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Abstract

Wave propagational inverse problems arise in several applications including medical
imaging and geophysical exploration. In these problems, one is interested in obtaining
the parameters describing the medium from its response to excitations. The problems
are characterized by their large size, and by the hyperbolic equation which models
the physical phenomena. The inverse problems are often posed as a nonlinear data-
fitting where the unknown parameters are found by minimizing the misfit between the
predicted data and the actual data. In order to solve the problem numerically using a
gradient-type approach, one must calculate the action of the Jacobian and its adjoint
on a given vector. In this paper, we explore the use of automatic differentiation (AD)
to develop codes that perform these calculations.

We show that by exploiting structure at 2 scales, we can arrive at a very efficient
code whose main components are produced by AD. In the first scale we exploit the time-
stepping nature of the hyperbolic solver by using the “Extended Jacobian” framework.
In the second (finer) scale, we exploit the finite difference stencil in order to make explicit
use of the sparsity in the dependence of the output variables to the input variables. The
main ideas in this work are illustrated with a simpler, one-dimensional version of the
problem. Numerical results are given for both one- and two- dimensional problems.
We present computational templates that can be used in conjunction with optimization
packages to solve the inverse problem.

1 Introduction

In the type of wave propagational inverse problems under consideration, the goal is to deter-
mine parameters, such as soundspeed distribution and density distribution, from measured
data, which are collected at a set of receivers. Figure 1 explains the situation. An incident

∗This research is sponsored in part by the Applied Mathematical Sciences Research Program (KC-04-02)
of the Office of Energy Research of the US Department of Energy under grants DE-FG02-97ER25013 and
DE-FG02-94ER25225, and also by the National Science Foundation grant DMS 9503114, and by the Air
Force Office of Scientific Research grant F49620-95-I-0305

†Computer Science Department and Cornell Theory Center, Cornell University, Ithaca NY 14850.
‡Minnesota Center for Industrial Mathematics, School of Mathematics, University of Minnesota, Min-

neapolis, MN 55455.
§Computer Science Department, Cornell University, Ithaca NY 14850.

1



2

receivers

unknown medium

refracted waves

incident wave

reflected waves

Figure 1: In this figure, the problem is to identify the unknown medium. An incident wave
is generated, and as it travels into the medium being probed, reflected and refracted signals
are generated. These are captured at the receivers. Several such experiments are carried
out for a set of incident disturbances. The inverse problem is to find the properties of the
unknown medium from the collected data.

disturbances is generated, as it travels in the unknown medium and produces reflections and
refractions. This information is collected at receivers placed at a set of locations. Several
such experiments are carried out for a set of incident disturbances. The inverse problem is
to determine properties of the unknown medium from the set of measured response.

Problems of this type arise in several applications including geophysical exploration and
medical imaging. A common feature in these applications is that the problem is very large.
Typically, the number of unknowns and equations could be in the range of 103 to 106. Often,
the most convenient way to solve this type of inverse is to pose it as an optimization, either
using using nonlinear leastsquares [16, 12] or other approach specialized to take advantage
of the properties afforded by the particular application [14, 1]. In any event, what one will
need for computation is derivative information of the relation between medium parameters
and data. Because of the size of the problem, we cannot compute and store the entire
Jacobian of the function, but rather, we must find ways of computing the action of the
Jacobian and its transpose on a given vector, or the so called direct and adjoint products.

The goal of this work is to show that efficient calculation of direct and adjoint product
is possible. The approach we take is to use automatic differentiation (AD) while exploiting
structure to the extent possible. We emphasize that without taking advantage of structure,
a direct application of current AD technology to the codes simulation the wave phenomena
will lead to memory problems.

As we will show in the next section, the wave propagation can be modeled effectively
using time-stepping finite difference schemes. The time-stepping nature of the scheme can
be exploited using the general Extended Jacobian framework [3, 4]. The spatial discretiza-



3

tion by finite differences reveal further structure. Each finite difference stencil encodes the
dependence of a computed intermediate variable on other variables. In particular, it shows
that there is an inherent sparsity in the Jacobian. A combination of these structure ex-
ploitations allows us to overcome the problem posed by size, and its consequence on memory
requirements.

In our implementation, we apply AD on the finite difference stencils and use the resulting
codes to assemble a procedure for computing the Jacobian and adjoint vector products. The
resulting code is as efficient as those that are obtained by directly performing summations-
by-parts calculation on the simulation program. The advantage here is that we have avoided
the error-prone and tedious procedure [13]. Instead, we can view the code writing process
at a higher level, leaving the most difficult parts to AD.

