥ x · x

|x|
−R

(
x

|x|

)
≥ |x| −M.

The lower estimate in (A.8) now follows from the observation that R#(0) = 0

which is true because R is positive definite. We now focus on the upper esti-

mate. In view of Lemma A.1.3 and Proposition 3.2.2, let C ≥ 1 be such that

‖tE‖ ≤ Ctλmax for t ≥ 1 and ‖tE‖ ≤ Ctλmin for t ≤ 1. An appeal to Proposition

A.2.5 gives M ′ > 0 for which C|ξ| ≤ R(ξ) + M ′ for all ξ ∈ Rd. In the case that

|x| ≥ 1, we set t = |x|1/(1−λmax) and observe that

x · ξ ≤ |x||tEt−Eξ|

≤ |x|‖tE‖|t−Eξ|

≤ |x|tλmaxC|t−Eξ|

≤ |x|tλmax
(
R(t−Eξ) +M ′)

= |x|tλmax−1R(ξ) +M ′|x|tλmax

= R(ξ) +M ′|x|1/(1−λmax)

for all ξ ∈ Rd and therefore

R#(x) = sup
ξ∈Rd
{x · ξ −R(ξ)} ≤M ′|x|1/(1−λmax) = M ′NE(x).
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When |x| ≤ 1, we repeat the argument above to find that R#(x) ≤

M ′|x|1/(1−λmin) = M ′NE(x) as desired.

Proposition A.3.2. Let P be a positive homogeneous polynomial with R = ReP .

Then R# is continuous, positive definite, and for any E ∈ Exp(P ), F = (I − E)∗ ∈

Exp(R#).

Proof. Since R# is the Legendre-Fenchel transform of R : Rd → R it is con-

vex (and lower semi-continuous). Furthermore, the upper estimate in Lemma

A.3.1 guarantees that R# is finite on Rd and therefore continuous [78, Corollary

10.1.1].

Given that R is positive definite and homogeneous with respect to {tE}, it

follows directly from the definition of the Legendre-Fenchel transform that R#

is non-negative, homogeneous with respect to {tF}where F = (I −E)∗ and has

R#(0) = 0. To complete the proof, it remains to show that R#(x) 6= 0 for all

non-zero x ∈ Rd. Using the lower estimate in Lemma A.3.1, we have

lim
x→∞

R#(x) =∞. (A.9)

By virtue of Proposition 3.2.2, F is diagonalizable with Spec(F ) ⊆ [1/2, 1); in

particular, {tF} is contracting in view of Lemma A.1.3. Now if for some non-

zero x ∈ Rd, R#(x) = 0,

0 = lim
t→∞

tR#(x) = lim
t→∞

R#(tFx),

which is impossible in view of Proposition A.1.4 and (A.9).

Corollary A.3.3. Let P be a positive homogeneous polynomial of the form (3.18) for

m = (m1,m2, . . . ,md) ∈ Nd
+ and {aβ} ⊆ C. That is, the conclusion of Proposition
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3.2.2 holds where A = I ∈ Gld(R). Let R = ReP , let R# be the Legendre-Fenchel

transform of R and define | · |m : Rd → [0,∞) by (3.88) for x ∈ Rd. Then

R#(x) � |x|m.

Proof. We note that | · |m is continuous, positive definite and homoge-

neous with respect to the one-parameter contracting group {tF} where F =

diag((2m1 − 1)/(2m1), (2m2 − 1)/(2m2), . . . , (2md − 1)/(2md)). Because E =

diag ((2m1)−1, (2m2)−1, . . . , (2md)
−1) ∈ Exp(R), Proposition A.3.2 ensures that

R# is continuous, positive definite and has F = (I − E)∗ ∈ Exp(R#). The de-

sired result follows directly by an appeal to Proposition A.2.1.

Another application of Proposition A.3.2 and A.2.1 yields the following corol-

lary.

Corollary A.3.4. Let P be a positive homogeneous polynomial with R = ReP . For

any constant M > 0, (MR)# � R#.

