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1. Introduction 

MuJ.tivariate analysis means many things to many people. Traditionally it 

is usually thought of in terms of such things as the multi-normal distribution, 

factor analysis, discriminant analysis and so on. However, it is because of 

this traditional yiew of multivariate analysis that Dempster [1971] accuses 

many academic statisticians of having defined it too narrowly, "excluding e,ven 

such obviously multivariate data types as factorial experiments, contingency 

tables and time series". By the same token variance components models also come 

within this wider purview of multivariate analysis and since they are so often 

by-passed even in traditional univariate analysis presentations it is opportune 

to outline such models here, to indicate their practical importance and to high­

light some of' the unsolved problems associated with them. In a rather special 

sense they are truly multivariate models -but with the peculiarity that avail­

able data are only univariate. Hence my title. 

The classical form of a linear model is 

(1) 

where y is a vector of observations on a random variable Y, ~ is a vector of 

parameters to be estimated, ~ is a matrix of known values and e is a .vector of 

residual error terms. The elements of t3 are called constants or fixed effects, 
' ,, . -

and are reg,ression slopes, main effects, or interactions, depending on.the con­

text. In this way the formulation in (1) embraces all analysis of variance. 

models, regression models and mixtures of the two, namely analysis of covariance 

models. In all these cases the elements of f2 are never envisaged as random vari­

ables. They are parameters to be estimated, generically referred to as fixed 

effects. In contrast, there are models in which some of the elements of f2 are 

random variables. Usually they are the effects corresponding, in traditional 

analy~is of variance situations, to the levels of one or more factors (or inter­

actions) and have therefore been called random effects. It is the variances of 

these random effects (random variables) that are the parameters of interest 

insofar as these elements of § are concerned. 

Despite Yates 1 [1967] comment that "unfortunately after the war a new concept 

of fixed and random effects models was introduced 11 there is currently an increas­

ing interest in these random effects models (sometimes also called variance 
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components models), with numerous new results having been published in recent 

years including, one notes, two papers in last year's inaugural volume of the 

Journal of Multivariate Analysis. Many of these deal with the more difficult 

aspects of estimation that arise from unequal-subclass-number data: for example, 

the multiplicity of estimation procedures, the intractability of criteria for 

judging between them and the prescience of negative estimates of par.ameters (namely 

variances) that are by definition positive. 

2. Examples and models 

Variance components have had a long use in genetics. Suppose a male animal 

has many progeny, a Holstein bull for example, which, through the use of arti­

ficial insemination, has sired many cows. If xij is the milk yield of the jth 

daughter of the ith sire a suitable model is 

x.;J· = IJ. + a. + e •. .... ~ ~J 
for i = 1,2,•••,a 

j = 1,2,•• • ,n. 
~ 

(2) 

The parameter IJ. is a general mean, ai is the effect due to the ith sire (a random 

effect from a population of a's that has zero mean and variance a~) and the 

eij's are the usual random error terms, uncorrelated with the o:'s, having zero 

mean and variance a~. Thus ~ = cfa + ~ and the problem is to estimate ~ and 

~· The sire's effect ai on his progeny's milk yield represents a random half 

of the sire's genetic make-up, so that ~ = taa where aa is the (additive) 

genetic variance of milk yield. The ratio of this to oi, namely h = a2a/ai 
= 4ci&/ (~ + ~) which, known as heritability, is o·f great use in animal breeding 

programs. For example, expected increases in yield arising from selecting a 

high-yielding fraction of animals to be parents of the next generation are 

proportional to h. 

Another example is crossing 2 varieties of corn, using pollen from repli­

cate males (tassels) of one variety on replicate females (silks) of the other 

variety, the sample of males and females used in each case being considered 

random samples from the varieties concerned. If xijk is the yield of the ktn 
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plant resulting from crossing the ith male with the jth female the model 

(3) 

is appropriate. Here mi, fj and (mf)ij are uncorrelated random variables with 

zero means and homoscedastic with variances ~' df and ~f respectively. These 

variables are also uncorrelated with the error terms eijk which have zero mean 

and variance ~. 