The plan of this article is as follows. We proceed with a short introduction to inverse
problem for acoustic waves. The model for the physics and its numerical discretization are
described in Section 2. In Section 3, we review the Extended Jacobian framework and show
how it can be used for our problem. We will provide templates for calculating the adjoint-
vector product. The stencil approach its implementation is presented in Section 4. We
will also show how the stencil can be described at a higher level as projections. Templates
for calculating Jacobian and adjoint vector products that uses stencils are given. Section
5 summarizes our experience with this method of computation. A final section contains
concluding remarks.

We acknowledge helpful discussions with William Symes, who has a similar on-going
effort on automatic differentiation as ours [15]. Some of the ideas in this work were inspired
by his presentation at the Institute for Mathematics and its Applications, Minnesota, in
July 1997.

2 Inverse Problems and Numerical Modeling

2.1 One-dimensional problem

Consider a bar or string of unit length whose sound speed is location dependent. Let u(x, t)
represent a measure of the disturbance at time t and location x. Then u satisfies the wave
equation

utt = c2(x) uxx for 0 < x < L, (1a)

where c(x) is the sound speed of the medium. We assume that the medium is quiescent at
t = 0,

u(x, 0) = 0, and ut(x, 0) = 0, 0 ≤ x ≤ L. (1b)

Disturbance is introduced at the boundary x = 0 as a Neumann boundary condition

ux(0, t) = f(t), for t > 0. (1c)

We will assume that f(t) is compactly supported away from t = 0. On the right end, we
assume a radiation boundary condition

[ut − c(x)ux]|x=L = 0. (1d)
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We are given u(0, t) = g(t) for 0 < t < T . The problem is to find the unknown c(x).
A convenient way to view the problem is to define the forward map as one that associates

a given c(x) with a boundary data u(0, t). Let

A[c](t) := u(0, t), 0 < t ≤ T,

where it is understood that the evaluation of A[c](·) is through the initial-boundary value
problem (IBVP) in (1). A least-squares formulation of this problem is to solve the mini-
mization

min
c(x)

∫ T

0
|A[c](t)− g(t)|2 dt. (2)

A common discretization for this problem is to use finite difference methods. Let

uk
i ≈ u(x = xi, t = tk) where xi = i∆x, i = 0 : n, tk = k∆t, k = 0 : m,

and ∆x = L/n, and ∆t = λ∆x for some λ > 0. A second order finite difference is chosen.
The partial differential equation in (1a) is replaced by

uk+1
i = 2(1− λ2c2

i )u
k−1
i − uk

i + λ2c2
i (u

k
i+1 + uk

i−1), for i = 1 : n − 1, k ≥ 0. (3a)

We use the initial conditions
u−1

i = u0
i = 0. (3b)

We discretize the boundary conditions as

uk+1
0 = 2(1− λ2c2

0)u
k
0 − uk−1

0 + 2λ2c2
0u

k
1 − 2fkλ2c2

0∆x. (3c)

for the inhomogeneous Neumann condition on the left end, and

uk+1
n = uk

n − cn
∆t

∆x
(uk

n − uk
n−1) (3d)

for the radiation boundary condition on the right. The discrete version of the forward map
is obtained by running the finite difference forward in time and recording the left end value
for uk

i , that is,
A[c]k := uk

0

A way to describe the function evaluation is through a vector notation. Let us write the
vectors uk = [uk

0, u
k
1, · · · , uk

n]T and c = [c0, c1, · · · , cn]T . Then the finite difference scheme
amounts to

uk+1 = F (c, uk, uk−1), with u−1 = u0 = 0. (4)

The forward map from c to A[c] is given by, letting e1 = [1, 0, · · · , 0]T

A[c]k = eT
1 uk, for k = 1 : m. (5)

The inverse problem is to solve for c in

min
c

‖A[c] − g‖2 (6)

where g is a data vector corresponding to a measurement.
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2.2 Two-dimensional problem

The two-dimensional problem is motivated by a problem in acoustic imaging of human
tissues. The geometry of the problem has been described in the previous section, and
elsewhere [11]. Here we give a mathematical model of the physics.

