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SUMMARY

We propose group sequential tests of the equivalence of two treatments based on ideas related to
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1. Introduction

There has been considerable recent interest in the question of establishing equivalence between
two treatments. For example, if a new therapy is less toxic or less expensive than the standard, it may
not be necessary to prove that it is also more effective, instead, it can suffice to demonstrate that it is
equally effective or that it is less effective than the standard by at most some small amount. In the
special area of bioequivalence testing, a manufacturer hopes to demonstrate that a new preparation has
the same bioavailability properties as a standard, within a small tolerance limit, as a step towards
proving that the therapeutic effects of the new and standard preparations are also equal; demonstrating
“bioequivalence” in this way can greatly reduce the amount of experimentation required for approval of
a new drug.

The paper by Dunnett and Gent (1977) contains an illuminating discussion on the issue of
establishing equivalence. The authors note that it is not sufficient to fail to reject a null hypothesis of
equality: this might be due simply to a lack of power in the study. Instead, they propose testing a
specific hypothesis of non-equality and concluding equivalence if this hypothesis is rejected in the
direction of equality. Suppose § represents the difference between an experimental and a standard
treatment, with # > 0 if the standard is superior. The hypothesis H: 6 = A (A > 0) is tested and if it
is rejected in favor of # < A one concludes that the experimental treatment is equivalent to the
standard, in that its efficacy is at most A below that of the standard. We shall refer to this as a one-
sided equivalence test. In a two-sided equivalence test, the objective is to show that 8 lies between -A
and A; this is achieved by testing two hypotheses, H: 6 = -A and H: § = A, and one concludes
equivalence if both H: § = -A is rejected in favor of # > -A and H: # = A is rejected in favor of
g < A.

The above tests of equivalence are closely related to confidence intervals. In the one-sided case, a
size o one-sided test rejects H: § = A in favor of # < A if and only if an upper (1-a) confidence
interval for @ lies completely below A. For the two-sided case, size « one-sided tests reject both
H: § = -A in favor of § > -A and H: # = A in favor of § < A if and only if a 1-2¢ equal tailed

confidence interval for 6 is wholly contained in the interval (-A, A).



We shall exploit the same relation between tests and confidence intervals to motivate and define
sequential tests of equivalence. First we must introduce the sequential analogue of a confidence
interval. Suppose a group sequential study has a maximum of K analyses. Following Jennison and
Turnbull (1984, 1989), we say that the intervals {(Qk, ?k); k = 1,...,K} form a sequence of repeated

confidence intervals (RCIs) for  with level 1-2a if
Pp{f € (& ,?ﬁk) forallk = 1,..,K} =1 - 2c. (1.1)
We shall consider symmetric intervals, for which
Py{, < 0 forall k= 1,..,K} > Pp{f >0 forall k= L,,K} 2 1-a. (1.2)

In the case of normal observations with known variance, the first inequality is an equality and
departures from equality in the second inequality are extremely small and negligible for practical
purposes. Details of the construction of RCIs will be given in Section 2.2. Durrleman and Simon

(1990) propose the following one-sided equivalence test based on RCls:

if Q—k >0 stop at analysis k and reject equivalence

if 51{ < A stop at analysis k and accept equivalence, k = 1,...,K.

Termination at analysis K is ensured by choosing the sample size such that the Kth RCI has width
A. Tt follows from (1.2) with 6 =0 and 6 = A that P{accept equivalence | § = A} < o and
P{reject equivalence | § = 0} < @. These inequalities are strict; for example, if _B_k > 0 the test stops
to reject equivalence and acceptance of equivalence at a later stage when yk’ < A (k’ > k) is not
possible. The above procedure is essentially a one-sided “derived test”, as described by Jennison and
Turnbull (1989 Section 2.4) and expanded in Jennison and Turnbull (1992). In the present paper we

shall propose RCI-based procedures for the two-sided equivalence testing problem. In Section 2 we



consider the case of normal observations with known variance and present results from exact numerical
calculations; in Section 3 we extend the methodology and report results for the problem of comparing
binomial responses, as addressed by Dunnett and Gent (1977) and Durrleman and Simon (1990).
Here, because the variances depend on the success probabilities, which are unknown, an adaptive choice
of sample size is necessary to control the error probabilities of the test. A special case is the experiment
where interim analyses are performed, not for the purpose of early termination, but simply to adjust
the sample size so that nominal error rates will be guaranteed, despite the presence of a nuisance

parameter (cf. Gould, 1991).

2. Two-sided equivalence testing
2.1 Formulation

Suppose an experimental treatment is to be compared with a standard. Subjects are randomized
equally between these two treatments and an analysis is performed after observing every additional 2n
patients, n on each treatment, up to a maximum of K analyses. Denote the responses of subjects
given the standard and experimental treatments by Xli and X2i (i = 1,2,...) respectively. Suppose
X4~ N(,us, 0'2) and X, ~ N(;AE, 02), i=12,..., and o2 is known. Let 8 = Bg - Bg» then the

summary statistic from the kth group of 2n subjects is

kn kn 9
Y, = YooooXy - Y. Xy ~ N, 200%), k=1..K
i=(k-1)n+1 i=(k-1)n+1

Also define
W =Y, + .o+ Yy ~ N(knd, %kno?),

the sufficient statistics for # at analyses k = 1,...,K.

