
Performance Analysis of the Pipe Problem, a
Multi-Physics Simulation Based on Web

Services1

Paul Stodghill, Rob Cronin, Keshav Pingali
Dept. of Computer Science

Cornell University

Gerd Heber
Cornell Theory Center

Cornell University

February 16, 2004

1This research is partially supported by NSF grants EIA-9726388, EIA-9972853, and ACIR-
0085969.



Abstract

The ongoing convergence of grid computing and web services has inspired a number of
studies on the use of SOAP-based web services for scientific computing. These studies
have exposed several performance problems in using SOAP-based communication; to
eliminate these bottlenecks, extensions to the SOAP standard and sophisticated imple-
mentation strategies have been proposed. In this paper, we will describe the ASP sys-
tem, a simulation testbed based on web services for simulating multi-physics, coupled
fluid/thermal/mechanical/fracture problems. The system is organized as a collection
of geographically-distributed software components in which each component provides
a web service, and uses standard SOAP-based web service protocols to interact with
other components. There are a number of advantages to organizing a system in this
way, which we discuss. We have analyzed the performance of our system for several
applications and a number of problem sizes and have found that the overhead for using
SOAP-based web services is small and tends to decrease as the problem size increases.
Our results suggest that the previously identified potential bottlenecks may not be major
issues in practice, and that a standards-compliant implementation like ours can deliv-
ery excellent scalable performance even on tightly-coupled problems, provided web
services are used judiciously.



1 Introduction

Grid computing is being used for a restricted class of applications, such as problems
that require a large number of small, independent tasks, or problems that access remote
instruments [14]. The majority of computational science applications however do not
fall into these categories. Most of these applications are not embarrassingly parallel, so
they cannot be decomposed into tasks that execute independently on a computational
grid. In addition, most of them do not require on-line interaction with instruments or
other data sources.

Nevertheless, we believe that the metaphor of grid computing is useful for imple-
menting large-scale,loosely-coupledcomputational science applications1. To appreci-
ate this point, it is useful to consider how these applications are usually created. Almost
invariably, large applications are created by a multi-institutional team, whose members
contribute legacy and new modules to the project. Modules from different members
may be written in different programming languages and developed for different com-
puting platforms. Since re-implementing all the software in a single programming
language is not practical, all the code must be ported to a single high-performance
computing platform so that these modules can inter-operate with each other.

Building a monolithic application in this way has several disadvantages. Porting
code from one platform to another takes time and effort. Moreover, thorny intellectual
property (IP) issues may arise if the common platform is at a remote institution. Even
if these problems are overcome, the contributed code modules are usually under con-
tinuous development, so the process of porting code to the common platform may need
to be repeated every time there is a new release of these modules.

In principle, these problems can be avoided by designing the system as a collection
of distributed components that interact by using a mechanism like remote procedure
call (RPC). Each site maintains its own code on whatever platform the code was de-
veloped on, but it provides a server that can be invoked from remote sites to access
the functionality of that code. Instead of exporting code, each site therefore exports
only the functionality of the code, thereby implementing awrite once, run from any-
wherephilosophy. The distributed systems community in particular has explored RPC
mechanisms extensively, and there are many standards and implementations such as
Sun RPC [29] and the Java RMI [32].

Although RPC has been around for two decades, this architecture is used by few if
any computational science applications. The conventional wisdom about why this is so
is summarized by the following points.

1. There is no RPC standard supported by all vendors, so interoperability is a prob-
lem.

2. The basic RPC mechanism was intended for a stateless, service-oriented archi-
tecture in which the service is relatively light-weight, and the client and server
exchange only a small amount of data. As a consequence, most RPC standards
and implementations have features that made them unsuitable for use in compu-

1We consider an application to be loosely-coupled if its components communication infrequently, as
opposed to tightly-coupled, in which communication is frequent, or embarrassingly parallel, in which com-
munication is absent.

1



tational science programs. For example, many RPC implementations use UDP
for data transport, which restricts RPC calls to 8KB of data. This is not accept-
able for computational science programs which may need to exchange data sets
that may be many megabytes or gigabytes in size.

3. Similarly, in most RPC implementations, a client is required to block after mak-
ing a remote request, until it receives a response from the remote server. This
is fine if the service is light-weight, but if the component that is invoked takes
many minutes or hours to produce a result, most RPC implementations will time-
out and assume that the remote server has crashed. An asynchronous interaction
mechanism in which notification of completion of remote requests is decoupled
from the request itself would address the problem, but this requires a stateful
message-exchange paradigm.