Because any computational domain is necessarily finite, we will consider a box Ω :=
[−a, a] × [−a, a]. Letting u(x, y, t) represent the excess pressure, a model for acoustics is
given by the partial differential equation

utt = c(x, y)24u + f(x, y, t) in Ω, t > 0. (7a)

Here c(x, y) represents the unknown soundspeed distribution, while f(x, y, t) is a known
acoustic source. Initially, the system is at rest, hence

u(x, y, 0) = ut(x, y, 0) = 0. (7b)

We need to simulate an unbounded medium with a bounded domain. In the unbounded
medium, we would have a boundary condition for |x2 + y2| large that amounts to saying
that waves which are sufficiently far away from the origin and travelling outward will be
radiated to infinity. To simulate the unbounded medium, we assume that c is constant near
the boundary of Ω and apply the Engquist-Majda boundary conditions [6] along the flat
parts of ∂Ω (and a modification of Enquist-Majda at the corners of ∂Ω). For points away
from the corners, the boundary condition is given by

cuxt − utt +
c2

2
uyy = 0 for {x = ±a; |y| < a}, (7c)

cuyt − utt +
c2

2
uxx = 0 for {y = ±a; |x| < a}. (7d)

Let R represent the collection of coordinate points where receivers have been placed to
record u. Thus,

R = {(xr, yr) = (ρ cosθr , ρ sinθr), r = 1 : p}
for some ρ > 0. The forward map is given by

A[c; f ]r := u(xr, yr, t)

The source term f(x, y, t) is assumed to be null for t = 0. We will view the forward map
A[ ] as dependent on c and parameterized by f .

The nonlinear least-squares formulation is given by

min
c

∑
l

p∑
r=1

∫ T

0
|A[c; fl]r(t) − grl(t)|2

where grl(t) is the measured response at location (xr, yr) for the source fl(x, y, t).
Discretization of (7) is quite straight-forward. The only tricky part comes in discretizing

the Enquist-Majda boundary condition. Letting (xi, yj) = (i∆, j∆), −n ≤ i ≤ n and
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−n ≤ j ≤ n, we discretized the domain Ω by a regular mesh of size ∆ = a/n. Time is
discretized as in the 1-D case: tk = k∆t for k = 0 : m.

Let the (2n + 1)2 vector uk represent the value for u(x, y, t) at the node points at time
tk. The finite difference scheme can be written in short hand as

uk+1 = F (c, uk, uk−1), for k = 1 : m,

with u−1 = u0 = 0. The discrete forward map evaluates u at each receiver, thus

A[c; f ]k = T uk,

where T is a matrix of size p-by-(2n + 1)2 and its function is to ‘grab’ values of u at time
step k at the recievers. In place of the integration in the nonlinear leastsquares, we have

min
c

∑
l

p∑
r=1

m∑
k=1

|A[c; fl]kr − gk
rl|2 (8)

Here gk
rl is the measured response at receiver r at time step k when the excitation is fl.

3 The Extended Jacobian Framework

We restrict our discussion to the 1-D problem for clarity of presentation. The prescription for
computing Jacobian vector and adjoint vector products for the more complex 2-D problem
follows the same lines as for the 1-D problem. An algorithm for the forward map for the
1-D case is

u−1 = u0 = 0
for k = 0 : m − 1

uk+1 = F (c, uk, uk−1)
hk+1 = eT

1 uk+1

end

(9)

We use the notation hk = A[c]k. Thus the function in question is the mapping from c to
h = (h1, h2, · · · , hm)T .

We can give an alternate description of this mapping by enumerating through the loop

u1 = F (c, u0, u−1)
u2 = F (c, u1, u0)
...
um = F (c, um−1, um−2)
h = e1eT

1 u1 + e2eT
1 u2 + . . . + emeT

1 um

We call this the extended function. The extended function allows for an easy way to compute
the Jacobian and its transpose. Formally, the directional derivative of h in the direction
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dc, i.e., the Jacobian-vector product, is given by the following calculation

du−1 = du0 = 0
for k = 0 : m − 1

duk+1 = F1(c, uk, uk−1)dc + F2(c, uk, uk−1)duk + F3(c, uk, uk−1)duk−1

dhk+1 = eT
1 duk+1

end

(10)

The matrices F1, F2, and F3 are Jacobians of the function F with respect to the first,
second and third variables. Therefore, they are (n + 1)-by-(n + 1) matrices. In a computer
program, we would simply define F (c, ·, ·) and use AD to either compute these matrices
or produce subprograms that calculates the action of these matrices on given vectors. The
desired directional derivative (Jacobian times vector dc) is dh = (dh1, dh2, · · · , dhm)T .