A.4 The proof of Proposition 3.3.3

Proof of Proposition 3.3.3. (a ⇒ b) Let P = Pξ0 , take E ∈ Exp(Pξ0) with strictly

real spectrum and set m = maxi=1,2...,d 2mi in view of Proposition 3.2.2. Noting

that E is diagonalizable, m + 1 > (min(Spec(E)))−1 and Qm
ξ0

(ξ) + O(|ξ|m+1) =

Pξ0(ξ) + Υξ0(ξ) for ξ sufficiently close to 0, our result follows from Proposition

A.2.2.
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(b⇒ c) Let E ∈ Exp(P ) have real spectrum and observe that, for all n ∈ N+,

C−1R(ξ) ≤ nReQm
ξ0

(n−Eξ) ≤ CR(ξ) and |n ImQm
ξ0

(n−Eξ)| ≤ CR(ξ)

(A.10)

for ξ ∈ Br. It follows that the sequence {ρn} ⊆ C(Br) of degree m polynomials,

defined by ρn(ξ) = nQm
ξ0

(n−Eξ) for all n ∈ N+ and ξ ∈ Br, is bounded. As the

subspace of degree m polynomials is a finite dimensional subspace of C(Br),

{ρn} must have a convergent subsequence. Moreover, because R(ξ) is positive

definite, (A.10) ensures that the subsequential limit has positive real part on Sr.

(c ⇒ a) The proof of this implication is lengthy and will be shown using a

sequence of lemmas. We fix E ∈ Md(R) with real spectrum and for which the

condition (3.33) is satisfied. As the characteristic polynomial of E completely

factors over R, the Jordan-Chevally decomposition for E gives A ∈ Gld(R) for

which F := A−1EA = D+N whereD is diagonal,N is nilpotent andDN = ND.

Upon setting QA = Qm
ξ0
◦ LA, it follows that

QA(ξ) =
∑

1<|β|≤m

aβξ
β

for ξ ∈ Rd where {aβ} ⊆ C. Define ρA : (0,∞)×Rd → C by ρA(t, ξ) = tQA(t−F ξ)

for t > 0 and ξ ∈ Rd. The hypotheses (3.33) ensures that, for each ξ ∈ A−1Br,

PA(ξ) := lim
n→∞

ρA(tn, ξ) (A.11)

exists and is such that RePA(ξ) > 0 whenever ξ ∈ A−1Sr.

Lemma A.4.1. Under the hypotheses (3.33), limt→∞ ρA(t, ξ) exists for all ξ ∈ Rd and

the convergence is uniform on all compact sets of Rd. In particular, PA extends uniquely

to Rd (which we also denote by PA) by

PA(ξ) = lim
t→∞

ρA(t, ξ) = lim
n→∞

ρA(tn, ξ) (A.12)

280



for all ξ ∈ Rd. Moreover, PA : Rd → C is a positive homogeneous polynomial with the

representation

PA(ξ) =
∑
|β:m|=2

aβξ
β (A.13)

for some m = (m1,m2, . . . ,md) ∈ Nd
+ where m ≥ 2mi for i = 1, 2, . . . d and

F = D = diag((2m1)−1, (2m2)−1, . . . , (2md)
−1) ∈ Exp(PA). (A.14)

Furthermore

QA(ξ) =
∑

|β:2m|≥1

aβξ
β = PA(ξ) +

∑
|β:2m|>1

aβξ
β (A.15)

for ξ ∈ Rd.

Proof of Lemma A.4.1. Our proof is broken into three steps. In the first step we

show that the representation (A.13) is valid on A−1Br and the first equality in

(A.15) holds on Rd. The first step also ensures the validity of the second equal-

ity in (A.14). In the second step, we define PA : Rd → C by the right hand

side of (A.13) and check that PA is a positive homogeneous polynomial with

D ∈ Exp(PA). In the third step we show that N = 0 and hence F = D and in the

fourth step we show that the limit (A.12) converges uniformly on any compact

set K ⊆ Rd. The second inequality in (A.15) follows directly by combining the

results.

Step 1. Write D = diag(γ1, γ2, . . . , γd) and put γ = (γ1, γ2, . . . , γd) ∈ Rd. We fix

ξ ∈ A−1Br and observe that

ρA(t, ξ) =
∑

1<|β|≤m

aβt
(
t−D
(
I + log tNξ + · · ·+ (log t)k

k!
Nkξ

))β
=

∑
1<|β|≤m

aβt
1−γ·βξβ +

l∑
j=1

bjt
ωj(log t)j (A.16)
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for all t > 0 where, by invoking the multinomial theorem, we have simplified

the expression so that ω1, ω2, . . . , ωl ∈ R are distinct and bj = bj(ξ;N) ∈ C for

j = 1, 2, . . . l = km. Considering the sum
l∑

j=1

bjt
ωj(log t)j (A.17)

we see that, as t → ∞, the summands must either converge to 0 or diverge to

∞ in absolute value. Moreover, the distinctness of the collection {ω1, ω2, . . . , ωl}

and the presence of positive powers of log t ensure that this convergence or di-

vergence happens at distinct rates. Consequently, as tn → ∞ the divergence

of even a single summand would force the non-existence of the limit (A.11).