4. Perhaps the most important issue is the overhead of data transfer between dis-
tributed components. Two procedures in the same program can exchange data by
passing pointers to data structures, which is a very low-cost operation. If the two
procedures are in components at different sites on the Internet, exchanging data
is a far more elaborate and expensive operation - the calling component must lin-
earize the data structure, convert it to some common data exchange format like
XDR and transmit it to the remote site which reverses this process to rebuild the
data structure.

Because of recent developments in the area of web services for business applica-
tions, this conventional wisdom must be re-examined. To support seamless application-
to-application communication in a decentralized, distributed environment, the web ser-
vices community has defined the Standard Object Access Protocol (SOAP) which can
be viewed as a “protocol specification that defines a uniform way of passing XML-
encoded data” [18]. While SOAP can be used to implement many kinds of interac-
tions between applications, the SOAP standard also specifies a protocol for perform-
ing RPC’s, using HTTP as the underlying communication protocol. Most computer
vendors are committed to supporting this standard, which addresses the first problem
discussed above.

Nevertheless, like existing RPC implementations, SOAP is intended for light-weight
services that exchange small amounts of data. Although the amount of data that can be
passed in a SOAP message is implementation-dependent, our experiments show that
it is at most a few megabytes on all implementations we have looked at. Moreover,
SOAP is “fundamentally a stateless message-exchange paradigm” [18], so it does not
directly support the stateful interaction paradigm that is better suited for computational
science applications as described above.

To address these concerns, we have implemented a system, called O’SOAP, that is
layered on top of SOAP and is described in Section 2. It permits asynchronous client-
server interactions in which arbitrarily large amounts of data can be exchanged. A
particularly useful feature of O’SOAP is that it permits legacy command-line-oriented
applications to be deployed as web-services without any modification. We believe that
O’SOAP addresses the second and third problems with conventional RPC’s described
above.

The final problem that must be addressed is the overhead of data exchange between

2



distributed components using SOAP and XML. Two previous studies of this issue that
appeared in HPDC’02 reported that the use of SOAP and XML imposed a large per-
formance penalty in scientific applications, and concluded that SOAP was not practical
for computational science applications unless a number of sophisticated optimizations
and changes to the protocols were made [10, 28].

We argue in this paper that these studies are misleading. In Section 2.4, we describe
one of the large computational science application that we have implemented using our
infrastructure. This application is a coupled fluid-thermal-mechanical computational
fracture simulations. In Section 3, we describe performance results that show that the
overhead of using O’SOAP based distributed components to implement these applica-
tions is small. To the best of our knowledge, this is the first performance evaluation of
entire state-of-the-art scientific applications built using the web-service framework.

In Section 4 we discuss other related work. Finally, in Section 5, we highlight
lessons that we have learned from this implementation.

2 O’SOAP

O’SOAP [30] is an O’Caml [27] base, web services framework that we have developed
for distributed computational science applications. The primary benefits of O’SOAP
over other frameworks are its support for legacy scientific applications and the manner
in which it builds upon the basic SOAP protocol to enable efficient interactions between
distributed scientific components.

2.1 Deploying Applications as Distributed Components

On the server side, O’SOAP enables existing, command-line oriented applications to
be made into web services without any modification. The user only needs to write a
small CGI script that calls O’SOAP server-side applications. Placed in the appropriate
directory on a web server, this script will execute when the client accesses its URL. An
example of such a script is shown in Figure 1.

#! /bin/bash

oids_server \
-n arithmetic-test -U urn:test \
-N ’Arithmetic Server’ \
-- ./add.sh ’[in val x:int]’ \

’[in val y:int]’ \
’>’ ’[out file result:int]’

Figure 1: Sample O’SOAP Server

Theoids server program, which is provided by the O’SOAP framework, pro-
cesses the client’s SOAP request. The-n , -N , and-U parameters specify the short
name, full name, and namespace, respectively, of the web service. What appears after
-- is a template of the command line that is to be used to run the legacy program,

3



add.sh . The text that appears within[...] describes the arguments to the legacy
program. Each argument specification includes at least four properties,

• The directionality of the parameter, i.e., “in”, “out”, or “inout”.
• Whether the parameter value should appear directly on the command line (“val”)

or whether the parameter value should be placed in a file whose name appears
on the command line (“file”).

• The name of the parameter, e.g., “x”, “y” and “result”.
• The type of the parameter value, i.e., “int”, “float”, “string”, “raw” (arbitrary

binary file), “xml” (a structured XML file).