The two treatments can be regarded as equivalent if -A < 6 < A and we require a test

satisfying the error probability constraints



P{accept equivalence | § = -A} < a

P{accept equivalence | 6§ = A} < « (2.1)

and
P{reject equivalence | § =0} < 3. (2.2)

In the case of bioequivalence testing, « is the probability of wrongly accepting a non-bicequivalent
compound and the values @ and A must be chosen to satisfy the appropriate regulatory agency. The
manufacturer has greater freedom in choosing 3; since the advantages of proving bioequivalence are so
great, one would expect a suitable B to be quite small.

Before moving on to sequential tests, consider a fixed sample test with ng subjects on each
treatment and define

of of
i=1 i=1

In order to satisfy (2.2), the test must accept equivalence if
2 &1 2 &1
-\|2np0° @ (1-8/2) < W < |2n;o” @ (1-8/2),

where @ is the standard normal cdf. The conditions (2.1) then imply that ng must be chosen so

that
P{- omeo? @71(1-8/2) < W < 2n0? &7(1-6/2)|6 = A} = a.

This equation can be solved numerically, but very little accuracy is lost by ignoring the possibility that

W<- 2nf0'2 @‘1(1—ﬂ/2) when 6 = A, in which case the solution is simply

ng = 2.223 (o 1(1-8/2) + @1(1-a))%.
A



This fixed sample size of ne subjects per treatment will serve as a benchmark for the maximum and
expected sample sizes of sequential tests.

We shall present results for a = 0.05 and S = 0.1, 0.05, and 0.01. As an example we shall take
the specific case A = 0.2 and o2 = 1 but there is no real loss of generality here: for general A

and 02, maximum and expected sample sizes for a particular form of test are proportional to o2 / A2,

2.2 Method 1
Suppose that {(Qk, ?Jk); k = 1,..,K} is a 1-2a level sequence of RCIs for 6. Jennison and

Turnbull (1989, Section 2.3.3) suggest defining a test of equivalence in the following way. For

1<k< K,
if (_Qk, ?k) C (-4, A) stop, accept equivalence
if gy > A or ?k < -A stop, reject equivalence
and for k = K
if (8, _G_k) C (-4, A) stop, accept equivalence
otherwise stop, reject equivalence. (2.3)

Note that the first error constraints, (2.1), are satisfied automatically as a consequence of (1.2) with
@ = +A. The second constraint, (2.2), can be met by a suitable choice of group size, n, using the fact
that for a given form of RCIs, P{accept equivalence | § = 0} increases with n.

In general, RCIs for 6 have the form

W 2 W 2
Ty f_k_ 20 k 20 —
(_9- 3 gk) - (kn ck kn 3 kIl + ck kn) k = 1,...,K,

where the constants {ck; k = 1,..,K} define a group sequential two-sided test with error probability
1-2a. That is, the test which rejects Hy: 6 = 0 if [Wk - knBOI > ¢ %kno? for any k =1,.,K has

type I error 2a.



Any group sequential two-sided test can be used to define a sequence of RCIs. For a Pocock
(1977) test ¢ = Zp(K, a), a constant, for k = 1,...,K; for an O’Brien and Fleming (1979) test the ¢}
are of the form o = ZB(K, O‘)M’ k = 1,...,K. Values of the constants Zp and Zy are tabulated
in, for example, Jennison and Turnbull (1989, Table 1). If group sizes are unequal and unpredictable,
the Lan and DeMets (1983) approach can be used. This method is based on an “error spending
function”, f(t), which is non-decreasing, f(0) = 0 and f(t) = o for t > 1; to use this method, one
usually assumes a maximum number of subjects per treatment, nmax , Which will eventually be
reached if early stopping does not occur. Suppose the total number of subjects per treatment observed
in the first k groups is ny, so the marginal distribution of Wy, i.e. without consideration of the
possibility of early stopping at analyses 1 to k-1, is N(nkB, 2nk0‘2), then the two-sided error
probability allocated to the first k analyses is 2f(nk/nmax) and the constants {c;; k = 1,...,K} are

defined successively as the solutions of

P{lWll < «1211102 Cppeens Wil <+ om0 e Wi > .!2nka'2 o 6= 0}

= f(nk/nmax) - f(nk,l/nmax)a k=1,..K (2.4)

We shall consider the error spending functions f(t) = at? (0 <t < 1)with p=1and p =2, which
are common choices, see Kim and DeMets (1987) and Jennison and Turnbull (1989). In designing a
study based on an error spending function, it suffices to derive npax and a target group size,
nax/K, under the assumption of equal group sizes. Implementation for unequal group sizes is
straightforward; variations in the actual group sizes will affect the procedure’s achieved power but, as
long as the attained ny > nmax, power will not fall more than slightly below its intended value.
Figure 1 shows boundaries for tests of the form defined by (2.3) with K = 5, o =8 = 0.05,
A = 0.2, ot = 1, and constants {ck; k = 1,...,K} from Pocock (1977) and O’Brien and Fleming (1979)
group sequential tests. The boundaries are the superposition of two two-sided tests of the hypotheses

H: 8 = -A and H: § = A, the upper boundary of the first and the lower boundary of the second being



disregarded at the initial stages when it is not possible to cross both together. The outer boundaries
are very wide before narrowing sharply at the final stage, thus, early stopping to reject equivalence is
unlikely except under extreme values of 6.

