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Abstract

The view-independent global illumination problem is rephrased as one of determining a
radiance function across each surface in the environment. A new methodology for diffuse envi-
ronments, based on the sampling and reconstruction of these functions is introduced. Within
this context, the following problems are investigated: (i) where the radiance functions should
be sampled; (ii) how to evaluate a radiance function at each sample; and (iii) how to recon-
struct a radiance function from the set of samples. The new methodology relaxes some of the
assumptions built into current radiosity algorithms. Results are presented which show that the

new methodology yields significantly higher accuracy than existing radiosity methods.
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1 Introduction

Realistic image synthesis is one of the most popular branches of computer graphics. The develop-
ment of lighting models that simulate the interaction of light with surfaces and of shading algorithms
that apply these models to produce realistic looking images has resulted in sophisticated rendering
methods. These methods are used in numerous applications that require realism and demand ever
increasing image quality, fidelity, complexity, and computation speed.

Global illumination algorithms which play a major role in realistic image synthesis can be
classified into two main groups: view-dependent methods such as ray-tracing which compute an
image for a particular point of view, and view-independent methods such as radiosity. This latter
approach solves the global illumination problem for all the surfaces of an environment, providing a
solution that can be used to produce dynamic sequences.

Radiosity is a physically-based method that attempts to solve the global illumination problem
according to the principles of transfer and conservation of energy; it was derived by techniques used
in thermal engineering for the determination of radiative heat exchange in enclosures [13, 8, 5, 4].
First formulated [8] as a finite element method, it required that the environment be discretized
into a set of elements, each having constant radiosity across its entire area. Current radiosity
implementations start with an initial discretization based on local geometric considerations; then,
as the solution process progresses and more information about the radiosity distribution is gained,
adaptive subdivision schemes are used to refine regions of high radiosity gradients [6]. These schemes
are entirely dependent on the size and shape of the elements of the initial mesh and frequently result
in “floating” objects, “leaking” light, and the inability to capture fine illumination details such as,
for example, the thin shadows cast from sunlight going through a venetian blind.

Based on the constant radiosity assumption, the contribution of an element to another poiﬁt
in the environment can be computed as the product of the average element radiosity and a purely
geometrical term known as the form-factor. For efficiency it was proposed that elements be grouped
into larger patches and the overall contribution of each patch be computed as if radiosity was
constant across its area [6]. Considerable effort has subsequently been devoted to the accurate
computation of form-factors [1, 15], but little attention has been given to the fact that patches
composed of several elements do not, in general, satisfy the constant radiosity assumption.

One can think of radiosity as a method which computes a radiance function for each surface in
the environment. The radiance function (which will be formally defined later) gives the radiance

(commonly referred to as intensity in computer graphics) at each location on the surface, and thus



can be used for shaded display.

To yield a display, the computation process involves sampling and reconstruction stages. Each
radiance function is sampled at a set of locations on the corresponding surface. These locations can
either be centers of elements [6], or mesh vertices [15]. The computation of the radiance value at a
given location involves another sampling process: light sources are sampled in order to numerically
approximate their contributions at the location. This has been done using the hemi-cube [5], or
via ray-tracing [15]. Displaying the results involves reconstruction of the radiance functions from
the samples. This is typically done by means of bilinear interpolation.

In this context, the following observations can be made with respect to the weaknesses of current

radiosity implementations:

1. Dependence on the initial discretization, which takes into account only the local geometry of

each surface, frequently leads to undersampling producing erroneous results.

2. Sampling the light sources is driven by the geometry of each light source, and not by its

radiance function, computing contributions incorrectly.

3. Bilinear interpolation schemes for rendering cause perceptual anomalies (Mach banding) in

regions where the actual radiance function varies smoothly.

Because of these problems, high quality results often require fine meshes, containing topological
as well as geometric information, which cause excessive space and time requirements. In practice,
for achieving balance between quality and space/time requirements, user intervention is frequently
needed to help create a satisfactory mesh. With the exception of a limited solution to the meshing
problem [3], none of these issues have been sufficiently addressed in the published literature.

Methods striving for high quality results should:

1. Employ sampling strategies guided by the properties and the behavior of the radiance function

across illuminated surfaces as well as light sources.

2. Automatically determine initial sampling locations from which convergence to correct results

is guaranteed.

3. Use reconstruction techniques to produce results which comply with the characteristics of

actual radiance functions.