A component implemented using O’SOAP will expose a number of methods, dis-
cussed below, that can be invoked using the SOAP protocol. The component also
provides a means for generating a WSDL [11] document that describes these methods,
their arguments, and additional binding information.

On the client-side, O’SOAP provides two tools for accessing remote web services.
Theosoap tool program provides a command-line interface to remote web services.
In addition, thewsdl2ml program generates stub code for invoking web services from
O’Caml programs.

To summarize, O’SOAP is a framework that hides most of the details of the SOAP
protocol from the client and server programs. With this in place, we can now dis-
cuss how the interactions between the clients and servers can be organized to support
distributed computational science applications.

2.2 Asynchronous interactions

The SOAP protocol was designed for synchronous client-server interactions. That is,
the client sends a SOAP request to the server and then waits to receive a SOAP re-
sponse2. However, many computational science applications can take a very long time
to execute. Using the synchronous interaction model directly in this case is often not
possible. For instance, many SOAP clients will signal an error if a response is not
received within a fixed timeout interval. While it might be possible to increase this
timeout interval, a better approach is to use an asynchronous interaction model.

O’SOAP’s server-side programs provide basic job management by exposing a num-
ber of methods to the client. The “spawn” method invokes the application on the server
and returns a job id to the client. The client can then pass this job id as the argument to
the “running” method to discover whether or not the application has finished execution.
Once completed, the client uses the “results” method to retrieve the results. There are
additional methods, such as “kill”, for remotely managing the application process.

Since the server is able to generate a response for these methods almost immedi-
ately, the synchronous SOAP protocol can be used for such method invocations. Also,
since a new network connection is established for each method invocation, detached
execution and fault recovery are possible without additional system support (e.g., to
re-establish network connections).

O’SOAP also provides basic session management. If enabled by the component,

2Other modes of interaction were defined by the SOAP 1.1 Specification, but were dropped in SOAP 1.2.

4



the client is allowed to create a session on the server in which one of a number of
application programs can be executed. Disk space is allocated to the session so that
data can be shared between the application programs without having to be sent back to
the client.

2.3 Support for small and large data sizes

Data set sized in computational science applications can vary greatly. For example,
for the Fluid/Thermal solver in the Pipe problem described in Section 2.4, the input
boundary conditions are a few kilobytes, but the results of the solver can be tens of
megabytes. For small data sets, it makes sense to include the data within the SOAP
envelope that is passed between the client and the server. This eliminates the need for
a second round of communication to retrieve the data.

However, there are several reasons why embedding large data sets in SOAP en-
velopes is problematic. One reason that has been observed by others [10, 28] is that
translating binary data into ASCII for inclusion in the SOAP envelope can add a large
overhead to a system. The second reason is that many SOAP implementations have
preset limits on the size of SOAP envelopes. Many of our data sets exceed these limits.

For these reasons, O’SOAP enables data sets to be optionally separated from the
SOAP request and response envelopes. If a data set is included, it is encoded using
XML or Base64. We call this case “pass by value”. If it is not included, then a URL
to the data set is included instead. We call this “pass by reference”. Furthermore,
O’SOAP enables clients and servers to dynamically specify whether a data set will be
passed by value or reference.

O’SOAP manages a pool of disk space that is used for storing data sets downloaded
from the client and data sets generated by the application that will be accessed remotely.
O’SOAP currently supports the HTTP, FTP, and SMTP protocols, and we have plans
to provide support for IBP [26].

Another feature provided by O’SOAP is a mechanism to pass data efficiently be-
tween two components hosted on the same server. If componentA generates a large
data set that is input to a componentB on the same server, O’SOAP will recognize that
the URL to the data set points to a local file, and will causeB to use that file directly.

2.4 The Pipe Problem

In this section, we give a high-level description of one of the large-scale, distributed,
computational science, simulations we have implemented in the Adaptive Software
Project (ASP) [19].

This application simulates an idealized segment of a rocket engine modeled after
actual NASA experimental spacecraft hardware. The object is a curved, cooled pipe
segment that transmits a chemically-reacting, high-pressure, high-velocity gas through
the inner, large diameter passage, and a cooling fluid through the outer array of smaller
diameter passages. The curve in the pipe segment causes a non-uniform flow field
that creates steady-state but non-uniform temperature and pressure distributions on the
inner passage surface. These temperature and pressure distributions couple with non-
uniform thermomechanical stress and deformation fields within the pipe segment. In

5



turn, the thermomechanical fields act on an initial crack-like defect in the pipe wall,
causing this defect to propagate.

