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The channel market model is a tool for making communication systems dependable. It

is a generalization of the network stack model: Where the network stack model uses net-

work graphs as the fundamental abstraction and layering as the compositional structure,

the channel market model starts smaller, using channels as the fundamental abstraction,

and builds more freely, using a marketplace for composition. In a channel market, a com-

munication system is a channel transformer, which uses some of the channels offered in

the market to implement new channels and offer them in turn. The model developed out

of work on connection recovery for the Transmission Control Protocol (TCP), as a tool for

understanding the complex dynamics of the standard network stack. In this dissertation,

I apply the lessons learned from the channel market model back to TCP, and in particular

to application-driven connection recovery.

Application-driven connection recovery is a technique by which a fault-tolerant ap-

plication can recover and migrate connections, leveraging middleware to avoid modifi-

cations to its TCP implementation. The middleware depends on very little state, making

application-driven recovery a lightweight and fast technique. To demonstrate what is

possible, I present recovery middleware using both formal and empirical methods.

Formally, I present specifications of TCP and recovery middleware. The specification

of TCP also serves as an introduction to the details of the protocol; to serve that purpose,
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the it follows a novel decomposition I developed for my own understanding while work-

ing on application-driven connection recovery. Using both specifications, I prove that the

simple middleware is sufficient for a failing and recovering TCP to refine non-failing TCP.

Empirically, I present TCPR, an implementation of recovery middleware. I describe

the systems problems that arise from masking connection failure and migrating without

modifying TCP or sockets, particularly where the common interfaces violate the TCP

specification or unnecessarily restrict what state is available to an application. I also

present the results of a study of the Border Gateway Protocol (BGP), highlighting the

severity of the routing disruptions that can be avoided only with connection recovery.

The channel market model’s role in the presentation displays its usefulness in both

ways that a scientific model can be useful: For understanding existing complexity (as

in the decomposition of TCP), and for simplifying the design of the new (as in TCPR).

I wrap up by presenting two design principles that have emerged from using channel

markets: The separation of justification and the haggling principle. The channel market

model and its design principles are useful tools beyond making TCP more dependable,

and they stand waiting for future work.
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CHAPTER 1

INTRODUCTION

The channel market model is a tool for making communication systems more depend-

able. I discovered it as a side effect of work on connection recovery for the Transmission

Control Protocol, and in this dissertation I will apply the model back to connection re-

covery and to TCP in general. The channel market model promises a lot of interesting

avenues for future work as well, some of which I will hint at in conclusion.

TCP is an important protocol, because the Internet depends on it. The Internet Pro-

tocol (IP) offers global addressing and best-effort delivery of packets across the world. It

is TCP that starts from those unreliable, message-oriented channels, and constructs reli-

able, connection-oriented channels that then carry the Web (HTTP), email (SMTP), and

even the routing infrastructure of IP itself (BGP). But if the Internet depends on TCP, how

do we know it is dependable?

1.1 DEPENDABILITY

Dependability is ‘the ability to deliver service that can justifiably be trusted’ (Avižienis

et al. 2004). Justification is essential, because in practice, a correct system people don’t

trust is no more useful to them than a faulty one. One must prove to them that the system

will meet their expectations.

It is worth distinguishing expectations from specifications. Dijkstra (1982) distin-

guishes two separate concerns in the task of ‘making a thing satisfying our needs’. The

first is ‘stating the properties of a thing, by virtue of which it would satisfy our needs’.

The second is ‘making a thing guaranteed to have the stated properties’. The formally

stated properties are a specification, and if the thing does not satisfy its specification then
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it is incorrect. However, if the specification does not correspond to one’s expectations,

then even a correct system can be surprising, and a surprising system is not dependable.

As Knuth once warned, ‘Beware of bugs in the above code. I have only proved it correct,

not tried it’.

‘Proving it’ and ‘trying it’—that is to say, formal reasoning and experimentation—are

the basis of a scientific justification of a system. Both are essentially modus ponens, in

the form Dijkstra suggested: First, show that some particular standard is dependable,

and second, show that the dependability of the standard implies the dependability of the

system.

In formal reasoning, the standard is an expression of the system’s specification in some

logic or calculus, and its correctness is an axiom. In order to show the implication, the

system itself must also be represented in the same language, and then the proof is a matter

of symbolic manipulation. Once such a proof is shown, it guarantees that the system will

satisfy every aspect of its specification in any conceivable environment, so it provides

significant confidence. However, there is no way to manipulate symbols that proves a

mathematical object corresponds to expectations held by a real person, or to a system in

the real world.

In experimentation, the standard is the past behavior of the system in the real world,

and its correctness is justified by its success at meeting the expectations held by real peo-

ple. That the system’s past correctness implies its total correctness is justified by the ex-

haustiveness of the experiments. For example, one might experiment with a wide range

of inputs, loads, and environments. Unlike formal reasoning, experimentation justifies

beliefs about the real world. However, predicting the future is not only tricky in practice,

it is known to be weaker than formal reasoning; indeed, the class of liveness properties is

defined by being impossible to verify experimentally (Alpern and Schneider 1984).

Combining the two approaches in order to mitigate their weaknesses is what is known

as the scientific method. People use models to abstract real phenomena into something
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understandable. Formal manipulation within the model leads to new facts with absolute

certainty, but only to the extent that the model faithfully corresponds to the real world.

Experimentation either reveals surprises that falsify the model, or, through continued

success in a variety of environments, builds confidence in the model’s predictions.

1.2 TCP

Is TCP dependable? Experimentally, it certainly seems so. It has been in heavy and

widely varied use for decades, and although it has problems, even those are fairly well

understood. Now and then something surprising happens, such as when TCP began to

be used over high-bandwidth, long-delay subchannels, or over wireless subchannels in

which loss does not necessarily imply congestion. In the sense that TCP has survived, it

could be said to be dependable.

Unfortunately, the guiding principle of ‘rough consensus and running code’, while es-

sential for building the Internet to begin with, did not result in a system that is amenable

to reasoning, and sometimes a simple mistake can have significant consequences. For

example, the Border Gateway Protocol (BGP), which interconnects networks to form the

Internet, assumes that TCP failure implies the failure of its subchannels. That is not al-

ways true, and in chapter 3 I present measurements of the severe routing disruptions that

can result.

One way to make a system more dependable is to adapt it somehow so that it can be

justified to satisfy a stronger specification. To solve the problem of the dependence of BGP

and other protocols on TCP connections that never fail, I have developed the technique

of application-driven connection recovery. In chapter 4, I present a system called TCPR

which implements application-driven connection recovery using middleware, enhancing

the specification of TCP using an unmodified TCP implementation.

Another way to make a system more dependable is to take it apart and understand it

better, so that whatever its properties are they are not surprising. Although TCP’s main
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strength is experimental justification, there has been some effort at formally verifying

aspects of TCP. The TCP specification itself (RFC 793) is not formal, but a detailed expla-

nation in English prose. However, some projects have proven that simplified variants of

TCP satisfy desirable properties such as reliably delivering data; a brief survey appears

in section 5.6.

One notable effort combines a formal specification with experimental validation (Bishop

et al. 2005a; Bishop et al. 2005b; Ridge, Norrish, and Sewell 2009). The result is a very com-

plete picture of common network implementations as they behave in real deployments,

given in a formal language with unambiguous semantics.

When a specification is intended primarily to help people understand a system, one

of its most important features is the way the whole system is broken down into com-

ponents. Each component must be simple enough to be easily understood at once, and

the structure of their composition must be simple enough that they can be understood

mostly in isolation. In chapter 5 I will give a formal specification of TCP that features a

novel decomposition I discovered to be helpful when I had to reason about TCPR.

The specification of TCP is useful beyond explaining the features of TCP, as I show in

chapter 6 by using it to prove that simple abstract middleware is sufficient for application-

driven recovery. Beyond demonstrating that recovery is possible, the proof is the simplest

statement of the requirements imposed on the middleware and the assumptions required

of the application.

The main lesson I have learned from working with TCP and networking implementa-

tions is that the usual model, the network stack, was unnecessarily limiting. I discovered

a model that was more useful to me, which I call the channel market model. While the

new model came at the end of the work in this dissertation, I see the entire line of work

as the first use of the model.
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Figure 1: The Internet and OSI network models side by side. Both are layered, prevent-
ing networks from building up mutually. They are also fixed in scale, so protocols that
build topologies using TCP or UDP subchannels are relegated to being application-layer
overlays rather than true networks.

1.3 NETWORK MODELS

The channel market model is a generalization of the network stack model. The difference

between the models lies in modularization. When a system is too complex for a per-

son to understand it all at once, they naturally resort to abstraction, which is essentially

metaphor. They replace the complex system with a simpler one that is the same for their

purposes. Modularization is divide-and-conquer metaphor.

In the network stack model, each module is a network. A network is a graph, rep-

resenting agents (vertices) and their ability to communicate (edges). Networks are com-

posed into a whole system by stacking them up in a single column. Each network pro-

vides the communication abstractions that become edges in the network above it. There

are two major camps within the network stack model, the OSI model and the Internet

model. They are shown side-by-side in figure 1.

Despite differences in detail, the OSI and Internet models build up in the same pattern.

At the lowest level, communication systems connect computers to each other directly,

creating networks. Global addressing and routing replace all of the lower-level networks

with a convenient logical clique. End-to-end protocols build stronger guarantees on top

of the clique. Everything else is an application.

The network stack model arose naturally from the development of the Internet, but it
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is not well suited for dependability. The Internet began as an attempt to connect the origi-

nal ARPANET with the ARPA packet radio network, without violating their independent

administration (Clark 1988). In that context, the network stack is a very direct metaphor.

However, strict layering between networks is both mythical and impractical.

Layering is mythical both in the small and in the large. An example of a small viola-

tion is the TCP header, which, despite occupying the transport layer, contains a checksum

over parts of the IP header, in the network layer below it. In the big picture, the routing

protocol BGP runs on top of TCP, which would put it with ‘everything else’ in the ap-

plication layer. However, BGP routers create the paths through networks that form the

clique below the transport layer.

Layering is impractical because it is inefficient to respect it in concrete implementa-

tions. The IETF, the standards body of the Internet, considers layering harmful (Bush and

Meyer 2002), because layers tend to duplicate each other’s functionality (Tennenhouse

1989) and hide information necessary for global optimization.

The channel market starts from simpler modules—channels—and uses a more flexible

compositional structure—markets—to provide a richer language. I describe the model in

detail in chapter 2. In my experience, starting from smaller pieces prompts better under-

standing. However, just making modules as small as possible is not the best strategy;

chapter 7 is a survey of design principles that have been successful, along with two new

principles I associate with the channel market model.

A scientific model for dependable communication should enable the student to un-

derstand existing systems, without learning about exceptions, and enable the architect to

create new systems that perform well, without requiring exceptions. The channel market

model is promising as such a tool; I will describe the origins of the model and its first

uses.
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1.4 CONTRIBUTIONS

The main systems contribution of this work is the introduction of the application-driven

technique for connection recovery, which enables TCP recovery to be used with fault-

tolerant applications, and with application protocols that do not match the assumptions

of prior work.

The novel TCP decomposition presented in the formal specification is a valuable con-

tribution for those who want to understand what TCP offers, from students to network

researchers and programmers. By starting from smaller components, and then explicitly

composing them, the concepts appear in more manageable units.

Finally, the main contribution that should be taken from this line of work is the chan-

nel market model, its concepts, and its design principles.
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CHAPTER 2

CHANNEL MARKETS

Claude Shannon introduced the concept of the channel in his ‘Mathematical Theory of

Communication’ (1948). He defined a channel as the medium used to convey a symbol

between sender and receiver agents. A channel might be ‘a pair of wires, a coaxial cable, a

band of radio frequencies, a beam of light, etc.’. The most important feature of a channel is

that, when it is observed, it conveys one particular symbol out of a set of possible symbols.

It is the uncertainty of observing that symbol, as opposed to all the other symbols in the

set, that conveys information.

I use an equivalent definition of a channel as a phenomenon from which agents can

infer meaning. That meaning is the symbol, and all of the meanings that could have been

inferred are the set. For example, when gunslingers agree to duel at high noon, the angle

of the sun is a channel, and it can convey two symbols: Either it is directly overhead or it

is not. The movement and rotations of celestial bodies need not be astrologically related

to the gunslingers; it is the common meaning they infer that creates the channel.

Dependability has long been known to be an important aspect of a channel. For ex-

ample, the ship that carried young men and women to be sacrificed to the Minotaur

traditionally flew a black sail; when Theseus volunteered to go, with the intent to kill the

monster and return alive, he promised to return under a white sail instead. Although

Theseus killed the Minotaur, his escape was rushed and he forgot to change the sail. See-

ing the traditional black sail, King Aegeus inferred that his son had failed, threw himself

from a cliff.

One technique computer scientists have discovered that might have saved the Athe-

nian king’s life is redundancy. A more elaborate protocol might have used a second chan-
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nel to convey the same symbol as the sail in a different way (error coding), or the king

could have delayed his suicide until his suspicion was confirmed (acknowledgment), or a

redundant agent could have been responsible for setting the sail channel if Theseus failed

(replication). Because it is the way agents interpret channels that makes them so, agents

can use existing channels to construct new ones with different properties.

That construction is the basis of a market. One way to think of a channel market is

simply as set of all the channels that have been constructed. Agents can agree to use

channels from the set in order to communicate in new ways, and offer the channels they

construct by adding them back to the set. I call this the ‘shopping list’ view. At a more

detailed level, every good or service available in a market is offered by somebody, to

somebody. To implement a channel market means giving agents a mechanism to describe,

send, and receive channels, through other channels, to share them with other agents. I

call this the ‘market stall’ view.

Consider two examples of agents—a router and a web browser—and how they inter-

act with a channel market.

Routers are agents that are included in a channel market so that each of the other

agents can make a simplifying assumption: that there is a channel connecting each pair

of them directly. One technique is for each router to send, through each of the channels

it can manipulate, every channel it is aware of. Thus, each router eventually receives

all of the channels originally available in the market, and can find paths to every con-

nected endpoint. The routers offer the new channels—implemented using paths across

the network—into the market, and other agents, such as web browsers, can build further

using direct connections.

(When I described the routers sending channels to each other explicitly, that was the

‘market stall’ view. When I described the paths being offered in the market, generally, for

other agents to pick up and use, that was the ‘market stall’ view.)

A web browser is another kind of agent, which solves the problem of downloading a
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web resource. It might be thought of as observing an input channel to receive a URL, and

emitting on an output channel the value of the resource named by that URL. To offer that

high-level communication, the web browser must construct it using existing channels.

The URL gives the name of a host, which the browser sends through a channel to a DNS

agent, which looks up the appropriate IP channel and sends it back through a channel to

the browser. The browser sends the IP channel to an agent that constructs a TCP channel

through it, and then similarly requests an HTTP channel implemented through the TCP

channel. The browser can communicate over the HTTP channel to retrieve the resource

and forward the result to its high-level output channel.

Note that by assuming the existence of agents providing DNS, IP, TCP, and HTTP, the

web browser agent just needs to communicate with them (at their market stalls, if you

will) to construct the communication resources necessary to fulfill its task. And it need

not worry about every channel in the market (in the shopping list view); note that the IP

channels the DNS agent offers were likely constructed by router agents that the browser

does not need to know of.

The task of justifying trust in a network is simplified by its construction from channels

found in the market. Each agent can be analyzed independently to show just one thing—

that given the items on its shopping list, it can offer channels that correctly implement

some specification.

2.1 LAYERS CONSIDERED HARMFUL

The traditional network model, the network stack, is a special case of a channel market.

There are two well-known variants of the network stack: the OSI model (OSI) and the

Internet model (Braden 1989). They both divide protocols into layers based on where in

the network they are implemented. For example, in the Internet model, the link layer pro-

vides connectivity within local networks, the Internet layer connects such networks into

a global address space, the transport layer adds end-to-end functionality, and everything
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Figure 2: A network stack.
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Figure 3: A channel market.

else is at the application layer. The two models correspond closely, as shown in figure 1,

although the OSI breaks the application and link layers down into more detail. The OSI

model also numbers each layer, which leads to terminology such as ‘layer 7 switch’ for a

network device that inspects application layer data to make decisions.

Whereas the modular unit in a general channel market is a channel, the unit in a

network stack is a network—a graph of agents and channels among them. And whereas

in a general channel market an agent can in principle offer the channels it constructs to

any other in the market, in a network stack the networks are arranged into layers and can

only offer channels upward. Figures 2 and 3 show the two models for comparison.

There are two things wrong with network stacks being considered fundamental. First,

layering puts unnecessary limits on how agents can compose their functionality. In fact,

layering is considered harmful by the IETF (Bush and Meyer 2002), in defense of the less

strict approach taken by their Internet model compared to the OSI model.

Second, and worse, the network stack is not an accurate model of existing networks—

real-world protocols have dealt with the limits of layering by sidestepping it, so that

although one of the advantages of layering should be that each layer can evolve sepa-

rately, in practice they are very tightly coupled. For example, the TCP standard defines
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Transport channel: Path channel:

Control channel: Side channel:

Multiplexed channel: Multicast channel:

Application channel: Basic channel:

Figure 4: Common kinds of channels. Each icon represents subchannels being offered
through a control channel on the left, followed by the constructed channels being offered
through a control channel on the right.

the checksum for each segment to include header fields from the IP version 4 packet that

carries it. A separate standard specifies how to compute the checksum for version 6.

Using TCP over any other subchannel is undefined.

2.2 KEEP WHAT IS USEFUL

The network stack model does not persist because nobody is aware of its flaws, but be-

cause it is, in spite of them, a very useful tool for reasoning about communication. For

example, having language for the concepts of layer 2 and layer 3 switches is so useful

that when protocols like MPLS started to blur the lines between those layers, the lan-

guage expanded to include a layer 2.5. However, the useful concepts are not inherent to

composing networks in layers; they can be expressed in the more general channel market

model as well. Figure 4 summarizes the concepts explained in this section.
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CONTROL CHANNELS

Control channels are the market stalls of a channel market. A control channel carries and

describes other channels. Although it can be convenient to think of a channel market

as a pool of resources to be dipped from and poured into, in fact there are only agents

and channels. For example, a routing agent offers a path channel to an IP agent, which

creates multiplexed channels from it and offers one to a TCP agent, and so forth. Or,

an agent sends a domain name to a DNS agent, which makes an offer by sending back

an appropriate IP channel. Control channels are the metachannels that enable agents to

create and offer the resources that come to be seen, all together, as the contents of the

market.