To achieve these goals, a novel approach to the global illumination problem has been investigated
by the authors. The new approach, which is currently restricted to ideal diffuse reflectors, parts from
the current constant finite elements formulation and returns to a continuous domain to represent
the radiance across each surface in the environment as a function of location on the surface. A
methodology based on sampling and reconstruction techniques and led by the insight gained from a
simple two-dimensional analysis of the properties and behavior of such functions is then developed to
compute a solution to the global illumination problem. The ideas presented imply possible solutions
to common problems that afflict current radiosity algorithms. Preliminary results indicate that the

advocated approach is considerably more accurate than standard radiosity algorithms.

2 Problem Formulation

Assume that the environment to be rendered is defined by a collection of surfaces S. Let L;
be the radiance function over surface s; € S. L;(z,z”,)) is the light energy flux per unit solid
angle per unit projected area leaving surface s; from point z towards point z”, at wavelength .
Radiance (often named intensity in the computer graphics community) is the quantity that is used
for assigning pixel values in image synthesis. Therefore, it is convenient to formulate the rendering

equation [9] in terms of radiance [2, 12]:

Li(z,2",)) = L{(z,2", ) + 3 / pi(x',x,m",A)Lj<z’,m,A)v(z,x')&aiﬁ"s—a"dfi(z@ (1)
s;€S z'€s;

where
L¢(z,z", )) is the emitted radiance
pi(z',z,z",)) is the bidirectional reflectance distribution function
v(z,2’) is 1 if z and 2’ are visible to each other and 0 otherwise
dA(z') is a differential area element centered at z’
r is the distance between = and z’

6; and 0; are the angles between the surface normals at z and z’ and the line connecting the two
J g g

points.

Note that 6;, 6;, and r are functions of z and z’, rather than constants (see Figure 1).



Figure 1: Geometry for Equation (1).

If all the surfaces are ideal diffuse (Lambertian) reflectors, with constant reflectivity across their

areas, then for a single wavelength A the following simplified equation is obtained:

Li@) = L)+ Y [ Ll o) A ©)

s;€S

This equation can also be expressed in terms of radiosity. Recall that the radiosity, B;(z), is the
total (hemispherical) light energy flux per unit area leaving surface s; from point z. It is easy to
show by integrating the radiance over the hemisphere [8] that B;(z) = wL;(z). Thus, the area

averaged radiosity B; for a finite area surface ¢ is given by

1

B = — / rLi(z)dA(z)
Ai TES;

The usual discrete radiosity equation is derived by assuming constant radiosity (and hence constant

radiance) across each surface and by integrating each side of Equation (2) over the area of s;:
Bid; = / rLi(z)dA(z)
TES;
6; cos 6,
- / rLE(2)dA(z) + (npi) 3 / / )S080i 00805 (o 2V dA(x')dA(s)
TES; z€s; Ja'€s; 72

$;€S
6;
= BfAi+(rp) Y B; /e /e 008 6:¢086; (. 2V dA(z')d A(z)
5;€8 z€s; Ja'€s;

T2



= B{A; + (7p;) Z BjA;F;; (3)
sJ'GS

where B{ is the emitted radiosity and Fj; is the form-factor from surface 4 to surface j. Dividing
each side of Equation (3) by A; yields
B; = Bf + (7 p;) Z BjFij (4)
s;€S
Note that mp; is the hemispherical to hemispherical (as opposed to bidirectional) reflectivity of

surface 1.

3 Methodology

The solution to Equation (2) can be expressed as an infinite series, where the n-th term of the
series sums up the light reflected by the surfaces in the environment after (n — 1) bounces [9, 14].
Such a summation, in effect, simulates the propagation of light through the environment starting
from the light sources. The solution to Equation (2) can then be approximated to any accuracy
by reordering the terms of the summation according to the importance of their contribution and
limiting the computation to a finite number of terms, yielding an algorithm whose structure is very

similar to that of progressive refinement radiosity [4]:

Initialization:
For all surfaces ¢ {
/* Set total and unshot radiance to the emitted radiance */
L,' o= Lf;
AL; := Lg;
}
Until convergence {
Choose a surface j with highest unshot radiance over its area ];G%zﬁlg(x)dA(x);
For each surface 7 {
Compute the contributed radiance L;;;
/* Update the total and unshot radiance functions */
L; := L,‘+Lij;
AL; := AL,‘—f-Lij;

where the contributed radiance function L;; is defined as follows:

cos 6; cos 0;
Lij(z) = pi ALj(z)v(z, ') T—QJdA(x’) (5)

’ .
T'ES;



Note that in contrast to radiosity, radiance is not assumed constant since AL; is left inside the
integral. While this might seem a minor difference, it is actually very important, since it allows
working with the entire surfaces, without discretizing them into patches and elements first.