Figure 2 shows the model used for the Pipe Problem, and Figure 3 shows the place-
ment of the crack that is embedded within the model.

Figure 2: The Pipe Model

Figure 3: Crack embedded in the Pipe Model

The workflow for the Pipe simulation is shown in Figure 4. The components of
our system appear likethis , and the intermediate data sets appear like�this� . In
our current workflow, the only data that is passed from one time step to the next is the
geometric model of the pipe, which is updated in each time step as the defect is inserted
and grown.

In order to enhance interoperability, we have established a set of common, XML-
based [35], file formats for some of our data sets. These formats are described else-
where [7, 9].

Some of the components used in the Pipe Problem are the following.

• TheSurface Mesherproduces triangular surface meshes for each of the model’s
geometric surfaces. This component produces surface meshes with certain qual-

6



Figure 4: Workflow for the Pipe Problem

ity guarantees [6].
• JMesh[3] generates unstructured tetrahedral meshes for arbitrarily shaped three-

dimensional regions, and was designed to handle the unique geometric problems
that occur in Fracture Mechanics.

• If the surface mesh is too coarse to allow a quality volume mesh to be produced,
JMesh will produce a list of surface mesh triangles that require refinement. This
list is passed back to the Surface Mesher, which then passes a new surface mesh
to JMesh, etc. The loop between the Surface Mesher and JMesh components
for automatically and adaptively producing surface and volume meshes will be
referred to as theMeshing Loop.

• TheGeneralized 3D Mesher[5, 4] generates high quality meshes consisting of
extruded triangular prisms, tetrahedral elements, and generalized prisms. These
highly anisotropic elements are required for simulating viscous fluid flows re-
quired in regions near no-slip boundaries, i.e., boundary layers.

• The Fluid/Thermal Solveris based upon the CHEM code [20, 21], which sim-
ulates 3D chemically reacting flows of thermally-perfect, calorically-imperfect
gases.

• The T4 to T10component converts the volume meshes produces by JMesh,
which use four-noded tetrahedra, into equivalent meshes of ten-noded tetrahe-
drons.

• TheMechanical Solversolves the equations of linear elasticity to determine the
deformation of the pipe due to different loading conditions (e.g. pressure on the
inner pipe) and thermal expansion.

• TheFracture Mechanicscomponent implements a state of the art crack propaga-
tion model that uses the displacements to predict the new crack front at the next
time step.

• The Crack Extensioncomponent updates the crack geometry within the model
based upon the crack front parameters computed by the Fracture Mechanics

7



component. This component, as well as a number of other components, uses
GGTK [16], a library implemented by our project for manipulating geometric
models and for performing geometric operations.

3 Performance Experiments

This section describes performance results and analysis for the Pipe Problem.

3.1 Experimental setup

The following machines were used for the experiments below,

• TheASPcluster is housed in the Cornell Computer Science department and con-
sists of 5 Dell PowerEdge 1650’s, each with Pentium III’s at 1.26GHz (1 dual
and 4 single). Each node has 512MB-1GB RAM and runs Red Hat Linux 8.0.

• Web services at the Cornell Theory Center, orCTC, are implemented using a
number of machines. CTCSTAGER hosts the web server (IIS 5.0) that receives
the SOAP requests. LSQLSRV03 hosts the databases (SQL Server) that are used
for storing the input and output data files. The computation was performed on
the CMI cluster, which has 32 dual nodes (Dell 1550), each with 2 PIII at 1GHz.
Each node has 2 GB RAM. All machines run Windows 2000 Advanced Server.

• Web services at Mississippi State University, orMSU, were executed on an IBM
x330 server, with dual 1.266GHz Intel Pentium III CPUs and 1.25GB RAM
running Red Hat Linux version 7.3.

• The machine used for the “Intra-campus” client at Cornell University is a Dell
Inspiron 8100 with a 1.2GHz Pentium III and 512MB RAM, and runs Windows
XP.

• The machine used for the “Inter-state” client at the University of Alabama at
Birmingham, orUAB, is an IBM x335, with dual 2.4GHz Xeon and 2GB RAM,
and runs Red Hat Linux release 7.3.

Except where noted, the components used in these experiments were deployed on the
ASP cluster.