3.1 Adjoint computation via linear algebra

The above calculation can be defined as a set of matrix equations through the use of the
extended Jacobian framework [3, 4]. Let

dU =




du1

du2

...
dum




Define the m(n + 1) × m(n + 1) matrix

M =




−I 0
. . . . . . 0 0

F2(c, u1, u0) −I 0
.. . . . . 0

F3(c, u2, u1) F2(c, u2, u1) −I
. . . . . . 0

0
. . . . . . . . . −I 0

0
.. . . . . F3(c, um−1, um−2) F2(c, um−1, um−2) −I




and m(n + 1)× (n + 1) matrix

B =




F1(c, u0, u−1)
F1(c, u1, u0

...
F1(c, um−1, um−2)




and m × m(n + 1) matrix
T =

[
e1eT

1 e2eT
1 · · ·emeT

1

]
Then

−M dU = B dc, and dh = T dU.
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From the above, we can solve for dU and write

dh = −TM−1Bdc, (11)

which encapsulates the Jacobian-vector product calculation in (10).
To obtain a formula for the adjoint-vector product calculation, we start by formally

taking the adjoint of (11). Let p be the result of multiplying vector q by the adjoint of the
Jacobian. Then from (11)

p = −BT M−T T T q. (12)

We do not advocate computing the matrices B, M and T , but rather, use the formalism to
generate an efficient algorithm for finding p given q.

Let q be an m-vector. Then Q = T Tq is an m(n + 1)-vector. From (12) if we let
Y = −M−T T T q, then

− MTY = Q and p = BT Y. (13)

By exploiting the structures of M and B, we can come up with an efficient algorithm to
find p for a given q. Because of the lower-triangular structure of M , we never need to invert
any matrices. The algorithm starts by chopping up Q into m separate pieces

Q =




q1

q2

...
qm




and similarly for Y . Then, according to (13), we can calculate p by

ym = qm; p = F1(c, um−1, um−2)Tym

ym−1 = qm−1 + F2(c, um−1, um−2)Tym

p = p + F1(c, um−2, um−3)Tym−1

for k = m − 2 : −1 : 1
yk = qk + F2(c, uk, uk−1)T yk+1 + F3(c, uk+1, uk)Tyk+2

p = p + F1(c, uk−1, uk−2)Tyk

end

(14)

Note that we have adjoints/transpose of F1(c, ·, ·), F2(c, ·, ·), and F3(c, ·, ·). These adjoints
can be computed explicitly if we have matrices F1, F2, and F3 or we can resort to AD to
produce subprograms that computes their action on given vectors.

Note that in the algorithm (14), we need to have available values of the fields uk for
all indices k. Depending on the size of the problem, it may be more efficient to store only
values of uk for some indices k ∈ K, and use (9) to generate the field for other indices
k /∈ K. An efficient method to do this is discussed in [8].

3.2 Adjoint computation via adjoint variables

We give an alternate derivation of the algorithm in (14) which is based on using adjoint
variables. Consider a simple calculation involving the following 3 steps. The input variable
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is c and the output variable is u3; u0 is a parameter. The steps are:

u1 = f(c, u0, 0)
u2 = f(c, u1, u0)
u3 = f(c, u2, u1)

We can view this as an extended function. The Jacobian calculation is

du1 = f1(c, u0, 0)dc

du2 = f1(c, u1, u0)dc + f2(c, u1, u0)du1

du3 = f1(c, u2, u1)dc + f2(c, u2, u1)du2 + f3(c, u2, u1)du1

Therefore, the Jacobian (in this case, derivative) can be indentified as J from the output
du3 = Jdc. This is a forward mode computation.

Let the adjoint variables be p and v3 so that we formally have p = JT v3. If we view du1

and du2 as intermediate variables, then we can associate to them adjoint variables v1 and
v2. From the third equation in the adjoint calculation, we can formally write

 p

v2

v1


 =


 f1(c, u2, u1)

f2(c, u2, u1)
f3(c, u2, u1)


 v3

and from the second, [
p
v1

]
=

[
f1(c, u1, u0)
f2(c, u1, u0)

]
v2

and from the first,
p = f1(c, u0, 0)v1.

The contributions to each of the adjoint variables are summed over each operation, hence

v2 = f2(c, u2, u1)v3

v1 = f3(c, u2, u1)v3 + f2(c, u1, u0)v2

p = f1(c, u2, u1)v3 + f1(c, u1, u0)v2 + f1(c, u0, 0)v1

This is the reverse computation [9].
We can generalize this concept to the 1-D wave propagation problem. In (10), we

identify adjoint variables p with dc for the input, and q with dh for the output. To the
intermediate variables duk, we associate adjoint variables vk. Performing the reverse mode
calculation, we must start at index k = m − 1. Let qk, for k = 1 : m be the elements of q.
The adjoint-times-vector algorithm is

set vm = 0
for k = m − 1 : 0

vk+1 = vk+1 + e1qk+1

vk = vk + F2(c, uk, uk−1)Tvk+1

vk−1 = vk−1 + F3(c, uk, uk−1)T vk+1

p = p + F1(c, uk, uk−1)Tvk+1

end

(15)
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At the end of the calculation, we can identify p = JT q.

