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 With each new mission to Mars, the amount of available data increases dramatically. This 

drastic increase in data volume requires new approaches to take advantage of the available 

information. The goal of the work presented here is to maximize the science return from existing 

and future datasets. 

 Chapter 2 uses multiple orbital datasets to characterize Gale Crater, with a focus on the 

northwestern crater floor and lower mound. This work played a role in the selection of Gale 

Crater as the landing site for Mars Science Laboratory (MSL). It was not possible to conclusively 

determine the origin of the lower mound, but we interpret features on the upper mound as aeolian 

cross-beds. 

 Chapters 3 and 4 investigate methods for improving the accuracy of laser-induced 

breakdown spectroscopy (LIBS). In Chapter 3, the accuracy of partial least squares (PLS) and 

two types of neural network are compared, using several pre-processing methods including 

automated feature selection. We find that partial least squares without averaging typically gives 

the best results. Chapter 3 also investigates the influence of grain size on the accuracy of 

analyses, showing that >20 analysis spots may be required for heterogeneous targets. In Chapter 

4, we test the hypothesis that clustering the dataset before analysis leads to improved accuracy. 

We observe modest improvements for five k-means clusters and with iterative application of 

clustering and PLS. 



 

 

 

 In Chapter 5, we use several methods to relate Mars Exploration Rover (MER) 

Panoramic camera multispectral observations to alpha particle X-ray spectrometer and 

Mӧssbauer spectrometer results. The correlation between the Gusev datasets is often poor 

although there is some improvement when only data from drilled spots is considered. The 

performance is better for the Meridiani data, but Meridiani PLS models are not generalizable to 

Gusev data. MSL ChemCam analyses and MastCam spectra may show higher correlations 

because the instruments have a similar information depth.  

Clustering and classification methods can be used on any dataset, and as the volume of 

data from planetary missions continues to increase, synthesis of multiple datasets using 

multivariate methods such as those in this work will become increasingly important. 
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CHAPTER 1 

EXPLORING MARS IN THE INFORMATION AGE 

As the first data were downlinked from the Mariner 4 probe, it trickled down to Earth so 

slowly that JPL employees used colored pastels to fill in the pixels one by one, manually 

producing the first spacecraft image of Mars[1][2].  The Mariner 4 mission returned a total of 22 

images [3], and was followed by Mariners 6 and 7, returning 26 and 33 near-encounter images, 

respectively[4]. A complete map of the planet’s surface would have to wait for the arrival of 

Mariner 9 in orbit and the dissipation of a global dust storm[5]. Preliminary landing sites for the 

Viking landers were chosen using Earth-based radar and Mariner 9 observations [6], but images 

from the Viking 1 orbiter, with resolutions ranging from 100 m to 5 km per pixel, revealed that 

the primary landing site for Viking 1was too rugged[6], [7]. Instead, an alternate site to the 

northwest was selected. The lander touched down successfully, but images from the surface 

revealed a rocky surface which could easily have damaged an unlucky lander [8]. The initial 

landing site for Viking 2 was also found to be too rough in orbital images, and an alternate site in 

Utopia Planitia was selected. The higher northern latitude of the Viking 2 sites prevented Earth-

based radar observations [6].  

Modern Mars exploration no longer suffers from a lack of data. Mars Global Surveyor 

(MGS) orbited the planet for 7.5 Earth years and returned detailed global topography [9], color 

maps of the entire planet at 230 m per pixel and high-resolution images at 1.5 m per pixel [10], 

and thermal emission spectra and mineral maps at 3 km per pixel [11].  Following the success of 

MGS, the Mars Odyssey mission arrived at Mars in 2001 and has returned global daytime and 

nighttime  
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Figure 1: a) The first image of Mars, taken 

by the Mariner 4 spacecraft, and hand-

colored by employees at NASA’s Jet 

Propulsion Laboratory as the data were 

received. b) the actual Mariner 4 image, 

showing the limb of the planet. 

 

thermal infrared maps at 100 m per pixel and 18 m per pixel visible images [12], along with 

abundance maps for K, Fe, Si, Th, U, S, H, and Cl, based on gamma-ray spectrometer data [13]. 

A third orbiter, Mars Express, arrived at Mars in 2003 carrying a wide range of instruments, 

including a visible to near-infrared (VNIR) mapping spectrometer, ground-penetrating radar, a 

fourier spectrometer and a UV/IR spectrometer for atmospheric studies, an energetic neutral 

atom analyzer, and a stereo color camera capable of collecting color stereo images at 2 m per 

pixel [14]. 

a) 

b) 
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 The steady stream of orbital data provided by MGS, Mars Odyssey and Mars Express 

became a flood with the arrival of the Mars Reconnaissance Orbiter (MRO) in 2006. MRO 

transmits data at ~6 Mbits per second, a significant improvement over its predecessors, and 

carries six science instruments. These include the High Resolution Imaging Science Experiment 

(HiRISE) which is capable of collecting color images at 25 cm per pixel [15]; the Compact 

Reconnaissance Imaging Spectrometer for Mars (CRISM), a VNIR imaging spectrometer with a 

spatial resolution of up to 18 m per pixel [16]; the Context Camera (CTX) which images large 

swathes of the surface at 6 m per pixel [17]; the Mars Color Imager (MARCI), a wide-angle 

camera for daily global atmosphere and dust storm monitoring[18]; SHARAD ground-

penetrating radar; and the atmospheric profiler Mars Climate Sounder (MCS)[19]. MRO has now 

returned more data than all previous missions combined. 

1. Post-Viking Landing Site Selection 

 The first landed mission after Viking 2 was the Mars Pathfinder mission, which relied 

upon Viking observations and Earth-based data, including images, radar, early topographic maps 

and estimates of surface physical properties (e.g. thermal inertia, roughness, albedo) to select a 

site. Forty potential sites were initially proposed, but the latitude (10-20° N) and elevation 

requirements (< 0 km elevation) of the mission narrowed this list down to 4. The landing ellipse 

for Mars Pathfinder was large (70 km by 200km) and a site in Ares Valles was selected because 

it met the engineering and safety requirements and because its position in the mouth of a large 

outflow channel was hoped to provide a “grab bag” of samples from diverse sources [20].  

Landing site selection for the Mars Exploration Rovers (MERs) benefitted from MGS and 

Mars Odyssey data, permitting more a more sophisticated discussion of the scientific potential of 

possible sites. Out of 185 initially proposed landing sites, the Mars science community selected 
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25 sites on the basis of high-resolution Mars Orbital Camera (MOC) imaging and overall science 

potential. These were further downselected to six sites, three of which were then excluded based 

on engineering concerns, including horizontal wind speeds, surface slopes and rocks. The 

Opportunity rover landing site in Meridiani Planum was selected based on the strong thermal 

emission spectroscopy (TES) signature of coarse-grained hematite on the surface [21], and the 

Gusev Crater landing site for the Spirit rover was selected on the basis of geomorphology, 

indicating that the crater once was the catchment for flowing water that breached the southern 

rim to form Ma’adim Vallis [22]. The prediction of the physical properties of the sites such as 

thermal inertia, albedo, rock abundance and slopes were successful[23]. However, the geologic 

interpretation of the sites based on orbital data proved more difficult. The hematite detected by 

TES at Meridiani was interpreted upon landing to be the result of precipitation in acidic, saline 

groundwater [24], but the floor of Gusev Crater was found to be primarily basaltic, with no 

evidence for lacustrine deposits [25].  

The Phoenix lander was the first mission to benefit from MRO data during the landing site 

selection process. Phoenix was required to land between 65° and 72° N at an elevation below      

-3.5 km with safe wind speeds. Within the latitude range considered, all areas satisfied the 

elevation and wind speed requirements, but rock abundance was a significant concern. MOC 

images of the preferred landing site for Phoenix suggested an acceptable rock abundance, but 

early HiRISE images with their higher resolution (~30 cm per pixel) revealed rock abundances 

exceeding the safety limit defined by the Viking 2 site. This led to the selection of an alternate 

landing site based on HiRISE, CRISM, CTX and THEMIS data [26]. HiRISE images also 

showed that much of the terrain under consideration for the Phoenix landing site exhibited 

pattered ground, supporting the Mars Odyssey Gamma Ray Spectrometer (CRS) results which 
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suggested the presence of ice or icy soil beneath a thin layer of surface soil in much of the 

latitude range considered [26]. This interpretation of the landing site characteristics proved to be 

very accurate: the first images of the landing site from the lander showed an expansive plain of 

patterned ground with very few large rocks, and the exhaust from the landing thrusters cleared 

away a thin layer of soil to reveal water ice ~5cm below the surface[27].    

 The landing site selection process for the Mars Science Laboratory mission has greatly 

benefitted from the significant volume of data from previous missions and the ability to target 

specific sites for detailed study with the suite of instruments on MRO. In addition, the novel 

MSL entry, descent and landing (EDL) system resulted in a significantly smaller landing ellipse 

(~20 km), allowing sites to be considered in which the primary science target was outside the 

landing ellipse. The selection process proceeded over 6 years and 5 landing site workshops that 

were open to the entire Mars science community. At the first workshop 33 potential sites were 

proposed, but additional data from MRO led to a total of 50 sites at the beginning of the second 

workshop. At the second workshop, the science potential of the sites was considered, based on 

the following criteria: 1) The ability to characterize the geology, 2) the likelihood of accessing a 

present or past habitable environment, 3) the preservation potential of the depositional setting, 

and 4) the ability to assess the biological potential of the deposits [28][29].  Based on these 

criteria and engineering considerations, the list was narrowed down to six sites shortly after the 

second workshop. Between the second and third landing site workshops, a call for new sites 

based on new MRO data went out. This call for new sites resulted in the addition of Gale crater 

and the replacement of the North Meridiani “ultra-safe” site with an equally safe, but 

scientifically more interesting South Meridiani site. Gale crater had been proposed at the first 

and second landing site workshops but evidence of phyllosilicate minerals was lacking. 
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However, after the second workshop, CRISM observations of the mound near the proposed 

ellipse showed evidence of both phyllosilicate and sulfate minerals [30]. The third landing site 

workshop resulted in a list of four “finalist” sites: Mawrth Vallis, Eberswalde Crater, Holden 

Crater, and Gale Crater. A second call for additional sites between the third and fourth 

workshops led to the proposal of seven possible sites, but after targeted MRO observations, none 

were deemed as attractive as the four finalists[29]. 

 An extensive campaign of orbital observations from MRO, Mars Express, and Mars 

Odyssey allowed these four finalist sites to be characterized at a level of detail unprecedented in 

Mars exploration. All four sites were found to be extremely scientifically interesting and no clear 

favorite emerged at the 4
th

 or 5
th

 public workshops. Moreover, an extensive engineering analysis 

of the four sites reveals that they were essentially indistinguishable in terms of spacecraft safety. 

Shortly after the 5
th

 workshop, the MSL science team ranked the four sites, listing Gale Crater 

and Eberswalde Crater as the top two sites, with a slight preference for Gale. Gale Crater was 

announced as the MSL landing site on July 22, 2011[31]. The Gale Crater landing site is 

discussed in detail in Chapter 2. 

2. Mars Science Laboratory 

The Mars Science Laboratory (MSL) mission launched on November 26, 2011 and will 

arrive at Mars in August 2012. MSL is intended to refine the successful “follow the water” 

strategy that has driven recent Mars exploration and  “search for evidence of past and present 

habitable environments”[28]. To achieve this goal, MSL is carrying 80 kg of science 

instruments, and will be capable of traversing >20 km during its 1 Mars-year (~1.88 Earth year) 

primary mission.  
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 Like previous missions, MSL has color cameras mounted on the mast. However, MSL’s 

Mastcams [32] have two different focal lengths (34 mm and 100 mm).The  Mastcams also use 

Bayer color filters to produce color images with a single exposure. In addition to the red, green, 

and blue Bayer filters, a filter wheel with narrow-band geological filters can be used to create 

multispectral observations with both the 34mm and 100 mm cameras. MSL also carries two 

other science cameras that make use of Bayer filters to return high-definition color images: the 

Mars Hand Lens Imager (MAHLI)[33] and the Mars Descent Imager (MARDI) [34]. MAHLI 

will serve a purpose similar to the microscopic imager on MER, providing images of targets in 

the rover work volume with up to 13.9 µm per pixel resolution. MAHLI is capable of focusing 

on targets from 20.4 mm out to infinity, so it can also be used for imaging of more distant 

targets, or to gain multiple perspectives of a target by moving the rover’s arm rather than driving. 

MAHLI is also equipped with white light and UV LEDs which will enable night-time imaging 

and detection of fluorescent minerals[33]. MARDI is a downward-pointing camera mounted 

under the rover that will begin collecting 1600 x 1200 pixel frames at a rate of 4.5 frames per 

second as the heat shield is jettisoned during descent[34]. These images will provide high-

resolution context for the landing site, and may be used to generate digital elevation models of 

the terrain. After collecting the descent video, MARDI may also be used during surface 

operations to collect images of the soil from a distance of ~70 cm and to provide visual 

odometry[34]. 

MSL will also carry several instruments for analyzing samples collected by the percussion 

drill on the rover’s arm, which produces a powder with ~90% of particles < 150 microns [35]. 

The Chemistry and Mineralogy (CheMin) instrument agitates the <45 micron fraction of the 

powder in a resonant cell with an X-ray transparent window, and passes a Co Kα X-ray beam 
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through the powder to produce a diffraction pattern, allowing the identification of minerals based 

on their crystal structure [36]. Although the X-ray fluorescence capability on CheMin was de-

scoped, the XRF data will still be collected and analyzed on a “best effort” basis [37]. The 

CheMin sample wheel holds 27 reusable sample cells and five permanent reference standards. 

The Sample Analysis at Mars (SAM) instrument package includes a gas chromatograph (GC) 

which uses six columns to separate organic compounds prior to analysis with a quadrupole mass 

spectrometer (QMS). The GC-QMS system has better than part per billion sensitivity for organic 

detection [38]. The SAM sample carousel holds 74 sample cups for powder analysis. In addition, 

SAM contains a tunable laser spectrometer which can detect CH4, H2O and CO2 in the 

atmosphere and measure key isotope ratios, including 
13

C/
12

C, 
18

O/
16

O , and 
17

O/
16

O in CO2, D/H 

in water and 
13

C/
12

C in methane. The methane detection limit is < 1ppb, and the Chemical 

Separation and Processing Laboratory within SAM can concentrate methane in atmospheric 

samples, further improving the methane detection limit [38].  

The Remote Environmental Monitoring Station (REMS) on MSL is a weather monitoring 

package attached to the side of the rover mast, capable of measuring air and ground temperature, 

wind speed, humidity, and UV radiation [39]. On top of the rover body, the Radiation 

Assessment Detector (RAD) will assess the modern radiation environment so that future robotic 

and crewed missions can carry appropriate levels of shielding, and to determine any effect that 

radiation may have had on surface materials and potential biomarkers [40]. The Dynamic Albedo 

of Neutrons (DAN) instrument [41] sends pulses of neutrons into the upper ~1 meter of the 

martian surface and measures the amount of backscatter, allowing an estimate of the hydrogen 

content (a proxy for water content). 
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MSL also carries an alpha particle X-ray spectrometer (APXS; [42]), similar to the 

instruments carried on Sojourner, Spirit, and Opportunity, but with significantly (~3x) improved 

sensitivity and a tolerance of temperatures up to -5°C. This enables rapid (~3 hr) full chemical 

analyses of rocks and soils during the day on Mars [43]. APXS is restricted to measuring targets 

within the reach of the robotic arm, but the ChemCam instrument will provide elemental 

compositions for targets up to 7 meters away from the rover. ChemCam uses a technique called 

laser-induced breakdown spectroscopy (LIBS), which is described in the following section. 

ChemCam also is capable of collecting monochromatic images of its targets with a resolution of 

0.1 mrad, corresponding to ~0.7 mm per pixel at a distance of 7 meters [44]. 

3. Laser-Induced Breakdown Spectroscopy 

LIBS is an analytical technique that uses laser pulses to ablate target material and form a 

plasma. The spectrum of the plasma plume can then be used to determine the elemental 

composition of the target.  The first example of using a laser plasma as the emission source for 

spectroscopic analysis was published in 1964, only a few years after the development of the laser 

[45]. This early study noted that LIBS has several advantages over spectroscopy using traditional 

arc or spark excitation sources, including the ability to analyze targets of any conductivity 

without touching them, even in inert or evacuated environments. 

 The ability to rapidly analyze samples from a distance with no sample preparation and the 

development of smaller, less expensive and more-reliable lasers make LIBS an appealing 

technique for space exploration [46]. Early studies of LIBS for space exploration showed that the 

size and brightness of the plasma plume formed is highly dependent on atmospheric pressure. At  
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Figure 2: LIBS plasma plumes under varying atmospheric pressure. Figure 4 of Knight et 

al., 2000. [46] 

 

760 Torr, the laser spark is small (2-3 mm diameter) and emission is confined to the surface of 

the sample, but at ~5 Torr (similar to martian atmospheric pressure) the plasma expands 

significantly to ~16 mm diameter and emission is greatest in the center of the plume, somewhat 

above the surface. At very low pressures (~0.1 torr) the plasma plume disperses rapidly and the 

only region with density high enough to show significant emission is at the surface of the 

sample. Thus, martian atmospheric pressure is near-optimal for a bright emission spectrum, with 

enhanced emission intensity compared to both low-pressure and high-pressure environments 

[46]. 

 ChemCam will use a Nd:KGW 1067 nm laser with a spot size of 200-500 µm, pulse 

duration of 5 ns, and pulse energy of 14 mJ to ablate targets within 7 m of the rover [44]. This 

results in a power density of  ~9x10
13

 – 1.4x10
13

 Wcm
-2

, well above the threshold for 

stoichiometric ablation  (10
9
 Wcm

-2
) [47]. ChemCam data will play an important tactical role 

during the mission, enabling rapid chemical analyses and identification of targets for further 

study by other instruments (e.g., APXS, CheMin and SAM). ChemCam will provide the only 

chemical analyses of targets that are inaccessible to instruments on the rover’s robotic arm and 

can detect light elements such as H, Li, Be, B, C, and N that are not detected by APXS. The 
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shockwave from the LIBS plasma is capable of clearing away thin layers of dust on the target, 

and repeated shots can penetrate thin alteration rinds and coatings [44] [48] 

The strength of an element’s emission lines in the LIBS plasma is influenced by “matrix 

effects” including self-absorption, the degree of ionization in the plasma, the degree of laser-to-

sample coupling, and the abundance of other elements [49]. Initial efforts at quantitative analysis 

with LIBS used univariate calibration based on the area under emission lines for the element of 

interest (e.g., [50][51]). Subsequent work has shown that multivariate techniques which make 

use of the information content of the entire spectrum are better at accounting for matrix effects 

and therefore yield more accurate results [49][52].   

4. Outline of Following Chapters 

Chapter 2 presents the results of a detailed characterization of Gale Crater. This study used 

some of the many available orbital datasets and focuses in particular on the MSL landing site and 

proposed traverse area. A simplified stratigraphic section of the northwestern mound is 

presented, along with two potential MSL traverses. The origin of the lower mound units remains 

ambiguous based on the data considered, but features on the upper mound interpreted as very 

large cross-beds suggest an aeolian origin for the upper mound. Chapter 2 was peer-reviewed 

and published in the online, open-access Mars journal [53]. 

Chapter 3 and Chapter 4 both deal with a large set of LIBS spectra of geologic materials 

collected with a laboratory LIBS system very similar to ChemCam.  The analyses in Chapter 3 

are restricted primarily to silicates with low volatile content, while Chapter 4 also includes 

carbonates, sulfates, and silicates with higher volatile contents.  

Chapter 3 compares several multivariate analysis methods for quantitative LIBS analysis of 

geological materials. Partial least squares, using the full LIBS spectrum, is found to give the 



 

12 

most accurate predictions overall, although the use of feature selection to reduce the data volume 

also showed good results for many elements and merits further investigation. In addition, 

Chapter 3 investigates the influence of target grain size on the performance of quantitative LIBS. 

LIBS analyses of coarse-grained rocks often resulted in lower accuracy and precision. The 

average number of analysis spots required to measure the correct composition varied from ~10 

on fine-grained samples to >20 for coarse-grained samples. Chapter 3 was peer-reviewed and 

published in Icarus [54] 

Chapter 4 examines several multivariate methods of grouping LIBS spectra prior to 

quantitative analysis, to determine whether PLS models based on similar spectra give more 

accurate results than those trained on a large, diverse dataset. For the data set considered, k-

means clustering with five clusters resulted in a modestly lower overall error. The iterative 

application of PLS and k-means clustering on the predicted values resulted in similar 

improvements in accuracy. The results from Chapter 4 have been submitted to Spectrochimica 

Acta B: Atomic Spectroscopy and are in review. 

 Chapter 5 applies multivariate methods to the analysis of multispectral Pancam and 

APXS data from the Mars Exploration rover Spirit. Soft Independent Modeling of Class Analogy 

(SIMCA) classification is used in an attempt to assign targets to APXS classes based on their 

Pancam spectra. The results were mixed, and in many cases spectra were assigned to several 

APXS classes. However, SIMCA shows promise as a method of more rigorously determining 

whether a new target represents a novel Pancam spectral class or APXS compositional class. The 

results described in Chapter 5 are in preparation for submission to Icarus. 

 Chapter 6 synthesizes the results of the previous chapters. Potential applications of the 

methods described in chapters 3, 4, and 5 are discussed, and areas of future work are identified. 
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The potential of MSL to test many of the hypotheses presented in Chapter 2, and the implications 

for future Mars exploration are discussed. 
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CHAPTER 2 

 

GEOLOGIC MAPPING AND CHARACTERIZATION OF GALE CRATER AND 

IMPLICATIONS FOR ITS POTENTIAL AS A MARS SCIENCE LABORATORY 

LANDING SITE
1
  

0. Abstract 

Gale Crater is located at 5.3S, 222.3W (137.7E) and has a diameter of ~155 km. It has 

been a target of particular interest due to the >5 km tall mound of layered material that occupies 

the center of the crater. Gale Crater is currently one of four finalist landing sites for the Mars 

Science Laboratory rover. We used visible (CTX, HiRISE, MOC), infrared (THEMIS, CRISM, 

OMEGA) and topographic (MOLA, HRSC, CTX) datasets and data products to conduct a study 

of Gale Crater, with a particular focus on the region near the proposed Mars Science Laboratory 

(MSL) landing site and traverse.  

The rim of Gale Crater is dissected by fluvial channels, all of which flow into the crater with 

no obvious outlet. Sinuous ridges are common on the crater floor, including within the proposed 

MSL ellipse, and are interpreted to be inverted channels. Erosion-resistant polygonal ridges on 

the mound are common and are interpreted as fractures that have been altered or cemented by 

fluid. We identified key geomorphic units on the northwestern crater floor and mound, and 

present a simplified stratigraphy of these units, discussing their properties and potential origins. 

Some layers in the mound are traceable for >10 km, suggesting that a spring mound origin is 

unlikely. We were unable to rule out a lacustrine or aeolian origin for the lower mound using 

                                                 
1
 This chapter was originally published in the Mars journal: Anderson, R., Bell III, J.F.(2010), Geologic mapping 

and characterization of Gale Crater and implications for its potential as a Mars Science Laboratory landing site, The 

Mars Journal, 5, 76-128, doi:10.1555/mars.2010.0004. Copyright © 2010 Anderson and Bell. 
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presently-available data. Pyroclastic processes likely have contributed to the layers of the Gale 

mound, but were probably not the dominant depositional processes. The upper part of the mound 

exhibits a pattern that could be cross-bedding, which would suggest an aeolian dune-field origin 

for that unit. Aeolian transport appears to be the most plausible mechanism for removal of 

material from the crater without breaching the rim; however, fluvial, mass-wasting, or periglacial 

processes could have contributed to the breakdown of material into fine grains susceptible to 

aeolian transport. We have identified two potential traverses for MSL that provide access to the 

diverse features on the crater floor and the mound. We discuss the suitability of Gale Crater as a 

landing site for MSL in terms of diversity, context, habitability and biomarker preservation and 

conclude that Gale Crater would be a scientifically rewarding and publicly engaging landing site.  

 

1. Introduction and Previous Work 

Gale Crater is located at 5.3S, 222.3W (137.7E) and has a diameter of ~155 km. It is 

situated in the northeastern portion of the Aeolis quadrangle on the boundary between the 

southern cratered highlands and the lowlands of Elysium Planitia (Figure 1), and the crater has 

been estimated to be Noachian in age (~3.5–3.8 Ga) [55][56] [57]. Gale has been a target of 

particular interest due to the mound of material that occupies the center of the crater, standing ~6 

km higher than the lowest point on the floor. The age of the mound has been loosely constrained 

to the late Noachian/early Hesperian [30]. Gale Crater has been selected as the landing site for 

the MSL mission [31].  

Early maps based on Viking data list a wide range of potential origins for the material in 

Gale Crater. Scott et al. [58] interpreted the material as lava flows and aeolian deposits, while 

others [55] suggested volcanic, aeolian or fluvial sedimentation, and Scott and Chapman  [59]  
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invoked aeolian, pyroclastic, lava flow, fluvial and mass-wasted deposition. Cabrol et al. [56] 

used Viking images, a Viking topographic map and several early Mars Orbiter Laser Altimeter 

(MOLA) profiles to suggest that Gale Crater may have hosted a lake intermittently from its 

formation in the Noachian until the early to middle Amazonian, and to speculate that it could 

have provided diverse environments for martian life, ranging from warm hydrothermal waters 

shortly after the crater-forming impact, to cold, ice-covered water at later times.  

Malin and Edgett [60]identified Gale Crater as one of a class of partially filled impact craters 

on Mars. They cited the fact that the peak of the Gale mound is higher in elevation than some 

portions of the crater rim to suggest that the entire crater was filled with layered material that 

was subsequently eroded. They also identified an erosional unconformity on the mound, 

suggesting at least two episodes of net deposition and a significant amount of erosion.  

 

Figure 1. Global topographic map of Mars, based on MOLA data [9]. The black arrow marks the location of Gale 

crater. 
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Malin and Edgett [60] also discussed a number of possible origins for the strata observed in 

Gale and other filled craters. Pyroclastic deposits were discussed but determined to be an 

unlikely source because terrestrial deposits thin very rapidly with distance from the source, and 

most of the layered rocks on Mars are far from potential volcanic vents. Impact ejecta was 

likewise ruled out because it rapidly thins with distance from the impact and therefore, to form 

thick deposits like the Gale Crater mound, would require "prodigious quantities" [60] of 

material. Aeolian deposition was considered a possible source if processes could be identified to 

explain the large volume of layered material and the apparent periodic nature of the layers in 

many deposits. Ultimately, Malin and Edgett [60] favored a lacustrine origin for the layered 

material, citing the thickness and rhythmic nature of many layered deposits across the planet and 

their affinity for closed basins such as craters.  

Pelkey and Jakosky [61] conducted a study of Gale Crater using data from the Mars Global 

Surveyor (MGS) MOLA and the Thermal Emission Spectrometer (TES), as well as other Viking 

Orbiter and MGS Mars Orbiter Camera (MOC) data. They found evidence for a thermally thick 

dust layer on the upper mound which thins to reveal darker, higher thermal inertia material. They 

interpreted the northern crater floor as a dust-covered, cemented mantle, while the southern 

crater floor had little dust cover and variable terrain. They also found that the sand sheet in Gale 

Crater had a higher than expected thermal inertia and suggested some combination of coarse 

grain size, induration or inhomogeneities in the field of view as an explanation. They suggested 

that dark-toned material may be transported from the southeast into the southern portion of Gale 

Crater and then northward around the mound. Pelkey and Jakosky [61]concluded that 

interpreting the surface of Gale Crater is not straightforward, but that the surface layer varies 
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considerably, likely due to multiple processes, and that aeolian processes have likely been 

important in shaping the surface.  

In a subsequent paper, Pelkey et al. [62] added Mars Odyssey Thermal Emission Imaging 

System (THEMIS) thermal inertia and visible observations to their analysis. They confirmed the 

observations of Pelkey and Jakosky [61] that dust cover increases with altitude on the Gale 

mound and that aeolian processes have played a significant role in shaping the current surface of 

the crater and mound. They also noted that the numerous valleys in the crater wall and mound 

support hypotheses for aqueous processes in Gale Crater, and that the valleys likely postdate any 

deep lake in the crater because they extend down to the crater floor. 

 Thomson et al.  [63] interpreted ridges and fan-shaped mesas on the mound and crater rim as 

inverted fluvial channels and alluvial fans. They noted that there is no obvious change in slope to 

explain the transition from some inverted channels to fan-shaped features and suggested that this 

could be explained by a stream encountering a slower-moving body of water and depositing its 

sediment load as a fan. They also suggested that the upper mound material may be related to a 

widespread layered, yardang-forming unit known as the “Medusae Fossae Formation” (MFF). 

Recently, Zimbelman [64] has also mapped the Gale Crater mound as part of the MFF. 

Rossi et al. [65], citing unconformities in the mound, a relatively young crater retention age, 

and claiming that there is "no or little evidence of fluvial activity in the immediate surroundings 

of the craters hosting bulges and within their rim" have hypothesized that the Gale Crater mound 

has a local origin as a large spring deposit. 

Rogers and Bandfield [66]analyzed TES and THEMIS spectra of the dunes on the floor of 

Gale Crater and interpreted the results to indicate that they have a composition similar to olivine 

basalt, consistent with the Hamilton et al.  [67] decorrelation stretch mosaic of Gale Crater, in  
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which mafic materials are displayed as magenta (Figure 2c). Analysis of OMEGA and CRISM 

observations confirm the presence of mafic minerals such as olivine and pyroxene in the dunes 

[30].  

Gale Crater was proposed as a landing site for MSL at the first landing site workshop [69] 

[70]. The MSL landing site is located on top of a large fan-shaped feature [69] which extends to 

the southeast from the end of a valley at the base of the northwestern crater wall. Numerous 

presentations at subsequent workshops made the case for Gale Crater based on the exposure of a 

>5 km-thick sedimentary sequence, the numerous fluvial features on the mound and crater walls, 

and the detection of phyllosilicates and sulfates in the layered mound near the landing site (e.g. 

  

 

Figure 2: (a) HRSC shaded relief map of Gale 

crater, based on observations H1916_0000, 

H1927_0000, and H1938_0000. The proposed MSL 

landing ellipse is located in the NW crater floor. The 

lowest elevation in the crater is marked with an 

arrow. (b) THEMIS thermal inertia map of Gale 

crater [68]. (c) THEMIS decorrelation stretch map of 

Gale crater, using bands 8, 7 , and 5 for red, green 

and blue, respectively[67]. The THEMIS maps do 

not cover the eastern and southern rim of the crater. 
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[71][72][73]).  

Prior to the detection of hydrated minerals in Gale Crater, the site was interesting primarily 

for its geomorphology. However, the discovery of phyllosilicates and sulfates correlated to 

stratigraphic units in the northwestern mound, including the specific identification of the mineral 

nontronite (suggesting a moderate pH and possibly reducing conditions at the time of formation), 

have made Gale a more appealing site in terms of potential habitability and biomarker 

preservation [74]. In addition, the strata of the Gale mound appear to trend from phyllosilicate-

bearing lower layers to sulfate and oxide-bearing middle layers to relatively unaltered upper 

layers [30]. Bibring et al. [75] have proposed a global transition in climate and weathering on 

Mars that predicts a period of moderate pH and phyllosilicate production, followed by a period 

of acidic weathering with sulfate production and concluding with an era of superficial 

weathering to ferric oxides. It is possible that the layers of the Gale mound record this transition 

[30] and can be used to test this hypothesis. 

Despite interest in Gale Crater as a potential landing site, the origin of the mound remains 

enigmatic. We have made observations from multiple datasets in an attempt to evaluate mound-

origin hypotheses and to better describe the geomorphic units that a) appear to be significant in 

the stratigraphic sequence and b) that MSL would be likely to encounter if Gale were chosen as 

the landing site. As we will show, Gale Crater exposes a rich and diverse Martian history, and it 

is likely that a combination of depositional and erosional environments must be invoked to 

explain the features that are visible today. 

2. Data and Methods 

2.1 Visible Data 
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We used radiometrically calibrated data from the Mars Reconnaissance Orbiter (MRO) 

Context Camera (CTX) [17] to generate a 6 m/pixel mosaic of the entire crater to use as the 

primary base map for this study. The list of individual images in the mosaic is given in appendix 

Table A1. The extensive coverage and high resolution of CTX makes it ideal for mapping 

geomorphic units. We estimated the CTX Lambert albedo values given in the following sections 

by dividing calibrated radiance factor values by the cosine of the average incidence angle for the 

observation of interest. [76][15] 

The second visible imaging dataset used for this study was ~0.27 m/pixel data from the High 

Resolution Imaging Science Experiment (HiRISE) instrument [15] on MRO. Because Gale 

Crater was selected as the MSL landing site [31], it has been targeted repeatedly by HiRISE, 

both in the proposed landing ellipse and in other locations on the mound and crater floor. For this 

study, we focused primarily on the images of the landing site and the nearby mound units where 

there is very good HiRISE coverage. However, we also examined HiRISE images of other 

portions of the mound to better understand the complete stratigraphic section. Appendix Table 

A2 lists the HiRISE images used in this work.  

The Gale Crater mound has also been extensively imaged at ~1.5 m/pixel resolution by the 

MGS MOC [10]. In locations that lack HiRISE coverage, we have used MOC images to study 

small-scale features that are beyond the CTX resolution limit. Appendix Table A3 lists the MOC 

images used in the mosaic. CTX and MOC data were mosaicked using spacecraft position and 

pointing (SPICE) data, and using MOLA data to correct for topographic distortions. Note that in 

figures using high-resolution data such as HiRISE and MOC, the planetocentric latitude and 

longitude are provided to aid in locating the features discussed. 

2.2 Infrared Data 
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2.2.1 Near-infrared 

In addition to visible images, we used data products from the Compact Reconnaissance 

Imaging Spectrometer for Mars (CRISM)[16], a hyperspectral visible-near infrared imaging 

spectrometer on MRO. CRISM's high spatial and spectral resolution (15–19 m/pixel, 362–3920 

nm at 6.55 nm/channel) allowed us to use spectral parameter maps created by [74] to correlate 

the geomorphology of the units at the proposed landing site with the inferred composition.  

We also used data from the Observatoire pour la Mineralogie, l'Eau, les Glaces et l'Activité 

(OMEGA) visible-near infrared mapping spectrometer on the Mars Express orbiter [14]. 

OMEGA has an angular resolution of 1.2 mrad, resulting in a spatial resolution varying from 

~350 m/pixel to >8 km/pixel, depending on where the spacecraft was in its elliptical orbit when 

the data were collected. We generated a mosaic of six OMEGA observations over Gale Crater. 

These observations are listed in appendix Table A4. Unfortunately, the proposed landing site and 

western mound had only very low (~7.2 km/pixel) resolution OMEGA coverage. We adapted the 

CRISM spectral parameters described by [77] to OMEGA wavelengths by using the OMEGA 

band closest in wavelength to the corresponding CRISM band. The adapted parameters were 

applied to the OMEGA mosaic to generate spectral parameter maps. 

2.2.2 Thermal Infrared 

We used thermal infrared data products to reveal additional details of the physical and 

compositional properties of the surface. In particular, we used 100 m/pix thermal inertia [68] and 

decorrelation stretch data products [67] derived from THEMIS measurements.  

Thermal inertia is a measure of the resistance to temperature change of the upper several 

centimeters of the surface. It is determined by the thermal conductivity, heat capacity, and 

density of the material. On Mars, variations in the thermal conductivity, due primarily to 
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changing particle size, are considerably more significant than variations in heat capacity and 

material density [68]. Therefore, lower thermal inertia regions are interpreted as unconsolidated 

aeolian-deposited sand or dust, while higher thermal inertia regions are interpreted to have more 

abundant rocks or cemented materials, exposed bedrock, or some combination of those 

components. It should be emphasized that thermal inertia maps give information only about the 

upper few centimeters of Mars, and that mixing effects can be significant. For example, bedrock 

with small patches of fine-grained dust at scales smaller than the instrument resolution could 

have an intermediate observed thermal inertia that is quite different from the true thermal inertia 

of the rock and dust portions of the surface. 

Decorrelation stretches are used to enhance variations in highly correlated data. The 

technique applies a principal component transformation to the data, followed by contrast-

stretching and then re-projection back to the original display coordinates. In the case of images 

that have been assigned to a red, green and blue color space, this has the effect of exaggerating 

color variations without distorting the hues of the image. [78]. Decorrelation stretched images 

cannot be used for quantitative measurements, but they give qualitative insight into the 

compositional variation of the surface. The decorrelation stretch used in this work is based on 

THEMIS bands 8 (11.79 μm), 7 (11.04 μm), and 5 (9.35 μm), which are displayed as red, green 

and blue, respectively. This results in mafic materials appearing as magenta, while more felsic 

and sulfate-bearing materials appear yellow and dusty surfaces appear blue [67].  

The THEMIS thermal inertia and decorrelation stretch maps for Gale Crater were generated 

by the THEMIS team, and made publicly available on the THEMIS website [12] when Gale was 

announced as a potential landing site for MSL. 
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2.3 Topography 

To provide the global context for Gale crater, we used a topographic map based on Mars 

Orbital Laser Altimeter [79] data, shown in Figure 1. 

We used three map-projected and areoid-referenced digital terrain models from the High 

Resolution Stereo Camera (HRSC)[14] on Mars Express (data product IDs: H1916_0000_DA4, 

H1927_0000_DA4, and H1938_0000_DA4) to generate a topographic map of the entire crater at 

75 m/pixel (Figure 2a). This topographic data provides valuable context for the other data sets.  

We augmented the regional HRSC topography with a digital elevation model of the proposed 

landing site, traverse path, and part of the western mound derived from CTX stereo pair images 

P16_007356_1749_XI_05S222W and P18_008147_1749_XN_05S222W. The procedure for 

generating topographic models based on CTX stereo imaging is described by Broxton and 

Edwards [80][81]. Briefly, the image pair is re-projected and aligned, then pre-processed to 

enhance edges and ensure insensitivity to biases in brightness and contrast in the stereo 

correlation step. For "pushbroom" cameras like CTX, the process uses a camera model to 

account for the changing position of the camera during image acquisition. The stereo correlation 

step identifies corresponding points in the pair of images, and a 3D model is created by finding 

the intersection between the lines of sight for each pair of corresponding pixels, thus localizing 

the point in three-dimensional space. A final step interpolates missing values in the elevation 

model. 
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Figure 3. CTX mosaic of Gale crater. Boxes and labels indicate the locations of other Figures. The proposed MSL 

landing site is indicated by the white ellipse. Refer to appendix Table A1 for a list of CTX images used in the 

mosaic. 
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3. Gale Crater Context 

3.1 Overview 

Gale is a 155 km diameter crater at the boundary between the southern highlands and 

Elysium Planitia (Figure 1). The rim of the crater is degraded but still clearly identifiable (Figure 

2), and the surrounding terrain has a knobby and mantled appearance, visible in the CTX mosaic 

in Figure 3. This basemap provides context for the figures discussed in this and later sections. 

 

Figure 4: (a) The peak of the central mound (marked by an arrow) and its surroundings. (b) A row of small elongated hills 

(marked by arrows) outline the northern edge of the mound, and lobate features extend part of the way down to the floor. 

(c) A large sand sheet in the western crater floor. (d) The terraced layers of the upper mound. The western mound (e) and 

eastern mound (f) are layered and eroded into a yardang-like texture. Refer to Figure 3 for context. Refer to appendix Table 

A1 for CTX Image IDs. Illumination is from the left. 
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 The large mound of layered material is shaped like a wide crescent, with the "horns" of the 

crescent pointing to the southwest and southeast. The peak of the mound (838 m elevation) is 

higher than the degraded northern rim and somewhat lower than the highest  

point on the southern rim (1448 m). Gale Crater is superimposed on the boundary between the 

southern highlands and northern lowlands, and this regional slope likely contributes to the 

difference in elevation between the northern and southern rim. However, the southern rim is 

approximately 3 to 4 km higher than the nearby floor, whereas the northern rim is ~2 km higher 

than the northern floor, suggesting that there is significant degradation of the northern rim and/or 

more material filling the northern crater floor relative to the southern portion of the crater. The 

lowest point in Gale Crater (-4674 m; marked with an arrow in Figure 2a) is in the northwest 

portion of the floor, near the location of the proposed MSL landing ellipse, which is at an 

elevation of approximately -4400 m.  

The east and west portions of the mound have a lower elevation and are characterized by 

numerous yardangs (Figures 4e, 4f), thin (<20 m) layers of varying tone, and a thermal inertia 

varying from ~300-700 J m
-2

K
-1

s
-1/2

. The peak of the mound and material in the 20 km to the east 

and west of the peak resemble the knobby terrain of the crater wall and surrounding plains 

(Figure 4a). The northern portion of the mound (Figure 4b) is fringed by rounded and somewhat 

elongated hills, and lobate features are present on the northern slopes of the mound itself. 

Dark-toned aeolian material occurs on the crater floor and exhibits a variety of forms, 

including isolated barchan and dome dunes <100 meters in diameter, transverse ridges, and an 

extensive (~372 km
2
) sand sheet to the west of the mound (Figure 4c). The thermal inertia of the 

dark dunes is ~350-400 J m
-2

K
-1

s
-1/2

 which is consistent with loose sand-sized material [82]. 
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 The southern floor and rim have a lower albedo than the northern floor and rim and most of 

the mound. This corresponds to an increase in the low- and high-Ca pyroxene parameters in 

OMEGA maps (Figure 5). We interpret this as a region that is less mantled by ferric dust, 

exposing more mafic underlying material. The high-Ca pyroxene signal is highest within the 

crater but the low-Ca pyroxene signal extends south of the rim and correlates with the dark-toned 

wind streak in that area.  

We used empirical equations [83] to estimate Gale Crater's pristine depth and rim height. 

  

 

Figure 5. (a) OMEGA mosaic of Gale crater. 

Images in the mosaic vary greatly in resolution (see 

appendix Table A4) (b) Map of the Low-Ca 

pyroxene index, adapted from [77]. (c) Map of the 

high-Ca pyroxene index, also adapted from  [77]. 
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Garvin et al. [83] do not list a depth to diameter equation for craters larger than 100 km, so  

we applied their equation for complex craters (d=0.36D
0.49

; 7 km < D < 100 km) to estimate a 

pristine depth of 4.3 km for Gale Crater (diameter D=155 km). In general, larger impact basins 

have a smaller depth to diameter ratio[84], so we would expect the equation for complex crater 

depth to provide an upper limit on the depth of the pristine Gale Crater. We used the equation for 

rim height of craters of diameter D >100 km (h=0.12D
0.35

) to calculate an initial rim height of 0.7 

km. Therefore, by adding the pristine depth and rim height, we calculate an original floor-to-rim 

elevation difference of approximately 5 km.  

 The actual maximum floor-to-rim difference for Gale is 6.1 km, implying that if the limit 

imposed by the equation is correct, a substantial amount of additional erosion has occurred in the 

northern crater, removing any crater-filling material and possibly portions of the original crater 

floor. We should, however, note that the 6.1 km value is the elevation difference between the 

highest point on the southern rim and the lowest point in the northern crater floor, so it likely is 

influenced by the regional slope of the dichotomy boundary. The southern part of the floor is 

only 3-4 km below the southern rim suggesting that parts of the crater floor have experienced 

partial infilling.  