We used the adaptive Meshing Loop discussed in Section 2.4 to generate three
different problem sizes for the Pipe Problem to understand how increasing the problem
size changes the performance of our system. The sizes of the meshes for the solid
and interior volumes of the Pipe, generated by JMesh and the Generalized Mesher
respectively, are shown in Table 1.

Problem Solid Mesh Interior Mesh
Size vertices triangles tet’s vertices tri’s/quad’s tet’s/prisms
1 4,835 4,979 22,045 19,242 3,065 38,220
2 16,832 10,322 83,609 41,216 5,232 85,183
3 54,849 21,127 289,500 79,407 9,074 170,179

Table 1: Pipe Problem Sizes

8



The clients used in these experiments were all developed using O’SOAP. Except
for the Generalized Mesher, all of the components used in these experiments were
deployed using the O’SOAP framework. The Generalized Mesher was deployed using
SOAP::Clean [31, 8], a Perl-based ancestor of O’SOAP.

3.2 Performance Results

Table 2 shows the running time for all of the components up to and including the
Fluid/Thermal solver. The Mechanical Solver, which is the next component, is the
only component in our system that must be executed via a batch queue. Currently,
it is impossible for us to measure the running time of the Mechanical Solver without
including the time spent in the batch queue, so we have not included its runtimes.

Local Intra-campus Inter-state
runtime runtime runtime

Size Component (secs.) (secs.) overhead (secs.) overhead
1 Meshing Loop 228.62 250.80 9.70% 247.80 8.39%

Generalized Mesher 40.96 44.63 8.96% 35.75 -12.72%
T4 to T10 18.56 21.49 15.79% 20.67 11.37%
Fluid/Thermal 1342.75 1401.73 4.39% 1390.02 3.52%
Download n.a. 0.79 1.00
Total 1630.89 1719.44 5.43% 1695.24 3.95%

2 Meshing Loop 813.88 884.95 8.73% 884.93 8.73%
Generalized Mesher 79.99 86.01 7.53% 69.38 -13.26%
T4 to T10 62.88 70.52 12.15% 73.07 16.21%
Fluid/Thermal 4636.91 4734.15 2.10% 4715.69 1.70%
Download n.a. 0.92 2.71
Total 5593.66 5776.55 3.27% 5745.78 2.72%

3 Meshing Loop 2622.24 3234.93 23.37% 2699.85 2.96%
Generalized Mesher 208.45 207.55 -0.43% 188.59 -9.53%
T4 to T10 689.04 648.53 -5.88% 634.94 -7.85%
Fluid/Thermal 18683.00 18808.16 0.67% 18690.11 0.04%
Download n.a. 2.22 9.00
Total 22202.73 22901.39 3.15% 22222.49 0.09%

Table 2: Pipe Problem Runtimes

The column labeled “Local runtime” shows the running time in seconds of each
component when it is executed directly on the server, without using the web services
infrastructure. The overheads are measured relative to these times. The columns la-
beled “Intra-campus runtime” and “Inter-state runtime” show the running times when
the client is run on different machines than the components. The “Intra-campus” client
runs on a machine on the same LAN as the ASP server, and the “Inter-state” client runs
on a machine at UAB, roughly 1000 miles away.

Each row shows the running times for the individual components, The row marked
“Download” shows the time taken to download the results from the server after all of
the computations have completed. This operation is not performed for the “Local”
client. The row marked “Total” shows the aggregate results for the entire run.

9



3.3 Performance Analysis

There are a number of interesting points in the performance results of Table 2 which
we now discuss.

Consider the Meshing Loop and Fluid/Thermal components. Notice that for both
clients the overhead for the Fluid/Thermal component consistently decreases over the
range of problem sizes, while the overhead for the Meshing Loop components does not
exhibit a consistent trend.

This difference can be explained by the components’ architectures. The Fluid/
Thermal Solver is a single component that runs for a relatively long time. There is a
cost for invoking the solver using web services, but this cost is small relative to its total
running time. Also, while the solver is running on the server, the client is polling the
server for completion, but since this polling is done concurrently, its impact on the total
overhead is also small.

On the other hand, recall that the Meshing Loop is, in fact, two components, the
Surface Mesher and JMesh, that are successively invoked until suitable meshes are
produced. To produce the largest problem size, 18 separate invocations of the Surface
Mesher and JMesh are required. Since the running time of each invocation is relatively
short, the relative cost of the component invocations is larger.