3.3 Remark

The foregoing discussion, while limited to the 1-D problem, can be adapted to solve the
more complicated 2-D problem. What we wish to emphasize here is the conciseness of the
extended Jacobian framework, and how to exploit the underlying problem structure. The
algorithms in (10), (14) and (15) can be viewed as code templates for Jacobian and adjoint
vector product calculations. AD is deployed in computing the Jacobian and adjoint of the
subproblem described by the time stepping process (4).

We recall that the adjoint (reverse product) F1(c, ·, ·)Ty, etc., can be computed using the
adjoint (reverse) mode of an AD tool. For large problems like this, computing the adjoint
product of the timestep routine (4) can be very expensive, since the size of c, uk, and uk−1

can be large. An AD tool would by default assume that every element of F1(c, uk, uk−1)
depend on every element of c, uk, and uk−1. This assumption on dependence generates a
‘table’ which is used in computing intermediate values in the reverse product mode. For
example, ADOL-C [10] implements this lookup by creating a tape, which it will write on
the disk if the problem size is large. When it does this, it becomes unacceptably inefficient.

This concern brings us to the main idea of this paper, i.e., that of AD applied to the finite
difference stencil. Our approach is to use AD on the smallest component of the calculation
– a kind of ‘microscopic’ structure exploitation. We discuss how this is done in the next
section.

In principle, what we are exploiting is specific sparsity structure that is inherent in the
finite difference scheme. A general approach for exploiting sparsity in AD is described in
[2].

4 Exploiting the stencil structure

The finite difference method that we used in the 1-D can be written as indicated in (4)
which we rewrite here

uk+1 = F (c, uk, uk−1), with u−1 = u0 = 0.

This shorthand notation does not reveal the stencil structure given by the explicit formulas
in (3). For the jth component of uk+1, j not equal to 0 or n, from (3a) we can write

uk+1
j = f(cj, u

k
j−1, u

k
j , u

k
j−1, u

k−1
j ). (16)

The above expression spells out clearly that the dependence of uk+1 on c, uk, and uk−1, is
very sparse. This is best visualized by studying Figure 2. Thus, we need only to deal with
f which is a function of only 5 variables. From (3c)-(3d), we have two more such functions
which but they depend only on 4 and 3 variables respectively, and are given by

uk+1
0 = fL(c0, u

k
0, u

k
1, u

k−1
0 ),

uk+1
n = fR(cn, uk

n−1, u
k
n).
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Figure 2: The stencil for the 1-D problem for j 6= 0, n. Boundary nodes are slightly different
and require separate treatment.

The function F (·, ·, ·), representing a time-step, is now replaced with the pseudo-code

function uk+1 = F (c, uk, uk−1)
uk+1

0 = fL(c0, u
k
0, u

k
1, u

k−1
0 )

uk+1
n = fR(cn, uk

n−1, u
k
n)

for j = 1 : n − 1
uk+1

j = f(cj, u
k
j−1, u

k
j , u

k
j−1, u

k−1
j )

end

(17)

It is to these ‘small’ functions of a few variables that we want to apply automatic
differentiation. The benefits are that we will have efficient codes which explicitly exploit
the structure of the problem. The cost is that the derivative and adjoint codes will be
slightly more complicated to assemble. We discuss this next.

4.1 Sparse Jacobian

Due to the sparsity of afforded by the stencil structure, it is feasible to calculate the full
Jacobian (rather than the Jacobian vector product). To see this we introduce projection
matrices. Let ej be the jth unit vector (We will let j run from 0 to n for convenience).
Then (16) can be rewritten in terms of vectors c, uk, and uk−1 as

uk+1
j = f(eT

j c, eT
j−1u

k, eT
j uk, eT

j+1u
k, eT

j uk−1). (18)

In computing the Jacobian, we needed the derivatives of F (·, ·, ·) with respect to the 3
variables. We next derive procedures to do this using the stencils.