By examining the above procedure it can be seen that the computed radiance function L; across
surface 7 is actually a sum of functions L;;. Each function L;; represents the contribution of the
unshot radiance, AL; across surface j (a shooting surface) to the radiance across surface i (a
receiving surface) at a particular iteration. Except for the simplest cases, the functions L;; cannot
be computed analytically. An obvious alternative is to sample each function at a finite number of
locations and then to reconstruct it from these sample values.

A natural question to ask at this point is whether it is possible to reconstruct L;; exactly from
a finite number of sample points. The answer depends on the Fourier transform of the function.
The sampling theorem [11] states that if the function is band-limited in its frequency domain, and
its highest frequency is v, it can be reconstructed exactly, if sampled at a frequency higher than
2v. Unfortunately, even in the simplest cases, radiance functions can have infinite bandwidths in
the frequency domain. A radiance function can exhibit first derivative discontinuities (cusps) at
penumbra and shadow boundaries (i.e., it is only C? continuous). Each term in a Fourier series is
a smooth function, and therefore no finite number of terms suffices for the exact representation of
these cusps.

In spite of this fact, as we will see in the following sections, good approximations to radiance
functions can be obtained by carefully choosing the sample locations, and the application of appro-
priate reconstruction techniques. In the next section we will discuss the issue of placing the sample
points on the receiving surfaces, i.e., finding the locations at which radiance functions should be
sampled. Section 5 presents two methods for evaluating the contributed radiance function at each
sample location. Techniques for reconstructing these functions from the sampled values are investi-
gated in Section 6. In each of the following three sections, we demonstrate the approach by means
of simple two-dimensional test-cases and contrast the proposed solutions with the corresponding

techniques employed by current radiosity algorithms.



4 Placement of Samples on a Receiver

The methodology presented in the previous section computes each radiance function L; as the
summation of contributed radiance functions L;;. Since the contributed functions are induced
by the unshot radiance across various light sources they can considerably differ from each other.
Thus, it is difficult to find a-prior: a single set of sample points that would correctly capture the
contributions from each illuminating source. The approach that we propose in this section, is to find
a good set of samples for each L;;. L;(z) can then be computed at any point z by reconstructing
the L;;’s and summing their values at z.

Consider the problem of choosing a set of sample locations, sufficient for an accurate recon-
struction of L;;, given a receiver ¢ and a shooting surface j. The general idea is to identify disjoint
regions on the receiver, delimited by the edges of the surface and the penumbra and umbra bound-
aries. Initial sample points are placed on the boundaries of these regions, and each region is then
adaptively supersampled. The adaptive supersampling stops when the radiance function across a
subregion is approximately planar.

In contrast to the approach outlined above, in the traditional radiosity approach each surface
in the environment is meshed into patches and elements before the solution process starts. The
meshing process typically takes into account only the local geometry of the surface being meshed.
The vertices of the resulting mesh are the locations at which radiosity is sampled.

If the initial mesh is too coarse, undersampling occurs and features such as shadow boundaries
are not captured well by the solution. Radiosity algorithms typically use adaptive subdivision [6]
to alleviate this problem: if comparison of adjacent vertices indicates a radiosity gradient above a
user specified threshold, the corresponding element is subdivided into smaller elements. However,
even when adaptive subdivision is used, features such as small shadows and bright spots on the
surfaces might be missed entirely by the solution. If a feature is detected by at least one vertex of
the mesh, then adaptive subdivision is triggered, more vertices are introduced in the areas covered
by and adjacent to the feature, and it will appear in the solution. However, if the feature falls
entirely between vertices no radiosity gradient is ever detected, and no subdivision takes place.

Thus, to enable the detection of small features, the initial mesh must be fine. In fact, for
good results, the size of a mesh element should be smaller than the size of the feature to be
detected. When the initial mesh is fine over all the surfaces in a complex environment, because of
the need to store and repeatedly update many vertices, solutions result in excessive space and time

requirements. In practice, in order to produce a good radiosity image, user intervention is needed.



The user must guess in which areas high radiosity gradients occur, and specify to the program that
fine meshing is needed in these areas. This guessing task becomes increasingly difficult and tedious

as the complexity of the environment grows.