Another difference worth noting involves the Generalized Mesher. Since this is the
only component not hosted on the ASP cluster at Cornell, the “Local” runtimes are
actually the time to perform the web service invocation between the ASP and MSU
clusters. The “Local” and “Intra-campus” runtimes are within a few seconds of one
another, but the “Inter-state” runtimes are measurable less. One explanation is that,
since they are geographically closer together, there is less latency between the “Inter-
state” client, which is running at UAB, and the Generalized Mesher at MSU.

Overall, the total overhead for both clients falls as the problem size increases. The
overhead for the largest problem size is 3.2% and 0.1% for the “Intra-campus” and
“Inter-state” clients, respectively. These results are in marked contrast to the studies in
the literature [10, 28] that concluded that the use of SOAP and XML adds enormous
overhead to computational science applications.

The explanation is the following. The previous studies measured the overhead of
using web services to execute matrix-multiplication and other small kernels. In addi-
tion, the problem sizes used were very small. Therefore the amount of computation was
small relative to the amount of communication, and overheads were magnified dramat-
ically. Our measured overheads are small because our components perform non-trivial
computations like mesh generation, solving linear equations, etc. As Table 2 shows,
most of the running time of our system is taken by the execution of the Fluid/Thermal
Solver. Although the execution of this component may involve a large number of mes-
sages being exchanged between processors, all of these processors are part of a single
cluster, and it is done using MPI [34], a message-passing library designed for this pur-
pose.

Our conclusion is that the organization of a distributed simulation system makes
more of a difference to its performance than the underlying web services infrastruc-
ture. We believe few applications will need to perform matrix multiplication or solve
linear equations on several machines across the Internet. On the other hand, there is

10



a growing need for infrastructures to build virtual organizations in which the code of
different project partners can interoperate. We believe most of these situations will be
similar to ours - the modules contributed by different project partners will have some
components that do non-trivial amounts of computation and internal communication -
so a SOAP/XML-based infrastructure like O’SOAP is eminently practical.

4 Related Work

A number of frameworks and standards have been proposed for developing component-
based systems. Perhaps the best known are CORBA [25] and COM [23]. We investi-
gated these frameworks, but found that using them would require us to make extensive
modifications to our existing applications. We also found that the existing frameworks
were primarily designed for deploying applications within a single machine. DCOM
[22] is one exception to this. It is also interesting to note that existing component
frameworks are evolving towards interoperability with web services (witness .NET
subsuming COM and DCOM, and the OMG’s adoption of a specification on CORBA-
WSDL/SOAP Interworking).

Perhaps the most widely know paradigm for distributed scientific computing is Grid
Computing [12], and the most widely known grid system is the Globus Toolkit [13].
The Open Grid Services Infrastructure (OGSI) specification [33] and WS-Resource
Framework (WSRF) proposed specifications [17] build upon the SOAP protocol to
define additional protocols that are useful for distributed computing, such as resource
management, event notification, etc. The functionality defined by OGSI/WSRF and
O’SOAP is largely orthogonal, and we would expect our results to be similar if our
components were deployed within either of these frameworks.

WS-Context [2] provides a mechanism for correlating SOAP messages over time.
This can be used to implement stateful interactions, like transactions. Context informa-
tion roughly corresponds to the job id’s that are used by O’SOAP servers. OGSI and
WSRF provide alternative mechanisms for identifying state.

Ninf [24] and NetSolve [1] are intended to allow existing numericallibraries to
be executed remotely, while O’SOAP and the other elements of our infrastructure are
intended to allow existingapplicationsto be executed remotely. As a result, the type
systems are different. For example, both Ninf and NetSolve provide array and subarray
types, while O’SOAP provides simple scalars and arbitrary binary and XML files.

5 Conclusions

We have described a multi-physics simulation testbed that consists of a loosely cou-
pled set of distributed components implemented using a web services framework called
O’SOAP which is based on SOAP/XML. To the best of our knowledge, this is the first
system of its kind. This testbed has enabled us to develop state-of-the-art simulations
without having to port codes between each other’s machines. This approach has given
us a number of development and software maintenance benefits.

11



We have also described a set of performance experiments of our system. To the best
of our knowledge, this is the first such performance analysis of a web services or grid
based simulation system that employs many components. Our results suggest that even
a simple and standard-compliant web services infrastructure, such as O’SOAP, can be
used directly in high performance distributed scientific computing without introducing
performance bottlenecks. In fact, we observe that for larger problem sizes, the overhead
of using distributed components is essentially negligible.