The components of F1(c, uk, uk−1) are

F1 =




(∇cu
k+1
0 )T

(∇cu
k+1
1 )T

...
(∇cu

k+1
n−1)

T

(∇cu
k+1
n )




.
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The gradients are easily obtained by differentiating (18) with respect to c. We obtain, for
j 6= 0, n,

∇c uk+1
j = ∂1f(eT

j c, eT
j−1u

k, eT
j uk, eT

j+1u
k, eT

j uk−1)ej,

which is an (n + 1)-vector with a single nonzero entry at j. Thus, it can be seen that
F1(c, uk, uk−1) is a diagonal matrix. This property is not apparent to state-of-the-arts
automatic differentiation programs.

The Jacobian F3(c, uk, uk−1) will also be diagonal for the same reason, and be computed
by applying AD to (16). The Jacobian F2(c, uk, uk−1) will be slightly more complicated.
The components of the Jacobian are similar to those of F1(·, ·, ·) except that the gradient
will be with respect to uk. Directly differentiating (16) with respect to uk yields

∇uk uk+1
j = ∂2f(eT

j c, eT
j−1u

k, eT
j uk, eT

j+1u
k, eT

j uk−1)ej−1

+ ∂3f(eT
j c, eT

j−1u
k, eT

j uk, eT
j+1u

k, eT
j uk−1)ej

+ ∂4f(eT
j c, eT

j−1u
k, eT

j uk, eT
j+1u

k, eT
j uk−1)ej+1.

Thus, the matrix F2(c, uk, uk−1) is a tridiagonal matrix.
We can summarize the steps in a MATLAB pseudo-code1

F1 = [∂1fLeT
0 ];

F2 = [(∂2fLeT
0 + ∂3fLeT

1 )];
F3 = [∂4fLeT

0 ];
for j = 1 : n − 1

F1 = [F1; ∂1feT
j ];

F2 = [F2; (∂2feT
j−1 + ∂3feT

j + ∂4feT
j+1)];

F3 = [F3; ∂5feT
j ];

end
F1 = [F1; ∂1fReT

n ];
F2 = [F2; ∂2fReT

n−1 + ∂3fReT
n ];

F3 = [F3; zeros(1, n + 1)];

Once the matrices F1, F2 and F3 are obtained, we can use the code in (10) to compute
the forward derivatives and the code in (14) to compute the adjoint. The codes for the
partial derivatives of f , fL and fR are easily obtained using AD. These codes are expected
to be very efficient because of the simplicity of the stencil formula, and because of the small
number of independent variables involved. We have gained efficiency in the AD computation
by applying AD at the stencil level. The cost to the user is performing some detail ‘hand’
coding.

We can employ a similar approach for the more complicated 2-D example. We note that
a typical stencil for interior nodes is given by

uk+1
ij = f(cij, u

k
i−1,j, u

k
i+1,j, u

k
i,j−1, u

k
i,j+1, u

k
ij, u

k−1
ij ).

1One would use sparse utilities to implement this in MATLAB.
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Figure 3: The stencil for the 2-D problem for an interior node. Boundary and corner nodes
are slightly different and require separate treatment.

The stencil is displayed in Figure 3. Boundary node and corner nodes, because of the
absorbing boundary conditions described in (7c), result in slightly more complex stencils.
The key observation is that the stencil embodies the sparsity structure of the Jacobian, and
is a feature that should be exploited.

4.2 Stencil in forward and reverse mode

We can also exploit stencil structure without explicitly computing the Jacobian. This results
in procedures to compute Jacobian times vector, and adjoint times vector. Suppose we are
given dc and we wish to calculate the vector dh as outlined in (10). The approach we take
will make use of stencil formulas such as (16). Assume that we have used AD to generate
an algorithm to compute the gradient of f(·, ·, ·, ·, ·) times a 5-vector; that is, given X and
dX , we have a procedure to find

f(X) and ∇f(X) · dX.

Here X stands for a 5-vector with components X = [cj, u
k
j−1, u

k
j , u

k
j+1, u

k−1
j ]T . Then it is

easy to see that from (16) if dX = [dcj, duk
j−1, duk

j , duk
j+1, duk−1

j ]T , then

duk+1
j = ∇f(X) · dX.