PATH CHANNELS

A path channel makes a symbol observable to its destination through a sequence of sub-

channels, which in this context might be called link channels, with the cooperation of

agents forwarding it from hop to hop. A path channel is usually offered by an agent

participating in a routing algorithm, such as BGP or OSPF. If the agent discovers that the

path is no longer connected, it can implement the same channel transparently using a

different path of subchannels; thus, path channels are the abstraction that hides routing.

MULTIPLEXED CHANNELS

When an agent presents a subchannel as multiple, separate channels, the offered channels

can be called multiplexed channels. Usually, a multiplexed channel is implemented over

a subchannel by adding a unique label that can be used by the destination to distinguish

the different multiplexed channels based on observations of the subchannel. Based on the

terminology of the abstraction being built, such labels can be called addresses, protocols,

or ports. For example, IP provides 264 channels by addresses, and it further multiplexes
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each of those channels into 28 channels by protocols, such as UDP or TCP. UDP and TCP,

in turn, multiplex each one into 232 channels by port.

The same technique is also invaluable for implementing control channels. For exam-

ple, in the IMAP mail protocol, requests can be labeled with identifiers, and each response

includes the identifier of the request it answers. The same pattern appears in the appli-

cation interface in the TCP standard. When the application calls the receive function, it

provides an identifier, which TCP includes with the response that carries the data. It is

essentially a channel-based continuation passing style, such as might be commonly seen

in the π-calculus, but both the TCP API and the IMAP protocol are implementing using

single subchannels: The market is made possible by multiplexing.

TRANSPORT CHANNELS

A transport channel adapts a single subchannel to present a different abstraction. For

example, TCP adapts a best-effort, packet-oriented subchannel into a reliable, connection-

oriented channel. Ethernet adapts a constant-rate, symbol-oriented subchannel into a

frame-oriented channel. TLS adapts a reliable, connection-oriented channel by adding

authenticity and privacy.

A transport channel can also be useful when it offers the same abstraction as its sub-

channel, but hides its implementation so that the subchannel can be replaced.

The end-to-end principle (Saltzer, Reed, and Clark 1984) is one of the most successful

principles already used in network design; restated for a channel market, it is the princi-

ple that whenever two agents require some property to hold for a channel between them,

and that property can or must be provided by adapting it with a transport channel, then

the same property should not be redundantly added to lower subchannels (unless doing

so provides a convincing performance advantage). Thus, transport channels are one of

the most common and important concepts in channel market design.
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SIDE CHANNELS

A side channel provides information about another, otherwise independent channel. For

example, a sniffer mimics the symbols sent on another channel. The statistics gathered by

firewalls and network devices are crucial side channels for maintaining networks. Side

channels carry checksums, timestamps, and acknowledgments. As control channels are

metachannel channels, side channels are metadata channels.

MULTICAST CHANNELS

A broadcast channel replicates each symbol to all of its subchannels, usually with the

purpose of delivering it to agents that would otherwise not be able to observe a common

channel. Broadcast can also be useful when the subchannels all have the same destina-

tion, because it enables the channel to tolerate faulty subchannels.

An anycast channel replicates each symbol to any of its subchannels, usually with the

intent that each destination is equivalent. Anycast can also be useful when the subchan-

nels all have the same destination, because it enables the channel to exploit the combined

capacity of the subchannels.

APPLICATION CHANNELS

An application channel communicates directly with the environment. The environment

might be a different abstraction in different contexts, but it is always possible to recognize

application channels by the fact that they are not subchannels of any other channel in the

market.

BASIC CHANNELS

Within any given channel market, normally there is a set of channels that are considered

basic. Be it physical wire protocols, or Ethernet, or TCP, only a certain granularity is

relevant to any given problem. The basic channels are the bottom layer in a layered
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Channel
A phenomenon from which an agent can infer meaning.

Symbol
A particular meaning that can be inferred.

Agent
An entity that observes channels and reacts to symbols.

Market
Composition as a result of agents communicating channels.

Figure 5: The four fundamental concepts of the channel market.

model; whereas application channels are not subchannels of any other channel in the

market, no channels in the market are subchannels of a basic channel.

The complement of ‘basic’ is ‘overlay’. All of the non-basic channels in a market are

composed of other channels, so they are all overlays. However, it is worth taking note

any time a channel or network is described as being an overlay, or virtual. Both Resilient

Overlay Networks (RON) and the Transmission Control Protocol (TCP) are overlays on

IP, so why is RON an ‘overlay’ while TCP is a ‘protocol’? I have often found it useful to

hear ‘overlay’ as a signal that the system in question is being treated as second-class, and

to search for the possibilities that are being implicitly ignored by not considering overlays

normal.

2.3 FORMALISMS

Like the network stack model, the channel market model does not have a native formal-

ism. It is a pattern that can be seen in a variety of places. There are four fundamental

concepts of the model, shown with brief definitions in figure 5. The four concepts can be

seen in any formalism commonly used to specify communication systems.

Generally, whatever changes is a channel. Often it is called state. By definition, the

values the channels can take are the symbols. Agents are what can be seen as causing the
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changes to channels, based on observing other channels; sometimes agents are described

explicitly, in which case they are often called processes, but often, only their behavior is

specified, such as by next-state relations or actions or transitions. Each formalism rep-

resents a market by whatever mechanism it provides for composition, such as a parallel

composition operator on processes, or a module system for composing specifications.

In π-calculus, which is a very close fit, a channel is a channel, a symbol is also channel,

an agent is a process, and the market comprises all communication.

In I/O automata, a channel is a state variable, an agent is specified by its behavior

through actions, and the market is represented by the hiding, renaming, and composition

operators.

In TLA+, a channel is a state formula. An agent is not named explicitly, but its in-

fluence on channels is specified by a transition formula. Composition most often takes

the form of logical conjunction and the module system, but TLA+ can also explicitly rep-

resent shopping in the market for subchannels with a particular specification, using the

temporal implication operator.

Channels, symbols, agents, and markets can be found in other formalisms as well,

in programming languages, in textbooks about network protocols, and in networking

standards. I have found it an interesting endeavor to look for them.

17



CHAPTER 3

THE BORDER GATEWAY PROTOCOL

The channel market model is a valuable tool for post hoc analysis of complex systems.

For example, the Border Gateway Protocol (BGP) is overlaid on TCP subchannels, and

it suffers from a design flaw based on assuming more of those channels than TCP guar-

antees. Even when both BGP and TCP are correct, because BGP relies on an incorrect

assumption about TCP, a correct TCP can seem faulty and the resulting BGP error can

be catastrophic, which illustrates how important assumptions are to dependability. The

flaw in BGP, which I characterize and measure in this chapter, was the motivation for the

work in chapter 4 on connection recovery.

3.1 SETUP

BGP agents are the routers at the edge of ISPs and other autonomous networks stitch

the Internet together out of smaller autonomous networks. Each pair of neighboring

routers maintains a TCP connection, which they use to synchronize their routing tables.

If a router detects that one of its connections has failed, it assumes that its link to that

neighbor has also failed, so it immediately withdraws all of its affected routes—even if the

neighbor immediately reconnects. Once the connection is re-established, it cannot be used

to carry network updates or inform routing decisions until each endpoint has transmitted

its entire routing table. Meanwhile, as network routing re-converges to accommodate

the supposed failure, which can take minutes, packet loss can increase 30-fold due to

transient routing loops and black holes (Labovitz et al. 2000; Pei, Zhang, et al. 2006; Zhao

et al. 2003; Sahoo, Kant, and Mohapatra 2006).

There is a standardized solution called Graceful Restart (GR). Because there are many
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reasons a connection might close other than link failure, a router can enable GR for a

connection, informing its peer not to trigger re-convergence immediately when the con-

nection fails. Instead, the peer will wait until a new connection is re-synchronized and the

link is known to be down (Sangli et al. 2007). The time and update load to re-synchronize

the connection is still necessary, but the routing disruption is avoided. Unfortunately, the

assumption that the link survives can be just as wrong as the assumption that the link

fails.

To demonstrate the problem, I evaluated connection failover in BGP. My experiments

were inspired by Pei, Zhao, et al. (2004), who simulated networks of BGP routers to mea-

sure the effectiveness of various proposals at limiting the disruption of link failover. As in

this prior work, I evaluate CLIQUE and B-CLIQUE topologies, but rather than studying

link failure, I inject router failure followed by immediate recovery.

The BGP fault injection benchmarks were conducted using an experimental frame-

work I implemented, which connects actual software routers and network stacks in a

virtual network. All of the nodes run in network namespaces on a single host machine,

which was not bottlenecked by CPU. Running on a single machine means that network

latency is negligible, and all of the nodes share a precise wall clock. The network is sim-

ulated, but the routers run full BGP implementations.

In these experiments, most of the routers run the Quagga routing software and the

Quagga implementation of BGP. However, to the best of my knowledge no open source

BGP router supports recovering with GR. Accordingly, I added one node running exabgp,

an easily-configured route injector that supports GR. This node also has a packet filter-

ing ability that I exploit to artificially inflate the path length of some routes, enabling the

exploration of scenarios with connected-but-undesirable backup paths.

I didn’t modify the routers in any way, except for enabling network namespace vir-

tualization. Each router thus had total control over its own routing table. I recorded

the experiments using rtmon, a utility that is included with the standard Linux pack-
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age iproute2. The result is a log of timestamped updates to each routing table. I also

used tcpdump on the host bridge to record all of the BGP messages sent over the virtual

network.

3.2 CONTROL FAILOVER

Modern routers are often constructed from a collection of computing nodes. An internal

node in a router that runs protocols such as BGP is called a control element, whereas a

forwarding element runs the hardware engine and terminates physical links to peers. A

common configuration for large routers is to have two redundant control elements, so

that when one fails, the other can replace it.

In order to measure the disruptions caused by failover from one control element to the

backup, I used a CLIQUE topology of 16 BGP routers, as shown in figure 6. The routers

were all identical and each peered with all others. One router had an additional peering

relation with the route injector. Once the initial convergence completed, a script killed

and immediately restarted the route injector process, then observed the BGP network

until it converged again. It is worth emphasizing that none of the links failed, only the

BGP connection, so no routing changes were necessary. The results are based on data

over more than 100 runs.

Figure 7 shows a CDF of convergence times in each experiment. On average, it took

more than 15 seconds to re-converge to the original route, even though the underlying

network topology was unchanged. During this period, I observed many events in which

some of the routers believed some destination to be unreachable, or reachable through

a path that is actually a routing loop. I report these periods in figure 8, showing a CDF

of durations each router was unable to reach one or more destinations, as determined by

analysis of the global collection of the routing tables at each instant. On average, every

router in the system experienced more than 11 seconds of connectivity loss for each fail-

over event, even though BGP itself recovered immediately.
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Figure 6: The CLIQUE topology.

In addition to disrupting the forwarding plane, re-convergence taxes the control plane

by consuming bandwidth and CPU to process updates. Figure 9 shows the number of

updates sent for each router for the single destination being advertised. In a core Internet

deployment, where a routing table might include tens of thousands of destinations, the

more than 45 updates per router would be multiplied by the number of destinations.

The vertical CDFs demonstrate the impact of using GR. With this feature enabled, the

router announces that it will preserve its routing tables across restarts, and its peers con-

tinue to route traffic through it during restart. The routing flap seen with the basic BGP

recovery is thus avoided and re-convergence is immediate. No network disconnections

occur, and there is just a single redundant advertisement of each route. Thus, in these

experiments, GR does nearly as well as possible, except for sending unnecessary route

advertisements.

3.3 FORWARDING FAILOVER

There are cases when GR can perform worse than totally unmasked restarts. GR is ef-

fective because it changes the way that peers interpret connectivity loss. In the default
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Figure 7: Duration of convergence due to control failure.

BGP behavior, connection loss is interpreted to indicate forwarding plane failure; with

GR, the forwarding plane is assumed to continue functioning on ‘autopilot’, so that only

the control plane requires re-synchronization. When this assumption is valid, GR almost

solves the failover problem. However, when the network topology does change while the

control plane is still recovering, GR can instead delay the needed routing adaptation. A

consequence is that routers may use bad paths based on the assumption that the recover-

ing router has applied a routing update that it has not had time to receive, process, and

install in its hardware-mediated forwarding plane.

To experiment with forwarding failover, I modified the control experiment to use a B-

CLIQUE topology, as shown in figure 10. A B-CLIQUE is the same as a CLIQUE, but with

an additional backup path. A second router in the clique peers with the route injector, and

receives a route to the destination that has an inflated path length, making it less desirable
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Figure 8: Average duration a router is disconnected from the destination due to control
failure.

than any path through the primary link.

Although the control element fails over immediately, just as in the previous experi-

ment, in this experiment its forwarding-plane link to the destination also fails, and does

not recover. Network reconfiguration is necessary to switch over to the backup path.

As shown in figure 11, the convergence times for actual link loss are worse than for

a pure control failover; on average, it takes more than 111 seconds for the network to

completely switch over to the backup. The disconnectivity, shown in figure 12, is similarly

inflated, with an average of 86 seconds outage. Finally, as shown in figure 13, an average

of nearly 190 updates per router, per destination are required to reach convergence.

More important than the behavior of BGP under link failure, however, is the behavior

of GR. In this experiment, the recovering connection with the primary link advertises

many new routes, which get filtered out before reaching the main network but do serve
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Figure 9: Update load due to control failure.

to prolong re-synchronization. During that time, GR prevents convergence from even

beginning, even though an underlying network link has failed. Thus, the GR data can be

seen to be similar to the raw case, but with a convergence delay increased by more than

100 seconds. The delay is not a function of the topology; it is the duration required to

transmit the routing table. By doubling the number of additional routes to be advertised,

the experiment could induce 200 seconds delay instead. Core Internet routing tables are

far larger than those used in these experiments, and growing.

3.4 CONCLUSIONS

An important parameter in BGP convergence experiments is the Minimum Route Ad-

vertisement Interval (MRAI), which is a rate-limiting knob in BGP. It has been shown

that up to a certain value, the MRAI improves convergence times, but past that, conver-
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Figure 10: The B-CLIQUE topology.

gence times degrade. It is hard to determine the optimal MRAI for a particular topology,

and unfeasible for the entire Internet; the original recommendation for MRAI in peerings

between providers was 30 seconds, but newer experiments have indicated 5 seconds is

better (Jakama 2008). My data was collected with an MRAI of 5 seconds. I also experi-

mented with an MRAI of 30 seconds, and observed even longer convergence times and

greater disruptions to network connectivity.

Pei, Zhao, et al. (2004) have studied the disruption caused during BGP convergence,

explaining how topology and configuration affect the result, and evaluated a number of

proposed strategies for making convergence faster and less disruptive. There has also

been work that, rather than making convergence itself faster, ensures that routers can

rapidly fail over to temporary routes until convergence is complete (Bonaventure, Fils-

fils, and Francois 2007). Both branches of work are valuable when convergence is un-

avoidable, such as when the topology genuinely changes.

My evaluation of BGP uses a novel measurement framework to demonstrate that un-

masked failover can result in tens or hundreds of seconds of outages, even when it is not

necessary to re-converge at all. Graceful Restart, although beneficial in some cases, can
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Figure 11: Duration of convergence due to correlated control and forwarding failure.

arbitrarily delay convergence when forwarding and control failures are correlated.

Ironically, a high-availability router might benefit from a design that increases the

correlation between such failures. Forwarding elements in large routers usually have

general-purpose CPUs and memory, in addition to the specialized forwarding hardware.

The general-purpose hardware exists to handle slow-path forwarding decisions and con-

figuration tasks, but is usually over-provisioned. Offloading control element responsibil-

ities onto parts of forwarding hardware can dramatically increase the replication possi-

bilities, from one or two dedicated control nodes to every component in the router. With

more replicas come more frequent faults, but also additional fault-tolerance and greater

parallelism for distributing workloads (Agapi et al. 2011). Nonetheless, restructuring a

router to exploit the extra resources would be unwise with Graceful Restart, because any

forwarding element failure would be correlated with the failure of some control element
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Figure 12: Average duration a router is disconnected from the destination due to corre-
lated control and forwarding failure.

functionality.

The problem is in the assumptions BGP makes about TCP. The state of a peering is tied

to the fate of the TCP connection, even though a TCP connection is not guaranteed to fail

if and only if its subchannel fails. Nor, as GR assumes, is a TCP connection guaranteed to

fail if and only if the subchannel does not fail. Rather, TCP connections in a distributed

system can sometimes fail over internally, and the only way to avoid routing disruption

without correcting the way the BGP protocol depends on TCP is to recover connections

transparently.

BGP is an important application for TCP recovery, because broken connections trigger

disproportionate amounts of disruption for core Internet forwarding. Furthermore, BGP

stretches or breaks some crucial assumptions made by prior work on connection recovery,

including determinism, whether the application can be a TCP client, and limitations on
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Figure 13: Update load due to correlated control and forwarding failure.

the length of its input. In the next chapter, I introduce an approach that addresses these

challenges: application-driven recovery.
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CHAPTER 4

APPLICATION-DRIVEN RECOVERY

The state that defines a TCP connection is generally encapsulated within a local imple-

mentation of TCP, while the usual socket interface provides no mechanism for an appli-

cation to checkpoint, recover, or migrate that state. Unfortunately for an application such

as HTTP or BGP, written standards and legacy implementations prevent using a session

layer to decouple application state from connection state, so TCP is a point of vulnerabil-

ity for the entire system.

In HTTP, for example, a client might submit a request to a distributed web application

in the cloud. If the request modifies application state, but the connection is reset, the

client can neither assume that the request was processed nor safely resubmit it. Chapter 3

shows how significantly connection loss in BGP can destabilize the Internet.