There are also models involving both random and fixed effects. A non­

biological example given in Thompson [1963] is that of analyzing the muzzle 

velocity xij of the ith shell fired from a gun using the jth of several measur­

ing instruments. Here we have 

x .. "" ll + s. + m. + e .. 
~J ~ J ~J 

(4) 

where si is the effect due to the ith shell and mj is the bias in the jth measur­

ing instrument. Since the shells used are a random sample of shells, the Bi are 

random effects, whereas the mj are fixed effects. 

A model such as (4) is usually called a mixed model; involving as it does 

both fixed and random effects. But since in all models ll is a fixed effect and 

the error terms are random, all models can be considered as mixed. To distinguish 

the 2 kinds of effects a generalization of the fixed effects model (1) is 

l "" ~~ + Zu + e (5) 

for the mixed effects model. Here ~ is the vector of fixed effects (including 

coefficients of covariates if present), u is the vector of random effects and 

e is the vector of error terms~ X and Z are matrices of known values corres-- -
pending to the incidence of the fixed and random effects respectively in l• 
Properties generally attributed to the random variables in u and e are 

var(~) = E(~~') = D and var(~)"" E(~~') ""R 
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Hence 

(6) 

and 

var(l) = ZDZ' + R ~ V, say. (7) 

The problem is to estimate not only ~ but also ~ and ~· Usually R is taken as 

~! and ~ is taken as a diagonal matrix. For example, in ref'ormulating (2) in 

the f'orm of' (5), the vector u would be u' =a' = (a1 ~ ••• aa) so that D would 

be~= ~~a· Similarly f'or (3), with a males, i = 1,2,•••,a and b f'emales, 

j = 1,2,•••,b, ~would be 

- if2I 0 m-a 

D = 0 

0 0 

In general, we can specif'y ~ as 

and Z correspondingly as 

u' = [u' u' -1 -2 

~ = [~1 ~2 

0 

0 

if2 I mf'-ab 

... 

(8) 

u' -e ••• (9) 

• •• (10) 

where ~~ is the vector of' N6 eff'ects for the eth factor (main effects or inter­

action factor), for 8 = 1,2,•••,K. Customarily the elements of ~a are assumed 

to have zero mean, be uncorrelated and have uniform variance ~' and to be 

uncorrelated with elements of' all other ~'s; i.e., E(~9 ) = 0, var(~8 ) = ~!N, 
e 

E(~8~~) = 2 for 8 F ~and E(~e:') = 2• Hence D is a diagonal matrix of' the 

matrices ~!N and so can be written as 
e 

(11) 



- 5 -

where ~+ denotes the "ope.ra.tion of a direct (Kronecker) sum of matrices. An 

example is ( 8). Then V in (7) becomes, using R = d2r, - e-

which, by defining ~K+l 

K 

V= L ~~e~e + tf?r e-
8=1 

- ! and ~+l 

K+l 

- d2 can be further generalized as e 

Y = I ~~e~e · 
8=1 

(12) 

(13) 

The :problem is to estimate the variance components~ and~ fore= 1,2,···,K. 

Additional generality could be given to the model by assuming var(~8 ) to 

be ~ee say, rather than ~~ , and more still by assuming cov(~8~~) to be ~e~ 
e 

sa~ rather than zero. Then D would beD= {~8 } fore,~= 1,2,···,K. However, - - - ~ 
there are difficulties enough in estimating ~ when it has the simple form shown 

in (11)- i.e., estimating the a21 s- so that (ll) is the form usually assumed. 

l• Available data 

Situations for which random effects models are appropriate often yield, 

especially in biology and economics, what can be called "messy data". The 

data are often voluminous in extent and frequently include large samples nf the 

random effects. However, these same data often stem from survey-like situations 

and seldon do they have a uniform number of observations in each sub-most 

subclass. Not only may the numbers vary greatly but many subclasses may be 

empty, having no observations at all- in some cases as many as 30% or more 

of the subclasses being empty. At first thought the prospects of having efficient 

estimation :procedures for such data are gloomy, and indeed they are. But the 

:pre?sing need by biologists, economists and others for variance components 

estimates that they can use reliably in their work is such that development of 

efficient estimators for their kinds of data is worth pursuing. 
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Dichotomizing data according to the number of observations in the sub­

classes, namely data having equal subclass numbers (which we call balanced 

data) or data having unequal subclass numbers (which we call unbalanced ~) 

is :pertinent to variance component estimation because in the one case estima­

tion is easy and well documented and in the other it is difficult with unsolved 

:problems. The easy case is balanced data; the difficult case is unbalanced 

data. We deal first, and briefly, with the easy case. 