3.2 Survey of inferred fluvial features 

Using the 6 m/pixel CTX basemap, we searched Gale Crater for valleys and sinuous ridges 

that may represent fluvial channels and inverted channels, respectively. Inversion of relief occurs 

when topographic lows, such as fluvial channels become more erosion resistant than the 

surrounding terrain due to processes such as filling by lava flows, cementation, and/or 

“armoring” by relatively coarse-grained material [85] [86]. When erosion and weathering strip 

away the less-resistant surrounding material, the channel remains as a raised ridge or series of  
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Figure 6. (a) CTX inset of the terrain to the southeast of the central mound peak. Multiple 

channels extend from the base of the mound onto the crater floor. White boxes indicate the 

insets shown in (b) and (c). (b) A close-up of one channel (marked by arrows) in the pitted 

mound-skirting unit. Where the unit is eroded away, the channel remains in inverted relief. 

(c) This HiRISE inset shows a branching inverted channel (marked by an arrow) that feeds 

into a positive-relief fan-shaped feature. Another example of a channel transitioning from 

negative to positive relief is marked by an arrow on the right, above the scalebar. 

Illumination is from the left in all parts of this figure. Refer to appendix Tables A1 and A2 

for CTX image IDs and HiRISE image IDs, respectively. Location: 5.653S 138.035E. 
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hills or mesas. This phenomenon is observed in arid environments on Earth such as Oman [87] 

and the Colorado Plateau  [86], and has been suggested as the origin of the sinuous ridges that 

are common on Mars [88]. 

An alternate explanation for sinuous ridges is that they could be eskers. Eskers have been 

invoked to explain sinuous ridges elsewhere on Mars [89]. However, due to the lack of clear 

evidence for glacial activity at Gale Crater and the presence of multiple negative-relief channels 

which transition to sinuous ridges in more-eroded areas (Figure 6), it seems most likely that the 

sinuous ridges in Gale Crater are inverted channels formed by subaerial water flow. Features in 

Gale Crater that we interpret as fluvial in origin are shown in red (negative relief) and yellow 

(positive relief) in Figure 7. The crater walls are dissected by valleys, suggesting that flowing 

water has played a role in eroding the crater. All of the observed valleys on the crater rim appear 

to lead into the crater with no obvious surface outlet. Several of the valleys form third or fourth-

order branching networks (Figure 8). One of these dendritic valleys in the northwestern crater 

rim ends at the apex of the fan-shaped feature in the proposed MSL landing site (Figures 8a & 

41). Many other valleys and ridges, particularly on the northern rim, lead to fan-shaped mesas on 

the crater floor, as shown in Figures 9 and 10. 

The largest valley (marked with an arrow in Figure 3) enters the crater through the 

southwestern rim and continues for ~40 km across the crater floor before disappearing beneath 

the western dune field. Several other canyons (also marked with arrows in Figure 3) are apparent 

on the western mound. The largest of these transitions headward to a shallower, narrower 

channel that appears to be partially exhumed from beneath the terraced layers of the upper 

mound. Several of the canyons on the western mound end in fan-shaped extensions of the mound  
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Figure 7: Unit map of Gale Crater. Refer to Figure 17 for a more detailed unit map of the proposed MSL landing 

site. The proposed landing site is indicated by the white ellipse. Arrows mark the large channel in the southwestern 

crater rim and the three large canyons on the western flank of the mound. Question marks indicate locations where 

aeolian material obscures the contact between the upper mound and the dark-toned layered yardangs. Uncolored 

areas are “undivided” or ambiguous material. Some units were mapped locally near the landing site (Figure 17) but 

are not shown here. Refer to appendix Table A1 for a list of CTX images used in the mosaic. 
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Figure 8. (a,b) The 

branching valley on the 

northern crater rim that ends 

in the fan-shaped feature in 

the proposed landing ellipse. 

The edge of the ellipse is 

visible in the lower right 

corner. (c,d) Another 

example of a branching 

valley on the western rim of 

Gale crater (e,f) A third 

example of a branching 

valley on the southern rim 

and floor. Refer to Figure 3 

for context and appendix 

Table A1 for CTX image 

IDs. Illumination is from the 

left. Locations: (a,b) 4.237S 

137.247E (c,d) 5.389S 

136.699E (e,f) 6.334S 

137.782E 
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Figure 9. (a) Ridges interpreted to be inverted channels 

(marked by arrows) leading down from the northern 

rim transition to raised fan-shaped mesas. (b) This fan-

shaped mesa maintains two distinct narrow branches. 

(c) Two inverted channels form adjacent fan-shaped 

mesas. (d) A more complex fan-shaped mesa that 

preserves an inverted channel along its eastern edge 

(marked by arrows). Refer to appendix Table A1 for 

CTX image IDs. Illumination is from the left. Location: 

4.252S 137.848E. 

Figure 10. Ridges interpreted to be 

inverted channels (marked by vertical 

arrows) become raised fan-shaped mesas 

near the northern rim. Chains of mesas 

(marked by horizontal arrows) extend 

from the fan-shaped mesas across the 

crater floor. The northeast portion of the 

landing ellipse is visible in the lower left. 

Refer to appendix Table A1 for CTX 

Image IDs. Illumination is from the left. 

Location: 4.270S 137.523E  
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Figure 11: a) A wide fan-shaped deposit of mound material (boundary marked by the dashed line) overlaps the 

mound-skirting unit in this location, but is thin enough that the edge of the mound skirting unit is still apparent 

(marked by arrows). The material emerges from a large canyon which preserves a filled channel in its floor and 

walls, shown in b). c) a second fan-shaped deposit of material overlapping the mound-skirting unit. d) and e) show 

the location of ridges in the wall of the canyon that leads to the fan-shaped deposit in c). f) a stubby branched 

canyon leads to a third fan-shaped deposit that overlaps the mound-skirting unit, shown in g). Refer to Figure 3 for 

context and appendix Table A1 for CTX image IDs. Illumination is from the left. Locations: a) 4.951S 137.180E 

c) 5.126S 137.153E f) 5.277S 137.126E. 
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Figure 12. A closer view of the northern crater floor. Valleys interpreted as fluvial channels are marked in 

red and ridges interpreted as inverted channels are marked in yellow. Blue marks the location of dark-toned 

dunes. Light green indicates surfaces with a texture characteristic of the 'mound-skirting' unit. Note the 

numerous mesas of mound skirting unit and the numerous inverted channels. The landing ellipse is visible at 

left. Illumination is from the left. Refer to appendix Table A1 for CTX Image IDs. 

 

that appear to overlap the underlying mound-skirting unit (Figure 11). These features are 

discussed in subsequent sections. 

Inverted channels, typically less than 100 m in width, and in some cases >10 km long, are 

common on the crater floor, as shown in Figure 7 and in more detail in Figure 12. South of the 

mound, several channels transition to inverted channels as the unit in which they are carved 

becomes more extensively eroded (Figure 6). This unit is ridged and appears to be related to the 

mound-skirting unit discussed in a later section. The transition from negative to positive relief 

channels occurs at the edge of this unit, where it breaks up into a rough surface of many small 

outcrops (e.g., Figure 6b). This boundary is not apparent in the THEMIS thermal inertia map. 

Several examples of sinuous ridges (sinuosity index of ~2) and finely branching ridges are 

exposed within the proposed landing ellipse (Figures 13 & 14). These are discussed in the 

sections concerning the mound-skirting and hummocky plains units.  
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Figure 13. (a), (b) and (c) are three 

examples of sinuous ridges, interpreted to 

be inverted channels, in the hummocky 

plains unit within the landing ellipse. (a) 

has a sinuosity index of ~2, and (b) and (c) 

have sinuosity indices of ~1.35. All three 

are shown at the same scale, and are from 

HiRISE observation PSP_009751_1755. 

The inverted channels appear to have a 

vertical relief of several meters. 

Illumination is from the left. Locations: a) 

4.404S 137.535E; b) 4.461S 137.523E 

c) 4.501S 137.484E 

 

Also common (as shown in Figures 7 and 12) on the northern crater floor are chains of mesas 

that appear to be associated with the fan-shaped mesas at the base of the northern crater wall 

(e.g., Figure 10). They have a similar surface texture (Figure 15) and in some cases the fan-

shaped mesas are connected to the chains of mesas on the crater floor by channels or inverted 

channels. Figure 16 shows an example of the chains of mesas branching in a manner similar to 

fluvial channels. The chains of mesas can extend from the crater wall to the base of the mound, 

where they merge with the similar-textured mound-skirting unit (Figure 16).  

4. Gale Crater Units 

In this section, the units of the northwestern crater floor and mound are discussed in detail. 

Units were distinguished primarily by their geomorphologic characteristics, although thermal 

inertia and composition also were used in some cases. Figure 3 and Figure 7 provide context for 

the figures in this section. Figure 17 shows a detailed map of the landing site and northwestern  
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mound units discussed, and Figure 7 shows units and features that were mapped over the entire 

crater. Regions of the maps that are not colored can be considered “undivided” material. These 

locations often had an ambiguous appearance, or represented terrains with less relevance to our 

primary focus on the proposed MSL landing ellipse and surroundings. Table 1 summarizes the 

unit properties. Some simplifications and uncertainties are necessarily involved in arriving at our  

 

 

 
 

Figure 14: (a) Subframe of HiRISE observation PSP_009571_1755 showing the Gale crater floor in the 

eastern portion of the landing ellipse. A channel-like feature in the mound-skirting unit is flanked on its 

southern side by branching ridges, shown in insets (b), (c) and (d), which may be inverted fluvial channels. 

Illumination is from the left. Location: 4.497S 137.548E. 
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Figure 15 (a) A fan-shaped mesa (previously shown in Figure 9). (b) Mesas on the crater floor (see 

Figure 3 for context). (c,d) close-ups showing the texture of the mesas in (a) and (b), respectively. 

Refer to appendix Table A1 for CTX image IDs. Illumination is from the left. Locations: a) 4.267S 

137.835E b) 4.394S 137.948E. 

 
Figure 16: The mesas on the crater floor branch in a manner similar to fluvial channels, as shown in 

(a) and (c). (b) shows a location where the mesas overlap the mound-skirting unit, which has a 

similar texture. Refer to Figure 3 for context. Refer to appendix Table A1 for CTX image IDs. 

Illumination is from the left. Locations: a) 4.461S 138.032E b) 4.454S 137.967E. 
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Figure 17: a) CTX mosaic of the proposed MSL landing site and northwestern mound in Gale Crater. Boxes show 

the location of other figures. b) A unit map of the same area shown in a), with units identified in the key above. 

Elevation increases to the lower right in this map. Question marks indicate uncertainty in the boundary between the 

upper mound and the dark-toned layered yardangs due to aeolian bedforms obscuring the contact. Uncolored areas 

are “undivided” or ambiguous material. Refer to appendix Table A1 for CTX image IDs. 
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Figure 18: a) CTX and HiRISE mosaic of the area near the filled channel and outcrop of mound-skirting unit, 

with illumination from the left. The light-toned basal unit (BU) is in the upper left of the frame and elevation 

increases from -4760 to a maximum of -2800 at the lower right. The light-toned ridge (LTR), phyllosilicate-

bearing trough (PHY), dark-toned layered yardang-forming material (DTY) and light-toned yardang-forming 

material (LTY) are all visible in this frame. b) A close-up of the surface of the outcrop of mound-skirting unit, 

showing a texture that may be due to lithified and fractured bedforms. The outcrop is associated with a filled 

channel, shown in c), which carves the dark-toned layered yardangs. This channel was first noted by Malin and 

Edgett [60]. Refer to appendix Tables A1 and A2 for CTX and HiRISE image IDs. Location: 4.770S 

137.398E. 

 

 unit map and hypothesized stratigraphy in Gale Crater. For example, in some cases units have 

sharp boundaries, such as the light-toned yardangs, but in other cases, the transition between 

units can be ambiguous, such as some contacts between the mound-skirting unit and the  

 hummocky plains or the transition between the dark-toned layered yardangs and the upper 

mound. 
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4.1 Dark-toned layered yardang-forming unit 

4.1.1  Observations 

Much of the surface of the lower mound is characterized by a layered, moderate to dark-

toned yardang-forming material (e.g. Figures 3, 7, 17). We have chosen to focus our discussion  

in this section on the western mound, but the eastern mound shows a similar layered and 

yardang-forming morphology and has therefore been mapped as dark-toned layered yardang-

forming material in Figure 7. The upper extent of the dark-toned layered yardang forming 

material is often uncertain due to aeolian material obscuring the contact with the upper mound.  

The thermal inertia of the surface of the western mound varies from approximately 300 to 

700 J m-2K-1s-1/2. The dark-toned layered yardang-forming material is cut by several large 

canyons on the western side of the mound, as well as a small filled channel on the northwestern 

flank of the mound, near the proposed MSL landing site (mapped in Figure 17, shown in Figure 

18c).The channel was first noted by Malin and Edgett [60] and extends from beneath aeolian 

bedforms at the base of the light-toned yardang-forming unit and ends in a raised ridge on top of 

a mesa-forming outcrop of mound-skirting unit.  

At CTX and MOC scales, some portions of the dark-toned layered yardang-forming unit 

have clear layers of varying CTX albedo (~0.18-0.22) that are relatively easy to trace. Milliken et 

al. [30] have identified a "marker bed" (Figure 19) in the layers of the mound near the proposed 

MSL landing site that is also present in the stratigraphic section exposed by the large canyons in 

the western mound, and possibly in the layered outcrops in the southeastern mound. 
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Table 1. Summary of Unit Properties 

Unit 

Min 

Elevation 

(m) 

Max 

Elevation 

(m) 

CTX Albedo 
Thermal Inertia  

(Jm − 2K − 1s−1 / 2) 
Morphology 

Key 

Figures 

Dark-Toned 

Layered 

Yardangs 

-4460 -1800 0.18-0.22 300-700 

Thin layers of 

varying properties 

forming large 

yardangs. 

19, 20, 

21 22, 23 

Light-Toned 

Yardangs 
-3390 -1674 0.26 390 

Fine layering and 

joints, scalloped 

texture. 

17,47,25 

Thin Mantle Unit -4070 -1140 0.20-0.23 400 

Small patches that 

drape topography, 

characteristic 

"feathery" erosion. 

21,27,28 

Upper Mound -2140 490 0.24 300 

Cliff-bench layers, 

scalloped texture. 

potential cross-

beds. 

29, 30, 

31 

Mound-Skirting 

Unit 
-4390 -2940 0.16-0.21 430-780 

Pitted, mesa-

forming, parallel 

ridges in some 

locations. 

6, 7, 12, 

15, 16, 

18, 33 

Light-Toned 

Ridge 
-4320 -4170 0.19-0.21 600 

Breaks into poorly 

defined layers 

downhill, ends 

abruptly uphill. 

18, 37, 

36 

Phyllosilicate-

Bearing Unit 
-4210 -4090 0.16 550 

Rippled surface but 

fractures and dunes 

on top suggest 

lithification. 

38 

Light-Toned 

Basal Unit 
-4490 -4212 0.18-0.20 500-540 

Fractured light-

toned rock, possible 

faint layers. 

34, 39 

Dark-Toned 

Basal Unit 
-4513 -4415 0.15-0.16 760 

Darker-toned 

fractured rock. 
39 

Hummocky 

Plains 
-4670 -4150 0.21 480 

Hummocky, ranging 

from smooth to 

rocky. 

13, 41 

Low Thermal 

Inertia Landing 

Site Fan 

-4500 -4190 0.21 460 
Primarily smooth, 

possibly mantled. 

40, 41, 

42 

High Thermal 

Inertia Landing 

Site Fan 

-4520 -4440 0.21 620 
Rugged fractured 

rock. 

40, 41, 

42, 43 

Lobate Features -4350 -1200 0.24 460-670 

Some show erosion-

resistant upper 

layer. Fan-shaped 

unit is rugged with 

potential pressure 

ridges and 

streamlined texture. 

44, 45, 

46 
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Figure 19: a) Milliken et al. [30]identified a distinctive smooth, dark-toned "marker bed" (indicated by 

arrows) within the dark-toned layered yardang unit that is traceable for many km. This bed is also 

observed in the canyon on the western mound and in the layered outcrops of the southeastern mound. The 

bed is erosion resistant and preserves small craters on its surface. b) and c) show two exposures of the 

marker bed, several km apart. d) The large canyon on the western mound exposes many layers that are 

traceable over >10 km. Refer to appendix Tables A1 and A2 for CTX and HiRISE Image IDs. Locations: 

a) 4.788S 137.392E d) 5.105S 137.303E. 

 

In other locations higher on the mound the surface becomes rougher and is eroded into more 

densely spaced yardangs. In these locations, individual beds become difficult to trace. Figure 20 

shows a typical DTY surface on the western mound. CRISM observations  indicate that this 

dark-toned layered yardang-forming unit contains hydrated sulfate minerals, indicative of 

aqueous alteration [74] [30]. The beds of this portion of the mound are typically less than ~20 m 

thick, and have been shown to be parallel, with a dip of 2-4 degrees to the northwest [30].  The 

erosional expression of the layered rocks that make up the dark-toned layered yardang-forming 

unit varies from cliff-bench, boulder shedding layers (Figure 21a) to more-erodible layers which  
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form smooth slopes (generally <10). The beds in these smooth locations appear "blurry" (Figure 

21b).  

The surface of the dark-toned layered yardang-forming material is often covered with 

polygonal ridges. (Figure 22) In some cases, a dark line marks the ridge centers (Figure 22d). 

The topographic lows between the ridges are darker toned than the ridges themselves. On the 

western mound, larger ridges and clusters of ridges cut across the yardang texture of the mound 

(Figure 20).  

Near the head of the largest canyon on the western mound the surface of the dark-toned layered 

yardang-forming material is characterized by parallel east-west-oriented lineations at an interval 

of 30 to 50 m (Figure 23). Approximately 4.5 km to the west of the mound, in the large dark- 

 

 

Figure 20. a) A CTX view of the 

dark-toned layered yardang unit. 

Numerous yardangs make individual 

layers difficult to follow. The surface 

shows craters many of which are 

eroded and may have been exhumed. 

On the right, several erosion-resistant 

fractures are marked by arrows. b) A 

HiRISE close-up of one of the large 

erosion-resistant fractures, revealing 

numerous smaller raised fractures. 

The larger fracture appears to be up 

to tens of meters high. Illumination is 

from the left. Refer to appendix 

Tables A1 and A2 for CTX and 

HiRISE image IDs. Location: 

5.072S 137.303E. 
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 Figure 21: a) Cliff-forming, boulder-shedding layers in the dark-toned layered yardang unit. Also 

note the oblong patch of thin mantle unit, marked by arrows. b) Smooth "blurred" layers in the dark-

toned layered yardang unit. In the upper right is a partially exhumed and/or heavily eroded crater. 

HiRISE image ID: PSP_009294_1750. Illumination is from the left. Locations: a) 4.796S 137.398E 

b) 4.787S 137.395E. See Figure 18 for context. 

 

Figure 22: a) Here, a smooth but fractured surface has partially eroded away, leaving a rough 

surface with ridges in some places where fractures used to be, shown in a close-up in b). c) Better-

defined erosion-resistant ridges interpreted to be filled or altered fractures. d) is an inset of c), and 

dark lines are visible along the center of the larger ridges (one example is marked with an arrow). 

HiRISE image ID: PSP_001752_1750. Illumination is from the left. Locations: a) 4.914S 

137.271E c) 4.878S 137.313E. 
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Figure 23: a) Near the end of the channel 

(seen at the top of this image) that forms 

the large canyon in the western mound, a 

lineated surface is being exposed beneath 

small yardangs. This was first noted by 

Edgett and Malin [90]. b) Close-up, 

showing beds in the canyon wall. If the 

parallel features in a) and c) were bedding 

planes, their orientation in plan view 

would correspond to the depth of erosion,  

following  the wall of the canyon, similar 

to contours on a topographic map.  That 

they do not suggests that they are not 

exposed bedding planes.  c) Close-up of 

the corrugated surface showing that it is 

extensively fractured.  This Figure is a 

subframe of HiRISE image 

PSP_008147_1750 with illumination 

from the left. Location: 5.165 S 

137.430 E. 

 
Figure 24. (a) A light-toned layered outcrop within the large dune field west of the mound supports the 

hypothesis that the layered mound was once much more extensive. A ~2 km crater in the outcrop is partially 

buried by dunes. (b) A close-up of the outcrop. Refer to appendix Table A1 for CTX image IDs. Illumination 

is from the left. Location: 5.133S 137.213E. 
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toned dune field, there is an outcrop of layered yardang-forming material that borders a circular 

depression. (Figure 24). 

4.1.2 Interpretations 

We interpret the "yardang-like" texture of the dark-toned layered yardang-forming unit to be 

due primarily to aeolian erosion. However, the large canyons and smaller filled channels in the 

dark-toned layered yardang-forming material provide evidence for fluvial erosion of the unit. 

This provides an important temporal constraint, implying that the unit was deposited and 

significantly eroded at a time when fluvial processes could still occur at the surface of Mars. 

We interpret the erosion-resistant polygonal ridges on the surface of the dark-toned layered 

yardang-forming material to be the result of differential erosion of filled or cemented fractures, 

similar to the much smaller-scale "boxwork" observed in some caves on Earth [91]. Thomson 

and Bridges [72] first suggested this explanation for the Gale Crater ridges and similar erosion-

resistant ridges on Mars have previously been interpreted as evidence of alteration and fluid flow 

through fractured rocks [92]. 

The darker line observed in the center of some ridges could be the fracture itself, while the 

lighter-toned ridge is formed by the surrounding erosion-resistant cemented or altered rock. 

Alternatively, the darker central line could represent a variation in the albedo of the material 

filling the fracture.  

It is also possible that the erosion-resistant ridges are dikes formed by the intrusion of 

igneous rock along fractures. However, dike swarms tend to be parallel, en echelon, or radially 

oriented, rather than polygonal [93]. Given the geomorphic evidence that water has played a role 

in Gale Crater, and the presence of hydrated sulfates in the dark-toned layered yardang-forming 

material, we favor an aqueous alteration interpretation. 
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The observed “blurring" between thin beds with similar erosional characteristics (Figure 21b) 

could be due to a gradual change in the depositional setting, or due to the debris from the eroding 

layers obscuring an otherwise sharp contact. The continuity of bedding planes such as the marker 

bed shown in Figure 19 over many kilometers suggests that the depositional process that formed 

the layers of the lower mound was widespread and uniform.  

The parallel lineations near the head of the large western canyon (Figure 23) have been 

interpreted as lithified subaerial or subaqueous bedforms [90]. The lineations do not appear to be 

due to the exposure of bedding planes in cross-section. If the lineations were due to the exposure 

of bedding planes, their orientation in plan view would correspond  to the depth of erosion into 

the local topography, eventually becoming parallel with the beds in the wall of the canyon, 

similar to contours on a topographic map.This is not observed. An alternative hypothesis is that 

the features observed are due to preferential erosion along parallel zones  

of weakness. The surface does appear to be fractured, but there are no obvious larger joints 

running parallel to the features.  

We interpret the outcrop of layered material to the west of the mound (Figure 24) as an 

outlying portion of the lower mound, possibly related to the dark-toned layered yardang-forming 

material. The outcrop appears to be an eroded pedestal crater with a morphology similar to those 

observed in the MFF [94]. The presence of this outcrop supports the hypothesis that the layered 

mound material was once more extensive and may have filled the crater. 

4.2 Light-toned yardang-forming material 

4.2.1 Observations 

The light-toned yardang-forming material is a distinctive, high CTX albedo (~0.26), 

uncratered feature on the northwest flank of the Gale Crater mound (Figure 17). The surface of  
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Figure 25: a) The light toned yardang unit shows very fine layering (bottom right) and numerous 

parallel joints in the rock (upper left). b) Much of the surface of the light toned yardang unit is 

covered with shallow hollows. Refer to appendix Table A2 for HiRISE image IDs. Locations: a) 

4.854S 137.414E b) 4.916S 137.419 E. 

 

the light-toned yardang material has a low-to-moderate thermal inertia (~390 J m-2K-1s-1/2) and 

does not appear to be covered by the dust that mantles the upper mound unit and portions of 

other nearby units. In CTX and MOC images, the fine details of the surface  

texture are not visible, and the material appears to be a massive light-toned deposit, with a 

surface that has been eroded into yardangs. HiRISE images reveal that this material is actually 

very finely layered (Figure 25a), and in places parallel joints and boulders are visible. None of 

the joints in the light-toned yardangs show the erosional resistance observed in the lower mound.  

Much of the surface of the light-toned yardang-forming material is covered with a texture of 

smooth, contiguous, shallow depressions (Figure 25b). Similar textures on Tharsis Montes and at 

White Rock in Pollack Crater have been referred to as "scalloped" [95]) and we adopt that term 

here. This texture occurs both on flat surfaces and slopes and high points within the light-toned 

yardang-forming unit. Boulders are not common on the light-toned yardang-forming unit and are 

typically found near outcrops with joints.  
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Figure 26: A crater in the dark-toned layered yardang unit is partially 

buried beneath the light-toned yardang unit marking an erosional 

unconformity previously identified by Malin and Edgett [60]. Refer to 

appendix Table A1 for CTX Image IDs. Illumination is from the left. 

Location: 4.860S 137.420E. 

 

This unit has previously been noted [60] to lie unconformably on the darker-toned layered 

yardang surface, most clearly demonstrated by a crater that is partially exhumed from beneath 

the light-toned yardang-forming unit (Figure 26). In addition, the filled channel in the dark-toned 

layered yardang surface (Figure 18) may emerge from beneath the light toned yardangs [60].  

Thomson and Bridges [72] used MOLA tracks to fit a plane to the contact between the light-

toned yardang unit and the underlying mound. They found that the best-fit plane is non-

horizontal. We used a CTX stereo DEM to conduct the same exercise and found that the best fit 

plane has a slope of roughly 12°, similar to the slope of the mound. We calculated an 

approximate maximum thickness of the deposit by assuming that the best fit plane represents the 

surface of the underlying mound. The greatest vertical distance between that plane and the 

surface of the light-toned yardang unit gives a maximum thickness of ~200 m. 

4.2.2 Interpretations 
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The scalloped texture of the light-toned yardang-forming material suggests that it is soft 

enough for aeolian erosion to scour shallow pits into the surface. However, the presence of joints 

and boulders in the material indicates that it is rigid enough to fracture and for fragments to 

retain their shape. The presence of joints also suggests that the material is old enough to have 

been subjected to stresses that would cause widespread fracturing, but the observed 

unconformity (Figure 26) shows that the light-toned yardangs are young enough 

that the underlying dark-toned layered yardangs had time to erode and accumulate craters before 

the lighter unit was deposited.  

The lack of craters on the surface of the light-toned yardang-forming material itself suggests 

that it is either quite young, eroding rapidly, or both. The lack of dust on the surface of the light-

toned yardang-forming material may also be evidence of ongoing erosion. 

Although the scalloped texture sometimes appears similar to fields of small aeolian 

bedforms, the presence of the texture on slopes and high points is more consistent with it being 

the erosional expression of the rock. Bridges et al. [95]have suggested that a similar texture may 

be due to the formation of bedforms by saltating dust aggregates and the erosion of a uniquely 

martian "duststone".  

The light-toned layered yardang-forming material shows some similarities to "White Rock" 

in Pollack crater (-8S, 335W). White Rock is a ~12 km by ~15 km outcrop of relatively light-

toned yardang-forming material first observed in Mariner 9 images [96] and has been studied 

extensively (e.g. [97] and references therein). White Rock exhibits a texture similar to the 

"scalloped" texture discussed above (Figure 25), but does not appear to have the fine-scale 

layering, parallel jointing, and occasional boulder-shedding outcrops observed on the light-toned 

layered yardang unit, suggesting that the light-toned yardang-forming material is stronger. This 
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is consistent with thermal inertia measurements: White Rock has a TES-derived thermal inertia 

of 232 +/-14 J m
-2

K
-1

 s
-1/2

 [97] which is somewhat lower than the estimated THEMIS thermal 

inertia for the light-toned yardang unit (~390 J m
-2

K
-1

s
-1/2

). We calculate an average CTX albedo 

of ~0.20 for White Rock and an average albedo for the light-toned yardang unit of ~0.26. 

Although the two units differ somewhat in detail, the similarities in morphology between White 

Rock and the light-toned yardang unit may indicate a similar origin. 

4.3 Thin mesa-forming material 

4.3.1 Observations  

In some locations on the mound, the underlying terrain is obscured by a thin unit that occurs 

primarily in isolated patches or mesas (Figure 27). This thin mesa-forming material appears to 

conform to pre-existing topography and occurs on both the dark-toned layered yardang-forming  

  

Figure 27: a) Patches of the thin mantle unit (marked by arrows) on the smooth slope of the dark-toned layered 

yardang unit. b) A patch of thin mantle unit obscures a layer in the dark-toned layered yardang unit. Both a) and b) 

are subframes of HiRISE observation PSP_009149_1750 with illumination from the left. Refer to figure 18 for 

context. Locations: a) 4.767S 137.436E b) 4.755S 137.441E. 

 



 

54 

 

 

 

Figure 28: The thin mantle unit (TMU) has a 

characteristic "feathery" erosional expression, seen in 

the upper portion of this image. It is not clear whether 

the thin mantle unit is emerging from beneath or 

simply abuts the light-toned yardangs (LTY) in this 

location. This is a subframe of HiRISE observation 

PSP_009861_1755. Illumination is from the left. 

Location: 4.744S 137.529E. 

material of the lower mound and the upper mound unit. The thin mesa-forming material shows 

no obvious layering in full-resolution HiRISE images.  

North of the light-toned yardang-forming material, the thin mesa-forming material is more 

extensive and obscures the layered nature of the mound. The thin mesas are partially overlain by 

aeolian deposits of the same tone, giving the surface a distinctive "feathery" appearance (Figure 

28). 

4.3.2 Interpretations 

We interpret the patches of thin mesa-forming material on the mound as outcrops of a 

formerly more extensive unit. The material appears to lie unconformably on top of the dark-

toned layered yardang-forming material and the upper mound unit. The fact that it conforms to 

the underlying topography leads us to speculate that it originated as an airfall deposit. Lithified 

aeolian materials such as pyroclastic or impact-generated dust and ash are both possible origins 

for the material in the thin mesa-forming deposit. The lack of layering within the thin mesa-

forming material implies that it either represents a single discrete event, or is very finely layered 

below the limit of available imaging resolution. 

4.4  Upper mound  

4.4.1 Observations
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The upper Gale mound is characterized by large, terraced packages of finely bedded layers. 

The edges of the packages are highly eroded (Figure 29, 30), and the upper mound generally has 

a uniform, relatively high CTX albedo (~0.24) and a surface with a very low thermal inertia 

(~300 J m-2K-1s-1/2). Aeolian ripple-like bedforms with a similar albedo to the upper mound 

material are common, and often obscure the contact between the upper mound and the 

underlying units. No obviously fluvial features have been identified in HiRISE images of the 

upper mound unit.  

 Much of the upper mound has a similar "scalloped" texture to that seen on the light-toned 

yardangs. The texture does not appear to be controlled by topography: it occurs on smooth areas 

as well as rugged slopes, whereas bedforms tend to collect in depressions. Figure 31 shows an 

example of bedforms in a depression on the upper mound and the scalloped texture on nearby 

rugged terrain. 

The bench portion of some of the large packages of upper mound layers exhibits a pattern of 

light and dark lines (Figure 30). In some locations the lines appear in concentric rings or as a  

 

Figure 29: An overview of the 

layered upper mound unit. The 

boxes show the locations of Figures 

30 and 31. Refer to appendix Table 

A1 for CTX image IDs. 

Illumination is from the left. 
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Figure 30: a) A view of the large, cliff-bench packages of layers of the upper mound (see figure 29 

for context). The cliffs have been eroded by the wind into yardangs. The white rectangles indicate 

the locations of b),c) and d). b) The surface texture of the "bench" portion of the upper mound. Here 

it forms concentric rings, separated by bands that "pinch" together. c) Another location on the bench 

of an upper mound layer, exhibiting bands that appear to "zig-zag", as shown in e). d) A third 

location, with curved groups of bands that truncate each other, similar to aeolian crossbeds. f) is a 

close-up of the potential crossbeds in d). All frames in this figure are from HiRISE image 

PSP_001620_1750. Illumination is from the left. Locations: b) 5.063S 137.726E c,e) 5.087S 

137.753E d,f) 5.098S 137.767E  
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sinuous pattern but in other locations, the lines in the pattern truncate others or form sharp 

angles. The surface of the bench where this occurs appears to be quite planar. 

4.4.2 Interpretations 

The albedo and thermal inertia of the upper mound surface have been interpreted as 

indicating the presence of a dust mantle (e.g., [62]). Pelkey et al. [62] suggest that this dust 

mantle is due to control of local winds by the topography of the mound, but they acknowledge 

that detailed mesoscale modeling of wind patterns in Gale Crater is required to evaluate this 

hypothesis.  

The scalloped texture on the upper mound, like that observed on the light-toned yardang-

forming material, is similar in appearance to aeolian bedforms, but its presence on rugged slopes 

and outcrops implies that the texture may be due to the erosional characteristics of the upper 

 

 

Figure 32: A contrast-enhanced example of 

crossbeds and sinuous patterns exposed in a playa at 

White Sands National Monument (32.818N 

253.679E). The dry upper portion of the dunes has 

been removed by wind, revealing a horizontal cross-

section through the lower moisture-immobilized 

portion of the dunes. The exposed beds are similar 

in appearance to the patterns shown in Figure 30. 

Image credit: USFWS/DigitalGlobe/Google. 

Figure 31: The upper mound unit has a “scalloped” 

texture similar to that observed on the light-toned 

yardang unit (Figure 25). The texture does not appear 

to be controlled by topography and occurs even on 

rugged slopes (for example, the location marked by 

the leftmost arrow), as shown in the left portion of 

this image. On the right, aeolian bedforms (marked by 

arrows) are collected in a depression. This image is a 

subframe of HiRISE observation PSP_009927_1750. 

Location: 4.732S 137.756E. 
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mound material. We interpret the jagged edges of the large packages of layers in the upper 

mound as the result of aeolian erosion into yardang-like outcrops. 

 The pattern on the surface of the upper mound benches initially appears to be due to finely 

layered rock eroding to different depths, revealing contours by exposing the edges of  

layers of varying tone. However, the truncating sets of lineations and sinuous nature of many of 

the lines is more similar to large-scale (hundreds of meters) aeolian cross-beds than to patterns 

produced by the erosion of parallel layers. In addition, the generally planar nature of the surface 

is inconsistent with the varying depths of erosion necessary to explain the pattern if it were due 

to the exposure of parallel layers.  

Although crossbeds are more familiar on cliff faces, they can be expressed on any plane 

through a cross-bedded rock, and can form very complex patterns depending on the geometry of 

the exposure and the original bedforms [98]. Figure 32 shows an example of a horizontal cross-

section of large dunes preserved in a playa at White Sands National Monument. The exposed 

cross-beds and sinuous beds are smaller than those observed in the upper Gale mound, but are 

similar in appearance. The similarity between the observed pattern in the upper Gale Crater 

mound and the cross-beds exposed at White Sands leads us to speculate that the upper mound 

unit may have been formed by the lithification of a large aeolian dune field. 

An alternative to the cross-bedding hypothesis is the deformation and erosion of previously 

parallel layers. This combination of processes could generate complex patterns in  

the upper mound material, but it would have to have deformed the small-scale beds while leaving 

the larger beds that form the cliff-bench layers of the upper mound intact and parallel. We 

therefore favor the aeolian cross-bed hypothesis. 



 

59 

 

 

Despite the similar “scalloped” texture, the upper mound unit appears to be distinct from the 

light-toned yardang-forming material. The upper mound has more prominent layering, and 

although the upper mound unit does form yardang-like outcrops at the edges of the largest layers, 

the large-scale texture formed by the yardangs is distinct from that observed on the light-toned 

yardang unit.  

4.5 Mound-skirting unit 

4.5.1 Observations 

The mound-skirting unit is an erosion-resistant, mesa-forming material characterized by a 

texture that is generally smooth over hundreds of meters, but which at smaller scales is marked 

by numerous small (~10-60 m) pits and/or parallel ridges (Figure 33). The ridges are several 

meters high and occur at regular intervals of 30-50 m. Figure 7 shows a map of the occurrence of 

the mound-skirting unit and other units with a similar pitted or ridged texture. As with all unit 

maps, this grouping is a simplification: in some cases two distinct units with this texture overlap 

with a sharp boundary.  

 The mound-skirting unit generally has high thermal inertia (~720-780 J m-2K-1s-1/2). 

However, in some locations along the base of the northern mound and on the mesas on the crater 

floor and near the northern rim, the thermal inertia is lower (~450 J m-2K-1s-1/2) despite the 

unit having a similar erosional expression.  

 The mound-skirting unit is present on the crater floor and extends up onto the lower slopes 

of the mound in some locations. It typically truncates in a scarp, dropping down to the lowest 

units of the mound (Figure 34). On the northern crater floor (Figure 12) the groups of mesas that 

extend from the crater wall down to the base of the mound have a texture similar to the mound-

skirting unit, as do the raised fan-shaped mesas at the base of the northern wall (Figure 15). 



 

60 

 

 

 

Figure 33: HiRISE images of the mound-skirting unit, all shown at the same scale, with illumination from the 

left. a) The fan-shaped outcrop of mound-skirting unit (see text for discussion). b) Several kilometers 

southwest of a). c) A similar texture to the northeast of a) transitions into a "washboard" texture of long 

parallel ridges. d) The same pitted texture appears farther out on the crater floor. It is less obvious because 

these pits are not filled with dark material. e) The "washboard" and pitted texture also appears to the south of 

the mound. f) A CTX mosaic showing the locations of a)-e). Refer to appendix Table A1 for CTX image IDs 

and appendix Table A2 for HiRISE image IDs. Locations: a) 4.749S 137.381E b) 4.794S 137.266E c) 

4.617S 137.510E d) 4.580S 137.490E e) 5.490S 137.497E  
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South of the mound, channels in the mound skirting unit transition into sinuous ridges at the 

unit's edge (Figure 6), and within the landing ellipse, a finely branching network of ridges occurs 

in the mound-skirting unit (Figure 14). 

 In several locations (Figure 11) material from the northwestern mound appears to extend out 

onto the top of the mound-skirting unit. These are also locations of canyons in the mound, 

several of which have channel- or fracture-like features in their floors or walls, cutting across the 

bedding of the mound. 

The filled channel on the northwest flank of the mound (Figure 18) ends in a distinctive 3.5 

km2 outcrop of material with a pitted texture very similar to the mound-skirting unit. Figure 18b 

shows a close-up view of the surface of the outcrop, which exhibits a reticulate pattern.  

 
Figure 34: a) Overview of the light-

toned basal unit (BU) near the 

proposed MSL landing site. Note the 

sharp transition from the mound-

skirting unit (MSU) to the basal unit. 

The light-toned ridge (LTR) and fan-

shaped unit (FSU) are also visible. b) 

A close-up view of mesas (~10 m high) 

near the boundary between the mound-

skirting unit and the basal unit. Note 

the ridged expression of the mesas, 

similar to the ridges preserved 

elsewhere in the mound-skirting unit. 

c) A close-up of a typical portion of the 

basal unit. HiRISE Image ID: PSP_009650_1755. Illumination is from the left. Location: 4.703S 

137.345E. 
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Figure 35: A cartoon showing our 

hypothesis for the origin of the fan-shaped 

unit discussed in Section 5.7. The left 

column shows a cross-sectional view and 

the right column shows a plan view. a) The 

mound-skirting unit extends part of the 

way up the layered mound material. b) The 

mound is eroded and a channel transports 

debris down slope and deposits it as a fan 

on top of the mound-skirting unit, similar 

to the fans observed elsewhere (Figure 11). 

c) Erosion causes the fan to shrink and the 

boundary of the mound-skirting unit to 

recede. d) Continued erosion removes most 

of the fan material, exposing a patch of the 

mound-skirting unit that has been protected 

by the fan. 

  

Milliken et al. [73] have also noted the similarity in texture and spectral signature between this 

outcrop and the mound-skirting unit (Figure 33). 

4.5.2 Interpretations 

The characteristic texture of pits or ridges in an otherwise smooth surface may be due to a 

resistant layer developing defects which are then exploited by erosion. Erosion-resistant units 

tend to preserve impact craters [99], which may explain the numerous pits in the mound-skirting 

unit surface. The typically high thermal inertia suggests a coherent material, consistent with the 

mound-skirting unit's apparent erosion resistance. The parallel ridges that occur in the mound-
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skirting unit (Figure 30) may be eroded lithified bedforms, or preferential erosion along parallel 

joints.  

The presence in some locations of multiple overlapping units with the mound-skirting unit 

texture (Figure 16) suggests that in some cases multiple layers with the necessary erosional 

characteristics are present. 

 The transition between channel and sinuous ridge that occurs at the edge of the mound-

skirting unit south of the mound leaves little uncertainty that the sinuous ridges are inverted 

channels (Figure 6). We likewise interpret the finely branching ridges (Figure 14) in the landing 

site as inverted channel deposits.  

Alternatively, it is also possible that the finely-branching raised features are erosion-resistant 

fractures, similar to those observed on the dark-toned layered yardang-forming unit. However, 

the features branch and anastomose in a manner that is more consistent with fluvial channels 

than with fractures. 

Another possibility is that the finely-branching features are lithified aeolian bedforms, and 

there do appear to be small modern bedforms between some of the features. However, the 

features themselves appear to follow the curvature of the southern edge of a channel-like feature 

in the mound-skirting unit and lack the periodicity common to aeolian bedforms. In addition, thin 

sinuous ridges occur that are isolated from the other ridges in the network, which would be 

unusual for aeolian bedforms.  

The fan-shaped nature of the deposits at the base of the western mound (Figure 11) which 

overlap the mound-skirting unit, and their correlation with large canyons, suggests that they are 

debris from erosion of the mound. This provides a constraint on the time of  



 

64 

 

 

deposition for the mound skirting unit, suggesting that the mound was still eroding after the 

mound-skirting unit was emplaced. The non-bedded features in the walls of the canyons may be 

filled channels or fractures associated with the erosion of the mound and the formation of the 

canyons and fans of debris. 

Due to its association with the filled channel, Thomson et al. [63] have suggested that the 

outcrop of material shown in Figure 18a is a depositional fan. However, this does not explain the 

similarity between this outcrop and the rest of the mound-skirting unit.  

We suggest that the fan-shaped outcrop that is visible today is a portion of the more-

extensive mound-skirting unit, and that the outcrop was buried by fan-shaped debris deposits 

similar to those shown in Figure 11. The debris may have protected the underlying mound- 

 
Figure 36: a) HiRISE close-up of the light-toned ridge unit. On the northwest side the ridge forms a rapidly 

shallowing slope comprised of fractured light-toned layers and their erosional debris. On the southeast side 

the ridge ends abruptly with a drop of 5 to 10 meters down to the phyllosilicate-bearing unit, detected by 

Milliken et al. (2009). b) Light toned layers to the southwest of a) exposed in a gap between the mound-

skirting unit and the wall. It is possible that these are a continuation of the same material that forms the 

light-toned ridge. Refer to appendix Table A2 for HiRISE image IDs. Illumination is from the left. 

Locations: a) 4.722S 137.383E b) 4.799S 137.301E. 
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Figure 37: a) An overview of the light-toned 

ridge where it broadens. The curved line is 

the approximate edge of the MSL landing 

ellipse. b) Mesas of the mound-skirting unit 

appear to overlie the light-toned ridge unit in 

this location. c) However, in this location the 

mound-skirting unit and the light-toned ridge 

unit are less distinguishable. Refer to 

appendix Tables A1 and A2 for CTX and 

HiRISE image IDs. Illumination is from the 

left. Location: 4.671 S 137.463E. 

skirting unit surface from erosion but now has mostly eroded away, leaving a fan-shaped 

"footprint" on the preserved surface. A cartoon of this scenario is shown in Figure 35. This 

scenario reconciles the similarity of the outcrop to the rest of the mound-skirting unit with  

its location at the end of the filled channel. The reticulate pattern on the surface of this outcrop 

may be the result of lithified aeolian bedforms. 