Application-driven connection recovery is a technique in which middleware adapts

the subchannel used by TCP, adding a side channel so that a fault-tolerant application

has access to sufficient connection state, enabling the application itself to mask failure

and put an existing connection into a new local TCP.

4.1 INTRODUCTION

This work on connection recovery originated in a collaboration with Cisco. The project

had the overall goal of developing a highly-available prototype based on the CRS-1 router (Agapi

et al. 2011). Given a cluster manager and a BGP implementation that could migrate within

the router and survive hardware failures, it became necessary to find a way for the TCP

connections to migrate with it, and do so transparently to avoid unnecessarily disrupting

the control plane.
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This chapter describes a new technique for tolerating connection failure, in the face of

a local TCP with no interface to enable it, and legacy remote applications that preclude

graceful re-connection. BGP will serve as the example, both because it motivated the

work and because it challenges many assumptions of prior work in the area, but the

technique is applicable to any use of TCP.

To understand how prior work could be effective for HTTP but not for BGP, it is worth

distinguishing between recovery and fault masking (Avižienis et al. 2004). Consider a

technique in which a backup TCP peer is kept synchronized with the one used by the ap-

plication. When the primary peer fails, the backup replaces it. The fault has been masked,

because the remote peer need not be aware of the failover from primary to backup. How-

ever, recovery has not taken place, because there is no longer a backup, and a future fault

will cause a failure.

In order to recover, prior work starts a fresh copy of the application and a fresh TCP,

then replays all of the input received from the remote peer since the connection was es-

tablished. Under the assumption that the application is deterministic, the result is a valid

backup replica.

The benefit of that replay-driven approach to recovery is that the application can be

treated as a black box, requiring no modifications. However, not only does the approach

assume a deterministic application, it also assumes that replay is practical. The input to

an HTTP server is usually a short request. On the other hand, BGP connections persist

for the lifetime of a peering between two routers, and often carry thousands of update

messages per minute. Replaying such a connection quickly becomes more burdensome

than failure.

By contrast, I have developed an application-driven approach. The prototype, TCPR,

is network middleware not unlike a NAT box. It sends state gleaned from packets to the

application, and obeys the application to manipulate packets for recovery. By accepting

minor changes to the application, application-driven recovery avoids the much greater
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burden of accepting responsibility for the application’s state. Furthermore, by assuming

the application is checkpointing its connection state along with its other state, TCPR is

left with little to do but enable the application’s operations, resulting in a lightweight,

simple implementation.

4.2 DESIGN

Consider a fault-tolerant application that can recover its own state, for example using

checkpoints, but depends on TCP connections that have inaccessible state within a TCP

implementation. I will refer to the fault-tolerant application as ‘the application’, to its

TCP implementation as ‘the local TCP’ or just ‘the TCP’ when it is clear from context, and

to the remote endpoint of a connection as ‘the peer’. I assume nothing of the local TCP,

the application’s interface to it, or the remote peers, other that what is guaranteed by the

TCP standard (RFC 793).

A TCP connection consists of two independent streams of bytes, one from the peer

to the remote peer and one in the opposite direction. A TCP stream is reliable, in the

sense that each byte is delivered exactly once, in order. To that end, each packet bears

both a sequence number, indicating the position of its first data byte within its stream,

and an acknowledgment, indicating the next sequence number expected in the opposite

direction. A TCP buffers each byte it sends, retransmitting it as necessary, until it receives

an acknowledgment with a later sequence number.

When a connection is established, each TCP chooses an initial sequence number at

random, in order to avoid confusion with packets that might still be in the network from

a previous connection between the same addresses. A packet with the SYN flag establishes

a new stream and sets the initial sequence number; for example, after the handshake in

figure 14, the local TCP’s first data byte will have sequence number 401 (a SYN counts

as a byte sent), and the peer’s first data byte will have sequence number 301. A packet

too far in advance of the expected sequence, or which bears a SYN flag even though the
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SYN 400

SYN 300 (401)

401 (301)

Figure 14: A TCP connection begins with a SYN, SYN–ACK, ACK handshake that estab-
lishes each endpoint’s initial sequence number.

connection has already been established, is considered unacceptable.

TCP uses unacceptable packets to drive a form of connection recovery without fault

masking. If a TCP with an established connection receives an unacceptable packet, it

replies with a control packet, indicating the sequence number and acknowledgment it

believes are current. However, if the connection is not established, the peer replies by ac-

knowledging the unacceptable sequence number with the RST flag, notifying the remote

peer and causing it to abort its connection. If a recovering client attempts to reconnect,

the connection will recover as shown in figure 15. The outcome is that the old incarnation

of the connection is aborted, and the two peers establish a new one.

The design of TCPR builds on TCP’s notion of recovery, and makes it transparent by

interposing middleware between the peer and the network peers, as shown in figure 16.

The middlebox, TCPR, communicates with the application both implicitly, through the

behavior of the TCP peer, and directly, through a side channel. TCPR maintains state for

each connection, of which the application also maintains a copy; the side channel exists

to synchronize those copies of the connection state.

The goal for TCPR is to enable recovery with the simplest possible middlebox and

the least burden on the application, in terms of code modification, per-connection state,

communication on the side channel, and overhead versus unprotected TCP.
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SYN 800

301 (401)

RST 401

SYN 800

SYN 900 (801)

801 (901)

Figure 15: Continuing after figure 14, the client fails and reconnects. Its SYN is unaccept-
able, so the server replies with an empty packet. The reply is in turn unacceptable to
the client, which does not yet have a connection, so the client sends a RST and the server
deletes the state of the old connection. When the client retransmits its SYN, they establish
a new connection.

RESYNCHRONIZING

As in standard TCP, the application signals its desire to recover by reopening the failed

connection. when its network stack sends a SYN in the middle of an established connec-

tion. When TCPR receives the SYN packet in the middle of an established connection, it

infers that the application is recovering, and rather than revealing it to the peer, TCPR

intercepts the SYN and establishes a new incarnation of the connection locally, as shown

in figure 17.

As with any new connection, TCP chooses an initial sequence number in a manner

deliberately designed to be unacceptable to the peer. In order to splice the new and old

connections back together, TCPR’s per-connection state includes the acknowledgments
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Network stack

send

recv

Application TCPR

Figure 16: TCPR is a packet filter interposed between the application’s network stack and
peers, which allows the application to initiate connection recovery in a manner transpar-
ent to the remote end-point.

TCPR

SYN 800

SYN 300 (801)

801 (301)

401 (301)

Figure 17: TCPR tracks acknowledgments, so that it can immediately answer a recovery
SYN. If the client from figure 15 were an application using TCPR, TCPR would establish
a new connection locally and splice it back to the original, so neither network stack is
aware of the recovery.

sent by the local TCP and the peer, ack and peer ack respectively.

By definition, the peer expects that peer ack will be the next sequence number it re-

ceives. Suppose the new connection begins from some other value, seq. TCPR computes

∆ = seq − peer ack , and for the life of the new connection, subtracts ∆ from the local

TCP’s sequence numbers, and adds ∆ to the peer’s acknowledgments. Thus, transla-

tion occurs through small header modifications on packets in flight, much as a network
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address translator remaps addresses and ports.

The opposite stream is simpler to resynchronize. TCPR chooses its initial sequence

number as ack − 1, so that the local TCP’s new incarnation expects the peer to continue

from ack just as before (the decrement is due to the SYN flag implicitly occupying a posi-

tion in the sequence).

However, TCP’s reliability depends not only on sequence numbers, but on the send

and receive buffers at each endpoint, which enable data to be retransmitted until it is safe

at the remote endpoint. If the application migrates to a new machine or its network stack

loses its state, the lost buffers must be recovered.

RECOVERING THE SEND BUFFER

When an application calls send in the sockets interface, success only indicates that the

argument has been copied into the send buffer in the local TCP. Should the send buffer

be lost, some of its contents might not yet have been sent, or might be dropped in the

network. Outside the TCP, only the application itself knows what it intended to send, so

TCPR depends on it to replay what might be lost.

The application can use TCPR to learn how much of its output is safe at any time, and

this information is necessary after resynchronization in order to know what to re-send.

To do so, the application requests the latest state from TCPR, which includes peer ack.

To translate from sequence numbers to total bytes sent since an arbitrary checkpoint, the

application can simply subtract the value peer ack held in that checkpoint.

Note that unacknowledged data is not necessarily lost in a failure. Some might have

been delivered to the peer, although no acknowledgment had arrived by the moment at

which the local TCP lost its state. Thus, the application must repeat whatever it sent the

first time. Generating all output deterministically is sufficient, but isn’t necessary. For

example, it is also sufficient for the application to checkpoint any data it is preparing to

send, so that it recovers not only the old value of peer ack, but at least enough buffered
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data to recover. Beyond that point, the application’s output is unconstrained. On the

other hand, deterministic output does not need a buffer. TCPR enables the most efficient

choice based on specialized knowledge about each connection.

RECOVERING THE RECEIVE BUFFER

When data arrives from the peer, the local TCP buffers it until the application consumes

it with recv. The TCP standard considers such data safe to acknowledge immediately;

once acknowledged, the peer will remove the data from its send buffer. However, the

application might not yet have invoked recv and obtained the data, let alone check-

pointed it. Accordingly, TCPR intercepts and modifies acknowledgments to ensure that

unsafe data will not be acknowledged, relying on the application to tell TCPR when re-

ceived data is safely checkpointed. Delayed acknowledgments were introduced with

FT-TCP (Zagorodnov et al. 2009), which acknowledges packets only after it has check-

pointed them into a ‘stable buffer’, all hidden from the application. Putting the appli-

cation in charge enables more flexibility; for example, the application could choose to

checkpoint raw input immediately, or to process whole application-layer messages and

checkpoint the resulting state changes—if some input causes no significant state changes,

the application could acknowledge it without waiting for a checkpoint at all.

Delaying an acknowledgment can inflate the peer’s estimate of the round-trip time of

the connection. However, most TCP implementations already delay acknowledgments

by up to 500 ms to conserve bandwidth and prevent ‘silly window syndrome’ (Braden

1989). Zagorodnov et al. (2009) evaluated a variety of strategies for generating delayed

acknowledgments from an advancing checkpoint; TCPR uses the strategy they call ‘De-

layed’, which provides the best throughput for the fewest packets.

By putting the application itself in charge of its acknowledgments, TCPR lifts the end-

to-end argument (Saltzer, Reed, and Clark 1984) for TCP’s reliability from the host level

to the application level.
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HANDLING OPTIONS

TCPR supports the most common TCP options. The TCP standard leaves up to 20 bytes

in the TCP header for such options, and specifies three that all implementations must

support: No-Operation, End of Option List, and Maximum Segment Size. The first two

are used to manipulate padding, so they have no impact on a connection’s state. An

endpoint may advertise Maximum Segment Size with its SYN packet to negotiate a packet

size that avoids IP fragmentation. TCPR simply passes the value through, and records it

to ensure that the same negotiation takes place during recovery.

RFC 1323 (Jacobson, Braden, and Borman 1992) described the first additional op-

tions to be defined, Window Scaling and Timestamps, which support high-latency, high-

bandwidth networks. To support Window Scaling and Timestamps, TCPR passes the

parameters through and saves them for recovery, just as it does with Maximum Segment

Size. The authors of RFC 1323 noted that the only previously non-padding option, Max-

imum Segment Size, was only sent on SYN packets, so they worried that buggy TCP

implementations might erroneously fail to handle unknown options on normal traffic. To

address that concern, they established the convention that TCP options are negotiated in

the handshake or else disabled. The result for TCPR is that suppressing unknown options

on a handshake will generally avoid the need to suppress them any further.

TCPR also supports the Selective Acknowledgments (Mathis et al. 1996) option, which

enables the TCP to acknowledge data that it receives out-of-order or with gaps. Ad-

vancing the actual acknowledgment would erroneously cover the gaps, but failing to

acknowledge the received data might force the peer to wastefully retransmit data that

wasn’t really lost. At first glance, Selective Acknowledgments might seem incompatible

with TCPR’s delayed acknowledgments. However, the standard specifies that Selective

Acknowledgments are purely advisory: although they serve as notification, the sender

is still responsible for eventually retransmitting that data if the cumulative acknowledg-

ment never catches up. Thus, it suffices for TCPR to apply ∆ to the peer’s selective ac-
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knowledgments as well as to its ACKs.

MASKING FAILURE

TCPR cannot depend on the local TCP to accurately distinguish between failure and the

application closing the connection. During failover or migration, the application has

(conceptually if not in fact) two unsynchronized local TCPs—the new one, in which the

connection is not yet established, and the old one, in which the connection is no longer

established.

Until the new local TCP is synchronized, any packet it receives will be unacceptable,

and it will send a RST as discussed in figure 15. An endpoint with an established connec-

tion never sends a RST, so TCPR drops it to prevent a ‘Romeo and Juliet’ scenario: if the

peer received the notice that the application is dead, it would abort the connection just as

the application came back to life.

Failure can also be revealed to the peer if the old local TCP tries to clean up by closing

the connection, which often happens when only the application process fails.

TCP endpoint closes its output by sending a packet with the FIN flag, which occupies

a byte at the end of the stream and must be acknowledged by the remote endpoint, like

the SYN at the beginning. At the packet level, there is no way to distinguish whether a FIN

indicates failure or a deliberate call to close. Prior approaches have interposed on the

network stack’s interface to learn when the application closes a connection deliberately.

TCPR uses a more explicit approach: the application sets a flag, done writing , just before

it closes. TCPR treats a FIN as spurious if and only if that flag is clear.

TCPR responds to a spurious FIN with a RST, in order to enable the application to

recover quickly in the case where the old and new local TCPs are the same. The RST

causes TCP to abort the connection and become ready to recover it immediately.
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CLOSING INPUT

To deliberately close the stream in the other direction, the application sets another flag,

done reading. When done reading is set, TCPR does not delay acknowledgments. The local

TCP is free to acknowledge any remaining data, notably including the peer’s FIN, so the

peer can close gracefully.

If the FIN is the only byte remaining to be acknowledged, the application could instead

advance ack by one byte. TCPR provides done reading to echo the behavior of shutdown,

and it also enables experimental setups without delayed acknowledgments.

RECOVERING AFTER CLOSING

As with send, a successful close indicates only that the FIN is in the send buffer. It

might take some time for all of the data to be sent and acknowledged. Even once the final

acknowledgment is sent, TCP implementations wait, usually 120 seconds, to be sure that

the acknowledgment arrives and to handle any straggling packets. What if the applica-

tion crashes after abdicating its socket?

TCPR sets a flag, done, when it thinks both flows are closed, and another, failed, when it

has detected that the local TCP has failed. The application can check at any time whether

the connection is really closed on the wire. If necessary, the application can recover as

normal. Upon recovery, TCPR always unsets done writing to give the application the

chance to call close again.

Once close has been set for an appropriate duration (such as 120 seconds) the applica-

tion explicitly instructs TCPR to delete its state. Of course, there is no reason the applica-

tion has to wait, and the ability to control when TCPR deletes its state also makes it easy

to experimentally inject failures.
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Figure 18: When TCPR fails over, it depends on the application for some of its state, and
can recover the rest from the peer itself. For example, if TCPR cannot immediately answer
a recovery SYN as in figure 17, sending the unacceptable packet to the peer prompts it to
fill in the missing state.

RECOVERING TCPR

Should TCPR itself fail, it can recover some of its state, such as peer ack , by observing

packets on the wire. The remaining state, such as the latest ack for delaying acknowledg-

ments, is provided by the application. TCPR avoids the need to replicate any of its own

state because recovery is driven by a fault-tolerant application.

For example, if the application is trying to recover but the latest peer ack is missing,

TCPR delivers the recovery SYN to the peer uncorrected; the peer’s answer reveals the

desired value, as in figure 18. Resynchronization takes place as in figure 17, but with an

additional round-trip to recover soft state from the peer.

That default behavior also avoids the need for a special case to detect whether a con-

nection is new or recovering. If peer ack is missing, either TCPR crashed and lost it, or

the connection is new and it doesn’t exist yet; in the former case, the peer provides the

missing value, and in the latter, it sends its own valid answer to the handshake.

On the other hand, fields such as ack and done writing cannot be inferred from packet-
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level observation, because they are inherently controlled by the application. Neither can

fields such as the saved values of options, which are advertised only once. Thus the

application is expected to reset these values through the side channel it has with TCPR.

The state that depends on the application changes much more slowly than the soft

state recoverable from packets. Whereas peer ack is updated with every packet from the

peer, all of the application-dependent state is either fixed at connection establishment

(such as the peer’s TCP options), set occasionally by the application itself (ack ), or set by

the application once when the connection closes (done reading and done writing). Thus,

both the extent of the modifications to the application code and the communication over-

head of maintaining TCPR’s copy of the state are minimal.

4.3 IMPLEMENTATION

The TCP-manipulating core of TCPR is implemented as a portable C library. The sim-

plicity of application-driven recovery is reflected in the fact that the library’s single file

contains only about 150 lines of code (measured by semicolons). TCPR is free software

under the BSD license. Source code and documentation are available from:

http://github.com/rahpaere/tcpr/

I have experimented with TCPR using a variety of techniques to interpose on packets;

the current prototype is a loadable module for the Linux kernel firewall, iptables. The sys-

tem administrator writes rules to match packets to and from the application, delivering

them to TCPR rather than dropping or forwarding them.

TCPR’s per-connection state appears in figure 19. Notably, there is no buffered data.

Both TCPR and the application keep exactly one struct tcpr ip4 per connection.