We would have similar formulas for j = 0 and j = n with the difference that the vector
of independent variables would be 4 and 3 dimensional, respectively. We can therefore
assemble the duk+1

j within an outer loop which corresponds to the time steps. The pseudo-
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code would take the form

du−1 = du0 = 0
for k = 0 : m − 1

X = [c0, u
k
0, u

k
1, u

k−1
0 ]T ; dX = [dc0, duk

0, duk
1, duk−1

0 ]T

duk+1
0 = ∇fL(X) · dX

X = [cn, uk
n−1, u

k
n]T ; dX = [dcn, duk

n−1, duk
n]T

duk+1
n = ∇fR(X) · dX

for j = 1 : n − 1
X = [cj, u

k
j−1, u

k
j , u

k
j+1, u

k−1
j ]T ; dX = [dcj, duk

j−1, duk
j , duk

j+1, duk−1
j ]T

duk+1
j = ∇f(X) · dX

end
dhk+1 = duk+1

0

end

(19)

The adjoint codes generated by AD on the stencil formula (16) would compute the
following. Given a scalar v and a vector X , the adjoint code calculates a 5-vector

v ∇f(X).

We have similar procedures for fL(·) and fR(·). In reverse mode, we want to perform a
calculation similar to (15). We start with a vector q = [q1, q2, · · · , qm]T , and we wish to
compute p = JT q. The pseudo-code for this is as follows

set vm = 0
for k = m − 1 : 0

vk+1
0 = vk+1

0 + qk+1

X = [c0, u
k
0, u

k
1, u

k−1
0 ]T

Y = [p0, v
k
0 , vk

1 , vk−1
0 ]T

Y = Y + dvk+1
0 ∇fL(X)

for j = 1 : n − 1
X = [cj, u

k
j−1, u

k
j , u

k
j+1, u

k−1
j ]T

Y = [pj, v
k
j−1, v

k
j , vk

j+1, v
k−1
j ]T

Y = Y + dvk+1
j ∇f(X)

end
X = [cn, uk

n−1, u
k
n]T

Y = [pn, vk
n−1, v

k
n]T

Y = Y + dvk+1
n ∇fR(X)

end

(20)

Algorithm (19) for the forward product calculation and algorithm (20) for the reverse prod-
uct calculation will be extremely efficient because the codes produced by AD for calculating
the derivative of f and its adjoint will be nearly as short and simple as the function calcu-
lation. The number of independent variables is small, and there are no loops as can be seen
in (3a).



15

In 2-D, the stencil is a bit more complex as already pointed out, but the general principle
described here applies. Indeed, we have coded a version of algorithms (19) and (20) for the
2-D problem. We discuss the results of our numerical calculations next.

5 Numerical results

We present some results from our numerical computations. In both examples, we use TAMC
[7] to obtain derivative and adjoint codes from fortran sources. All the fortran codes were
‘wrapped’ as MATLAB mex-files and used in conjunction with MATLAB codes.

Our goal in this paper is to demonstrate the use of extended Jacobian framework to-
gether with exploitation of stencil in Jacobian and adjoint calculations. In a subsequent
work, we apply our approach to solve a 2-D inverse problem arising in acoustic imaging.

5.1 1-D problem

In our example, we choose ∆x = 1 and ∆t = 0.8. The domain is of length L = (N − 1)∆x.
We will use several N in our calculations. The initial boundary value problem for the 1-D
wave equation is discretized according to (3). The number of time steps is m, which will
be varied as well. For excitation f(t), we choose the derivative of the Gaussian. The graph
of f is shown in Figure 5.1a. We take two sound speeds c1(x) and c2(x), shown in Figure
5.1b when n = 100. The resulting boundary data is h(t) = u(0, t). When the medium is
c1(x) the boundary data is h1(t), and h2(t) when the medium is c2(x). Let q = h1 −h2; the
graph of q(t) is displayed in Figure 5.1c for m = 200.

We will first compute the Jacobian at c1(x) times the difference c2(x) − c1(x). The
resulting output vector should be very close to q(t). A comparison of p(t) with J(c1)(c2−c1)
is shown in 5.1c. Next we calculate the adjoint times q(t); i.e.,

p = J(c1)T (h2 − h1).

The output of this calculation will be the steepest descent direction corresponding to the
nonlinear leastsquares functional in (6). This direction would be similar to c2(x) − c1(x).
The graph of p(t) is shown in Figure 5.1d. One can see that the 2 big signals, which
are scaled versions of f , are reproduced near the places where c2(x) − c1(x) take jumps.
Unfortunately, the similarity ends there, the result shows that the inverse problem is not
very well posed. However, we did check that the Jacobian and the adjoint are correctly
computed by evaluating

qTJ dc and dcTJT q (21)

and comparing their values for any choice of c, q, and dc. The agreement is usually 14
digits. We show a typical run in Figure 5.1.