4. Estimation: balanced data 

Consideration of variance components models in balanced data led to estima­

tion methods based on the mean squares of classical analyses of variance. 

Expected values of these mean squares are linear functions of the variance 

components and equating them to observed values gives linear equations in the 

components, the solutions of which are taken as estimators. Su:p:pose ~ and ~ 

are vectors of analysis of variance mean squares and variance components res­

pectively for some set of data. Writing the expected value of m as P~ we have 

(14) 

"2 2 and the equations for deriving o- as an estimator of £ are 

m (15) 

F~r random models the elements of ~ are all the mean squares of the a:p:pro:priate 

analysis of variance and in mixed models they are the mean squares whose expecta­

tions contain no fixed effects. In both cases (for balanced data) P is non-
-1"2 singular and the estimators are ~ ~· 

Unbiasedness is a well-evident :property of estimators obtained from (14) 

and (15), e.g., Winsor and Clarke [1940]; but .establishment of other :properties 

has been relatively recent; e.g., minimum variance quadratic unbiasedness and, 

under nor!llality assumptions, minimum variance unbiasedness, Graybill and Hultquist 

[1961]. Normality assumptions for the random effects also lead, as usual, to 

the analysis of variance sums of squares having x2 -distributions (multiplied by 
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constants) with the result that confidence intervals and test statistics for 

hypotheses about certain linear combinations of the components can be derived. 

However, the linear combinations of x2 -variables that constitute the estimators 

have coefficients that involve the unknown components and so the distributions 

of the estimators are unknown. For example, for the model (2) with ni = n for 

all i ' ~· ( 

na2 + a2 a2 02 _ a: e 2 e 2 

a: - n(a - 1) Xa-1 - an(n - 1) Xa(n~l) (16) 

where the X~ symbol here denotes a variable distributed as x2 on r degrees of 

freedom. Furthermore, since the estimators involve differences between such 

variables, as in (16), their distributions involve sums of confluent hyper­

geometric functions as in Robinson [1965] and Wang [1967]. However, one character­

istic of the estimators that can be derived is their variances, because the 

x2 -variables of which they are linear combinations are independent. Unbiased 

estimators of these variances are also available, Ahrens [1965] (see also 

Searle [197la] ). 

Maximum likelihood estimation using normality assumptions leads pro forma 

to almost the same estimators as given by the analysis of variance method sum­

marized in (14) and (15). However, the estimators can be negative so they can­

not truly be maximum likelihood estimators since these would stem from maximiz­

ing the likelihood over the parameter space which, for variance components, is 

non-negative. Herbach [1959], Thompson [1962] and Thompson and Moore [1963] 

discuss this problem. 

Estimates obtained from (15) are, on some occasions, negative. This is 

clearly embarrassing because the corresponding parameters, being variances, are 

essentially positive. Many awkward moments arise between a consulting statis­

tician and his client when explanation of this peculiarity is called for and 

found wanting. Various unsatisfactory alternatives are listed in Searle [197la] 

but the need for developing essentially positive estimators remains. 
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2· Estimation: unbalanced data 

The innocent looking difference between balanced and unbalanced data has 

widespread ramifications in the task of estimating variance components. It 

leads to a variety of methods of estimation, properties of which are mostly 

unknown (save for unbiasedness which is almost universally achieved). This, 

in combination with the largely empirical nature of the criteria used for 

deriving the estimation methods, makes it almost impossible to pass judgement 

on the different estimators. Furthermore, the algebra involved is horrendous 

("algebraic heroics" are Hartley's [1967] words) and computing procedures are 

correspondingly difficult even for large computers; e.g., inverting matrices of 

order 1000 and greater. Nevertheless, the practical need for efficient esti­

mators of variance components from unbalanced data is sufficiently compelling 

to pursue the problems involvedo 

5a. Basic development 

The development of estimators has basically been that of a variety of 

quadratic forms in the observation vector ~ having expected values that are 

linear combinations of the variance components. Thus if t~ is one such 

quadratic form we know from (6) and (7), without any assumptions about the form 

of the distribution of ~' that 

(17) 