Table 1 shows properties of boundaries defined by (2.3) for the same problem but with g = 0.1,
0.05, and 0.01, with constants {ck; k = 1,..,K} from Pocock (1977) and O’Brien and Fleming (1979)
tests and Lan and DeMets (1983) tests with f(t) = at? (0 <t<1) for p=1 and 2 when
group sizes are actually equal. The group size, n, is chosen so that (2.2) is satisfied, i.e.,
P{reject equivalence | § = 0} = B. We denote by N the number of subjects on each treatment on
termination of a sequential test. It is clearly seen that there are substantial reductions in expected
sample size below that of the fixed sample test when § = 0 but not when 6 = +A. The table also
shows the conservatism of these RCI-based tests. Since crossing an inner boundary at an early analysis
does not always cause termination of the test (i.e., crossing a dashed line in Figure 1), an RCI may fail
to include the true value § = +A without a wrong conclusion resulting. Thus, the nominal error
probabilities under § = A obtained from (1.2) are strict upper bounds. In Section 2.3 we shall show
how this conservatism can be alleviated for Lan and DeMets (1983) tests by setting f(t) = 0 in an

initial interval 0 <t < t.

2.3 Method 2

The expected sample size under § = +A of the tests in Section 2.2 can be reduced by narrowing
their outer boundaries. Let {ck(2a); k = 1,...,K} be critical values of a two-sided group sequential test
with size 2a and {ck(ﬂ); k = 1,...,K} critical values of a two-sided group sequential test with size S.

We define the stopping rule

if Wy > -knA + ck(2a)\j2kn02 and Wy < knA - ck(2a)«j2kn02, stop, accept equivalence
(2.5)

if Wy > Ck(ﬁ)\JanUQ or Wy < -ck(,B)\J2kn0'2, stop, reject equivalence, k = 1,...,K.



Setting the group size
n = {cg (20) + e (9)}? 202/ (KA?)

ensures termination at analysis K. This test still has an interpretation in terms of RCls for #: at each
analysis, equivalence is accepted if a (1-2a) RCI for 6 lies completely inside the interval (-A, A)
and equivalence is rejected if a (1-8) RCI does not contain 0. Reference to two sequences of RCls,
one of level 1-2a and one of level 1-8, is perhaps unexpected; it may be more helpful simply to note
that each boundary is one boundary of a two-sided test of a hypothesis H: § = 90 : the outer
boundaries are those of a size 3 test of H: @ = 0, the lower inner boundary is the upper boundary of a
size 1-2a test of H: # = -A and the upper inner boundary is the lower boundary of a size 1-2a test
of H: 6 = A. Tt follows immediately that the test (2.5) satisfies the error constraints (2.1) and (2.2)
conservatively.

Figure 2 shows boundaries of tests defined by (2.5) with K =5, « = 8 = 0.05, A = 0.2, o2 =1
and constants {ck(2a); k = 1,..,K} and {c (B); k = 1,...,K} from Pocock (1977) and O’Brien and
Fleming (1979) group sequential tests. Again, the inner boundaries play a role only when it is possible
to reject both H: § = A and H: § = -A together. Consequently, conservatism in satisfying the
constraints (2.1), which concern accepting equivalence under § = +A, can be reduced by not
“spending” error in the tests of H: § = A and H: 6 = -A if this cannot lead to an overall conclusion.
This feature is easily incorporated into Lan and DeMets (1983) based tests. When solving (2.4), if the

value ¢ (2a) is such that
-knA + ¢, (2a) %kno? > knA - ck(2a)\12kn02,

i.e., stopping to accept equivalence is impossible, set ck(2a) = oo instead and use ck(2a) = oo when
solving (2.4) for ¢ 4 1(2a), etc. In effect, this is equivalent to replacing the error spending function

f(t) by f(t)I{t > tg), where I is the indicator function, for a certain choice of t;. This feature is



relevant only to the inner boundaries and the {ck(ﬁ); k=1, ... K} remain as before. As previously
mentioned, when designing a study based on an error spending function, it suffices to consider the case
of equal group sizes. Implementation for unequal group sizes is straightforward; in general, the
boundaries will no longer meet exactly at analysis K and a rule must be introduced to ensure a
unique conclusion. A rule which gives priority to avoiding the incorrect acceptance of equivalence is to
accept equivalence at analysis K only if the two inequalities in the first line of (2.5) with k = K are
satisfied, otherwise equivalence is rejected at analysis K. The effect of the choice of such a rule on a
test’s error probabilities will be slight as long as ny =~ nmax- A referee has pointed out that the two
conditions in (2.5) for stopping to accept and to reject equivalence might both be satisfied at the final
analysis or even, in extreme situations, at an earlier analysis. For this to happen, the data must
provide evidence against 6 = 0, 0 > A and 6 < -A; this is certainly a possibility if 6 # 0,
|6] < A and a sufficiently large sample is observed. Since the underlying size «, one-sided sequential
tests have rejected # > A and § < -A, it is allowable to accept equivalence in this situation and the
error constraint (2.1) will be maintained. However if “equivalence” is to be interpreted as 6 = 0
exactly, it would seem more appropriate to reject equivalence; this is also permissible without
contravening the second error constraint (2.2).