Any automated solution to the initial mesh problem must consider the light sources illuminat-
ing a given surface and the objects that occlude these sources, casting shadows on the surface.
Such information cannot be precomputed before the solution process, because each surface in the
environment can become a light source. The only published solution to the problem was suggested
by Campbell and Fussel [3]. In their method, each finite area light source is approximated by a set
of point light sources on its surface. The mesh is created and refined by shadow boundaries that
are computed with respect to these point light sources across all the surfaces in the environment.
In order to get accurate results on surfaces close to the source, the number of points approximating
it must be large. This creates a mesh which is unnecessarily fine on surfaces far away from the
source. As new surfaces become light sources and the mesh is refined accordingly, the memory

requirements of this algorithm may become prohibitive.

In the rest of this section we describe and analyze the performance of the new sampling approach
by means of several two-dimensional test environments. The results obtained are compared to those

produced by standard radiosity algorithms.

We begin with a simple example without occlusion. Let the receiver be the z-axis, and the
light source be a line segment parallel to it. Figure 2 shows two solutions computed using the new
approach and by standard radiosity procedures for such an environment. The new method starts
with two initial sample points (the endpoints of the receiving segment). Adaptive supersampling
then proceeds by inserting additional sample points, terminating whenever insertion of a new point
in the middle of an interval implies linearity of the radiance function there. The standard radiosity
approach starts with uniformly spaced initial samples (three) and proceeds by refining each interval
whose endpoints values differ by more than a given threshold. The threshold was chosen so that
the total number of sample points would be approximately the same used by the new method.
Comparison of the results reveals that while the new method concentrates more samples in areas
of higher curvature, radiosity undersamples the curved part of the radiance functions while placing
unnecessarily many samples in parts which are almost linear. Thus, samples are wasted, and the

results are less accurate (note the cusp at the top of the bump).

Figure 3 shows a simple two-dimensional configuration, consisting of a light source, a single

occluding object and a receiver. Superimposed is the corresponding radiance function (computed
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Figure 2: Solutions produced using the new approach (left) and standard radiosity (right) for a
simple unoccluded 2D configuration. The samples taken by each method are marked by solid circles
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Figure 3: A simple 2D environment and the corresponding radiance function.
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using brute-force numerical integration). It can be seen that the radiance function exhibits cusps
(discontinuities in its first derivative) at penumbra boundaries, but is smooth elsewhere. This
property suggests the following approach for placement of samples in the presence of occlusions.
First, penumbra boundaries must be identified on the receiver. These can be obtained by projecting
each of the obstacles on the receiver from each of the two end-points of the light source (see Figure 3).
Penumbra boundaries divide the receiver into disjoint areas: regions completely unoccluded from
the source, completely shadowed regions, and various penumbra regions. Placing initial sample
points on the boundaries of these regions ensures that the cusps in the corresponding radiance
function are captured. In the simple case of Figure 3 the initial sample points would be in the
locations marked by the solid circles. The rest of the sample points are placed inside each region
using the adaptive supersampling scheme described earlier. The adaptive supersampling scheme
alone, as well as the adaptive subdivision schemes used by traditional radiosity systems, are liable
to stop early and miss some feature of the radiance function; when applied separately on the
regions enclosed between penumbra boundaries, though, its effectiveness is much greater because
the radiance function over each area is smoother overall.

To illustrate the effectiveness of the suggested sampling scheme and to contrast it with standard
radiosity, a two-dimensional environment consisting of a light source and seven small occluding
objects was used. The geometry of the environment and the corresponding radiance function
appear in Figure 4. Figure 5 shows the solution computed using the new approach. Two sample
points were placed at the ends of the receiver, and additional points were located at penumbra
boundaries as described above. Additional points were added by adaptive supersampling. Several
results produced by standard radiosity on the same environment are shown in Figure 6. These
results were obtained using various numbers of equally spaced initial samples. Because the points
are spaced evenly, rather than being concentrated in important regions, undersampling occurs and
the results exhibit severe errors missing both shadows and peaks of brightness on the receiver.
Ironically, in this particular example, increasing the number of initial sample points only makes the

result worse.
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Figure 4: A more complicated 2D environment and the corresponding radiance function (obtained
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Figure 5: Location of initial sample points, and the radiance function computed by the new method.
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5 Evaluating the Contributed Radiance Function

Given a location z on a receiving surface ¢ and a shooting surface j, we need a method for accurately
computing L;j(z). In standard radiosity this corresponds to computing the contribution of a
shooting patch j to the radiosity of a vertex on a receiving patch 1, given by p;dF;q; BjA;, where
dF; 4; is the form-factor from (finite area) patch j to a (differential area) vertex on patch . However,
when the distribution of energy on the shooting surface is non-uniform, the traditional radiosity
formulation which assumes that the radiosity B; is constant across patch j, is inherently inaccurate.