Q is therefore chosen so that 

(18) 

Then, analogous to (14) and (15), if~(~) is a vector of such quadratic forms 

with 

(19) 

the equations for deriving ~ as an estimator of d2 are 

(20) 
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Now with balanced data there is an 'obvious' set of mean squares (quadratic 

forms) to use in~ in the estimation procedure of (14) and (15), and the result­

ing estimators have been shown to have certain desirable properties in addition 

to unbiasedness. In contrast, with unbalanced data there is no single set of 

quadratic forms satisfying (18) that are 'obvious' for use in (19) and (20). 

A variety of suggestions have been made, some of them involving more equations 

in (19) than there are variance components. In this case equations (20) are 

over-identified, but provided~ of (19) has full column rank, a 'least squares' 

solution can be obtained as 

(21) 

5b. Adaptations of analysis of variance 

Until quite recently the quadratic forms ~·g~ suggested for use in g(l) 
of (19) and (20) have been chosen by analogy with classical analysis of variance 

procedures. Three such analogies given in Henderson [1953] have received wide­

spread use and attention. The first uses unbalanced data analogies of sums of 

squares used in analyses of variance of balanced data. For example, for the 

model (3) with i = l,2,···,a and j = l,2,•••,b and k = l,2,•••,nij' the inter­

action sum of squares for balanced data (nij = n for all i and j) is 

a b 

I ~ (- - - - 2 n x. . -x. -x . -x ~J· ~·· •J• ••• ) 
i=l j=l i=l j=l 

a 

- bn \'?. 
'- 1•. 

i=l 

b 

- an\'. X2. L • J· 
+ abn? 

• • • 1 

j=l 
(22) 

using familiar bar and subscript dot notation for means. Analogous to the 

right-hand side of this identity Henderson's [1953] first method suggests using 

for unbalanced data 

a b a 

2: l. nij~j· - \·n. ~ -
L ~· ~·. 

i=l j=l i=l 

b 

\' n .X2. 
'- •J •J• 

j=l 

(23) 

Although not a sum of squares (it is not a positive definite quadratic form), 

this and its counterparts for the error and 2 main effects sums of squares for 
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(3) do provide 4 elements for ~(l) in (19) and so yield estimators from (20). 

The second Ilenderzon method, described by Searle [1968] in matrix termin­

ology, is intended for mixed models like (5). Balanced data present no dif­

ficulties in estimating variance components in mixed models because the analysis 

of variance sums of squares for the random effects factors have expected values 

free of the fixed effects. But with unbalanced data there is need for eliminat­

ing these fixed effects. An apparently easy procedure is to first estimate the 

fixed effects as 

(24) 

say, and then estimate the variance compor~ents from l corrected fo:c~ § in the 

form 
-

z ::; l ~§ ' (25) 

for which the model is, from (5), 

(26) 

Henderson's Method 2 chooses L to reduce this to a random model that is, apart 

from the error terms, directly suited to his first method. However, the choice 

of L is not unique and it necessitates preclusion of models for y that contain 

interactions between fixed and main effects, Searle [1968]. These are rather 

severe limitations. 

A recent use of (24) and (25) is made by Wallace and Hussain [1969, sec. 

5.4] for eliminating covariates from a mixed model. In using (t~n-1 for ~ 

they certainly eliminate ~ from (26), but their then estimating variance com­

ponents from familiar analysis of variance mean squares of the z 1 s (their data 

is balanced) predicates the assumption that the model for z is 1-1~~! + Zu + e. 

This is incorrect, as is evident from (26). 