Table 2 shows properties of boundaries defined by (2.5) for the same three problems addressed in
Table 1. The group sequential tests have constants {ck(Qa); k = 1,..,K} and {ck(ﬁ); k = 1,...K}
taken from Pocock (1977) and O’Brien and Fleming (1979) tests and Lan and DeMets (1983) tests with
equal group sizes and f(t) = at and f(t) = (ﬁ/2)tp (0 <t<1) for p=1 and 2. The table also
includes the modified versions of the two Lan and DeMets (1983) based tests, as described above. All
the sequential procedures tabulated have smaller expected sample sizes and lower error probabilities, at
9 = 0 and § = + A, than the fixed sample test. The procedures based on Pocock (1977) and Lan and
DeMets (1983), p = 1, group sequential tests do have rather large maximum sample sizes, thus, to
limit the maximum study duration while allowing flexibility for dealing with unequal group sizes, we

recommend the modified test based on an error spending function f(t) proportional to £2,
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Expected sample sizes could be reduced even further by eliminating conservatism in satisfying
(2.1) and (2.2) completely. Emerson and Fleming (1989) have derived tests with a specified error
probability under § = 0 and approximate error probabilities under § = + A; they give constants
defining their tests with, in our notation, § = 0.05, & =~ 0.025 and 8 = 0.01, @ ~ 0.005. However,
one possible advantage of the conservatism in our procedures is that the original constraints (2.1) and
(2.2) will still be satisfied if, for some reason, a test is allowed to continue after crossing a boundary, as
long as the conclusion on termination is consistent with the rule (2.5). Also, the separate definitions of
the inner and outer boundaries facilitate the use of error spending functions for unequal group sizes.
We shall see in the binomial example of the next section that this same feature is also very useful when

dealing with non-normal responses for which the variance is related to the mean.

3. Comparison of two binomial distributions
3.1 Introduction

Consider the comparison of an experimental treatment with a standard when response is binary,
success or failure, and the probabilities of success are mg on the standard and TR on the experimental
treatment. Let 6§ = Tg - TR and suppose it is desired to test H: # = 0 against H: 0 # 0 with error

probability constraints

Placcept § =0 |6 = £A} < «
and
P{reject § = 0|6 =0} < 3, 3.1)

for some specified A. Let Xli and X2i (i = 1,2,...) denote responses from subjects on the standard and
experimental treatments respectively. In a group sequential test the data are analyzed up to K times

with a cumulative total of ny observations on each treatment being available at analysis k

(k = 1,...,K). Define



11

Then the marginal distribution of Wk is, approximately,
Wy ~ N(n, 6, ny {mg(1 - Tg) + Tp(l- 7).

For most of the problems we shall consider, the normal approximation is very accurate, however, the
variance of Wk will not, in general, be known. Let = = %(WS + 7rE), so Tg = T + %9 and
TR =T - %9. The variance of Wk depends strongly on 7 and to a lesser extent on §. The sample size
required to satisfy (3.1) is very sensitive to 7. Our simulations, described in detail in Section 3.2, have
shown that substantial inaccuracies in error probabilities can result from calculating sample size using
an initia] estimate of 7 as little as 0.1 from the true value. To overcome this problem, sample size
must be calculated adaptively using estimates of 7 obtained from the observed data. We shall present
such an adaptive method in Section 3.3; first, we describe the underlying method in the simpler, but

less realistic, case of known 7.

3.2 When the average success probability is assumed to be known

We follow the approach of “Method 2” described in Section 2.3 using error spending functions 1(t)
proportional to tz, since this was our preferred method for normal responses. Suppose cumulative
sample sizes per treatment are nj,.,ng and DNy = Nmax- Boundaries for rejecting equivalence are

those of a size 8 two-sided test of H: § = 0. Under 6 = 0, we use the approximation
2
Wk ~ N(O, 2nk00) k = 1,...,K

with independent increments, where a% = 7(1-7). Thus our test stops to reject equivalence at analysis
k if

(W] > ¢, (8) 2ny 0% k=1,.K

where {ck(ﬁ); k =1, ..., K} satisfy
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P{IW,| < 21110'[2) ¢y (B) yors [Wi_q] < 2nk_la% (B

Wk > 2nk0‘g Ck(ﬂ) l Wj ~ N(O, 2nj0'%), j = 1,...,K}

2 2
o) () ke e

with the convention ng = 0. Boundaries for accepting equivalence come from size 2a two-sided tests

of H: § = -A and H: § = A. Under § = +A, we use the approximation
2
Wk ~ N(nka’ andA) k - 1, crey K

with independent increments, where U2A = %{(7( - %A)(l -7+ %A) + (7 + %A)(l -7 - %A)} For
our example with K = 5, we use the error spending function f(t) = at2l(t > 0.5), 0 <t < 1; setting
f(t) = 0 for t < 0.5 avoids spending part of the error o when early stopping to accept equivalence
would not be possible (see Section 2.3). A referee has pointed out that the discontinuity in f at
t = 0.5 may be undesirable and could even lead to abuse by an experimenter who inspects the data
before deciding whether to conduct an interim analysis just before or just after t = 0.5; a continuous
f, eg. f(t)= a4(t-0.5)2 1(t>0.5), would avoid these problems. Let kg be the first value of k for
which nj > 0.5nmax- We define ck(Qa) = oo for k <k and Ck(Qa), k = kg,-.K, as the solutions

of

P{IW | < |2ny0% ¢1(20); -y [W) 1l <+ 20, 10 k.1(20);
W, > 20,04 o (20) | W; ~ N(O, 2nj02A),j =1,..K}
n n n n
_ K \2 "k k1 )2 1f Pkl
= “{(nmax) I(nmax > 0.5) - (ﬂmax> I(nmax > 0.5)}. (3.3)