4.5 Light-toned ridge 

4.6.1 Observations 

The light-toned ridge is a prominent feature of the lower mound near the proposed MSL 

landing site (Figures 17, 18). The feature has a CTX albedo of ~0.19 with some locations as high 

as 0.21, and stands out against the surrounding low-albedo (~0.16) units. The surface of the unit 

has a relatively high thermal inertia (~600 J m-2K-1s-1/2). Close inspection with the CTX DEM 

and HiRISE images reveals that this light-toned unit is a ridge, not simply the edge of a layer. 
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On its northwest side, the ridge breaks down into a >10 slope of layered, fractured light-

toned rock (Figure 36) that shallows and merges with the light-toned basal unit, which is 

discussed in a later section. On the southeast side, the light-toned ridge ends abruptly with a short 

(<10 m) drop down to a trough between the ridge and the mound.  

Following the light-toned ridge from its narrowest portion to the northeast, it becomes less 

well defined and spreads out into a broader band of light-toned layers (Figure 37a). Where it 

begins to spread, the ridge has a similar texture to adjacent exposures of the mound-skirting unit 

(Figure 37c). However, farther to the northeast, mesas of the mound-skirting unit appear to 

overlie the light-toned layers of the broadened ridge (Figure 37b). 

To the southwest of the fan-shaped outcrop of mound-skirting unit there is a gap between the 

edge of the mound-skirting unit and the layers of the mound. In this location, the lowest mound 

layers are light-toned, fractured material similar in morphology to the northwest side of the light-

toned ridge (Figure 36b). The rock on the southeast side of the trough, across from the light-

toned ridge is similarly light-toned and fractured. 

4.6.2 Interpretations 

The light-toned ridge appears to be part of a more extensive layer in the lower mound. We 

interpret the fractured light-toned outcrops on the southeast side of the trough and the light-toned 

outcrops to the southwest (Figure 36) as expressions of the same layer as the light-toned ridge. 

There is no obvious explanation for why the light-toned material eroded to form a ridge while 

other outcrops of the material are simply exposed as layers in the mound. We interpret the light-

toned ridge as stratigraphically lower than the mound skirting unit. Near the mesas of mound-

skirting unit (Figure 37b) the ridge appears to be more extensively eroded than it is in the 

location where it appears similar in appearance to the mound-skirting unit (Figure 37c). 
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Figure 38: A typical portion of the phyllosilicate-

bearing trough surface. The undulating ridges are 

similar to aeolian bedforms but in some locations, 

such as the area marked by arrows, they appear to 

be fractured. In addition, the dark material 

interacts with the ridges as if they are a hard 

surface, forming discrete small dunes. The 

phyllosilicate-bearing unit may be a soft rock that 

erodes to form this bedform-like morphology, or it 

may be lithified aeolian material. This figure is a 

subframe of HiRISE observation 

PSP_009294_1750. Illumination is from the left. 

Location: 4.716S 137.411E. 

 

4.7 Phyllosilicate-bearing Trough 

4.7.1 Observations 

The phyllosilicate-bearing trough (mapped in Figure 17) is a depression that parallels the 

south-east side of the light-toned ridge, and shows a clear nontronite signature in CRISM 

observations [30]. The same phyllosilicate signature is not clearly visible on the opposite 

(northwest) side of the light-toned ridge, but a thin bed with a similar signature has been detected 

in the large canyon in the western mound [30]. 

The trough has a slightly lower thermal inertia (~550-590 J m-2K-1s-1/2) than the light-

toned ridge. The surface of the material in the trough is characterized by undulating ridges 

(Figure 38). In some cases, the ridges share the light-toned, fractured texture typical of nearby 

bedrock, and dark material on the surface of the trough floor forms small aeolian bedforms with 

sharp boundaries. 

4.7.2 Interpretations 

The surface of the phyllosilicate-bearing trough is suggestive of aeolian bedforms (Figure 38) 

but we infer it to be a hard surface based on the sharp boundaries of the small dunes of dark-

toned aeolian material that occur in parts of the trough floor. It is possible that the phyllosilicate-

bearing unit is composed of lithified aeolian bedforms but it may also be a soft sedimentary rock 
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that erodes in an undulating pattern. Either possibility could be consistent with the observed 

moderately high thermal inertia. 

The lack of a matching phyllosilicate signature on the northwest side of the light-toned ridge 

suggests that the phyllosilicates are present only in a thin layer which is not visible on the 

northwest side of the ridge due to the limited resolution of CRISM. If the observed 

phyllosilicates do represent the exposed surface of a very thin bedding plane, dip measurements 

[30] indicate that it would emerge near the base of the ridge on the northwest side.  

Alternatively, the phyllosilicate-bearing material may be altered material confined to the 

trough. However, the presence of a thin bed with a similar phyllosilicate signature in the walls of 

the large western canyon [30] leads us to favor the "thin bed" hypothesis. 

4.8 Light-toned basal unit 

The light-toned basal unit is distinguished from the crater floor units by a sharp drop of ~10 

m (Figure 34a). The light-toned basal unit has a CTX albedo of up to 0.20, and is primarily 

composed of fractured rock that in some locations has a subtle texture suggestive of layering 

(Figure 39b). It has a moderate thermal inertia ranging from roughly 500-540 J m-2K-1s-1/2. 

Mesas of mound-skirting unit are common on top of the light-toned basal unit (Figure 34b), and 

much of the basal unit is covered by dark-toned mafic dunes. The light-toned basal unit slopes 

upward in a series of poorly-defined fractured, light-toned layers to form the northwestern side 

of the light-toned ridge unit (Figure 36a). 

4.9 Dark-toned basal unit 

The dark-toned basal unit (Figure 39) has a higher thermal inertia (~780 J m-2K-1s-1/2) than 

the light-toned basal unit. It has an albedo of 0.15-0.16 and occurs to the southwest of the  

http://dx.doi.org/10.1029/2009GL041870
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Figure 39: a) The dark-toned basal unit (DBU) is to the southwest of the light-toned basal unit 

(BU). Also visible is the mound-skirting unit (MSU) and the hummocky plains unit (HP). Very 

dark patches are small barchan dunes. b) The light-toned basal unit in this location exhibits a 

fabric that may be faint evidence of layering. The potential layers run perpendicular to the 

arrows. c) A closer view of the sharp transition between the light-toned and dark-toned basal 

units. d) A very close view of the transition. The light-toned basal unit appears to superpose the 

dark basal unit. HiRISE Image ID: PSP_001488_1750. Illumination is from the left. Location: 

4.750S 137.270E. 

 

landing ellipse and the light-toned basal unit. The transition between the light and dark-toned 

basal units (Figure 40) is sharp and the dark-toned basal unit appears to be topographically lower 

than the light-toned basal unit. This suggests that it is either stratigraphically lower or that the 

dark-toned unit is younger and fills a depression that had been eroded into the light-toned basal 

unit.  

4.10 Hummocky plains unit 

4.10.1 Observations 
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Figure 40: a) The northern boundary of the fan-shaped unit in the landing ellipse. The bottom half 

of this inset shows the "smooth low thermal inertia fan" (SLTIF) unit surface. This transitions 

sharply to hummocky plains (HP) showing light-toned polygonal features interpreted as fractures. 

b) A closer view of the hummocky plains unit, showing light-toned fractures similar to the erosion-

resistant ridges on the mound. c) The distal end of the fan-shaped unit in the ellipse has a higher 

thermal inertia, consistent with its fractured, rocky appearance in this HiRISE image. Note the filled 

craters, some of which show layering in their walls, as indicated by the arrow in d). a) and b) are 

subframes of HiRISE image PSP_009716_1755. c) and d) are subframes of HiRISE image 

PSP_010573_1755. Illumination is from the left. Location: a) 4.417S 137.296E c) 4.535S 

137.438E  

 

Much of the crater floor near the proposed landing site is a hummocky terrain of smoothly-

varying thermal inertia (~480 J m-2K-1s-1/2). It has a uniform CTX albedo (~0.21) similar to 

other units in the northern crater floor. In locations in which the surface has a lower thermal 

inertia, this unit has a subdued appearance (Figure 13). In locations with higher thermal inertia, 

the unit appears more rugged and in some cases is marked by light-toned polygons (Figure 40). 
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Sinuous ridges are visible in several locations on the hummocky plains unit (Figure 13). 

They occur on a very shallow (~1) slope and have a vertical relief of several meters. 

4.10.2 Interpretations 

The variable thermal inertia of the hummocky plains unit is likely due to varying degrees of 

mantling with unconsolidated material. The polygonal markings in high thermal inertia locations 

may be fractures, similar to the erosion-resistant fractures observed on the dark-toned layered 

yardang-forming unit, although less pronounced. 

We interpret the sinuous ridges on the hummocky plains as inverted channels. Their sinuous 

nature and low slope are consistent with formation by slow-flowing water. These inverted 

channels also imply that the crater floor was once buried and has been eroded by at least their 

current height, but they do not constrain the maximum burial depth.  

 

Figure 41: THEMIS thermal inertia map 

[68] of the fan-shaped feature in the 

proposed MSL landing site. The branching 

valley that ends at the apex of the fan-

shaped feature has a very low thermal 

inertia. The fan-shaped feature itself is 

divided into a proximal low thermal inertia 

portion and a distal high thermal inertia 

portion. 
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Figure 42: a) The western end of the landing site fan is characterized by numerous ridges of 

material roughly aligned with the direction of flow (indicated by arrows) on the fan. The mound-

skirting unit (MSU) appears to embay outcrops of high thermal inertia fan and/or ridge material as 

shown by the arrow in b). c) The boundary of the high thermal inertia fan (HTIF) is sometimes quite 

sharp. Here it drops down to a hummocky surface similar to the hummocky plains (HP; Figure 13). 

d) Arrows mark the edge of HTIF material emerging from beneath at the base of the MSU, implying 

that the MSU superposes the HTIF. This Figure shows subframes of HiRISE observation 

PSP_009716_1755 with illumination from the left. Location: 4.566 S 137.302E. 

 

4.11 Northwestern fan-shaped feature 

4.11.1 Observations 

The proposed MSL landing site in Gale Crater is centered on a large (80.4 km2) fan-shaped 

feature, the apex of which coincides with the end of a dendritic valley network on the northern 

crater wall (Figures 8a, 41). The fan-shaped feature can be divided into two units: a smooth, 

lower thermal inertia (~460 J m-2K-1s-1/2) unit that extends from the apex of the  

fan down to about two thirds of the way to the distal margin, and a rockier, high thermal inertia 

(~620 J m-2K-1s-1/2) unit that forms the distal end of the feature (Figure 41). Mesas  
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similar to the outcrops of mound-skirting unit seen elsewhere on the crater floor partially trace 

the borders of the fan and occur in the middle of the smooth low thermal inertia unit, The 

western distal end of the fan is marked by many ridges that are roughly aligned north-to-south 

(Figure 42). These ridges make the boundary of the western edge of the fan difficult to define 

precisely. 

The smooth, low thermal inertia fan unit, seen in the bottom half of Figure 40a, has a 

subdued, mantled texture. It has many hollows which are typically filled with a smooth light-

toned material. 

The high thermal inertia portions of the fan-shaped unit are layered, fractured material. 

Evidence of layering can be seen in the walls of craters within the unit (e.g., Figure 40d). Where 

the fan-shaped feature transitions from low to high thermal inertia, the surface becomes rockier 

and less mantled. Much of the high thermal inertia unit is a distinct lower  

stratigraphic layer, marked by a sharp ~10 m drop. However, in many locations the thermal 

inertia of the terrain increases even before the drop down to the stratigraphically lower unit. In 

patches of the smoother surface, particularly near the transition to higher thermal inertia,  

the smoother surface exhibits polygonal features similar in scale to the fractures in the high 

thermal inertia material (Figure 43).  

4.11.2 Interpretations 

We interpret the northwestern fan-shaped feature as a lithified alluvial fan, based on its shape 

and its position at the end of a branching valley on the northwestern crater wall. The  

roughly flow-aligned ridges in the western portion of the fan may be inverted channels or 

remnants of debris flow lobes. The pits in the smooth low thermal inertia fan unit may be impact 

craters, filled by dust or other unconsolidated, sediment. 
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Figure 43: a) In the upper left, an 

outlying patch of the smooth low 

thermal inertia fan (SLTIF) unit 

transitions to rugged, high-thermal 

inertia terrain before dropping sharply 

(indicated by arrows) to the 

stratigraphically lower high-thermal 

inertia fan (HTIF) unit. b) The smooth 

unit in this transition zone shows linear 

features that are likely due to cracks in 

either the smooth unit or the underlying 

rock. c) A typical portion of the HTIF 

showing clear fractures at a similar 

scale to those in b). See text for 

discussion. HiRISE Image ID: 

PSP_003453_1750. Illumination is 

from the left. Location: 4.545S 

137.399E. 

The polygonal features in the low thermal inertia fan suggest that it is either rigid enough to 

fracture, or that it is a thin (less than a few meters) unconsolidated material settling and filling 

cracks in the underlying high-thermal inertia material (Figure 43). Alternatively, the observed 

cracks could be due to volume changes in the "smooth fan" unit, such as those due to desiccation 

or periglacial activity. However the similarity in scale of the fractures in the smooth unit to those 

in the high thermal inertia fan (Figure 43) and the low thermal inertia of the smooth fan unit 

leads us to favor the interpretation of the low thermal inertia portion of the fan as a thin layer 

obscuring the high thermal inertia fan. We interpret the sharp drop that occurs near the transition  
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Figure 44: a) Overview of the northern flank of the Gale mound, showing the enigmatic lobate units. 

Illumination is from the left. Refer to appendix Table A1 for CTX Image IDs. b) THEMIS thermal 

inertia map of the same area shown in a) [68]. Note the high thermal inertia of the northeastern portion of 

the fan-shaped lobate unit. Boxes provide context for Figures 45 & 46. The arrows mark the location 

where the "neck" of the unit appears to truncate a mesa of mound material. 

 

in thermal inertia as the result of scarp retreat caused by the erosion of the smooth fan and an 

upper layer of high thermal inertia fan, exposing another underlying high thermal inertia layer. 

4.12 Lobate features 

4.12.1 Observations 

Several large lobate features extend down the northern flanks of the Gale Crater mound 

(Figure 44). Closer inspection in MOC images reveals that these features are at least coarsely 

layered, with a continuous sharply defined layer apparent in Figure 45. Most of the lobate 

features have a relatively uniform width of 1-2 km for their entire length, an approximate 

thickness of hundreds of meters, and have a convex surface topography with well-defined edges. 

The uniform-width lobes do not extend all the way down the slope of the mound. The lobate  
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Figure 45: A closer MOC/CTX view of one 

of the uniform-width lobate units. Arrows 

mark the well-defined cliff-forming layer 

exposed at the edges of the unit. CTX Image 

ID: P01_001620_1749_XI_05S222W; MOC 

Image ID: M11/00989. Illumination is from 

the left. Location: 4.634S 137.797E. 

 

features have slopes typical of the large-scale slope of the mound (~15
o
), and a moderate thermal 

inertia (~460 J m
-2

K
-1

s
-1/2

).  

The HRSC elevation data do not have a high enough resolution to determine the slope at the 

end of the lobate deposits, but MOC and CTX images show an abrupt drop at the end of the 

deposits that may be as steep as the angle of repose for dry, granular material. There are not 

obvious boulders on the surface of the lobate features in the available MOC images. 

The largest, easternmost lobate feature is fan-shaped. It begins with a narrow concave "neck" 

with a width of ~1.8 km, sharply defined by a narrow ridge on the western side and a large 

(several hundred meters) cliff on the eastern side. The "neck" extends from a large alcove in the  
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Figure 46: a) Closer view of the high thermal inertia portion of the fan-shaped lobate unit. b) Inset of a), showing 

the unusual streamlined texture of this portion of the fan-shaped lobate unit. Arrows mark the location of linear 

features that may be faults. Small vertical arrows mark examples of features that appear to be offset. CTX image ID: 

P04_002464_1746_XI_05S221W. Illumination is from the left. Location: 4.588S 138.013E. 

 

mound and is partly obscured by yardang-forming material and has a low thermal inertia (~360 J 

m
-2

K
-1

s
-1/2

). The "neck” appears to truncate an outcrop of material on its western side. The fan-

shaped lobate feature has a break in slope from ~15o to ~5o within its narrow portion, and begins 

to broaden ~1.5 km downhill from that point.  

The fan-shaped portion has a rugged, chaotic texture, with roughly aligned ridges and 

depressions. The average thermal inertia of the fan-shaped portion of the easternmost lobate 

feature is ~470 J m
-2

K
-1

s
-1/2

. At the edge of the feature, the thermal inertia increases to >670 J m
-

2
K

-1
s

-1/2
 and the texture becomes dominated by streamlined mesas and troughs. Closer inspection 

of the high thermal inertia surface reveals several apparent faults (Figure 46). 

4.12.2 Interpretations 

The lobate features may be the result of large landslides or debris flows, in which case the 

fact that the uniform-width features do not extend all the way to the crater floor could be 
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attributed to limited debris supply. It is also possible that the features terminate at the former 

base of the slope, but the crater floor has been significantly eroded since their formation.  

The erosion-resistant layer visible on the uniform-width lobate features (Figure 45) could be 

explained by multiple, superimposed flow events, but the vertical thickness of the lobes would 

make it unlikely for individual flows to follow the same path repeatedly. Alternatively, the 

landslide or debris flow deposits could form only the upper erosion-resistant layer, and the 

thickness of the lobes could be due to that layer preventing erosion of  

the underlying material. The erosion-resistance may be due to post-landslide cementation, 

possibly associated with burial if the landslide occurred prior to a period of net deposition in 

Gale Crater. 

The apparent truncation of material by the neck of the fan-shaped lobate feature suggests that 

the process that deposited the feature was erosive, or that the truncated material was deposited 

against an obstacle that has since eroded away. The presence of yardang-forming material 

overlapping the neck of the fan-shaped lobate feature implies that the feature was once buried 

and has been exhumed. 

The lobate features also are similar in morphology to terrestrial rock glaciers, although the 

evidence for burial beneath yardang-forming material implies that if the lobate features were 

glacial in origin, any ice would likely be gone. Figure 2 in [100] shows an illustration of rock 

glacier morphology. Rock glaciers are characterized by their "tongue-like" or lobate appearance, 

may have ridges and furrows on their surface, and terminate with a steep front at the angle of 

repose [100]. The uniform-width lobate features are most similar to the "tongue-shaped" rock 

glacier in the figure, although they do not originate in any obvious cirque.  
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 The fan-shaped lobate feature does originate in an alcove on the mound, and most resembles 

the "piedmont or spatulate" rock glacier morphology in Figure 2 in [100]. The texture within the 

fan-shaped feature is similar to pressure ridges, and is consistent with a viscous, glacier-like 

flow.  

The lobate features appear to lack the boulders that would be expected if they were rock 

glaciers, though this may be due to the limited resolution of MOC and CTX. The lobate features 

could also be mantled with younger material that obscures the individual boulders. Another 

weakness in the rock-glacier hypothesis is the apparent erosion-resistant layer in the uniform-

width lobate features. If these deposits were rock glaciers, and therefore composed of boulders, it 

would be difficult to form the sharp cliff observed. 

If the lobate fan-shaped feature has a glacial or periglacial origin, the streamlined texture of 

the fan-shaped lobate feature may be related to melting of interstitial ice. Flow of meltwater from 

the deposit could have carved the observed streamlined features. Alternatively, if the fan-shaped 

feature was deposited during or prior to a period of fluvial activity at Gale Crater, the observed 

texture could be due to erosion during that period. The texture of the lobate fan-shaped feature 

could also be related to compositional banding, which is seen in many flow features, including 

subaerial avalanches and debris flows, submarine debris flows, and glaciers (e.g.,[101] and 

references therein). Compositional banding can be due to the initial stratigraphy of the source 

material or sorting during the slide event[101]. Although most subaerial debris flows and 

avalanches have simpler banding than the streamlined texture observed, pre-existing topography 

can induce more complex flow banding [102] [101].  

The faults observed in the streamline-textured surface are difficult to explain as part of the 

same mechanism that generated the texture. It is likely that they formed after the texture was 
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emplaced, perhaps due to stresses exerted by burial of the lobate feature by the deposition of 

subsequent mound material. 

The lobate features are also morphologically consistent with volcanic lava or pyroclastic 

flows. However, there are no vents, cones, calderas, or other unambiguous evidence that the Gale 

Crater mound is a volcano [30]. Therefore we do not favor a volcanic explanation for the lobate 

features. 

There are three publicly released SHARAD radar profiles through the Gale Crater mound, 

one of which comes close to the lobate features. A full interpretation of the SHARAD data 

products, including a comparison with simulated off-nadir surface reflection ("clutter") [103] is 

beyond the scope of this paper. However, the available data products do not appear to show 

unambiguous evidence for sub-surface reflectors. 

As mentioned above, the lobate features appear to have been buried, so it is unlikely that they 

would retain the banding due to ice-rich and ice-poor layers observed in radar profiles of 

terrestrial rock glaciers [104]. The evidence for burial also makes it unlikely that they are 

composed primarily of ice like the lobate debris aprons observed elsewhere on Mars [105].  

Although both the landslide and rock glacier hypotheses have weaknesses, we interpret the 

lobate features to be related to a flow of some sort. HiRISE coverage of these features would be 

beneficial, and could test the compositional banding hypothesis by looking for a variation in 

texture and clast size in the streamline-textured feature. 

5. Inferred stratigraphy of the Gale Crater mound and proposed MSL landing site 

Based on the observations and interpretations described above, we have inferred the basic 

inter-unit relationships and stratigraphy of the Gale Crater landing site and the nearby mound, 

illustrated in the idealized cross-section in Figure 47.  

http://dx.doi.org/10.1029/2009GL041870
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The stratigraphically lowest mound units appear to be the basal units, although it is unclear 

whether the topographically lower dark-toned basal unit is a lower stratigraphic layer or has 

simply filled a depression in the light-toned basal unit. The thickness of the basal units is 

unknown. On the crater floor, a sharp cliff ~10 m high (Figure 39) marks the transition up from 

the basal units to the hummocky plains unit and the mound-skirting unit (Figure 34). The 

hummocky plains unit is an ancient eroded unit that varies from a mantled surface to bare, 

fractured rock. The high thermal inertia distal end of the fan-shaped deposit in the landing site 

overlies the hummocky plains and appears to be relatively thin (Figure 42). Above the high 

thermal inertia fan-shaped unit is the smoother, low thermal inertia surface of the fan. This thin, 

smooth upper layer, along with the upper layer of the high thermal inertia fan, appear to be 

eroding back to expose the surface of the high thermal inertia fan unit (Figure 43). Some 

outcrops of high thermal inertia fan material appear to be embayed by mound-skirting material 

(Figure 42), suggesting that although they are topographically higher than the mound skirting 

surface, they are part of the older fan units. 

Mesas with a texture similar to the mound-skirting unit extend from the crater wall to the 

base of the mound (Figures 10, 12, 15, 16), overlying the fan and crater floor units. These mesas 

merge with the mound-skirting unit in some places, while in other places they form sharp 

boundaries despite a similar texture (Figure 16). In some cases the stratigraphic relationship 

between the mound-skirting unit and the hummocky plains unit is ambiguous, but generally the 

mound-skirting unit appears to overlie the hummocky plains.  



 

 

 

 

8
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Figure 47: A cartoon of the inferred stratigraphy of the proposed Gale crater landing site and traverse region. This cartoon is not to scale, and is 

significantly simplified, but it does show the primary units discussed in the previous sections. 
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At the foot of the mound, the basal unit merges in a series of poorly defined layers of 

fractured rock into the light toned ridge (Figure 36). Outcrops of the mound-skirting unit appear 

to overlie the lower layers of the light-toned ridge unit (Figure 37). On the southeast side, the 

ridge ends abruptly and drops down to a trough exposing a phyllosilicate-bearing surface which 

we interpret as the upper surface of a thin clay-bearing bedding plane. The dip of the bed and its 

thinness [30] could explain why it is not seen on the northwest side of the light-toned ridge.  

Above the phyllosilicate-bearing trough, the first mound layers appear to be similar to those 

that make up the light-toned ridge, based on their tone and fractured texture. The mound slopes 

up at an angle of ~12o onto the sulfate-bearing dark-toned layered yardang unit. The fan-shaped 

patch of the mound-skirting unit is stratigraphically above the light-toned ridge and a portion of 

the dark-toned layered yardang unit, suggesting that the mound-skirting unit was deposited after 

these units. However, the fan appears to emerge from beneath a ridge of channel-filling material, 

constraining its time of deposition to before the channel in the dark-toned layered yardang unit 

was fully eroded and filled. Likewise, fan-shaped deposits of material emerging from canyons in 

 
Figure 48: a) The largest canyon in the western mound becomes a shallower channel (marked by 

arrows) before disappearing beneath the layers of the upper mound, as shown in b). An outcrop of 

upper mound material lies in the trough at the end of the channel, marking an unconformity between the 

surface into which the channel was carved and the overlying upper mound layers. Refer to appendix 

Table A1 for CTX Image IDs. Illumination is from the left. 
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the dark-toned layered yardang unit on the western mound extend onto the mound-skirting unit 

(Figure 11). 

The layers of the upper mound unit were deposited unconformably on top of the dark-toned 

layered yardang-forming unit after it had been eroded, as indicated by the truncation of the large 

valley on the western mound by the upper mound layers (Figure 48). This unconformity 

represents an unknown amount of time, but could indicate that the upper mound unit is 

significantly younger than the lower mound and possibly Amazonian in age [30]. 

In addition, the possibility that the upper mound material may be a lithified dune field is 

significant because a dune field would not be expected to form on top of a pre-existing mound. 

We therefore speculate that the early mound was buried after the initial erosion of the dark-toned 

layered yardang-forming material, allowing a dune field to form, become lithified, and erode 

back to the current mound. 

The light-toned yardang unit also lies unconformably on top of the dark-toned layered 

yardangs, as indicated by a partially exhumed crater (Figure 26) [60]. The mound surface 

immediately above the light-toned yardang-forming material is mostly obscured by aeolian 

bedforms but the light-toned yardang-forming material appears to be unconformable with and 

younger than the upper mound unit as well. The 12° tilt of the best-fit plane to the boundary of 

the light-toned yardang unit is similar to the average slope of the mound. This suggests that the 

light toned yardangs were deposited, presumably as part of a more extensive unit, after the rest of 

the mound, including the upper mound unit, had already been eroded to nearly its present state. 

Patches of the thin mantle unit occur on the dark-toned layered yardang unit (Figure 27) and 

the upper mound layers, but not on the light-toned yardangs. In some locations (Figure 28) on the 

boundary of the light yardangs, it is unclear whether the thin mantle unit abuts the light yardang 
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unit, or whether it emerges from beneath it. In other locations, the light-toned yardang unit is in 

direct contact with the surface of the dark layered yardang unit (Figure 26). This suggests that 

the thin mantle unit was already eroded away when the light-toned yardangs were deposited. 

Alternatively, the thin mantle unit may postdate the light-toned yardangs, but has been 

completely eroded off the soft light-toned yardang surface. The more erosion-resistant surface of 

the dark layered yardang unit might not undermine the thin mantle as rapidly, allowing it to 

persist.  

6. Candidate rover traverses  

In selecting a traverse for MSL at the Gale Crater landing site, an important consideration is 

what route to take to the layered, hydrated-mineral-bearing mound, the primary target of a 

mission to Gale. The dark-toned dunes at the base of the mound might form a barrier to MSL, 

preventing a direct path to the mound from the center of the landing site. However, there are two 

locations near the landing ellipse that would allow MSL to access the mound without having to 

traverse the dunes, and we discuss a possible traverse for each of these (Figure 49, Table 2). We 

have chosen to end both traverses when they reach the light-toned yardang unit. If the rover 

reached that unit, it could continue climbing up similar slopes to the upper mound, or return to 

study other locations on the lower mound. We have also assumed that the rover would land 

precisely in the center of the ellipse. If MSL lands a significant distance from the center of the 

landing ellipse, that could factor heavily into which traverse it would follow to reach the mound. 
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Table 2. Summary of Two Potential Traverses 

Traverse 1 = 29.4 km Traverse 2 = 22.5 km 

Stop Description Rationale Stop Description Rationale 

1A 

Transition between 

low- and high- thermal 

inertia fan-shaped unit 

Search for conclusive evidence 

that this unit was an alluvial 

fan. Determine environmental 

conditions for deposition. 

2A 

Transition 

between low- and 

high- thermal 

inertia fan-

shaped unit 

Search for conclusive 

evidence that this unit was 

an alluvial fan. Determine 

environmental conditions 

for deposition. 

1B 

Edge of high-thermal 

inertia fan-shaped 

unit. 

Investigate the transition to the 

hummocky plains and mound-

skirting units. Determine nature 

of these units (composition, 

depositional setting, etc.). 

2B 

Edge of high-

thermal inertia 

fan-shaped unit. 

Near inverted 

channels. 

Investigate the transition 

to the hummocky plains 

and mound-skirting units. 

Determine nature of these 

units. Optional: Traverse 

east to inverted channels. 

Search for biomarkers, 

evidence for duration of 

fluvial activity, etc. 

1C 

Boundary between 

mound-skiting unit and 

basal unit. Near dark 

dunes. 

Test lithified bedform and 

parallel joint hypotheses for 

mesas and ridges in skirting 

unit. Test mound origin 

hypotheses on basal unit (first 

mound unit encountered). 

2C 

Passage through 

sand dunes on 

mound-skirting 

unit. 

Study dark dunes and 

mound skirting unit. Test 

lithified bedform and 

parallel joint hypotheses 

for the origin of ridges in 

the skirting unit. 

1D 

Phyllosilicate-bearing 

unit near fan-shaped 

unit. 

Determine depositional setting 

for phyllosilicate-bearing and 

neighboring units. Begin 

assembling mound stratigraphy. 

Search for biomarkers in 

phyllosilicates. 

2D 

Edge of skirting 

unit, transition to 

basal unit. 

Test mound-origin 

hypotheses on basal unit 

(first mound unit 

encountered). 

1E 
Channel fill atop fan-

shaped unit. 

Test hypothesis that fan-shaped 

unit is part of the mound-

skirting unit. Analyze channel fill 

material and search for 

biomarkers. 

2E 

Mesas of mound-

skirting unit on 

basal and light-

toned ridge units 

Test hypothesis that the 

light-toned ridge unit 

underlies the mesas in this 

location. Test origin of 

light-toned ridge. 

1F 
Fine layers and 

channel fill. 

Continue to study mound 

stratigraphy. Test mound origin 

hypotheses. Search for 

biomarkers in sulfates. 

2F 
Phyllosilicate-

bearing trough. 

Determine depositional 

setting for phyllosilicates. 

Search for biomarkers in 

phyllosilicates. Begin to 

construct mound 

stratigraphy. 

1G 
Erosion-resistant 

ridges. 

Test hypothesis that ridges are 

cemented fractures. Determine 

nature of putative cementing 

material and search for 

biomarkers. 

2G 

Dark-toned 

layered yardangs, 

partially mantled. 

Continue to construct 

mound stratigraphy. Test 

mound origin hypotheses. 

Search for biomarkers in 

sulfates.  

1H Light-toned yardangs 

Investigate contact between 

light-toned yardang unit and 

dark-toned layered yardangs. 

Determine nature of light-toned 

yardangs. 

2H 
Light-toned 

yardangs. 

Investigate contact 

between light-toned 

yardang unit and dark-

toned layered yardangs. 

Determine nature of light-

toned yardangs. 
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Figure 49: Two proposed MSL traverses, starting at the center of the landing ellipse and proceeding 

toward the two breaks in the line of dunes that provide access to the mound. See text for discussion. 

Refer to appendix Table A1 for CTX image IDs. Illumination is from the left.  
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The first possible traverse is similar to traverses previously proposed [71]. It would cover 

29.4 km and begin (nominally) in the center of the landing ellipse on the fan-shaped unit and 

would bear toward the south-southwest. The initial portion of the traverse would allow 

investigation of the transition between the low- and high-thermal inertia portions of the fan-

shaped deposit in the ellipse and the stratigraphy of the layers exposed in those units (Figure 49: 

A). The rover would then cross over onto patches of the mound-skirting unit and the hummocky 

plains unit (Figure 49: 1B). Continuing to the southwest, the rover would leave the ellipse and 

reach the sharp transition between the mound-skirting unit and the basal unit near the location of 

numerous ridge-like mesas of the mound-skirting unit (Figure 34; Figure 49: 1C). MSL could 

test the hypothesis that these ridges are due to lithified bedforms or parallel joints by studying the 

texture, bedding, and composition of the rocks in these outcrops. The traverse would also pass 

near outliers of the dune field and MSL could observe the sand to determine its composition, 

physical properties, and activity, similar to the observations of the much smaller El Dorado 

ripple field by the Mars Exploration Rover Spirit [106].  

From this point, the rover would head south, across the surface of the basal unit and begin 

climbing the poorly defined layers leading up to the light-toned ridge unit. MSL would traverse 

through a gap between the southwest end of the light-toned ridge and the mound-skirting unit, 

and cross into the phyllosilicate-bearing trough (Figure 49: 1D). Here the rover would be able to 

determine the precise mineralogy of the phyllosilicate unit, its phyllosilicate content, its 

depositional setting and weathering history, and its organic content.  

After a full study of the phyllosilicate-bearing trough material, MSL could study the base of 

the fan-shaped outcrop, and then climb up its side to study the surface and determine whether it 

is indeed an outcrop of the mound-skirting unit. The rover would also analyze the ridge of 
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channel-fill material on the fan (Figure 49: 1E). This material might provide a sample from much 

higher on the mound, and therefore could be valuable in understanding units that the rover might 

never reach. 

From the filled channel and outcrop, MSL would continue to climb, analyzing the layers of 

the mound as it drove (Figure 49: 1F). At this point our proposed traverse differs slightly from 

previous traverses. The rover would turn to the southwest, away from the filled channel and 

climb up a set of layers of varying albedo to reach an expression of erosion-resistant ridges 

(Figure 49: 1G). Here the rover could determine whether the ridges are indeed fractures made 

erosion-resistant by alteration or cementation, or whether they are due to igneous intrusion or 

other processes. Finally, the rover would turn to the southeast and continue to climb the mound, 

following the trough between two large yardangs and eventually reaching the light-toned 

yardang unit near the location (Figure 49: 1C) of the partially exhumed crater shown in Figure 

26.  

Traverse 2 would cover 22.5 km and would begin by driving away from the center of the 

ellipse toward the southeast. In this direction, MSL would soon leave the fan-shaped unit and 

would cross onto the hummocky plains and mound-skirting units (Figure 49: 2B). It would then 

reach a more rugged, ridged portion of the mound-skirting unit and could continue toward the 

southeast while studying the unit and determining the origin of the ridges. There is a gap in the 

dune field on the ridged, mound-skirting unit (Figure 49: 2C), and MSL would drive through this 

gap and then turn toward the southwest. 

After crossing ~3.3 km of ridged, mound-skirting unit, MSL would arrive at the basal unit 

(Figure 49: 2D). Continuing to the southwest, the rover could investigate one of the mesas of 

mound-skirting unit where it contacts the broadened light-toned ridge (Figure 49: 2E), and then 
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could proceed up the ridge itself. MSL would then descend onto the phyllosilicate-bearing trough 

and conduct a thorough analysis (Figure 49: 2F). Continuing to the southwest, the traverse leads 

up onto the layers of the dark-toned layered yardang unit. In this area of the mound (Figure 49: 

2G), the thin mantle unit obscures many of the layers, but the numerous yardangs expose 

numerous outcrops for MSL to access so that it likely could still construct a stratigraphic column 

of the mound. The rover would work its way up the mound, eventually reaching the light-toned 

yardang unit (Figure 49: 2H). 

The initial leg of Traverse 2 comes close to some of the well-preserved inverted channel 

features in the ellipse (Figures 13, 14). Optionally, MSL could begin by traveling directly east, 

and studying one or several of these features before turning south to climb the layered mound. 

The proximity to these features is the primary advantage to Traverse 2. Disadvantages include 

the long traverse over the ridged mound-skirting unit and the mantled nature of the mound near 

the gap in the dunes. Traverse 2 is 22.5 km long and MSL would climb 1021 m during the 

traverse, crossing maximum slopes of about 10 degrees. In comparison, Traverse 1 is 29.4 km 

long and would climb 1155 m, crossing maximum slopes of about 15 degrees. The advantages of 

Traverse 1 are that it would climb a well-exposed, unmantled portion of the mound, and that 

therefore the stratigraphy and composition of the mound at that location have been well-studied 

(Figure 47; [30] [74] [107]). 

7. Discussion and conclusions 

7.1 Mound material origin hypotheses 

There are several hypotheses for the origin of the layered material of the Gale Crater mound. 

The spring mound hypothesis advanced by [65] predicts rapid spatial facies variations in the 

mound's strata, evidence for draping or progradation, and structural control of deposition. The 

http://dx.doi.org/10.1029/2009GL041870
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mound in Gale Crater does not show evidence of structural control or draping/progradation of the 

beds. The presence of uniform-thickness stratigraphic layers in the Gale Crater mound that are 

traceable for many kilometers (Figure 19) is inconsistent with the predicted rapid facies changes 

in a spring mound. [65] also claimed that craters with bulges lack evidence for a significant 

drainage basin associated with the crater. We have shown (Figure 7) that the rim of Gale Crater 

preserves numerous channels, inverted channels and fans that indicate that the crater was a 

drainage basin. Although the Gale crater mound does satisfy some of the other criteria listed by  

[65] for spring mounds (e.g. sedimentary appearance, mound-like morphology, compositional 

variations correlated with stratigraphic variations) these criteria are not unique to spring mounds.  

Many authors have suggested or discussed an aeolian origin for the material of the Gale 

mound [51][54][55][60][63]. We observe textures on the upper mound unit that could be large-

scale (hundreds of meters) crossbeds (Figure 30), similar to bedforms observed at White Sands 

National Monument on Earth (Figure 32). We interpret the observed textures as evidence that the 

upper mound has an aeolian origin. On Earth, crossbeds are often significantly smaller than those 

observed on the upper mound, so that the lack of crossbeds in HiRISE observations of the lower 

mound does not exclude an aeolian origin for these units. Although no crossbeds are observed in 

the lower mound units, the ridged morphology of portions of the mound-skirting unit and the 

dark-toned layered yardang unit may represent lithified aeolian bedforms. 

A volcanic origin for the mound material has also been suggested [51][54][55]. Lava flows 

produce strong, cliff-forming, boulder-shedding layers, but these properties do not uniquely 

identify a layer as a lava flow. Beds with this property are present in the Gale Crater mound (e.g., 

Figure 21). The nearest obvious volcanic edifice to Gale Crater is Elysium Mons, ~1800 km 

north of Gale. Cratering counts of Elysium Planitia lavas have been used to infer a young age 
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(<100 million years) [108] which would be incompatible with the likely Noachian/Early 

Hesperian age of the Gale Crater mound. We also find it unlikely that flows from an Elysium 

eruption could travel 1800 km south to Gale Crater. The presence of layers within the mound 

that do not form steep, boulder-shedding cliffs also implies that much of the mound is not 

composed of lava flows. 

Pyroclastic deposits represent an alternative volcanic origin for the Gale Crater mound 

[51][55][60] [63]. Hynek et al. [109] have suggested that much of the light-toned layered 

material on Mars, including the MFF, is due to explosive volcanism, and Zimbelman et al.[60] 

have mapped the Gale Crater mound as an outlying portion of the MFF. The yardang-forming 

morphology of the mound and the similarities between the pedestal crater outcrop west of the 

mound and those in the MFF, described by Kerber and Head [90], suggest that the mound 

materials erode in a manner similar to the MFF. However, Malin and Edgett [60] rule out a 

pyroclastic origin for much of the layered rock on Mars due to the rapid thinning of pyroclastic 

deposits with distance from the source and the lack of sources near observed layered sedimentary 

rock exposures. Wilson and Head [110] have used models to show that explosive volcanism can 

produce "thick widespread deposits of ash and lapilli" on Mars and that small pyroclasts (~50 

microns) can be transported ~10,000 km in the martian atmosphere. Wilson and Head [110] also 

predict that fine-grained pyroclasts would "scavenge" water from eruption plumes and would 

therefore form fine-grained deposits containing ice and/or hydrated minerals and low-

temperature alteration products. In a more recent paper, Wilson and Head [111] calculate that on 

Mars a 1000 km3 eruption would form ~1 m thick pyroclastic deposits at a distance of ~1000 km 

from the source. Multiple extremely large and/or nearby eruptions would therefore be required to 

create the Gale mound entirely from pyroclastic deposits. Due to the ~1800 km distance to the 
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nearest obvious large volcano, it seems unlikely that pyroclastic deposits make up the bulk of the 

mound, though they are very likely to be present as thin beds. 

Finally, Gale Crater has been suggested as the site of a former crater lake, and the mound has 

been suggested to comprise lacustrine or fluvial deposits [51] [56] [55] [60]. Lacustrine deposits 

are characterized by laterally continuous, finely-layered and highly variable bedding, confined to 

a closed basin [60][112]. The layers of the Gale Crater mound fit this description. The presence 

of hydrated minerals on the Gale Crater mound [30][70] could indicate diagenesis of 

sedimentary material in an aqueous setting. However, it is not diagnostic of a lacustrine setting 

because the aqueous minerals could also have formed elsewhere and been deposited in the crater. 

Thus, a lacustrine origin for the sedimentary rocks of Gale Crater cannot be ruled out based on 

our observations. 

It would be naïve to suggest that a single process could adequately describe the entire 

stratigraphic column at Gale Crater. It is much more likely that the layers of the Gale Crater 

mound derive from a variety of sources and processes, preserving information about changing 

environments throughout the history of Mars.  

MSL would be able to address the multiple remaining mound origin hypotheses, providing 

information that is unavailable from orbit. The detailed structure of the sedimentary rocks could 

be assessed by the cameras on the rover, revealing fine-scale layering, cross-bedding, and grain 

sizes. This information could immediately reveal the nature of the rocks of the Gale mound. 

More detailed study of the elemental, mineralogical and chemical composition would provide 

clues to the alteration history of Gale Crater, further constraining the depositional and post-

depositional environments. The physical properties of the rocks and soils at the landing site 

http://dx.doi.org/10.1029/2009GL041870
http://dx.doi.org/10.1029/2009GL041870
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could also be studied, as has been done with the Mars Exploration Rovers [113], based on the 

interaction between the rover and its surroundings (e.g. tracks, trenching, drilling).  

7.2 Discussion of sediment transport 

The height of the mound in Gale Crater, the laterally extensive nature of the exposed beds 

(Figure 19, [30]), outcrops of layered material on the crater floor (Figure 24), and inverted 

channels (e.g. Figure 13) all suggest that the Gale Crater mound material once filled the crater 

and has been significantly eroded. Furthermore, the canyons and channels carved into the surface 

of the mound suggest that the mound material had already been deposited and substantially 

eroded at a time when liquid water still flowed on the surface of Mars. 

 Malin and Edgett [60] have argued that the burial and excavation of craters is common on 

Mars, citing other examples of large, partially exhumed craters. In the case of Gale Crater, the 

presence of apparent erosional unconformities in the mound suggests multiple episodes of 

erosion and deposition. 

The excavation of Gale and other large craters requires the transport of tremendous quantities 

of material. As discussed by[60], the transport pathways for this material are not fully known, 

but the lack of craters on many exposures of layered rock suggests some degree of ongoing 

erosion. 