Tne third Henderson [1953] method uses the reductions in sums of squares 

calculated vlheh fitting constants. Suppose R(~l' ~2 ) and R(~1 ) are the reduc­

tions in sum of squares for fitting 

(27) 
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and ~ = !l~l + ; respecti vel~·.· Then the expectation under the model (2J) of 

is 

The importance of this result is that E R(~2 1~1 ) contains no terms in ~1 • There­

fore for the mixed model l = !~ + ~~ + ~ of (5), reductions in sums of squares 

of the form R(~EI~1 ) can be derived having :expected values free of the fixed 

effects so long as ~l always contains ~· For example using (9), (10) and (11) 

with K = 2 the model is 

and expected values of R(~1 1~,~2 ) and R(~2 1~,~1 ) will by (28) be linear functions 

of of,~ and ~~a~ respectively, with E[~'~ - R(~,~1,~2 )J being a multiple of ~ 

in the usual way. Note that E[R(~1,~2 1~)] will be a linear function of~'~ 

and a2 so that there are 4 elements of q(y) for (19) and (20) with only 3 variance 
e - -

components to estimate. This is the problem of over-identifiability referred to 

earlier. It is also discussed in Searle [197la,b] for the model (3) and in ~bunt 

and Searle [1972] for a covariance model. 

5c. Maximum likelihood 

On the basis of normality assumptions Hartley and Rao [1967] consider maxi­

mum likelihood estimation for mixed models. This involves equations that are 

extremely complicated in the estimators: using V of (12) they are 

and 

(30) 
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Numerical solution by the method of steepest ascent is suggested. However, the 

computing procedures are n~ither easy, nor yet widely available. Nor are they 

attractive for the typicall"¥ large-sized data set of variance components models, 
-1 because y has order equal to the number of observations. And with unbalanced 

data V is in no sense a patterned matrix and permits of no easy analytical inverse. 

Although explicit maximum likelihood estimators cannot be obtained their 

large sample variances can. In fact their large sample variance-covariance matrix 

is 

. av av 
= {1 tr(v-1 -=- v-1 -=- )} 

- 0~- 0~ 
fore,~= l 1 2 1 •••,K+l. (31) 

This is derived in Searle [1970] where explicit elements of the matrix on the 

right-hand-side are obtained for the 2-way nested classification, those for the 

3-way nested classification being given in Rudan and Searle [1971]. Unfortunately 

all attempts at obtaining y-l analytically for the 2-way crossed classification 

have failed, see Rudan and Searle [197la]. Deriving this inverse for use in (31) 

remains an unsolved problem. 

The computing difficulties associated with numerical inversion of matrices 

of large order that arise with v-l in the maximum likelihood method would also 

occur in trying to use numerical methods for obtaining sampling variances from 

(31). Similar difficulties can arise in (28) where (~l ~1 )- can be large; however, 

its order is only the number of effects in §1 of (27), which is usually far less 

than the number of observations, the order of y. Furthermore, in at least one 

case of widespread application the 2-way crossed classification, explicit comput­

ing procedures for (28) are available, e.g., Searle [197lb, pp. 483-4]. 

5d. Minimization criteria 

Several new quadratic forms for use in ~(l) of (19) and (20) have recently 

been suggested, derived by setting up estimation criteria that seem appropriate. 

Rao [197la], in suggesting that earlier methods other than maximum likelihood are 

"ad E££" has developed, Rao [1970, 1971a], what he calls the MINQUE method, a 

method of minimum ~orm ~uadratic ~nbiased ~stimation. This entails establishing 

!'~as an estimator of~ Piai by choosing~ so that, as in (18), ~ = 0 and, in 
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K+l 
terms of (13), tr(S 8~'f~ .. ~~'QY is a minimum. 

:_[r. 
Writing 

K+l 

w = I ~e for ~e = ~e~~ 
8=1 

this means minimizing tr(QW)2 • Rao [197la] gives a variety of theorems useful --· 
to this kind of minimization problem, the results for this particular case being 

"'2 that u is derived from 

where 

s = {tr[~~e~ ~9 ,]} for e,e' = 1,2,···,K+l 

for e = l,···,K+l 

and 

In Rao [197lb] this development is extended to minimum variance estimation, 

MIVQUE, and minimum mean square est:ilnation, MIMSQUE. 

Whilst tpese solutions to the problem are to be applauded, they appear to 

have two str,ikes against them insofar as practical usll,ge is concerned. First, 

~-l is a matrix of order equal to the number of observations, as is ~(\ and 

second, to quote Rao [197lb], 
11 In all the formulas for estimating .E p.~ the true a~ appear. In 

1 1 1 

practice we use a priori values or a given set of values at which 

a. minimum is sought. 11 

In addition to these difficulties they also have the deficiencies of other esti-

mators, namely that they are not necessarily non-negative and their distributions 

are unknown. 