Then, our test stops to accept equivalence at analysis k if

W, <nA- ¢ (2a) 2nk02A and Wy >-n A+ ck(2a)~ 2nk02 , k=1..,K.
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For equal group sizes, nj = kn (k = 1,..,K) and the standardized critical values {ck(ﬁ); k = 1,...,K}
and {ck(Qa); k = 1,...,K} do not depend on n. In this special but important case, we denote the
critical values as {Ek(,‘la), Ek(ﬁ); k =1, ..., K) to emphasize that they depend only on K and the
error spending functions, and not on the group size, n, nor nmax = Kn. If 7 is assumed known,

termination can be ensured at analysis K, when ny = Kn = npax, by setting

Nmax = {EK(2a)\}—2-ai + e (P) 20(2)}2/132, (3.4)

so that the inner and outer boundaries converge. The necessary group size is then n = nmax /K.

We have simulated the group sequential test described above for equally sized groups in the case
a =0 =0.05K=05and A =0.1. Tests were derived assuming 7 = 0.9, 0.8, 0.7, 0.6 and 0.5; in each
case, the value of 7 determines o% and O'QA, and npax is given by (3.4). In addition to showing
expected sample sizes and error probabilities under # = 0 and § = £ A for the case in which the true
value of 7 equals that assumed when designing the test, Table 3 also gives properties of each test when
the true value of 7 differs from that assumed in design. The results are based on 50,000 replications
and standard errors for estimates of probabilities around 0.05 are 0.001. Note that, by symmetry,
sample sizes and error probabilities remain the same if both design and true values of 7 are replaced by
their complements with respect to 1. Each test performs well when the true value of 7 agrees with the
design value, error probabilities at § = 0 and @ = + A being close to the values in Table 2 for normal
data, 0.046 and 0.046. However, it is also clear that designing a study on the basis of an inaccurate
initial estimate of 7 can have a substantial effect on the error probabilities actually achieved. If the
design value of 7 is farther from 0.5 than the true value, error probabilities are too high. If the design
value is nearer to 0.5 than the true value, error probabilities are conservative and possible savings in
expected sample size for that true 7 are lost; in particular, the conservative strategy of designing a test
under the assumption 7 = 0.5 can be very inefficient. Of course, reasonably accurate predictions of

Tg for the study population may be available from historical data, but, since m = (1rS + 7rE)/2,
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uncertainty of +0.1 in 7 alone is sufficient to raise doubts about the suitability of any initial
estimate of 7.

The final set of figures in Table 3 is for “adaptive” tests in which estimates of 7 based on the
observed data are used to update the maximum sample size and construct boundaries. Details of these
adaptive tests are given in Section 3.3, for the moment we note that these tests have expected sample

sizes and error probabilities almost indentical to those of tests designed with correct knowledge of the

true value of 7.

3.3 When the average success probability is unknown

For the case of unknown 7, our intention is to approximate the test for known 7 described in
Section 3.2. At each analysis, we use an estimate of 7 to calculate a target maximum sample size and,
hence, the next group size. This target maximum sample size appears in the error spending function
and the current estimate of 7 is also used to estimate 0'(2) and ai when computing the next boundary
points.

The adaptive approach we describe below works well for all except the most extreme values of .
If 7 is close to 0 or 1, a% and UQA are very sensitive to changes in 7 and, since estimates of 7 are

subject to error, any adaptive method is bound to experience difficulties. A natural estimate of 7 at

analysis k is
n

| .
kT Ing 231 (Xy5 + Xgp)y 1= 10K
1=

However, in simulations of adaptive group sequential tests for the example o = B = 0.05, K = 5,
A = 0.1 and error spending function f(t) proportional to t2, we found that for # > 0.9 or 7 < 0.1,
differences between frk and 7 could have an important effect. The most serious problems arose when
irk(l-irk) underestimated w(l-7) and, in consequence, 0%, U2A and npax were underestimated.

These problems were resolved by constraining all estimates of T to be at most 0.9 or, for 7 small, at

least 0.1. Thus, frk was replaced by
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T, = max {0.1, min{0.9, frk}}, k=1,.,K.

Our test which uses 7}, and which we describe below, satisfies the error probability requirement (3.1)
for 7 between 0.1 and 0.9, and is conservative for more extreme values. In general, other constants
could replace 0.1 and 0.9 for problems with different «, 8 and A or a different error spending function.
However, we have found our method with estimates of m constrained to lie in the range [0.1, 0.9] to
work well for a variety of problems with A = 0.1. The limitation, when A = 0.1, to conservative tests
if 7 < 0.1 or 7 > 0.9 is not a major problem: if success probabilities are so close to 0 or 1, one would
most probably choose to use a much smaller value of A.