Consider the simple example illustrated in Figure 7. Assume that the right half of patch j is
brightly illuminated, while the left half is shadowed. Let vertex | face the dark half, and vertex k
face the bright half. Clearly, from symmetry, the form factors dF; 4 and dFj g are equal. Thus
the same contribution will be computed for both vertices, when, in fact, the contribution to vertex
Il should be much smaller than to vertex k. Naturally, the inaccuracies diminish when patches
are small, distances between patches are large, or the radiosity on the shooting patch is relatively
constant.

When considering a shooting surface with unshot radiance AL;, an accurate estimate of the
contribution at a given location = can be computed by using a straightforward extension of the
method used by Wallace et al. [15]:

cos 0, cos 0,

n
Lij(z) = pi 3 ALj(zk)Ajirm 2 + A

k=1

v(z, zk) (6)

This formulation assumes adaptive subdivision of the source for each location z into possibly
unequal areas A;z. The subdivision is performed essentially in the same way as described in

[15]. Note that each area Aji is multiplied by the unshot radiance in its center zj, rather than

shadowed illuminated
surface j & als >
[ ] [ ]
vertex [ vertex k

Figure 7: A simple example where the constant radiosity assumption leads to inaccurate results.
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by an average value of radiance across the entire surface. The term AL;(xi)Ajx is in fact an
approximation to the integral [, Aje AL; (z)dA(z). More accurate results can be obtained if better
estimates of these integrals are available. Figure 8 shows a comparison between the new method
and standard radiosity procedures. Note how the new method places more samples in the brighter
part of the source, while the standard one samples the source uniformly because of the constant
radiosity assumption.

Equation (6) produces very good results with a small number of samples on the source when the
source is unoccluded (or totally occluded) with respect to the point z on the receiver. However, as
with traditional radiosity, in the case of partial occlusion, results are prone to error due to the fact
that the placement of the samples x4 on the source takes no account of the occluding geometry. For
instance, small occluding objects can be missed by all the samples from one location on the receiver,
but detected from a point next to it, thus resulting in aliasing. Inaccuracies in evaluating L;; have
another undesirable side-effect: they slow down the convergence of the adaptive supersampling of
the receiver’s radiance function.

More accurate computation of L;;(z) can be performed by identifying the regions on the shooting
surface visible from z. Then for each of these regions Equation (6) can be used, omitting the v(z, z;)
term, since visibility for each region has already been resolved. Although this approach requires
solving a restricted version of a hidden surface problem for each sample point on the receiver, it was

found to be more efficient than expected. This fact is explained by the following considerations:

e For each location z, only the objects in the frustum defined by z and the shooting surface j

need be considered.

® Once the regions visible from z have been identified, no rays need to be shot (no need for

ray-object intersections).

e Since the radiance at points on the receiver is computed accurately, adaptive supersampling

converges faster and thus the computation needs to be performed less frequently.

To summarize, for good results, the latter, more accurate method should be used when the shooting
surface is one of the primary light sources, e.g. emitters and bright, large surfaces. The former,

cheaper method can be used with secondary light sources whose contribution is less significant.
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Figure 8: A source with nonuniform radiance (shown dotted) results in an non-symmetric, shifted,

bump-shaped radiance function (solid) over the receiver. The new method (a) produces virtually
the same result (dashed). Standard radiosity (b) produces a symmetric bump (dashed) significantly
different from the actual radiance function. Marked by solid circles are the locations at which the

light source was sampled from point z = 0 on the receiver.
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6 Function Reconstruction

In the previous two sections, attention was given to methods of accurately capturing the behavior
of a radiance function across a surface by a finite set of opportune samples. For display the function
needs to be reconstructed and then resampled at locations determined by the particular display
algorithm used, e.g. z-buffer, ray tracing, or other.

Both filtering techniques used in image processing [16] and surface fitting and interpolation
methods [7] can be used to reconstruct a continuous function from a set of samples. However, to
date, little attention has been devoted to the problem of reconstructing a radiance function over
the surfaces of a three-dimensional énvironment.