Estimators similar to those of Rao have also been suggested by LaMotte 

[1970] who calls his procedure QUESOM, guadratic ~biased ~stimation ~rthogonal 

to the mean. And Townsend and Searle [1971] have developed explicit expressions 

for the BQUE 's of ~ and ~ in the random model y .. = a. + e. . for unbalanced 
u e 1J 1 1J 
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data, a BQUE being a best (in the minimum variance sense) guadratic unbiased 

estimator. 

6. Some specific problems 

The particulars are now given of some specific unfinished problems, both 

small and large. 

6. a. Variances of binomial probabilities 

Sometimes the probability parameter p of the binomial distribution can be 

considered a random variable; e.g., the conception rate for each bull of a popula­

tion of bulls available for use in artificial breeding; or hatchability rate of 

a hen's eggs in poultry. The analysis of data on such variables is often an 

analysis of variance of the appropriate (0,1) variable representing success and 

failure. This analysis is tantamount to a weighted analysis of variance of the 

p1 s corresponding to the p's. A simple relationship exists between the variance 

components of the (0,1) variables and those of the population of p's, even for 

unbalanced data. However, as indicated in Gates and Searle [1971], unweighted 

analyses of variance calculations can also yield unbiassed estimators of the 

variance components of the p's. Although the two methods are the same for balanced 

data they are not for unbalanced data and in this case investigation is needed into 

their relative efficiency. Assuming a beta distribution for the p's may also 

yield distribution properties for the estimators, at least for balanced data. 

6.b. Models with covariates 

The coefficients of covariates in a covariance model are nothing more than 

fixed effects and can be handled in accord with (27) and (28); i.e., so long as 

~l of (27) always includes the covariates, (28) will yield variance components 

estimators unencumbered by the covariates. For example, consider the model 

which can be written as 

c 

Yij = ~ + L ~txtij 
t=l 

+ u1 . + e .. 
~ ~J 
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Then for ni observations in the itb level of the random effects u11,···,u1a we 
a 

have ~l = ~ 1 where 1 is a vector of n. unities. The variance compcnent 
i=l -ni -n1 1 

to be estimated, in addition to ~~ is crY corresponding to the random effects 

of ~1• Since the model is that of the 1-way classification with covariance, 

the estimator of ~ is 

a n1 

02 = [ \ \ (y. . - y )2 - w •w-1w l; (N - a - c) 
e ~ ~ 1J i• - -1 - ~ 

i=l j=l 

where ~ is the vector of within-group sums of products of the covariates with the 

y's and ~l is the matrix of wit~in-group sums of squares and products of the 

covariates. The estimator or".af is obtained from using (28), with its ~l and ~l 

now being [1 !1 ] and [~' ~iJ and its ~2 and~ now being ~l and ~1 • The result 

is 

where 

and 

~= -1 

R(~1 1~,~) - (a - 1)~ 
a 

N - i;ln~/N - tr(!-~l~l) 

a n1 

T = { I I-(Xtij- xt •• Hxt'ij- it• •• )} for t,t' = l,···,c 
i=l j=l 

a 

~l~l = { ~ n~ (iti· -it )(it'' - it• >} for t,t' = l,•••,c. •• 1• •• 

i=l 

Mount and Searle [1972] derive these results. They also obtain results for the 

2-way cross-classification with covariates, one observation per cell and both 

factors of the classification being random effects factors; i.e., the model (30) 

with X= [! ~1 ] and~= [~ ~1] as above. Further extensions of this applica­

tion of (28) to covariate models are needed. 



- 16 -

6c. Components of covariance 

The simplest form of dispersion matrix for the r~~dom effects of a model is 
K 
E ~!N shown in (ll); although simple it involves difficult estimation problems, 