We now describe our adaptive method. Let €y (2a) and ¢g(B) be standardized critical values
from two-sided tests with equally sized groups, defined by error spending functions
f(t) = min{a, at?I(t > 0.5)} and f(t) = min{g/2, (8/2)t3} as in Section 3.2. Following (3.4), we

define the maximum sample size function

omax(m) = {i(20) {(r - SA)(1 - 7+ §2) + (7 + FAY1- 7 3A) + e (BZRm)2/A2 (35)

After k groups of observations we have

nk nk
1=

1=
approximately, and a current estimate of 7

T
7, = max{0.1, min{0.9, Z (Xy; + Xop)/(2mp)}}-

1=
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Since the distributions of the sequences {WI’W2""} and {%1,7?2,...} are approximately independ-
ent, we may allow future group sizes and boundary points to depend on the current value Ty without
invalidating error probabilities associated with sequential boundaries. Calculations by Lan and DeMets
(1989) and Jennison and Turnbull (1991) have shown that, for a fixed error spending function,
choosing group sizes as functions of the response variable itself has at most a minor effect on a
sequential test’s error probabilities; thus we may safely disregard the small correlations between the
sequences {Wl’WQ""} and {'71'1,7?2,...} that arise when 6 # 0 and 7 # 0.5.

At the outset we need to choose an initial group size, ny, without a data-based estimate of =.
Since corrections can be made later, it suffices to set n; = nma,x(”g)/K for ahy plausible value m;
in our simulations for @ = 8 = 0.05, K =5 and A = 0.1 we have used n; = 100, corresponding

to 7y =0.79. To define testing boundaries at the first analysis, we set c¢y(B) to be the solution of

p{w, > m e1(8) | Wy~ N(0, 2my55(1)} = 2 {min(1, n——m;I(r: 5 )

where é’%(l) = 7y(L - 7). Also ¢1(2a) = o if ny < 0.5nmax (1), otherwise c1(2a) is the

solution to

P{w, > {274 (1) ,(20) | Wy ~ N(O, 20,63 (1)} = afmin(1, n'm‘”;l(fr‘l‘))}z’

where &2A(1) = % {7 - -12-A)(1 -+ %A) + (% + %A)(l -7y %A)} If the test continues past
the first analysis, we take (2/K)nmax(q) - ny observations on each treatment in the second group,
giving ny = (2/K)nmax (%), the value for a study with equal group sizes designed for = = 7.

We proceed in the same manner at subsequent analyses. The kth group has
(k/K)nmax(Fy_1)-0y_1 observations on each treatment, giving n; = (k/K)nmax(ifk,l)- The value of

¢ ( B) is chosen to satisfy
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P{IW | > {2n763(1) ¢(8) or ... or [Wp 4| > 2ny_,63(k-1) ¢ 4(B) or

W, | > |20,6500) ¢ (8) | W; ~ N, 2nj&%(k)), j=1,..k}

ma.x("?k) (3.6)

Blmin(1, — K-} k= 1,K-1
{ Jé) k=K,

where &%(k) = @ (1 - ) k=1..K We set ck(Qa) = o0 if n < 0.5nmax (7)) otherwise

¢ (2a) is the solution of

P{IW,| > «l2n1f73&(1) ¢)(2a) or .. or Wy 4| > 2ny 164 (k1) ¢ 1(20) or

) ~2 s
Wy | > 2y 67 (k) ¢, (20) | Wj ~ N(0, ancrA(k)), j=1,.,k}

nmax (%)) 3.7
2« k=K,

n
{ 20 {min(l, —E&_—)}? k=1,.,K1

where &% (k) = H{(F) - $A)(1- 7 + L) + (7y + Loy - 7y - 1A)}, k=1,..,K. The special
treatment of k = K in (3.6) and (3.7) ensures that in the ideal case when 5'%(K) = o% and
& A(K) = O'QA, the total error spent is precisely A in the two-sided test of H: § = 0 and 2c in the
two-sided tests of H: § = A and H: § = -A. Although constants named EK(Qa), EK(ﬁ) appear in
the definition of the maximum sample size function, (3.5), these are not the critical values used for the
boundaries of the adaptive procedure. While it suffices to calculate the maximum sample size under
the simplifying assumption of equal group sizes, the actual boundaries must be recalculated to
guarantee the required error probabilities. Note that for j < k, probabilities of IWJ| exceeding

previously defined critical values are calculated using current estimates of ag and O'ZA ; since these

critical values were derived under earlier variance estimates, we can no longer assume, as in (3.2) and



18

(3.3), that two-sided error ,8{111(_1/1111%,3((7~1'k_1)}2 or Za{nk_l/nmax(%k_l)}zl(nk_l < 0.5nmax(%_1))
has been spent in analyses 1 to k-1 and this explains the difference in form between (3.6), (3.7) and
(3.2), (3.3); however, the computations required are essentially the same.

If @) varies greatly between analyses it is possible that ny ; > (k/ K)nmax(irk_l) and our
prescription gives a negative value for the kth group size. In this case one could take the kth group size
to be 0 and omit the kth analysis. Other variations are possible; for example, in our simulations we
retained a minimum group size of 20 throughout. Again if Ty varies between analyses, it is possible
that ¢, (8) = oo fails to reduce the left hand side of (3.6) to its required value. The problem here is
that, under the current estimate of a%, the error probability allocated up to analysis k has already
been spent in analyses 1 to k-1; the solution is to set ck( B) = oo and move on to the next analysis.
The same approach is adopted if ck(Za) = oo fails to reduce the left hand side of (3.7) to its required
value.