Valleys interpreted as fluvial channels are common on the crater walls. However, there do 

not appear to be any surface channels that lead out of the crater, therefore fluvial transport 

mechanisms are possible sources for the crater-filling material, but cannot directly explain the 

extensive exhumation. Likewise, mass wasting could partially explain the degradation of the 

crater rim and mound, but would result in debris collecting on the floor of the crater. Fluvial 

http://dx.doi.org/10.1029/2009GL041870
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erosion and mass wasting could, however, have broken down crater-filling material until it was 

small enough for aeolian erosion and transport to occur. 

Indeed, the only sediment transport process that appears plausible to explain the exhumation 

of Gale Crater is aeolian transport. This is consistent with numerous yardangs present on the 

mound, and ongoing or relatively recent aeolian erosion could explain the lack of numerous 

impact craters. To remove material from the crater entirely without breaching the crater rim, the 

material must be carried out of the crater in suspension. This implies that the material filling 

Gale and other similarly filled and exhumed craters either a) initially erodes into particles small 

enough to be carried out of the crater in suspension, or b) that particles generated by erosion 

continue to break down until they are small enough to be carried away in suspension. The latter 

possibility is consistent with the elevated saltation velocities of sand grains on Mars 

(e.g.,[114][115]) and the "Kamikaze" sand grain effect proposed by Sagan et al. [114]. In 

addition, other erosional processes such as fluvial erosion, could contribute to the breakdown of 

larger particles until they are susceptible to aeolian suspension. 

7.3 Implications for MSL landing site selection 

The selection of a landing site for MSL is driven by four primary criteria: diversity, context, 

habitability, and preservation potential [27]. As shown above, Gale Crater presents a location in 

which the rover could land and explore numerous distinct units distinguishable by their 

geomorphology, visible and infrared spectral characteristics, and thermal properties. The MSL 

payload could test hypotheses about each of the units discussed, as well as hypotheses regarding 

the relationship between units. The variety of units and the layering within the mound units 

suggests changing conditions at the time of deposition. This is shown most clearly by the 
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detection of phyllosilicates and hydrated sulfates that correlate with the phyllosilicate-bearing 

trough and dark-toned layered yardang units, respectively. 

Malin and Edgett [60] have argued that the sedimentary rocks at Gale Crater can be placed 

into a global context, based on similarities between sedimentary deposits across the planet. Gale 

Crater is one of many large craters on Mars that shows evidence of filling and exhumation, and 

therefore discoveries made by MSL at Gale Crater could be extrapolated to global processes. In 

particular, determining the nature of the layered deposits and numerous units at Gale would 

allow inferences to be made for deposits elsewhere on Mars with similar properties.  

If lacustrine deposits were confirmed, then sedimentary outcrops in craters of similar age 

could likewise be due to aqueous deposition. If a crater as deep as Gale Crater were shown to 

have never hosted a lake, this would have significant implications for the understanding of early 

Mars. If the Gale Crater layered rocks are primarily aeolian or volcaniclastic, that would confirm 

that those processes have been very important in shaping the martian surface. In addition, the 

presence of both sulfates and phyllosilicates exposed in the stratigraphic section at Gale Crater 

could provide insight into a key transition in the global weathering environment on Mars. [30]  

The MSL mission is focused on determining the habitability of Mars, and therefore the 

potential for preservation of chemical and geologic evidence for past habitability is paramount in 

the selection of a landing site. Habitability as currently understood (through terrestrial analogy) 

requires water, an energy source, and carbon  [27]. Numerous fluvial channels and inverted 

channels provide the best evidence for aqueous activity at Gale. Some (but perhaps not all) fan-

shaped units may also be associated with fluvial activity, as in the case of the large fan-shaped 

feature in the landing ellipse that begins at the end of a branching channel. The presence of 

hydrated minerals on the mound, and particularly the detection of nontronite, which forms at a 

http://dx.doi.org/10.1029/2009GL041870
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moderate pH, suggests a potentially habitable environment in which water was present [70]. 

Furthermore, if the layers of the mound are lacustrine in origin, they could represent the 

preserved remains of a once-habitable environment. Alternate origins (e.g., aeolian, lava flow, 

pyroclastic) are less favorable for habitability, but the erosion-resistant ridges on the mound may 

indicate alteration and/or cementation of mound materials by water (Figure 22; [72]), and 

therefore could be evidence of a habitable post-depositional environment. 

Preservation of biological material in rocks depends on the deposition and subsequent history 

of those rocks. Based on studies of biomarker preservation on Earth, organic material is most 

likely to be concentrated in sediments deposited in aqueous environments and would likely be 

preserved in association with high surface-area minerals such as phyllosilicates 

[116][117][118][119]. Evaporites and silica deposits are also favorable for biomarker 

preservation and microfossil formation because organics can be entombed as minerals precipitate 

out of solution [118][120] [121]. The inverted channels on the crater floor preserve geomorphic 

evidence of liquid water, but may only be favorable for preservation in cases where the features 

suggest a low-energy depositional environment. If the layers of the Gale Crater mound are 

lacustrine sediments, then they would be favorable for preservation of organic biomarkers. An 

intermittent lake setting would also be favorable due to the formation of evaporite minerals, 

which can trap organic material due to rapid crystallization. An aeolian or volcanic origin for the 

layers would be less favorable, although post-depositional alteration could provide evidence of 

later habitability. The erosion-resistant ridges on the mound may represent a habitable 

environment, with preservation potential depending on the chemistry of the rocks and the fluid 

involved. Organic material can be preserved in contact with chemically reducing fluid, but if the 

rocks are composed of oxidized material or have oxidizing fluid flowing through them, then 

http://www.lpi.usra.edu/meetings/lpsc2009/pdf/1479.pdf
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organics are unlikely to be preserved [122]. Post-depositional contact with water can also 

contribute to biomarker degradation by facilitating aqueous chemical reactions, participating in 

hydrolysis reactions, and promoting microbial activity [123].  

Smectite phyllosilicates are effective at preserving organic molecules due to their low 

permeability after deposition, their large surface area, and their ability to bind organics between 

the layers of the mineral structure [119][122]. Therefore the detection of smectites at Gale [70] is 

significant for biomarker preservation potential. Sulfate minerals have also been shown to 

preserve organic molecules such as amino acids [124]. The presence of both sulfates and 

phyllosilicates at Gale Crater therefore provides multiple locations with biomarker preservation 

potential. 

Gale Crater shows relatively few impact craters on its exposed surfaces, suggesting that the 

exposures of sedimentary material are relatively fresh. This is also a favorable characteristic for 

preserving evidence of habitability because exposure to radiation and oxidation can destroy 

biomarkers [122][124][125].  

7.4 Conclusions 

We used a variety of visible (CTX, HiRISE, MOC), infrared (THEMIS, CRISM, OMEGA) 

and topographic (MOLA, HRSC, CTX) datasets to conduct a study of Gale Crater, with a 

particular focus on the region surrounding the proposed MSL landing site. We found evidence of 

aqueous activity, including numerous fluvial channels and inverted fluvial channels, fan-shaped 

deposits, erosion-resistant fractures, and hydrated minerals. We have described the major 

geomorphic units in the proposed MSL landing site and on the western and northern mound and 

crater floor, and constructed a simplified stratigraphic section of the mound along the nominal 

MSL traverse (Figure 47). The high-elevation upper mound exhibits apparent large-scale cross-

http://www.lpi.usra.edu/meetings/lpsc2009/pdf/1479.pdf
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beds (Figure 30), suggesting an origin as aeolian dunes. At the lower elevations accessible to 

MSL, for example in the dark-toned layered yardang unit, the presence of layers traceable for 

tens of kilometers appears to preclude a spring mound origin, but an aeolian or lacustrine origin 

both remain as possible depositional processes. Pyroclastic materials are likely present in the 

mound, but probably do not represent the bulk of the material. Due to the great thickness of the 

stratigraphic column at Gale, it is likely that the mound formed through a combination of 

processes. Both aeolian and fluvial erosion appear to have played a role in exhuming the 

sedimentary layers of the Gale mound, but the only process that seems capable of explaining the 

transport of such a significant amount of material out of the crater without breaching the crater 

rim is aeolian suspension. 

We identified two possible traverses from the center of the proposed MSL landing ellipse up 

onto the mound of layered sediments. The preferred traverse would access the mound in a well-

exposed and therefore well-studied location. The alternate traverse comes closer to one or more 

of the inverted fluvial features within the ellipse before accessing the mound through a gap in the 

line of dunes at its base. It would climb a portion of the mound that is partially obscured by the 

thin mantle unit, but layered outcrops would still provide access to the stratigraphy. 

 Gale Crater's geomorphic diversity, thick stratigraphic sequence, similarity to other filled 

craters on Mars, and morphological and spectral evidence for an aqueous history make it a highly 

desirable landing site for MSL, and a target for substantial future orbital remote sensing studies. 
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Table A1: List of CTX images of Gale crater 
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X X X  X X  X   X      X X  X X   X 

P02_001752_1753_XI_04S222

W 
X                        
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W 
X X                       
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W 
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X                        
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X                        
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W 
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W 
X X  X           X   X       

P14_006644_1747_XI_05S222

W 
X X  X  X X X   X      X X     X X 

P15_006855_1746_XN_05S222

W 
X X  X   X X   X  X  X   X      X 

P16_007356_1749_XI_05S222

W 
X X  X  X X X   X X X X  X X X X    X X 



 

 

 

1
0

2
 

 

 

 

Table A2: List of HiRISE images of Gale Crater  
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PSP_001488_1750    X           X  X   X    

PSP_001620_1750             X           

PSP_001752_1750        X                

PSP_002099_1720                        

PSP_003453_1750                 X X     X 

PSP_005998_1745               X         

PSP_006288_1740  X                       

PSP_007356_1750      X                  

PSP_008147_1750          X               

PSP_009149_1750     X       X             

PSP_009294_1750     X  X   X     X    X     

PSP_009571_1755  X X               X      

PSP_009650_1755                X        

PSP_009716_1755     X                X X  

PSP_009861_1755            X   X   X      

PSP_009927_1750              X          

PSP_010573_1755                     X   
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Table A3: List of MOC images of Gale crater 

Product ID 

E01-00067 E14-02234 M11-00989 R16-00139 

E01-00538 E16-01112 M12-00231 R16-02163 

E01-01026 E16-01641 M12-02852 R18-00974 

E02-00942 E18-01261 M14-01617 R19-01648 

E02-01579 E20-00143 R01-00210 R20-00784 

E02-02493 E20-01495 R01-00595 S05-00434 

E03-01733 E21-00160 R01-00946 S06-00098 

E03-01915 E21-00428 R01-01335 S06-02328 

E04-01829 E21-00521 R02-00546 S09-00404 

E04-02461 E21-00833 R02-00913 S11-00421 

E05-00772 E22-00419 R09-02667 S11-02858 

E05-02541 E23-01009 R09-03892 S12-01881 

E06-00143 M02-01391 R10-04983 S12-02067 

E09-01039 M03-01521 R11-04327 S13-00501 

E10-00863 M03-06805 R12-00567 S14-00576 

E10-02079 M07-01419 R12-00762 S16-00680 

E11-01254 M08-01028 R12-01498 S17-00627 

E11-02505 M08-02542 R13-00776 S19-00656 

E12-01615 M09-01696 R14-01644 S20-00585 

E13-01884 M10-01253 R15-00805 S22-00845 

  
 

Table A4: OMEGA data cubes used in Gale Crater 
mosaic 

Product ID 

Spacecraft-to-surface 

distance (km) 

Resolution 

(km/pixel) 

ORB0436_2 1149.6 1.4 

ORB0436_3 1778.1 2.1 

ORB0469_3 1833.4 2.2 

ORB1002_6 292.0 0.4 

ORB1339_1 1090.0 1.3 

ORB1577_3 5971.5 7.2 
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CHAPTER 3 

 

THE INFLUENCE OF MULTIVARIATE ANALYSIS METHODS AND TARGET GRAIN 

SIZE ON THE ACCURACY OF REMOTE QUANTITATIVE CHEMICAL ANALYSIS OF 

ROCKS USING LASER INDUCED BREAKDOWN SPECTROSCOPY
2
  

0. Abstract 

Laser-induced breakdown spectroscopy (LIBS) was used to quantitatively analyze 195 

rock slab samples with known bulk chemical compositions, 90 pressed-powder samples derived 

from a subset of those rocks, and 31 pressed-powder geostandards under conditions that simulate 

the ChemCam instrument on the Mars Science Laboratory Rover (MSL), Curiosity. The low-

volatile (<2 wt. %) silicate samples (90 rock slabs, corresponding powders, and 22 geostandards) 

were split into training, validation, and test sets. The LIBS spectra and chemical compositions of 

the training set were used with three multivariate methods to predict the chemical compositions 

of the test set. The methods were partial least squares (PLS), multilayer perceptron artificial 

neural networks (MLP ANNs) and cascade correlation (CC) ANNs. Both the full LIBS spectrum 

and the intensity at five pre-selected spectral channels per major element (feature selection) were 

used as input data for the multivariate calculations. The training spectra were supplied to the 

algorithms without averaging (i.e. five spectra per target) and with averaging (i.e. all spectra 

from the same target averaged and treated as one spectrum). In most cases neural networks did 

not perform better than PLS for our samples. PLS2 without spectral averaging outperformed all 

other procedures on the basis of lowest quadrature root mean squared error (RMSE) for both the 

                                                 
2
 This chapter was originally published in the journal Icarus: R. Anderson, R. Morris, S. Clegg, J.F. Bell III, R.C. 

Wiens, S.D. Humphries, et al., The influence of multivariate analysis methods and target grain size on the accuracy 

of remote quantitative chemical analysis of rocks using laser induced breakdown spectroscopy, Icarus. 215 (2011) 

608-627. 
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full test set and the igneous rocks test set. The RMSE for PLS2 using the igneous rock slab test 

set is: 3.07 wt. % SiO2, 0.87 wt. % TiO2, 2.36 wt. % Al2O3, 2.20 wt. % Fe2O3, 0.08 wt. % MnO, 

1.74 wt. % MgO, 1.14 wt. % CaO, 0.85 wt. % Na2O, 0.81 wt. % K2O. PLS1 with feature 

selection and averaging had a higher quadrature RMSE than PLS2, but merits further 

investigation as a method of reducing data volume and computation time and potentially 

improving prediction accuracy, particularly for samples that differ significantly from the training 

set.  Precision and accuracy were influenced by the ratio of laser beam diameter (~490 µm) to 

grain size, with coarse-grained rocks often resulting in lower accuracy and precision than 

analyses of fine-grained rocks and powders.  The number of analysis spots that were normally 

required to produce a chemical analysis within one standard deviation of the true bulk 

composition ranged from ~10 for fine-grained rocks to >20 for some coarse-grained rocks. 

1. Introduction 

To demonstrate the capabilities of LIBS as a quantitative tool for planetary missions and 

to assess which multivariate technique is best suited for quantitative analysis of realistic samples, 

we have analyzed LIBS spectra from a suite of 195 rock slab samples, 90 pressed-powder 

samples derived from a subset of the rocks, and 31 pressed powder geostandards. To visualize 

the full data set and distinguish sample types based on their spectra we used principal 

components analysis (PCA), which has been shown to be an effective with LIBS data (e.g.[49] 

[126]). For quantitative analyses, we restricted the data set to silicate samples with low loss on 

ignition (<2 wt. %), giving a set of 90 geologic slab samples and 22 geostandards. Previous 

experiments using ANN for LIBS calibration (e.g., [127], [128]) relied on the multilayer 

perceptron (MLP) ANN architecture, with the structure of the network determined by trial and 

error. We instead implemented a genetic algorithm to optimize the network. In addition to MLP 
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ANNs, we also investigated cascade correlation (CC) ANNs, which determine their own 

topology during training. We also compared several data pre-processing techniques, including 

feature selection using a genetic algorithm to select five spectral channels per element to use for 

multivariate analysis as opposed to the full LIBS spectrum, and averaging all spectra for samples 

of identical composition in the training set so that each unique training composition is 

represented by a single spectrum.  

2. Samples 

The 31 powder geostandards [129] were obtained from a commercial source and include 

andesites, basalts, dolomites, gypsum and olivine. The suite of 195 rock slab samples was 

obtained from the Mars analog sample collection at NASA's Johnson Space Center. For the 90 

low-volatile silicate samples, powders were prepared by crushing in an alumina shatterbox until 

all the powder passed through an 80 mesh stainless-steel sieve. Grinding was stopped at this 

particle size to avoid significant contamination of the sample with Al2O3 from the shatterbox. 

The major element chemistry of the rock slab samples was determined from representative 

powders by X-ray fluorescence (XRF) using a Li2B4O7-sample flux-fusion-glass procedure and a 

Philips 2404 XRF spectrometer configured with a 4kW Rh X-ray tube [130]. Loss of weight on 

ignition (LOI) was determined by heating to 900°C in air for >1 hour, and the amount of Fe
2+

 

was measured on unheated samples using a modified Reichen and Fahey [131] procedure. 

Because the major element analyses were done on the residue of LOI heating, total Fe is reported 

as Fe2O3T. 

The geostandard and rock slab chemical compositions are shown on an igneous total 

alkali vs. silica (TAS) classification plot (Figure 1). Many of the rock samples and several of the  
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Figure 1: Total alkali vs. silica (TAS) classification plot showing the range of compositions of the rock 

slab samples and the pressed-powder geostandards. Inset indicates the igneous rock types for each 

portion of the TAS diagram. F: Foidite; PB; Picrobasalt; T/B: Tephrite/Basanite; B: Basalt; TB: 

Trachybasalt; PT: Phonotephrite; BTA: Basaltic Trachyandesite; TA: Trachyandesite; P: Phonolite; TP: 

Tephriphonolite; BA: Basaltic Andesite; T: Trachyte/Trachydacite; A: Andesite; D: Dacite; R: 

Rhyolite. Many samples are not igneous silicate rocks and therefore plot outside the classification 

range. 

 

geostandards are not igneous rocks, and therefore plot well outside the typical range of the TAS 

plot. 

The rock slabs were also used for calibration of the flight MastCam instrument [32] on 

MSL, and many are common to those being analyzed (in different physical forms) by test bed 

versions of the MSL CheMin [37] and Sample Analysis at Mars (SAM; [38]) instruments. 

Subsets of the JSC collection were also used in connection with flight instrument validation on 

other robotic missions to Mars (e.g., [16], [132]) 

3. LIBS Experimental Methods 
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All LIBS spectra used in this study were collected at Los Alamos National Laboratory 

with a laboratory analog of the MSL ChemCam instrument, similar to that described by [49], 

[52], [126], and [133]. The laboratory set-up uses a Nd:YAG laser operating at 1064 nm, pulsed 

at 10 Hz with a pulse energy of 17 mJ/pulse. Targets were placed in a vacuum chamber back-

filled with ~7 Torr CO2 at a stand-off distance of 7 m. To partially offset effects of sample 

heterogeneity, LIBS spectra were acquired for at least 5 spots on each rock slab and geostandard 

target. 

Plasma emission was collected with a telescope and directed via an optical fiber through 

a demultiplexer to three Ocean Optics HR2000 spectrometers covering the UV (225.00-325.97 

nm), VIS (381.86-471.03 nm) and VNIR (494.93-927.06 nm) wavelength regions. The full-

width at half maximum intensity resolutions for the UV, VIS, and VNIR spectrometers are 0.1, 

0.09, and 0.42 nm, respectively. Each spectrometer has 2048 spectral channels, yielding a full 

spectrum of 6144 channels. ChemCam has a similar wavelength range (240-850 nm), number of 

channels (6144) and spectral resolution. Our spectra were subsequently reduced to 6117 channels 

because 27 detector channels gave spurious values and were excluded from the analysis.  

The LIBS plasma brightness from the rock slabs varied significantly depending on 

composition. Figure 2 shows the average relative LIBS signal intensity for the full set of rock 

slabs. Slabs containing significant amounts of Fe (e.g. sulfides, Fe oxides, and siderite) coupled 

best with the laser beam, while samples containing little Fe and higher amounts of Al (e.g. 

Al2O3, bytownite, and alunite) or Si (e.g. flint, chalcedony, opal) tended to couple poorly. Prior 

to statistical analyses, we followed the procedure used in previous LIBS studies (e.g. [49], [52], 

[126], [133]) and normalized the spectra so that the sum of the signal across all observed 

wavelengths was equal to one. This reduces the effect of shot-to-shot variations and differences  
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Figure 2: Relative average signal strength for the sample types in our full data set. Iron-rich samples generally had 

the brightest plasmas and high signal strengths, igneous rocks had intermediate signal strengths, and aluminum- and 

silica-rich, iron-poor samples had low signal strengths. 
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in laser-to-sample coupling. We briefly investigated the accuracy of LIBS predictions without 

normalization and found them to be comparable or worse than the predictions with 

normalization, but a more rigorous study of the effect of normalizing the LIBS spectra should be 

conducted. We did not apply any continuum removal to our data prior to analysis. [52] have 

investigated continuum removal with LIBS data and found that the resulting predictions were 

equivalent to or less accurate than predictions using the spectra without continuum removal.  

4. Principal Components Analysis 

PCA is a commonly-used method for reducing the dimensionality of a dataset by 

expressing it as the combination of a small number of linearly independent variables or 

“principal components” (e.g. [134]). PCA of LIBS spectra does not directly provide chemical 

compositions but does subdivide the samples according to their dominant spectral components 

(e.g. [49], [126], [133]). Thus, an unknown geologic target can be constrained to one or more 

compositional class (e.g., basalt, sulfate, carbonate, etc.) by a PCA calculation including spectra 

from a large number of targets with known compositions. 

The spectral variability of the LIBS data for the complete set of samples (195 rock slabs 

and 31 geostandards) is shown in Figure 3, as a scatter plot of the first and second principal 

components. Silicate rocks samples are plotted in Figure 3a and silicate minerals and ilmenite are 

plotted in Figure 3b, and other non-silicates are plotted in Fig 3c. Figure 3d, Figure 3e and Figure 

3f are the same as Figure 3a, 3b and 3c respectively, but the PCA model was run with sodalite 

and the synthetic Al2O3 samples excluded. Overlapping to distinct clusters correspond to groups 

of samples that have similar spectra. For example, the rock-forming minerals olivine, pyroxene, 

and plagioclase cluster in different locations, and these locations are distinct from the clusters 

formed  
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Basalt/Gabbro/Dolerite Granite/Rhyolite/Syenite Andesite + Diorite

  

 

  

 

  

 

Figure 3: Scatter plots of the first two principal components of the LIBS dataset. The percentage of total variance in 
the dataset explained by each component is indicated. Points have been color-coded according to the known sample 
type, and similar samples tend to cluster together. (a,d) Silicate rock samples. (b,e) Silicate minerals and ilmenite. 
Some of the samples classified as olivine contained calcium as well, causing them to form a separate cluster closer 
to pyroxenes in (e). (c,f) Non-silicates. For plots (d), (e) and (f) sodalite, pyroxmangite and synthetic Al2O3 were 
excluded from the PCA model. Refer to Figure 4 for the spectral loadings for PC1 and PC2 in (a), (b) and (c). The 
circles in the scatterplot correspond to the spectra shown in Figure 5. 
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by igneous rocks that are combinations of these minerals. Similarly, the carbonates cluster 

according to the major cation.  

The spectral loadings for the first two principal components in Figure 3a and 3b are 

shown in Figure 4, and they can be used to interpret the location of points on the scatter plots. If 

a sample has emission lines which correspond to positive spectral loadings, it will have a positive 

value on the PCA scatterplot. Likewise, negative loadings result in negative values on the scatter 

plot. For example, sodalite plots in the upper-right quadrant because both PC1 and PC2 have a 

strong positive loading corresponding to the 589 nm Na emission line. Likewise, olivine and 

most of the carbonates plot in the upper left because of a negative correlation with Ca and Mg 

lines in PC1 and a positive correlation in PC2. The igneous silicate rocks show significant 

overlap on the plot, but as they range from mafic to felsic they tend to become more positive in 

PC1, because of a positive correlation with potassium emission lines. With sodalite excluded, the 

first principal  

 

Figure 4: Spectral loadings for the first two principal components shown in Figure 3a, 3b and 3c. The 

sharp positive and negative peaks correspond to elemental emission lines.  
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Figure 5: Six example LIBS spectra. The points corresponding to each spectrum on the PCA scatter plot 

are marked in Figure 3. Strong emission lines have been labeled. The spectra have been normalized so that 

the total integrated signal is equal to 1 and then scaled to the strongest emission line in the spectrum. Gaps 

in spectral coverage between the three detectors have been removed. The equations represent the atomic 

fraction of the major elements in each mineral, normalized to Si for silicates, Fe for hematite, and C for 

dolomite. 
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component in Figs. 3c and 3d corresponds to magnesium content. Figure 5 shows six example 

LIBS spectra from clusters in Figure 3, with strong emission lines labeled. The points 

corresponding to each spectrum are marked in Figure 3. 

5. Multivariate Analysis 

5.1  Sample Considerations 

The compositions of the JSC analog samples and geostandards, originally expressed as 

oxide weight percent, were converted to atomic fraction for quantitative analysis, because the 

intensity of LIBS emission lines depends upon atomic fraction in the LIBS plasma rather than 

oxide weight percent in the solid sample [49]. The model predictions were converted back to 

equivalent oxide weight percent by assigning an appropriate amount of oxygen to each element, 

calculating the mole fraction of each oxide, and normalizing so that the sum of the oxide 

fractions totaled to 100%. For the purposes of this conversion, Fe was assigned to Fe2O3 and the 

samples were assumed to have no P2O5, H2O, SO3, or CO2. It is important to note that the 

conversion from oxide wt. % to atomic fraction for a given element incorporates the uncertainty 

in the determination of all of the major element oxides. When converting back from atomic 

fraction to oxide wt. %, errors in the LIBS prediction of one element can affect the normalized 

abundance of all elements. Additionally, the total of the major element oxides is forced to equal 

100% which is not necessarily the case for samples with significant volatiles or unusual 

compositions. Tucker et al. [52] showed that calculations performed using oxide weight percent 

resulted in more accurate predictions than those using atomic fraction. 

To compare the quantitative multivariate analysis methods, we focused on low-volatile 

(LOI < 2 wt. %) silicate samples and excluded several samples with unusual compositions (e.g. 

pyroxmangite) or poor laser-sample coupling. This reduced the sample set to  
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Table 1: List of the sample types, number of analyses, number of unique compositions, sample names and geostandards 

in the training, validation and test sets. 

Type 
# of  

Analyses 

Unique  

Compositions 
Samples Geostandards 

Training Set 

Andesite 11 4 TMGNV5 AGV2, GBW07110, 

MO12 

Anorthosite 4 2 MCCSG1, TECNY1  

Basalt 62 9 CA9LJ1, HWMK124, HWMK104, 

HWMU574-170 

BCR2, BHVO2, 

GBW07105, 

GUWBM, JB2 

Dolerite 3 1 PSNJ1  

Flint 1 1 DCENG1  

Gabbro 6 2 WI0ML1, MU80-41  

Granite 3 2 LANTX1 GBW07103 

Norite 5 1 MCCSG20, MCCSG21  

Obsidian 2 2 CA9OB1, CA9OB2  

Olivine 8 4 OLJC1, OLTWS3 DH4909, DH4911 

Labradorite 1 1 NANLB1  

Augite 3 2 HARAG1, BRLKCD1  

Diopside 4 1 DIHUQ1  

Fassaite 1 1 HLNMT1  

Rhyolite 2 2 CA9KRY1, BICCA1  

Sodalite 1 1 MGSDL1  

Syenite 2 1 SYMPCA5  

Vesuvianite 1 1 CQRSCA1  

Total 120 38   

Validation Set 

Anorthosite 1 1 WD228  

Andesite 4 1  JA2 

Basalt 7 3 CP-5, HWHL100 688 

Fassaite 1 1 HLNMT1  

Rhyolite 4 2 BICCA2, BICCA5 GBW07113 

Sodalite 4 1 MGSDL7  

Syenite 1 1 SYMPCA1  

Diorite 1 1 BSTQBC1  

Total 23 11   

Test Set 

Anthophyllite 1 1 WRCA1  

Andesite 9 4 CA9LVNP1 GBW07104, JA1 

Andesite + Quartz 1 1 SQWCMT1  

Anorthite 1 1 GSVCA1  

Banded Iron Formation 2 2 WI0BIF1, WI0BIF3  

Basalt 18 11 CP-5, CA9WRN1, WIME101, 

CHFCO1, KICCA1, CA9VA1 

JB-1b, JB3, MO13, 

MO14 

Diorite 1 1 LDNVA5  

Gabbro 3 3 MU80-37B, MASEX1, MU80-03A  

Phlogopite 1 1 SYONT1  

Olivine 2 1  DH4912 

Other Plagioclase 1 1 PLAGWM1  

Bytownite 2 2 CBBYT1, CBBYT5  

Enstatite 1 1 BAMNOR1  

Rhyolite 2 1  JR1 

Silcrete 1 1 GR820  

Trachyte 2 1 HWHL101  

Total 48 33   
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Table 2:  

Range and distribution of compositions in the training set with and without spectral averaging.  

 Minimum 1st Quartile Median 3rd Quartile Maximum (Max-Min)/Median 

Training Set 

SiO2 35.85 49.51 49.51 53.20 97.71 1.25 

TiO2 0.00 0.57 1.14 1.14 3.20 2.81 

Al2O3 0.35 13.50 16.25 16.25 30.66 1.87 

Fe2O3 0.07 6.54 9.68 10.37 17.46 1.80 

MnO 0.00 0.10 0.14 0.16 0.28 2.03 

MgO 0.02 3.59 7.47 7.47 56.14 7.51 

CaO 0.14 6.47 6.47 9.80 37.22 5.73 

Na2O 0.02 2.63 4.19 4.65 25.96 6.19 

K2O 0.00 0.20 0.20 1.12 12.05 60.27 

 

Training Set with Spectral Averaging 

SiO2 35.85 48.93 50.96 54.58 97.71 1.21 

TiO2 0.00 0.25 0.57 1.14 3.20 5.60 

Al2O3 0.35 11.85 13.83 16.83 30.66 2.19 

Fe2O3 0.07 2.97 6.54 10.79 17.46 2.66 

MnO 0.00 0.08 0.12 0.19 0.28 2.41 

MgO 0.02 1.84 4.34 7.43 56.14 12.93 

CaO 0.14 3.78 9.40 10.70 37.22 3.94 

Na2O 0.02 1.68 3.13 4.28 25.96 8.30 

K2O 0.00 0.14 0.45 1.82 12.05 26.56 

 

90 rock slabs, their powders, and 22 geostandards. The rock slab samples have a much broader 

range of chemical compositions than the pressed powder geostandards. Therefore, we sorted the 

combined rock and geostandard samples by their XRF-derived SiO2 concentration and 

alternately assigned samples to training and test sets for multivariate analysis. When the same 

sample was analyzed multiple times or when multiple rock slabs were cut from the same parent 

rock, all spectra corresponding to a given composition were assigned to either the training or test 

set to avoid testing the predictive ability of the models on “known” samples. A subset of samples 

was removed from the test set and used as an independent validation set to determine stopping 

criteria for neural network training and to determine which wavelengths to select during feature 

selection. Table 1 lists the rock and mineral types, the number of unique compositions and the 
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total number of analyses for each composition. Table 2 summarizes the range and distribution of 

compositions in the training set.  

5.2  Quantifying and Comparing Results 

A common metric used to evaluate the predictive capability of multivariate methods is 

the root mean squared error (RMSE), which is defined as: 

      √
∑ (    ̂ )

  
   

 
,        (1) 

where    and  ̂  (         ) are the actual and predicted compositions (in wt. %) and n is the 

total number of samples. All reported RMSE values in this study are in wt. % oxide.  

It is important when comparing methods to determine whether the variations in RMSE 

values across the models are meaningful. To do this, we used the Student’s t test to determine 

whether the null hypothesis, that the results of two models are statistically indistinguishable, is 

true. We first calculated an estimate of the uncertainty in the RMSE for each model. Because 

RMSE is functionally equivalent to the equation for standard deviation [135](Eq. 10), with the 

known composition    substituting for the mean, we calculate the variance of the RMSE (     
 ) 

according to the equation for the variance of the standard deviation [136], where Γ is the Gamma 

function. 
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We then calculate the Student’s t value for the two methods being compared using their 

RMSE and      
  [135] (Eq. 22) 
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The associated degrees of freedom ( ) for the Student’s t distribution are given by 

[135](Eq. 23): 

  
(      
        

 )
 

      
 

    
 
      
 

    

.         (4) 

Finally, the t values and degrees of freedom can be used to calculate the two-tailed 

Student’s t distribution probability ( ). This value is interpreted as the likelihood that the null 

hypothesis is satisfied: a low value means that the differences between the results of two 

methods are statistically significant. For example, if the p-value for the comparison between the 

results of two models is less than 5% then we can say with better than 95% confidence that the 

differences between the methods are statistically significant. In the following discussion, the 

95% confidence level is used to define a “significant” difference between models.  

5.3  Feature selection 

We used a genetic algorithm (GA) to test the effect of feature selection on the 

performance of the multivariate algorithms. Feature selection is a pre-processing step in which 

portions of the LIBS spectrum containing the most information on chemical composition are 

identified and used instead of the full spectrum, thereby simplifying multivariate models, 

reducing computation time, and potentially improving the predictive ability of the model [137].  

Genetic algorithms are commonly used to perform feature selection on spectroscopic data 

prior to PLS or other multivariate analyses (e.g. [138–140]). GAs are search algorithms based on 

the process of natural selection and are efficient at solving problems with many possible 

solutions [141]. For a given optimization problem, a set of possible solutions are generated and 

tested. A fraction of the population with the lowest error is propagated to the next generation 

while solutions that perform poorly are removed. To repopulate the set of solutions, the most-fit 
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candidates are allowed to reproduce, resulting in offspring that combine the properties of the 

parent solutions. Often, random mutations are introduced to allow the algorithm to avoid local 

minima by maintaining a diverse population of possible solutions. 

 We used the genetic algorithm within the open-source multivariate analysis program 

PYCHEM [142]) to conduct feature selection. The algorithm was run 1000 times per major 

element, each time using a population of 100 sets of 5 spectral channels. The number of features 

was limited to 5 channels so that only the channels most relevant to the element of interest would 

be chosen. The fitness of each set of 5 channels in the population was tested by training a PLS1 

model for the element of interest using only the intensity of the spectrum at those channels as 

input. The models with the lowest mean-squared error for the validation set in each generation 

were used to populate the subsequent generation. The GA was initialized with randomly selected 

channels, so each initialization of the algorithm tested the performance of 500 out of the 6117 

channels in the spectrum. By running the algorithm 1000 times, we ensured that on average, each 

channel was chosen in one of the initial populations more than 80 times. Each run of the GA 

terminated when the 5 channels chosen as the best solution did not change after five generations. 

For each element, the algorithm yields the frequency with which each of the spectral 

channels were chosen in the final model. Figure 6 shows a plot of selection frequency vs. 

wavelength for calcium. The most frequently selected channels correspond to Ca lines, but the 

channels for the brightest Ca lines were not always the most frequently selected. This indicates 

that the brightest lines are not optimal for PLS regression, likely due to self-absorption and other  

matrix effects. Using an automated feature selection method has the advantage that it makes no 

assumptions about which channels are likely to be optimal, and therefore avoids bias toward the  
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Figure 6: A plot of the frequency with which each channel in the LIBS spectrum was chosen by the 1000 runs of the 

genetic algorithm as part of the best PLS1 model for predicting Ca. The plotted values sum to 100%. Although this 

is not a spectrum, the wavelengths of the most commonly chosen channels correspond to calcium emission lines 

(Table 3). 

 

brightest lines. The intensities at the 5 most-frequently chosen channels for each element were 

used to train our models. 

Because the selected channels are element-specific, we predicted each element separately 

when feature selection was used. For most elements the algorithm appears to have identified at 

least one channel at a wavelength corresponding to an emission line for that element, and in 

some cases the majority of the channels selected correspond to strong emission lines (Table 3). 

The wavelengths associated with the emission lines listed in Table 3 are based on emission 

wavelengths in vacuum in the NIST atomic spectral database (http://physics.nist.gov/asd). The 

LIBS wavelengths assigned to the spectral channels in this study are based on the factory 

calibration of the three spectrometers. We did not perform an independent wavelength 

calibration because the wavelengths assigned to the spectrometer channels have no effect on the 

performance of the multivariate methods that we used. Relying on the factory calibration does 

however result in slight uncertainty in the identification of spectral lines corresponding to the 
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genetic algorithm-selected channels, particularly in regions of the spectrum with abundant 

emission lines.   

For some elements the selected channels did not correspond to the element of interest, but 

instead corresponded to emission lines from a geochemically-related element. For our samples, 

Si is the clearest example of this effect: the five most-frequently selected channels for Si 

correspond to K emission lines. The selection of K emission lines for Si results from the natural 

correlation between these two elements in igneous rocks; granitic rocks are high in both Si and K 

relative to basalts. The element Ti shows a similar effect, with the majority of the selected 

channels corresponding to bright Fe lines rather than Ti emission lines because of the natural 

association of Ti and Fe in minerals like ilmenite and titanomagnetite.  

5.4  Multivariate Method Descriptions 

In this section we describe and compare the results of three multivariate methods (PLS, 

MLP ANN and CC ANN) using both the full LIBS spectrum (i.e. all 6117 channels) and the 5 

channels per major element that were identified by feature selection as input data. The spectra for 

the training set were configured in two ways. One way uses all available training set standards, 

including multiple spectra of the same target. The other way reduces the number of training 

spectra to one spectrum per composition by averaging the spectra for multiple measurements of 

the same target. For example, the basalt geostandard GUWBM was included in every set of 

LIBS measurements, resulting in significantly more spectra of GUWBM than any of the other 

members of the full training set. The permutations of multivariate methods and pre-processing 

steps yields 12 sets of results that can be compared for their respective predictive capability.  
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Table 3:  

Five wavelengths (in nm) corresponding to channels most frequently selected by the genetic algorithm for each major element and the associated 

elemental emission lines. 

Element Selected Inferred Selected Inferred Selected Inferred Selected Inferred Selected Inferred 

Si 766.54 K (766.7) 766.75 K (766.7) 769.70 K (770.11) 769.91 K (770.11) 770.13 K (770.11) 

Ti 256.32 Fe (256.33) 259.97 Fe (260.02) 273.97 Fe (273.81) 274.93 Fe (274.77) 430.11 Ti (429.98) 

Al 394.34 Al (394.4) 516.50 Mg (516.73) 516.73 Mg (516.73) 624.71 Al (624.34) 818.49 Na (818.48) 

Fe 273.97 Fe (273.81) 274.27 Fe (274.32) 274.93 Fe (274.77) 275.58 Fe (275.52) 275.63 Fe (275.71) 

Mn 253.86 Mn (253.87) 278.35 Fe (278.36) 393.32 Mn (393.26) 396.76 Fe (396.76) 396.81 Fe (396.85) 

Mg 447.94 Fe (447.93) 516.73 Mg (516.88) 516.96 Mg (516.88) 517.42 Mg (517.41) 518.34 Mg (518.50) 

Ca 317.97 Ca (318.025) 430.32 Ca (430.37) 560.08 Ca (560.0) 854.33 Ca (854.4) 866.08 Ca (866.45) 

Na 568.69 Na (568.98) 591.67 Na (589.75) 818.29 Na (818.55) 818.49 Na (818.55) 819.53 Na (819.7) 

K 766.12 K (766.7) 766.54 K (766.7) 766.96 K (766.7) 770.13 K (770.11) 780.00 Rb (780.24) 
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The next three sections describe the three multivariate analysis methods that we used. 

The results are discussed in Section 5.5. 

5.4.1  Partial Least Squares (PLS1 and PLS2) 

Partial Least Squares (PLS) is a multivariate regression algorithm that builds on the 

results of PCA. It is especially well suited to applications like quantitative LIBS where the goal 

is to predict a limited number of output values (elemental concentrations) from a very large 

number of input variables (intensity at multiple wavelengths) [143]. We used two forms of the 

PLS algorithm. When intensities at channels identified by feature selection for a specific element 

were used as input, we used PLS1 to predict only that element. When the entire LIBS spectrum 

was used as an input, we used PLS2, which is capable of predicting multiple elements at once.  

To implement the PLS alforithm, we used the Unscrambler v9.8 software package 

(Camo, Inc.) with leave-one-out cross validation, in which each sample in the training set is 

successively left out and treated as an unknown while the model is trained. Although 

computationally expensive, PLS2 with leave-one-out cross validation produces the most robust 

PLS2 model and has been shown to be effective at predicting the composition of pressed powder 

silicate rock standards [49], [52] and carbonate mineral hand-samples [126]. PLS1 has also been 

shown to predict the S atomic fraction in sulfur-bearing samples with an absolute accuracy of 

2.4-37.9 % when trained with an appropriate training set and with manual feature selection to 

limit the input spectra to channels corresponding to sulfur emission lines [133]. 

 The Unscrambler identifies the optimum number of components to use in the final PLS 

model as the number which minimizes the residual validation variance. The software 

automatically adds a 1% penalty to the residual validation variance for each additional 

component used in the model to avoid overfitting the training data. Note that the 1% penalty in 
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residual validation variance is simply a way to force the program to choose a conservative 

number of components and does not result in 1% greater prediction error with each additional 

component used. A more thorough investigation of the accuracy of LIBS predictions using 

different numbers of components in the PLS models should be conducted, but is beyond the 

scope of this study. 

5.4.2  Multilayer Perceptron Artificial Neural Network (MLP ANN) 

Artificial neural networks (ANNs) are algorithms based loosely on the functioning of 

biological neurons. Rather than a single central processor, the network completes calculations by 

passing data through a large number of simple, interconnected nodes. The network stores 

information in the weighted connections between these artificial neurons. This architecture gives 

neural networks several advantages over traditional algorithms, including a tolerance for noise 

and the ability to model non-linear relationships. ANNs also do not make prior assumptions 

about the distribution of input data and can accurately generalize when presented with new data 

[144]. ANNs have been shown to be effective for calibration of spectral data [145] and have 

been used in many geologic applications similar to quantitative LIBS, such as inferring SiO2 

content or elemental composition based on infrared spectra [146]; [147]  

The most commonly-used ANN is the multi-layer perceptron (MLP; [148]). MLP ANNs 

consist of several layers of artificial neurons whose outputs are a nonlinear function of their 

weighted inputs. For a neuron with n input signals, each with an associated weight w, the neuron 

output y is given by: 

      (∑       
 
   )        (5) 

In this equation, µ is a threshold or “bias” weight, and a sigmoid function such as tanh 

(the hyperbolic tangent) is commonly used. For LIBS spectra, the intensity at each spectral 



 

 

 

125 

channel is an input into a neuron of the input layer. The layers of neurons between the input layer 

and the output layer are referred to as “hidden” layers. MLPs with a single hidden layer are 

capable of modeling differentiable functions to arbitrary accuracy and are commonly used in 

applications of MLP ANNs to laboratory and remote sensing applications [146], [147], [149], 

[150]. MLPs are typically trained using the back-propagation algorithm [151]) or similar 

variations which iteratively update the network weights to minimize the output error for the 

training set. 

Inakollu [152] employed MLP ANNs for quantitative LIBS calibration, and found that 

they result in a lower average relative percent error than traditional calibration methods based on 

the area of relevant emission lines. Sirven et al. [127] conducted a study of multivariate analysis 

techniques for LIBS, comparing traditional calibration curves, PLS, and MLP to predict the 

concentration of chromium in two doped soil samples. They found that MLP ANN predictions 

had a lower average relative percent error than PLS on samples for which there were significant 

non-linearities because of self-absorption.  