We believe that our work provides a number of important lessons for other re-
searchers. First, with this sort of infrastructure, it is possible for multi-institutional,
multi-disciplinary computational science projects to establish virtual organizations, as
envisioned in [15], and build efficient, distributed, component-based applications. This
is possible even with basic web services protocols, let alone the more recent OGSI or
WSRF protocols .

Second, in order to achieve reasonable performance from a distributed simulation
system, it is important to carefully chose the functionality that goes into each of its com-
ponents. This is illustrated by the overheads that we observed for the Meshing Loop
and Fluid/Thermal components. Loosely coupled codes that communicate infrequently
can be placed in separate components, while tightly coupled codes should almost cer-
tainly be placed within the same component. For many applications, individual sites
will provide enough resources to do matrix multiplication or solve large systems of
linear equations, so the role of web services in such projects is to make it possible for
large codes to inter-operate with minimal coordination and re-implementation.

We believe that this sort of decomposition is a natural result of, not only our phys-
ical problem, but of the fact that we are a multi-disciplinary project. In such a project,
each member has a clearly defined research area, and the components seem to natural
divide themselves along these lines. Put differently, our components are loosely cou-
pled because our project members are! We expect that this will be true of most other
multi-disciplinary projects, and we believe that web services may be appropriate for
many of these as well.

References

[1] Dorian C. Arnold and Jack Dongarra. The netsolve environment: Progressing to-
wards the seamless grid. In2000 International Conference on Parallel Processing
(ICPP-2000), Toronto, Canada, August 21-24 2000.

[2] Doug Bunting, Martin Chapman, Oisin Hurley, Mark Little, Jeff Mischkin-
sky, Eric Newcomer, Jim Webber, and Keith Swenson. Web services con-
text (ws-context) ver1.0. Available athttp://developers.sun.com/
techtopics/webservices/wscaf/wsctx.pdf , July 28 2003.

[3] J.B. Cavalcante-Neto, P.A. Wawrzynek, M.T.M. Carvalho, L.F. Martha, and A.R.
Ingraffea. An algorithm for three-dimensional mesh generation for arbitrary re-
gions with cracks.Engineering with Computers, 17:75–91, 2001.

12

http://developers.sun.com/techtopics/webservices/wscaf/wsctx.pdf
http://developers.sun.com/techtopics/webservices/wscaf/wsctx.pdf


[4] S. Chalasani and D. Thompson. Quality improvements in extruded meshes using
topologically adaptive generalized elements.International Journal for Numerical
Methods in Engineering, (submitted).

[5] S. Chalasani, D. Thompson, and B. Soni. Topological adaptivity for mesh quality
improvement. InProceedings of the 8th International Conference on Numerical
Grid Generation in Computational Field Simulations, Honolulu, HI, June 2002.

[6] L. P. Chew. Guaranteed-quality mesh generation for curved surfaces. InProceed-
ings of the Ninth Symposium on Computational Geometry, pages 274–280. ACM
Press, 1993.

[7] L. Paul Chew, Stephen Vavasis, S. Gopalsamy, TzuYi Yu, and Bharat Soni. A
concise representation of geometry suitable for mesh generation. InProceedings,
11th International Meshing Roundtable, pages pp.275–284, Ithaca, New York,
USA, September 15-18 2002.

[8] Paul Chew, Nikos Chrisochoides, S. Gopalsamy, Gerd Heber, Tony Ingraffea,
Edward Luke, Joaquim Neto, Keshav Pingali, Alan Shih, Bharat Soni, Paul
Stodghill, David Thompson, Steve Vavasis, and Paul Wawrzynek. Computational
science simulations based on web services. InInternational Conference on Com-
putational Science 2003, June 2003.

[9] Paul Chew and Steve Vavasis. Proposal for mesh representation. Internal draft,
January 21 2003. Accessed February 13, 2003.

[10] Kenneth Chiu, Madhusudhan Govindaraju, and Randall Bramley. Investigating
the limits of soap performance for scientific computing. InProceedings of the
Eleventh IEEE International Symposium on High Performance Distributed Com-
puting (HPDC’02), July 2002.

[11] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana.
Web services description language (wsdl) 1.1. Available athttp://www.w3.
org/TR/wsdl , March 15 2001.

[12] Global Grid Forum. Global Grid Forum home page. Accessed February 13, 2003.

[13] I. Foster and C. Kesselman. The globus project: A status report. InIPPS/SPDP
’98 Heterogeneous Computing Workshop, pages 4–18, 1998.

[14] Ian Foster and Carl Kesselman.The Grid 2: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, second edition edition, 2004.