Filtering is usually expressed as the convolution of a set of regularly spaced samples with a
continuous interpolation kernel. Interpolation can also be formulated as a convolution operation,
but it is simpler to apply it in its original form when reconstructing a function from scattered
sample data. Since the sampling methods examined in Section 4 produce a set of irregularly spaced
samples, interpolation techniques are suggested for the reconstruction process.

A good reconstruction technique should yield a function that not only closely approximates
the actual radiance function, but also exhibits the properties characteristic of the actual function;
(1) non-negativity, (2) continuity, and (3) piecewise-smoothness, i.e. at least C! continuity over
the regions delimited by shadow and penumbra boundaries. While the first characteristic simply
constrains the interpolated values to be physically meaningful, the other two relate to the ability
of our visual system to detect rapid changes of the illumination gradient; first derivative discon-
tinuities introduced by the reconstruction process result in disturbing visual artifacts, e.g. Mach
banding, that severely affect the realism of synthesized images. The fact that the penumbra bound-
aries correspond to first derivative discontinuities of the radiance function allows piecewise smooth
interpolation schemes to be used.

The shadow and penumbra boundaries found by the sampling strategy presented in Section 4
define a set of disjoint subregions over which the radiance function is smooth. An interpolation
method that provides smoothness can be applied independently on each of such subregions and
care can be taken to maintain continuity at subregion boundaries, thus resulting in an overall
interpolation scheme that possesses the characteristic properties of an actual radiance function.

Interpolating cubic splines, cubic B-splines using the sampled radiance values as control points,
and C! piecewise cubic Hermite interpolation [7] were tested for the interpolation over a single

subregion.
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Again, for simplicity and clarity of presentation, the analysis and comparison of the interpola-
tion schemes was carried out in two dimensions. Cubic splines were found to exhibit undesirable
oscillations. Furthermore, the resulting curves are not guaranteed to be non-negative. The curves
generated using B-splines are non-negative, but could present a significant error in the proximity
of local maxima or minima unless additional control points are added for a tighter fit. The best
results were obtained using C! piecewise cubic Hermite interpolation. An estimate of the first
derivative at each sample point was computed by fitting a parabola through the point and its two
neighbors and computing the value of its derivative at the point of interest. The resulting curve
can be negative, but the offending curve segment can be easily detected and replaced preserving
C! continuity. Figure 9 shows the radiance across a receiving surface contributed by a single source
in the presence of an obstacle. The interpolating curve produced by piecewise-smooth Hermite

interpolation is shown superimposed over the reference solution.

7 Conclusions

In this paper, a new formulation for the view independent diffuse global illumination problem
was presented. This new formulation does not require the discretization of the surfaces in the
environment into patches and elements of constant radiosity. Rather, an attempt is made to
compute a continuous radiance function for each surface.

A methodology was developed that suggests solving the problem by means of sampling and

reconstruction techniques. Such an approach requires solving three major subproblems:
1. Decide where each radiance function should be sampled.
2. Evaluate the function at each sample point.
3. Reconstruct the function from its sampled values.

Solutions for these subproblems were suggested. Experiments were performed on simple two-
dimensional test-cases which compared the solutions provided by the advocated techniques and by
their respective counterparts in existing radiosity methods with the actual radiance functions. The
results of these comparisons clearly indicate that the new approach produces a much tighter match
than that produced by standard radiosity algorithms.

The development of a full three-dimensional implementation is currently underway. Although

the ideas and principles described in the paper are restricted neither to two dimensions nor to
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Figure 9: (a) Superposition of an actual radiance function (dotted) and a piecewise-smooth Hermite
interpolated curve (solid) for a simple test configuration. The interpolated points are marked by

small diamonds. (b) Enlargement of the area marked by the dashed rectangle.
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planar geometries, extending the implementation to three dimensions is not straightforward. For
environments containing only planar polygons, the shadow and penumbra boundaries can be found
in a way similar to that described by Nishita and Nakamae [10], but more general geometries will
require more sophisticated techniques.

The methods presented in the paper yield a radiance function representing the contribution
from a given source to a receiving surface. To compute a complete solution, many such functions
must be summed, one for each contributing source. Since each function is represented by samples
taken at a possibly different set of locations on the receiver, their addition is not straightforward
and efficient solutions are under investigation.

Finally, the approach is currently limited to ideally diffuse reflectors and future research should

be directed at extending it to more general bidirectional reflectance functions.
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