Ferreira et al. [153] used a MLP ANN to predict Cu abundances in pressed powders 

derived from 59 Brazilian soils, using manual feature selection. Motto-Ros et al.  [128] 

investigated the performance of MLP ANNs on LIBS spectra of four natural rock samples: two 

impact glasses, a sandstone, and a volcanic glass. They applied manual feature selection, 

choosing one spectral channel per element of interest, and they found that the MLP ANN was 

able to predict the concentrations of Fetotal, MgO, SiO2, MnO, Al2O3, CaO, and Ti2O3 with 

RMSEs ranging from 0.03 wt. % for MnO to 3.3 wt. % for SiO2. 

A common difficulty when working with MLPs is choosing the optimum number of 

neurons in the hidden layer. In a fully-connected MLP (i.e., each neuron is connected to every 
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neuron from the previous layer), each additional hidden node significantly increases the number 

of weights computed during training, making larger networks slower to train. In addition, a 

network with too many nodes will require more training data to achieve good generalization, 

while a network with too few nodes will be unable to learn the training set satisfactorily [154].  

Previous work with ANNs for LIBS has relied on a trial-and-error approach to select the 

number of hidden nodes in the MLP [127]. We followed the approach of [155] and [156] and 

used a GA to identify the optimum number of hidden nodes. We used the Synapse software 

package (Peltarion, Inc.) to conduct our MLP neural network calculations and to optimize the 

number of neurons in the hidden layer of each MLP ANN using the built-in genetic optimizer. 

The optimizer used double-point crossover [157], a mutation probability of 10%, and ran for ten 

generations with 200 candidate models per generation.  

We trained the optimized network, using the validation set to ensure that the network was 

not overtrained. If there was a minimum in the error for the validation set, the training was 

stopped manually at that point. Commonly, both the training and validation error decreased 

rapidly and then stopped improving, in which case training stopped when the network showed no 

improvement after more than ~100 epochs of training. 

5.4.3  Cascade Correlation Artificial Neural Network (CC ANN) 

As an alternative to MLP ANN, we tested the performance of the cascade-correlation 

(CC) ANN algorithm [158]. The CC ANN algorithm begins with the simplest possible network, 

consisting of only an input and an output layer. The network is trained until additional training 

does not significantly reduce the error for the training set. At this point a new hidden layer 

consisting of a single node is added to the network and training continues. Each time the network 
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stagnates, all of the weights in the network are frozen, a new single-element hidden layer is 

added, and the training continues.  

By automatically determining its own structure, the CC ANN avoids the difficulty in 

determining the number of hidden nodes that is faced when using MLP ANNs. In addition, by 

freezing the weights of the trained network prior to adding a new node, the algorithm avoids the 

“moving target” problem [158].  

We implemented CC ANNs using FannTool, a publicly-available graphical interface for 

the open-source Fast Artificial Neural Network (FANN) library [159]. Instead of introducing 

individual hidden layer nodes, a set of candidate nodes are trained by the FannTool CC algorithm 

and the one with the best performance (lowest mean-squared error) is inserted into the network. 

We allowed the CC algorithm to run until 100 hidden nodes were introduced and then selected 

the network with the lowest mean squared error for the validation set. Often the selected network 

was very small, with 0, 1, or 2 hidden nodes. 

5.5  Results from Multivariate Methods 

Prior to converting the predicted atomic fractions to oxide weight percent, we calculated 

the average atomic fraction totaled across the nine major elements for each of the multivariate 

methods considered. A total that is much less than 1.0 would indicate a significant error in the  

prediction of one or more of the major elements. For all of the methods, the average total atomic 

fraction was close to 1.0, ranging from a minimum of 0.95±0.04 for CC ANN with feature 

selection and averaging, to a maximum of 0.97±0.06 for MLP ANN with feature selection and 

averaging.  

The results for SiO2 for the PLS2 method for the rock slabs are shown in Figure 7 as plots 

of LIBS-determined versus XRF-determined concentrations. Each data point is the average of  
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Figure 7: PLS2 results for SiO2, trained using (a) only igneous rocks and (b) trained using the full training set. 

Vertical dashed lines mark the “typical” range of sample compositions observed by APXS on MER (Gellert et al., 

2006; Ming et al., 2008; Squyres et al., 2008). 

 

five predictions, one for each of the five LIBS spots on the target. The vertical error bars are the 

standard deviation of the five predictions. For purposes of comparison, the XRF concentrations 

are taken as the actual concentrations so that a “perfect” prediction of the SiO2 concentration 

from LIBS spectra and PLS2 analysis would fall along the one-to-one line. When trained on the 

igneous rock slab and pressed powder targets from the training set (Table 1; 44.6-51.0 SiO2 wt.  
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%), the predicted SiO2 concentrations for igneous rocks in the test set had a RMSE of 3.3 wt. % 

(Figure 7a; blue data points).  

The SiO2 concentrations for pure minerals and samples with atypical composition, such 

as banded iron formation or silcrete, are poorly predicted by PLS2 when trained only on igneous 

rocks (RMSE of 12.5 wt. %). This occurs when correlations between elements in the training set 

are not present in the test set, or the matrix effects differ significantly. Additionally, several 

samples in the test set had compositions outside the range of compositions in the igneous rock 

training set, resulting in large errors. The RMSE is somewhat lower (8.9 wt. %) if only the 

samples with SiO2 concentrations within the igneous training set range are considered. Low 

signal to noise can also contribute to prediction errors or to reduced precision if only some spots 

on a heterogeneous target coupled well. In addition, because the conversion from predicted 

atomic fraction to oxide weight percent involves normalizing to the total number of grams per 

mole of the sample, a significant error in the predicted atomic fraction for one element can cause 

other major elements to be poorly predicted. 

Inclusion of minerals and samples with atypical compositions in the training set 

significantly increases the range of SiO2 concentrations (35.9-97.7 wt. %) used to generate the 

PLS2 model. This reduces the SiO2 RMSE for minerals and atypical samples in the test set from  

~12.5 wt. % to 7.7 wt. % (Figure 7b). The SiO2 RMSE for igneous rocks in the test set is 

essentially unchanged (from 3.3 wt. % to 2.8 wt. %; Figure 7b). For all comparisons between 

multivariate methods discussed below, unless specified otherwise we used the full training set,  

Figure 8 (Previous Page): Plots of the LIBS predicted SiO2 weight percent vs. the XRF SiO2 weight percent for (a) 

partial least squares (PLS2), (b) multilayer perceptron (MLP) artificial neural network (ANN), (c) cascade 

correlation (CC) ANN, (d) PLS2 with spectral averaging, (e) MLP ANN with spectral averaging, (f) CC ANN with 

spectral averaging, (g) PLS1 with feature selection (FS), (h) MLP ANN with FS, (i) CC ANN with FS, (j) PLS1 

with FS and averaging, (k) MLP ANN with FS and averaging, (l) CC ANN with FS and averaging. Vertical dashed 

lines indicate the typical (median±1σ) range of compositions observed by MER APXS. A perfect prediction would 

fall along the solid diagonal 1:1 lines. 
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including minerals and atypical compositions, to predict the concentrations of all major elements, 

and we calculate values of RMSE with respect to both the full test set (including igneous rocks, 

minerals and atypical samples) and the igneous rocks test set. Although the training set did 

contain pure minerals (e.g., olivine, pyroxene, plagioclase, and sodalite) the majority of the 

training samples were igneous rocks. The full test set has higher values of RMSE compared to 

the igneous rock test set for all MVA analysis methods.  

The results of our predictions for the SiO2, MgO, and TiO2 concentrations of the full test 

set are shown graphically in Figures 8, 9, and 10. These oxides were chosen because they 

represent limiting cases where the oxides are present at high (SiO2), low (TiO2), and variable 

(MgO) concentrations.  

The RMSE values in Table 4 summarize the results of the 12 combinations of 

multivariate methods and pre-processing procedures for both the full test set and for the igneous 

rocks test set. “FS” indicates that feature selection was employed and “Ave” indicates that 

spectral averaging was applied prior to calculation. For each major element, the lowest RMSE is 

bolded. Methods with p-values indicating that they are statistically indistinguishable from the 

most-accurate method for a given element at the 95% confidence level are shaded. The values in 

the “Quadrature RMSE” column are the result of adding the RMSEs for the major element 

oxides in quadrature. This parameter is used to summarize the overall performance of the 12 

procedures across all elements. The last two columns summarize the number of times a 

procedure was the most accurate and the number of times a procedure was equivalent to the most  

Figure 9 (Previous Page): Plots of the LIBS predicted TiO2 weight percent vs. the XRF TiO2 weight percent for (a) 

partial least squares (PLS2), (b) multilayer perceptron (MLP) artificial neural network (ANN), (c) cascade 

correlation (CC) ANN, (d) PLS2 with spectral averaging, (e) MLP ANN with spectral averaging, (f) CC ANN with 

spectral averaging, (g) PLS1 with feature selection (FS), (h) MLP ANN with FS, (i) CC ANN with FS, (j) PLS1 

with FS and averaging, (k) MLP ANN with FS and averaging, (l) CC ANN with FS and averaging. Vertical dashed 

lines indicate the typical (median±1σ) range of compositions observed by MER APXS. A perfect prediction would 

fall along the solid diagonal 1:1 lines. 
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 accurate procedure at the 95% confidence level for any given major element. In all cases, the 

RMSE for each oxide and method when tested on the full test set is greater than the RMSE for 

the same oxide and method when testing only on igneous rocks. This result implies that the pure 

minerals and atypical samples in the full test set dominate the prediction errors. A graphical 

depiction of the RMSE values for the igneous rock samples is shown in Figure 11. 

For comparison with the LIBS RMSE values, the one-sigma absolute errors for major 

element concentrations made by the MER Alpha Particle X-ray Spectrometer (APXS) were 

calculated using the square root of the sum of the squared accuracy and precision values 

(calculated from [160] for integration times >1 hr). The APXS makes precise measurements so 

the majority of the APXS total error (Table 4) results from the accuracy error.  We also list the 

errors for the XRF method used to determine the “true” composition of our samples. The XRF 

precision is given by the standard deviation of the major element abundances derived for three 

sample/flux fusion glass disks of the geostandard powder 98-54 [163]. The accuracy is based on 

analyses of the two geostandards BHVO-2 and QLO-1 [129]. The XRF error values reported in 

Table 4 are the square root of the sum of the squared accuracy and precision values. The values 

of quadrature RMSE for MER APXS and laboratory XRF are factors of ~3 and ~15 lower, 

respectively, than the values for PLS2 for the igneous rocks test set . 

In comparing the remote LIBS RMSE values to the contact APXS and laboratory XRF 

values it should be emphasized that the LIBS measurements in this study were made at the 

maximum ChemCam standoff distance of 7 m with an integration time of 5 seconds per spot and 

Figure 10 (Previous Page): Plots of the LIBS predicted MgO weight percent vs. the XRF MgO weight percent for 

(a) partial least squares (PLS2), (b) multilayer perceptron (MLP) artificial neural network (ANN), (c) cascade 

correlation (CC) ANN, (d) PLS2 with spectral averaging, (e) MLP ANN with spectral averaging, (f) CC ANN with 

spectral averaging, (g) PLS1 with feature selection (FS), (h) MLP ANN with FS, (i) CC ANN with FS, (j) PLS1 

with FS and averaging, (k) MLP ANN with FS and averaging, (l) CC ANN with FS and averaging. Vertical dashed 

lines indicate the typical (median±1σ) range of compositions observed by MER APXS. A perfect prediction would 

fall along the solid diagonal 1:1 lines. 
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5 spots per target. In one hour (the minimum time required to obtain an optimized MER APXS 

analysis) a ChemCam experiment could analyze 240 spots. Additionally, the ChemCam 

spectrometers have significantly higher signal to noise ratio than the spectrometers used in this 

study.  

Based solely on quadrature RMSE, PLS2 is the preferred method for LIBS analysis of 

our rock slabs, for both the full test set and the igneous rocks test set (Table 4). PLS2 predicts the 

concentration of SiO2 with the least error (4.88 and 3.08 wt. %, respectively). If an emphasis is 

not placed on minimizing the RMSE for SiO2, PLS2 Ave, and PLS1 FS, PLS1 FS Ave, and MLP 

perform well. In particular, PLS1-FS-Ave has the smallest RMSE for 5 of the major elements 

(TiO2, Fe2O3, MnO, Na2O and K2O). In general, the ANN-based methods (MPL ANN and CC 

ANN) perform comparably or slightly worse than the PLS-based methods (Table 4).  

Despite its poor performance for SiO2, feature selection performed well for other elements using 

only 5 out of 6117 channels in the spectrum per element (0.08% of the available input data). 

Feature selection appears to be more effective when applied with spectral averaging than 

without. We speculate that this is because, with only five input variables rather than 6117, noise 

in those variables has a more pronounced effect on the resulting prediction. By averaging, the 

effects of noise are reduced while the advantages of feature selection are preserved. PLS1 with 

feature selection and averaging appears to be more robust for samples with compositions that 

differ significantly from the training set, but showed no advantage over other methods when the 

test set was restricted to igneous rocks.  

Training with averaged spectra did not make a statistically significant difference for PLS, 

but the performance of MLP ANN for Al2O3, MgO, CaO and K2O was significantly worse for  
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Table 4: Summary of RMSEs1 for each major element for each combination of method, preprocessing and training and test sets. 

 Method SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O 

Quadrature 

RMSE 

Lowest 

RMSE 

Equiv. to Lowest 

Oxide RMSE 

Rock Slabs: Full Training Set and Full Test Set  

PLS2 4.88 1.07 4.14 5.46 0.51 2.93 1.67 1.51 1.44 9.4 2 5 

PLS2 Ave 6.13 0.82 4.55 5.96 0.51 2.68 2.31 1.25 1.74 10.6 
 

8 

PLS1 FS 7.79 0.88 4.49 5.25 0.50 2.44 2.19 1.33 0.93 11.1 
 

7 

PLS1 FS Ave 7.58 0.61 4.60 4.82 0.49 2.37 3.15 1.06 0.87 10.9 5 7 

MLP ANN 6.12 1.42 3.77 6.05 0.51 3.83 2.92 1.31 1.05 10.8 1 6 

MLP ANN Ave 7.89 0.80 6.80 5.83 0.50 7.04 6.53 1.52 2.00 15.6 
 

3 

MLP ANN FS 8.49 1.24 3.84 6.28 0.51 2.04 2.53 1.37 1.03 11.9 1 6 

MLP ANN FS Ave 10.02 0.79 5.62 5.37 0.51 5.07 4.96 2.24 2.15 14.9 
 

3 

CC ANN 9.21 1.68 5.23 6.35 0.53 2.88 3.35 1.88 1.83 13.5 
 

2 

CC ANN Ave 10.08 0.93 6.21 5.63 0.57 4.06 3.88 3.21 2.18 14.8 
 

2 

CC ANN FS 8.14 0.93 6.52 5.33 0.52 4.44 2.12 1.35 2.90 13.1 
 

4 

CC ANN FS Ave 7.95 0.97 4.74 4.92 0.51 2.51 2.43 1.68 0.89 11.3 
 

5 

Full Training Set and Test Set Excluding Geostandards  

PLS2 (Slabs) 5.49 1.22 5.81 6.88 0.65 4.06 1.99 1.82 1.74 11.8 
  

PLS2 (Powders) 4.34 0.70 4.05 6.92 0.64 3.50 2.27 0.70 1.97 10.3 
  

Rock Slabs: Full Training Set and Igneous Rocks Test Set 

PLS2 3.07 0.87 2.36 2.20 0.08 1.74 1.14 0.85 0.81 5.1 2 8 

PLS2 Ave 3.86 0.57 2.81 2.50 0.08 2.27 1.14 0.66 0.95 6.1 1 5 

PLS1 FS 5.13 0.74 2.56 2.65 0.08 1.49 1.73 0.90 0.74 6.9 
 

6 

PLS1 FS Ave 4.82 0.37 2.81 2.26 0.07 1.67 1.71 0.71 0.73 6.6 2 6 

MLP ANN 3.19 1.47 2.00 2.15 0.09 3.19 2.04 1.16 0.78 6.1 2 5 

MLP ANN Ave 5.06 0.63 4.20 2.66 0.08 3.67 2.90 1.14 1.08 8.7 
 

2 

MLP ANN FS 6.40 1.15 2.41 3.41 0.08 1.41 1.82 0.81 0.72 8.1 1 5 

MLP ANN FS Ave 4.92 0.67 3.77 2.84 0.09 4.00 3.77 2.18 1.35 9.1 
 

2 

CC ANN 6.38 1.23 2.79 3.42 0.10 1.75 2.62 1.47 0.91 8.6 
 

3 

CC ANN Ave 5.64 0.74 3.93 2.89 0.16 2.20 2.65 2.18 1.30 8.6 
 

1 

CC ANN FS 5.03 0.78 2.93 2.67 0.08 2.64 1.85 0.73 0.70 7.3 
 

4 

CC ANN FS Ave 5.77 0.81 3.69 2.66 0.08 1.55 1.95 0.69 0.65 7.9 1 5 

Full Training Set and Igneous Rocks Test Set Excluding Geostandards 

PLS2 (Slabs) 2.02 0.88 2.66 2.80 0.10 1.83 1.25 0.89 0.87 5.1 

  PLS2 (Powders) 3.16 0.46 2.70 2.81 0.09 2.06 1.77 0.60 0.77 5.8 

  Tucker et al. (2010)2 3.13 0.57 1.85 1.73 0.03 2.13 1.41 0.77 0.62 4.9     

Other Instrumental Methods3  

MER APXS 1.35 0.21 0.72 1.23 0.02 1.33 0.43 0.35 0.06 2.4 

  XRF 0.28 0.02 0.12 0.21 0.01 0.10 0.03 0.12 0.01 0.4     
1Units for oxide RMSEs are wt. %. Quadrature RMSE is the result of adding oxide RMSEs in quadrature. 
2Data listed here are from Row 5 of Table 1 in Tucker et al. (2010). See text for discussion. 

3APXS errors derived from Gellert et al. (2006). XRF errors based on values at http://www.fandm.edu/earth-and-environment/precision-and-accuracy. 

FS: The model was generated using the intensity at 5 channels selected by genetic algorithm; Ave: Training spectra were averaged.; Shaded cells are 

statistically equivalent (p-value >5%) to the most accurate method for that column. 
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Figure 11: A graphical summary of the RMSE values for igneous rocks in the test set reported in Table 4. All oxide 

RMSEs are in wt. %. RMSEs for MnO are multiplied by 10.  

 

both the full spectrum and with feature selection when spectral averaging was applied. 

However, averaging appears to have been beneficial for predicting TiO2, reducing the 

RMSE for PLS2 from 1.07 wt. % to 0.82 wt. % and reducing the RMSE for MLP and CC by 0.6 

wt. % and 0.8 wt. % respectively (using the full test set; Table 4). This may be because the 

titanium lines in the individual training spectra were only slightly above the noise, so reducing 

the noise by averaging improved performance. For most elements (SiO2, Al2O3, MgO, CaO, 

Na2O, K2O, and MnO), averaging decreased the performance of CC when the full spectrum was 

used, although the change in RMSE was only significant for MgO, Na2O and TiO2.  

The vertical black lines in Figs 7, 8, 9 and 10 indicate the “typical” range of compositions 

observed by APXS on MER, defined as ±1 standard deviation from the median[160–162]. An 

important observation from these figures is that the compositional range of our samples does not 

strongly overlap the range for the MER samples. To optimize quantitative LIBS on Mars with 
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the ChemCam instrument, a Mars-like training set should be developed based on laboratory 

LIBS measurements of martian meteorites and synthetic Mars-like compositions. 

6.  Effects of Rock Grain Size and Representative Sampling for LIBS 

To obtain chemical compositions that are characteristic of bulk material with LIBS, 

representative sampling of the target material must be done. This is particularly important for the 

ChemCam instrument on MSL because it will provide the only quantitative chemical 

composition for samples that are otherwise inaccessible or for which there is not enough time to 

use APXS, CheMin or SAM for a detailed analysis. For the LIBS technique, an important 

consideration is the diameter of the laser beam compared to the scale of target heterogeneity. For 

example, if the target is homogeneous on a scale small compared to the beam diameter, a 

representative analysis is possible even for one analysis spot. One common approach (e.g. [49], 

[52], [133]) used to obtain representative targets for laboratory LIBS analysis is to grind a 

representative volume of a heterogeneous material to a fine powder and make a pressed powder 

target from a portion of that powder.  

The majority of rock slab targets in this study are heterogeneous on the scale of the laser 

beam diameter (~490 µm) and the heterogeneity can vary from element-to-element. For example, 

in a gabbro, an enstatite grain and a labradorite grain can have similar SiO2 concentrations (59 

wt. % and 56 wt. % respectively) but dissimilar MgO (~40 wt. % and ~0 wt. % respectively) and 

Al2O3 (~0 wt. % and ~30 wt. % respectively) concentrations.  

The LIBS spot size is small enough to analyze individual grains in some targets. This 

provides more detailed information about the spatial variation in the target composition than bulk 

analysis methods. To obtain representative compositions using LIBS from samples that are 

heterogeneous on the scale of the laser beam diameter, it is necessary to collect LIBS spectra 
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from a sufficiently large number of analysis spots, where the required number of spots is 

governed by the grain size of the rock. We collected spectra from 5 spots per analysis for every 

rock slab target in this study, but this number may not have been sufficient to obtain 

representative analyses for all rocks. Below, we investigate the relationship between 

representative sampling with LIBS and rock grain size in three ways. We first compare values of 

RMSE as a function of rock grain size for our standard 5-spot analyses. Next we determine 

values of RMSE as a function of number of analysis spots for the same target. And finally, we 

compare RMSEs for the rock slabs to corresponding values for LIBS measurements made on 

their fine powders. For LIBS on MSL (ChemCam) it will be important to understand the 

relationship between representative sampling and the number of analysis spots so that 

appropriate trades can be made between available power, time and data volume. 

6.1  RMSE and Rock Grain Size 

We divided the rock slabs of basaltic to basaltic-andesitic composition (SiO2 45-57 wt. 

%, K2O+Na2O 0-6 wt. %) into three groups on the basis of grain size. LOI was not used to 

restrict this sample set, but the highest volatile content for rocks within this set was still 

relatively low (~3 wt. %).  

 

Figure 12: From left to right, examples of fine-grained, medium-grained and coarse-grained rock slab samples used 

in the grain size study. All three images are shown at the same scale, and the laser ablation spots are visible as small 

white points surrounded by a discolored halo from the LIBS plasma.  
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Figure 13: Charts showing (a) RMSE and (b) average standard deviation for major oxide predictions of samples 

with varying grain size.  

 

Our investigation was concerned with overall trends with grain size, rather than a precise 

quantitative determination of the grain size. We therefore did not apply a rigorous quantitative 

method to determine the exact grain size statistics of each sample, and the grain sizes discussed 

below should be regarded as approximate. The samples were sorted qualitatively based on their 

apparent grain size, and then assigned to three groups. Limits on the grain sizes for each group 

were determined by manually measuring grains in high-resolution digital photographs of the 

samples. Group 1 had typical grain sizes of <1 mm, Group 2 had typical grain sizes of 1-2.5 mm, 

and Group 3 had typical grain sizes >2 mm. A representative member from each group is shown 
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in Figure 12. The diameter of the laser pit is on the order of ~490 µm, meaning that the laser 

beam diameter is not necessarily larger than the grain size even for some of the finest-grained 

rock slabs.  

We trained a PLS2 model on the silicate rock pressed powder geostandards using the full 

spectrum without averaging and predicted the composition for groups 1, 2, and 3. The RMSE 

was larger for the coarsest-grained (Group 3) samples than for the finest-grained (Group 1) and 

intermediate-grained (Group2) samples for all major elements (Figure 13). The RMSE for Group 

2 samples was lower than the RMSE for Group 1 samples in some cases but was higher in 

others.  

In addition to the RMSE for each element, we also calculated the standard deviation of the five 

predictions (one per LIBS analysis spot) for each sample. The standard deviation is a better 

measure of representative sampling than RMSE because the former is independent of the XRF-

derived composition. The average standard deviation shows a clear trend with grain size, with 

the average standard deviations increasing with increasing grain size (Figure 13). 

6.2  RMSE and Number of Analysis Spots 

Although each individual rock slab sample in our study was analyzed in 5 spots, several 

slabs in each grain size group were cut from the same parent rock, resulting in a larger effective 

number of analysis spots. This allowed us to investigate the effect of the number of spots 

analyzed on the accuracy of the resulting predictions. We used the same PLS2 model as in the 

preceding section (Section 6.2) to predict the sample composition based on the spectrum from 

each spot and then calculated the average prediction and the standard deviation for every unique 

combination of individual spots, resulting in a distribution of possible predictions for each 

number of spots. 
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Figure 14: Plots of the maximum and minimum predictions in the distribution of possible PLS predictions for all 

combinations of n spots on a coarse-grained xenolith sample, with n ranging from 1 to 20. When only a small 

number of spots are considered, the range of possible predicted values can be quite large due to the influence of 

single points that differ significantly from the majority of other points. As n approaches 20, the maximum and 

minimum possible predictions converge to the average of all of the individual predictions. Dashed lines indicate the 

uncertainty in each prediction, and the horizontal black line marks the actual composition. When the true 

composition is within the error bars for both the maximum and minimum possible predictions, the analysis is 

considered to have converged accurately. Note that Al and Mn were poorly predicted for this sample, and did not 

converge on the true composition after 20 spots. 
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Table 5: Number of laser analysis spots required to converge on the actual composition for rocks with fine, medium and coarse 

grain sizes. 

 Major Element (wt. %) Number 

Parent Rock SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O Slabs Spots 

Fine-Grained Rocks 

AZFJS201     10 10 10 8  2 10 

WIME101 4 4    4   5 1 5 

HWMK124    9   8 8  2 10 

HWMU574-170    5 5     1 5 

CA9LJ1 3         1 5 

CRBSW1 10     9   7 2 10 

CRBSW11 4 5 5 5  5 5 4 4 1 5 

CA9VA1 5 5   4  4 5 4 1 5 

KICCA1 10     15 7 13 11 3 15 

Average 6.0 4.7 5.0 6.3 6.3 8.6 6.8 7.6 6.2  -  - 

Medium-Grained Rocks 

AZSC201 9 8 6 10       8 5 2 10 

HWHL100 7   7 7 9 6     10 2 10 

MU80-41 8         8 9 8 10 2 10 

MASEX1 4   4 4   5 3 5 5 1 5 

CA9LVNP1 5 5   5   5 5   5 1 5 

CA9WRN1 8     9 5   9 10 9 8 10 

PSNJ1 14 14   14   13 13 15 13 3 15 

CP-5   13               3 15 

Average 7.9 10.0 5.7 8.2 7.0 7.4 7.8 9.2 8.1  -  - 

Coarse-Grained Rocks 

WD123       4   5   2 5 1 5 

BSTQBC1 4         5 5 4   1 5 

HWMK9R-30A 13 16   16   19 17 19 15 4 20 

WI0ML1   18   20   20 17     4 20 

MU80-03A               4   1 5 

MCCSG20 16 13   16   16 18 17 21 5 242 

LDNVA5 5         5 4 5 5 1 5 

MU80-37B 5 4 5 5   5 5 4 3 1 5 

Average 8.6 12.8 5.0 12.2  10.7 11.00 7.9 9.8 - - 
1 This sample is repeated because two XRF analyses, yielding slightly different compositions, were conducted on this rock. 
2One spectrum was excluded because of low signal to noise. 

 

We then found the maximum and minimum of the distribution of possible predictions for 

each number of spots and their corresponding standard deviations. For small numbers of spots, 

some combinations result in very high or low predictions (represented by the red and green lines 

in Figure 14), while other combinations of spots are more representative of the bulk rock. As the 

number of spots averaged together increases, the maximum and minimum predictions become 

less extreme, until eventually the predicted value for all possible sets of spots converges on the 

average of the individual predictions. This is shown in Figure 14 for 20 analysis spots on 4 slabs 

of the same parent xenolith from grain size group 3. The prediction is considered to have 

converged accurately if the actual composition is within the 1σ uncertainties for both the 
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maximum and minimum possible predictions. Based on our samples, it appears that five to 10 

spots should be used when analyzing coarse-grained samples, and that 15 or more points are 

desirable to ensure representative sampling. This is consistent with the findings of [51] that 10-

15 spots were sufficient for estimating the bulk composition of a coarse-grained martian 

meteorite. 

Table 5 shows the number of spots required for the predicted composition to converge to 

within one standard deviation of the true (XRF-derived) composition for each sample and major 

element. Cases where the LIBS prediction did not converge on the true composition are left 

blank in the table. For most elements, the average number of spots required for accurate 

predictions of each major element was lowest for Group 1 samples and highest for Group 3 

samples. The required number of spots averaged across all major elements and rounded to the 

nearest whole number was six for Group 1, eight for Group 2, and 10 for Group 3. The Group 3 

samples are strongly bimodal, with some samples converging relatively rapidly, and others 

requiring >15 spots to converge on the correct composition.  

It should be noted that our results may be biased because there were more rocks in Group 

3 with a large number of analysis spots. A more thorough study of the number of spots required 

for representative sampling of coarse-grained rock composition, using a large, uniform number 

of spots for all samples, is necessary. However, the number of spots required for convergence for 

a given sample is independent of the number of spots that are analyzed. The presence of several 

coarse-grained samples for which the predicted composition does not converge on the true 

composition until 15-20 spots are analyzed suggests that it is prudent to analyze at least 15 spots 

on coarse-grained targets for accurate results.  
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An additional limitation of our grain size study is that the heterogeneity of the grains was 

not considered. A coarse-grained sample with grains of uniform composition could theoretically 

be accurately characterized based on only one spot. Because our reference compositions were for 

the bulk rock, we cannot group the samples based on compositional homogeneity. However, 

many of the slab samples in our study appear to be compositionally heterogeneous based on 

visual variations in their grain properties, and given that they are primarily igneous rocks this is 

likely to be the case. Therefore our recommended number of analysis spots may be higher than 

strictly necessary for more homogeneous rocks.  Additional work using samples with known 

degrees of heterogeneity is needed to fully investigate this issue. 

6.3  Comparison of RMSE for Rock Slab and Pressed Powder Samples 

To directly investigate the difference between LIBS analyses of homogeneous pressed 

powder samples and natural rock slab samples, we crushed ~10 g of the same parent rocks as the 

slabs used in our training and test sets and collected the LIBS spectra of the powders. LIBS 

spectra of the powdered training set samples were used to train a PLS2 model for the major 

elements. The model was then tested on the spectra of the powdered test set samples and the 

resulting predictions were compared with the results from the rock slab analysis (Table 4). 

Geostandards were excluded from the slab and powder test sets for this comparison so that the 

results were only based on predictions of the geologic samples and corresponding powders. The 

RMSEs for powders were lower than the full-test-set RMSEs for slabs for most of the major 

elements. When only igneous rocks were considered, the slab and powder results were similar. 

SiO2, MgO and CaO predictions were more accurate with igneous rock slabs, but TiO2, Na2O, 

and K2O were more accurate with igneous rock powders. Predictions of Al2O3, Fe2O3 and MnO 

were essentially the same for igneous rock slabs and powders.  
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Tucker et al. [52] used LIBS to analyze a suite of 100 pressed powder samples derived 

from the <45 µm size fraction of igneous rocks. In Table 4, we include data from Tucker et al. 

([52]; Table 1, Row 5) for comparison with our igneous slab and powder predictions. Row 5 was 

chosen because it most closely corresponds to the calculation procedure we employed (PLS2 

using element atomic fractions). Given that the powders used by Tucker et al. [52] are finer than 

the powders used in this study (<45 µm versus ~90 µm ) and that Tucker et al. [52] scaled the 

element atomic fractions by their respective standard deviations prior running PLS2, the values 

of RMSE obtained for the two suites of igneous rock powders are in satisfactory agreement.  

We plotted our PLS2 predictions for the pressed-powder and rock slab samples and the 

XRF-measured bulk compositions on TAS plots to visualize the ability of quantitative LIBS to 

classify samples from predictions of SiO2, K2O and Na2O concentrations (Figure 15). The data 

plotted in the figure show that the accuracy of our LIBS analyses for the pressed-powder and 

rock slab samples is not always sufficient to correctly classify the samples according to the TAS 

scheme. This suggests that a multivariate classification method such as Soft Independent  

Modeling by Class Analogy (SIMCA)[49]or Independent Components Analysis (Cousin et al., 

2011) is preferable for LIBS rock identification. The accuracy of LIBS analyses and therefore 

the accuracy of classification using the TAS plot can be improved by careful selection of the 

training set. For example, Tucker et al. [52] (Table 1) were able to lower their 1 error for SiO2 

from 2.18-3.66 wt. % (depending on method) to 1.52 wt. % by splitting the training and test sets 

according a priori knowledge of the SiO2 abundance in the samples.  

The error reported by Tucker et al. [52] for SiO2 using the split training set (1.52 wt. %) 

is comparable to the error associated with the MER APXS instrument (1.35 wt. % Table 4). To 

achieve similar accuracy for unknown samples (e.g. targets analyzed by ChemCam on Mars)  
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 Figure 15: Total alkali (Na2O+K2O) vs. silica (SiO2) 

plots for chemical data derived from (a) LIBS analysis 

of igneous rock slabs PLS2 analysis method, (b) LIBS 

analysis of pressed-powders of the same igneous rock 

slabs, and (c) XRF analysis of the same igneous rocks. 

Error bars are based on the standard deviation of 

predictions for each sample, added in quadrature with 

the RMSE from Table 4. 
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procedures must be developed to constrain selection of training sets without prior knowledge of 

the target composition. Qualitative methods such as PCA (Section 4) or SIMCA may serve as a 

first step in grouping similar training and test samples prior to quantitative analysis. 

Additionally, iterative use of PLS2 in which the results of an initial model are used to split the 

samples into smaller subsets may improve the accuracy without requiring prior knowledge of the 

test set.  

7. Summary 

We analyzed a compositionally and mineralogically diverse set of geologic rock-slab and 

pressed-powder samples with a stand-off LIBS system similar to the ChemCam instrument on 

MSL. PCA was used to visualize the spectral diversity of the dataset without calculation of 

chemical compositions. Three multivariate methods (PLS, MLP ANN, and CC ANN) were used 

to calculate chemical compositions from LIBS spectra with and without the preprocessing steps 

of averaging the training spectra and applying feature selection (Table 4).  

PLS2 without spectral averaging had the best overall performance (i.e. lowest quadrature 

RMSE) for both the full test set and the igneous rocks test set. The error in SiO2 concentration, 

which is particularly important for analysis of silicates, was lowest for PLS2 compared to all 

other methods (Table 4). In general, the ANN-based methods did not improve over PLS-based 

methods, suggesting that the LIBS spectra of our samples did not exhibit significant 

nonlinearities.  

The average number of analysis spots on the rock slabs required for accurate predictions 

increased with grain size from ~6 analysis spots for finer-grained rocks to ~10 for coarser-

grained rocks. Several coarser-grained rocks required 20 or more analysis spots to achieve a 

representative bulk chemical composition. Our comparison of predictions for finer-, 
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intermediate- and coarser-grained rocks showed that the precision of the predictions decreased 

with increasing grain size for all major elements and the accuracy for finer- and intermediate-

grained samples was better than the accuracy for coarser-grained samples. The accuracy and 

precision of pressed powder and rock slab samples gave similar results, with improved accuracy 

and precision for most major elements when analyzing homogeneous powders, although in some 

cases the rock slab results were more accurate. 

If data volume and/or computation time are factors for chemical analyses by LIBS, 

feature selection and/or spectral averaging can be employed, with some decrease in accuracy 

relative to PLS2 for some elements (Table 4). The most accurate methods involving feature 

selection and/or averaging are PLS2 Ave and PLS1 FS Ave, and a combination of feature 

selection and averaging often resulted in lower errors than either pre-processing step alone. 

Reduction in data volume and/or computation time will likely be important during MSL 

operations of the ChemCam instrument. Very small data products, comprising a pre-selected 

subset of the full ChemCam spectrum, can be stored, transmitted to Earth and used to estimate 

the composition of a target even in cases with limited downlink or onboard memory availability. 

Additionally, PLS or other methods require significantly less time to generate a model when 

feature selection is used, allowing rapid interpretation of the data, and our results indicate that 

PLS1 with feature selection and averaging may be more accurate at predicting the composition 

of samples that are very different from the training set.  

When data volume is not restricted, we recommend using the full LIBS spectrum for 

analyses, but if available data is limited or there is reason to suspect that the target may be 

significantly different from the training set, feature selection should be considered. If automatic 

feature selection is used, the selected spectral channels should be examined to ensure that they 
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correspond to the element of interest. If they do not, then manual feature selection or a larger 

number of automatically-selected channels may give better results. We recommend further 

investigation of feature selection for LIBS to better understand its potential benefits and to 

minimize sources of error.  

Our chemical analyses of terrestrial rock slabs by LIBS point to several ways to optimize 

quantitative LIBS on Mars with the MSL ChemCam instrument by improving the selection of 

training samples. Initial work on this topic by [165] suggests that a statistical method of training 

set selection is needed to improve LIBS analyses. Clustering, classification methods, or iterative 

application of PLS-based methods could be used to group spectrally similar samples in the 

training and test sets. If it is possible to group compositionally similar samples prior to analysis, 

then geochemical correlations in the training set are more likely to be applicable to the test set, 

resulting in more accurate predictions. This is particularly important when feature selection is 

used because the information available to the algorithm is reduced. Alternatively, a very diverse 

training set containing many different sample types may result in more accurate predictions of 

unknown samples because the correlations identified would be more broadly applicable to all 

sample types.  

Another way to improve quantitative LIBS on Mars is to develop training sets that have 

chemical compositions appropriate for the martian surface, such as synthetic glasses with bulk 

chemical compositions identical to martian meteorites and martian surface materials as measured 

in situ by the Mars Pathfinder and MER APXS instruments. Future work will also expand our 

multivariate analyses to the full suite of rock slab samples to test the performance of quantitative 

LIBS on volatile-bearing and highly altered rocks, focusing particularly on rock and mineral 

types relevant to the MSL landing sites.  
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CHAPTER 4 

 

CLUSTERING AND TRAINING SET SELECTION METHODS FOR IMPROVING THE 

ACCURACY OF QUANTITATIVE LASER-INDUCED BREAKDOWN SPECTROSCOPY
3
  

0. Abstract 

We investigated five clustering and training set selection methods to improve the accuracy of 

quantitative chemical analysis of geologic samples by laser induced breakdown spectroscopy 

(LIBS) using partial least squares (PLS) regression. The LIBS spectra were previously acquired 

for 195 rock slabs and 31 pressed powder geostandards under 7 Torr CO2 at a stand-off distance 

of 7 m at 17 mJ per pulse to simulate the operational conditions of the ChemCam LIBS 

instrument on the Mars Science Laboratory Curiosity rover. The clustering and training set 

selection methods, which do not require prior knowledge of the chemical composition of the test-

set samples, are based on grouping similar spectra and selecting appropriate training spectra for 

the partial least squares (PLS2) model. These methods were: (1) Hierarchical clustering of the 

full set of training spectra and selection of a subset for use in training; (2) K-means clustering of 

all spectra and generation of PLS2 models based on the training samples within each cluster; (3) 

Iterative use of PLS2 to predict sample composition and k-means clustering of the predicted 

compositions to subdivide the groups of spectra; (4) Soft independent modeling of class analogy 

(SIMCA) classification of spectra, and generation of PLS2 models based on the training samples 

within each class; (5) Use of Bayesian information criteria (BIC) to determine an optimal 

number of clusters and generation of PLS2 models based on the training samples within each 

                                                 
3
 This chapter has been submitted for publication in the journal Spectrochimica Acta Part B: Atomic Spectroscopy, 

and is currently in review: R.B. Anderson, J.F. Bell, R.C. Wiens, R.V. Morris, S.M. Clegg, Clustering and Training 

Set Selection Methods for Improving the Accuracy of Quantitative Laser Induced Breakdown Spectroscopy, 

Spectrochimica Acta Part B: Atomic Spectroscopy. Submitted (2011). 
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cluster. The iterative method and the k-means method using 5 clusters showed the best 

performance, improving the absolute quadrature root mean squared error (RMSE) by ~3 wt. %. 

The statistical significance of these improvements was ~85%. Our results show that although 

clustering methods can modestly improve results, a large and diverse training set is the most 

reliable way to improve the accuracy of quantitative LIBS. In particular, additional sulfate 

standards and specifically fabricated analog samples with Mars-like compositions may improve 

the accuracy of ChemCam measurements on Mars.  Refinement of the iterative method, 

modifications of the basic k-means clustering algorithm, and classification based on specifically 

selected S, C and Si emission lines may also prove beneficial and merit further study. 

1. Introduction 

1.1 Laser-Induced Breakdown Spectroscopy 

Laser induced breakdown spectroscopy (LIBS) is an analytical technique that uses intense 

laser pulses to ablate target material and form a plasma. The emission spectrum of the plasma is 

then collected and analyzed to classify the target material and to determine its elemental 

composition[166]. LIBS can be used in-situ or at stand-off distances of many meters. The 

ChemCam instrument on the Mars Science laboratory (MSL) rover “Curiosity” will be capable 

of collecting LIBS spectra up to 7 meters away from the rover [44].  

The ability to conduct a chemical analysis at a distance is a significant advantage for LIBS 

over other methods on a planetary mission like MSL because targets of interest may not be 

accessible by the robotic arm. ChemCam also serves a valuable tactical role, interrogating targets 

from a distance prior to committing the rover to a multi-day analysis campaign using the arm-

mounted instruments. The synergy of ChemCam and APXS is particularly important. Rapid 

ChemCam analyses can be followed up with more sensitive APXS measurements. Comparison 
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of the elemental chemistry results from two independent methods and the ability to detect light 

elements and conduct limited depth profiling with LIBS will provide a more complete 

understanding of the target composition. 

In this study, we build on our previous work [54] and explore methods for improving the 

accuracy of quantitative LIBS by grouping the spectra prior to PLS analysis. For this grouping to 

be useful in applications with truly unknown samples, such as ChemCam operations on Mars, it 

must be shown to be effective without using prior knowledge of the test set sample composition. 

Our data set comprises LIBS spectra that were acquired with a laboratory experiment designed to 

simulate ChemCam for 195 rock slabs and 31 pressed powder geostandards under Mars-like 

atmospheric conditions [54]. 

1.2 Quantitative Methods 

Deriving quantitative compositional information from LIBS spectra has been an 

important goal since the technique was first conceived. Early studies used the peak intensity or 

area of selected emission lines in the spectra of several samples to create a linear regression 

between the LIBS emission line and the abundance of the emitting element. This type of 

univariate calibration met with limited success [51], partly because the relationship between 

LIBS emission line intensity and elemental abundance is typically complicated by matrix effects 

such as laser-to-sample coupling efficiency, self-absorption, trace element abundances, etc. [49]. 

Multivariate methods that use information from the entire spectrum rather than a single 

emission line have been shown to yield more accurate results for major element abundances [49], 

[52], [54]. The most commonly used quantitative multivariate method for LIBS analysis is 

Partial Least Squares (PLS). Although in some cases nonlinear methods such as artificial neural 

networks have proven more accurate than PLS [127], PLS is generally the most accurate method 
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for the analysis of typical geologic materials [54]. Feature selection methods such as genetic 

algorithms, which reduce the number of spectral channels used in calculations, can improve the 

results in some cases [54], but all analyses in this paper use the full LIBS spectrum. In this work, 

we use the PLS2 algorithm in the Unscrambler v9.8 software package, which is capable of 

predicting multiple compositions at once. For all PLS2 models, we used the number of principal 

components recommended by the software, as described by [54] and [52]. 