The network-independent state is in struct tcpr, while only the subset of the state

in struct tcpr hard is crucial for recovery—if any field outside struct tcpr hard

is missing, TCPR will recover it on the fly.
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struct tcpr hard {
uint16 t port;
struct {

uint16 t port;
uint16 t mss;
uint8 t ws;
uint8 t sack permitted;

} peer;
uint32 t ack;
uint8 t done reading;
uint8 t done writing;

};

struct tcpr {
struct tcpr hard hard;
uint32 t delta;
uint32 t ack;
uint32 t fin;
uint32 t seq;
uint16 t win;
uint16 t port;
struct {

uint32 t ack;
uint32 t fin;
uint16 t win;
uint8 t have fin;
uint8 t have ack;

} peer;
uint8 t have fin;
uint8 t done;
uint8 t failed;
uint8 t syn sent;

};

struct tcpr ip4 {
uint32 t address;
uint32 t peer address;
struct tcpr tcpr;

};

Figure 19: TCPR state structures. The application keeps one struct tcpr ip4 for each
TCP/IP connection, but only the 14-byte portion defined by struct tcpr hard is nec-
essary for recovery.
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The side channel is a UDP connection, and the protocol consists only of entire states

sent back and forth. The state is small enough to avoid being a burden to send, and

its constant size and the atomic delivery of UDP combine to make the update protocol

easy to implement at both ends. For example, to acknowledge some data, the application

locally sets tcpr.hard.ack and sends the entire state to TCPR.

Using UDP makes it possible for TCPR to be situated on a middlebox physically dis-

tinct from the one on which the application is running, but other options are also pos-

sible. In my experiments, the highest efficiency was achieved when running TCPR in

a separate network namespace but on the same machine as the recoverable application.

Network namespaces are a recent Linux kernel feature that enables an individual pro-

cess to have an isolated routing table, network stack, and set of network interfaces, while

sharing the host’s memory, filesystem, processors, and kernel. With the application in

its own network namespace, TCPR can run on the host as a middlebox while enjoying

loopback-interface throughput and latency.

The TCPR distribution includes a netcat-like program and a TCP proxy that pro-

vides TCPR-support for unmodified applications, along with a utility to craft UDP TCPR

updates on the command line to query TCPR state.

In order to be able to measure recovery time, I implemented a utility that opens hun-

dreds of connections in parallel, injects failure on each of them, and then times its re-

covery using Linux’s high-resolution real-time clock. To measure throughput, we I have

also modified the venerable ttcp to support TCPR; including error handling and new

command-line options for configuring TCPR, all that it required was the addition of 28

lines.

Modifying an application to use TCPR does not require any changes to existing socket

system calls. Instead, one simply adds code to interact with TCPR during connection

setup and teardown, and when input is to be checkpointed. A trivial example is shown

in figure 20.
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s = socket(AF INET, SOCK STREAM, IPPROTO TCP);
bind(s, &addr, addrlen);
listen(s, backlog);
c = accept(s, &peeraddr, &peeraddrlen);
getsockname(c, &addr, &addrlen);

// request connection state
state.address = addr.sin addr.s addr;
state.peer address = peeraddr.sin addr.s addr;
state.tcpr.hard.port = addr.sin port;
state.tcpr.hard.peer.port = peeraddr.sin port;
write(tcpr, &state, sizeof(state));

// receive TCPR’s copy
read(tcpr, &state, sizeof(state));

bytes = read(c, readbuf, readbuflen);

// update delayed acknowledgment
state.tcpr.hard.ack =

htonl(ntohl(state.tcpr.hard.ack) + bytes);
write(tcpr, &state, sizeof(state));

write(c, writebuf, writebuflen);

// fail
close(c);

// recover
write(tcpr, &state, sizeof(state));
c = socket(AF INET, SOCK STREAM, IPPROTO TCP);
bind(c, &addr, addrlen);
connect(c, &peeraddr, peeraddrlen);

// close gracefully
state.tcpr.hard.done reading = 1;
state.tcpr.hard.done writing = 1;
write(tcpr, &state, sizeof(state));
close(c);

Figure 20: A simple C server that uses TCPR. Closing without notifying TCPR is a con-
venient way to inject failure. The four lines that recover the connection include both
application and TCPR recovery, and could be executed after migrating to a new host.
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Mbps % Raw
Unprotected 896.354± 0.331 100

TCPR 896.385± 0.280 100

Figure 21: TCP throughput from the application to the peer.

A fault-tolerant application that uses TCPR makes the usual socket calls. After calling

connect or accept—that is, once the connection has been established—the applica-

tion retrieves the connection’s state from TCPR. As the application consumes its input,

it updates ack locally, then updates TCPR. Similarly, when there is no more input, it sets

done reading , and when it is finished writing output, it sets done writing .

If TCPR itself fails, the application need only send another update message. If the

application fails, it need only bind and connect again to establish a new connection

with the same endpoints. The recovery snippet in figure 20 handles both cases.

A practical problem on Linux is that the local TCP will not allow an application to

bind to a port that is in use in any way, even if it is only bound by listening sockets. Thus,

a server that is still listening for incoming connections on a well-known port can not

recover its connections with the same port numbers. To work around this problem, TCPR

can remap the source port to avoid collisions; the application just specifies a tcpr.port

that is different from tcpr.hard.port.

4.4 EVALUATION

I conducted microbenchmarks of TCPR using two commodity Linux machines, each with

two cores, connected by a 1 Gbps Ethernet link. TCP was implemented by an unmodified

Linux kernel network stack.

OVERHEAD

I evaluated throughput overhead using a version of ttcp modified to support TCPR.

First, I measured send goodput from the application to the peer both with unprotected
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Mbps % Raw
Unprotected 851.206± 4.652 100

Unsafe TCPR 837.275± 5.355 98
TCPR 838.699± 1.934 98

Figure 22: TCP throughput from the peer to the application.

Microseconds
Unprotected 318± 27

Unsafe TCPR 326± 16
TCPR 334± 24

Figure 23: Latency from the application to the peer.

Microseconds
Unprotected 550± 23

Unsafe TCPR 547± 94
TCPR 594± 85

Figure 24: Latency from the peer to the application.

TCP and with TCPR, reporting the average and standard deviation of 10 runs in figure 21.

TCPR does not cause any measurable overhead.

Next, I measured the opposite direction: receive goodput from the peer to the appli-

cation. This is the flow that is subject to delayed acknowledgments, so in addition to the

previous two cases, I measured ‘Unsafe TCPR’, in which delayed acknowledgments were

disabled.

As shown in figure 22, while there is slight overhead on the incoming packets, there

is no measurable impact on throughput from delayed acknowledgments. That is reason-

able, because TCP keeps a window of packets in flight in order to mask latency.

The latency impact of delayed acknowledgments can be seen in TCP round-trip times

from packet traces. I used traces of throughput experiments like those described above.

For each acknowledgment visible to the sender that covered new data, I computed the

elapsed time since it had sent that data, reporting the average and standard deviation

over all such packets (about 50 in each trace) in figures 23 and 24.
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Microseconds
Application 39± 8

TCPR + Application 167± 25

Figure 25: Recovery time.

There is no significant difference in latency from the application to the peer. How-

ever, for input from the peer to the application, both setups of TCPR exhibit much higher

variance than unprotected TCPR; delayed acknowledgments seem to add nearly 50 mi-

croseconds of latency, but the overhead is small and within the standard deviation.

Notice that since the recoverable application is responsible for the delays to its own

acknowledgments, these numbers could be arbitrarily large. My experiments are thus

something of a best-case scenario, because I measured an application that always ac-

knowledges its input as soon as possible after the recv operation. The delay in a real

deployment will depend on the needs of the application.

RECOVERY

The delay associated with application recovery also depends strongly on the needs of

the application, and would generally include the latency to detect failure and the latency

associated with launching a replacement. To isolate the costs specifically associated with

TCPR, I microbenchmarked its ability to recover a connection, measuring the time from

when recovery is initiated until the application is able to send and recv again.

I measured two cases, shown in figure 25. In the ‘Application’ case, TCPR retained

its state and only the application failed and recovered, so that TCPR could establish a

new connection immediately. In the ‘TCPR + Application’ case, they failed and recovered

together, so that soft state had to be restored from the peer’s packets during recovery. (If

the application had saved the soft state as well, recovery would proceed exactly as in the

‘Application’ case.)

To set these numbers into context, consider the BGP example: in both cases, TCPR-
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mediated connection recovery is faster than usual inter-arrival times of BGP updates even

on a heavily-loaded core Internet router. Thus, if the BGP failure itself is handled quickly

enough by the router, is is possible to completely mask the event from BGP peers.

4.5 RELATED WORK

Pei, Zhao, et al. (2004) have studied the disruption caused during BGP convergence, ex-

plaining how topology and configuration affect the result, and evaluated a number of

proposed strategies for making convergence faster and less disruptive. There has also

been work that, rather than making convergence itself faster, ensures that routers can

rapidly fail over to temporary routes until convergence is complete (Bonaventure, Fils-

fils, and Francois 2007). Both branches of work are valuable when convergence is un-

avoidable, such as when the topology genuinely changes. However, since they do not

eliminate the disruption, it is preferable to mask failure and recover transparently when

possible.

Prior work on transparent TCP masking and recovery has taken the approach of repli-

cating the entire TCP stack and everything above it, the application included. For exam-

ple, HydraNet-FT (Shenoy, Satapati, and Bettati 2000), CoRAL (Aghdaie and Tamir 2001;

Aghdaie and Tamir 2009), HotSwap (Burton-Krahn 2002), ST-TCP (Marwah, Mishra, and

Fetzer 2003; Marwah, Mishra, and Fetzer 2005), AR-TCP (Shao, Jin, and Wu 2006), TRODS (Lloyd

and Freedman 2011), and others (Luo and Yang 2001; Zhang, Abdelzaher, and Stankovic

2004) do so using primary-backup replication.

FATPETS (Paris, Valderruten, and Gulias 2005) is a network stack written in Erlang,

designed specifically for failover and migration. It can operate in an ‘active’ mode, which

essentially consists of primary–backup replication of the entire state including buffers, or

a ‘passive’ mode, which protects input with delayed acknowledgments like TCPR.

In order to avoid changing the network stack, new software can be interposed on its

interfaces with the application and the network, recording and possibly modifying its
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incoming and outgoing events. Failover-TCP (Koch et al. 2003) and FT-TCP (Alvisi et

al. 2001; Zagorodnov et al. 2003; Zagorodnov et al. 2009) use such a technique. Similar

to the TCPR approach, acknowledgments are delayed until the data is safely handled

and sequence numbers in the packets to and from a restarted network stack have to be

rewritten.

All of these approaches suffer from being replay-driven. Often they maintain mul-

tiple active replicas by duplicating input to each of them, and using only the primary

replica’s output. Failover between active replicas is straightforward and fast. However,

to avoid running out of replicas, new ones must be brought up to speed; the replay-driven

approach assumes that the application is deterministic, and warms up new replicas by re-

playing all of a connection’s input, at either the packet or the socket level. For an HTTP

request, that can be quite effective, but it quickly becomes impractical for connections

that receive a lot of input, such as a BGP session.

Another approach is to use a proxy server between a server and its clients (Marwah,

Mishra, and Fetzer 2006). The client sets up a connection to the proxy server, and the

proxy server handles failing over from a primary server to a backup server as necessary.

However, without an approach for replicating the proxy (Marwah, Mishra, and Fetzer

2008), it also introduces a new single point of failure.

Virtualization offers an even lower-level approach to transparent migration. For ex-

ample, Remus (Cully et al. 2008) replicates an entire virtual machine, including the appli-

cation, the network stack, and the operating system. Virtual machine migration can also

be exploited to protect particular applications (Keller, Rexford, and van der Merwe 2010;

Clark, Fraser, et al. 2005). Using such technology, however, the failure or reconfiguration

of the application itself within the virtual machine image still causes its TCP connections

to break, thus providing only limited benefit for the heavyweight replication demands.

Backdoors (Sultan, Bohra, et al. 2005) takes a unique approach based on replicating

state after the application has already failed, by assuming that the network interfaces
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survive the failure and modifying them to support remote DMA.

Finally, when it is possible to modify all of the application’s peers, a good option

is to introduce a session library or modified socket library (Huang and Kintala 1993;

Orgiyan and Fetzer 2001; Snoeren, Andersen, and Balakrishnan 2001; Sultan, Srinivasan,

et al. 2002; Zandy and Miller 2002). Such an implementation could automatically set up

a new connection to a new server in case the connection to the current one fails, or even

maintain redundant connections.

4.6 CONCLUSIONS

Application-driven TCP recovery is a novel approach that enables a fault-tolerant ap-

plication to protect connections in cases that were impossible with replay-driven recov-

ery. The current prototype, TCPR, confirms the simplicity of application-driven recovery.

Rather than replicating the TCP state and everything above it, TCPR is not even replicated

itself, because the application assumes responsibility. TCPR is middleware, outside the

local TCP, enabling any application to use it with an unmodified, unwrapped TCP and

whatever interface it provides. By controlling the acknowledgment of data, along with

occasional input from the application layer, TCPR needs only a small, constant amount

of state per connection, enabling low overhead in normal operation and sub-millisecond

recovery.

The ability to easily migrate connections between replicas can also be useful when

running multiple versions or configurations of an application. For example, a router

could be made tolerant to implementation bugs by exploiting software diversity (Keller,

Yu, et al. 2009). Using TCPR to protect the output of a master version or voting module

can enable such an approach to tolerate hardware failure as well.

TCPR can offer benefit to applications other than BGP. For example, TCPR enables

a lightweight approach to migration that can also tolerate unexpected failures, and can

therefore be beneficial for load balancing long-running connections for streaming media
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within a CDN point-of-presence.

High-availability, fault-tolerant applications already do a lot of work to maintain their

own state. Application-driven TCP recovery can be seen as merely a way to give such

an application access to its own state, which would otherwise be encapsulated in a local

TCP, without interfering with the implementation hidden behind that encapsulation.
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CHAPTER 5

THE TRANSMISSION CONTROL PROTOCOL

In the Internet suite, the Transmission Control Protocol (TCP) adapts the best-effort, packet-

oriented channels offered by the Internet Protocol (IP) into reliable, ordered, octet-stream

channels (RFC 793). This chapter describes the structure of a formal specification, using a

novel decomposition based on channel markets. The specification itself is given in TLA+,

and appears in appendix A. Details of how the specification uses TLA+ appear in this

chapter, but for a good introduction to TLA+ itself and to specification in general, read

the book Specifying Systems (Lamport 2002).

5.1 OVERVIEW

A TCP connection is between two peers. The connection is initially closed, and when both

peers open it, they establish a new incarnation of the connection, which consists of two

streams of octets—each peer is the sender for one stream and the receiver for the other.

The two streams open together, but each sender can close its stream independently. After

both streams are closed, the connection itself becomes closed and can be opened again.

To mask duplication and reordering in the network subchannels, a sender sequentially

numbers each octet in its stream, and a receiver delivers each octet to its local application

exactly once and in order per sequence number. To mask loss, a sender retransmits each

octet in its stream until its sequence number is acknowledged, and a receiver acknowl-

edges a prefix of the sequence for which it guarantees delivery.

TCP does not mask peer failures, but it does recover from them. Although it is not im-

plemented, each stream of each incarnation of a connection conceptually bears a unique

identifier. When a peer loses its state and attempts to open a connection that has already
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been established, the other peer rejects the unexpected identifier and replies with the

identifier it did expect. The recovering peer resets the connection, leading both peers to

agree that the connection is closed, so they can reopen it as normal. Uniquely identify-

ing the streams also provides some security, in that the peers will reject data injected by

an adversary unless the adversary can guess or sniff the identifiers of the streams of the

current incarnation.

TCP makes several concessions to the bounded resources of real computers and net-

works. One of the most notable is that, although there is no bound on the number of

incarnations that may be opened of a connection, and no bound on the length of the

streams in an incarnation, TCP headers are a fixed size. Ideally, every octet ever sent in a

connection would be uniquely identified by the identifier of the stream (call it id ) and the

octet’s sequence number within that stream (call it n). However, in transmission, the pair

(id , n) is shoehorned into a single 32-bit field, simply called the sequence number. The

sequence number in the header is computed as id + n (mod 232).

Even though 232 octets is finite, TCP does not assume that a receiver can buffer that

much at once. Instead, the receiver tells the sender what window of sequence numbers

it is prepared for, and the stream proceeds through the 32-bit sequence number space as

the receiver updates its window.

Because of such concessions, TCP cannot make the same guarantees that would be

possible with distinct, unbounded stream identifiers and sequence numbers. Because the

two concerns of distinguishing incarnations of a stream and distinguishing octets within

a stream are combined in one field, it is possible for different incarnations of a connection

to conflict, and the window of acceptable octets also presents a window of acceptable

streams for a spoofing adversary. Because the field is bounded, it is possible for a stream

that sends data too quickly to wrap around and conflict with itself. TCP overcomes those

limitations with timing assumptions, such as assuming a bound on how long a segment

can be in the network before it is dropped, and requiring a peer to wait in some cases
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until the network is empty of relevant segments.

SCOPE OF THE SPECIFICATION

I will present a specification of one incarnation of a connection. Thus, the specification

includes the proper negotiation of opening and closing the incarnation, but not the ex-

ceptional conditions that can result from receiving segments from old incarnations of the

connection. In the unbounded case, a simple agent can detect and address such cases

outside the specification, and in the modular arithmetic case, TCP’s timing assumptions

exist to ensure that such cases are not exercised. In the specification, peers do not fail; in

chapter 6 I will add the possibility of peer failure and use application-driven recovery to

mask it.

The specification uses unbounded sequence numbers, rather than modular arithmetic.

The two are not equivalent, but with appropriate additional timing assumptions, the

bounded case can be shown to achieve the same property as the unbounded case (Smith

1997).

The specification does not include aspects of TCP specified outside of the core TCP

standard (RFC 793), which notably excludes window scaling and congestion control.

Congestion control is one of TCP’s most important features in practice, but it is not re-

lated to the safety or liveness of TCP. Rather, congestion control is important for the use

of network resources, which the specification does not model.

By focusing on a single incarnation of a single connection, the specification also ex-

cludes some aspects of the standard, including checksums and port numbers. The spec-

ification also abstracts away the Maximum Segment Size option, for simplicity; the se-

curity mechanism, which RFC 4614 notes is ‘no longer implemented or used’; and the

precedence mechanism, which RFC 2873 removed.