8=1 e 
as we have seen. A more general form, [~8~} fore,~= l,···,K, is discussed 

following (13). Rao [l97la] calls this a covariance components model. But it 

is nothing more than a variance components model with covariances among the 

random effects. A components of covariance model is one for 2 (or more) observ­

able variables having a covariance between them. It is this covariance whose 

components are of interest; and this is the components of covariance model that 

biologists have used for many years; e.g., it is the basis of procedures for 

estimating genetic correlations given in Hazel [1943]. Suppose, for example, 

we have observations on the staple length and crimp of the fleeces shorn from 

ewes sired by a variety of rams. If xij and Yij are the 2 observations from the 

jth ewe sired by the ith ram, suitable random effects models might be 

x .. = 1-1 +a. + e .. 
lJ l lJ 

and (32) 

y. . = 1-1' + a! + e ~ . e 
lJ l lJ 

having variance components ~' ~ and ~'' ~' respectively. The components of 

covariance are the covariances cr00 , and cree' between ai and a~ and between eij 

and e! ., with 
lJ 

cr = a00 , + cr , • 
xy ee (33) 

Estimation of components of covariance of the nature described for (33) is 

no more difficult than is estimation of components of variance. On all occasions, 

components of covariance estimators will be the same linear combinations of the 

same bilinear forms in x and l as variance components estimators are of q_uadratic 

forms in ~ and in ~· However, the need for bilinear forms can be by-passed by 

using q_uadratic forms in x + ~ and relying on the identities 

a = 1.( ~ - c? - ~) xy 2 x+y x y 

and (34) 
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Thus for any data set in which the vectors of components of variance of x and y, 

d2 and d2 respectively, are estimated in accord with (20) by 
-x -y 

"'2 -1 ( o- = P q x) 
-X - - -

":::> and a-
Y 

the vector of components of covariance will be estimated by 

= ~(~ - 02 - ~) • -x+y -x -y 

Hence components of covariance can be estimated directly from the estimated 

components of variance of the two variables concerned and of their sum. 

(35) 

Investigation of properties of estimated components of covariance is also 

needed. Their variances, for example, on the basis of normality can be derived 

using 

cov(x'Qx, x•Qy)= 2 tr(Q.C)2 + 41l'Q.CQ.I-1 (36) 
- -- - -- -- -x----y 

where c is the matrix of covariances between x andy and ~x = E(~) and ~y = E(~). 
Similarly 

cov(x'Qx, x'Qy)= tr(Q.V Q.C) + tr(Q.V )2 + 2j.J. 1Q.cQ.I-1 + 2j.J. 1Q,V Q.ll 1 - -- - -- --x-- --x -x----x -x--x--y C37) 

where V and V are the variance - covariance matrices of x and y_ respectively; 
-x -y 

and 

var(x'Qy) = tr(Q.C)2 + tr(Q.V Q,V ) + 21l'Q.CQ.I-1 + 1-l'Q.V Qll + ll'QV Q.ll • (38) 
. - -- -- --y--x -x----y -x--y--x -y--x--y 

These expressions come from the general form of the covariance between any two 

bilinear forms in normal variables, e.g., Searle [l97lb, p. 66]. 

6.d. Criteria for estimation 

The various estimation procedures originating from analysis of variance 

calculations undoubtedly arose as a matter of convenience and because they seemed 
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"obvious". The only known property of the resulting estimators is unbiased.ness 

(and the x2 -nature of ~ under normality). This property is retained in the 

MINQUE, MIVQUE and BQUE procedures, and others are added. 

Although these procedures stem from desirable criteria they do not overcome 

the problem of yielding negative estimators which are such an embarrassment. 

Furthermore, the property of unbiased.ness itself merits questioning in the case 

of variance components estimators. 'Ihis is so because with unbalanced data from 

random models the concept of repetitions of similarly structured data and associ­

ated repetitions of estimators is often not appropriate -more data, maybe, but 

not necessarily with the same pattern of unbalancedness. Replications of data 

cannot therefore be thought of as mere resamplings of the data already available. 

This situation appears to demand that consideration of expected values over 

repeated samplings should take into account the varying numbers of observations 

that arise from sample to sample. Also to be taken into account is the fact 

that random model data are often available in such large quantities that addi­

tional data may involve other populations. Investigation of these andother ideas 

is needed to develop estimators that have properties more in keeping with them 

than do those currently available. Some form of modal unbiasedness is one possi­

bility that has been suggested, Searle [1968]; or estimators for which the proba­

bility of small deviations from true value is maximized rather than minimizing 

the probability of large deviations. Even though, as Eisenhart [1968] points 

out, this was the idea that Gauss rejected in favour of his minimum-mean-squared­

error approach, it may not be inappropriate for variance components situations 

where data sets are often large and non-replicable in the usual sense. 