Following the procedure in [54], we judged the performance of the PLS2 predictions by 

calculating the mean predicted composition for each sample based on the five individual spectra 

of that sample. The predictions were then compared to the known composition of the samples 

and the absolute root-mean-squared error (RMSE) for each major element oxide was calculated. 

To summarize the overall performance of each prediction, the RMSE for each of the major 

element oxides were added in quadrature, resulting in a single “quadrature RMSE” value for 

each PLS2 prediction. 

1.3 Rationale for Clustering 

The choice of a training set has a significant influence on the accuracy of quantitative LIBS. 

Our previous work showed that a PLS model trained on silicate rocks predicted the composition 

of pure minerals relatively poorly, but the inclusion of several pure mineral samples in the 

training set significantly improved the results [54]. Additionally, methods such as dividing 

samples into groups based on silica content have been shown to improve the accuracy of PLS 

predictions [52]. However, when dealing with unknown samples it is not possible to divide the 

training and test samples in this way, and [165] showed that even training sets deliberately 

chosen on the basis of expected geochemical trends do not necessarily improve performance. It 

has been suggested [165] that instead automated statistical methods could prove more effective 
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in selecting training sets that result in improved performance. We have implemented several 

clustering-based methods for training set selection and assessed their influence on the accuracy 

of LIBS predictions. 

2. Sample and Data Set 

The dataset analyzed here is the same as that used in [54] and consists of LIBS spectra of 

31 powder geostandards [129] and 195 rock slab samples from the Mars analog sample 

collection at NASA's Johnson Space Center. The major element chemistry was measured 

independently by X-ray fluorescence (XRF) analyses [54], [130]. Table 1 summarizes the 

properties of the laboratory set-up, which was designed to be similar to ChemCam. 

Table 1: Details of laboratory set-up 

Laser Nd:YAG 

Laser wavelength 1064 nm 

Pulse frequency 10 Hz 

Pulse energy 17 mJ 

Stand-off distance 7 m 

Sample chamber pressure 7 Torr 

Sample chamber atmosphere CO2 

# of spectrometers 3 

Spectrometer type Ocean Optics HR2000 

Total # of spectral channels 6144 

UV spectral range 225.00-325.97 nm 

VIS spectral range 381.86-471.03 nm 

VNIR spectra range 494.93-927.06 nm 

 

Our previous work with this dataset focused primarily on silicate rocks and minerals with 

loss on ignition (LOI) of <2 wt. %. LOI is a measure of the mass lost when the sample is heated 

to ~925°C, and typically includes volatiles such as water, CO2 and SO3. The present work does 

not impose any restrictions on composition or LOI of the samples considered. The LIBS plasma 

brightness varied significantly depending on composition [54], and for the present study we 
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excluded the 5% of spectra with the lowest total integrated signal, caused by poor sample-to-

laser coupling. The total emission intensities for the excluded samples were <3.4 % of the  

 
Figure 1: Example LIBS spectra of gypsum, siderite, and basalt. Each spectrum has been normalized to 

its highest value for ease of comparison, and strong emission lines are labeled. 

 

brightest sample in the training and test sets. Prior to analysis, we followed the practice used in 

many other LIBS studies [49], [54] and normalized the LIBS spectra so that the sum of the signal 

across all observed wavelengths was equal to one, reducing the effect of shot-to-shot variations 

and differences in plasma brightness. Example spectra of basalt, gypsum, and siderite are shown 

in Figure 1. The spectra in Figure 1 are normalized to their highest values for ease of visual 
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comparison, but all calculations in this work were done on spectra normalized to the total 

integrated signal as described above. 

  Each sample in the full dataset was designated as a training sample or a test sample prior 

to applying any of the clustering and classification methods discussed in section 3. It has been 

shown that quantitative LIBS performs better when samples of the types present in the test set 

are also present in the training set [54]. To ensure that both the training set and test set contained 

diverse samples, we placed all of the samples into 12 categories based on their known type: 

carbonates, oxides and hydroxides, high-SiO2 samples, amphiboles, pyroxenes, olivines, 

phyllosilicates, igneous silicate rocks, sulfates, sodalite, plagioclases, and “other” samples. Each 

category was then sorted by SiO2 content and samples were manually assigned to the training set 

or the test set. In general, for categories with a large number of samples, one out of four samples 

was assigned to the test set, while the remaining three-fourths were assigned to the training set. 

In categories containing less than ten samples, the split between training and test sets was 

approximately even. Some samples, such as the phosphate collophanite and the synthetic pure 

Al2O3 sample were unique, and were assigned to the training set. All samples from the same 

source rock (and therefore having the same composition) were assigned so that they were 

exclusively in either the training or the test set. Table 2 summarizes the sample categories and 

the training set and test set assignments. Although sample type information was used for this 

initial division to ensure diversity in both the training set and the test set, the test set sample type 

information was not used in any of the methods described in section 3. The training set sample 

type information was only used to define the classes in soft independent modeling of class 

analogy (SIMCA) method described in section 3.4. 
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 It has been shown that quantitative results can be improved by using PLS1 to predict 

major element oxide weight percentages rather than atomic fraction [52]. The effect of several 

different methods of scaling the oxide abundances were also investigated by [52] and they found 

that dividing the abundance of each major element by that element’s standard deviation resulted 

in more accurate predictions. 

We tested several of the scaling methods discussed in [52] by using the full set of training 

spectra to generate leverage cross-validated PLS2 models with the compositions scaled 

differently and then predicting all major elements in the full test set. These calculations were 

done with the sample compositions in the training and test sets expressed as atomic fraction, 

oxide wt. %, oxide wt. % scaled to the maximum value of each element in the training set (“max 

scaled”), and oxide wt. % scaled to the standard deviation of each element in the training set 

(“stdev scaled”). The quadrature RMSE was used to assess the overall performance of each 

scaling permutation. These values and the RMSE values for each individual element are listed in 

Table 3. Using unscaled oxides resulted in the lowest quadrature RMSE (20.70 wt. %). Scaling 

by the standard deviation did improve the accuracy for some elements, but it was detrimental in 

other cases, particularly for iron which had a RMSE of 19.13 wt. % with standard deviation 

scaling, but only 9.25 wt. % with unscaled oxides. These results suggested that working in oxide 

weight percent without scaling is appropriate for our sample set, so all subsequent calculations 

were done in oxide wt. %.  
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Table 2: Sample types and training and test set assignments 

T  e  s  t    S  e  t T  r  a  i  n  i  n  g    S  e  t 

Sample Type # of 

samples 

Sample Names Sample Type # of 

samples 

Sample Names 

Igneous Rocks 

Andesite 3 CA9WRN1, GBW07104, 

MO12 

Andesite 12 OYCO1, CA9LVNP1, TMGNV1, TMGNV5, 

CA9LVNP1, AGV2, GBW07110, JA1, JA2 

Basalt 4 CHFCO1, CA9LJ1, BCR2, JB3 Basalt 29 688, 2116-81, CP-5, HWMK124, HWMK104, 

CA9WRN1, BPNTX1-A, HWHL100, AZFJS201, 

WIME101, HWMU574-170, BHVO2, 

GBW07105, GUWBM, JB1B, JB2, MO13, MO14 

Andesite with quartz 1 SQWCMT1 Sulfur-coated basalt 1 CA9SB1 

Basalt & carbonate 

breccia 

2 BRLCOR1 Basalt with carbonate 3 CRBSW1 

Diorite 2 LDNVA5, BSTQBC1 Basalt Scoria 4 CA9VA1, KICCA1 

Dolerite 3 PSNJ1 Basalt Breccia 3 HWMK745R 

Layered Gabbro 2 MU80-41 Layered Gabbro 2 MU80-03A, MU80-37B 

Gabbro 6 WD123, MASEX1, WI0ML1 Gabbroic Xenolith 4 HWMK9R-30A 

Norite 5 MCCSG20, MCCSG21 Granite 2 LANTX1, GBW07103 

Rhyolite 3 CA9KRY1, GBW07113, JR1 Obsidian 2 CA9OB1, CA9OB2 

   Syenite 3 SYMPCA5, SYMPCA1 

   Trachyte 2 HWHL101 

   Rhyolite Tuff 3 BICCA1, BICCA2, BICCA5 

Carbonates 

Siderite 1 SMCAID5 Siderite 1 SIDCL01 

Dolomite & Limestone 1 GBW07108 Dolomite & Limestone 7 ILTQ1, AZGW713R, JDo1, GBW07216a, 

GBW07217a, ATKONT1 

Basalt & carbonate 

breccia 

2 BRLCOR1 Dolomitic Oil Shale 3 RFLCO1 

   Calcite 4 TXAC1, TXGRF1 

   Spurrite 1 MEXUL701 

Oxides/Hydroxides 

Banded Iron 

Formation 

1 WI0BIF3 Banded Iron Formation 2 BIFWM2, WI0BIF1 

Chromite  1 MMNMT1 Brucite 1 BRLDN1 

Ferricrete 1 6SC-E2 Ferricrete 3 6SC-E2 

Magnesioferrite  1 LVSW1 Goethite 2 GTBK3 

Hematite 2 HMCL1, HMIR1 Hematite 4 HMRE1, HMIR3 

Magnetite 1 MTMA2 Magnetite 4 MTISH1, MTMA3 

   Ilmenite 3 ILMKRN5, AREF295 

   Titanomagnetite 2 MTLAC1 

High SiO2 

Silcrete 1 GR820 Flint 1 DCENG1 
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Banded Iron 

Formation 

1 WI0BIF3 Tridymite & Alunite 1 MNTPNV1 

Diatomite 1 LSBCA2    

Chalcedony 1 PMDCDY1    

Amphiboles 

Hornblende 1 WD129BR Amphibolite 1 MNMBA1 

Anthophyllite 1 WRCA1 Hornblende 3 COBONT5 

Grunerite 1 MMMI1    

Pyroxenes 

Fassaite 1 HLNMT1 Diopside 4 DIHUQ1 

Augite 2 HARAG1 Fassaite 1 HLNMT1 

Hedenbergite 1 YRLCNV1 Enstatite 1 BAMNOR1 

   Augite 1 BRLKCD1 

Olivines 

Olivine & chromite 1 OLTWS2 Olivine & chromite 2 OLTWS3 

Olivine 2 DH4912, OLJC1 Olivine 2 DH4909, DH4911 

Phyllosilicates 

Kaolinite & quartz  1 MTMAZ1 Kaolinite 1 WD143 

Biotite 1 BITONT1 Serpentinite 1 CA9SRP2 

Muscovite 1 MUSSD1 Phlogopite 1 SYONT1 

   Fuchsite 1 FUSBZ1 

Sulfates 

Gypsum 2 GypB, GypD Gypsum 2 GypA, GypC 

Alunite 1 WD151    

Sodalite  

Sodalite  1 MGSDL1 Sodalite 4 MGSDL7 

Plagioclases 

Anorthite & 

Anorthosite 

2 WD228, GSVCA1 Anorthosite 4 MCCSG1, TECNY1 

Bytownite 1 CBBYT1 Bytownite 2 CBBYT1, CBBYT5 

Labradorite 1 NANLB1    

Other Plagioclase 1 PLAGWM1    

Other 

Al2O3 2 AD998A, AD998B    

Epidote 1 AZGW711R    

Vesuvianite 1 CQRSCA1    

Meionite 1 MEICD1    

Collophanite 1 IDCDA1    

Pyroxmangite 3 MNSCO1, MNSCO2    

Scapolite 1 CHRMX1    

Unknown 1 GSPAUS1    
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Table 3: Comparison of RMSE values for each method of scaling composition values. 

 SiO2 TiO2 Al2O3 Fe2O3T MnO MgO CaO Na2O K2O P2O5 SO3 CO2 H2O 
Quadrature 

RMSE 

Oxides 9.41 4.65 5.57 9.25 1.49 4.21 5.95 1.85 1.01 1.56 8.27 7.37 4.09 20.70 

Oxides - Max Scale 10.12 4.72 5.78 13.49 1.72 4.14 6.18 1.86 0.97 1.33 8.20 7.65 4.23 23.41 

Oxides - Stdev Scale 10.36 4.47 5.30 19.13 1.20 4.01 6.40 1.80 0.94 1.90 8.17 7.53 4.23 22.77 

Atomic Fraction 9.98 3.83 5.05 12.49 1.53 3.76 5.92 1.93 1.13 1.66 9.51 7.53 4.02 27.00 
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3. Methods Tested 

3.1 Training Set Selection by Clustering 

In some cases where numerous potential training spectra are available, selection of a 

suitable subset of these spectra can improve the accuracy of predictions while reducing the 

computational burden. Næs [167] and Zemroch [168] suggested a technique for selecting an 

optimum set of training samples from a large number of infrared spectra using hierarchical 

clustering. This method clusters the potential training spectra using a furthest-neighbor (complete 

linkage) clustering tree [169]. The user specifies a desired number of training samples, and the 

algorithm finds the level in the clustering tree with that number of clusters. For each cluster, the 

sample that is farthest from the cluster center is selected, so that as much variation as possible is 

encompassed by the selected samples [169]. By selecting only one sample per cluster, the 

problem of multiple redundant training samples is avoided while still ensuring that the selected 

samples span the range of variations in the training set. Isaakson and Næs [169] found that when 

using this algorithm with near-infrared emission spectra, a subset of 20 training spectra gave 

better results than using the full set of 114 available training samples. 

We implemented this algorithm in the Interactive Data Language (IDL) array processing 

software by first applying principal components analysis (PCA) to the potential LIBS training set 

spectra and then using the principal components (PCs) to create a dendrogram, using euclidean 

distance. This differs slightly from the algorithm as implemented by [169], in which the PCs 

were standardized by subtracting the mean and dividing by the standard deviation. However, 

Isaakson and Næs [169] found that they achieved better results by restricting the clustering to the 

first few PCs. By skipping the standardization step, the magnitude of the PCs relative to each 

other is preserved, such that the PCs that explain the most variance in the data dominate the 
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clustering. This has a similar effect to imposing a limit to the number of PCs used, but does not 

prevent higher order PCs from influencing the clustering if they do represent a significant source 

of variance. We used the algorithm to select training sets of 50, 100, 200, 300, 400, 500, 600, 

700 and 800 spectra out of the 1299 possible training spectra. 

3.2 K-means clustering 

K-means clustering is one of the most commonly used clustering algorithms. The 

algorithm seeks to divide a dataset into a user-defined number of clusters (k). It is initialized with 

randomly-located cluster centers and each data point is assigned to the nearest cluster center. 

Then the cluster centers are updated to the centroid of the points in the cluster. This process is 

repeated until the cluster centers no longer change with each subsequent iteration [170]. Because 

of the random initial conditions, the results of any given run of the algorithm are likely to 

converge on a local rather than global minimum. Therefore it is common to run the algorithm 

many times with different initial cluster centers and use the result with the minimum sum of 

squared distances from the cluster centroids to the samples in each cluster. 

We ran k-means clustering on the full dataset (training and test set spectra) using between 

two and ten clusters. Unless otherwise specified, the clustering was done in the LIBS spectral 

phase space (i.e. one dimension for each of the 6117 spectral channels). For each number of 

clusters, the algorithm was run 100 times to ensure that the resulting clustering was robust. We 

used the Euclidean distance to measure the separation between points. For each resulting cluster, 

the training samples in that cluster were used to train a PLS2 model and predict the composition 

of the test samples in the same cluster. Each sample typically had multiple spectra in the test set, 

so the resulting predictions for each individual spectrum are averaged together to find the overall 
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prediction for the sample. Note that spectra from a single sample can be assigned to different 

clusters. 

In addition to k-means clustering in the spectral phase space, we also conducted 

clustering in the phase space defined by the first 10 PCs and the first 4 PCs of the dataset to test 

the hypothesis that, by excluding higher-order components of the variation in the spectra, a more 

accurate PLS2 model could be trained. We again used the Euclidean distance measure, but 

increased the number of runs to 500 to take advantage of the decreased calculation time. 

3.3 Iterative k-means and PLS2 

 
 
Figure 2: Schematic diagram illustrating the iterative use of k-means 

and PLS2 to group similar samples. The PLS2 predictions are 

always based on the full LIBS spectra and the k-means clustering is 

applied to the predicted oxide values to split the sample sets for the 

next iteration. 

 

We also investigated the results of an iterative use of k-means clustering and PLS2 

regression, illustrated in Figure 2. The intent of this algorithm was to split the training and test 

sets based on their composition without using prior knowledge of the composition of samples in 
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the test set. This technique begins by training a PLS2 model on the full set of training spectra and 

using it to predict the major oxide compositions of the full data set. K-means clustering, using 

Euclidean distance and 500 iterations, is then run on the oxide compositions and used to assign 

the spectra to two clusters. A PLS2 model is then trained using the training spectra in each 

cluster, and used to predict the compositions of the samples in that cluster. Each cluster is again 

split by applying k-means clustering to the predicted oxides. This process was repeated three 

times, until the smallest clusters had fewer than 20 samples in the training set.  

3.4 SIMCA 

Soft independent modeling of class analogy (SIMCA) is commonly used for 

classification in chemometrics [171], [172] and has recently been successfully applied to the 

classification of igneous rock samples based on their LIBS spectra [49]. In SIMCA, the training 

samples are divided according to their known classification, and a PCA model is generated based 

on the spectra of the samples in each class. All of the PCA models are then supplied to the 

SIMCA algorithm and used to classify the unknown test set samples. SIMCA is capable of 

assigning an unknown sample to more than one class if it is sufficiently similar to multiple 

classes. If the sample is significantly different from all of the possible classes, SIMCA does not 

classify the sample, making it a useful tool for identifying unusual samples which might be 

poorly predicted. The classification of a sample is dependent upon the distance from the sample 

to the other members of the class in the space defined by the principal components for that class. 

Typically, the threshold for including a sample in a class is given by a significance level. The 

Unscrambler software allows this level to be adjusted to 0.5%, 1%, 5%, 10%, and 25%, where 

the percentage represents the fraction of samples that are true members of a class which are 

excluded from that class. A higher percentage results in a “stricter” classification that excludes 
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more samples, erring on the side of false negatives. A low percentage results in most samples 

that are true members of a class being properly classified, but many “borderline” samples are 

also classified (i.e. more false positives) [173]. 

For SIMCA classification, we used ten of the classes described in Section 2 and in Table 

2, excluding the “other samples” and “sodalite” classes because of the small number of spectra in 

each class. PCA was run on the training samples in each class, and the ten resulting PCA models 

were used to apply SIMCA classification to all of the test spectra. We tabulated the SIMCA 

classifications at all of the available statistical significance levels and assigned each sample 

spectrum to the class or classes at the strictest level where classification occurred. For example, 

if a sample was unclassified at the 25% level, was classified as basalt at 10% significance level, 

and as both basalt and amphibole at the 5% confidence level, we recorded the classification as 

basalt. Once the samples were classified, all of the training spectra in each class were used to 

train a PLS2 model, which was used to predict the compositions of the test samples in the same 

class. For some samples, different spectra were assigned to different classes, so the final 

predicted compositions from each individual spectrum were averaged together to yield one result 

per sample. In cases where the same spectrum was placed in multiple categories at the same level 

of confidence, the average of the predictions for the multiple categories was used. Figure 3 

illustrates the basic process of SIMCA classification and PLS2 prediction. 

In a significant number of cases, igneous rocks were classified as amphiboles and/or 

phyllosilicates in addition to being placed in the igneous rock class. This is likely because many 

phyllosilicates and amphiboles are compositionally similar to minerals found in igneous rocks. 

To investigate the influence of the spurious classifications, we also found the results of PLS2  
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Figure 3: Schematic diagram of the SIMCA method. The final oxide values for each 

sample are the average of the predictions based on individual spectra, which may be in 

different classes. Refer to Section 3.4 for more detail and descriptions of the variations 

of the SIMCA method employed. 

 

predictions using two modified cases of SIMCA classification. The first case, referred to as 

“SIMCA Limit”, limited the effect of the spurious classifications by ignoring the amphibole and 

phyllosilicate classification except in cases where the sample was assigned to no other class. The 

second case, referred to as “SIMCA None”, removed those two classes entirely. 

Finally, to ensure that allowing different spectra from a single sample to be assigned to 

different classes did not degrade the accuracy of the resulting predictions, we applied a “voting” 

criterion which identified the most commonly assigned class for the spectra of a sample and 

assigned all spectra from that sample to that class. For example, if three spectra from a sample 

were classified as igneous rock and two were classified as olivine, then all five spectra were 

placed in the igneous rock class and PLS2 calculations were run for these modified classes. This 

case was referred to as “SIMCA Vote”. 
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3.5 Bayesian Information Criterion 

Finally, we used the automated clustering routine “Mclust” in the statistical software "R" to 

determine the optimum number of clusters and the optimum cluster shape based on the Bayesian 

information criterion (BIC) [174]. This method has been used previously to classify LIBS spectra 

[175]. The Mclust algorithm, using the principal components of the full dataset as inputs, 

indicated that the optimal number of clusters was 21, and that the optimum cluster shape was 

ellipsoids of variable size. As in the other clustering methods, a PLS2 model was generated 

based on the training spectra in each cluster and used to predict the composition of the test 

samples in the same cluster. Many of the compositions predicted using the Mclust-determined 

clusters were negative, which is not physically meaningful, so we also evaluated the performance 

after replacing all negative wt. % predictions with 0 wt. %.  

4. Results 

Prior to comparing the performance of the training set selection and clustering methods 

discussed in section 3, we investigated the influence of restricting the composition of the training 

and test sets using their known compositions. We defined a restricted training and test set with 

compositions that fall on the typical total alkali vs. silica (TAS) classification diagram: 35-85 wt. 

% SiO2 and 0-15 wt. % Na2O+K2O. The training set samples within this composition range were 

used to train a PLS2 model and predict the major oxide compositions of the test set samples 

within the same range and the full test set. The predictions were compared with the predictions 

from a PLS2 model trained on the full training set, and the results are shown in Figure 4. For 

most elements, the TAS training set and the full training set perform comparably when 

predicting the TAS-composition samples, although the full training set was less accurate for CO2 

and SO3. This is likely because carbon and sulfur have relatively weak emission lines, and so the 
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PLS2 model used associated elements in the full training set with bright lines such as Mg and Ca 

present in limestone, dolomite and gypsum. In the TAS training set, neither the training nor test 

samples had significant CO2 or SO3 content, so the low predicted values were relatively accurate. 

Conversely, the lack of carbonate and sulfate samples in the TAS training set led to significantly 

worse performance than the full training set when predicting the full range of test set 

compositions. The quadrature RMSE value when the full set of training spectra were used to 

train the PLS2 model was 20.06 wt. %. This value serves as the reference against which all of the 

subsequent methods will be compared. 

 
Figure 4: A comparison of the PLS2 performance using the full training set and a training set restricted to samples 

with compositions that plot on the total alkali vs. silica (TAS) plot (35-85 SiO2 wt. %; 0-15 Na2O+K2O wt. %) to 

predict the composition of the full test set and a TAS-composition test set 

. 

Figure 5 summarizes the quadrature RMSE values for all of the methods considered, and 

Table 4 lists the RMSE values for each of the major element oxides for each method. Bold 

values in Table 4 indicate the lowest error in each column. To quantify the difference in 

performance when different methods were used, we followed the procedure described in [54] and 

calculated p-values for each pair of quadrature RMSE values. P-values are a measure of the 

statistical significance of the difference between two results. A common, but arbitrary, threshold 
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for statistical significance is a p-value of <0.05 signifying a >95% chance that the difference is 

meaningful and not a statistical anomaly. 

Hierarchical clustering for training set selection showed relatively poor performance when 

only 50 training spectra were selected, and the quadrature RMSE asymptotically approached the 

quadrature RMSE for the full training set as the number of training spectra increased. This 

behavior suggests that selecting the training set with hierarchical clustering does not improve the 

performance of the PLS2 predictions. K-means clustering with 4 and 5 clusters gave the lowest 

quadrature RMSEs of all the methods (17.02 wt. % and 17.01 wt. %, respectively). The p-value 

for the comparison between the quadrature RMSE for 5 k-means clusters and the unclustered 

case was 0.14, giving an 86% level of confidence that the improvement is statistically 

significant. The k-means 5-cluster results gave the most accurate predictions of TiO2 and H2O of 

all the methods considered, while nine k-means clusters had the lowest RMSE for SO3 and 

Al2O3, and ten k-means clusters had the lowest error for Na2O. 

We compared the three best k-means clustering results using the full spectral phase space (3, 

4, and 5 clusters) to the results of clustering in the principal components phase space. We 

generated clusters using the first 4 and the first 10 PCs and found that the resulting clusters were 

almost identical. The RMSE values for the 4-PC clusters are listed in Table 4 and the quadrature 

values are shown in Figure 5. When k-means was run in the 10-dimensional or 4-dimensional PC 

phase space instead of the full spectral phase space, the quadrature RMSE values were very 

similar to the unclustered full-spectrum PLS2 results. 

The quadrature RMSE values for the iterative method were lower than the unclustered 

quadrature RMSE value in all cases. When two iterations were used, the quadrature RMSE was  
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Table 4: RMSE values (wt. %) for the clustering and training set selection methods used. The lowest error in each column is bolded. 

  SiO2 TiO2 Al2O3 Fe2O3T MnO MgO CaO Na2O K2O P2O5 SO3 CO2 H2O Quadrature 

Full 8.93 4.65 5.44 9.22 1.72 2.96 5.15 1.54 1.23 0.61 8.76 7.14 4.05 20.06 

K-Means 2 7.79 4.44 4.76 7.93 0.50 2.96 4.43 1.18 1.13 1.19 11.24 8.40 3.86 20.26 

K-Means 3 8.14 3.88 5.13 7.35 1.60 3.11 4.62 1.13 1.29 1.17 5.95 8.26 4.10 17.89 

K-means  4 8.11 3.86 5.14 6.73 0.55 2.60 5.31 1.15 1.24 1.23 5.86 7.16 3.48 17.02 

K-means  5 8.09 3.77 5.16 6.66 0.69 3.72 5.45 1.32 1.26 1.24 5.58 7.04 3.03 17.01 

K-means  6 8.52 3.98 5.39 7.04 0.92 2.58 5.40 1.33 1.38 1.22 7.64 7.53 3.81 18.39 

K-means  7 8.21 4.77 4.81 8.39 0.42 2.72 5.35 1.10 1.33 1.19 6.83 7.47 3.67 18.44 

K-means  8 8.60 4.87 4.81 8.50 0.43 2.80 5.33 1.04 1.40 1.18 6.06 7.52 3.58 18.44 

K-means  9 8.79 4.99 4.63 8.40 1.87 2.76 5.49 0.88 1.41 1.19 5.06 7.30 3.66 18.22 

K-means  10 9.15 4.86 4.86 8.43 0.44 2.74 4.62 0.83 1.45 1.15 7.70 10.46 4.12 20.52 

K-Means 3 (PCA) 8.18 4.25 4.94 7.44 1.08 2.88 4.38 1.32 1.48 1.20 11.00 8.66 3.56 20.18 

K-Means 4 (PCA) 7.78 4.17 4.58 7.74 1.35 2.92 4.23 1.01 1.15 1.21 10.40 8.41 3.56 19.58 

K-Means 5 (PCA) 8.13 4.12 4.92 7.07 1.47 2.58 4.45 1.17 1.30 1.20 10.70 8.88 4.60 20.13 

Hierarch. 50 12.35 5.19 6.55 14.45 2.95 3.59 5.63 1.74 1.39 2.51 11.73 11.11 5.11 27.98 

Hierarch. 100 10.15 4.89 6.34 12.42 1.14 3.34 4.68 1.70 1.46 2.56 14.28 8.58 5.39 25.95 

Hierarch. 200 9.34 4.79 5.99 10.82 0.71 3.02 4.64 1.61 1.38 1.93 12.59 8.51 4.95 23.62 

Hierarch. 300 9.34 4.77 6.01 11.20 0.54 3.01 4.59 1.63 1.40 1.97 12.70 8.38 4.86 23.79 

Hierarch. 400 9.11 4.75 5.93 10.36 0.51 2.92 4.69 1.64 1.38 1.35 11.84 8.30 4.69 22.73 

Hierarch. 500 8.78 4.69 5.41 10.07 0.77 2.92 4.78 1.53 1.08 1.45 10.56 7.02 4.12 21.09 

Hierarch. 600 8.32 4.48 5.04 7.91 0.81 2.76 4.33 1.48 1.01 1.07 12.97 6.79 3.97 20.95 

Hierarch. 700 8.41 4.49 4.99 7.82 1.21 2.94 4.53 1.49 1.02 1.05 12.23 6.71 3.99 20.55 

Hierarch. 800 8.16 4.42 4.91 7.55 1.13 2.88 4.45 1.53 1.03 0.93 12.08 6.59 3.96 20.15 

Iteration 1 7.66 4.71 4.74 6.96 0.77 2.93 3.83 1.39 0.90 1.21 7.69 7.64 4.31 17.78 

Iteration 2 7.53 4.71 4.65 6.45 0.79 2.71 5.03 1.38 1.11 1.16 6.66 7.23 3.93 17.09 

Iteration 3 8.95 4.30 5.24 7.29 0.67 2.44 6.70 1.21 1.43 1.64 6.76 5.96 3.78 18.22 

SIMCA 14.75 4.92 6.94 8.11 0.39 2.84 5.75 2.17 1.04 0.33 11.75 9.56 4.56 25.56 

SIMCA Limit 14.71 6.00 6.80 8.99 0.40 2.94 6.13 2.20 1.06 0.33 11.59 9.61 4.55 26.06 

SIMCA None 14.39 5.88 6.32 9.28 0.40 3.00 6.41 2.28 1.06 0.33 11.52 9.72 4.46 25.91 

SIMCA Vote 22.26 4.88 8.02 8.29 0.43 4.69 8.35 2.24 1.18 0.33 17.12 10.66 6.74 34.68 

Mclust 16.2 21.0 5.64 29.71 0.82 4.17 10.4 2.30 2.31 1.25 6.17 6.48 4.83 43.11 

Mclust > 0 12.6 4.81 4.93 21.15 0.72 2.65 10.4 2.30 2.31 1.25 6.17 6.36 3.59 29.53 
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Figure 5: A summary of the quadrature RMSE values for the clustering and training set selection 

methods investigated. The number following “k-means” indicates the number of clusters used. 

“Heirarch.” followed by a number refers to the use of hierarchical clustering to select a specified number 

of training samples. The results of the iterative method (Figure 2) are referred to as “Iteration” followed 

by the number of iterations. “SIMCA Limit” refers to the case in which the phyllosilicate and amphibole 

classes were only used for spectra that were not also assigned to another class. “SIMCA None” reflects 

the result of removing the amphibole and phyllosilicate classes entirely. “SIMCA Vote” is the result of 

forcing all spectra from a sample to be predicted by the PLS2 model for the class to which the majority of 

spectra from that sample were assigned. “Mclust” refers to the results of using the clusters identified by 

the Mclust algorithm, and “Mclust > 0” is the result of redefining negative predictions as zero. Refer to 

section 3 for more details descriptions of each method. 

 

17.09 wt. %. The p-value for the comparison between this result and the unclustered case was 

0.148, giving an 85.2% confidence level that the improvement was significant. The iterative 

method with one iteration had the lowest RMSE for CaO and K2O, and two iterations gave the 

lowest RMSE for SiO2 and Fe2O3. Three iterations gave the lowest RMSE for MgO and CO2. 

In general the SIMCA and Mclust results were significantly worse than the unclustered 

result. Limiting the influence of the amphibole and phyllosilicate classes or removing them 

entirely did not significantly improve the SIMCA predictions but the “voting” method increased 

the quadrature RMSE by almost 10 wt. %, suggesting that, when clustering or classification is 
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used, allowing the spectra from a sample to be clustered separately and predicted by separate 

models is beneficial. The poor performance of the Mclust algorithm likely results from the large 

number of clusters and therefore the very limited training set size in many of the clusters, 

reducing the ability to accurately predict unknown samples. As expected, replacing the 

physically unrealistic negative predictions with 0 wt. % improved the overall accuracy, but the 

performance was still worse than the other methods considered. 

5. Discussion 

The results of this study show that k-means clustering or the iterative use of k-means and 

PLS2 can modestly improve the accuracy of quantitative LIBS for a diverse suite of geologic 

samples. Hierarchical clustering of the training set did not result in any improvement in 

predictive capability, and predictions based on SIMCA classifications and the Mclust algorithm 

were worse than the unclustered results. The comparison between predictions using the TAS-

composition training and test set and predictions using the full training and test sets illustrates the 

benefits of a larger, more diverse training set for most major elements.  

None of the clustering or training set selection methods considered here showed a 

statistically significant (>95% confidence) improvement over the unclustered results, although 

the two best methods had confidence levels near 85%. Refinements of the iterative method using 

different techniques for splitting the sample sets or a larger number of iterations for larger 

clusters may prove beneficial. Classification of LIBS spectra based specifically on the relatively 

weak emission lines from geochemically important elements such as Si, C, and S while 

excluding bright emission lines from elements such as Mg and Ca should also be investigated as 

a means to improve the accuracy of LIBS classification and quantitative predictions.  
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In general, our results indicate that a large and diverse training set is the most reliable way to 

reduce the error in quantitative LIBS. Supplementing the ChemCam spectral library collected 

prior to instrument delivery [176] with a more diverse set of sulfate and carbonate samples and 

with synthetic analogs with compositions based on MER rock classes and Mars meteorites will 

likely improve the accuracy of ChemCam measurements on Mars. 
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CHAPTER 5 

 

INVESTIGATING METHODS FOR RELATING MULTISPECTRAL IMAGING TO 

COMPOSITIONAL DATA 

0. Abstract 

We investigated methods of relating coregistered Mars Exploration Rover Pancam 

observations, alpha particle X-ray spectrometer (APXS)-derived oxide values, and Mossbauer-

derived Fe-bearing phases in an effort to infer compositional information about distant targets 

based on multispectral imaging data. Simple correlation coefficients between datasets showed 

primarily weak correlations in data from Gusev Crater, although restricting the targets to those 

that were ground by the rock abrasion tool led to improved correlations, most notably between 

the red-blue ratio (673 nm/434 nm) and Fe
3+

-bearing phases. Correlations in the data from 

Meridiani were stronger because of the presence of several soil samples and the pyroxene-rich 

ejecta fragment Bounce Rock. Partial Least Squares (PLS) calculations relating Pancam spectra 

to APXS and Mossbauer results showed generally poor performance, although again the 

presence of compositionally distinct soils and Bounce Rock led to improved results for data from 

Meridiani. However, when the PLS model for pyroxene based on Meridiani data was used to 

predict the pyroxene content of Gusev targets, the results were poor indicating that even when 

cross-validation results are good, the PLS models are not necessarily applicable to data from 

other sites. Soft Independent Modeling of Class Analogy (SIMCA) classification showed mixed 

results for Gusev Crater data, with the diversity of Pancam spectra in some APXS-defined 
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classes leading to poor classifications. SIMCA classification of Meridiani targets, with classes 

defined by k-means clustering applied to APXS and Mossbauer data, was more successful.  

This study indicates that the relationship between multispectral imaging data and APXS- 

and Mossbauer-derived composition is often relatively weak. To maximize the correlation, dust 

and surface rinds should be removed if possible. Results from MSL’s ChemCam instrument may 

show a closer relationship to Mastcam multispectral observations because the initial laser shots 

analyze only the upper few microns of the surface. The clustering and classification methods 

used in this study can be applied to any dataset to formalize the definition of classes and identify 

targets that do not fit in previously defined classes.  

1. Introduction 

Images of the surface of Mars and measurements of its elemental composition both 

provide valuable insight into the planet’s geologic history. Cameras have been included on every 

landed mission to Mars, and most missions have also been capable of in-situ compositional 

analysis. While multispectral imaging can be used to survey the surroundings of a rover or 

lander, detailed compositional information is typically restricted to localized spots close to the 

spacecraft. Even in the case of the laser-induced breakdown spectroscopy (LIBS) instrument 

ChemCam on Mars Science Laboratory (MSL), the small size of the analysis spots (~450 µm) 

and limited range of the laser (7 m) limit the degree to which the rocks and soils visible to the 

rover can be characterized remotely. It is therefore desirable to seek relationships between 

multispectral imaging data and elemental and mineralogical data to allow inferences to be made 

about the composition of objects visible in the distance but not necessarily characterized by in 

situ or stand-off compositional methods. 
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Although the interpretation of multispectral observations has received considerable 

attention, no study to date has rigorously attempted to relate Mars Exploration Rover (MER) 

panoramic camera (Pancam) multispectral observations to the chemical compositions and iron 

mineral phases derived by the alpha particle X-ray spectrometers (APXS) and Mӧssbauer 

spectrometers on the MERs. Therefore, we have used Pancam multispectral images of rocks and 

soils that have also been analyzed by the MER APXS and Mӧssbauer to investigate potential 

methods of combining composition data with multispectral imaging data, to extend the range and 

utility of both. 

2. Data Sets 

2.1 Previous Missions 

The first Mars surface missions, the Viking landers, carried two cameras mounted on 

separate masts with three visible and three infrared filters[177], [178]. In addition, each Viking 

lander contained an X-ray Fluorescence (XRF) spectrometer capable of determining the 

concentration of elements heavier than Mg in soil samples [179].   

The imager for Mars Pathfinder  (IMP)[180] consisted of two “eyes” each with 12 filters: 

Four solar filters for each eye, one diopter lens for the right eye, and geology filters ranging from 

440 nm to 1000 nm. The IMP cameras had an angular resolution of ~0.98 mrad per pixel, and 

data from both eyes were recorded on the same detector with 248 x 256 pixels per eye [180]. 

Although they had a comparable angular resolution to the Viking cameras, the IMP cameras 

were a significant improvement because of their increased multispectral capability and higher 

dynamic range. The Sojourner rover on the Pathfinder mission carried an alpha proton X-ray 

spectrometer (APXS) which provided elemental analysis of rocks and soils near the lander. The 

APXS instrument operated in three modes: the alpha backscatter mode which allowed analysis of 
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light elements; the X-ray mode for analysis of elements heavier than Na; and the alpha-proton 

mode, which detects protons produced by reactions between alpha particles and some light 

atomic nuclei [181].  A comparison of IMP multispectral parameters and APXS-derived 

elemental chemistry at the Pathfinder landing site did not yield any particularly strong 

correlations among those data sets [182].  

The surface stereo imager (SSI) on the Phoenix lander was based on the IMP and the SSI 

on the failed Mars Polar Lander mission, but the resolution was improved to 0.24 mrad per pixel 

by using MER 1024 x 1024 CCDs. The SSI filter wheels have 12 positions for each eye, and in 

addition to filters intended for atmospheric observations, 13 of the 24 filters are intended for 

multispectral imaging of the surface [183]. Phoenix did not carry any instruments capable of 

measuring the elemental composition of samples. 

2.2 MER Datasets Used in this Study 

 On the Mars Exploration Rovers (MERs) the panoramic cameras (Pancams) have a 

multispectral, stereoscopic capability similar to IMP, but higher spatial resolution using a 

1024x1024 CCD pixel detector in each "eye". The filter wheel for each eye contains eight filter 

locations, including one solar filter for each eye and one empty position in the left eye filter 

wheel. The 13 geology filters sample 11 unique wavelengths across approximately the same 

spectral range as those on IMP: 432 nm to 1009 nm (Table 1). The angular resolution of Pancam 

is 0.28±0.02 mrad per pixel, approximately 3 times better than the Viking and Pathfinder 

cameras and comparable to 20/20 human vision [184]. Both MERs also carry an APXS 

instrument on their robotic arms. The MER APXS is similar to the APXS on Sojourner, but with 

significantly increased X-ray sensitivity. This increased sensitivity removes the need for a proton 

mode and the associated detector [185]. The MER APXS operational temperature is restricted to 
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less than -40°C [42]. The APXS oxide abundances used in this study are PDS-released data from 

sols 1-1368 for the Spirit rover and sols 1-696 for Opportunity [160], [161], [186]. 

 

Table 1: Pancam Filters
1
 

Name λeff (nm) Band Pass (nm) Filter 

Left Camera 

L1 739 338 empty slot, no filter 

L2 753 20 red stereo L, geology 

L3 673 16 geology 

L4 601 17 geology 

L5 535 20 geology 

L6 482 30 geology 

L7 432 32 blue stereo L, geology 

L8 440 20 solar ND5 

Right Camera 

R1  436 37 blue stereo R, geology 

R2  754 20 red stereo R, geology 

R3 803 20 geology 

R4 864 17 geology 

R5 904 26 geology 

R6 934 25 geology 

R7 1009 38 geology 

R8 880 20 solar ND5 
1
Table adapted from [Bell et al., 2003] 

 

In addition to the MER APXS data, we also used the PDS-released Mӧssbauer results for 

sols 1-1411 for Spirit and sols 1-557 for Opportunity [187–189]. The Mӧssbauer spectrometers 

on the MERs are capable of determining the Fe-bearing mineralogy of rocks and soils. At the 

beginning of the mission, when the nominal source intensity was ~100 mCi, a 10 hr integration 

was sufficient to detect hematite and magnetite at the 1-2% level against the background signal 

of palagonitic tephra [190]. The Mӧssbauer results used in our study list the percentage of total 

Fe in a variety of phases, including: olivine (Ol), pyroxene (Px), ilmenite (Ilm), chromite (Chr), 

magnetite (Mt), nanophase iron oxides (npOx), Fe
3+

 sulfate (Fe3Sulfate), jarosite (Jar), 

unidentified ferric phases (Fe3D3), hematite (Hm), goethite (Gt), and Fe/Ni metal alloy (a-Fe).  



 

181 

 

 

3. Previous work 

Several studies have searched for spectral end members and diagnostic features in 

panoramic camera (Pancam) spectra in an effort to interpret the composition of targets based on 

multispectral observations. For example, Farrand et al. [191] used spectral mixture analysis 

(SMA) of multispectral images of targets in the Gusev Crater plains and Columbia Hills. 

Spectral end members were interactively selected based on two-dimensional projections of the 

data cloud resulting from a Minimum Noise Fraction (MNF) transformation of the multispectral 

data. Six spectral classes were defined: Adirondack, Clovis, Lower West Spur, Wishstone, Peace 

and Watchtower. Although these classes share their names with several of the MER APXS 

classes, APXS data were not used to divide the classes discussed by [191]. SMA was also used, 

along with decorrelation stretch (DCS)  composites to identify spectral classes at Meridiani 

Planum [192]. The primary Meridiani spectral classes were a buff-colored “HFS” (Higher Four 

hundred eighty-two to 535 nm Slope) class and a more purple-colored “LFS” (Lower Four 

hundred eighty-two to 535 nm Slope) class. The HFS materials are interpreted to be a weathering 

rind containing more oxidized material than the LFS outcrops.  Johnson et al. [193] and Rice et 

al. [194] identified features in Pancam multispectral observations of light-toned silica-rich 

materials that are consistent with the presence of hydrated minerals, including many specific 

potential hydrated ferric sulfates. By mapping the occurrence of diagnostic Pancam spectral 

features in multispectral images, [194] determined that the hydration signature is widespread in 

the Columbia Hills.  Parente et al. [195] developed a different spectral unmixing algorithm for 

multispectral analysis of the sulfur-rich soils identified in Gusev crater, and compared the 

identified end members with laboratory spectra to also infer the presence of hydrated sulfate 

minerals.  
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4. Methods 

We restricted our study to the list of Pancam observations that contained clearly visible 

spots that were disturbed by the rock abrasion tool (RAT) or the Mӧssbauer nose-plate on the 

rover’s instrument deployment device (IDD). This helps to ensure that the Pancam spectra 

correspond as closely as possible to measured APXS and Mӧssbauer compositions. Note that 

perfect correspondence is not possible because Pancam collects photons that have interacted with 

the upper several microns of the rocks and soils in the scene, while the average information 

depth for APXS ranges from several microns for lighter elements to ~40 µm for Fe [186]. 