The specification includes aspects of TCP that are often ignored in formalizations,

specifically, the urgent and push protocols. It is not surprising that the urgent protocol
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Peer Stream Forwarder

Figure 26: Three decompositions of TCP. From an implementation perspective, the peer-
based decomposition makes the most sense, and it is adopted by the standard. From a
verification perspective, the stream-based decomposition makes the most sense, and it
is often adopted by formal specifications. Either decomposition can easily be recovered
from a forwarder-based decomposition.

is often ignored, since it is rarely used, but I want to be able to show in chapter 6 that

TCPR does not violate the safety of the mechanism. It is surprising that the push protocol

is often ignored, because it is crucial to the only liveness property mentioned in the TCP

standard. This specification covers both.

5.2 TAKING TCP APART

Recall that a TCP connection consists of two streams between two peers, with each peer

the sender for one stream and the receiver for the other. That description suggests two

obvious decompositions: by peer and by stream. The TCP standard (RFC 793) takes an

implementation-driven approach and describes the transitions of a peer, where a connec-

tion is composed of two such peers. Smith (1997) takes a verification-driven approach

and describes the transitions of a stream, where a connection is the composition of two

such streams.

I will adopt a third decomposition, starting from functionality shared by both the

sender and receiver aspects of a peer: forwarding. A sender forwards from its local ap-

plication to the network, and a receiver forwards from the network to its local applica-

tion. A connection is the composition of four such forwarders. The three approaches to

decomposing TCP are shown in figure 26.

A stream consists of three subchannels that convey information chosen by the application—
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the data channel, urgent channel, and the push channel—and two subchannels that con-

vey feedback from the remote peer—the acknowledgment channel and the window chan-

nel. Each subchannel’s symbols have a natural ordering, and the function of a forwarder

is to relay non-decreasing updates. I will begin the specification by describing, for each

subchannel, its symbols, its ordering, and the role it plays in TCP.

THE DATA CHANNEL

The data channel communicates the data produced by an application. The payload of

the data is the sequence of octets that represent the application protocol. The octets are

delimited by two control flags: A SYN marks the beginning of the stream, and a FIN marks

the end. Every octet and control is numbered sequentially from zero.

Some definitions for the data channel appear in the Data module in appendix A. An

element of SegmentData is a contiguous subsequence, such as might be carried in a seg-

ment on the wire.

The symbols for the data channel, elements of Data, represent prefixes of a complete

sequence. Thus, they include the empty set (the initial value before the connection opens)

and all subsequences that begin with SYN. They are ordered by set inclusion, so the data

grows by appending new octets and controls. Once the data includes FIN, it is not a subset

of any other valid data; thus, the sequence cannot grow after it is closed.

THE URGENT CHANNEL

TCP allows the application sending a sequence to notify the remote application that some

prefix of the data is urgent. The remote application is presumed to use that information

somehow, but ‘urgent’ means nothing to TCP itself.

(This is the protocol related to the out-of-band mechanism, and the MSG OOB flag, in

the sockets interface. Note that the data is still in-band. It is only the notification that is

out-of-band.)
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The urgent channel communicates the length of the prefix of the sequence that is ur-

gent. As a length, its symbols are just the natural numbers, initially zero and increasing

according to the usual order.

THE PUSH CHANNEL

The push mechanism is irrelevant to the safety of TCP; apart from liveness, there would

be no need for it. A push communicates the length of the prefix of the sequence that must

be forwarded. A forwarder may, but need not necessarily, forward parts of the sequence

that have not been pushed.

Unlike the urgent channel, which only communicates the length of the longest urgent

prefix, the push channel communicates the lengths of all of the pushed prefixes. That

is necessary because the liveness requirements a push implies for a forwarder do not

depend on network fairness.

Normally, one push with a length of 9 has the same meaning as two pushes, one with

a length of 5 and one with a length of 9. In either case, eventually the first nine octets of

the sequence must be delivered to the remote application.

However, the two cases are different if the network stops delivering any segments

after the first five octets have been delivered. With only the single push of length 9, the

push itself would not yet have been forwarded, and the receiver would not be obligated

to forward the data to the remote application. In the latter case, the push of length 5

would have been forwarded, and the receiver would forward the data.

Thus, the symbols of the push channel are subsets of the natural numbers, initially

empty and growing according to set inclusion.

THE ACKNOWLEDGMENT CHANNEL

The acknowledgment channel is feedback from the receiver of the sequence, communi-

cating the length of the prefix of the sequence that it guarantees to deliver to the remote
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application. As a length, the channel’s symbols are just the natural numbers, initially zero

and increasing according to the usual order.

Note that the local receiver’s acknowledgment, which guarantees to the remote sender

how much of the sequence will be delivered to the local application, is the channel af-

fected by TCPR’s checkpointed acknowledgments. Normally, acknowledgment channels

are not visible to either application.

THE WINDOW CHANNEL

The window channel is feedback from the receiver of the sequence, communicating the

length of the longest sequence that it is able to buffer. Whether or not the application has

sent data past the window, the sender should only forward data that fits in the window.

The sender is always allowed to forward at least one octet of data, even when the

window does not include any space for new data. This exception is necessary for the

window to reopen reliably, since data is retransmitted upon loss but window updates are

not. Furthermore, the standard requires a receiver to accept a segment as long as any part

of it fits in the window, by ignoring the part that does not fit; thus, in a sense, windows

are not important for safety, but, like congestion control, they are important for resource

usage.

Unlike acknowledgments, windows are not ordered by length—a receiver is allowed,

although discouraged, to decrease the window. Rather, window updates should be ac-

cepted in the order in which they are sent. However, due to network reordering, it is not

always possible for a sender to know the correct order of the feedback it gets, so window

updates (defined in the WindowUpdate module) include not only the window length, but

the sequence number and acknowledgment of the segment that carried the update. The

order in which the updates were sent is approximated by comparing sequence numbers

and using acknowledgments to break ties. When two updates are equivalent under that

ordering, either length is acceptable. The standard does not specify an initial window
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Senders Receivers

Figure 27: A sender forwards from its local application to the network. A receiver for-
wards from the network to its local application.

during connection establishment.

5.3 PUTTING TCP BACK TOGETHER

A TCP peer is the sender for one stream and the receiver for another stream; thus, it is

composed of two kinds of forwarders. A sender forwards stream, urgent, and push data

from the local application, while its acknowledgment and window are based on feedback

from the other endpoint through the network. Conversely, a receiver forwards stream,

urgent, and push data from the network, while its acknowledgment and window are

chosen locally. Both kinds of forwarder are shown in figure 27.

THE CHANNELS

What kinds of channels enable these agents to communicate? The concept of ‘forwarding’

implies that an agent observes a channel it regards as input, then manipulates accordingly

another channel it regards as output. In TLA+, the simplest channel is a variable. It has a

value in every state, which is undesirable in this context because it is impossible to have a

transition in which a value is not sent, and because it is impossible to distinguish sending

the same message twice and a stuttering transition in which nothing happens.

A higher-level channel with message-passing semantics is defined in the MsgChannel

module. The predicate Send(m) holds exactly when a transition takes place that corre-

sponds to sending the message m. Sending a message twice is well-defined, as is not

sending any message. No message is sent in a stuttering transition.
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THE APPLICATION INTERFACE

The standard does not require any particular interface between TCP and an application.

This specification adopts a simple interface, in which the application’s entire state, as

represented in the ApplicationUpdate module, is transmitted across a single MsgChannel .

As with TCP, an application has both a sending and receiving role. The ApplicationSender

module specifies the source of a stream. The Hidden inner module is given in terms of

the dat , psh, and urg variables, representing the data, push, and urgent channels, respec-

tively, and the chan channel representing the interface with TCP. The inner module is then

used in a TLA+ idiom to hide the internal variables, ultimately specifying the application

sender only by the behavior it exhibits on the interface with TCP.

The ApplicationReceiver module specifies the other end of the stream, also in terms of

the interface with TCP. The receiver just records the data, push, and urgent values sent

through the protocol.

THE SENDERS AND RECEIVERS

A sender, specified in the Sender module, receives application updates in one channel

chan, forwards segmented pieces of it through the seq (sequence number), dat (data),

psh (push), and urg (urgent) channels, and receives feedback through the ack and wnd

channels.

The Update, Send , and Receive transitions correspond to receiving an update from the

application, forwarding to the network, and receiving feedback, respectively. There is an

additional Liveness condition that describes the push mechanism.

A receiver, specified in the Receiver module, is similar except it forwards in the other

direction; for example, the Update transition corresponds to forwarding the received data

to the application.
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5.4 MODELING THE NETWORK

A network can also be seen as essentially a forwarder. The specification appears in the

Network module, and describes an agent that forwards messages from a snd channel to

a rcv channel, although it might drop, duplicate, or reorder the messages in transit. The

uncertainty is modeled using a hidden net variable containing the segments currently in

transit; a segment enters the network in a Send transition, and might be Delivered zero or

more times before it is finally Dropped.

TCP assumes that a network is fair, that is, that a message TCP retransmits infinitely

often will be delivered infinitely often (Gouda and Chang 1986). However, the messages

TCP delivers reliably are data octets, although it sends them bundled up into segments

at the network interface. Because TCP can divide data into segments arbitrarily, it is not

obvious that fairness for segments implies fairness for octets. Fortunately, there are only a

finite number of segments that can carry each octet—note, for example, that the complete

sequence of data in a stream is finite. Therefore, if TCP retransmits an octet infinitely

often, there exists some segment that carries that octet and is transmitted infinitely often.

It is sufficient for a network to deliver segments fairly, without regard for their contents.

The fairness condition is formally stated as Fairness , which requires strong fairness

(SF ) of the Deliver transition for every possible segment. Strong fairness states that if

the transition is enabled infinitely often, it takes place infinitely often. Thus, even if the

segment is dropped (disabling the transition), if it is sent again (re-enabling it) and again

until it is delivered, the delivery must occur eventually.

The structure of a segment is specified in the Segment module. A segment can com-

prise updates for each of the five subchannels I described for a forwarder, although only

the data update is required.

The data in a segment seg is a subsequence of the entire stream’s data, starting from

offset seg .seq and conveying the octets and controls in seg .dat .

The segment conveys a push when seg .ctl .psh is set, in which case the push covers
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the stream up through the end of the segment’s data. The segment conveys urgent infor-

mation when seg .ctl .urg is set, in which case the length of the urgent prefix is given by

seg .urg + seg .seq .

When seg .ctl .ack is set, the segment also conveys feedback for the other stream. The

acknowledgment is carried in seg .ack and the window length is given by seg .wnd +

seg .ack .

The way a segment is formed from each of the five subchannels is specified in the

SegmentMux module. The specification is notable because it is written as a forwarder be-

tween a channel that carries segments and five channels carrying the absolute values of

the components, and because it is reversible. The specification of a forwarder that com-

bines five inputs into an output segment is the same as the specification of a forwarder

that unwraps an input segment into five outputs.

5.5 THE CONNECTION SPECIFICATION

The Peer module wraps up a sender, a receiver, and two segment multiplexers to produce

an agent that forwards back and forth between the network interface and the application

interface. The Endpoint module further composes a peer with its local application, result-

ing in a very simple specification (hiding a lot of complexity) about the behavior of TCP

in terms of its input and output network subchannels.

A connection is two communicating peers. The complete specification appears in the

Connection module, which uses temporal implication to state that as long as the networks

behave according to the Network specification, the TCP endpoints will behave according

to the Endpoint specification. Because the temporal implication operator describes what

TCP offers (the endpoint specification) given two subchannels conforming to specific as-

sumptions (the network specification), it corresponds to the shopping list view of the

channel market.
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5.6 RELATED WORK

Subsets of TCP have been specified in a variety of formalisms. When reading such a

specification, I find it most interesting to note not just what formalism was chosen for

the task—and they range from higher-order logic to I/O automata to Petri nets—but also

what details of TCP have been ignored. Abstraction is valuable precisely because it leaves

out the irrelevant details of a thing, and one of the best ways to see the differences be-

tween various authors’ goals is to notice what they consider irrelevant.

Guttman and Johnson (1994) summarized using Communicating Sequential Processes

(CSP) to give a high-level specification of TCP, focusing on the lessons they learned from

the attempt. They discovered errors and unnecessary complexity in the TCP standard,

and verified the high-level safety property that ‘the sequence of octets of data received

by one entity is an initial part of the sequence of octets sent by the other entity’. They

described CSP as elegant at a high-level, but mentioned trying and failing to use it for a

detailed description of an endpoint. They concluded that a state-machine-based formal-

ization would be more appropriate.

Smith (1997) used I/O automata to specify TCP, first with unbounded sequence num-

bers and then identifying timing assumptions necessary to introduce bounded sequence

numbers. Smith then proved that the Transactional TCP (T/TCP) protocol (Braden 1994)

does not refine TCP even under unbounded counters, and gave a formal specification of

the properties it does provide. Smith and Ramakrishnan (2002) used I/O automata again

to verify the safety of the TCP SACK mechanism (Mathis et al. 1996) and explore some

of its performance implications. In both the T/TCP and SACK projects, the specifications

were limited to a single stream with a fixed server and client.

Vigna (2003) presented an ad hoc graphical model of a network in order to explore

sniffing and spoofing attacks on UDP and TCP. Because the focus was on using the in-

ternal topology of the network in the attack, the TCP protocol was extremely simplified,

leaving out, for example, windows and retransmissions.
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Han (2004) used Colored Petri Nets for the purpose of verifying the connection es-

tablishment mechanisms of TCP. Han broke TCP down into low-level services such as

opening and handling aborts, and was able to observe that, for example, including an

abort service increased the complexity of the state space much more than including a

simultaneous open service. The focus on connection establishment does not include clos-

ing the connection, and the specification explicitly leaves out features such as urgent data

and push, which are only relevant to data transfer.

Zaghal and Khan (2005) used the Specification and Description Language (SDL) to

model TCP and the TCP Reno congestion control algorithm. The model of TCP follows

RFC 793 very closely.

The Network Semantics project (Bishop et al. 2005a; Bishop et al. 2005b; Ridge, Nor-

rish, and Sewell 2009) takes a completely different approach from all of the previous,

because it is not a formalization of the TCP standard. Rather, it is a formalization of the

sockets interface, including TCP, as it is actually implemented. The authors note that,

despite a very different and hopefully more readable structure, their higher-order logic

(HOL) specification is about the same textual length as an actual TCP implementation.

Furthermore, although the specification itself is formal, due to its complexity is has not

been formally proven equivalent to anything—rather, it was validated using numerous

packet traces, emphasizing errors and corner conditions. The result is a novel combi-

nation of formal and empirical methods, and the best starting point for a study of how

something would interact with TCP in a real network.
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CHAPTER 6

RECOVERING IS AS GOOD AS NOT FAILING

It is possible to recover connections using middleware, without modifying the original

TCP implementation. Here is a simple proof: if the middleware itself implements a com-

plete TCP peer, with an appropriate interface enabling the application to save and restore

its state, then the system need not depend on the original TCP at all.

It does not prove much that such an approach is sufficient. The challenge is to use

simpler middleware that leverages the fallible original TCP as much as possible. This

chapter describes the structure of a formal specification of such middleware, building on

the TCP connection specification from chapter 5 and appendix A. The recovering con-

nection specification, in TLA+, appears in appendix B. This chapter concludes with a

refinement proof, which shows that recovering is as good as not failing.

6.1 THE FALLIBLE PEER

The most obvious difference between this specification and the previous one is failure.

The Replicas module provides a fail-stop abstraction wrapped around some other chan-

nel. The f variable records the number of failures that have ever occurred, while the r

variables contains an infinite set of replicas indexed by the natural numbers. When a

failure occurs, the current replica halts and a new replica becomes current; a failure is

observable through non-stuttering transitions of f . Between failures, the current replica

can transition according to some specification, outside the scope of the Replicas module.

The Replicas module does specify that no other replica (failed or not yet used) has any

non-stuttering transitions at all.

Building from this simple abstraction, the RecPeers module specifies a fallible TCP
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peer. There are indexed sets of replicas of Peers, as defined by the original TCP specifica-

tion, and the usual channels for communicating with each peer.

6.2 THE FAULT-TOLERANT APPLICATION

The application must change in order to use the recovery middleware; this specification

captures those changes. One way in which it does not change is by failing, because one

assumption is that the application is fault-tolerant. If the application can fail and recover,

it is not modeled in this specification.

The RecApplicationSender module specifies the part of the application corresponding

to the original ApplicationSender . The changes are additions; notably, the dat , psh, and

urg variables have the same values and transition through the same Internal transition in

either specification.

The recovery version has the additional f variable for detecting failure and the in-

dexed set of peer replicas. Additionally, whenever the peer fails, the application receives

(through the recoff channel) the offset within the data where it should start with the new

peer. The corresponding change in the Update transition edits the data, push, and urgent

updates to be consistent with the current peer’s view that the connection only started at

the given offset.

The application’s receiving role is specified in the RecApplicationReceiver module, cor-

responding to the original ApplicationReceiver module. When it receives new data from

its current peer, it interprets the update through an offset, collecting the entire stream. It

also sends the length of the prefix of the data that has actually arrived as a checkpointed

acknowledgment (through the recack channel). During failure, the receiver can compute

its new offset directly from its checkpointed acknowledgment.
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6.3 THE MIDDLEWARE

The middleware, specified in the RecMiddleware module, communicates with the appli-

cation through the recoff and recack channels, as I just described from the application’s

perspective. It also performs its main function by translating between segment channels.

The external channels, extsnd and extrcv , correspond to the input and output networks

of an original TCP peer. They communicate with the environment. The internal channels,

intsnd and intrcv , are replicated and connect to each of the replicated TCP peers associ-

ated with f .

For example, when the current peer follows its specification to send a segment, rather

than going to an externally visible network, the segment appears in the middleware’s

current intsnd channel. The middleware might modify the segment with the appropriate

offset and checkpointed acknowledgment (the SndSeg transition) and forward it to the

extsnd channel. When it detects that recovery is necessary (the Recovery transition), it

instead drops that segment and replies back through the intrcv channel for the current

peer. The RcvSeg transition specifies forwarding a segment from the network, extrcv , to

the current peer’s intrcv .