A standard procedure for comparing different estimators is by means of their 

sampling variances. With this in view, expressions for the sampling variances 

of variance components estimators under normality assumptions have been derived 

in several palces; e.g., Searle [1956, 1958, 1961, 1970] 1 Rohde and Tallis [1969], 

Searle and Rudan [197lb]. Further work is needed to derive from Rohde and Tallis 

explicit expressions for particular cases; and a great deal of work is needed in 

comparative studies, using these results. 

6.e. Computing difficulties 

Reference has already been made to some of the computing difficulties in­

volved in calculating estimates from some of the estimators discussed. These 
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largely revolve around the difficulty of inverting matrices of very large order, 
-1 such as calculating y • In addition to these computing difficulties the result-

ing estimates are such that their distributional properties are mostly unknown, 

or known only in terms of the unknown variance components parameters. Further­

more these properties themselves can involve computing headaches. Two questions 
"" 

therefore arise: (i) Can we develop variance components estimators based on 

much simpler calculations than are needed now - such as using rank order statistics, 

perhaps? (ii) Can we numerically investigate the properties of present estimators 

in a manner which will yield definitive information about their behaviour for 

variatioYJ.s in the unknown variance components and variations in the numbers of 

observations in the subclasses? Investigation of these two questions surely 

seems worthwhile. 

6.f. Defining unbalancedness 

Referring to the values that the numbers of observations take on in a data 

set as an n-pattern, one of the preceding questions is to what extent does the 

n-pattern affect the properties of an estimator? Unfortunately the algebra of 

most properties usually involves the n-pattern in such a complicated way that the 

effect:of different n-patterns cannot be studied analytically. For example, 

assuming normality in the model (2), the sampling variance of the analysis of 

variance estimator of ~ is 

v(~) = 

where 

2cr4 N2 (N - l)(a - 1) 4~cf!N 2cr4 (N2S2 + s22 - 2NS3) e + e a:· + _a:.;;;..._......;;. _ __.;;;._ __ ..::_ 

(N2 - s2)2(N - a) N2 - ·s2 (N2 - s2)2 

a 

N = L ni ' 
i=l 

a 

and s3 = L nj_ 

i=l 

(39) 

The involvement of the n. 's in this expression is clearly such that investigating 
l. 

its behaviour for changes in the ni's is out of the question. It seems, there-

fore, that analytical comparisons of estimators are likely to be ~uite intract­

able and recourse must be made to numerical studies. 

Even if the behaviour of expressions like (39) in terms of the ni's could 
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be delineated it would be advantageous to be able to summarize an n-pattern in 

terms of some characteristic, such as a measure of unbalancedness. The behaviour e 
of (39) could then be described in terms of this measure. The possibility of 

doing this may be remote, however, because preliminary indications are that even 

in the simplest of cases the effect of the n-pattern on properties of estimators 

is apparently itself a function of the variance components being estimated. The 

effects of unbalancedness therefore appear to differ according to the values 

of the true variance components. This suggests that unbalancedness may have to 

be defined in terms of the components being estimated, an unsatisfactory con­

clusion from the point of v~w of considering the effect of unbalancedness on 

estimation. 

Numeric studies for comparing estimators also involve a problem concerning 

n-patterns. It is that of planning a set of n-patterns to be used, in conjunc­

tion with sets of parameter values. Deciding on the latter usually poses no 

great difficulty because only a small number of variance components are involved. 

But deciding on a set of n-patterns is a situation of having infinitely many 

choices; for example, in a 2-way crossed classification of rows and columns, the 

planning of a set of n-patterns demands answering such questions as how many 

rows, how many columns, how many empty cells, and how many observations in the 

cells that are not empty? The sky's the limit, a fact which makes it exceedingly 

difficult to plan a set of n•patterns that are sufficiently disparate to encompass 

an interesting range but which also differ in some logical manner in such a way 

that effects on the properties of the estimators might be apparent. One possi­

bility is to draw samples of nij's from some distribution, provided a useful, 

realistic and tractable distribution can be postulated. Even then, this course 

of action would provide little information on just exactly how it is that the 

characteristic of unbalancedness affects estimation procedures. Investigation 

on this problem is therefore badly needed. 
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