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IMPROVED CONFIDENCE SETS 
IN SPHERICALLY SYMMETRIC 

DISTRIBUTIONS. 

by 

Christian Robert and George Casella 
Purdue University and Cornell University 

ABSTRACT 

The usual confidence set for a multivariate mean vector can be improved upon by 
recentering the set at a Stein-type estimator: this fact is known to be true under many 
different distributional assumptions. Thus far, however, the case of unknown variance has 
not been dealt with analytically. In this paper we prove that recentered set estimators 
dominate the usual set estimator when sampling is from any of a class of spherically 
symmetric distributions with unknown variance. 
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I. Introduction. 

The problem of estimating the mean of a spherically symmetric distribution (s.s.d.) 

has begun to receive much attention recently. In particular, the work of Hwang and 

Chen (1986), in set estimation, and Cellier, Fourdrinier and Robert (CFR) (1987), in 

point estimation, has greatly added to our knowledge of the problem. This paper is, 

in a sense, a synthesis of the previously mentioned ones. We adapt the techniques of 

Hwang and Chen (1986) (which, themselves, are adaptions of the technique of Hwang and 

Casella, 1984), to the more general case of s.s.d. distributions with unknown variance, as 

considered by CFR in the point estimation case. 

Obtaining results that are valid for a class of s.s.d. distributions has important practi­

cal implications in that an experimenter is freed from the restrictive normality assumption. 

Instead, the experimenter need only assume that sampling is from any of a class of s.s.d. 

distributions. 

The general case we consider is that of Z = (X', Y')', an observation from a p + v 

dimensional arbitrary s.s.d. with location parameter ( 8', 0)' and dispersion matrix u 2Iv+v· 

The dimensionality of X and 0 are both p (assumed ~ 3). For the point estimation prob­

lem with u 2 unknown, CFR have shown that a rather large class of shrinkage estimators, 

generalizing those of Judge and Bock (1978), was minimax for every s.s.d. In particular, 

the positive-part James-Stein estimator 

{1.1) 

is minimax for every s.s.d. if a::; 2 (p- 2). 

It is then tempting to try to show that this robustness of shrinkage estimators car­

ries over to the case of confidence intervals. Although Casella and Hwang (1983, 1987), 

and Hwang and Casella (1982, 1984) have very general results in the normal case with 

u 2 known, they only have numerical evidence that the usual confidence interval can be 

dominated !n the 01nknown variance case (see Casella and Hwang (1987)). For a large dass 

of s.s.d., including the usual ones (normal, multivariate t, double exponential), Hwang and 

Chen (1986) have established some sufficient conditions on a (in 1.1) for the domination 
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of the usual set estimator in the known variance case. (These conditions depend on the 

s.s.d.) 

In this paper, our aim is therefore more modest: we establish that, for a given class 

of s.s.d. (which includes the multivariate t), there exists ao such that, for aE(O, ao], the 

usual confidence set can be dominated, no matter which s.s.d. in the class is sampled. 

Unfortunately, this class does not contain the normal distribution with unknown variance, 

a point that we discuss in more detail in the last section of the paper. Recent work by 

Kim (1987), however, has made some progress on this problem. 
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II. Domination in the Class of Spherically Symmetric Distributions. 

When sampling from a s.s.d., the usual confidence set, based on the F-distribution, 

maintains its coverage probability no matter what s.s.d. is sampled. This follows from the 

results of Kelker (1970) on the characterizations of s.s.d. 's. A direct consequence of his 

work is the following result: 

Proposition 1. Let Fo:,p,v be the (1-a)-quantile of an F-distribution with p and v degrees 

of freedom. Let Z =(X', Y')' be a (p+v) vector following an arbitrary s.s.d. with location 

parameter ( O', 0) 1 and dispersion matrix u 2 lp+v· Then 

(2.1) 

is a (1- a)-confidence interval. 

P fF Th fKlk (1970) · r11 h IIB-XII2 /Ph Fd"t"b. roo : rom eorem 11 o e er , It J.O ows t at IIYII2 /v as an - 1s r1 utlon 

with parameters p and v, independently of the s.s.d. D 

Note that this result is true whether or not u 2 is known. 

Using (1.1), we construct the recentered set estimator 

c+ = { 0: IIO- s+(Z)Il 2 < ;Fo:,p,viiYII 2 }· (2.2) 

It is clear, by construction, that Volume (C+) = Volume (C0 ). Thus, in order to establish 

dominance, we need to show dominance in coverage probability; that Pe(O€C+) > Pe(fhC 0 ) 

for all e. 