6.4 THE RECOVERING CONNECTION SPECIFICATION

The RecEndpoint and RecConnection modules serve the same roles as the Endpoint and

Connection modules served in the original TCP specification. A RecEndpoint wraps up

a fault-tolerant application, its TCP replicas, and the middleware, hiding everything but

the input and output networks. At that point, a RecEndpoint has the same interface as an

original Endpoint .

A RecConnection is a complete TCP connection, with one legacy Endpoint and one

recoverable RecEndpoint . The RecConnection module also formally states the refinement

theorem, that a connection with a recovering endpoint is as good as a connection without
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failure.

6.5 THE REFINEMENT

To prove the refinement, it is first necessary to state a refinement mapping, a function

from the states of the recovering connection specification to the states of the original con-

nection specification. For such a function to be a refinement mapping, the images of

initial states must be initial states of the original specification, and for every transition

in the recovering specification, there must exist a sequence of transitions in the original

specification between the images of the states. Good descriptions of the refinement map-

ping technique have been given by Lynch and Vaandrager (1995) and Abadi and Lamport

(1991).

THE REFINEMENT MAPPING

In this refinement, the legacy Endpoint and the two Networks (a and b) play themselves.

Note that the composition in the RecConnection module does not give the two endpoints

any channels in common except for the networks, and each endpoint synchronizes on

opposite ends of each network (one transitions with Send , the other with Deliver ), so there

are no transitions in which both endpoints simultaneously change. Similarly, the network

Drop transitions occur independently of both endpoints. Thus, it suffices to show that the

RecEndpoint refines the original Endpoint specification.

An Endpoint is the composition of an ApplicationSender , an ApplicationReceiver , and

a Peer . The application roles are played by the corresponding RecApplicationSender and

RecApplicationReceiver , respectively. The original and recovering application specifica-

tions share the dat , psh, and urg channels, and there the refinement is direct.

The Peer is played by the middleware and replicated internal peers. Within the sim-

ulated peer, the Sender and Receiver are simulated as follows: The maxdat , maxpsh, and

maxurg channels, which store the information from the application, comprise the merged
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values from all of the replicated peers, with the appropriate offsets (as recorded in the

middleware) applied. That is, maxdat is the Merge of all of the offset maxdats from all of

the replicated peers; maxurg is the maximum of all of the offset maxurgs from all of the

replicated peers, et cetera. For the Sender , the feedback channels maxack and maxwnd are

also simulated by merging the values from the replicas. For the Receiver , maxack is taken

from the middleware’s rcvack (the checkpointed acknowledgment), and maxwnd is taken

from just the current peer replica’s receiver.

A NOTE ON LIVENESS

This refinement does not preserve the liveness requirements associated with the recover-

ing endpoint’s receiver’s push. It is possible that a replica receives data and a push for the

data, but fails before forwarding it to the application. Thus neither the data nor the push

will be in the current replica, but it will be in the simulated receiver due to the merge.

There are two ways I could make the refinement more sophisticated to handle liveness.

The first way is to add a fairness assumption. Specifically, if the network is fair, any

data or push in the merged values of all the replicas but missing from the current peer

will be retransmitted by the remote endpoint, due to the checkpointed acknowledgment.

Thus, the network fairness assumption is sufficient to guarantee the receiver’s liveness

with respect to push, because the current receiver will catch up to the simulation.

The second way is to leverage the network. Rather than letting it play itself, the sim-

ulated network would never drop any segments, thereby serving the role of a history

variable recording all of the segments ever sent. And, rather than naı̈vely merging all

of the replicas, the merged result could be trimmed not to exceed the checkpointed ac-

knowledgment. The simulated peer would not deliver segments until the actual peer had

advanced its checkpointed acknowledgment to cover those segments. Parts of segments

could be handled by manipulating the simulated window to trim them.

I have chosen to describe both possibilities here, but to focus on safety for the purpose
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of this simulation.

INITIAL STATES

The initial states are easy to compare, because in both cases, all of the streams are empty

(no data, no urgent prefix, no pushes, no acknowledgments, arbitrary windows) and

all of the channels are empty (no segments in the network, no messages sent between

application and TCP).

APPLICATION SENDER INTERNAL TRANSITION

The RecApplicationSender ’s Internal transition is identical to the Internal transition in the

simulated ApplicationSender .

SENDER UPDATE TRANSITION

The transition in which the application’s sending role updates its local TCP sender (the

Update transition in RecApplicationSender and Sender ) consists of sending the applica-

tion state, offset appropriately for the point in the stream where the current peer became

current. Because all of the data before that offset must have already been in a previous

replica, the peer simulated by merging the replicas transitions appropriately as though

the entire application state were sent. Thus, the update transition is simulated by the

original Update transition of a non-replicated Sender and original ApplicationSender .

RECEIVER UPDATE TRANSITION

Nearly the same argument applies to the receiver update transition as for the sender up-

date transition—the merge in the refinement mapping inverts the offset made necessary

by the replication. The primary difference between sender and receiver update steps is

that the receiver also passes on the new checkpointed acknowledgment to the middle-

ware. This corresponds to an Internal transition of the simulated peer’s Receiver . Thus,
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the simulation of a receiver update is the original update, followed by an internal transi-

tion to set the acknowledgment.

RECEIVER INTERNAL TRANSITION

Because the simulated receiver acknowledgment is taken from the middleware, an actual

internal transition of the current receiver that changes the acknowledgment is a stutter.

When the internal transition also changes the window, that does affect the simulated

receiver—in the same way as the same internal transition, but with no change to the

acknowledgment.

SEND TRANSITIONS

The Send transition of the current peer’s Sender does not change any of the state in the

peer relevant to the refinement mapping, and it also does not impact the network, because

the segment is only sent to the internal network between peer and middleware. Thus, the

simulation of the internal send transition is a stutter.

When the middleware forwards the segment with a SndSeg transition, the simulated

network must change accordingly. The segment produced corresponds to a Send transi-

tion of the simulated Sender ; in fact, it can be seen as the raison d’être of the middleware

to map segments from internal to external so that they could have been produced by the

simulated, un-failed peer.

RECOVERY TRANSITION

When the middleware instead handles a segment on the internal network with a Recover

transition, it is because the current peer has not yet established the connection. The recov-

ery step is a stutter, because it only influences the internal networks which are not part

of the mapping, but it produces a segment that can later trigger an internal receive. That

internal receive will also be a stutter, because it is simply the current peer establishing the
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connection—it will not receive any data, urgent, or push updates, so it will not change

the merged peer being simulated.

RECEIVE TRANSITIONS

As with an internal send, an external receive is a stutter because although the middleware

updates some of its state and forwards the segment to the internal network, none of the

state relevant to the mapping is changed. An internal receive might change the current

peer, and thus might change the merged values in the simulated peer, thus corresponding

to the relevant Receive transition.

FAILURE TRANSITION

Failure impacts every module of the recovering endpoint—note the Fail transitions of the

RecApplicationSender , RecApplicationReceiver , and RecMiddleware modules, and implied

by the Replicas instances in RecPeers and throughout. However, although failure results

in the computation and communication of the offsets that will be necessary to use a new

peer, none of the module’s failure transitions changes the data, push, urgent, acknowl-

edgment, or windows of any of the middleware, application, or replicated peers. Thus, it

is a stuttering step in the simulated endpoint.

That failure is simulated by stuttering should be seen as an important feature. It guar-

antees that failure is truly masked.
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CHAPTER 7

DESIGN PRINCIPLES

The channel market model is not only a tool for reasoning about existing systems, it is

also a tool for guiding the design of novel systems. A model influences what systems get

built, because some systems are easier to explain with it than others. One way a model

can be beneficial is by making the best systems the easiest to explain. Because people

want those benefits to be reusable, when they notice a pattern, they often state it in a

pithy way and call it a design principle. In a sense, a design principle is merely an aspect

of a model—people have found a way to name and discuss one facet of the influence from

thinking in a particular way.

7.1 MODULARIZATION

The most fundamental choices in design concern decomposing a system into parts. One

might discover the decomposition top-down, by successive refinement of the system’s

goal until it is a practical implementation, or bottom-up, starting from achievable com-

ponents and seeking a composition that adds up to a system that meets the goal. Usually,

real designs arise from a mixture of the two. In any case, breaking the whole system into

parts that are easily comprehended by a person is essential, if people are to build the

system and justify its dependability.

A model often provides guidance by providing the structure of the components. Such

guidance often takes the form of ‘everything is an x’, where x might be file, object, func-

tion, array, list, and so on. In the network stack model, everything is a network; in the

channel market model, everything is a channel. Such broad statements are usually over-

simplifications, but at least the designer knows how to recognize a module. The problem
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remains, however, to decompose a particular system into the right ones—where should

the boundaries between modules be drawn?

The problem was solved independently by Parnas (1972), who introduced the prin-

ciple of information hiding, and Dijkstra (1982), who introduced the separation of con-

cerns. Both are derived from the observation that not only must the modules themselves

be manageable, but the structure of their composition into the whole system must be as

well.

Parnas (1972) explained information hiding by developing an example program in

two ways, first based on control flow, and second based on design decisions. The two

designs are about as easy to write, but the first is vastly inferior to the second when

design decisions change. Encapsulating them within modules is a form of design-time

fault-tolerance.

Dijkstra (1982) explained the separation of concerns as a basis for science, and com-

pared it to the division of science into fields and specialties: ‘When the layman asks the

computing scientist, what is meant by ‘Modularization’, a reference to the way in which

the knowledge in the world has been arranged, is probably the best concise answer.’ He

described two requirements for such an arrangement to be successful. Internally, a mod-

ule requires coherence, that is, useful work must be possible with the parts within a mod-

ule. Externally, a module requires a ‘thin interface’, that is, the least possible dependence

on parts of other modules.

Most other design principles can be seen as additional requirements that might help

one judge whether a module has been drawn at the right boundary.

7.2 THE INTERNET MODEL

The design principles that follow from the Internet model are well expressed in the end-

to-end principle, the simplicity principle, the robustness principle, and the tussle princi-

ple. Of them, the most influential is the end-to-end principle.
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The end-to-end principle was first expressed by Saltzer, Reed, and Clark (1984) us-

ing the following argument: If the implementation of some particular functionality, such

as reliable delivery of a file, requires knowledge only available at the endpoints of the

communication, then its implementation at the intermediaries would be redundant and

should be avoided. In some cases, the redundant implementation is justified because

it yields significant performance benefits, but the end-to-end argument pushes a design

toward smart endpoints connected by a dumb network.

The end-to-end argument soon evolved into a more general principle, because of two

main benefits of such designs even when the functionality in question does not depend

on the endpoints for correctness (Kempf and Austein 2004). First, it eases innovation,

because new end-to-end functionality requires only new endpoints, not a new network.

Second, it improves survivability, because if state is placed at intermediaries only for

performance enhancement, then the loss of that state can at worst degrade performance.

Thus, such state is called ‘soft state’ (Clark 1988).

The hard state necessary for correctness, on the other hand, can be lost if and only if

one of the communicating endpoints crashes. If one further assumes that the communi-

cation is meaningless without the endpoint, then the loss of that state is no worse than the

crash itself. In such a case of ‘fate-sharing’ (Clark 1988), there is no benefit from replicat-

ing the hard state in multiple locations, and, in the words of William of Ockham, pluralitas

non est ponenda sine necessitate (‘plurality should not be posited without necessity’).

Such a sentiment is explicitly supported by the simplicity principle: that complex-

ity is the primary cause of inefficient scaling (Bush and Meyer 2002). RFC 3439 quotes

Doyle: ‘Complexity in most systems is driven by the need for robustness to uncertainty

in their environments and component parts far more than by basic functionality.’ Iron-

ically, ‘complexity added for robustness also adds new fragilities, which in turn leads

to new and thus spiraling complexities.’ (Bush and Meyer 2002) The simplicity princi-

ple is directly related not only to Ockham’s razor, but to other popular exhortations for
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simplicity, including the KISS principle and the principle of least astonishment.

Another principle, almost as famous as the end-to-end principle, is the robustness

principle: ‘be conservative in what you do, be liberal in what you accept from oth-

ers.’ (RFC 793; Braden 1989). Whereas the end-to-end principle pushes toward designs

that support innovation and survivability, the robustness principle pushes to support an

even more important goal: connectivity (Clark 1988). Even in the face of buggy, malicious,

non-compliant, or misconfigured network entities, the robustness principle requires one

to proceed as well as possible. (A similarly pithy expression of that priority is the goal of

‘rough consensus and running code’.) Robustness in that sense is not always desirable,

because it makes it much more difficult to trace down what caused a particular strange

behavior, harming survivability, and, by allowing non-compliant implementations to be-

come legacy, harms long-term innovation. Thus it is a clear example of the way the Inter-

net model has prioritized its goals, which, although it does not match every user’s needs,

contributed to the Internet’s success.

That success led the Internet to a very different environment than the one in which it

was created. No longer do all of the participants even agree that connectivity is the high-

est priority—for example, companies expect to be paid. Governments expect account-

ability, while users expect performance. The technological mechanism of the network

has become a battlefield for all those entities to fight for their preferred policies. Ideally,

it would be possible to separate policy from mechanism, enabling designs that stay out

of the battle entirely. The opposite viewpoint might be to use technology to settle the

battle permanently somehow. Clark, Wroclawski, et al. (2005) suggests that neither is re-

alistic, and suggests designing with the ‘tussle’ in mind. The resulting design principle

is reminiscent of Parnas’s information hiding principle: wherever tussle can be identi-

fied or predicted, the modularization of the design should encapsulate each tussle in its

own component. Just as information hiding protects the overall system from design de-

cisions that change for technical reasons, the tussle principle encourages designs that are
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similarly protected from design decisions that change for political reasons.

Those who design networks in the new environment are fortunate that the designers

of the most successful network ever, the Internet, have recorded a rough consensus of

the design principles that follow from their model (Carpenter 1996; Kempf and Austein

2004; Bush and Meyer 2002), along with a detailed account of the priorities that motivated

such a model in the first place (Clark 1988; Saltzer, Reed, and Clark 1984). Different goals

will naturally require different priorities, and it is becoming increasingly clear that the

Internet is not the best model for the demands of its users today. However, changing

priorities can in no way diminish the value of so much distilled experience.

7.3 THE OSI MODEL

The designers of the OSI model, the other major incarnation of the network stack, enu-

merated their design principles with letters, and explicitly invoked them to justify each

division between the famous seven layers (OSI).

(a) Do not create so many layers as to make the system engineering task of describing

and integrating the layers more difficult than necessary.

(b) Create a boundary at a point where the description of services can be small and the

number of interactions across the boundary are minimized.

(c) Create separate layers to handle functions that are manifestly different in the pro-

cess performed or the technology involved.

(d) Collect similar functions into the same layer.

(e) Select boundaries at a point which past experience has demonstrated to be success-

ful.

(f) Create a layer of easily localized functions so that the layer could be totally re-

designed and its protocols changed in a major way to take advantage of new ad-

vances in architectural, hardware or software technology without changing the ser-

vices expected from and provided to the adjacent layers.
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(g) Create a boundary where it may be useful at some point in time to have the corre-

sponding interface standardized.

(h) Create a layer where there is a need for a different level of abstraction in the han-

dling of data, for example morphology, syntax, semantics.

(j) Allow changes of functions or protocols to be made within a layer without affecting

other layers.

(k) Create for each layer, boundaries with its upper and lower layer only.

One lesson to draw is that good ideas are more universal than any one group’s goals.

For example, (a) is essentially the simplicity principle, (b) the separation of concerns, (f)

information hiding, and (j) tussle. Since priorities change over time, perhaps the greatest

impact possible from any new model is to distill and name some of those good ideas to

keep them alive.

7.4 OTHER PRINCIPLES

The Network Semantics project, which developed the HOL specification of actual TCP

and sockets implementations, also produced some suggestions for designing new proto-

cols that would make similar verification easier (Bishop, Fairbairn, Norrish, Ridge, et al.

Draft).

• Clearly identify the part of the overall system that the specification is intended to

cover.

• Specify both the service that the protocol is intended to achieve and the protocol

internals, and the relationship between the two.

• Arrange so that an efficient test oracle can be built directly from the specification.

– In some cases, one could arrange for the specification to be completely deter-

ministic between observable events, and there one could write those parts of

the specification in an executable pure functional language, and then use that

directly for testing and as an executable prototype.
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– In other cases, where one really does want to leave implementation freedom

that should be factored out, one either needs a more expressive specification

language and a constraint-solving checker, or one should write a test oracle

directly.

• Either test (or ideally prove) that the protocol-level specification does provide the

intended service.

• Set up random test generation infrastructure, tied to the test oracle, to use for im-

plementations.

These principles tie together formal and experimental methods, suggesting that pro-

tocol designers not only specify their systems carefully, but make it as easy as possible for

implementers to know whether they have faithfully reproduced the specification.

Anderson et al. (2003) produced six design principles to address network protocols

that are robust to crash failures but not to semantically corrupted messages, such as might

be produced by corruption or misconfiguration.

• Value conceptual simplicity.

• Minimize your dependencies.

• Verify when possible.

• Protect your resources.

• Limit the scope of vulnerability.

• Expose errors.

An additional recommendation, not one of the six but mentioned in the conclusion, is

that RFCs should contain a ‘Robustness Considerations’ section, not unlike the ‘Security

Considerations’ section that is already ubiquitous. I think it is a valuable suggestion,

particularly taken as the design principle that the designers should put explicit, written

effort into thinking about exceptional conditions.
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7.5 THE CHANNEL MARKET MODEL

The channel market model has so far inspired two new design principles: the separation

of justification and the haggling principle.

SEPARATION OF JUSTIFICATION

The principle of separation of justification is that modules encapsulate justification. Here

is the pithy statement: If you would be tempted to simplify it out of a proof of correctness,

make it a module.

The separation of justification might well be seen as merely a facet of Dijkstra’s sep-

aration of concerns. In ‘The effective arrangement of logical systems’ (Dijkstra 1976), a

lesser-known but worthwhile article, he explains the separation of concerns further, with

practical examples, and—notable in this context—he compares such separation to the di-

vision of a logical proof into lemmas. Once the lemmas are stated and proved, they are

useful elsewhere without the slightest care for how they were proved. Thus justification

is clearly a kind of concern.