Consequently, the expression (A.17) converges to 0 as t→∞ and so

PA(ξ) = lim
n→∞

ρA(tn, ξ) = lim
t→∞

ρA(t, ξ) = lim
t→∞

∑
1<|β|≤m

aβt
1−γ·βξβ. (A.18)

Since ξ was arbitrary, (A.18) must hold for all ξ ∈ A−1Br. This is the only part of

the argument in which the subsequence {tn} appears.

We claim that, for all multi-indices β for which aβ 6= 0, β · γ = β1γ1 + β2γ2 +

· · · + βdγd ≥ 1. Indeed, fix κ = min({β · γ : aβ 6= 0}), set Iκ = {β : aβ 6=

0 and β · γ = κ} and define Bκ : Rd → C by

Bκ(ξ) =
∑
β∈Iκ

aβξ
β

for ξ ∈ Rd. The linear independence of the monomials {ξβ}β∈Iκ ensures that

Bκ(ξ
′) 6= 0 for some ξ′ ∈ A−1Br. It follows from (A.18) that limt→∞ ρA(t, ξ′) =

limt→∞ t
1−κBκ(ξ

′) from which we conclude that κ = 1; the hypotheses that PA

has positive real part on A−1Sr rules out the possibility that κ > 1.

From the claim it is now evident that

PA(ξ) =
∑
β·γ=1

aβξ
β (A.19)
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for ξ ∈ A−1Br and

QA(ξ) =
∑
β·γ≥1

aβξ
β (A.20)

for ξ ∈ Rd.

It is straightforward to see that the set A−1Sr intersects each coordinate axis

at exactly two antipodal points. That is, for each j = 1, 2, . . . d, there exists xj > 0

for which {±xjej} = A−1Sr ∩ {xej : x ∈ R}. Upon evaluating Re(PA) at such

points and recalling that RePA > 0 on A−1Sr, one sees by the same argument

given in Step 2 of the proof of Proposition 3.2.2 that 1/γj is an even natural

number which cannot be greater than m. Therefore, for each j = 1, 2, . . . , d,

1/γj = 2mj ≥ m for some mj ∈ N+. The representation (A.13) on A−1Br and the

first equality in (A.15) now follow from (A.19) (A.20) and the observation that

β · γ =
∑d

j=1 βj/2mj = |β : 2m|. Moreover,

D = diag((2m1)−1, (2m2)−1, . . . , (2md)
−1). (A.21)

Step 2. We define PA : Rd → C by the right hand side of (A.13). It is clear that

D ∈ Exp(PA) and so, to prove that PA is positive homogeneous, it suffices to

show that that RA(ξ) = RePA(ξ) > 0 whenever ξ 6= 0. To this end, let ξ ∈ Rd be

non-zero and find t > 0 for which tDξ ∈ A−1Sr; this can be done because {tD} is

contracting in view of (A.21). From the previous step we know that (A.13) holds

on A−1Sr and thus by invoking (A.11), we find that RA(ξ) = t−1 RePA(tDξ) > 0

as claimed.

Step 3. We now show that F ∈ Exp(PA) and use it to conclude that N = 0. As

we will see, this assertion relies on PA being originally defined via a “scaling”

limit. Indeed, for any ξ ∈ Rd and t > 0, find u > 0 for which both u−Dξ and
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u−DtF ξ belong to A−1Br; this can be done because A−1Br necessarily contains

an open neighborhood of 0. In view of (A.18),

tPA(ξ) = tuPA(u−Dξ)

= ut lim
s→∞

sρA(s, u−Dξ)

= ut lim
s→∞

sQA(s−Fu−Dξ)

= u lim
s→∞

stQA(s−F t−F tFu−Dξ)

= u lim
(st)→∞

(st)QA((st)−Fu−DtF ξ)

= u lim
v→∞

ρA(v, u−DtF ξ)

= (uPA(u−DtF ξ)

= PA(tF ξ)

where we have used Proposition A.1.1 and the fact that D ∈ Exp(PA). Con-

sequently F ∈ Exp(PA) and since PA is a positive homogeneous polynomial,

the same argument given in Step 3 of the proof of Proposition 3.2.2 ensures that

N = 0.