We have 

Po(OEC+) = { !(llx- 011 2 + IIYW)dz, lc+ 
where f is the density of Z. Thus, defining k2 = ~Fo:,p,v, we can write 

Following the argument in Theorem 2.1 of Hwang ar-~d Casella {1982). we have 
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= r+oo {27r)v-1 Pe(IIO- s+(Z)II2 ~ k2 s2L)s"'-l<f>(s)ds 
lu;}l r 

2: r+oo {27r)v-l Pe(IIO- xw ~ k2 s2 ,s)s"'- 1</>(s)ds, 
lu;}l 1 

(2.3) 

where s = IIYII and </> is its density function. In fact, due to the convexity of co, 

{x : IIO- s+(z)W ~ k2s2} contains {x : IIO- xll 2 ~ k 2s2 } if I lOIIIs < k. Integration 

over s 2 then gives inequality (2.3). 

Therefore, we only need to consider the integral 

liB II 

I(a) = 1--r (27r)"'-1s"'- 1 { f(Jix- OW+ s2 )dx ds, (2.4) 
o J{x:II8-S+(z)ll2:5k2s2} 

and establish conditions under which it is an increasing function of a. At a = O,I(a) is 

equal to the, integral obtained for the usual set estimator ( 2.1). Thus, if we establish a 

range of a for which I(a) > 1(0) this, together with (2.3), will establish dominance of 

c+ over C 0 • 

Using the notation 

we can write 

a(r) = r 2 - 2JIOIIr cos {3 + IIOW, 

r± = 11011 cos {3 ± Vk2 s2 -11011 2 sin2{3, 

r± = (r± + ..j(r±_)2 + 4as2 )/2 

. {3 ks d {3 1r 
sm 0 = TIOiT an 0 ~ o < 2, 

where 0 is a positive constant, and can be ignored. Differentiating I(a), we obtain 

a 
8a (I( a)) ex 
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by simple algebraic manipulations. 

Define II(·) by f(t) =II(~) V t. Using the new notation 

and modifying the old ones accordingly as 

s 
w=­

u 

r± = 11€11 cos {3 ± Vk2w2 -ll€11 2 sin2,8, 

T± = (r± + Jrf + 4aw2)/2, 

a(r) = r 2 - 2ll€llr cos {3 + ll€112 , and • {3 kw 
Sill o = iiill' 

we see that :a I (a) is proportional to 

As we want a condition uniform in IIOII, we have only to consider the case u 2 = 1. 

To show that 

(2.7) 

for each {3 and w 2 , and hence that dominance can be attained, we can apply the result of 

Hwang and Chen (1986). A sufficient condition for (2.7) to hold is 

where 

Therefore, we have established 

Theorem 2.1: If a is such that 

{ 
ao = (k- Va} 2w2 

a1 = (k2 + a)w 2 

then c+ dominates co for every 0. 
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III. Discussion 

It is clear from expression (2.8) that there is a restriction on the s.s.d.s to which 

Theorem 2.1 applies. In particular, the theorem can be applied only if the first term of 

the inequality is finite, i.e. if 
2 • f ff(v+w2) 

w tn ( 2 ) 
Q0 ~ti~Ql h V + W 

(3.1) 

is bounded from below for every w 2 • In the normal case, ~H !~ = -!; therefore we cannot 

apply Theorem 2.1 to show dominance in this case. 

For the double-exponential distribution, we have 

and thus h ( t) ex: exp (-y't). Therefore, we get 

ff(t) 1 ff(v+w 2) 1 1 
-- = --- and -:"-~---::7- -
h(t) 2-Ji h(v +w2) 2 J(v +w2) 

Thus (3.1) cannot be bounded from below. Similar to the normal distribution, the double 

exponential has tails that are not flat enough to satisfy to this condition. We will see below 

that the multivariate -t is a limiting case with respect to this criterion. 

Consider now the multivariate-t distribution with parameters (}, u 2 and N (degrees of 

freedom): 

(3.2) 

For this distribution we have 

ff(t) N+p+v 
h(t) 2(N + t) 

an increasing function of t. Thus 

2(N + (1 + (k- y'a)2)w2)' 

and 
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We now just have to solve the equation 

N + p + v = p- 2 en(k + ~k2 +a) 
1 + (k- y'a)2 ky'a y'a 

(3.3) 

to get an upper bound ao. And, applying Theorem 2.1 for every aE[O,ao], c+ dominates 

co. 

Note that, as N ---+ oo, the solution to (3.3) goes to zero, again showing that we 

cannot deduce anything for the normal distribution with unknown variance. The reason 

why the normal case cannot be covered by Theorem 2.1 is that it cannot be handled by 

any technique that operates conditionally on 8 2 • That is, in order to prove dominance in 

the normal case one cannot work with the square-bracketed expression in (2.6), but rather 

with the entire integrand. This present an analytical problem of great difficulty, as the 

en tire integrand is extremely unwieldy. 