[15] Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the grid: En-
abling scalable virtual organizations.International J. Supercomputer Applica-
tions, 15(3), 2001.

[16] GGTK home page. Accessed February 13, 2003.

[17] Globus Alliance. The WS-Resource framework. Available athttp://www.
globus.org/wsrf/ , January 24 2004.

13

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.globus.org/wsrf/
http://www.globus.org/wsrf/


[18] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, and Hen-
rik Frystyk Nielsen. Soap version 1.2 part 1: Messaging framework. Available at
http://www.w3.org/TR/SOAP/ , June 24 2003.

[19] The itr/acs adaptive software project for field-driven simulation. Available at
http://www.asp.cornell.edu/ .

[20] E. A. Luke.A Rule-Based Specification System for Computational Fluid Dynam-
ics. PhD thesis, Mississippi State University, 1999.

[21] E. A. Luke, X.L. Tong, J. Wu, L. Tang, and P. Cinnella. A step towards “shape-
shifting” algorithms: Reacting flow simulations using generalized grids. InPro-
ceedings of the 39th AIAA Aerospace Sciences Meeting and Exhibit. AIAA, Jan-
uary 2001. AIAA-2001-0897.

[22] Microsoft, Inc. Distributed component object model (DCOM). Accessed Febru-
ary 13, 2003.

[23] Microsoft, Inc. Microsoft COM technologies. Accessed February 13, 2003.

[24] Hidemoto Nakada, Mitsuhisa Sato, and Satoshi Sekiguchi. Design and imple-
mentations of ninf: towards a global computing infrastructure.Future Generation
Computing Systems, Metacomputing Issue, 15(5-6):649–658, 1999.

[25] Object Management Group, Inc. Welcome to the OMG’s CORBA website. Ac-
cessed February 13, 2003.

[26] James S. Plank, Micah Beck, Wael R. Elwasif, Terry Moore, Martin Swany, and
Rich Wolski. The internet backplane protocol: Storage in the network. InNet-
Store99: The Network Storage Symposium, Seattle, WA, USA, 1999.

[27] Didier Rémy and J́erôme Vouillon. Objective ML: An effective object-oriented
extension to ML.In Theory And Practice of Objects Systems, 4(1):27–50, 1998.

[28] Satoshi Shirasuna, Hidemoto Nakada, Satoshi Matsuoka, and Satoshi Sekiguchi.
Evaluating web services based implementations of gridrpc. InProceedings of
the Eleventh IEEE International Symposium on High Performance Distributed
Computing (HPDC’02), 2002.

[29] R. Srinivasan. Rpc: Remote procedure call protocol specification version 2. IETF
RFC 1831, August 1995.

[30] Paul Stodghill. O’SOAP - a web services framework in O’Caml.http://www.
asp.cornell.edu/osoap/ .

[31] Paul Stodghill. SOAP::Clean, a Perl module for exposing legacy applications as
web services. Accessed February 11, 2003.

[32] Sun Microsystems. Java rmi specification. Available athttp://java.sun.
com/j2se/1.4.2/docs/guide/rmi/spec/rmiTOC.html .

14

http://www.w3.org/TR/SOAP/
http://www.asp.cornell.edu/
http://www.asp.cornell.edu/osoap/
http://www.asp.cornell.edu/osoap/
http://java.sun.com/j2se/1.4.2/docs/guide/rmi/spec/rmiTOC.html
http://java.sun.com/j2se/1.4.2/docs/guide/rmi/spec/rmiTOC.html


[33] Steve Tuecke et al. Open grid services infrastructure (OGSI) version 1.0.
Available athttps://forge.gridforum.org/projects/ogsi-wg/
document/Final_OGSI_Specification_V1.0/en/1 , June 27 2003.

[34] D. W. Walker and J. J. Dongarra. MPI: a standard Message Passing Interface.
Supercomputer, 12(1):56–68, 1996.

[35] World Wide Web Consortium. Extensible markup language (xml) 1.0 (second
edition). W3C Recommendation, October 6 2000.

15

https://forge.gridforum.org/projects/ogsi-wg/document/Final_OGSI_Specification_V1.0/en/1
https://forge.gridforum.org/projects/ogsi-wg/document/Final_OGSI_Specification_V1.0/en/1

	Introduction
	O'SOAP
	Deploying Applications as Distributed Components
	Asynchronous interactions
	Support for small and large data sizes
	The Pipe Problem

	Performance Experiments
	Experimental setup
	Performance Results
	Performance Analysis

	Related Work
	Conclusions