Mӧssbauer measurements sample an even larger volume, with an average information depth of 

200-300 µm in basaltic rocks [196]. In addition, the APXS and Mӧssbauer measurements are 

averages of the composition over the instrument’s field of view. For APXS 95% of the signal 

comes from a ~2.5 cm spot  [186], while the Mӧssbauer field of view is 1.5 cm [197].    

Table 2 lists the Pancam observations from Gusev crater that were used in this study, and 

Table 3 lists the corresponding information for Meridiani Planum. 

Neither of the Pancam filter wheels contain the full spectral range of filters, as indicated 

in Table 1. To create a full spectrum from the left and right eye observations, there are two 

methods that can be used. The first is to define regions of interest in the left and right eye images 

separately. Then, the average value for each filter in both eyes can be calculated, resulting in an 

average Pancam spectrum of the region of interest (ROI). However, some of the statistical 

methods used in this study rely on numerous spectra of each target, and manually defining a 

sufficient number of individual regions of interest is not practical. Instead, we coregistered the 

left and right eye images so that a full spectrum could be extracted from each individual pixel.   
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Figure 1 (a) Left eye 753 nm image of Mazatzal from Sol 87 (P2530). (b) Warped right eye 754 nm 

image from the same observation. Black pixels are locations with poor coregistration that have been 

masked. The median absolute difference in I/F values between the un-masked pixels in (a) and (b) is 

0.0036 with a standard deviation of 0.0035.  

 

This coregistration process was conducted by the Multi-mission Image Processing 

Laboratory (MIPL) at the Jet Propulsion Laboratory (JPL). Each image was radiometrically  

corrected to “I/F” values, where I is the measured radiance and πF is the incident irradiance at 

the top of the Martian atmosphere [184]. Next, disparity maps were generated, mapping each 

pixel in the right eye to the corresponding pixel in the left eye, using the left eye 753 nm image 

as the reference image  [198].  Finally, “warped” right eye images were generated based on the 

disparity maps, allowing the images from both eyes to be digitally stacked using the Interactive 

Data Language (IDL) array processing software. This stacking allowed Pancam spectra for 

individual pixels to be extracted using the same pixel coordinates in both the left and right eye 

images.  

Some pixels in the warped right eye images are masked out by the algorithm. This can 

occur when there is no correlation match between pixels (e.g. in areas that are visible to one eye 

but not the other), but other filters based on the accuracy of the correlation and the geometry of 

the derived ray intersections are also used [199]. The partial spectra from these bad pixels were 
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discarded so that they do not affect our analysis. Figure 1 shows an example of the coregistered 

images. In general, the coregistration is very accurate, and the masked pixels prevent any 

inaccurately-warped data from being used. The median absolute difference between the I/F 

values for the un-masked pixels in the warped right-eye image and the corresponding pixels in 

the left-eye image is 0.0036 and the standard deviation is 0.0035.  

The values for the L2 and R2 filters, which cover essentially the same wavelength range 

(753±20 nm and 754±20 nm), were averaged together in the final Pancam spectra. Likewise, the 

L7 and R1 filters (432±32 nm and 436±37 nm) were averaged, resulting in full Pancam spectra 

with 11 individual wavelengths.  

The name of the APXS and Mӧssbauer measurements corresponding to each Pancam 

spectrum are listed in Table 2 for Gusev Crater and Table 3 for Meridiani Planum. For Pancam 

spectra of brush mosaics or drilled spots that are partially covered by tailings, no APXS values 

were assigned because contamination of dust and tailings may have altered the surface 

composition. Table 2 lists the APXS class for each Pancam spectrum. These class assignments 

are based on the rocks listed as members of each APXS class by [161] and [186]. Figure 2 shows 

the average APXS and Mӧssbauer values for each Gusev Crater APXS class, and Figure 3 shows 

the average Pancam spectra for each of the APXS classes. 

In the case of the Meridiani data, there are not well-defined “APXS classes” as there are 

for Gusev crater, so we chose to define classes based on k-means clustering of the APXS and 

Mӧssbauer results. The clustering was done in the Camo Unscrambler v9.8 software, using 

Euclidean distances and 500 iterations.  To ensure that all APXS oxide or Mӧssbauer phases 

were considered equally, the values for each oxide or phase were mean-centered and normalized  
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Figure 2: Average composition of the samples in the 12 APXS classes from Gusev Crater. All 

values have been mean-centered and scaled by the standard deviation. The classes are shown 

on two separate plots for clarity. 

 

to the standard deviation of that variable. To determine the optimum number of 

clusters, we implemented the cluster validity parameter described by [200]. This 

parameter is a ratio with the average intra-cluster distance in the numerator and the 

minimum inter-cluster distance in the denominator. The optimum number of clusters is 

where this value is minimized. 
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Table 2: List of Spirit rover Pancam sequences from Gusev crater and corresponding APXS and Mӧssbauer observations. 

Sol Sequence Target ROI Type
1
 APXS Class

2
 APXS Observation

3
*  Mӧssbauer Observation

4
*  Set

5
 

55 P2583 Humphrey B Adirondack Humphrey_brush Humphrey_Heyworth1 Test 

60 P2597 Humphrey G Adirondack Humphrey_RAT2 Humphrey_Heyworth2 Test 

86 P2599 Mazatzal BM Adirondack None Mazatzal_NewYork Test 

87 P2530 Mazatzal BM Adirondack None None Test 

100 P2544 Route66 BM None None Route66_SoHo Test 

226 P2569 Clovis BM Clovis None Clovis_Plano Test 

236 P2580 Ebenezer G Clovis Ebenezer_RAT Ebenezer_Ratchit2 Test 

236 P2580 Ebenezer T Clovis Ebenezer_Fritz_RATgrindings None Test 

237 P2583 Ebenezer BM/T Clovis None None Test 

237 P2583 Ebenezer G/T Clovis None None Test 

237 P2583 Ebenezer T Clovis Ebenezer_Fritz_RATgrindings None Test 

238 P2585 Ebenezer BM/T Clovis None None Test 

238 P2585 Ebenezer G/T Clovis None None Test 

238 P2585 Ebenezer T Clovis Ebenezer_Fritz_RATgrindings None Test 

293 P2543 Uchben (Chiikbes) B Clovis Uchben_Chiikbes_brush None Test 

293 P2543 Uchben (Koolik) G Clovis Uchben_Koolik_RAT Uchben_Koolik Test 

362 P2530 Champagne G Wishstone champagne_RAT2 Champagne_RAT2 Test 

386 P2546 Alligator B Peace Alligator_scale_brushed Alligator_Jambalaya Test 

419 P2574 Watchtower (Joker) G Watchtower Watchtower_Joker_RAT WatchTower_Joker Test 

487 P2531 Davis (Jibsheet) B Watchtower Jibsheet None Test 

649 P2579 Kestrel (Kansas) B Watchtower Kansas Kansas_Kestrel Test 

690 P2575 Algonquin (Iroquet) B Algonquin Algonquin_Iroquet_Brushed Algonquin_Iroquet Test 

704 P2533 Comanche (Horseback) B Comanche Comanche_Horseback ComancheSpur_HorseBack Test 

764 P2589 JCPB(Crawford)
6
 B Barnhill James Cool Papa Bell_Crawford None Test 

764 P2589 JCPB (Stars)
6
 B Barnhill James Cool Papa Bell_Stars JamesCoolPappaBell_Stars Test 

867 P2548 Enderbyland (Progress) S None Enderbyland_Progress 2 Enderbyland_Progress2 Test 

1220 P2560 BWD
6
 B None None None Test 

1220 P2561 Elizabeth Emery B Barnhill Home Plate_Elizabeth Emery HomePlate_ElizabethEmery Test 

1220 P2561 Jane Stoll B None None None Test 
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1220 P2561 Mildred Deegan B None None None Test 

1431 P2564 Chanute B None None HomePlate_Chanute Test 

1967 P2533 Cyclops Eye S None None None Test 

1982 P2546 Polyphemus Eye S None None None Test 

1998 P2553 Polyphemus Eye S None None None Test 

2086 P2547 Polyphemus Eye S None None None Test 

2123 P2566 Polyphemus Eye S None None None Test 

2127 P2571 Polyphemus Eye S None None None Test 

81 P2588 Mazatzal B Adirondack Mazatzal_NewYork_Brush Mazatzal_NewYork Train 

82 P2590 Mazatzal B Adirondack Mazatzal_NewYork_Brush Mazatzal_NewYork Train 

82 P2590 Mazatzal G Adirondack Mazatzal_Brooklyn_RAT2 Mazatzal_Brooklyn Train 

85 P2596 Mazatzal B Adirondack Mazatzal_NewYork_Brush Mazatzal_NewYork Train 

85 P2596 Mazatzal G Adirondack Mazatzal_Brooklyn_RAT2 Mazatzal_Brooklyn Train 

86 P2599 Mazatzal B Adirondack Mazatzal_NewYork_Brush Mazatzal_NewYork Train 

86 P2599 Mazatzal G Adirondack Mazatzal_Brooklyn_RAT2 Mazatzal_Brooklyn Train 

87 P2530 Mazatzal B Adirondack Mazatzal_NewYork_Brush Mazatzal_NewYork Train 

87 P2530 Mazatzal G Adirondack Mazatzal_Brooklyn_RAT2 Mazatzal_Brooklyn Train 

176 P2543 Pot of Gold G Halley Pot_of_Gold_RAT PotofGold_FoolsGold Train 

200 P2556 Wooly Patch (Mastodon) G Clovis Woolypatch_Mastodon_RAT Woolypatch_Mastadon Train 

200 P2556 Wooly Patch (Sabre) G Clovis WoolyPatch_Sabre_RAT WoolyPatch_Sabre Train 

226 P2569 Clovis G Clovis Clovis_Plano_RAT Clovis_Plano Train 

304 P2553 Lutefisk (Flatfish) B Clovis Lutefisk_flatfish_Brushed Lutefisk_FlatFish Train 

304 P2553 Lutefisk (Roe) B Clovis Lutefisk_RATRoe_brushed Lutefisk_Roe Train 

337 P2569 Wishstone G Wishstone Wishstone_chisel_RAT Wishstone_Chisel Train 

342 P2571 Wishstone G Wishstone Wishstone_chisel_RAT Wishstone_Chisel Train 

381 P2543 Peace G Peace Peace_RAT2 Peace_Justice2 Train 

471 P2563 Methuselah (Haunch) B Watchtower Methuselah_Haunch Keystone_Haunch Train 

473 P2567 Methuselah (Keystone) B Watchtower Methuselah_Keystone Keystone_Haunch Train 

476 P2573 Methuselah (Pittsburg) B Watchtower Methuselah_Pittsburg None Train 

511 P2563 Backstay B Backstay Backstay_Scuppers Backstay_Scupper Train 

678 P2551 Seminole (Osceola) B Algonquin Seminole_Osceola Seminole_Osceola Train 
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678 P2552 Seminole (Abiaka) B Algonquin Seminole_Abiaka Seminole_Abiaka Train 

704 P2533 Comanche (Palomino) B Comanche Camanche_Palomino CommancheSpur_Palimino Train 

753 P2583 Posey B Barnhill Posey_Manager Posey_Manager Train 

1073 P2534 Montalva (Troll) B Montalva Troll_Montalva Offset Troll_Montalva Train 

1180 P2596 Examine This (Slide) B Everett Examine This_Slide ExamineThis_Slide Train 

1215 P2549 June Emerson B Barnhill Home Plate_June Emerson HomePlate_JuneEmerson  Train 

1371 P2547 Pecan Pie B Barnhill Home Plate_Pecan Pie Home Plate_PecanPie Train 
1
B = Brushed, BM = Brush mosaic, G = Grind, T = Tailings, S = Soil 

2
APXS classes from [161] and [186]. Entries listed as “none” do not have a defined class in these sources. 

3
PDS-released

 
APXS compositions from [160] and [161].  

4
PDS-released Mӧssbauer compositions from  [187], [188]. 

*Entries listed as “none” in the APXS and Mӧssbauer observation columns do not have a PDS-released APXS and/or Mӧssbauer 
measurement associated with the Pancam observation. Brush mosaics and targets contaminated by tailings are listed as “none” because 
their varying dust and tailings coverage likely influences the composition. 
5
This column indicates whether the Pancam ROI and corresponding APXS and Mӧssbauer values were used in the training set or the test 

set for SIMCA classification. 
6
BWD = Betty Wagoner’s Daughter, JCPB = James Cool Papa Bell 
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Table 3: List of Opportunity rover Pancam sequences from Meridiani Planum and corresponding APXS and Mӧssbauer observations. 

Sol Sequence Target ROI Type
1
 Cluster

2
 APXS Observation

3
*  Mӧssbauer Observation

4
*  Set

5
 

36 P2531 McKittrick G 6 McKittrick_RAT McKittrick_MiddleRAT Test 

37 P2533 McKittrick G 6 McKittrick_RAT McKittrick_MiddleRAT Test 

55 P2543 Meringue None None None Meringue_Mbone Test 

88 P2542 Pilbara G 6 Golf_Post_RAT_FRAM Pilbara_Golf Test 

123 P2535 McDonnell None None None HillTop_McDonnell Test 

150 P2575 Cobble Hill G 6 Kentucky_Cubble_Hill2_RAT Kentucky_Coblehill Test 

150 P2575 Virginia G 6 Virginia_RAT LayerC_Virginia Test 

150 P2575 London G 6 Ontario_London_RAT Ontario_London Test 

180 P2537 Diamond Jenness G 1 Diamon_Jenness_Holman3_RAT2 Diamondjennes_Holeman3 Test 

188 P2547 Inuvik G 1 Inuvik_Toruyuktuk_RAT Inuvik_Tokoyuktuk Test 

217 P2576 Escher (Kirchner) B 4 Escher_Kirchner_brushed Escher_Kirchner_Brushed Test 

220 P2582 Escher (Otto-Dix) None None None None Test 

310 P2558 Wharenhui B None Wharenhui_RAT_stalled None Test 

310 P2558 Paikea G None Paikia_RAT None Test 

373 P2552 

Trench (L. of 

Peanut) S 3 Left_of_peanut_TrenchFloor Trench_LeftOfPeanut Test 

405 P2578 Gagarin G 6 Gagarin_RAT Yuri_Gagarin Test 

561 P2591 FB
6
 (Strawberry) G None Fruitbasket_Strawberry None Test 

561 P2591 FB
6
 (Lemon Rind) G None LemonRind_RAT None Test 

639 P2562 Olympia (Ziakis) B None Olympia_Ziakas None Test 

639 P2562 Olympia (Kalavrita) G None Olympia_Kalavrita None Test 

807 P2588 Brookville None None None None Test 

821 P2595 Cheyenne None None None None Test 

896 P2558 Baltra None None None None Test 

992 P2530 Cha None None None None Test 

1036 P2538 Rio de Janeiro None None None None Test 

1170 P2544 Viva la Rata None None None None Test 

1184 P2581 Penota None None None None Test 

1351 P2598 Smith None None None None Test 
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1374 P2543 Smith None None None None Test 

1374 P2543 Smith None None None None Test 

1395 P2545 Lyell None None None None Test 

1438 P2551 Buckland None None None None Test 

35 P2598 Guadalupe G 6 Guadalupe_RAT Guadalupe_RATLower Train 

37 P2532 Guadalupe G 6 Guadalupe_RAT Guadalupe_RATLower Train 

45 P2560 Flat Rock G 6 Mojo2_RAT FlatRock_Mojo2 Train 

68 P2581 Bounce Rock G 5 BounceRock_Case_Rat BounceRock_Case Train 

108 P2582 Lion Stone G 6 LionStone_Numa_RAT LionStone_NummaNewNormal Train 

163 P2587 Millstone G 1 millstone_Dramensfjord_RAT Millstone_Drammensfjord Train 

184 P2544 MacKenzie G 1 MacKenzie_Campell_RAT Mackenzie_Campbell2 Train 

195 P2551 Bylot G 1 Bylot_RAT Baylot_Aktineq3 Train 

214 P2571 Escher (Emil Nolde) B 4 Escher_Nolde_brushed Escher_EmilNolde Train 

220 P2582 Escher (Kirchner) G 6 Escher_Kirchner_RAT Escher_Kirchner Train 

237 P2588 Auk S 2 Auk_RAT Auk_AukRAT Train 

373 P2551 Trench (Scruffy) S 3 Scuff_Srcuffy Trench_Scruffy Train 

549 P2577 Ice Cream G 6 IceCream_RAT IceCream_Onescoop Train 
1
B = Brushed, G = Grind, S = Soil 

2
K-means clusters based on APXS and Mӧssbauer data, as described in the text. Entries listed as “none” were missing APXS and/or Mӧssbauer data, 

and were not assigned to a cluster.
 

3
PDS-released

 
APXS compositions [186].  

4
PDS-released Mӧssbauer compositions from [189]. 

*Entries listed as “none” in the APXS and Mӧssbauer observation columns do not have a PDS-released APXS and/or Mӧssbauer measurement 

associated with the Pancam observation.  
5
This column indicates whether the Pancam ROI and corresponding APXS and Mӧssbauer values were used in the training set or the test set for 

SIMCA classification. 
6
FB = Fruit Basket
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Figure 3: Average Pancam spectra of APXS classes at Gusev crater. Spectra are shown on separate plots for 

clarity.  

 

Figure 4 shows the intra-cluster distance, the inter-cluster distance and the validity 

parameter. Although the validity is minimized at three clusters, this resulted in a single cluster 

with 20 of the 24 samples in it, and one of the remaining clusters included only one sample. We 

therefore selected the next minimum in the validity parameter, which occurs at six clusters. 

The average compositions of the six clusters are compared in Figure 5, and the Pancam 

spectra are shown in Figure 6. Cluster 1 contains 5 members, all of which are rocks from sols 

163-195, within Endurance Crater. Cluster 1 is characterized by low MgO and Br, high P2O5, Ni,  
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Figure 4: (a) Minimum inter-cluster distance. (b) 

Average intra-cluster distance. (c) Validity parameter, 

which is defined as the ratio of the intra- and inter- 

cluster distances [200]. 

 

Zn and Cl, and high jarosite, Fe3D3, hematite, and Fe
3+

/FeT. Clusters 2 through 5 each have only 

one or two members. Cluster 2 is the dark soil Auk, which has a composition consistent with 

olivine basalt [201]. Cluster 3 includes two measurements from sol 373, from the wheel trench 

excavated on sol 366. These soil measurements have high SiO2, Al2O3, TiO2, Cr2O3, MnO, FeO, 
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olivine, pyroxene, and nanophase oxide and low P2O5, SO3, Cl, K2O, jarosite, Fe3D3, hematite, 

and Fe
3+

/FeT. Cluster 4 comprises two brushed observations from the target Escher. These have 

high Na2O, Cl, and Br and low SO3 and MnO. 

 

 
Figure 5: Average APXS and Mӧssbauer compositions for the six clusters of Meridiani 

targets. All values have been mean-centered and scaled to the standard deviation. 

 

Cluster 5 is the pyroxene-rich ejecta fragment Bounce Rock, which has high Al2O3, SiO2, CaO, 

MnO and pyroxene and low SO3, Cl, K2O, Ni, Zn and Fe
3+

 phases. The largest cluster (Cluster 6) 

contains 13 samples. This cluster consists of the typical Meridiani bedrock, with above-average 

MgO, SO3, jarosite, Fe3D3, hematite, and Fe
3+

/FeT. 

5. Correlations 

Prior to conducting more complex multivariate analysis of the data, we investigated the 

relationships between the Pancam, APXS and Mӧssbauer data by calculating their Pearson 

correlation coefficients (R). These calculations were done using the average Pancam spectra for 

each ROI. The resulting correlation coefficients are listed in Tables 4 and 5 for Spirit APXS and 

Mӧssbauer values, respectively. Tables 6 and 7 list the correlation coefficients for the 
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Opportunity APXS and Mӧssbauer values. The tables are color-coded to aid in interpretation, 

with green representing higher positive correlations, red representing stronger negative 

correlations and yellow for intermediate values. In addition to the correlation between each 

Pancam spectral channel and the APXS and Mӧssbauer values, we also calculated several  

  

Figure 6: Average Pancam spectra for the six clusters used to group Meridiani data. The clustering was 

conducted using APXS and Mӧssbauer values but did not use Pancam data. The spectra have been separated 

into two plots for clarity. 

 

Pancam spectral parameters and found their correlation with APXS and Mӧssbauer results. The 

spectral parameters included those used by [191] and [202].  

To aid in the interpretation of the correlations, we also calculated the critical value for the 

correlation coefficient to be statistically significant at the 95% and 99% levels. The critical R 

value for 95% confidence (Rcrit
95%

) is included at the top of each correlation table. For the Spirit 

rover data, there are 52 ROIs with corresponding APXS compositions, and 46 ROIs with 

corresponding Mӧssbauer values. This results in Rcrit
95%

 values of 0.273 for APXS and 0.291 for 

Mӧssbauer. The Rcrit
99%

 values for the Gusev data are 0.354 for APXS and 0.376 for Mӧssbauer. 

For Opportunity, there are 32 ROIs with APXS data and 26 ROIs with Mӧssbauer data, 
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corresponding to Rcrit
95%

 values of 0.35 and 0.39, respectively. The Rcrit
99%

 values for Meridiani 

data are 0.45 and 0.51.  

The Pancam I/F values tend to anticorrelate with Na2O, SiO2 and Al2O3, which reflects the 

tendency for these elements to be less abundant in darker, more mafic igneous rocks. The 

positive correlation between P2O5 and Pancam bands with wavelengths longer than 601 nm at 

Meridiani is caused by the low P2O5 content and low I/F of the three soils (Auk and two 

observations in the wheel trench). SO3 and Zn are positively correlated with longer wavelength 

Pancam bands for both sites. The relatively strong correlations between CaO and K2O and the 

short wavelength Pancam bands for Meridiani data is primarily caused by Bounce Rock, which 

has unusually high I/F at short wavelengths, and has very low K2O and very high CaO. Bounce 

rock also has a strong influence on correlations with pyroxene because of its high pyroxene 

concentration. 

The strongest negative APXS correlations for Gusev Crater are between the 673 nm /1009 

nm ratio and the SO3 and Cl concentrations (R=-0.42 and -0.48, respectively). This is likely 

because targets with high 673 nm/1009 nm values are more mafic and less altered, leading to 

lower values of mobile elements such as SO3 and Cl. In the Meridiani Planum data, the strongest 

negative correlation is likewise between the 673 nm/1009 nm ratio and SO3. As shown in Figure 

7, the majority of Meridiani bedrock has high SO3 and relatively low 673 nm/1009 nm values, 

but the soil targets and Bounce Rock have lower SO3 content and higher 673 nm/1009 nm 

values. 
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Figure 7: The strongest negative correlation from Meridiani Planum is SO3 vs 

the 673 nm  to 1009 nm ratio. 

 

The correlations between Mӧssbauer phases and Pancam spectral bands for Meridiani shows 

relatively strong correlations, particularly for wavelengths greater than 601 nm. This is because 

the bedrock samples (Cluster 1 and Cluster 6) have high jarosite, Fe3D3, hematite and Fe
3+

/FeT 

values, while the soils have very low values for these phases. The reverse is true for the phases 

olivine, pyroxene, magnetite and nanophase oxide. For Gusev Crater, magnetite generally shows 

a positive correlation with the brightness of the spectrum. This may be related to the presence of 

magnetite in the dust, as indicated by the magnetic properties experiment  [203].  

 The strongest positive correlation with any Mӧssbauer phase at Gusev is R=0.44, between 

the 754 nm to 1009 nm slope and nanophase oxides (npOx). The strongest overall correlation at 

Gusev was between the 673 nm/1009 nm ratio and nanophase oxide (R= -0.59). Although the 

correlation coefficient is above the Rcrit
95%

 value of 0.29, the correlation is still quite weak, as 

shown in Figure 8.   

0

10

20

30

0.7 0.9 1.1 1.3 1.5

SO
3 

(w
t.

 %
) 

673 nm/1009 nm 

Cluster 1 (Endurance Bedrock)
Cluster 2 (Auk)
Cluster 3 (Trench)
Cluster 4 (Escher Brushed)
Cluster 5 (Bounce Rock)
Cluster 6 (Meridiani Bedrock)

Bounce 
Rock 



 

197 

 

 
Figure 8: Scatter plot of the percent of Fe in nanophase oxides vs. the 673 nm/1009 

nm ratio for Gusev Crater data. Although this is the strongest correlation from 

Tables 4 and 5 (R= -0.59), and is greater than the Rcrit
95%

 value of 0.29, it lacks a 

clearly visible trend. 

 

It is notable that the correlation between the fraction of Fe in nanophase oxides (npOx) does 

not strongly correlate with the red/blue (673 nm/434 nm) spectral ratio at either landing site. For 

Gusev data the correlation coefficient is 0.21, and for Meridiani the correlation coefficient is 

only 0.04. The lack of correlation may be caused by the different sampling depths of Mӧssbauer 

and Pancam measurements. This interpretation is supported by examining the correlation 

between red/blue ratio and npOx content in brushed and ground ROIs. The ground ROIs at 

Gusev show a significantly higher correlation (R = 0.74) than the brushed ROIs (R = -0.28), as 

shown in Figure 9. 
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Figure 9: Scatter plot of the Gusev red/blue ratio (673 nm / 434 nm) vs. the 

fraction of Fe in nanophase oxides. There is essentially no correlation for 

brushed spots (Red), but relatively strong correlation for grind spots 

(Blue). 

6. Multivariate methods 

After examining the simple correlations between Pancam spectra and APXS and 

Mӧssbauer data, we used two multivariate methods in an effort to identify more subtle 

relationships between the datasets. Partial Least Squares (PLS) regression [204] is a method 

commonly used in multivariate calibration for chemometrics [49], [54], [205]. PLS seeks to 

correlate a matrix of independent variables (spectra) to a corresponding matrix of dependent 

variables (composition values) by re-projecting both matrices along the principal components 

(PCs) that yield the largest correlation. PLS can be used to predict single dependent variables 

(PLS1) or multiple variables at once (PLS2). Because the number of independent variables (11 

wavelengths) is lower than the number of dependent variables (16 APXS oxides and 10 

Mӧssbauer phases), PLS2 cannot predict all of the element concentrations at once. Instead, we  
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Table 4: Correlation coefficients between Gusev Pancam and APXS (Rcrit
95%

 = 0.27) 
    N

a 2
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R436 -0.31 0.01 -0.16 -0.20 -0.03 0.06 -0.31 0.09 0.26 -0.08 0.28 0.31 0.22 -0.14 0.15 -0.21 

L432 -0.33 0.07 -0.20 -0.23 0.01 0.07 -0.28 0.15 0.18 -0.05 0.25 0.23 0.20 -0.08 0.18 -0.19 

RL434 -0.32 0.04 -0.18 -0.22 -0.01 0.07 -0.30 0.12 0.22 -0.07 0.27 0.27 0.21 -0.12 0.17 -0.20 

L482 -0.37 0.12 -0.23 -0.24 0.00 0.12 -0.24 0.16 0.10 -0.03 0.25 0.20 0.18 -0.06 0.24 -0.15 

L535 -0.42 0.24 -0.32 -0.26 -0.01 0.20 -0.11 0.18 -0.09 0.00 0.24 0.13 0.15 0.04 0.34 -0.07 

L601 -0.33 0.27 -0.30 -0.26 0.03 0.30 0.08 0.16 -0.24 0.09 0.10 0.00 0.00 0.13 0.32 0.07 

L673 -0.30 0.25 -0.29 -0.26 0.04 0.34 0.12 0.14 -0.26 0.11 0.07 -0.02 -0.02 0.15 0.32 0.09 

R754 -0.29 0.22 -0.28 -0.26 0.03 0.38 0.15 0.12 -0.24 0.12 0.05 -0.01 -0.03 0.15 0.33 0.12 

L753 -0.29 0.21 -0.29 -0.26 0.04 0.38 0.15 0.14 -0.24 0.11 0.04 -0.02 -0.02 0.16 0.35 0.10 

RL753.5 -0.29 0.22 -0.29 -0.26 0.04 0.38 0.15 0.13 -0.24 0.12 0.05 -0.01 -0.03 0.16 0.34 0.11 

R803 -0.29 0.19 -0.28 -0.26 0.03 0.41 0.16 0.12 -0.22 0.11 0.03 -0.01 -0.02 0.16 0.34 0.13 

R864 -0.27 0.20 -0.28 -0.27 0.03 0.42 0.18 0.13 -0.24 0.10 0.01 -0.03 -0.04 0.19 0.33 0.16 

R904 -0.27 0.19 -0.28 -0.28 0.03 0.43 0.20 0.14 -0.24 0.09 0.00 -0.04 -0.03 0.20 0.33 0.17 

R934 -0.26 0.19 -0.28 -0.28 0.04 0.44 0.21 0.14 -0.24 0.10 -0.02 -0.05 -0.05 0.20 0.33 0.18 

R1009 -0.23 0.16 -0.25 -0.27 0.06 0.45 0.24 0.11 -0.21 0.14 -0.04 -0.05 -0.09 0.16 0.34 0.18 

 

L673/R1009 -0.16 0.27 -0.05 0.06 -0.09 -0.42 -0.48 0.10 -0.12 -0.11 0.36 0.13 0.19 -0.11 -0.15 -0.29 

L673/RL432 0.07 0.17 -0.06 -0.05 0.00 0.17 0.22 -0.04 -0.39 0.12 -0.12 -0.16 -0.13 0.24 -0.01 0.21 

RL754/RL432 0.06 0.14 -0.06 -0.07 0.00 0.22 0.23 -0.04 -0.37 0.11 -0.13 -0.14 -0.12 0.25 0.01 0.21 

BD535 0.27 -0.16 0.14 -0.13 0.14 0.36 0.27 -0.11 0.00 0.23 -0.31 -0.10 -0.31 0.08 -0.12 0.22 

S535-601 -0.04 0.19 -0.12 -0.15 0.08 0.32 0.33 0.05 -0.36 0.20 -0.16 -0.21 -0.22 0.21 0.14 0.26 

BD904 -0.06 -0.07 0.02 -0.01 0.12 0.15 0.05 -0.15 0.08 0.24 0.01 0.06 -0.16 -0.18 0.16 -0.04 

803/904 -0.07 -0.06 0.05 0.08 -0.01 -0.10 -0.29 -0.09 0.12 0.04 0.18 0.17 0.06 -0.22 0.00 -0.22 

S754-864 0.23 -0.19 0.17 0.07 -0.05 0.00 0.11 -0.06 0.14 -0.12 -0.23 -0.10 -0.03 0.06 -0.22 0.19 

S754-1009 0.34 -0.31 0.23 0.06 0.10 0.15 0.34 -0.14 0.22 0.07 -0.37 -0.15 -0.25 -0.03 -0.12 0.28 

 S934-1009 0.13 -0.18 0.11 0.04 0.21 0.18 0.28 -0.20 0.15 0.32 -0.12 -0.01 -0.32 -0.24 0.17 0.06 

 

R1009/RL434 -0.13 0.13 -0.18 0.11 0.04 0.21 0.18 0.28 -0.20 0.15 0.32 -0.12 -0.01 -0.32 -0.24 0.17 

L = Left Eye, R = Right Eye, LR = Average of left and right eyes, BD = band depth, S = slope 
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Table 5: Correlation coefficients between Gusev Pancam and Mӧssbauer 

(Rcrit
95%

 = 0.29) 

  O
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x
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T
 

R436 0.15 0.11 0.00 0.08 -0.37 0.03 -0.25 -0.21 

L432 0.06 0.07 0.02 0.14 -0.33 0.11 -0.23 -0.12 

RL434 0.10 0.09 0.01 0.11 -0.35 0.07 -0.24 -0.17 

L482 0.00 0.10 0.04 0.20 -0.31 0.11 -0.22 -0.09 

L535 -0.14 0.09 0.07 0.31 -0.22 0.11 -0.16 0.02 

L601 -0.30 0.07 0.13 0.32 -0.06 0.14 0.02 0.19 

L673 -0.32 0.07 0.13 0.30 0.00 0.13 0.05 0.21 

R754 -0.32 0.06 0.12 0.27 0.06 0.11 0.07 0.22 

L753 -0.30 0.04 0.12 0.24 0.07 0.12 0.06 0.21 

RL753.5 -0.31 0.05 0.12 0.26 0.06 0.12 0.07 0.22 

R803 -0.31 0.04 0.09 0.23 0.10 0.12 0.08 0.23 

R864 -0.36 -0.01 0.06 0.27 0.12 0.15 0.13 0.30 

R904 -0.35 -0.05 0.05 0.26 0.13 0.16 0.15 0.31 

R934 -0.37 -0.05 0.05 0.25 0.15 0.17 0.17 0.33 

R1009 -0.37 -0.01 0.09 0.24 0.18 0.13 0.17 0.31 

L673/R1009 0.21 0.26 0.13 0.14 -0.59 -0.03 -0.35 -0.36 

L673/RL432 -0.23 0.01 0.06 0.05 0.21 0.02 0.20 0.20 

RL754/RL432 -0.22 0.00 0.04 0.01 0.25 0.03 0.20 0.21 

BD535 -0.19 -0.01 0.12 -0.23 0.28 0.04 0.37 0.21 

S535-601 -0.42 0.00 0.16 0.19 0.23 0.12 0.30 0.36 

BD904 -0.04 0.42 0.33 -0.06 0.06 -0.22 -0.12 -0.18 

803/904 0.20 0.41 0.19 -0.12 -0.23 -0.20 -0.31 -0.39 

S754-864 -0.06 -0.32 -0.32 -0.06 0.23 0.11 0.28 0.26 

S754-1009 -0.13 -0.27 -0.15 -0.17 0.44 0.00 0.41 0.30 

S934-1009 -0.12 0.32 0.35 -0.05 0.24 -0.28 0.03 -0.07 

R1009/RL434 -0.26 -0.06 0.02 0.00 0.32 0.05 0.29 0.28 

L = Left Eye, R = Right Eye, LR = Average of left and right eyes, BD = 

band depth, S = slope 

Ol = Olivine, Px = Pyroxene, Ilm = Ilmenite, Mt = Magnetite, npOx = 

Nanophase Oxide, Gt = Goethite, Fe
3+

/FeT = Ratio of Fe
3+

 to total Fe 

  



 

201 

 

 

Table 6: Correlation coefficients between Meridiani Pancam and APXS (Rcrit
95%

 = 0.35) 
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R436 -0.30 -0.12 0.09 0.10 -0.09 -0.06 -0.24 -0.58 0.51 -0.42 -0.47 0.07 -0.28 -0.34 -0.25 -0.09 

L432 -0.31 -0.11 0.08 0.09 -0.09 -0.06 -0.23 -0.58 0.50 -0.43 -0.48 0.07 -0.28 -0.31 -0.25 -0.08 

RL434 -0.31 -0.12 0.08 0.10 -0.09 -0.06 -0.24 -0.58 0.50 -0.42 -0.48 0.07 -0.28 -0.33 -0.25 -0.09 

L482 -0.34 -0.15 0.05 0.07 -0.02 -0.03 -0.17 -0.54 0.46 -0.42 -0.49 0.08 -0.27 -0.28 -0.18 -0.12 

L535 -0.39 -0.19 -0.04 0.00 0.10 0.05 -0.05 -0.40 0.35 -0.43 -0.50 -0.03 -0.25 -0.17 -0.08 -0.07 

L601 -0.50 -0.25 -0.36 -0.29 0.38 0.35 0.22 0.02 -0.07 -0.48 -0.51 -0.10 -0.20 0.21 0.29 -0.21 

L673 -0.54 -0.20 -0.48 -0.41 0.43 0.47 0.25 0.13 -0.22 -0.51 -0.52 -0.17 -0.19 0.34 0.37 -0.18 

R754 -0.55 -0.14 -0.54 -0.47 0.41 0.53 0.21 0.15 -0.28 -0.53 -0.53 -0.21 -0.19 0.38 0.39 -0.15 

L753 -0.56 -0.15 -0.54 -0.47 0.43 0.53 0.23 0.17 -0.29 -0.53 -0.53 -0.21 -0.18 0.40 0.39 -0.15 

RL753.5 -0.56 -0.14 -0.54 -0.47 0.42 0.53 0.22 0.16 -0.29 -0.53 -0.53 -0.21 -0.19 0.39 0.39 -0.15 

R803 -0.56 -0.12 -0.55 -0.49 0.43 0.54 0.22 0.17 -0.31 -0.53 -0.54 -0.21 -0.19 0.40 0.41 -0.14 

R864 -0.56 -0.10 -0.58 -0.52 0.43 0.57 0.22 0.19 -0.34 -0.53 -0.53 -0.22 -0.18 0.42 0.43 -0.14 

R904 -0.56 -0.09 -0.60 -0.55 0.43 0.59 0.22 0.22 -0.38 -0.53 -0.51 -0.23 -0.17 0.45 0.45 -0.14 

R934 -0.56 -0.08 -0.62 -0.56 0.43 0.61 0.23 0.24 -0.40 -0.53 -0.51 -0.23 -0.16 0.47 0.46 -0.13 

R1009 -0.55 -0.05 -0.63 -0.58 0.40 0.62 0.20 0.24 -0.42 -0.54 -0.51 -0.25 -0.16 0.49 0.44 -0.10 

L673/R1009 0.27 -0.37 0.79 0.80 -0.24 -0.78 -0.08 -0.55 0.82 0.33 0.19 0.40 0.01 -0.67 -0.49 -0.17 

L673/RL432 -0.07 -0.11 -0.21 -0.14 0.40 0.16 0.41 0.52 -0.47 0.29 0.22 0.01 0.19 0.43 0.43 -0.12 

RL754/RL432 -0.12 -0.07 -0.29 -0.21 0.42 0.24 0.40 0.54 -0.52 0.24 0.16 -0.04 0.16 0.49 0.46 -0.10 

BD535 -0.32 -0.01 -0.65 -0.61 0.44 0.64 0.32 0.60 -0.70 -0.29 -0.20 -0.18 -0.02 0.69 0.60 -0.22 

S535-601 -0.43 -0.22 -0.59 -0.51 0.57 0.57 0.45 0.51 -0.55 -0.34 -0.30 -0.15 -0.05 0.59 0.61 -0.29 

BD904 -0.42 0.04 -0.32 -0.26 0.06 0.31 -0.03 -0.14 -0.09 -0.52 -0.56 -0.26 -0.22 0.31 0.02 0.09 

803/904 0.13 -0.25 0.69 0.74 -0.27 -0.68 -0.16 -0.70 0.85 0.10 -0.09 0.24 -0.18 -0.64 -0.57 -0.01 

S754-864 0.29 0.46 -0.07 -0.17 -0.12 0.09 -0.13 0.21 -0.33 0.28 0.33 0.00 0.12 0.06 0.09 0.22 

S754-1009 -0.15 0.42 -0.61 -0.65 0.04 0.61 -0.04 0.43 -0.71 -0.19 -0.06 -0.28 0.08 0.59 0.36 0.19 

S934-1009 -0.35 0.24 -0.55 -0.54 0.03 0.54 -0.10 0.15 -0.42 -0.45 -0.37 -0.34 -0.06 0.50 0.20 0.15 

R1009/RL434 -0.20 0.00 -0.41 -0.34 0.45 0.36 0.38 0.58 -0.63 0.14 0.08 -0.09 0.14 0.59 0.51 -0.07 

L = Left Eye, R = Right Eye, LR = Average of left and right eyes, BD = band depth, S = slope 
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Table 7: Correlation coefficients between Meridiani Pancam 

 and Mӧssbauer (Rcrit
95%

 = 0.40) 

  O
l 

P
x

 

M
t 

n
p

O
x
 

Ja
r 

F
e3

D
3

 

H
m

 

F
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+
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R436 -0.41 0.47 -0.40 -0.40 -0.01 0.03 0.00 -0.11 

L432 -0.40 0.45 -0.39 -0.39 -0.01 0.02 0.00 -0.11 

RL434 -0.41 0.46 -0.40 -0.39 -0.01 0.02 0.00 -0.11 

L482 -0.44 0.43 -0.42 -0.42 0.03 0.05 0.04 -0.07 

L535 -0.51 0.31 -0.49 -0.48 0.16 0.15 0.14 0.05 

L601 -0.65 -0.14 -0.62 -0.62 0.48 0.43 0.49 0.42 

L673 -0.68 -0.29 -0.65 -0.64 0.57 0.52 0.60 0.53 

R754 -0.68 -0.35 -0.65 -0.65 0.60 0.55 0.64 0.58 

L753 -0.68 -0.36 -0.65 -0.65 0.60 0.56 0.64 0.58 

RL753.5 -0.68 -0.36 -0.65 -0.65 0.60 0.55 0.64 0.58 

R803 -0.68 -0.37 -0.65 -0.64 0.60 0.56 0.65 0.59 

R864 -0.67 -0.41 -0.64 -0.63 0.61 0.58 0.66 0.61 

R904 -0.66 -0.44 -0.63 -0.63 0.63 0.59 0.68 0.63 

R934 -0.66 -0.47 -0.63 -0.62 0.64 0.60 0.69 0.64 

R1009 -0.65 -0.48 -0.62 -0.61 0.63 0.60 0.70 0.65 

L673/R1009 0.19 0.84 0.19 0.17 -0.52 -0.53 -0.63 -0.66 

L673/RL432 -0.05 -0.41 0.03 0.04 0.26 0.16 0.24 0.30 

RL754/RL432 -0.09 -0.46 -0.01 0.00 0.31 0.22 0.30 0.36 

BD535 -0.38 -0.74 -0.38 -0.37 0.59 0.57 0.70 0.69 

S535-601 -0.54 -0.58 -0.52 -0.51 0.63 0.57 0.68 0.67 

BD904 -0.56 -0.15 -0.56 -0.54 0.39 0.38 0.48 0.38 

803/904 0.00 0.80 -0.02 -0.02 -0.40 -0.39 -0.47 -0.55 

S754-864 0.53 -0.21 0.53 0.53 -0.23 -0.16 -0.24 -0.13 

S754-1009 -0.04 -0.73 -0.04 -0.03 0.36 0.39 0.47 0.51 

S934-1009 -0.39 -0.49 -0.39 -0.37 0.44 0.47 0.57 0.53 

R1009/RL434 -0.13 -0.56 -0.04 -0.03 0.37 0.28 0.39 0.44 

L = Left Eye, R = Right Eye, LR = Average of left and right eyes,  

BD = band depth, S = slope 

Ol = Olivine, Px = Pyroxene, Mt = Magnetite, npOx = Nanophase Oxide, 

 Jar = Jarosite, Fe3D3 = Undefined Fe
3+

-bearing phase,  Hm = Hematite,  

Fe
3+

/FeT = Ratio of Fe
3+

 to total Fe 
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used PLS1 to generate separate models for each individual element detected by APXS and 

each Fe-bearing phase detected by Mӧssbauer spectroscopy. 

We implemented the PLS1 calculations in Unscrambler, using leave-one-out cross 

validation and the average Pancam spectrum of each ROI. The number of principal components 

used in each PLS1 model was the default recommendation produced by the Unscrambler 

software, as described in [54] and [52]. In cases where no recommendation was available 

(typically because of poor performance for all PCs), we used the number of PCs corresponding 

to the lowest cross-validation mean squared error (MSE). 