The reason separation of justification is worth its own name is that it is so often for-

gotten. Large systems are often seen as impossible to formally verify, or at least not worth

the effort. But progress can be made by modularization, because any complexity that is

too daunting right now can be encapsulated and proved later or at least left explicit as an

assumption, an unproved lemma.

Separating the justifications of modules is also useful beyond putting off work or tack-

ling it in manageable pieces. Verı́ssimo (2006) argues that it is beneficial, sometimes even

necessary to divide a system into parts with different theories. For example, the classic

FLP impossibility result (Fischer, Lynch, and Patterson 1985) can be overcome by design-

ing an asynchronous system side-by-side with a synchronous system such as a failure

detector (Chandra and Toueg 1996). Separate justifications, in this case, enables totally

different theorems to apply to different parts of the system, and thereby new kinds of
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hybrid systems.

THE HAGGLING PRINCIPLE

The haggling principle is to make the boundaries between modules assume–guarantee

specifications. Assume–guarantee specifications are a classic approach for writing formal

specifications that can easily be composed (Jones 1983). However, the haggling principle

is not about logic or even about formal methods. Rather, it is a reminder: think about

assumptions and guarantees.

Do not assume too little or too much. When a system is too timid to assume the en-

vironment will provide a channel with the right properties, it takes on the complexity of

adapting what it gets into what it needs; for example, many of the layers in the Internet

model apply redundant checksums to protect against corruption that cannot happen in

practice, rather than explicitly assuming an underlying channel that delivers only mes-

sages that are sent. When a system is too specific about its assumptions, those unfounded

preconceptions might prevent it from being composed in ways that might otherwise be

acceptable; for example, many services that build on top of the Internet protocols use the

sockets interface directly, which prevents them from being composed with each other.

Do not guarantee too little or too much. Guaranteeing too little is like assuming too

much: It limits composition unnecessarily. Guaranteeing too much is like assuming too

little: It forces the system to do incorporate unnecessary complexity.

The assumption–guarantee dichotomy is also a valuable reminder of the structure

of a system in the channel market model. Any system builds on the existing resources

available from the market, then offers what it builds back to the market. Assumptions are

a shopping list on a visit to the market, and guarantees are what a hawker shouts from a

market stall.
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CHAPTER 8

CONCLUSION

If I learned one thing from the work in this dissertation, it is certainly to be explicit about

the channels. When I got stuck on the TCP specification and wrote it out using circles

to represent what I knew should be agents, and big heavy lines representing some com-

munication I knew must happen between them, it was the big heavy lines that needed to

be stated more clearly. Sometimes I felt a temptation not to specify channels, and just to

write more in the transitions (agents) to describe their synchronization without naming

the channel they used, and that was always a mistake. Name the channels.

The primary technical contribution is the TCPR middleware, and the introduction

of the application-driven recovery technique. On the other hand, the channel market

model is a lesson I learned while I tried to justify for myself that the technical work made

sense. Throughout the process, the model I was developing was useful again and again,

sometimes just by reminding me of mistakes I knew better than to make. I believe the

model itself will be the contribution of the most lasting value, because it was a lesson in

dependability.

Dependability is an increasingly important concern for communication systems. As

more and more services come to rely on the cloud, in particular, it is crucial to be able to

reason about what people should be able to expect of them. The need for clear models

that enable people to describe such services compositionally can be seen clearly. It can

be seen in the software-defined network community, for example, in the search for the

elusive Northbound API. It can be seen in the cloud computing community, in the efforts

to pin down an abstraction for service chaining. It is crucial to know what the pieces are

and how it is possible to fit them together, to know what assumptions are being made,
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and what promises are being made.

I believe the most influential future work to be the development of language. That

includes the language of the researchers and engineers who talk about systems, as I have

tried to support in the new model. It also includes formalisms. The greatest benefit

from any formalism is really the careful thinking required to write down a specification.

Beyond that, it is desirable to express channel markets in a language that features both

first-class control channels, as in π-calculus, and logical agent specifications, as in TLA+.

The temporal logic explicit in TLA+, and implicit in others such as I/O automata, is pow-

erful; adding an epistemic or doxastic modality might make both agents and channels

first-class.

Formalism is not necessary for every task, however. Remember that there are two

kinds of justification. And TCP, despite its many problems, is widely regarded as very

dependable—rightly so, because of its substantial experimental support. Even a formally

verified protocol that could be incrementally deployed would be unlikely to supplant

TCP at this point, because it is hard to compete with that justification. It is worth keeping

the human need for confidence in mind when designing a system. That is the role of

dependability in design.

Also remember that there are two ways to make a system more dependable. One way

is to change it to meet a more useful specification, with the same confidence. The other

way is to change nothing about the system, but make it easier to understand, easier to

predict, better justified. The latter is the role of pedagogy. Therefore, the final future

work that I will mention is teaching. Existing network protocols, experimental designs,

working code, formalisms, and scientific models are all valuable ways to access the possi-

bilities of dependable communication. A good way to test any such approach is to teach

it to someone else.
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APPENDIX A

THE CONNECTION SPECIFICATION

The following pages carry the complete TLA+

specification of a TCP connection from chapter 5.
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module ApplicationReceiver

module Hidden

local instance Data
local instance Naturals
local instance ApplicationUpdate

variables chan, dat , psh, urg

Chan
∆
= instance MsgChannel with Msg ← ApplicationUpdate

Init
∆
= ∧ dat = {}
∧ psh = {}
∧ urg = 0

Update(u)
∆
= ∧ Chan !Send(u)
∧ dat ⊆ dat ′

∧ psh ⊆ psh ′

∧ urg ≤ urg ′

∧ dat ′ = u.dat
∧ psh ′ = u.psh
∧ urg ′ = u.urg

Next
∆
= ∃ u ∈ ApplicationUpdate : Update(u)

Spec
∆
= Init ∧2[Next ]〈chan, dat, psh, urg〉 ∧ Chan !Spec

variable chan

Hidden(dat , urg , psh)
∆
= instance Hidden

Spec
∆
= ∃∃∃∃∃∃ dat , urg , psh : Hidden(dat , urg , psh) !Spec

1
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module ApplicationSender

module Hidden

local instance Data
local instance Naturals
local instance ApplicationUpdate

variables chan, dat , psh, urg

Chan
∆
= instance MsgChannel with Msg ← ApplicationUpdate

Init
∆
= ∧ dat = {}
∧ psh = {}
∧ urg = 0

Internal
∆
= ∧ dat ′ ∈ Data
∧ dat ⊆ dat ′ ∧ dat 6= dat ′

∧ [urg ′ = Length(dat ′)]urg
∧ [psh ′ = psh ∪ {Length(dat ′)}]psh
∧ unchanged chan

Update
∆
= ∧ Chan !Send([dat 7→ dat , psh 7→ psh, urg 7→ urg ])
∧ unchanged 〈dat , psh, urg〉

Next
∆
= Internal ∨Update

Spec
∆
= Init ∧2[Next ]〈chan, dat, psh, urg〉 ∧ Chan !Spec

variable chan

Hidden(dat , urg , psh)
∆
= instance Hidden

Spec
∆
= ∃∃∃∃∃∃ dat , urg , psh : Hidden(dat , urg , psh) !Spec

1
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module ApplicationUpdate

local instance Data
local instance Naturals

ApplicationUpdate
∆
= [dat : Data, urg : Nat , Psh : subset Nat ]

Offset(u, n)
∆
=

if n ≤ 1 then u
else [dat 7→ Shift(Suffix (u.dat , n), 1− n)

∪ Prefix (u.dat , 1),
psh 7→ {p ∈ Nat : p + n − 1 ∈ u.psh ∧ p > 0},
urg 7→ if u.urg ≥ n then u.urg + 1− n else 0]

1
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module Connection

variables a, b

EndA
∆
= instance Endpoint with sndnet ← a, rcvnet ← b

EndB
∆
= instance Endpoint with sndnet ← b, rcvnet ← a

NetA
∆
= instance Network with snd ← a, rcv ← b

NetB
∆
= instance Network with snd ← b, rcv ← a

Spec
∆
= (NetA !Spec ∧NetB !Spec) +−. (EndA !Spec ∧ EndB !Spec)

1
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module Data

local instance Naturals
local instance FiniteSets

Octets
∆
= {n ∈ Nat : n < 28}

Syn
∆
= choose x : x /∈ Octets

Fin
∆
= choose x : x /∈ Octets ∪ {Syn}

Message
∆
= {Syn, Fin} ∪Octets

NumberedData
∆
= {d ∈ subset (Nat ×Message) : IsFiniteSet(d)}

Length(d)
∆
= Cardinality(d)

SegmentData
∆
= {d ∈ NumberedData :
∀ 〈n, x 〉 ∈ d , 〈m, y〉 ∈ d :
∧ n < Length(d)
∧ (n = m) ⇒ (x = y)
∧ (x = Syn) ⇒ (n ≤ m)
∧ (x = Fin) ⇒ (n ≥ m)}

Data
∆
= {d ∈ SegmentData : d = {} ∨ ∃ 〈n, x 〉 ∈ d : x = Syn}

Prefix (s, n)
∆
= {〈a, x 〉 ∈ s : a < n}

Suffix (s, n)
∆
= {〈a, x 〉 ∈ s : a ≥ n}

Shift(s, n)
∆
= {〈a + n, x 〉 : 〈a, x 〉 ∈ s}

Merge(ds)
∆
=

let m
∆
= {d ∈ Data : d ⊆ union ds}

in if m = {} then choose d : d /∈ Data
else choose d ∈ m : ∀ e ∈ m : Length(d) ≥ Length(e)

1
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module Endpoint

module Hidden

variables sndapp, rcvapp
variables sndnet , rcvnet

SndApp
∆
= instance ApplicationSender with chan ← sndapp

RcvApp
∆
= instance ApplicationReceiver with chan ← rcvapp

Peer
∆
= instance Peer

Spec
∆
= ∧ SndApp !Spec
∧ RcvApp !Spec
∧ Peer !Spec

variables sndnet , rcvnet

Hidden(sndapp, rcvapp)
∆
= instance Hidden

Spec
∆
= ∃∃∃∃∃∃ sndapp, rcvapp : Hidden(sndapp, rcvapp) !Spec

1
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module MsgChannel

local instance Sequences

constant Msg

variable chan

Init
∆
= chan = 〈〉

Send(m)
∆
= chan ′ = Append(chan, m)

Next
∆
= ∃m ∈ Msg : Send(m)

Spec
∆
= Init ∧2[Next ]chan

Sent
∆
= chan[Len(chan)]

1
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module Network

module Hidden

local instance Segment

variables snd , rcv , net

Snd
∆
= instance MsgChannel with chan ← snd , Msg ← Segment

Rcv
∆
= instance MsgChannel with chan ← rcv , Msg ← Segment

Init
∆
= net = {}

Send(s)
∆
= ∧ net ′ = net ∪ {s}
∧ Snd !Send(s)
∧ unchanged rcv

Deliver(s)
∆
= ∧ s ∈ net
∧ unchanged snd
∧ Rcv !Send(s)

Drop
∆
= ∧ net ′ ⊆ net
∧ unchanged 〈snd , rcv〉

Next
∆
= ∨ ∃ s ∈ Segment : Send(s)
∨ ∃ s ∈ Segment : Deliver(s)
∨Drop

Fairness
∆
= ∀ s ∈ Segment : SF〈snd, rcv ,net〉(Deliver(s))

Spec
∆
= ∧ Init
∧2[Next ]〈snd, rcv ,net〉
∧ Fairness
∧ Snd !Spec
∧ Rcv !Spec

variables snd , rcv

Hidden(net)
∆
= instance Hidden

Spec
∆
= ∃∃∃∃∃∃net : Hidden(net) !Spec

1
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module Peer

module Hidden

local instance Data
local instance Segment
local instance Naturals
local instance ApplicationUpdate

variables sndapp, sndseq , snddat , sndpsh, sndurg , sndack , sndwnd , sndnet
variables rcvapp, rcvseq , rcvdat , rcvpsh, rcvurg , rcvack , rcvwnd , rcvnet

SndApp
∆
= instance MsgChannel with chan ← sndapp, Msg ← ApplicationUpdate

RcvApp
∆
= instance MsgChannel with chan ← rcvapp, Msg ← ApplicationUpdate

SndTcp
∆
= instance Sender with seq ← sndseq ,

dat ← snddat ,
psh ← sndpsh,
urg ← sndurg ,
ack ← sndack ,
wnd ← sndwnd ,
app ← sndapp

RcvTcp
∆
= instance Receiver with seq ← rcvseq ,

dat ← rcvdat ,
psh ← rcvpsh,
urg ← rcvurg ,
ack ← rcvack ,
wnd ← rcvwnd ,
app ← rcvapp

SndMux
∆
= instance SegmentMux with seg ← sndnet ,

seq ← sndseq ,
dat ← snddat ,
psh ← sndpsh,
urg ← sndurg ,
ack ← rcvack ,
wnd ← rcvwnd

RcvMux
∆
= instance SegmentMux with seg ← rcvnet ,

seq ← rcvseq ,
dat ← rcvdat ,
psh ← rcvpsh,
urg ← rcvurg ,
ack ← sndack ,
wnd ← sndwnd

SndNet
∆
= instance MsgChannel with chan ← sndnet , Msg ← Segment

RcvNet
∆
= instance MsgChannel with chan ← rcvnet , Msg ← Segment

Spec
∆
= ∧ SndApp !Spec
∧ SndTcp !Spec
∧ SndMux !Spec
∧ SndNet !Spec

1
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∧ RcvApp !Spec
∧ RcvTcp !Spec
∧ RcvMux !Spec
∧ RcvNet !Spec

variables sndapp, rcvapp
variables sndnet , rcvnet

Hidden(sndseq , snddat , sndpsh, sndurg , sndack , sndwnd ,
rcvseq , rcvdat , rcvpsh, rcvurg , rcvack , rcvwnd)

∆
= instance Hidden

Spec
∆
= ∃∃∃∃∃∃ sndseq , snddat , sndpsh, sndurg , sndack , sndwnd ,

rcvseq , rcvdat , rcvpsh, rcvurg , rcvack , rcvwnd :
Hidden(sndseq , snddat , sndpsh, sndurg , sndack , sndwnd ,

rcvseq , rcvdat , rcvpsh, rcvurg , rcvack , rcvwnd) !Spec

2
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module Receiver

module Hidden

local instance Data
local instance Naturals
local instance ApplicationUpdate

variables seq , dat , psh, urg , ack , wnd , app
variables maxdat , maxpsh, maxurg , maxack , maxwnd

Seq
∆
= instance MsgChannel with chan ← seq , Msg ← Nat

Dat
∆
= instance MsgChannel with chan ← dat , Msg ← SegmentData

Psh
∆
= instance MsgChannel with chan ← psh, Msg ← Nat

Urg
∆
= instance MsgChannel with chan ← urg , Msg ← Nat

Ack
∆
= instance MsgChannel with chan ← ack , Msg ← Nat

Wnd
∆
= instance MsgChannel with chan ← wnd , Msg ← Nat

App
∆
= instance MsgChannel with chan ← app, Msg ← ApplicationUpdate

Init
∆
= ∧maxdat = {}
∧maxpsh = {}
∧maxurg = 0
∧maxack = 0
∧maxwnd = 0

Internal
∆
= ∧maxack ′ ∈ Nat
∧maxwnd ′ ∈ Nat
∧maxack ′ ≤ Length(maxdat)
∧maxack ′ ≥ maxack
∧maxwnd ′ ≥ maxack ′

∧ unchanged 〈seq , dat , psh, urg , ack , wnd , app〉
∧ unchanged 〈maxdat , maxpsh, maxurg〉

Update
∆
= ∧App !Send([dat 7→ maxdat , psh 7→ maxpsh, urg 7→ maxurg ])
∧ unchanged 〈seq , dat , psh, urg , ack , wnd〉
∧ unchanged 〈maxdat , maxpsh, maxurg , maxack , maxwnd〉

Send
∆
= ∧ ∃n : Seq !Send(n)
∧ if maxack > 0 then Ack !Send(maxack) ∧Wnd !Send(maxwnd)

else unchanged 〈ack , wnd〉
∧ unchanged 〈dat , psh, urg , app〉
∧ unchanged 〈maxdat , maxpsh, maxurg , maxack , maxwnd〉

Receive(n, d , p, u)
∆
= ∧maxdat ′ ∈ Data
∧maxdat ′ = Merge({maxdat , Prefix (Shift(d , n), maxwnd)})
∧ Seq !Send(n)
∧Dat !Send(d)
∧ if Psh !Send(p) then maxpsh ′ = maxpsh ∪ {p}

else unchanged 〈psh, maxpsh〉
∧ if Urg !Send(u) then if u > maxurg then maxurg ′ = u

else unchanged maxurg
else unchanged 〈urg , maxurg〉

∧ unchanged 〈ack , wnd , app〉
∧ unchanged 〈maxack , maxwnd〉

1
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Next
∆
= ∨ Internal
∨Update
∨ Send
∨ ∃n, p, u ∈ Nat , d ∈ SegmentData : Receive(n, d , p, u)

Liveness
∆
= ∀n ∈ Nat : SFapp(Update ∧ ∃ p ∈ maxpsh : App !Init ∨ p > Length(App !Sent .dat))

Spec
∆
= ∧ Init
∧2[Next ]〈seq, dat, psh, urg, ack ,wnd, app,maxdat,maxpsh,maxurg,maxack ,maxwnd〉
∧ Liveness
∧ Seq !Spec
∧Dat !Spec
∧ Psh !Spec
∧Urg !Spec
∧Ack !Spec
∧Wnd !Spec
∧App !Spec

variables seq , dat , psh, urg , ack , wnd , app

Hidden(maxdat , maxpsh, maxurg , maxack , maxwnd)
∆
= instance Hidden

Spec
∆
= ∃∃∃∃∃∃maxdat , maxpsh, maxurg , maxack , maxwnd :