The formal stopping rule of our test is

for k < K:

if [Wy|> ¢ (B) 2nk&%(k) stop, reject equivalence

it Wy > n A+ ck(Qa)«IanerA(k) and W) < m A - ck(2a)~l2nk&2A(k)

stop, accept equivalence

for k = K:

if Wy < ngA+ cK(2a)«12nK&2A(K) or Wy > ngA- cK(Qa)«IQnK&QA(K)

stop, reject equivalence
otherwise, stop, accept equivalence.

If all the estimates 7, k = 1,..,K, happen to coincide with the initial estimate of =, we have
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ny = (k/ K)nmax(irk), k = 1,..,K, and the boundaries are those of a test designed for equal group
sizes and T =7 = .. = T3 hence, the inner and outer boundaries coincide precisely at analysis K.
In practice, the estimates 7,...,Tg will vary and we choose to use the inner boundary points,
T{ng A - cg(2a), QnK&ZA(K) }, to determine the decision at analysis K, in order to preserve the
upper bound, «, on the probability of accepting equivalence under § = £ A. In our simulations, the
inner and outer boundaries were usually within 1 of each other and often much closer; since Wk takes
only integer values, the effect of this discrepancy will be, at most, of the same order as that of the
normal approximation.

The results of simulations of our adaptive tests are shown in Table 3. The close agreement of
expected sample sizes and error probabilities with those of tests constructed using the true value of =
demonstrates the success of this adaptive approach. Note that when we used 7 throughout, rather
than T the estimated probability of accepting 6 = 0 when 0 = +A, for = =10.9, was 0.066 but
all other error probabilities were almost exactly the same using either irk or ﬁ'k. It may well be that
the target sample size need not be adjusted so frequently and even a single adjustment might suffice;
however, more frequent interim analyses should have the benefit of a reduction in expected sample size,
whether or not they are allowed to affect the target sample size.

A special case of this design is one where no early termination is permitted but interim analyses
are performed solely to make adjustments to the sample size so that nominal error rates are guaranteed
(cf. Gould 1991). In this case we would use error spending functions fy(t) =0 fort <1, fy(t) =7
for t > 1, for ¥ = «, . Thus we do not need to solve (3.6) and (3.7); we have simply ck(2a) =
e (f) =0 for 1 <k <K-1land cy(2a) = Eg(20) = & L(1-a), cx(B) = e () = &1 - B/2).
At each stage only # needs to be computed. Since 7 depends only on the cumulative overall success
proportion at each stage, the treatment assignment of each subject need not be revealed. In some
trials, the blinding of patient assignments at interim looks may be an important consideration. It
should be noted that, even without the extra complications due to early stopping, the final test

statistic, Wy, has a slight dependence on {7?1,7?2,...} over and above their effect on the final sample
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size. Thus it is not the case that, conditionally on ny, WK is distributed as the difference of two
independent binomial variables. This dependence could have a slight effect on error rates when sample

sizes are small, but the magnitude of such an effect remains to be investigated.

4. Discussion

We have presented group sequential tests of equivalence based on ideas related to repeated
confidence intervals. Boundaries with an inner wedge are built from boundaries of two-sided tests of
H: 9 =0, H: 8§ = A and H: ¢ = -A. This construction leads to simply defined tests which adapt
readily to unpredictable group sizes, to the possibility of continuing even through a boundary has been
crossed, and to non-normal observations.

The rtesults of Section 3.2 show that an accurate estimate of the average success probability is
essential when designing a test to compare two binomial distributions. Since such an estimate is not
usually available at the design stage, an adaptive procedure is needed. Simulations show that specified
error probability constraints can be met by using our proposed form of adaptive test.

The need to design a group sequential test in the presence of unknown nuisance parameters which
affect the required sample size arises in other contexts. Examples include the case of response variables
with unknown variances or whose variances depend on their means, and survival data ‘With an
unknown baseline failure rate or competing risk censoring rate; for bivariate responses, the correlation
coefficient will often be unknown. The basic ideas of our adaptive approach are quite generally

applicable and they offer a way to satisfy size and power constraints simultaneously in such situations.
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Figure 1. Boundaries defined by (2.3) for K =5, o = =0.05, A =0.2 and o2 = 1. Constants
{es k= 1,....K} are from (a) Pocock (1977) and (b) O’Brien and Fleming (1979) group
sequential tests.
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The data are only ezamined at sample sizes equal to the five values of kn for which the boundary
points are marked by dots. The lines connecting these dots show the functional form of the
boundary, dashed lines indicate that the inner boundaries are not used at these values of kn since it
is not possible to reject both § = A and 0 = -A,
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Figure 2. Boundaries defined by (2.5) for K =5, a = B8 = 0.05, A=0.2 and o2 = 1. Constants