Computation time is linear in the number of x nodes for a fixed number of t nodes.
There is no difficulty with memory as the stencil codes are very simple with small number
of independent variables.
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Figure 4: (a) The excitation used in the examples. (b) The two sound speed profiles, c1(x)
in dots, c2(x) in solid. (c) The graphs of (h2 − h1) and J(c1)(c2 − c1). (d) The graph of
p = J(c1)T (h2(t) − h1), shown for comparison is the graph of c2 − c1.
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Figure 5: A test of the correctness of Jacobian and adjoint calculations. In this example,
N = 80 and m = 100. We choose at random 2 vectors dc and q displayed on the first row.
On the second row, we show J dc and JT q. The inner products qTJ dc and dcTJT q are
evaluated. They agree to 14 digits.

5.2 2-D problem

In the 2-D problem, we set up a grid of 161-by-161 node points. The computational domain
is [−80, 80] × [−80, 80], thus ∆ = 1. For interior nodes, we use a second order accurate
discretization of the wave equation (7a). On the boundary nodes, we use a second order
discretization of the Enquist-Majda boundary condition (7c-d). The corner nodes, and the
2 nodes adjacent to the corner on the boundary, require special stencils. The stencils are
obtained by requiring that the discrete wave equation be satisfied at the node while at the
same time satisfying the discrete version of the absorbing boundary condition.

For excitation, we choose a point source. To model this, if the source is at node (is, js),
ie., located at position (is∆, js∆), we assume that f(x, y, t) is

f(x, y, t) =

{
φ(t) at (is∆, js∆)
0 otherwise

.
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The time-dependent function φ(t) is chosen to be a Gaussian, and will be sampled at the
time increments ∆t = 0.55, which is the time step chosen for the finite difference scheme.

Data will be collected at 64 stations located at node points. These points are nodes
that lie close to a set of points distributed evenly at 64 places on the circumference of a
circle of radius 72. We will take 381 times steps. A window of size [−70, 70] × [−70, 70]
represents where c(x, y) is allowed to vary. Thus the mapping from sound speed c to data
at the receiver is IR141×141 to IR64×381.

In Figure 5.2a we display the sound speed distribution in the domain. The receivers are
marked with circles; receiver 1 is at 0o from the positive x-axis. The source is located by a
?. Next, in Figure 5.2b, we display the receiver data when the medium has the two cyliders
shown. The difference between the previous data and those when the domain is a homoge-
neous is shown in Figure 5.2c. In Figure 5.2d, we show the result of applying the adjoint
on the difference data in Figure 5.2c. This process is often refered to as back-propagation,
and corresponds to the steepest descent direction for the nonlinear least squares functional
in (8). The resulting vector should resemble the image of the two cylinders. Indeed this is
the case if one compares 5.2d and 5.2e, the latter displayed for comparison.

In numerous experiments with random vectors, we were able to get the inner products
similar to (21) to agree 14 digits. The adjoint calculations take approximately 115 seconds
on a 4-processor SGI Challenge L.

6 Conclusions

We have described an inverse problem arising in wave propagation, and how the need arises
for efficient computation of Jacobian and adjoint products when the problem is posed as a
leastsquares problem. In this work, we describe the Extended Jacobian framework which
gives a high level description of Jacobian and adjoint vector product calculation. The
framework is particularly appropriate for functions whose evaluation involve some type of
time stepping, such as those that arise in discretizing the wave equation.

We show further that the stencil structure of the finite difference scheme that provides
the underlying function evaluation can be exploited. Automatic differentiation is applied
at the stencil level, and the resulting subprograms fit nicely within the Extended Jacobian
framework. The framework provides a guide for building highly efficient codes for Jacobian
and adjoint vector product evaluations. The one draw back of the approach is that we have
given up some ‘automation’ for efficiency. A small amount of handcoding is required to
assemble the programs. Nevertheless, our approach provides a way to overcome memory
problems associated with present AD technology.

Overall, the idea of exposing the stencil structure is very promising and can lead to an
order of magnitude improvement in the adjoint code, as our numerical results show.
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Figure 6: (a) The setup for the numerical experiment. The two cylinders represent sound
speed anomalies. The darker cylinder is 2% faster while the lighter cylinder is 1% faster
than the background medium. Shown in circles are the receiver locations. Star marks the
location of the point source. (b) The receiver data when the two cylinders are present. (c)
The difference between (b) and receiver data when the medium is constant. (d) The adjoint
applied to (c). (e) The two cylinders plotted on the same scale as in (d) for comparison.