Hidden(maxdat , maxpsh, maxurg , maxack , maxwnd) !Spec

2
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module SegmentMux

local instance Data
local instance Segment
local instance Naturals

variables seg , seq , dat , psh, urg , ack , wnd

Seg
∆
= instance MsgChannel with chan ← seg , Msg ← Segment

Seq
∆
= instance MsgChannel with chan ← seq , Msg ← Nat

Dat
∆
= instance MsgChannel with chan ← dat , Msg ← SegmentData

Psh
∆
= instance MsgChannel with chan ← psh, Msg ← Nat

Urg
∆
= instance MsgChannel with chan ← urg , Msg ← Nat

Ack
∆
= instance MsgChannel with chan ← ack , Msg ← Nat

Wnd
∆
= instance MsgChannel with chan ← wnd , Msg ← Nat

Demux (s)
∆
= ∧ Seg !Send(s)
∧ Seq !Send(s.seq)
∧Dat !Send(s.dat)
∧ if s.ctl .psh then Psh !Send(s.seq + Length(s.data))

else unchanged psh
∧ if s.ctl .urg then Urg !Send(s.urg + s.seq)

else unchanged urg
∧ if s.ctl .ack then ∧Ack !Send(s.ack)

∧Wnd !Send(s.wnd + s.ack)
else unchanged 〈ack , wnd〉

Next
∆
= ∃ s ∈ Segment : Demux (s)

Spec
∆
= ∧2[Next ]〈seg, seq, dat, psh, urg, ack ,wnd〉
∧ Seg !Spec
∧ Seq !Spec
∧Dat !Spec
∧ Psh !Spec
∧Urg !Spec
∧Ack !Spec
∧Wnd !Spec

1
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module Segment

local instance Data
local instance Naturals

Segment
∆
= [seq : Nat ,

ack : Nat ,
ctl : [ack 7→ boolean ,

urg 7→ boolean ,
psh 7→ boolean ],

wnd : Nat ,
urg : Nat ,
dat : SegmentData]

1
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module Sender

module Hidden

local instance Data
local instance Naturals
local instance WindowUpdate
local instance ApplicationUpdate

variables seq , dat , psh, urg , ack , wnd , app
variables maxdat , maxpsh, maxurg , maxack , maxwnd

Seq
∆
= instance MsgChannel with chan ← seq , Msg ← Nat

Dat
∆
= instance MsgChannel with chan ← dat , Msg ← SegmentData

Psh
∆
= instance MsgChannel with chan ← psh, Msg ← Nat

Urg
∆
= instance MsgChannel with chan ← urg , Msg ← Nat

Ack
∆
= instance MsgChannel with chan ← ack , Msg ← Nat

Wnd
∆
= instance MsgChannel with chan ← wnd , Msg ← Nat

App
∆
= instance MsgChannel with chan ← app, Msg ← ApplicationUpdate

Init
∆
= ∧maxdat = {}
∧maxpsh = {}
∧maxurg = 0
∧maxack = 0
∧maxwnd ∈ WindowUpdate
∧maxwnd .seq = 0
∧maxwnd .ack = 0

Update(u)
∆
= ∧maxdat ⊆ maxdat ′

∧maxpsh ⊆ maxpsh ′

∧maxurg ≤ maxurg ′

∧maxdat ′ = u.dat
∧maxpsh ′ = u.psh
∧maxurg ′ = u.urg
∧App !Send(u)
∧ unchanged 〈seq , dat , psh, urg , ack , wnd〉
∧ unchanged 〈maxack , maxwnd〉

Send(n, d)
∆
= ∧ n ≥ maxack
∧maxack = 0⇒ 〈0, Syn〉 ∈ d
∧ if maxwnd .len > maxack then n + Length(d) ≤ maxwnd .len

else n + Length(d) ≤ maxack + 1
∧ Shift(d , n) ⊆ maxdat
∧ Seq !Send(n)
∧Dat !Send(d)
∧ Psh !Send(n + Length(d)) ≡ ∃ p ∈ maxpsh : ∧ p > n

∧ p ≤ n + Length(d)
∧Urg !Send(maxurg) ≡ maxurg ≥ n
∧ unchanged 〈ack , wnd , app〉
∧ unchanged 〈maxdat , maxpsh, maxurg , maxack , maxwnd〉

Receive(n, a, w)
∆
= ∧ if a > maxack then maxack ′ = a

else unchanged maxack
∧ let u

∆
= [len 7→ w , seq 7→ n, ack 7→ a]

1
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in ∨WndAscending(u, maxwnd) ∧maxwnd ′ = u
∨WndAscending(maxwnd , u) ∧ unchanged maxwnd

∧ Seq !Send(n)
∧Ack !Send(a)
∧Wnd !Send(w)
∧ unchanged 〈dat , psh, urg , app〉
∧ unchanged 〈maxdat , maxpsh, maxurg〉

Next
∆
= ∨ ∃ u ∈ ApplicationUpdate : Update(u)
∨ ∃n ∈ Nat , d ∈ SegmentData : Send(n, d)
∨ ∃n, a ∈ Nat , w ∈ WindowUpdate : Receive(n, a, w)

Liveness
∆
= ∀n ∈ Nat : ∃m ∈ Nat , d ∈ SegmentData : SFdat(∃ p ∈ maxpsh : p ≥ n ∧ Send(m, d))

Spec
∆
= ∧ Init
∧2[Next ]〈seq, dat, psh, urg, ack ,wnd, app,maxdat,maxpsh,maxurg,maxack ,maxwnd〉
∧ Liveness
∧ Seq !Spec
∧Dat !Spec
∧ Psh !Spec
∧Urg !Spec
∧Ack !Spec
∧Wnd !Spec
∧App !Spec

variables seq , dat , psh, urg , ack , wnd , app

Hidden(maxdat , maxpsh, maxurg , maxack , maxwnd)
∆
= instance Hidden

Spec
∆
= ∃∃∃∃∃∃maxdat , maxpsh, maxurg , maxack , maxwnd :

Hidden(maxdat , maxpsh, maxurg , maxack , maxwnd) !Spec

2
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module WindowUpdate

local instance Naturals

WindowUpdate
∆
= [len : Nat , seq : Nat , ack : Nat ]

WndAscending(a, b)
∆
= ∨ a.seq < b.seq
∨ a.seq = b.seq ∧ a.ack ≤ b.ack

1
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APPENDIX B

THE RECOVERING CONNECTION SPECIFICATION

The following pages carry the complete TLA+

specification of a recovering connection from chapter 6.
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module RecApplicationReceiver

module Hidden

local instance Data
local instance Naturals
local instance ApplicationUpdate

variables f , chan, recack , dat , psh, urg , off

Replicas
∆
= instance Replicas with r ← chan

Chan(n)
∆
= instance MsgChannel with chan ← chan[n], Msg ← ApplicationUpdate

RecAck
∆
= instance MsgChannel with chan ← recack , Msg ← Nat

Init
∆
= ∧ dat = {}
∧ psh = {}
∧ urg = 0
∧ off = [n ∈ Nat 7→ 0]

Update(u)
∆
= ∧ Chan(f ) !Send(Offset(u, off [f ]))
∧ RecAck !Send(Length(dat ′))
∧ dat ⊆ dat ′

∧ psh ⊆ psh ′

∧ urg ≤ urg ′

∧ dat ′ = u.dat
∧ psh ′ = u.psh
∧ urg ′ = u.urg
∧ unchanged 〈f , off 〉

Fail
∆
= ∧ Replicas !Fail
∧ off ′ = [n ∈ Nat 7→ if n < f ′ then off [n] else Length(dat)]
∧ unchanged 〈chan, recack , dat , psh, urg〉

Next
∆
= ∨ ∃ u ∈ ApplicationUpdate : Update(u)
∨ Fail

Spec
∆
= ∧ Init
∧2[Next ]〈f , chan, recack , dat, psh, urg, off 〉
∧ ∀n ∈ Nat : Chan(n) !Spec
∧ Replicas !Spec
∧ RecAck !Spec

variable f , chan, recack

Hidden(dat , urg , psh, off )
∆
= instance Hidden

Spec
∆
= ∃∃∃∃∃∃ dat , urg , psh, off : Hidden(dat , urg , psh, off ) !Spec

1
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module RecApplicationSender

module Hidden

local instance Data
local instance Naturals
local instance ApplicationUpdate

variables f , chan, recoff , dat , psh, urg , off

Replicas
∆
= instance Replicas with r ← chan

Chan(n)
∆
= instance MsgChannel with chan ← chan[n], Msg ← ApplicationUpdate

RecOff
∆
= instance MsgChannel with chan ← recoff , Msg ← Nat

Init
∆
= ∧ dat = {}
∧ psh = {}
∧ urg = 0
∧ off = [n ∈ Nat 7→ 0]

Internal
∆
= ∧ dat ′ ∈ Data
∧ dat ⊆ dat ′ ∧ dat 6= dat ′

∧ [psh ′ = psh ∪ {Length(dat ′)}]psh

∧ [urg ′ = Length(dat ′)]urg

∧ unchanged 〈f , chan, recoff , off 〉

Update
∆
= ∧ Chan(f ) !Send(Offset([dat 7→ dat ,

psh 7→ psh,
urg 7→ urg ], off [f ]))

∧ unchanged 〈f , recoff , dat , psh, urg , off 〉

Fail(o)
∆
= ∧ Replicas !Fail
∧ RecOff !Send(o)
∧ off ′ = [n ∈ Nat 7→ if n < f ′ then off [n] else o]
∧ unchanged 〈chan, dat , psh, urg〉

Next
∆
= Internal ∨Update ∨ ∃ o ∈ Nat : Fail(o)

Spec
∆
= ∧ Init
∧2[Next ]〈f , chan, recoff , dat, psh, urg, off 〉
∧ ∀n ∈ Nat : Chan(n) !Spec
∧ Replicas !Spec
∧ RecOff !Spec

variables f , chan, recoff

Hidden(dat , urg , psh, off )
∆
= instance Hidden

Spec
∆
= ∃∃∃∃∃∃ dat , urg , psh, off : Hidden(dat , urg , psh, off ) !Spec

1
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module RecConnection

variables a, b

EndA
∆
= instance RecEndpoint with sndnet ← a, rcvnet ← b

EndB
∆
= instance Endpoint with sndnet ← b, rcvnet ← a

NetA
∆
= instance Network with snd ← a, rcv ← b

NetB
∆
= instance Network with snd ← b, rcv ← a

Spec
∆
= (NetA !Spec ∧NetB !Spec) +−. (EndA !Spec ∧ EndB !Spec)

Connection
∆
= instance Connection

theorem Spec ⇒ Connection !Spec

1

105



module RecEndpoint

module Hidden

variables f , sndpeers, rcvpeers, recoff , recack
variables sndint , rcvint , sndapp, rcvapp, sndnet , rcvnet

SndApp
∆
= instance RecApplicationSender with chan ← sndapp

RcvApp
∆
= instance RecApplicationReceiver with chan ← rcvapp

Peers
∆
= instance RecPeers with sndnet ← sndpeers, rcvnet ← rcvpeers

SndInt
∆
= instance Network with snd ← sndint , rcv ← sndpeers

RcvInt
∆
= instance Network with snd ← rcvint , rcv ← rcvpeers

Middleware
∆
= instance RecMiddleware with sndext ← sndnet , rcvext ← rcvnet

Spec
∆
= ∧Middleware !Spec
∧ SndApp !Spec
∧ RcvApp !Spec
∧ SndInt !Spec
∧ RcvInt !Spec
∧ Peers !Spec

variables sndnet , rcvnet

Hidden(f , sndpeers, rcvpeers, recoff , recack ,
sndint , rcvint , sndapp, rcvapp)

∆
= instance Hidden

Spec
∆
= ∃∃∃∃∃∃ f , sndpeers, rcvpeers, recoff , recack ,

sndint , rcvint , sndapp, rcvapp :
Hidden(f , sndpeers, rcvpeers, recoff , recack ,

sndint , rcvint , sndapp, rcvapp) !Spec

1
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module RecMiddleware

module Hidden

local instance Data
local instance Segment
local instance Naturals
local instance WindowUpdate

variables f , sndint , rcvint , sndext , rcvext , recoff , recack
variables sndoff , sndwnd , sndack , rcvack , recovering

SndReplicas
∆
= instance Replicas with r ← sndint

RcvReplicas
∆
= instance Replicas with r ← rcvint

SndInt(n)
∆
= instance MsgChannel with chan ← sndint [n], Msg ← Segment

RcvInt(n)
∆
= instance MsgChannel with chan ← rcvint [n], Msg ← Segment

SndExt
∆
= instance MsgChannel with chan ← sndext , Msg ← Segment

RcvExt
∆
= instance MsgChannel with chan ← rcvext , Msg ← Segment

RecOff
∆
= instance MsgChannel with chan ← recoff , Msg ← Nat

RecAck
∆
= instance MsgChannel with chan ← recack , Msg ← Nat

Init
∆
= ∧ sndoff = [n ∈ Nat 7→ 0]
∧ sndwnd ∈ WindowUpdate
∧ sndwnd .seq = 0
∧ sndwnd .ack = 0
∧ sndack = 0
∧ rcvack = 0
∧ recovering = false

Update(a)
∆
= ∧ RecAck !Send(a)
∧ rcvack ′ ≥ rcvack
∧ rcvack ′ = a
∧ unchanged 〈f , sndint , rcvint , sndext , rcvext , recoff 〉
∧ unchanged 〈sndoff , sndwnd , sndack , recovering〉

Fail
∆
= ∧ SndReplicas !Fail
∧ RcvReplicas !Fail
∧ RecOff !Send(sndack)
∧ sndoff ′ = [n ∈ Nat 7→ if n < f ′ then sndoff [n] else sndack ]
∧ recovering ′

∧ unchanged 〈sndint , rcvint , sndext , rcvext , recack〉
∧ unchanged 〈sndwnd , sndack , rcvack〉

Recover(s)
∆
= ∧ 〈0, Syn〉 ∈ s.dat ∧ rcvack > 0
∧ SndInt(f ) !Send(s)
∧ RcvInt(f ) !Send([seq 7→ rcvack − 1,

ack 7→ 1,
ctl 7→ [ack 7→ true, urg 7→ false, psh 7→ false],
wnd 7→ sndwnd .len,
urg 7→ 0,
dat 7→ {}])

∧ unchanged 〈f , sndext , rcvext , recack , recoff 〉

1
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∧ unchanged 〈sndoff , sndwnd , sndack , rcvack , recovering〉

SndSeg(s)
∆
= ∧ 〈0, Syn〉 /∈ s.dat ∨ rcvack = 0
∧ ¬recovering ′

∧ SndInt(f ) !Send(s)
∧ SndExt !Send([s except ! .seq = @+ sndoff [f ],

! .ack = rcvack ])
∧ unchanged 〈f , rcvint , rcvext , recack , recoff 〉
∧ unchanged 〈sndoff , sndwnd , sndack , rcvack〉

RcvSeg(s)
∆
= ∧ RcvExt !Send(s)
∧ RcvInt(f ) !Send([s except ! .ack = sndack ′ − sndoff [f ]]) ≡ ¬recovering
∧ if s.ctl .ack

then ∧ if s.ack > sndack then sndack ′ = s.ack
else unchanged sndack

∧ let u
∆
= [len 7→ s.wnd + s.ack ,

seq 7→ s.seq ,
ack 7→ s.ack ]

in ∨WndAscending(u, sndwnd) ∧ sndwnd ′ = u
∨WndAscending(sndwnd , u) ∧ unchanged sndwnd

else unchanged 〈sndwnd , sndack〉
∧ unchanged 〈f , sndint , sndext , recack , recoff 〉
∧ unchanged 〈sndoff , rcvack , recovering〉

Next
∆
= ∨ ∃ a ∈ Nat : Update(a)
∨ ∃ s ∈ Segment : ∨ Recover(s)

∨ SndSeg(s)
∨ RcvSeg(s)

∨ Fail

Spec
∆
= ∧ Init
∧2[Next ]〈f , sndint, rcvint, sndext, rcvext, recoff , recack , sndoff , sndwnd, sndack , rcvack , recovering〉
∧ ∀n ∈ Nat : SndInt(n) !Spec
∧ ∀n ∈ Nat : RcvInt(n) !Spec
∧ SndReplicas !Spec
∧ RcvReplicas !Spec
∧ RecOff !Spec
∧ RecAck !Spec
∧ SndExt !Spec
∧ RcvExt !Spec

variables f , sndint , rcvint , sndext , rcvext , recoff , recack

Hidden(sndoff , sndwnd , sndack , rcvack , recovering)
∆
= instance Hidden

Spec
∆
= ∃∃∃∃∃∃ sndoff , sndwnd , sndack , rcvack , recovering :

Hidden(sndoff , sndwnd , sndack , rcvack , recovering) !Spec

2

108



module RecPeers

local instance Naturals

variable f , sndapp, rcvapp, sndnet , rcvnet

SndApp
∆
= instance Replicas with r ← sndapp

RcvApp
∆
= instance Replicas with r ← rcvapp

SndNet
∆
= instance Replicas with r ← sndnet

RcvNet
∆
= instance Replicas with r ← rcvnet

Peers(n)
∆
= instance Peer with sndapp ← sndapp[n],

rcvapp ← rcvapp[n],
sndnet ← sndnet [n],
rcvnet ← rcvnet [n]

Spec
∆
= ∧ SndApp !Spec
∧ RcvApp !Spec
∧ SndNet !Spec
∧ RcvNet !Spec
∧ ∀n ∈ Nat : Peers(n) !Spec

1
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module Replicas

local instance Naturals

variable f , r

TypeInvariant
∆
= f ∈ Nat ∧ r = [n ∈ Nat 7→ r [n]]

Init
∆
= f = 0 ∧ TypeInvariant

Fail
∆
= f ′ = f + 1 ∧ unchanged r

Transition
∆
= ∧ ∀n ∈ Nat : n 6= f ⇒ unchanged r [n]
∧ TypeInvariant
∧ unchanged f

Next
∆
= Fail ∨ Transition

Spec
∆
= Init ∧2[Next ]〈f , r〉

1
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