The fact that the proof conditional on 8 2 would not work for the normal is contained 

in the results of Hwang (1985), which is concerned with universal domination of point 

estimators. Informally speaking, one estimator will universally dominate another only if its 

confidence sets dominate for all confidence levels. This can be translated in domination for 

all 8 2 , and applying Theorem 3. 7 of Hwang (1985), we see that it is possible to dominate 

the usual confidence set when sampling from a multivariate t. Hwang's Theorem 3.10, 

however, shows that a proof conditional on 8 2 cannot succeed in the normal case. 

Table 1 gives some values of a0 for a:= 0.05. As one can see, the obtained values are 

far from the 'optimal choice' 

a*= _v_(p- 2) 
v+2 

(3.4) 

The bounds given in Table 1 are logically decreasing functions of v and N since, as v or N 

goes to infinity, the multivariate-t converges toward a normal distribution. Although the 

decrease is not very rapid inN, if we compare our values with those of Hwang and Chen 

(Table 1, 1986), we can see that our values are much more smaller: working conditionally 

on 8 2 gives restrictive conditions. 

Hwang and Chen (1986) also note that the general solution for ao yields a rather small 
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upper bound, one that can be improved upon in special cases. It is clear that their result 

(Theorem 3.1) can be generalized in the following way. 

Proposition 3.1 If 

{a) g = lnh is convex, 

{b) {t ~ 1; P-; 2 + as2g1(s 2 a(t - t- 1) + (1 + (k - y'a) 2)s2)(1 + t 2 ) > 0} 

is an interval (possibly degenerate), 

then c+ dominates co for all (). 

In the normal case, we have g(t) = -f. Even if conditions (a) and (b) of Proposi­

tion 3.1 are satisfied, we have 

* *-1 

g(as2 (t*- t*- 1
) + (1 + (k- Va) 2)s2)- g((l + (k- Va) 2)s2 ) = -as2 -t ---2t-

which cannot be bounded from below. 

For the double-exponential distribution, we get the same conclusion as before (g(t) = 

lnM- Vt where M is a normalizing constant). 

Consider now the multivariate - t distribution; we have (see (3.2)) 

N+p+v ( t) g(t) = - 2 in 1 + N 

It has been proved in Hwang and Chen (1986) that conditions (a) and (b) are satisfied for 

this function. We have 

_A.._s this expression is a. decreasing functiort of s 2 , we get the sufficient condition 

N + p + v ( . r= (k + yk2 + a) 2 - a ) 0 (k + JP +a) ----in l+va ={..n 
2(p- 2) (k + yk2 + a)(l + (k- y'a)2) Va 

(3.5) 
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Therefore we have established 

Theorem 3.2. If at(O, ao) where a0 is solution of {9.5}, c+ dominates co for multivari­

ate -t distribution with N degrees of freedom. 

The bounds obtained in Table 2 are greater than their counterparts in Table 2. Yet 

they still remain significantly inferior to the "optimal" bound for point estimates, given 

in (3.4). This fact definitely shows the need for methods which do not work conditionally 

on 8 2 but which, roughly speaking, stay "inside the integrals". 
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N =2 

1/ 

5 10 20 25 
p 

5 0.50 0.19 0.09 0.07 
10 1.40 0.49 0.23 0.19 
20 3.21 1.06 0.52 0.39 
30 5.02 1.60 0.70 0.56 
60 10.42 3.40 1.31 1.03 

N=5 
1/ 

5 10 20 25 
p 

5 0.40 0.16 0.08 0.07 
10 1.23 0.44 0.21 0.18 
20 2.97 0.99 0.45 0.36 
30 4.76 1.53 0.67 0.54 
60 10.14 3.12 1.28 1.00 

N = 10 

1/ 

5 10 20 25 
p 

5 0.3 0.12 0.07 0.06 
10 1.02 0.37 0.19 0.16 
20 2.65 0.89 0.41 0.34 
30 4.37 1.41 0.63 0.50 
60 9.68 2.98 1.22 0.96 

Table 1. Solutions of (3.3) for a = 0.05. 
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N = 2 

v 
5 10 20 25 

p 

5 0.74 0.25 0.11 0.09 
10 2.41 0.79 0.33 0.29 
20 6.00 1.91 0.8 0.62 
30 9.68 3.02 1.24 0.96 
60. 20.80 6.32 2.52 1.94 

N=5 

v 
5 10 20 25 

p 

5 0.58 0.21 0.10 0.08 
10 2.03 0.68 0.30 0.24 
20 5.42 1.73 0.73 0.57 
30 8.98 2.81 1.17 0.91 
60 19.84 6.05 2.42 1.87 

N=lO 

v 
5 10 20 25 

p 

5 0.41 0.16 0.08 0.07 
10 1.60 0.56 0.26 0.21 
20 4.66 1.51 0.65 0.52 
30 8.03 2.56 1.06 0.83 
60 18.64 5.72 2.32 1.80 

Table 2. Solutions of (3.4) for a = 0.05. 
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