We also used soft independent modeling of class analogy (SIMCA) to classify the 

samples using Pancam spectra. Gusev data were classified according to their APXS class, and 

Meridiani data were classified based on the six k-means clusters discussed above. SIMCA is a 

commonly used classification method (e.g. [49], [171], [172], [206]). For each class of samples, 

a principal components analysis (PCA) model is generated based on training samples in that 

class. In our analysis, we designated some of the Pancam observations of each class as training 

samples and the remaining observations as test samples. This designation was random, although 

brush mosaics were restricted to the test set because of their variable dust coverage. Pancam 

observations of the same rock were typically assigned to the same group, with the exception of 

the two Comanche spots, and the ROIs on Escher. The Comanche spots are in the same Pancam 

observation, but one was assigned to the test set so that Comanche would be represented in both 

the training and test sets. This was desirable because Comanche has been shown to contain 

carbonates [207] and therefore the ability to correctly classify outcrops as Comanche with 

Pancam would be valuable. Although both Escher observations are on the same rock, the ROIs 

are from different Pancam observations and are not repeat observations of the same location.  
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The PCA models for each class were generated using the training samples in that class. 

The inputs for these PCA models were the spectra for the individual Pancam pixels from the 

ROIs in each image. Using the individual pixel spectra rather than the average spectrum for each 

ROI was important because having multiple spectra allows the PCA calculation to be conducted 

for SIMCA classification. We retained the number of principal components for each class 

recommended by the Unscrambler software, as we did above for PLS.  

In the classification step of the SIMCA algorithm, the spectrum of each sample from the 

test set is introduced and the distance between the new sample and the hyper-plane defined by 

the principal components for each PCA model is calculated. If the test sample is closer to the 

hyper-plane than a specified threshold distance, it is considered a member of the class. The 

Unscrambler software allows confidence thresholds to be set at 25%, 10%, 5%, 1%, 0.5% and 

0.01%, where higher values correspond to more “strict” classifications (i.e. more false negatives) 

and lower values correspond to less “strict” classifications (more false positives) [173]. SIMCA 

classification is capable of assigning unknown samples to multiple classes if they are within the 

confidence threshold. Conversely, if the unknown sample does not fit any of the classes, it will 

not be classified. This trait makes SIMCA a useful method for determining whether a new 

observation is similar to previous observations or if it represents a novel class. 

7. Multivariate Method Results 

7.1 PLS1 Results 

The results of the PLS1 calculations for each element and Mӧssbauer phase are 

summarized in Table 8. The modified R-squared value reported by the Unscrambler for 

validation results is given by  ̅  
   ( )       

   ( )   
, where MSE is the mean squared error and the 

   ( )    is the residual variance of the model using zero PCs. A perfect PLS model would  
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Table 8: PLS1 validation results for Gusev and Meridiani Data 

Gusev Crater Meridiani Planum 

   ̅  RMSE
1
 # of PCs    ̅  RMSE

1
 # of PCs 

SiO2 0.01 2.00 1* SiO2 0.52 2.98 4 

TiO2 - 0.65 1* TiO2 0.16 0.11 1 

Al2O3 0.13 2.61 9 Al2O3 0.57 0.87 2 

FeO 0.10 2.76 5 FeO - 1.34 3* 

MnO - 0.09 2* MnO - 0.04 1* 

MgO 0.16 3.95 8 MgO 0.20 0.87 3 

CaO 0.24 1.56 4 CaO 0.76 0.71 3 

Na2O 0.04 0.94 2 Na2O 0.25 0.22 1 

K2O - 0.42 1* K2O 0.60 0.06 9 

P2O5 - 1.22 1* P2O5 0.31 0.07 7 

SO3 0.17 2.12 3 SO3 0.54 4.66 2 

Cl 0.23 0.53 5 Cl 0.38 0.41 3 

Cr2O3 0.03 0.22 7* Cr2O3 0.14 0.07 1 

Ni - 271.99 1* Ni 0.55 100.33 2 

Zn 0.04 221.81 6 Zn 0.38 93.16 2 

Br 0.04 198.43 2 Br - 144.34 1* 

Ol 0.28 19.64 9 Ol 0.40 10.34 1 

Px 0.02 10.35 5* Px 0.83 8.08 8 

Ilm - 2.72 4* Ilm - - - 

Mt 0.20 11.64 6 Mt 0.36 2.25 1 

npOx 0.26 8.54 4 npOx 0.35 5.45 1 

Fe3D3 - - - Fe3D3 0.35 7.37 2 

Jar - - - Jar 0.44 9.45 2 

Hm - 13.75 1* Hm 0.55 10.36 2 

Gt 0.34 8.13 7 Gt - - - 

Fe
3+

/FeT 0.32 0.19 6 Fe
3+

/FeT 0.51 0.20 4 
1
 RMSE values for oxides and Cl are expressed in wt. %. Ni, Zn and Br are in ppm. 

Mӧssbauer phase RMSEs are in % of total Fe. 

*When there is no recommended number of PCs, we report the results with the lowest RMSE. 
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Figure 10: (a) RMSE values for PLS1 models ranging from 0 to 11 PCs  for SiO2 using Gusev Crater data. (b) 

Scatter plot of the predicted vs actual SiO2 validation values using the PLS1 model with the lowest RMSE. 

Perfect predictions would fall along the gray 1:1 line. (c) RMSE values for Fe
3+

/FeT using Gusev data. (d) Scatter 

plot of the predicted vs actual validation values of Fe
3+

/FeT . Perfect predictions would fall along the gray 1:1 

line. 

have an  ̅  value of 1 and a root mean squared error (RMSE) value of zero. Instead, the results 

for most of our calculations show low values of  ̅  and high RMSE values relative to the range 

of compositions. The variable with the lowest validation RMSE and the highest   ̅  in our 

calculations for Gusev Crater data is Fe
3+

/FeT, while other oxides and Mӧssbauer phases show 

worse performance. Figure 10 shows plots of the RMSE for Fe
3+

/FeT and SiO2 over the full 

range of PCs. 
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Figure 11: Scatter plot of the predicted vs. actual pyroxene values for both Meridiani 

Planum and Gusev Crater, based on the PLS1 model trained on Meridiani data. A perfect 

prediction would fall on the gray 1:1 line.  

 

The Fe
3+

/FeT error decreases as additional principal components are added, until it reaches a 

minimum and begins to increase again with additional PCs. This increase indicates that the 

additional components are not useful for predicting novel values. In contrast to the Fe
3+

/FeT plot, 

the SiO2 RMSE plot primarily trends upward with the addition of even the first few principal 

components which indicates that the model is not performing well and has little to no predictive 

ability. 

The PLS1 results from Meridiani Planum are somewhat better than those from Gusev 

Crater. The highest PLS1 correlation value for Meridiani was for pyroxene, with an  ̅  of 0.86. 

This relatively high correlation is caused by the presence of Bounce Rock as an end-member in 

the dataset, as shown in Figure 11. The several soil samples also contribute to the improved 

correlation values for Meridiani by providing another composition class distinct from the typical 

bedrock. To test whether the pyroxene model for Meridiani is more broadly-applicable, we used 

the model to predict the pyroxene content of the samples from Gusev Crater based on their  
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Pancam spectra. The result of this prediction, shown in Figure 11, indicates that the 

model does not generalize well to other data. There is no clear relationship between the accuracy 

of the prediction and whether the Gusev ROI was brushed or ground. 

 7.2 SIMCA Results 

SIMCA classification was implemented by classifying the spectra from each individual 

pixel in each ROI in the test set. For each class a value of 1 was recorded if the Pancam spectrum 

fell within the confidence interval for that class. Otherwise, a 0 was recorded. To summarize the 

results, the classification values for each individual pixel in a given Pancam ROI were averaged 

together, resulting in a single classification value for each class and each ROI. Thus, while the 

classification of a single spectrum in a given class is binary, by averaging the classification 

values for many pixels, our classification summary lists continuous values between zero and one. 

These values can be interpreted as the fraction of the single-pixel spectra in the ROI that were 

assigned to the class. Table 9 shows these averaged values for the 25% confidence threshold for 

the Gusev Crater ROIs, and Table 10 shows the averaged classification results for Meridiani 

data. The true class for each ROI is indicated by a black outline around the appropriate cell in the 

table, and the cells have been shaded to correspond to their average classification value for easier 

visual interpretation.  

The Adirondack class ROIs in the Gusev test set were the brushed and ground spots on 

Humphrey and one observation of the brush mosaic on Mazatzal. All of the Adirondack training 

spectra were from brush and grind spots on Mazatzal. The classification results show that the 

spectra from the grind ROI on Humphrey (P2597) were weakly classified as Adirondack, but the 

brushed ROI (P2583) was primarily assigned to Clovis and Barnhill classes. The Humphrey 

spectrum is somewhat darker than the average Adirondack spectrum, and shows similarities to  



 

209 

 

 

 
Figure 12: (a) Average spectra of the Clovis brush mosaic (P2569) and Uchben Koolik 

grind spot, compared with the average of the Clovis training spectra and the Barnhill 

Posey ROI. (b) Plots of the APXS oxides and Mӧssbauer phases for Uchben Koolik and 

Posey, which have nearly identical Pancam spectra. All APXS and Mӧssbauer values 

have been mean-centered and scaled by the standard deviation of each variable for ease 

of comparison. 

 

both Barnhill training set target Posey (P2583) and the Clovis training set target Roe (P2553), 

which likely explains the classification response. 

The spectra of Clovis had significantly higher I/F values than most of the other ROIs in 

the Clovis class (Figure 12), leading to relatively weak classification, even for the Clovis ROI in 

the training set. The Clovis-class Uchben Koolik ROI showed a very strong classification as 

Barnhill. This was the result of an almost identical spectrum to the Barnhill training set ROI  
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Figure 13: A comparison of the average spectra for Peace-class 

targets Peace and Alligator, and the average of the Watchtower-class 

training spectra.  

 

Posey. However, they show significant differences in their APXS and Mӧssbauer values (Figure 

12). 

The brushed ROI on Peace-class target Alligator was classified by SIMCA as Wishstone 

class. This is likely because of an upturn in the spectrum at 1009 nm, which is also seen in the 

average of the Watchtower training spectra (Figure 13).   

Two of the three Watchtower Class observations in the test set (Joker and Jibsheet) were 

not classified as Watchtower based on their Pancam spectra. This is likely because they are 

somewhat darker than the average Watchtower training spectrum, and they lack the upturn at 

1009 nm that is present in the training set (Figure 14). Kansas showed the characteristic upturn, 

and was classified as Watchtower for 40% of the spectra in the ROI.  

The test spectra from the brushed spot on Iroquet were not classified as Algonquin. 

Iroquet has a high peak at 673 nm, and then slopes down to a minimum at 934 nm. In contrast, 

the two Algonquin training spectra show relatively level spectra with only a slight downward 

slope from 673 nm to 1009 nm. The Comanche test ROI (Horseback) has a higher, relatively 

uniform I/F value at wavelengths longer than 673 nm, compared to the Comanche training ROI  
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Figure 14: Average watchtower test spectra, compared with the average of the 

watchtower training spectra. 

 

(Palomino) which is darker and slopes downward. This is because of a greater degree of dust 

coverage on Horseback, and leads to poor classification performance. The brushed spots 

Crawford and Stars on James Cool Papa Bell were both misclassified, likely because of their 

strong increase in brightness at 1009 nm. This upturn is not seen in the Barnhill training set ROI 

spectra, but is observed in many other ROIs. 

The SIMCA classification results for the data from Meridiani Planum are generally better 

than those from Gusev, thanks in part to the smaller number of classes and the predominance of 

Meridiani Bedrock in the dataset. Most of the ROIs from sol 36 to sol 150 are primarily 

classified as Cluster 6 (Meridiani Bedrock), including the soil samples from sol 55 and sol 123. 

The sol 55 soil was also classified as Cluster 4 (Escher Brushed). The Sol 217 observation of the 

brushed spot Kirchner on Escher was not classified as Cluster 4 (Escher Brushed), and was 

instead classified as Meridiani Bedrock. 
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Table 9: Average SIMCA classification results from Gusev Crater 

    APXS Classes
1
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55 P2583 Humphrey B 0.03 0.06 0.00 0.64 0.58 0.06 0.00 0.00 0.00 0.00 0.00 0.29 Test 

60 P2597 Humphrey G 0.18 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Test 

87 P2530 Mazatzal M 0.62 0.60 0.00 0.18 0.44 0.13 0.00 0.24 0.01 0.00 0.00 0.49 Test 

100 P2544 Route66 M 0.06 0.16 0.00 0.42 0.36 0.17 0.00 0.09 0.01 0.00 0.00 0.62 Test 

226 P2569 Clovis M 0.00 0.00 0.00 0.07 0.09 0.00 0.00 0.01 0.00 0.00 0.07 0.00 Test 

236 P2580 Ebenezer G 0.00 0.02 0.00 0.42 0.34 0.13 0.00 0.00 0.00 0.00 0.00 0.65 Test 

236 P2580 Ebenezer T 0.00 0.12 0.00 0.00 0.64 0.38 0.00 0.00 0.00 0.00 0.00 0.16 Test 

237 P2583 Ebenezer M/T 0.00 0.08 0.00 0.15 0.30 0.45 0.00 0.00 0.00 0.00 0.00 0.35 Test 

237 P2583 Ebenezer G/T 0.00 0.11 0.00 0.01 0.46 0.59 0.00 0.00 0.00 0.00 0.00 0.33 Test 

237 P2583 Ebenezer T 0.00 0.20 0.00 0.00 0.56 0.63 0.00 0.00 0.00 0.00 0.00 0.22 Test 

238 P2585 Ebenezer M/T 0.00 0.15 0.00 0.11 0.31 0.43 0.00 0.00 0.00 0.00 0.00 0.11 Test 

238 P2585 Ebenezer G/T 0.00 0.17 0.00 0.00 0.43 0.59 0.00 0.00 0.00 0.00 0.00 0.01 Test 

238 P2585 Ebenezer T 0.00 0.31 0.00 0.00 0.56 0.51 0.00 0.00 0.00 0.00 0.00 0.00 Test 

293 P2543 Uchben (Chiikbes) B 0.41 0.63 0.00 0.24 0.68 0.23 0.00 0.11 0.01 0.00 0.00 0.49 Test 

293 P2543 Uchben (Koolik) G 0.05 0.35 0.00 0.94 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.70 Test 

362 P2530 Champagne G 0.06 0.11 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.02 Test 

386 P2546 Alligator B 0.00 0.01 0.00 0.01 0.02 0.00 0.00 0.01 0.00 0.00 0.21 0.01 Test 

419 P2574 Watchtower (Joker) G 0.25 0.07 0.00 0.08 0.58 0.00 0.00 0.07 0.00 0.00 0.03 0.00 Test 

487 P2531 Davis (Jibsheet) B 0.16 0.11 0.00 0.18 0.15 0.01 0.00 0.04 0.00 0.00 0.00 0.00 Test 

649 P2579 Kestrel (Kansas) B 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.00 0.00 0.00 0.40 0.00 Test 

690 P2575 Algonquin (Iroquet) B 0.00 0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.02 0.15 Test 

704 P2533 Comanche (Horseback) B 0.11 0.25 0.00 0.01 0.02 0.11 0.00 0.00 0.03 0.00 0.00 0.07 Test 

764 P2589 JCPB
3
 (Crawford) B 0.81 0.93 0.00 0.01 0.81 0.27 0.00 0.00 0.00 0.00 0.00 0.46 Test 



 

 

 

2
1

3
 

764 P2589 JCPB
3
 (Stars) B 0.56 0.57 0.00 0.01 0.26 0.46 0.00 0.01 0.00 0.00 0.00 0.66 Test 

867 P2548 Enderbyland (Progress) S 0.00 0.02 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.09 Test 

1220 P2560 BWD
3
 B 0.00 0.02 0.00 0.38 0.03 0.00 0.00 0.00 0.00 0.00 0.03 0.00 Test 

1220 P2561 Jane Stoll B 0.00 0.11 0.00 0.70 0.30 0.02 0.00 0.00 0.00 0.00 0.00 0.01 Test 

1220 P2561 Elizabeth Emery B 0.01 0.04 0.00 0.10 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 Test 

1220 P2561 Mildred Deegan B 0.01 0.02 0.00 0.41 0.04 0.00 0.00 0.01 0.00 0.00 0.00 0.00 Test 

1431 P2564 Chanute B 0.61 0.55 0.00 0.41 0.76 0.00 0.00 0.22 0.04 0.00 0.00 0.00 Test 

1967 P2533 Cyclops Eye S 0.00 0.00 0.00 0.02 0.00 0.00 0.55 0.00 0.00 0.00 0.22 0.00 Test 

1982 P2546 Polyphemus Eye S 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.62 0.00 Test 

1998 P2553 Polyphemus Eye S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.00 Test 

2086 P2547 Polyphemus Eye S 0.00 0.26 0.00 0.00 0.00 0.59 0.00 0.00 0.10 0.00 0.00 0.00 Test 

2123 P2566 Polyphemus Eye S 0.00 0.17 0.00 0.00 0.00 0.41 0.00 0.00 0.01 0.00 0.00 0.00 Test 

2127 P2571 Polyphemus Eye S 0.00 0.14 0.00 0.00 0.00 0.51 0.00 0.00 0.00 0.00 0.00 0.00 Test 

81 P2588 Mazatzal B 0.69 0.18 0.00 0.08 0.11 0.00 0.00 0.19 0.00 0.00 0.00 0.53 Train 

82 P2590 Mazatzal B 0.94 0.45 0.00 0.43 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.86 Train 

82 P2590 Mazatzal G 0.75 0.00 0.00 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.52 Train 

85 P2596 Mazatzal B 0.65 0.01 0.00 0.01 0.00 0.00 0.00 0.09 0.05 0.01 0.00 0.51 Train 

85 P2596 Mazatzal G 0.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.07 Train 

87 P2530 Mazatzal B 0.81 0.56 0.00 0.46 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.71 Train 

87 P2530 Mazatzal G 0.84 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 Train 

176 P2543 Pot of Gold G 0.09 0.00 0.00 0.03 0.01 0.00 0.00 0.76 0.00 0.00 0.00 0.11 Train 

200 P2556 WP
3
 (Mastodon) G 0.00 0.10 0.00 0.44 0.94 0.36 0.00 0.00 0.00 0.00 0.00 0.80 Train 

200 P2556 WP
3
 (Sabre) G 0.00 0.25 0.00 0.10 0.75 0.34 0.00 0.00 0.00 0.00 0.00 0.54 Train 

226 P2569 Clovis G 0.04 0.00 0.00 0.00 0.19 0.00 0.00 0.01 0.00 0.00 0.00 0.00 Train 

304 P2553 Lutefisk (Roe) B 0.23 0.43 0.00 0.71 0.48 0.07 0.00 0.04 0.00 0.00 0.00 0.87 Train 

304 P2553 Lutefisk (Flatfish) B 0.14 0.38 0.00 0.06 0.93 0.27 0.00 0.00 0.00 0.00 0.00 0.55 Train 

337 P2569 Wishstone G 0.04 0.06 0.00 0.28 0.05 0.00 0.00 0.07 0.00 0.00 0.00 0.74 Train 

342 P2571 Wishstone G 0.40 0.01 0.00 0.01 0.00 0.00 0.00 0.06 0.25 0.01 0.00 0.94 Train 

381 P2543 Peace G 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.77 0.00 0.62 Train 
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471 P2563 Methuselah (Haunch) B 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.76 0.00 Train 

473 P2567 Methuselah (Keystone) B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.73 0.00 Train 

476 P2573 Methuselah (Pittsburg) B 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.78 0.00 Train 

511 P2563 Backstay B 0.00 0.00 0.80 0.00 0.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Train 

678 P2551 Seminole (Osceola) B 0.13 0.70 0.00 0.50 0.40 0.18 0.00 0.02 0.05 0.00 0.00 0.40 Train 

678 P2552 Seminole (Abiaka) B 0.14 0.82 0.00 0.25 0.53 0.50 0.00 0.02 0.04 0.00 0.00 0.46 Train 

704 P2533 Comanche (Palomino) B 0.02 0.48 0.00 0.15 0.18 0.75 0.00 0.00 0.01 0.00 0.00 0.36 Train 

753 P2583 Posey B 0.04 0.17 0.00 0.79 0.29 0.05 0.00 0.00 0.00 0.00 0.00 0.64 Train 

1073 P2534 Montalva (Troll) B 0.00 0.21 0.00 0.06 0.04 0.07 0.00 0.00 0.77 0.00 0.00 0.12 Train 

1180 P2596 Examine This (Slide) B 0.00 0.00 0.00 0.00 0.00 0.00 0.76 0.00 0.00 0.00 0.07 0.00 Train 

1215 P2549 June Emerson B 0.00 0.13 0.00 0.85 0.10 0.02 0.00 0.00 0.00 0.00 0.00 0.03 Train 

1371 P2547 Pecan Pie B 0.20 0.69 0.00 0.79 0.08 0.00 0.00 0.12 0.05 0.00 0.00 0.01 Train 
1
 Outlines indicate the correct class for samples where it is known based on [161] and [186]. 

2
 B = Brush, M = Brush Mosaic, G = Grind, S = Soil, T = Tailings

 

3
 JCPB = James Cool Papa Bell, BWD = Betty Wagoner’s Daughter, WP = Wooly Patch 
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Table 10: Average SIMCA classification results from Meridiani Planum 
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36 P2531 McKittrick G 0.04 0.00 0.00 0.00 0.00 0.80 Test 

37 P2533 McKittrick G 0.10 0.00 0.00 0.00 0.00 0.61 Test 

55 P2543 Meringue S 0.00 0.00 0.00 0.57 0.00 0.76 Test 

88 P2542 Pilbara G 0.07 0.00 0.00 0.00 0.00 0.56 Test 

123 P2535 McDonnell S 0.00 0.00 0.00 0.01 0.00 0.08 Test 

150 P2575 Cobble Hill G 0.00 0.00 0.00 0.29 0.00 0.82 Test 

150 P2575 Virginia G 0.00 0.00 0.00 0.13 0.00 0.36 Test 

150 P2575 London G 0.02 0.00 0.00 0.12 0.00 0.31 Test 

180 P2537 Diamond Jenness G 0.71 0.00 0.00 0.00 0.00 0.00 Test 

188 P2547 Inuvik G 0.38 0.00 0.00 0.00 0.00 0.00 Test 

217 P2576 Escher (Kirchner) B 0.00 0.00 0.00 0.01 0.00 0.32 Test 

310 P2558 Wharenhui B 0.13 0.00 0.00 0.00 0.00 0.77 Test 

310 P2558 Paikea G 0.29 0.00 0.00 0.00 0.00 0.14 Test 

373 P2552 Trench (Left of Peanut) S 0.00 0.00 0.04 0.17 0.00 0.03 Test 

405 P2578 Gagarin G 0.27 0.00 0.00 0.00 0.00 0.59 Test 

561 P2591 Fruit Basket (Strawberry) G 0.01 0.00 0.00 0.00 0.00 0.72 Test 

561 P2591 Fruit Basket (Lemon Rind) G 0.01 0.00 0.00 0.00 0.00 0.21 Test 

639 P2562 Olympia (Ziakis) B 0.02 0.00 0.00 0.00 0.00 0.56 Test 

639 P2562 Olympia (Kalavrita) G 0.09 0.00 0.00 0.00 0.00 0.34 Test 

807 P2588 Brookville B 0.00 0.00 0.00 0.00 0.00 0.10 Test 

821 P2595 Cheyenne B 0.01 0.00 0.00 0.00 0.00 0.25 Test 

896 P2558 Baltra G 0.00 0.00 0.00 0.00 0.00 0.00 Test 

992 P2530 Cha G 0.00 0.00 0.00 0.00 0.00 0.00 Test 



 

 

 

2
1

6
 

1036 P2538 Rio de Janeiro B 0.02 0.00 0.00 0.00 0.00 0.01 Test 

1170 P2544 Viva la Rata B 0.02 0.00 0.00 0.00 0.00 0.01 Test 

1184 P2581 Penota G 0.62 0.00 0.00 0.00 0.00 0.00 Test 

1351 P2598 Smith B 0.00 0.00 0.00 0.00 0.00 0.00 Test 

1374 P2543 Smith B 0.00 0.00 0.00 0.00 0.00 0.00 Test 

1374 P2543 Smith G 0.00 0.00 0.00 0.00 0.00 0.00 Test 

1395 P2545 Lyell G 0.00 0.00 0.00 0.00 0.00 0.00 Test 

1438 P2551 Buckland G 0.00 0.00 0.00 0.00 0.00 0.00 Test 

35 P2598 Guadalupe G 0.00 0.00 0.00 0.00 0.00 0.92 Train 

37 P2532 Guadalupe G 0.00 0.00 0.00 0.00 0.00 0.74 Train 

45 P2560 Flat Rock G 0.01 0.00 0.00 0.00 0.00 0.71 Train 

68 P2581 Bounce Rock G 0.00 0.00 0.00 0.00 0.76 0.00 Train 

108 P2582 Lion Stone G 0.00 0.00 0.00 0.00 0.00 0.56 Train 

163 P2587 Millstone G 0.81 0.00 0.00 0.00 0.00 0.02 Train 

184 P2544 MacKenzie G 0.62 0.00 0.00 0.00 0.00 0.00 Train 

195 P2551 Bylot G 0.80 0.00 0.00 0.00 0.00 0.00 Train 

214 P2571 Escher (Emil Nolde) B 0.00 0.00 0.00 0.78 0.00 0.59 Train 

237 P2588 Auk S 0.00 0.75 0.00 0.00 0.00 0.00 Train 

373 P2551 Trench (Scruffy) S 0.00 0.00 0.76 0.04 0.00 0.03 Train 

549 P2577 Ice Cream G 0.03 0.00 0.00 0.00 0.00 0.61 Train 
1
 Cluster 1 = Endurance Bedrock, Cluster 2 = Auk Soil, Cluster 3 = Trench Soil,  

Cluster 4 = Escher Brushed, Cluster 5 = Meridiani Bedrock 
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Figure 15: A comparison between the Cluster 4 (Escher) training and 

test spectra and the Cluster 6 (Meridiani Bedrock) training spectra. 

 

Figure 15 shows a comparison between the average Escher spectra and the Cluster 6 

(Meridiani Bedrock) training spectra. The soil target Left of Peanut was not correctly classified 

as Cluster 3 (Trench), likely because it has a lower I/F and lower 753.5 nm to 1009 nm slope 

than the training spectrum for Cluster 3. 

To further investigate the relationship between APXS compositions and Pancam spectra, 

we ran k-means clustering on the average Pancam spectra for each ROI to divide them into 

spectrally similar groups. The clustering validity measure, discussed above, is minimized at ten 

clusters, but also shows a strong minimum at four clusters.  Figure 16a shows a scatter plot of 

APXS FeO vs. CaO values, with symbols corresponding to three of the four Pancam spectral 

groups. Figure 16b shows a similar plot of SO3 vs. MgO values. “Cluster 3” contains only a 

single Pancam spectrum which does not have  
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Figure 16: (a) APXS FeO vs CaO 

values, with symbols corresponding 

to three k-means clusters based on 

Pancam spectra. Cluster 3 is 

excluded because it lacks APXS 

oxide data. (b) A similar plot, using 

SO3 and MgO values from APXS. 

(c) Average spectra for the four k-

means defined pancam clusters. 

 

  

corresponding APXS data, and is therefore not shown in Figure 16a and 16b. Figure 16c shows 

the average pancam spectra of the k-means defined clusters. 

Although the elements Fe, Mg, Ca and S can influence the VNIR spectra of minerals, 

there does not appear to be any relationship between the k-means-defined Pancam clusters and 

the elemental concentrations from APXS. 

8. Summary and Implications 

8.1 Summary 

Our investigation indicates that there is often little relationship between Pancam 

multispectral observations, APXS-derived oxide abundances, and Mӧssbauer Fe-bearing phase 
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abundances. This result is in some respects reassuring, indicating that the instruments on the 

MERs are complimentary, with little redundancy in capabilites. 

The simple Pearson’s correlation coefficients are generally weak, although many are 

technically above the threshold for statistical significance. The correlations were generally higher 

for Meridiani data than for Gusev crater data because of the presence of several soils and the 

Bounce Rock ejecta fragment which were spectrally and compositionally distinct from the more 

common bedrock targets. The correlation between ferric-bearing phases and the red-blue spectral 

ratio is poor when all of the Gusev ROIs are considered, but is considerably better when only 

spots that were ground by the RAT are considered. This indicates that the difference in sampling 

depth between Pancam, APXS and Mӧssbauer may be responsible for the lack of correlation. 

The higher correlations for Meridiani data may therefore also reflect the lower amount of dust 

cover at Meridiani Planum in comparison to Gusev Crater. 

Partial least squares results were similar to the simple correlation coefficient results, with 

generally poor performance for most oxides and Fe-bearing phases. The presence of Bounce 

Rock and the soils at Meridiani leads to improved  ̅  and RMSE values for some phases and 

elements, such as Pyroxene and CaO, which were abundant in Bounce Rock. However, the 

application of the Meridiani Pyroxene model to Gusev data showed poor performance, indicating 

that the results are not generalizable to new datasets. 

SIMCA classification at Gusev crater showed mixed results. Some samples were 

classified correctly, while others were mis-classified or were not classified at all. The errors in 

classification reflect the disconnect between Pancam spectra and the sample composition: in 

some cases nearly identical spectra have very different compositions (Figure 12), while in other 

cases samples in the same APXS class have very different Pancam spectra (Figure 13). The 
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variation in Pancam spectra of samples within the same APXS class is consistent with 

isochemical weathering at a relatively low water to rock ratio.  

The SIMCA classification performance at Meridiani was generally better. It is possible 

that the improvement in Meridiani results was because the classes were automatically defined by 

clustering based on both APXS and Mӧssbauer results, while the Gusev Crater classes were 

manually determined based on APXS only. 

8.2 Implications for Mars Science Laboratory 

On the upcoming Mars Science Laboratory (MSL) rover the two stereo mast cameras 

(Mastcams) use a combination of RGB Bayer pattern filters bonded to the detector and filter 

wheels with 7 filters in each eye devoted to the collection of visible color and near-IR 

multispectral images. The filters range in wavelength from 447 to 1013 nm. One camera has a 

focal length of 34 mm, providing a wide-angle view at 0.22 mrad per pixel, while the other 

camera has a focal length of 100 mm and an angular resolution of 0.074 mrad per pixel. Both 

cameras use 1200 x 1600 pixel CCDs and have adjustable focus [32]. MSL also carries two 

elemental analysis instruments. The MSL APXS is similar in design to previous APXS 

instruments, but is capable of conducting a chemical analysis with detection limits of 20 ppm for 

Br and 100 ppm for Ni in only three hours, an improvement over the MER APXS by a factor of 

3 [42] [http://msl-scicorner.jpl.nasa.gov/Instruments/APXS/]. Quick-look analyses with an 

accuracy of ~0.5% for Na, Mg, Al, Si, Ca, Fe and S can be completed in 10 minutes with the 

MSL APXS [http://msl-scicorner.jpl.nasa.gov/Instruments/APXS/]. This improved performance 

is the result of increased detector sensitivity and the placement of the alpha particle source and 

detectors closer to the target. This close placement was achieved by removing the detectors used 

in previous APXS instruments for alpha backscatter mode. The inclusion of a Peltier cooler on 
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the MSL APXS detector extends the operational temperature range up to 5°C, enhancing daytime 

data collection [42]. 

MSL also carries the Chemistry and Camera (ChemCam) instrument, which uses laser-

induced breakdown spectroscopy (LIBS) to rapidly determine the elemental composition of 

targets up to 7 meters away. The ChemCam analysis spot size is 200-500 µm, but analyses of 

multiple spots on samples can be used to estimate bulk composition [51], [54]. The shock wave 

from the LIBS plasma is capable of clearing away dust on a target’s surface [48]  and repeated 

shots can be used to create a depth profile of the upper ~400 µm  of the target[208]. Each 

individual laser shot ablates a depth of <1 µm, allowing compositional data from the upper 

surface of the target to be obtained. ChemCam is also capable of passive spectroscopy over the 

240-850 nm spectral range, although this capability is not a mission requirement and has not 

been studied in detail. 

The MSL mission lacks a long-range spectrometer capable of identifying rocks and 

minerals from a distance in the way that Mini-TES did for MER. MSL will rely on multispectral 

MastCam observations to identify distant targets, followed by elemental analysis from ~7 m with 

ChemCam. Our work with Pancam and APXS and Mӧssbauer data indicates that extrapolating 

the results of in-situ or stand-off chemical analyses to distant targets will likely be difficult, 

particularly given the lack of a RAT on MSL. It will be important to use the brush and/or 

ChemCam to clear as much dust as possible from the targets to minimize the sampling 

differences between Mastcam and APXS and ChemCam. The chemical compositions derived 

from the first several ChemCam shots on each target provide compositional information about 

the upper several microns, and may show a closer correlation with the MastCam spectra than 

APXS measurements which average over a larger volume of the target. 
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The methods used in this study are useful for the analysis of multispectral and 

compositional datasets, even if the correlations between imaging and compositional datasets are 

often weak. K-means clustering can be used to define classes within any dataset and appears to 

have been effective for the compositional data at Meridiani, with the derived clusters 

corresponding to real geologic differences in target types. Likewise, k-means clustering of 

Pancam spectra led to distinct spectral classes. Once classes have been defined, either manually 

or with clustering algorithms, SIMCA can be used to formalize the classification of new samples 

and the identification of novel classes encountered as the mission progresses.  

In addition to datasets similar to those on MER (e.g. MastCam, APXS), MSL will 

provide additional data, including X-ray diffraction (CheMin), and both passive and active 

ChemCam spectroscopy. Although our studies using MER data indicate that it is challenging to 

draw conclusions from inter-dataset correlations, it is important to search for these correlations 

using the instruments available on MSL to maximize the ability to identify targets of interest 

from a distance.  



 

223 

CHAPTER 6 

 

CONCLUSIONS AND FUTURE WORK 

 

The work contained in the previous chapters is united by the common theme of 

maximizing the science return from present and future planetary datasets. The methods and 

results in these chapters are broadly applicable and will have real implications during the 

upcoming MSL mission to Gale Crater. This chapter summarizes the most significant results 

from the preceding sections. Section 1 discusses the Gale Crater landing site and identifies 

hypotheses that can be tested with the rover. Section 2 summarizes the results of Chapters 3, 4, 

and 5, which deal with the application of multivariate methods to spectral datasets, and discusses 

the implications for MSL. Section 3 identifies future work that will build on the results of the 

previous chapters.  

1. Gale Crater 

The study of Gale crater in Chapter 2 defines many of the major units that will be 

encountered by MSL, and provides detailed descriptions and hypotheses regarding the origin and 

properties of these units. The numerous science targets in the MSL landing ellipse described in 

this work played an important role in the final selection of the landing site. Within the ellipse, 

MSL will be able to determine the stratigraphic relationship between the low thermal inertia and 

high thermal inertia fan units and the hummocky plains. Analysis of the high thermal inertia unit 

with the MSL payload will reveal the origin and composition of the high thermal inertia material. 

If the rover lands close enough to any of the sinuous ridges or chains of mesas, it will be able to 

test the hypothesis that these features are related to fluvial activity and if so, interpret the flow 
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conditions based on the sedimentology and stratigraphy of any observed beds. If the rover lands 

north or west of the alluvial fan, it will have access to the light-toned polygonal features in the 

hummocky plains unit that we interpret as erosion-resistant cemented fractures. MSL will also be 

able to study the mound-skirting unit and establish its stratigraphic relationship with other crater 

floor units and the mound. Surface observations will determine whether the observed ridges on 

the surface of the mound-skirting unit are lithified aeolian bedforms. Throughout the ellipse, 

sedimentary materials are likely to be derived from the crater wall, providing samples of 

Noachian-aged material.  

As the rover crosses from the crater floor units to the lowest units of the mound, it will be 

able to test the hypothesized stratigraphy described in this work. In particular, in-situ 

observations will determine whether the phyllosilicate-bearing unit is a thin, extensive layer in 

the mound, or confined to the trough between the light-toned ridge and the rest of the mound. 

Rover observations will also be able to determine whether the lower mound layers in the light-

toned ridge and the dark-toned layered yardang units were deposited in a lacustrine setting, or if 

they are aeolian or pyroclastic in origin. The putative pyroclastic origin of the thin mantling unit 

and the inferred physical properties of the light-toned yardang-forming unit can also be tested 

with rover observations. 

The notional traverse will give the rover access to the “fan-shaped” outcrop of material 

on the flank of the mound at the end of the filled channel. Rover observations of this unit will 

test the hypothesis that it is not truly an alluvial fan, but instead is an outcrop of the more 

extensive mound-skirting unit. The rover will also be able to access examples of the polygonal 

ridges on the mound, interpreted in Chapter 2 as cemented fractures. 
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2. Multivariate Methods and Implications for MSL 

Chapters 3 and 4 deal with the application of multivariate methods for qualitatively and 

quantitatively assessing LIBS data. These studies were conducted in preparation for operation of 

the ChemCam instrument on MSL, and have direct implications for the analysis of data during 

the mission. Chapter 3 demonstrates that PLS is generally the most accurate method of 

determining the composition of geologic targets with LIBS. Automated feature selection with 

genetic algorithms showed mixed results. A combination of feature selection, averaging and PLS 

had the lowest RMSE for several elements (Chapter 3, Table 4) but in the case of SiO2, 

correlations in the training set led to the selection of spectral channels corresponding to K rather 

than Si, resulting in decreased accuracy. Despite these issues, feature selection performed 

relatively well using only five spectral channels rather than 6117, which makes it an attractive 

method of reducing data volume to enable the downlink of tactically important ChemCam data 

on sols that are data-limited. The study of grain size indicates that at least 15 spots should be 

analyzed for an accurate bulk-rock composition, and that even more spots are highly desirable, 

particularly if there is evidence (e.g. from Mastcam or the ChemCam remote micro-imager) that 

the target is clearly heterogeneous. 

In most cases, the clustering methods that were compared in Chapter 4 led to reduced 

accuracy when compared to a PLS model trained on the complete training set. This suggests that 

a diverse dataset is the most reliable method for ensuring accurate compositions based on LIBS 

data. However, both k-means clustering and the iterative method described in Chapter 4 showed 

modest improvements over the un-clustered data. It is possible that more nuanced methods of 

clustering LIBS spectra may lead to greater improvements in accuracy. 
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In Chapter 5, we demonstrated that correlations between multispectral imaging and 

APXS and Mossbauer data are often weak. Some APXS classes contain targets with very 

different Pancam spectra (Chapter 4, Figure 13), while samples in different compositional classes 

can have nearly identical Pancam spectra (Chapter 4, Figure 12). The improved correlation 

between the red/blue spectral ratio and ferric phases when only grind spots were considered in 

the Gusev data (Chapter 4, Figure 9) suggests that some of the disparity between Pancam and the 

in-situ instruments may be related to the information depth of the measurements. On MSL, 

which lacks a long-range spectrometer, it will be particularly desirable to relate compositional 

measurements to multispectral observations from Mastcam. Although MSL lacks a rock abrasion 

tool such as the one carried by the MERs, it is possible that the shallow sampling depth of 

ChemCam will lead to more reliable correlations with MastCam spectra.   

3. Future Work 

With the selection of Gale Crater as the MSL landing site, there is great interest in 

detailed mapping of potential targets and hazards within the ellipse and along the proposed 

traverse. The work presented in this dissertation will provide a framework for more detailed 

studies taking advantage of increased HiRISE stereo and color coverage and new imaging 

techniques such as along-track oversampling with CRISM, which can sharpen the spatial 

resolution of observations to 6 m/pixel in the along-track direction [209]. Measurements of 

bedding plane geometry based on the HiRISE digital elevation models (e.g. [210]) may provide 

greater insight into the nature of the layered materials in the ellipse and the mound, which can 

then be tested in-situ by rover observations. In addition, careful measurement of the geometry of 

the polygonal fractures observed in the crater floor and mound units can be used to derive 

information about the physical properties of the fractured beds and the environmental conditions 
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that led to the formation of polygonal features. Such studies can then be followed by in-situ 

measurements by MSL to verify the stratigraphic context of the fractured units and determine the 

composition and origin of the polygonal features. With ground-truth on Mars for studies of 

polygonal features, interpretations can be extended to other occurrences of polygonal features 

elsewhere on the planet. 

The ChemCam team is currently developing the multivariate analysis software that will 

be used to classify LIBS spectra and derive quantitative measurements of target composition. 

This software will include many of the algorithms discussed in this dissertation, as well as other 

multivariate methods that have been successfully applied to LIBS data. Although clustering the 

data prior to creating PLS models led to only modest improvements in Chapter 4, alternative 

methods of narrowing the training set used for quantitative analysis are being considered. For 

example, logical tests could be included in the training set selection algorithm to determine the 

most relevant anions in the target, so that sulfates are included only when sulfur emission lines 

are greater than a specified threshold, carbonates are included only when carbon lines are 

detected, and so on. 

ChemCam will be uniquely sensitive to the light lithophile elements (LLEs; Li, Be, B) 

and N, and it will be important to include well-characterized standards that contain these 

elements in a range of abundances in the database of spectra used during the mission. This may 

be achieved by doping known geostandard materials or by collecting and analyzing natural 

samples from locations that are high in LLEs and nitrates, such as Death Valley and the Atacama 

Desert. LLEs are useful geochemical tracers of both igneous and aqueous processes. LLE 

abundance in igneous rocks correlates with the degree of crustal evolution and therefore can be 

used to test the hypothesis that the martian crust is basaltic and undifferentiated. Li, Be and B are 
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also concentrated in phyllosilicate minerals during weathering and alteration, and can be used to 

test the hypothesis that lakes early in the history of Mars were neutral to alkaline and that their 

salinity and acidity increased as the planet became increasingly arid. Nitrogen is the second most 

abundant gas in the martian atmosphere, but its abundance in surface deposits is unknown. 

Detection of nitrates on the surface would test the hypothesis that there is a steady-state nitrogen 

cycle on Mars, and because nitrogen is an essential element for life as we know it, an estimate of 

the planetary nitrogen budget would have implications for the habitability of Mars.  

In addition to light element standards, we are in the process of fabricating a suite of glass 

analogs with compositions equivalent to the volatile-free composition of the major APXS classes 

observed at the MER landing sites. These analogs will serve as reference samples in the LIBS 

spectral database, providing examples with element correlations known to exist on Mars. 

 As indicated above, correlations between Mastcam multispectral observations and 

ChemCam compositional measurements may be stronger than the observed correlations between 

Pancam and APXS and Mossbauer data. The significantly larger number of LIBS analyses 

relative to contact instrument spots will also improve the statistics leading to more robust 

correlations. In addition to investigating these correlations, it may also be possible to identify 

distant targets by using the ChemCam spectrometer in passive mode. This will likely require 

measurements of diverse targets in passive mode under laboratory conditions on Earth, as well as 

the collection of passive and active ChemCam measurements of the same targets on the surface 

of Mars. 

 Finally, many of the data analysis methods explored in this dissertation are applicable to 

other orbital and in-situ datasets from Mars, the Moon, and other planetary bodies. Clustering 

and classification have been applied in a limited capacity to some multispectral and 
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hyperspectral observations of Mars (e.g. [211][212][213]). Neural networks similar to those 

employed to analyze LIBS data in Chapter 3 are commonly applied to terrestrial remote sensing 

data (e.g. AVIRIS, Landsat) to identify surface materials [150][214], and a combination of 

genetic algorithms and neural networks has been used to automate the interpretation of 

laboratory Mossbauer spectra [215].  

4. Conclusion 

This dissertation provides a detailed description of the Gale Crater landing site that will 

serve as a framework for future studies, both with orbital assets and on the surface with MSL. 

This work also includes the most thorough comparison of multivariate methods for the 

quantitative analysis of geologic samples using LIBS to date, the results of which are already 

playing a role in the development of data analysis software in preparation for ChemCam 

operations on MSL. As the volume of planetary remote-sensing and in-situ data rapidly 

increases, similar methods of clustering, classifying and interpreting large datasets will become 

increasingly important as tools to maximize the science return from future planetary missions. 
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