Step 4. Let K ⊆ Rd be compact and note that t−FK ⊆ A−1Br for sufficiently

large t by virtue of Proposition A.1.6. Thus by invoking (A.13), which we know

to be valid on A−1Br, we have

|ρA(t, ξ)− PA(ξ)| = |tQA(t−F ξ)− tPA(t−F ξ)|

=
∣∣∣t ∑
|β:2m|>1

aβ(t−F ξ)β
∣∣∣

≤
∑

|β:2m|>1

t1−|β:2m||aβξβ

≤ tω
∑

|β:2m|>1

|aβξβ|

for all ξ ∈ K and sufficiently large t where ω < 0 is independent of K. The
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assertion concerning the uniform limit follows at once because
∑
|β:2m|>1 |aβξβ|

is necessarily bounded on K. //

We shall henceforth abandon using the symbol D and write

F = A−1EA = diag((2m1)−1, (2m2)−1, . . . , (2md)
−1) ∈ Exp(PA).

Lemma A.4.2. Under the hypotheses of Lemma A.4.1, QA(ξ)− PA(ξ) = o(RA(ξ)) as

ξ → 0.

Proof of Lemma A.4.2. In view of Lemma A.4.1,

|QA(ξ)− PA(ξ)| ≤
∑

|β:2m|>1

|aβξβ|

for all ξ ∈ Rd. The desired result now follows directly from Lemma A.2.3. //

We now define Pξ0 : Rd → C by Pξ0 = PA ◦ LA−1 . By virtue of our results above,

it is clear that Pξ0 is positive homogeneous with E ∈ Exp(Pξ0). We have

Υξ0(ξ) = Γξ0(ξ)− iαξ0 · ξ + Pξ0(ξ) = Pξ0(ξ)−Qm
ξ0

(ξ) +O(|ξ|(m+1))

as ξ → 0. Because Rξ0 = RePξ0 = RA ◦ LA−1 , it follows from Lemma A.4.2 that

Pξ0(ξ) − Qξ0(ξ) = o(Rξ0(ξ)) as ξ → 0. Moreover, because E is diagonalizable

and m + 1 > 2mi ≥ (min(Spec(E)))−1, |ξ|(m+1) = o(Rξ0(ξ)) as ξ → 0 by virtue of

Proposition A.2.2. Therefore

Γξ0(ξ) = iαξ0 − Pξ0(ξ) + Υξ0(ξ)

where Υξ0 = o(Rξ0) as ξ → 0 and thus completing the proof of the implication

(c⇒ a).
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To finish the proof of Proposition 3.3.3, it remains to prove that, for any m′ ≥

m,

Pξ0(ξ) = lim
t→∞

tQm′

ξ0
(t−Eξ)

for all ξ ∈ Rd and this limit is uniform on all compact subsets of Rd. Indeed, Let

K ⊆ Rd be compact. By virtue of Lemma A.4.1,

Pξ0(ξ) = PA(A−1ξ)

= lim
t→∞

ρA(t, A−1ξ)

= lim
t→∞

tQA(A−1t−Eξ)

= lim
t→∞

tQm
ξ0

(t−Eξ) (A.22)

uniformly for ξ ∈ K. Observe that for any m′ > m, there exists M > 0 for which

∣∣tQm′

ξ0
(t−Eξ)− tQm

ξ0
(t−Eξ)

∣∣ ≤ ∑
m<|β|≤m′

t
∣∣cβ(t−Eξ)β

∣∣
=

∑
m<|β|≤m′

t
∣∣cβ(At−FA−1ξ)β

∣∣
≤ M

∑
m<|γ|≤m′

t
∣∣(t−FA−1ξ)γ

∣∣
=

∑
m<|γ|≤m′

t1−|γ:2m|∣∣(A−1ξ)γ
∣∣

for all ξ ∈ Rd and t > 0. Noting that |γ : 2m| > 1 whenever m < |γ| ≤ m′, by

repeating the argument given in Step 4 of Lemma A.4.1, we observe that

lim
t→∞

(
tQm′

ξ0
(t−Eξ)− tQm

ξ0
(t−Eξ)

)
= 0 (A.23)

uniformly for ξ ∈ K. The desired result follows by combining (A.22) and (A.23).
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