{(c)(2a); k = 1,...K)} and {c, (B); k = 1,..,K} are from (a) Pocock (1977) and
(b) O’Brien and Fleming (1979) group sequential tests.
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The data are only ezamined at sample sizes equal to the five values of kn for which the boundary

points are marked by dots. The lines connecting these dots show the functional form of the
boundary, dashed lines indicate that the inner boundaries are not used at these values of kn since 1t

is not possible to reject both 6 = A and 6 = -A.
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Table 1. Sample sizes and error probabilities of tests defined by (2.3) for K =25, a=0.05,
4 =0.1,0.05and 0.01, A=02 and o2 =1,

Dmax E(N|f=+A) E(N|§=0) P(accept|f=+A) P(reject|0=0)
g =01
Fixed 541 541 541 0.05 0.1
Pocock 664 638 467 0.038 0.1
O’Brien & Fleming 561 551 451 0.049 0.1
Lan & DeMets, p=1 619 601 468 0.039 0.1
Lan & DeMets, p=2 572 560 452 0.047 0.1
B8 = 0.05
Fixed 650 650 650 0.05 0.05
Pocock 785 753 492 0.039 0.05
O’Brien & Fleming 672 661 503 0.049 0.05
Lan & DeMets, p=1 733 709 492 0.043 0.05
Lan & DeMets, p=2 685 671 504 0.047 0.05
8 =0.01
Fixed 891 891 891 0.05 0.01
Pocock 1054 1010 549 0.040 0.01
O’Brien & Fleming 919 903 615 0.049 0.01
Lan & DeMets, p=1 991 957 547 0.044 0.01
Lan & DeMets, p=2 932 911 576 0.049 0.01

Here, ngag and E(N) refer to the number of observations on each of the two treatment arms.
Group sizes for the sequential tesis are n = nmaz/ D
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Table 2. Sample sizes and error probabilities of tests defined by (2.5) for K =15, a =0.05,
B8 = 0.1, 0.05 and 0.01, A =0.2 and ¢° = 1.

Dmax E(N|f=%A) E(N|6=0) P(accept|f=+A) P(reject|f=0)

g =0.1
Fixed 541 541 541 0.05 0.1
Pocock 901 347 481 0.034 0.091
O’Brien & Fleming 613 380 465 0.045 0.092
Lan & DeMets, p=1 765 345 473 0.038 0.090
Lan & DeMets, p=1(modified) 761 342 447 0.044 0.089
Lan & DeMets, p=2 641 359 469 0.043 0.092
Lan & DeMets, p=2(modified) 638 357 458 0.045 0.091

g8 = 0.05
Fixed 650 650 650 0.05 0.05
Pocock 1028 421 524 0.035 0.045
O’Brien & Fleming 719 469 519 0.047 0.046
Lan & DeMets, p=1 895 418 512 0.039 0.045
Lan & DeMets, p=1(modified) 891 414 486 0.045 0.045
Lan & DeMets, p==2 762 433 530 0.043 0.046
Lan & DeMets, p=2(modified) 759 431 518 0.046 0.046

B =0.01
Fixed 891 891 891 0.05 0.01
Pocock 1305 589 567 0.043 0.0090
O’Brien & Fleming 956 676 631 0.048 0.0090
Lan & DeMets, p=1 1174 589 585 0.041 0.0091
Lan & DeMets, p=1(modified} 169 585 561 0.046 0.0090
Lan & DeMets, p=2 1026 601 595 0.045 0.0091
Lan & DeMets, p=2(modified}]025 600 584 0.046 0.0091

Here, nmag and E(N) refer to the number of observations on each of the two treatment arms.
Group sizes for the sequential tesis are n = Nmaz/ -
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Table 3. Sample sizes and error probabilities of tests for binomial data with K =5, a = § = 0.05
and A =0.1.

Design value True value nmax E(N|g=£A) E(N}|6=0) P(accept|f=+A) P(reject|6=0)
of = of w

0.9 0.9 270 152 181 0.045 0.045
0.8 270 146 182 0.112 0.161

0.7 270 142 179 0.146 0.237

0.6 270 140 176 0.156 0.284

0.5 270 139 174 0.161 0.299

0.8 0.9 483 279 317 0.009 0.006
0.8 483 276 333 0.044 0.044

0.7 483 272 337 0.072 0.086

0.6 483 269 337 0.086 0.118

0.5 483 270 337 0.089 0.126

0.7 0.9 634 368 404 0.003 0.002
0.8 634 367 426 0.025 0.019

0.7 634 364 436 0.045 0.045

0.6 634 362 438 0.059 0.063

0.5 634 362 439 0.063 0.068

0.6 0.9 725 417 456 0.002 0.001
0.8 725 417 479 0.018 0.011

0.7 725 414 490 0.036 0.031

0.6 725 414 493 0.045 0.044

0.5 725 413 495 0.050 0.049

0.5 0.9 756 433 476 0.001 0.000
0.8 756 435 500 0.016 0.009

0.7 756 431 513 0.031 0.026

0.6 756 431 518 0.042 0.039

0.5 756 429 518 0.046 0.044

Adaptive tests 0.9 163 194 0.045 0.040
0.8 278 330 0.047 0.045

0.7 365 433 0.047 0.045

0.6 418 495 0.047 0.045

0.5 435 517 0.046 0.046

Results are based on 50,000 replications. Standard errors for ezxpected sample sizes are all less than 1.
Standard errors for estimates of probabulities around 0.05 are 0.001.




